
Meteoric diffusion studies 
of middle atmospheric 

dynamical structure 

A THESIS 

SUBMITTED IN PARTIAL FULFILMENT 

OF THE REQUIREMENTS FOR THE DEGREE 

OF 

MASTER OF SCIENCE IN PHYSICS 

IN THE 

UNIVERSITY OF CANTERBURY 

by 
Gareth Thomas 

-;;-::::-

University of Canterbury 
1998 



PHYSICAL 
SCIENCES 
LIBRARY 

Abstract 

This work investigates the use of ambipolar diffusion coefficients determined 
by the decay times of meteors detected by the University of Canterbury's meteor 
radar, AMOR, in determining dynamical parameters for the middle atmosphere. 
The radar system has the ability to accurately determine the geometric altitude of 
detected meteor trains, thereby making it a potentially powerful tool for detailed 
and continuous observation of the atmosphere. 

Software has been developed in the IDL interperative language to analyse the 
data in two main ways. Firstly a brief analysis of the relationship between geometric 
altitude and ambipolar diffusion coefficient was made. with all previous work 
the logarithmic relationship predicted between the two was confirmed on average, 
although a very large degree of true scatter was found. The density scale height 
inferred by this analysis was found to be in reasonable agreement with recent 
previous results. 

The major part of the analysis done used the ambipolar diffusion coefficient 
as a measure of temperature change and investigated these changes over time. 
Three time scales were investigated; variations over a few hours, daily behaviour 
and long term change over months and years. All three scales showed evidence 
of time dependent structure. The short time scale analysis showed evidence of 
fluctuations consistent with gravity wave propagation. Mid time scales showed a 
diurnal oscillation, but the source of this is unclear. Long time scales showed an 
annual variation in agreement with the broad temperature structure of the middle 
atmosphere. 
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Chapter 1 

Introduction 

1.1 Basic Picture 

The space through which the Earth moves in it's orbit about the Sun is not empty, 
in fact the Earth's path is crossed by countless small particles also orbiting the 
Sun. These particles, know as meteoroids, range from micrometers to a few meters 
in size, with the great majority being at the small end of the scale. Obviously, 
with so many meteoroids in the Earth's vicinity many enter the atmosphere. It is 
the effects of these collisions and their use in investigating the middle atmosphere 
which are the concerns of this project. 

When a meteoroid travelling at many kms-1 encounters the Earth's atmos­
phere friction causes extreme heating and the particle reaches a temperature of 
about 2000 K. This temperature is enough to cause vaporisation of the surface of 
the meteor, and the collisional energies between meteor and atmospheric particles 
is high enough to cause ionisation. Hence, as a meteoroid passes through the upper 
atmosphere it creates a trail of glowing plasma (called an ionisation train), and 
for meteoroids greater than about 5 mm in diameter it is this we see as a "shoo­
ting star" or visual meteor. Most meteoroids are small enough to be completely 
vaporised in the passage though the atmosphere, but the occasional larger one has 
enough mass for fragments to reach the ground as meteorites. 

Despite the fact that very small meteors are not easily observed visually they 
can still be detected using a suitable radar system. This is because the ionisation 
train left by a meteor contains a large enough concentration of free electrons to act 
as a good reflector of radio waves. Meteors detected in this fashion are known as 
radio meteors. This project uses data collected using such a system operated by 
the University of Canterbury's Physics Department, AMOR1 . 

The meteoroids themselves originate mostly from comets. As a comet approa­
ches the sun from the outer reaches of the Solar System the increased Solar radiation 
causes evaporation and out-gassing, which in turn releases a large amount of dust. 
Because of the initial dispersion in velocity of ejected material a tube--like trail 
of meteoroids is created following the comet's orbit, and when the Earth passes 
through such a trail a meteor shower results. From the ground a meteor shower 
can be seen as a period of intense activity, with all the meteors appearing to come 
from the same point in the sky (a perspective effect due to the parallel paths of the 
particles), this point is called the radiant of the shower. Over time the particles in 
these tubes have their orbits perturbed by the gravitational effects of the planets 

1the Advanced Meteor Orbit Radar 

1 



2 Chapter 1. Introduction 

and it is these perturbed meteoroids which cause the much more common sporadic 
meteors. Other sources of sporadic meteors include debris from collisions between 
larger bodies in the Solar System (most notably asteroids) and even interstellar 
material [1 J. 

1.2 Project organisation and purpose 

This project is an investigation into the suitability of the AMOR system for measu..: 
ring dynamical processes (namely wavelike structures) near the mesopause by the 
calculation of the ambipolar diffusion coefficients of meteor trains. 

The rest of this chapter gives an overview of meteor and atmospheric science. 
Chapter 2 presents the theory of meteor detection by radar and gives the theore­
tical basis for two possible uses for ambipolar diffusion data for the atmosphere. 
Chapter 3 Describes the AMOR system, the data acquisition and storage and the 
practical determination of ambipolar diffusion coefficients from meteors. Chapter 
4 examines the relationship between the geometric altitude of a meteor trail and 
it's measured diffusion coefficient. Chapter 5 presents the results of searches for 
wavelike structures in the AMOR diffusion data and compares these with previous 
and/or expected results. 

1.3 Historical overview 

The observations of and attempts to explain meteors go back thousands of years, 
but it was only in the 1790's that a truly scientific attempt was made to determine 
their origin and nature. The astronomer Chladni was man who inadvertently 
caused this development when he put forward a theory in 1794 that space is filled 
with particles that ignite when they encounter the Earth's atmosphere. This idea 
inspired a couple of German students, Brandes and Bezenberg, to carry out simul­
taneous observations of meteors in 1798 while separated by severalldlometres. By 
simple triangulation they were able to determine that the meteors were occurring 
at a height of some 100 km, and that the velocities of the particles creating them 
were planetary in magnitude. This rather inspired work was however a flash in 
the pan, as interest in meteors remained low until the spectacular Leonid meteor 
shower of 1833 stirred up immense public interest. This sparked off a rush of visual 
meteor observing geared towards determining meteor rates and the radiant positi­
ons of showers. This work continued for about the next 100 years, providing little 
of importance as far as actual atmospheric science went. The main development 
in the 19th century was the realization that many meteor showers had very similar 
orbits to known comets, thereby offering an explanation to their origin. 

Virtually all knowledge of conditions in the middle and upper atmosphere has 
been gained in this century, and it was observations of meteors that provided some 
of the early data on the region. In 1923 Lindemann and Dobson [2] used visual 
meteor observations to derive a density profile for the atmosphere for the region 
from 60 to 160 km. They used two stations, each with trained observers simul-
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taneously recording the path, direction and (very roughly) speed of any meteors 
seen. Using this information and triangulation between the stations they were able 
to determine the height of appearance and disappearance (where the ionisation 
train becomes visible and where the meteor is completely vaporised respectively). 
This in turn was used to estimate the density of the atmosphere at these heights. 
The profile they derived from this was considerably different from that expected, 
suggesting a temperature of about 300 K - much higher than should exist i::a.. a 
non-absorbing atmosphere at such heights. The solution to this discrepancy was 
put down to the heat developed by the reactions of ozone. 

Other techniques latter re-enforced and improved on the findings of Lindemann 
and Dobson. For instance in 1929 Bendorf [3] suggested that the zones of silence 
and then audibility of heavy gunfire noticed during the First World War at very 
large ranges ( rv 200 km) could be explained by an increasing temperature with 
height in the region we now call the stratosphere. In 1936 Martyn and Pulley [4] 
published a temperature of the atmosphere using a wide range of measurements 
from many researchers. Spectroscopy of the Aurora [5], their own radio studies of 
theE-region of the ionosphere, observations of noctilucent clouds at about 82 km, 
the propagation of sound from explosions and audible meteors [6] and work on the 
ozone layer [7] were all used. The temperature profile gained from these methods 
is very close to what is accepted today, with a temperature maximum at about 60 
km (although Martyn and Pulley's value of 450 K at this altitude is now known 
to be a gross over estimate), a temperature minimum of 160 K near 80 km and an 
increasing temperature with altitude above this. 

It wasn't until the development of photographic meteor observation that the 
parameters necessary for both Solar System orbital and atmospheric information 
to be extracted from meteor observation could be calculated with any accuracy. 
The 'standard' system for photographic meteor observation was first developed 
by Elkin at Yale in 1893. He used two cameras, separated by 3.3 or 5.0 km but 
pointing at the same area of sky, with rotating shutters (made from bicycle wheels) 
in front of the lenses. The rotating shutter would cause an image of a meteor to be 
segmented, the spacing of the segments giving the angular velocity of the meteor, 
and this in combination with triangulation using the two sites enabled a complete 
solution of the path parameters. Unfortunately the spacing of his cameras was not 
great enough to be effective. 

This method has been used by numerous researchers, and indeed is still in use, 
but the most extensive program of this type can be attributed to Whipple [8] in the 
late 1930's. Whipple was involved in the Harvard photographic patrol program, 
which was initially set up to take routine time exposures of the sky to provide a 
long term record for specific astronomical purposes such as detecting variable stars 
and determining the orbits of minor planets. Meteors had long been recorded on 
the Harvard plates and to maximise the information available from this unexpec­
ted source Whipple made modifications that basically made· the system analogous 
to Elkin's, except with a 38 km base line. The main emphasis of visual meteor 
observation has been geared towards getting orbital parameters for the meteoroids 
detected, but Whipple also used the Harvard data to derive a temperature profile 
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of the upper atmosphere in 1943 [9]. Using the height of maximum brightness, 
the heights of detection and disappearance and the deceleration of the meteor he 
developed an atmospheric profile with a maximum temperature of 375 K at 62 km 
and a value of 250 K near 80 km. 

Meteor photography has also provided information on upper atmospheric winds. 
By the way they deform, long enduring meteor trails can give indications of the 
wind conditions in the meteor region. 

Although visual techniques have provided valuable information on meteors they 
suffer from several draw backs. They are confined to the hours of darkness and 
periods of good weather; photographic images are very difficult to analyse electro­
nically and digitally stored images (which are good for computer analysis) tend to 
require a lot of storage space. These problems are solved by the use of a radar to 
observe meteors, and hence it is with radar that the bulk of recent progress has 
been made in the area. The first meteors detected by radar were in the late 1920's, 
appearing as fluctuations in echoes received from the E-region. It was Skellet, in 
1931, who first showed that a meteor could cause a sudden increase in ionisation 
needed to explain such fluctuations. In the same year his suggestion was verified 
when Schafer and Goodall used simultaneous visual and radio observations of the 
Leonid Meteor shower. 

During World War II great advances were made in radar technology due to it's 
usefulness in providing long range detection of aircraft. After the war this tech­
nology was soon modified for use in meteor detection. Indeed, the radar network 
used by the British Army for directing anti-aircraft gun fire was kept operational 
for a few months after hostilities ended particularly to investigate in more detail 
the echoes from meteors it had been detecting during the war. 

In using meteors to measure upper atmospheric parameters by radar two broad 
techniques are applied. Continuous wave radar compares the transmitted frequency 
to that of an echo, thereby giving a Doppler Shift. The radial velocity given by this 
Doppler Shift represents the wind velocity, in the radial direction, at the location 
of the specular reflection point on the meteor trail. By pulsing the radar, range can 
be determined (by timing the lag between transmitting a pulse and receiving it's 
echo), and by estimating the height a picture of the wind conditions in the meteor 
zone can be gained. Because these radars can operate 24 hours a day and produce 
large amounts of data they provide an opportunity to continuously monitor the 
winds at around 100 km. An example of early work in this area is that done 
by Greenhaw and Newfield in the mid 1950's at Jodrell Bank in Britain [10, 11]. 
A system like this (although with more accurate altitude determination) is also 
operational for use with the AMOR radar of Canterbury [12]. 

The other main type of radar used is a incoherent pulse radar. This technique 
uses the return time of the pulse to give the range and records the echoes amplitude 
with time. If multiple receiving stations are used meteor velocities can be calculated 
(by using the time differences between the occurrence of specular reflection at 
different sites) and interferometry can give the elevation of an echo. It is a system 
like this that has provided the data for this project and a more complete description 
of the capabilities of such a radar will be given in Chapter 3 where the AMOR system 
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will be described. 
The other major development since ·world vVar II for studying the upper atmo­

sphere has been the development of rocketry. This has enabled much more direct 
measurements of the upper atmosphere. Rockets have been used to carry measu­
ring instruments into the upper atmosphere as well as releasing vapour trails or 
objects to be studied from the ground. Techniques include: 

• Pressure sensors to determine atmospheric density. 
• Dropping objects of known frictional coefficient and then 

tracking their decent with radar (again to determine 
density profiles). 

• Creating explosions at predetermined height intervals 
and recording the sound at different locations on the 
ground (the propagation of sound can again give infor­
mation on atmospheric density). 

• Observation of the effect of wind shear and turbulence 
on the vapour trail left by a rocket. 

• Spectral analysis of the vapour trail light, giving tem­
perature information and when taken with the diffusion 
rate, density. 

• Mass spectrometers have even been carried, enabling di­
rect measurements of the upper atmospheric composi­
tion to be made. 

Although rockets provide a huge source of reliable information, they are ex­
pensive and only give a snap-shot of the atmosphere at a given time. They are 
therefore most useful as a check and calibration on other observation programs. 

The other thing that rocketry has given upper atmospheric science is the arti­
ficial satellite (such ~the Upper Atmosphere Research Satellite, UARS 2 ) which 
enable continuous measurements covering large portions of the globe to be perfor­
med. Of course satellites suffer from the cost problem as well, and they tend not 
to provide detailed long term data sets for a given region. 

1.4 The atmosphere 

Figure (Ll) shows the basic temperature structure of the Earth's atmosphere as 
well as the adopted nomenclature. As can be seen the atmosphere can be divided 
into four broad temperature regions. The lowest of these is the troposphere (0 to 
rv 12 km), the region we are all familiar with. The temperature falls with altitude 
at roughly the adiabatic lapse rate (although this is altered by the presence of 
large amounts of water vapour). Because the temperature gradient is in the same 
direction as the density gradient the atmosphere is vertically unstable - hence the 
atmospheric composition is very uniform in this region. Chemistry plays a very 

2The UARS Project Document is available on the world wide web at 
http: I I daac.gsfc.nasa.gov I CAMPAIGN _DOCS /U ARS_project.html 
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minor roll in controlling the temperature in the troposphere, dynamics and Solar 
heating of the Earth's surface are the controlling factors. 

Next comes the stratosphere, so called because the positive temperature gra­
dient with height produces a stable, stratified structure. The major cause of this 
reversal of temperature gradient is the photochemical reactions of ozone. As we 
move up through the stratosphere the absorption of solar U.V. radiation by 0 2 

increases (as the flux of U.V. radiation left to be absorbed increases). This solar 
absorption produces the well know Chapman cycle of ozone production and loss; 

Oz hv .......... 0*+0* (meta- stabel excitation) 
N2 +0* .......... N2+0 (N2 heated) 
0+02 .......... 0* 

(1.1) 3 
03+N2 .......... 03 Nz (N2 heated) 
03 +hv .......... 02+0 
0+03 .......... 202 

This cycle (as well as the many other reactions and processes which occur) are 
sufficient to raise the temperature from about 200 K at the tropopause to around 
300 K at the stratopause (at about 50 km). 

In the mesosphere the rapidly falling atmospheric density reduces the amount 
of heating from photo-chemistry, and the temperature again falls. In this region 
ionising solar radiation begins to play a more prominent role in the chemistry, and 
thereby the thermal conditions. At about 80 km the heating primarily from the 
dissociation of 0 2 is great enough to cause the temperature to begin rising again 
after reaching a minimum of roughly 200 K. The temperature continues to incre­
ase through the thermosphere until atmospheric particles become indistinguishable 
from solar wind particles. Hence the conditions in the upper atmosphere are ex­
tremely dependent on the level of solar activity, the temperature at 500 km ranges 
between 500 K and 1800 K. 

Throughout the atmosphere the pressure and density drop approximately ex­
ponentially both being solely determined (to first approximations) by the mass 
of atmosphere above the point in question. The composition of the atmosphere 
is however more complicated. At low altitudes the atmosphere is almost entirely 
composed of neutral species, the main constituents being N2 (rv 80% by volume) 
and 02 (rv 20%) with C02, H20 and other gases in trace amounts. This continues 
to be the basic mix up to about 100 km, apart from the increase in the abundance 
of 0 from the stratosphere upwards. Below 100 km the density of all species de­
creases with altitude at the same rate (neglecting changes due to chemistry) as the 
time taken for gases to reach diffusive equilibrium is longer than the vertical mixing 
time, even in the relatively stable stratosphere. This region of the atmosphere is 
known as the homosphere. Above 100 km however diffusive equilibrium is reached 
and each species decreases in density according to it's own scale height. The result 
of this is that the abundance of the lighter consitutence drops off much less rapidly 
than in the homosphere (where the density drops at a rate basically determined 
by N2). Also about 100 km the abundance of 0 becomes greater than that of 
0 2 and, due to the low mass of 0 compared to N2, 0 becomes the most common 
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Figure 1.1: The approximate temperature structure and layers of the 
Earth's atmosphere [After Brassear and Solomon [13]]. 

7 
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species above about 300 km. 0 2 rapidly decreases in abundance to become only a 
minor constituent by the time He becomes dominant at around 600 km. Finally, 
at around 1000 km atomic H becomes dominant. 

As already mentioned, high in the atmosphere Solar radiation causes ionisation. 
with ozone production ionisation occurs in relatively narrow vertical regions, 

for the same reasons as mentioned for ozone creation. There are four main regions 
of ionisation called, in ascending order, the D, E, F1 and F2 regions. 

The D region is caused by the ionisation of NO by Lyman a radiation (there 
being a "window" in the ionisation curve of 0 2 at the Lyman a band). The peak 
of the D region is at around 80 km and it is only present during daylight (loss 
processes remove the ionisation rapidly in the absence of sunlight). 

The E region is generated by the ionisation of 0 2. It was the first of the 
ionisation layers to be discovered, reflecting radio waves in the E band. The peak 
ionisation occurs at about lOOkm and, as with the D region, the layer is absent at 
night. 

The F 1 and F2 regions are both due to the ionisation of N2 and 0. The F 
region is dived into two "subregions" because of the ionisation loss processes active 
at different altitudes. Nt is lost rapidly through radiative recombination at all 
levels, but the recombination of o+ is more complicated and depends strongly on 
altitude. Because radiative recombination of o+ is extremely slow the ionisation is 
lost through a charge exchange process. In the F 1 region (which peaks at around 
150 km) the atmospheric density is high enough to allow charge exchange reactions 
between o+ and either 0 2 and N 2 to take place very rapidly. This provides an 
efficient loss mechanism for o+' since the recombination reactions of the ot and 
NO+ products of the charge exchange reactions are also rapid. Above about 200 
km however the abundances of 0 2 and N2 become low enough that the charge 
exchange reactions become slower than the recombination reactions. The charge 
exchange reactions rapidly become extremely slow and the ionisation levels increase 
again to form a second peak at about 400 km. Due to the very long ionisation loss 
time in the F2 region it is the only layer to remain during the night. 

Throughout the ionosphere the atmosphere is only a very weak plasma. The 
strongest relative ionisation occurs at the peak of the F 2 region where the ratio of 
free electrons to neutral atmospheric particles is about 1:100. 

1.4.1 Dynamics 

What is referred to as the meteor zone in this thesis is the altitude region appro­
ximately bounded by 80 and 110 km, i.e. the region surrounding the mesopause. 
This area of the atmosphere is of great interest as it marks transition in more than 
temperature. As can be seen in figure (1.1) the meteor zone girdles not only the 
mesopause but also the start of the ionosphere and the transition to the hetro­
sphere. Of more importance to this project is that the mesopause also marks a 
transition in the dynamics of the atmosphere. 
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Figure 1.2: The monthly zonal mean latitude vs. pressure scale height 
(first right ordinate, running from 0 to 17) for (a) temperature and (b) 
zonal wind (with eastward motion labelled as positive) in January from 
CIRA-86 [After Brassuer and Solomon [13]]. 
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Figure 1.3: A two-dimensional model prediction mass stream function 
for the meridional circulation (heavy dark lines, kgm-1s-1 and diabatic 
heating distribution (light solid and dashed lines, K day-1) for southern 
hemisphere summer [After Garcia and Solomon (14]]. 
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The dynamics and temperature structure of the lower atmosphere can be consi­
dered, on a broad scale the product of latitudinal and seasonal differences in solar 
heating. Air near the equator is heated, rises and moves to higher cooler latitudes 
where it sinks again. Air from the higher latitudes is itself drawn towards the equa­
tor at low altitudes to replace the air rising above the equator. The action of the 
Coriolis force on these flows of air moving toward the poles produces the eastward 
jets seen in figure ('1.2b) below about 20 km and is responsible for the westerly 
motion of weather systems in the troposphere. As can be seen in figure (1.3) the 
upward convection near the equator is strong enough to extend this circulation into 
the lower stratosphere, thereby providing a mechanism for tropospheric air to enter 
the vertically stable stratosphere. The effect of such circulation can also be seen 
in figure (1.2a), where adiabatic cooling results in a temperature minimum over 
the equator in the lower stratosphere. This description does not describe the com­
plex meteorological processes at work in the troposphere only the broad average 
motion and temperature profile. To account the complex system we experience as 
weather we must include the interactions of the atmosphere with the topographic 
and temperature variations of the Earth's surface. 

In the mesosphere however figure (1.3) shows a different situation. Here the flow 
is from the summer to winter poles and is driven by the deposition of momentum in 
the mesosphere by (principally) upward-propagating gravity waves~ Once again the 
effect of this flow can be seen in the zonal flow between 20 and 90 km (figure ( 1. 2b)), 
the Coriolis force producing westward and eastward jets in the summer and winter 
hemispheres respectively. The temperature profile in this region is more dominated 
by photochemistry with ozone heating providing a temperature maximum over the 
summer pole. 

Above the mesopause the characteristics change once again. We now find a 
temperature minimum over the summer pole, caused by adiabatic cooling of the 
air rising to become part of the flow towards the winter pole (figure ( 1.3)). There 
is also a reversal in the direction of the zonal winds, with an eastward jet now 
being found in the summer hemisphere and a westward jet found in the winter 
hemisphere. Above 70 km the exact mechanisms controlling the general circulation 
are less understood. Parallels have been draw between the dynamics found near the 
mesopause and the large scale weather systems found in the troposphere [15, 16]. 
It is known that the general circulation is driven by dynamics, with meridional 
circulation being driven by vertical momentum flux produced by planetary waves, 
tides, gravity wave and turbulence (as with the mid-mesosphere), but the relative 
importance of these processes in controlling the general circulation is not yet known. 
There is a need for more data on the processes producing momentum fluxes near 
the mesopause to allow this problem to be addressed. It is hoped that data from 
the AMOR system can detect and allow the measurement of wavelike structures 
of a broad range of scales near the mesopause and provide one such window on 
the dynamics controlling this region. Without an understanding of the dynamical 
processes controlling the circulation in the upper atmosphere modelling the lower 
regions becomes difficult - the atmosphere cannot be treated as a stack of isolated 
regions. 



Chapter 2 

Model of radar echoes 

2.1 Diffusion coefficients of meteor trails by radar 

There are two broad types of meteor echoes detected by radar, the classification 
depending on the electron density within the train at formation. If the electron line 
density q is higher than about 2.4 x 1014m-1 then the echo is said to be overdense 
- the radio waves do not penetrate the trail but are effectively reflected fro~ it's 
surface. (This picture is a simplification as the ionisation decreases as the distance 
away from the trains axis increases, hence the radio waves do penetrate the column 
to some degree. However as far as the echo received is concerned this model is 
completely adequate). An overdense meteor echo is characterised by a rapid rise 
to a maximum echo amplitude as the train forms, followed by a period of fairly 
constant amplitude (neglecting the effects of wind) followed by a exponential decay 
as electron density drops below 2.4 x 1014m-1 due to diffusion. Wind can drastically 
alter this picture however, causing the train to distort and thereby producing large 
amplitude changes in the echo due to interference from multiple reflection points. 

If q is low the echo is termed underdense - the radiation penetrates the trail 
and each electron acts an individual scattering source (ignoring secondary radiative 
and absorptive effects, a good approximation in the rarefied atmosphere near the 
mesopause). The transition between the two is, of course, gradual. This project 
uses the decay times of underdense trains to calculate the diffusion coefficient for 
the atmosphere, so we will concentrate on the physics of the underdense meteor 
train. 

Underdense meteor echoes are characterised by a rapid increase to maximum 
amplitude level, followed immediately by an exponential decay, often with Fresnel 
diffraction oscillations (a geometric effect) superimposed on the decay. Figure 
(2.1) shows the geometry of a meteor train. We assume that the train is made 
up of stationary electrons and the diameter of the train is much smaller than the 
wavelength of the radar. 

The scattering cross-section of a free electron is ere = 7fr;sin2
'"'( where re is 

the classical radius of the electron and '"'( is the scattering angle. For backscatter 
'"Y = 7f /2, implying ere ~ 1 x 10-28 m2

• The power flux incident on the train is 
ci>i = PyGy / 47r R 2 where Py is the transmitted power, Gr is the antenna gain in 
that direction relative to an isotropic radiator and R is the range to the train. The 
effective absorbing area of the receiving antenna is G RA/ 47f, where G R is the gain 
of the receiver relative to an isotropic radiator. Thus the power appearing at the 

12 
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Figure 2.1: The geometry of a meteor train relative to a radar receiver. 

input of the receiver due to the backscattered signal from one electron is 

(2.1) 

As all the electrons in a line element, ds, will scatter in phase (assuming the width 
of the trail at formation is much smaller than ,\) the field vectors, rather than the 
power fluxes must be added. At the receiver the peak amplitude of the field due to 
a single scattering electron is (2r Pe)!, where r is the receiver input impedance. The 
absolute phase of the returning wave, which has covered a distance 2R, is included 
in the time varying expression sin(2n}t- 4IrRj,\), in other words the change in 
R produces a modulation in the phase of the returning wave. Now we may write 
an expression for the instantaneous amplitude of the received signal from all the 
electrons in the line element ds. 

1 ( 47rR) dAR= (2rPe)zq(t) sin 2Jrjt- T ds (2.2) 

where q(t) is the number of electrons per meter path (electron line density). 
By integrating we can now write an expression for the total field due to the 

electrons in the trail between s1 and s. For simplicity we take q(t) as being constant 
along the train and use the approximation R ~ R0 + s2 /2R0 . We also make the 
transformations x = 2Jrjt- 4nR0 j,\ and 2s = x(R0,\)!, giving 

1 

A (2rPeRoA) 2 
() 1x . ( nx

2
) d R= q t Slll X-- X 

2 Xl 2 
(2.3) 

The Fresnel integrals of optical diffraction theory are 

C = 1x1 

cos ( 1r;2

) dx and S = 1x1 

sin ( 7r;2

) dx 

Substituting these into equation (2.3) gives 

(2r PeRoA)! . 
AR = 

2 
q(t) [C smx- S cosx]. (2.4) 
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Because the maximum oscillation frequency of the Fresnel integrals is much less 
than the radio frequency f we can take a time-average over an interval which 
is small compared to the smallest oscillation period of C and S. This gives an 
expression for the quasi-instantaneous power PR received from the electrons in the 
trail between s and s1 

(2.5) 

which, on substituting equation (2.1) and parameters in SI units, yields (in units 
of watts) 

PR = 2.5 X w-"PrGrGR (~) 
3 [C' 2 S'] q2 (t) (2.6) 

This is the basic expression giving the echo power from an underdense train and 
it has exactly the form as that describing the optical diffraction pattern produced 
from a Fresnel straight edge optical experiment (neglecting any time dependence 
of q). 

Figure 2.2: Examples of the functional form of equation (2.6) without 
the affect of diffusion (curve A), and with increasing levels of diffusion 
(curves B,C and c). Curve A clearly shows the rapid rise to maximum 
followed by Fresnel oscillation about the mean amplitude A. 

The term 

has the value of unity when evaluated from s = -oo to + oo. Although our appro­
ximation of R doesn't allow us to move very far from the t0 (specular reflection) 
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point, this term is close to unity when taken over a few Fresnel zones either side 
of t0 . In other words, the more remote sections of the train do not contribute 
noticeably to the echo power. 

We now have an expression that describes the echo received from a ionisation 
train as it is being formed, but we have yet to include any mechanism for reducing 
the electron density in the train and thereby causing the echo to decay. To do this 
we assume that the train, once formed extends infinitely in both directions from 
the specular reflection point and that is not affected by wind shear or turbulence. 
The second of these assumptions is untrue in most cases, but it greatly simplifies 
the following analysis. 

A meteor train, once formed, is a column of plasma made up of several different 
ion species, and in isolation these would all diffuse at a different rate. However this 
tendency is counteracted by the electronic attraction between the different ions 
and the free electrons, the plasma diffuses at one rate. This is known as ambipolar 
diffusion and it is the most important factor governing the reduction of echo power 
after the train has formed, reducing the volume density without affecting the line 
density. There have been many treatments of ambipolar diffusion of meteor trails 
(see [17, 18]). The method is to set up and solve differential equations describing 
radial diffusion of a cylindrical distribution of electrons and positive ions, usually 
neglecting magnetic effects. 

The radial distribution of density we will use is a Gaussian, although this is 
simply a mathematical convenience as it has been shown that the initial density 
distribution has no effect on the diffusion rate of the train (19]. The standard form 
of the radial diffusion equation is 

fJN = D ~ (r fJN) 
fJt r fJr fJr 

(2.7) 

where N is the volume density of electrons at timet and distance r from the axis 
and D is the ambipolar diffusion coefficient in m2s-1 . We take one solution of 
equation (2.7) 

N = 1 e[-r2/B(t+k)] 

A(t + k) 
(2.8) 

where A, B, and k are all constants. Substitution into equation (2.7) shows that 
B = 4D. A is found by applying the condition that the total number of electrons 
in an infinite cross sectional slice of unit thickness must be equal to q at all times. 
If we take a annular ring of radius r we find that it contains 21rr N dr = 1r N d( r 2) 

electrons, and so we can say 

q = r;Q 7r e[-r2 /4D(t+k)) d(r2) = 47r D 
} 0 A(t+k) A 

(2.9) 

So the volume density can be expressed as 

N(r, t) = q el-r2j4Dt+r5J 
1r( 4Dt + r5) 

(2.10) 

where we have replaced the term 4Dk with r6, the square of the trail's initial radius. 
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Since we are now discussing the change in echo amplitude due to the radial 
diffusion of a meteor trail we must take the radial distribution of electrons into 
account as there will be interference effects as the effective radius of the train 
changes [20]. Although calculating the amplitude of the scattered signal in this 
way is a 3-dimensional problem, a good approximation can be obtained by simply 
considering the phase effects near the specular reflection point, where the echo is 
strongest. 

I 
. I 

I 
\ 
\ 

\ 

P' 

8=0 
To Radar 

--- __ ... 

p 

Figure 2.3: Cross section of an underdense trail near the to point, 
showing the coordinate geometry used. 

If we take an annular ring of radius T and radial width dT (figure (2.1)), centered 
about the center of the train and perpendicular to it's axis, the electron density 
will be constant throughout the ring: The amplitude of the backscattered signal 
from all the electrons within the ring will be 

r ( 47fT ) dA = 2NT dT lo sin 21rjt- TcosB dB (2.11) 

where the phase angle (47fT/ .:\)cos B of the electrons in the element T dT dB is with 
respect to a plane of zero phase, P P', perpendicular to the line of sight to the 
radar. Expanding this integral using trigonometric identities we get 

dA = 2NT dT [sin 21r jt 111' cos ( 
4~r cos B) dB + cos 21r jt 111' sin ( 

4~r cos B) dB l 
(2.12) 

and since 
{11' (47fr ) (47fr) lo cos T cose de= 1rio T (2.13) 
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and the integral involving the sine function is zero we have 

dA = 27r N J0 ( 
4~r) r dr sin 27r ft (2.14) 

This amplitude will always be less than that obtained if all electrons are taken 
to lie along the trail axis, but the phase will be the same. Hence if we integrate 
along the traiL and take the ratio of the total scattered amplitude and the total 
amplitude obtained from a trail with infinitesimal width we obtain 

~ _ 21f ] 0
00 

NJo(47rrj)..)r dr 

Ao 21f J0
00 N r dr 

(2.15) 

Substituting the value of N from equation (2.10) into equation (2.15) we then 
integrate. The denominator is simply q, the numerator is non-trivial however (see 
[21]). The result of this is 

PR(t) = (~) 2 = e[-321rzDtj-\2]e[-811'zr5f-\2] 

PR(to) Ao 
(2.16) 

where PR(t0 ) is given by equation (2.6). Equation (2.16) shows that the received 
power is immediately cut by a factor of exp[-87r2r5/)..2] due to the finite initial 
width of the trail, and then continues to decrease exponentially due to a time 
dependent diffusion factor. The decay time constant T is defined as the time taken 
for the amplitude to decay by a factor of e-1, so from equation (2.16) we have 

(2.17) 

This is an important result as it says that the ambipolar diffusion coefficient of an 
underdense meteor train is inversely proportional to the decay time constant of a 
radar echo from that train, with the only other parameter being dependent only 
on the radar system employed. As discussed in section (2.2), the diffusion constant 
is in turn an indicator of temperature and density conditions in the section of 
atmosphere that the meteor occurred in. For further information on the theory of 
meteor radar echoes see [22]. 

2.2 The dependence of diffusion coefficient on atmospheric 
parameters 

2.2.1 Diffusion rate as a measure of altitude 

It can been shown that, neglecting electron-ion collisions, the ambipolar diffusion 
coefficient can be expressed as D ~ Di(1 + ~~) where Di is the positive ion diffusion 
coefficient, Ti is the ion temperature and Te is the electron temperature [18]. The 
time taken for the ion and electron temperatures to reach the neutral temperature 
has been shown to be small [23] so 

(2.18) 
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In turn Di is given by 

D· 2 (2.19) 

where Ki is the ionic mobility. Here k is Boltzmann's constant, T the atmospheric 
temperature, e the electronic charge, n the atmospheric number density, O"i the 
average collisional diameter for ions with air molecules and fJ, is the mean ionic 
mass (assumed to be equal to the mean air molecule mass). It is obvious then 
that the dependence of the diffusion coefficient on atmospheric parameters is. not 
a simple one at all, and we have not considered the influence of other factors such 
as the Earth's magnetic field. 1 There have been, therefore, been many attempts to 
apply simplifications to this relationship in the hope of gaining useful information 
from diffusion data. 

As early meteor radar systems were very limited in their ability to measure 
the altitude of an echo, the diffusion rate was initially used as a measure of the 
trail height. If an isothermal atmosphere is assumed then n <X p, the atmospheric 
pressure. As a function of altitude p is given by 

where 

(
ho- h) 

p =Po exp . H 

H= kT 
mg 

(2.20) 

(2.21) 

is the atmospheric scale height, h0 is the altitude at which the pressure is p0 and 
h is the height. As can be seen from equation (2.19) D <X 1/n in an isothermal 
atmosphere with uniform composition. Therefore we can substitute D for pressure 
in equation (2.21) giving 

(
ho- h) 1/D = 1/Do exp H (2.22) 

If we take logarithms of both sides we find a linear relationship between altitude h 
and ln D with a slope equal to the scale height, 

dh 
dlnD =H. (2.23) 

Greenhaw and Neufeld [25] performed one of the early investigations into this 
relationship. On average they found good agreement between their theoretical 
predictions and observed echo decay times. However they quote an experimental 
uncertainty of approximately ±3.0 km in determining altitude from the decay time 
using a wavelength of 8.27 m, but find an average spread in altitude of ±4.8 km in 
their data and were unable to provide a conclusive account as to why this was so. 

1 It has been found [24] that the effect of the geomagnetic field is minor for most geometries 
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Weiss [26] also investigated the ln D vs. altitude relationship and also found 
unexpectedly large scatter. The main reason for the scatter postulated is a di­
urnal variation as well as possible small effects due to plasma resonance and the 
geomagnetic field. 

Greenhaw and Hall's [27] investigation pointed out the great dependence the 
scale height determined by equation (2.23) on the uncertainties assumed in the 
values of altit1.1de and diffusion coefficient. They attributed the great scatter in the 
relationship to be due to large errors in determining the decay time of an echo. 

The large scatter in the ln D vs. altitude relationship has been a feature of every 
investigation into this field. As yet there is still no conclusive explanation as to 
why the scatter should be so large. The result is that diffusion is not a satisfactory 
measure of the altitude of a meteor train, providing only a very approximate value. 

2.2.2 Diffusion as a measure of temperature variation 

Recent work by a group using the Middle and Upper Atmosphere Radar (the 
MU radar) at Shigaraki, Japan [28, 29, 30, 31], along with work by Jones [19], 
has yielded a promising new application of diffusion measurements. They have 
shown that a fractional temporal change in diffusion constant is approximately 
proportional to a fractional change in temperature. An outline of their derivation 
follows. 

Equation(2.19) can be rewritten in the form 

(2.24) 

If we introduce small temporal variations of D, T, K, and n at a fixed height we 
obtain 

D' K' T' n' 
- = - +- - - (2.25) 
Do Ko To no 

where the subscript '0' denotes the mean values. By applying the Boussinesq 
approximation n' /no = - T' /To this becomes 

D' K' T' 
Do = Ko + 2To' (2.26) 

finally using a proportionality constant [31] between J(' / K 0 and T' /To (from labo­
ratory measurements [32]), that 

T' D' 
_rv --

To- 2Do · 
(2.27) 

Using instruments with high temporal and height resolution, as well a high data 
rate (such as the AMOR system) this opens up the possibility of using an incoherent 
radar to directly measure dynamic variations in the meteor zone. 



Chapter 3 

System hardware, data storage and reduction 

3.1 Radar hardware 

The Advanced Meteor Orbit Radar has been operated by the Physics and Astro­
nomy Department of the University of Canterbury since February 1990. The trans­
mitter is located at the Birdlings Flat field station south of Christchurch, New 
Zealand (geographical coordinates 172° 39' E, 43° 34' S). The system is a multi­
station incoherent pulse radar operating at a frequency of 26 MHz, emitting 66 f.LS 
pulses at a prf of 379 Hz and can detect meteors down to a diameter of rv100 !Jill 
(corresponding to a visual magnitude of about +13). The radar is spread over 3 
sites, each separated by rv 8 km: Home site (the Birdlings Flat station itself) is 
the location of the transmitter antenna, the home site receiving antenna and two 
extra antennas forming a dual interferometer. Nutt and Spit sites are the remote 
receiving stations and are both made up of a receiving antenna and a FM telemetry 
link to the home site. 

Both the transmission and receiver antennas used in AMOR are co-linear arrays 
of total length of 40?.. This arrangement leads to narrow azimuthal fan-shaped 
radiation patterns. The transmitter has its main lobe pointed geographical south 
with the theoretical elevation maximum at 22°.9. Radiation patterns of the trans­
mitting and receiving antennas taken together produce a theoretical beam width 
of ±1 o (3 dB) in azimuth and a 12° - 55° elevation range. 

For elevation determination a north-south looking dual spacing interferometer 
is used. The two additional arrays that make up the interferometer are spaced at 
3.0 ,\ and 11.5 .\, providing high precision echo elevations in the range 0 - 180°, 
without ambiguities. The phase information is recorded using a uni-channel phase 
detector (to make more efficient use of storage channels than conventional HF phase 
detectors which require storage of both the in-phase and phase-quadrature signals). 
The output consists of two analog signals corresponding to the IF phase differences 
between signals 1-4 and 1-5. See figure (3.1) for a pictorial representation of the 
receiver system. 

A for more detailed descriptions of both the hardware and operation of the 
AMOR facility see [33, 34, 35]. 

3.2 Data acquisition and storage 

The AMOR data processing equipment deals with five video signals, the output of 
the three receivers plus the two phase difference signals. The analog signals are 
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digitised and placed directly into the memory of a PC (currently a 386) which is 
running the control program for the system. This control program has 2 main 
tasks; it interrupts data retrieval while the transmitter sends a pulse and detects 
and stores meteor echoes. A signal is judged as a detected echo if 6 consecutive 
sweeps produce a signal above a given threshold in the same bin. Once this 
condition is fulfilled the computer stores the information from all five channels for 
250 sweeps, as well as the time of occurrence. The echoes are stored in the PCs 
hard disk in hourly :files directories for each day, e.g. an echo detected at 01:30:24 
NZST on the 3rd of February 1997 would be placed in the file NZST _01 (for all 
echoes between 01 and 02 hours) within the directory 970203. Periodically the data 
from the PC at Birdlings is transfered onto a portable hard drive and from there it 
can be transfered to various machines to be processed for either orbit calculation, 
wind measurement or some other atmospheric analysis. The NZST files are also 
archived, originally (1990-95) on magnetic tape and currently on DAT tape and 
writable CD-ROM. The yield of fully reduced meteor orbits (this being the prime 
function of the AMOR system) is of the order of 300 to 600 a day, depending on the 
time of year. 

3.3 Calculation of echo decay time and diffusion coefficient 

For the purposes of this project it was necessary to determine the ambipolar diffu­
sion coefficients of meteor trains detected by the AMOR system. As the NZST files 
contain raw echo amplitude profiles, it was these that were used to determine the 
decay time constant of the echo. Equation (2.17) could then be used to give the 
diffusion coefficient. 

The NZST files were initially processed using a modified version of the program 
used to filter and calculate meteoroid orbits. As this program was writen to read 
data off CD-ROM only the data available on CD-ROM was used, supplying data 
from mid 1995. The program already contained routines for doing a least mean 
squares fit to the exponential decay of an echo, giving the decay time constant. To 
be accepted for further analysis an echo had to pass a myriad of conditions ensuring 
that the echo was in fact due to a meteor, and had been recorded properly. For 
example the altitude and velocity values calculated for the meteor had lie within 
reasonable ranges. 

Once an echo was accepted the decay time (to 1/e maximum amplitude) was 
calculated. The logarithm of the decay data is first taken and then a straight line is 
fitted to this using a linear least squares fit method described in 'Numerical Recipes 
in Pascal' [36J, page 556. The routine weights the measured values of the dependent 
variable (the measured amplitudes in this case) based on the uncertainty of each 
value (see Appendix (A) for further details of this routine). The uncertainty of the 
amplitudes is estimated using a measure of the noise present and the amplitude of 
the signal at that point. 

Using the data displayed in figure(3.2) and considering the general equation for 
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Figure 3.2: An amplitude plot of a meteor echo received by AMOR on both linear 
and logarithmic scales showing the method by which the decay time constant was 
calculated. The dotted lines indicate the starting and ending points for the fit. The 
spacing between radar pulses is 0.0026s. 

an exponential decay, 

A(t) =Aoexp ( -~) (3.1) 

where, A0 is the amplitude at some initial time, and r is the decay time constant, 
we can see that 

ln(A)(t) = -tjr ln(A0). (3.2) 

As an illustration the decay time-constant for the echo in figure(3.2) is given by 

r - -1/slope 

- 35 pulses 

- 0.093 s. 

(3.3) 

As shown in section ( 2.1) the ambipolar diffusion coefficient D is simply related to 
r. Rearranging equation (2.17) we get 

(3.4) 

where A is the wavelength of the radar being used. 
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In a case such as the one illustrated a value for the diffusion coefficient is easy 
to calculate and we can be fairly sure that it actually is ambipolar diffusion that 
we are measuring. However a large proportion of echoes deviate from the normal 
form we would expect from an underdense meteor train. To maintain a useful data 
rate almost all echoes showing an exponential decay must be used, whether the 
echoes are transitional, overdense or show strong Fresnel oscillations (see figures 
(3.3) and (3.4)). In all three of these cases the main complication introduced is in 
determining where the start and end points of the least squares fit should lie. To 
determine these points the profile is first numerically differentiated [33] from the 
maximum amplitude point on the profile to the end of the record. The maximum 
decay slope is then found and the point five sweeps before this is taken as the start 
point of the fit. The end point is taken as the point where the echo drops to an 
amplitude of noise plus 5 A/D units. If less than 15 data points lie between these 
boundaries, or the amplitude does not drop by a factor of at least 1/ e the fit is 
abandoned. 

Example AMOR echo amplitude profile 
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Figure 3.3: A example of an echo with Fresnel oscillations superimposed on the 
decay. A least squares fit through such oscillations will still provide the correct de­
cay time constant, it is distinguishing echoes like this one from those distorted by 
turbulence or wind shear that proves difficult. 

The maximum slope of an exponential decay occurs at it's beginning, hence 
starting the fit five pulses before the maximum decay slope ensures that the fit 
starts near the start of the exponential decay. As can be seen in figure (3.4), a 
transitional or overdense echo the amplitude will persist at a high level, with only 
a slight decrease in amplitude with time, until the train becomes sufficiently diffuse 
for the underdense scheme to apply. When this happens the amplitude will fall off 
in a rapid exponential decay - in this case the starting point of the fit will still 
occur at the beginning of the exponential decay as this will still be the point of 
maximum decay on the the profile. 

To distinguish between echoes with a true exponential decay and those affected 
by turbulence or wind shear is the next stage. If a meteor train is distorted, large 
amplitude variations can result in the received echo due to the creation of multiple 
specular reflection points along the train. To remove such echoes while keeping 
those with amplitude variations due to Fresnel oscillations the differentiated profile 
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Recorded on 31/10/97 at 3:39:29 NZ Standard Time. 

Figure 3.4: A transitional meteor echo. Notice that if the steepest point on the 
decay is used to determine the start of the least squares fit only the section of the 
echo conforming to the underdense regime will be used. 

25 

is again used. If a positive slope of more than 25% of the value of maximum decay 
slope is found the fit is abandoned. This test also has the effect of removing those 
echoes whose maximum amplitude is to low to provide reliable data as noise will 
often violate the criteria. 

Example AMOR echo amplitude profile 
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Figure 3.5: A meteor echo showing strong distortion due to turbulence and/or wind 
shear. 

The final situation that needs to accounted for is that of a consistent rising 
amplitude after the maximum echo amplitude (as in figure (3.6)). Such profiles are 
often caused by beating between echoes from different parts of the same meteor 
train (again due to the train being distorted). If an echo has a region of positive 
derivative, the area under which is greater than 20 A/D units it is said to have a 
consistent rising slopes after echo maximum and the least squares fit is abandoned. 
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Chapter 3. System hardware, data storage and reduction 

Example AMOR echo amplitude profile 
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Figure 3.6: The final criteria for rejecting an echo- a region of consistently rising 
amplitude after the maximum echo amplitude. 



Chapter 4 

Diffusion coefficient vs. altitude relationship 

shown in section (2.2.1) if we assume the atmosphere is isothermal in the meteor 
zone (i.e. we assume a constant scale height) the ambipolar diffusion coefficient is 
related to the geometric altitude by the expression (equation (2.23)) 

dh 
H 

dlnD 

where H is the scale height. Solving this for the altitude h we get 

h= HlnD+C ( 4.1) 

where Cis the integration constant. Jones and Jones [37] present values for Hand 
C, both from theoretical calculations and empirical calculation from observations. 
The two formulas provided are; 

h 7.24ln D + 79.3 ( 4.2) 

which is derived from using theoretical ionic mobilities for Mg+ and Fe-, and 

h 5.05lnD 84.1 (4.3) 

which is a fit to observational data of meteor diffusion collected by Verniani [38]. 
In practice all studies of meteor diffusion data have revealed a very large degree of 
scatter when applying equation (2.23), regardless of the measurement uncertainties 
of the apparatus used. Such real scatter complicates the calculation of a line of best 
fit. Standard linear regression fitting works by minimising the sum of the residuals 
between the fitted line and data points in the dependent axis direction. As can be 
seen in the plot of the AMOR data, if both the independent and dependent data 
both have errors associated with them, a fit of this nature is no longer adequate. 
Regression of one coordinate, y, on the other, x, produces a quite different slope 
than that obtained if we regress x on y, neither of which are the true ('best fit". 

The best fit can be determined by minimising the perpendicular distances from 
the line to the data. If we assume the coordinate uncertainties ox and oy are the 
same for all data, then a simple method for determining the slope of this line [39] 
is given by a solution of the quadratic equation 

( 4.4) 

where f3 = ( 15x / 8y), m1 is the slope given by regression of y on x and, m2 is the 
slope given by regression of x on y. Since all regression lines will pass through 
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the point (x, y) we can fully determine the true best fit line if we have the two 
regression lines. 

To apply this analysis to the AMOR data it was necessary to have a reasonable 
estimation of the uncertainty in both geometric altitude and the logarithm of the 
diffusion constant. The uncertainty for ln D values was taken as the standard error 
given by allln D data, for which the measured altitude lay between 94 and 96 km. 
Similarly for the uncertainty in altitude the error was taken as the standard error 
given by all data with ln D values between 2.0 and 2.2. This approach was taken 
so as to reduce the effect of any artifacts in outlying data points 1 and to ensure 
error values were estimated in a compatible way between the data sets. The error 
values found were binD= 0.0022 and oh = 0.0209 respectively. The true errors in 
each individual measurement would almost certainly be larger than these values, 
however as it is only the ratio of the errors which is used by the method described 
above (equation( 4.4)) this does not preclude their use. The /3 value given by these 
values is 0.11 which compares well with the value obtained by Howick (24] for AMOR 

data of 0.1. 
Also, rather than a least squared deviation fit a method minimising the abso­

lute deviation was used. With a greatly scattered data set like that found here 
a least absolute deviation should provide a better fit - if the squared deviation 
is minimised a data point with a deviation of oy from the position of the fitted 
line will have four times the influence on the result of the fit than a point with a 
deviation of ~oy. Therefore outlying data will have a disproportionate effect on the 
slope of the line - using a least absolute deviation method removes this problem. 

Figure (4.1) shows the result of doing this analysis on the entire available AMOR 

data set, along with the raw data and the equations given by Jones and Jones. 
As can be seen the data are distributed basically as was expected. Despite the 

large amount of scatter the points are distributed along a linear band centered at 
approximately 95 km. An interesting feature of the data is the vertical band of 
points at lnD ~ 3.5. It is almost certain that this is an artifact created when the 
decay time of the echo is determined (see section (3.3)). A investigation was made 
into finding a common feature of the echo profiles of the data in this area in the 
hope of filtering them out in the initial processing, however no obvious cause was 
found. If the use of AMOR data for providing diffusion coefficients is to become 
routine a more streamlined package for reducing the data will be required and this 
problem can be addressed. 

The line of the best fit to the AMOR data has the equation 

h 4.83ln D + 84.8 (4.5) 

The disadvantage of the best fit method employed here is that it does not provide 
an estimate of the uncertainty in the calculated slope. It is therefore not possible 
to make quantitative comparisons with previous results (especially since Jones and 
Jones do not provide uncertainties for their calculated scale heights), but we can 

1The ranges chosen in both altitude and ln D are centered on the mean point of the data, see 
figure ( 4.1) 
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Figure 4.1: The distribution of diffusion coefficient with respect to 
altitude. The contours show the density of AMOR data, the values refer 
to how many data points are contained in each 0.1 (in ln D) by 1 km 
bin. The dotted lines are the least absolute fits to the AMOR data, while 
the red solid line is the best fit. The two dashed lines are those given by 
equations (4.2) [green] and (4.3) [blue]. 
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make qualitative comparisons. Compared to the scale heights given by equations 
(4.2) and (4.3) (of 7.24 km and 5.05 km respectively) this is comparable, particu­
larly with that derived from Verniani's observations. Jones and Jones state that 
the theoretical prediction of equation ( 4.2) is only valid for meteors detected in the 
altitude range rv 90- 100 km, which limits it's usefulness as a comparison to the 
full AMOR data set. Applying cutoffs to the data to make a comparison between 
90 and 100 km to equation ( 4.2) is also not practical as doing this changes the 
distribution of the data near the cutoff points, and thereby produces a different 
line of best fit [24]. It also seems likely that the artifact in the data at ln D ~ 3.5 
would have had some effect on the slope of the best fit line, although there are re­
latively few points in this region and methods used to calculate the best fit should 
have minimised their effect. Any effect this artifact had would have resulted in a 
decrease of the slope of the best fit line, hence removing the wayward data would 
probably result in better agreement between the AMOR data and the relationships 
given by Jones and Jones. 

From this we can say that data set presented here shows reasonable agreement 
with previous results. Also it is obvious that due to the large degree of scatter 
in the ln D vs. h relationship the use of meteor decay times in determining the 
altitude of the events is only valid as an average measure over a large sample. 



Chapter 5 

Time series analysis 

5.1 Short time scales 

As discussed in section 2.2.2 recent work has shown that it is possible to use 
ambipolar diffusion coefficients as a measure of temperature. Using meteor diffusion 
measurements made by the MU radar Tsutsumi et. al. [29, 30] published time 
series of relative change in diffusion coefficient at given altitude, filtered to show 
only periods of 5-10 hours. That work revealed complex wave-like structure with 
evidence of downward phase propagation. 

As already stated AMOR has good time-height resolution and so should be able 
to detect structure of this type. In order to determine if the AMOR system could 
be of use in detecting short period waves such as these a program was developed in 
the IDL language (see appendix (A.3)) specifically to examine the high frequency 
component of time series data. The program uses the 2 km altitude bins created 
when the data are read into IDL and processes the data for each altitude indepen­
dently. The data are placed into hourly bins and a spline is fitted to interpolate 
any hours of missing data. The resulting vector is then passed through a low pass 
digital filter with a cut-off frequency corresponding to 11 hours, producing a mean 
diffusion curve for normalisation (a D0 value, see section (2.2.2) and figures in this 
chapter). The ratio of the spline and smoothed curves is taken and stored as the 
normalised diffusion coefficient time series for that altitude. 

Figure (5.1) gives an example of the output of this analysis for the April10-13, 
1997. The altitude range used is 89 to 101 km as outside this range the data were 
found to be too sparse to be useful. Figure (5.1a) shows the time series for each 
altitude separately with dashed lines indicating downward propagating wave-like 
structures. Figure(5.1b) shows the same thing, but as a contour plot. Structures 
like this were found throughout the data. ' 

Both plots clearly show vertical structure in the data, particularly ·the contour 
plot with it's clearly defined narrow near vertical bands. This vertical structure 
is shown to be wave-like with downward phase propagation by figure (5.1a), as 
indicated by the dashed lines. The vertical phase speeds inferred by the slope of 
these lines range between about 0.05 ms-1 and 1.7 ms-1 with periods between 5 
and 6 hours between successive peaks in the horizontal profile. 

The many other studies into gravity wave propagation in the middle atmos­
phere indicate that we should expect downward phase propagation and vertical 
wavelengths between rv 5 and 50 km (40, 41]. A period- of 5.5 hours and a pro­
pagation speed of 11 ms-1 corresponds to a vertical wavelength of 19.8 km, so at 
first inspection at least, the structures shown in figure (5.1) do agree with what we 
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Figure 5.1: Both plots show high pass filtered time series of normalised 
diffusion coefficients with periods less than 11 hours as seen between 
April 10-14, 1997. The data is spaced a 2 km intervals vertically, and in 
figure (b) linear interpolation is used between each level. 
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would expect from gravity waves. 
The parameters for those wave-like structures identified above also agree with 

those found by Tsutsumi et. al. in their investigations. Their measurements sho­
wed downward phase propagation ranging from "' 0.6 ms-1 to 1. 7 and periods 
ranging from"' 4.5 hours to 6 hours. The fact that the MU radar meteor measure­
ments compared well with other wind measurements between 80 and 120 km shows 
that gravity waves in the meteor zone can be detected by radio measurements. In. 
turn the similarity of the AMOR results to the MU radar results strongly suggest 
that it is indeed gravity waves that have been detected here. 

As described in chapter (2) fluctuations in ambipolar diffusion are directly pro­
portional to fluctuations in temperature (to some degree of approximation). Using 
equation (2.27), 

T' D' 
"'--

To- 2Do' 

we can see that the structures identified in figure (5.1) correspond to the range, 

0.05 < T' 0.1 
2 "' To 2 

or, 
< Tt < ( ) 0.025"' To "'0.05. 5.1 

Taking 200 K as the temperature in the mesopause we find this corresponds to 
temperature changes of, 

5 T 1 < 10 K rv • (5.2) 

5.2 Mid time scales 

An obvious time-scale to search for oscillation in the atmosphere is on the daily 
basis. The Solar heating 'switch' produces strong tidal like features with periods 
of 24 hours and its harmonics. To isolate such oscillations averaging was used to 
remove random noise and higher frequency components. All data were placed into 
twenty four one hour bins, producing an 'average day' for each 2 km altitude bin. 
A multiple regression fit, weighted by the standard error in the averaged data, 
was then done using periods of 12 and 24 hours. The result of this can be seen 
in figure (5.2). The fit to the data is very good at all heights, with x2 values1 

between 0.03 and 0.10 and only one point not agreeing with the fitted curve within 
its uncertainty range. 

Figure (5.2) shows an average diurnal variation, however it is known that the 
diurnal tide in the Mesopause region varies strongly with season [42]. The analysis 
was therefore repeated on a seasonal basis to reveal this, or any other, seasonal va­
riation was being hidden by the total mean analysis. The results of this are shown 
in figures (5.5) to (5.8). As can be seen there is no real sign of any dependence 

1See appendix (B) 
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Figure 5.2: Hourly means of all data between 90 aud 102 km showing 
mean diurnal tide. Points are plotted with error bars showing standard 
error (afJ(n)). The curve is a weighted non-linear least squares fit 
using sine and a cosine curves of 12 and 24 hour periods. 
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Diurnal temperature change given by the MSIS-E-90 model 

· .. ·· 
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Hour(NZST) 

Figure 5.3: The daily relative temperature change as given by the 
MSIS-E-90 model. The altitude was set at 95km, and the location to that 
of Birdlings Flats. The four curves represent different seasons. The das­
hed line is for the 15/01/1996 (Summer), the solid line for the 15/04/1996 
(Autumn), the dotted line for 15/07/1996 (Winter), the dash- dot line 
for 15/10/1996 (Spring). 
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on season, the increased amplitude and any phase change being most likely due to 
increased scatter. 

To compare the measured results with what might be expected the MSIS-E-
90 model developed by the Planetary Atmospheres Branch at the NASA Goddard 
Space Flight Center [43] was used to produce temperature profiles for characteristic 
days. This model is based on the MSIS-86 model of the thermosphere [44, 45] and 
is a analytic empirical model which aims to build a picture of conditions in the 
entire atmosphere based. on measurements made by satellites and ground-based 
instruments. 

The prime sources of data for the model include satellite drag, satellite mass 
spectrometer and ground based incoherent scatter measurements for the thermo­
sphere/mesosphere and the MAP Handbook 16 [46] for the lower atmosphere ex­
tension. The model is available for use online at the N a tiona! Space Science Data 
Centre's web site 2 . Figure (5.3) shows the results. given by the model when run for 
times which should be characteristic of the AMOR data used. As can be seen the 
model predicts a that the semi-diurnal tide should dominate any diurnal variation 
(which is in agreement with observational data [42]), and that the amplitude of the 
tide should be roughly a 1 to 5% change in temperature. This corresponds to "" 2 
- 10% change in diffusion coefficient. The AMOR data shows error bars of at best 
rv 0.1 in D/D0 (or rv 10% change in D) and diurnal variation of at least 1.5 in 
D / D 0• It seems likely then that whatever is causing the diurnal variation observed 
in diffusion it is not an atmospheric tide. 

It is known that if altitude information is neglected and all meteor echoes con­
sidered a diurnal variation will be observed in the overall diffusion coefficients 
measured by a meteor radar. Meteoroids hit the morning side of the planet with 
greater frequency and atmospheric velocity than the afternoon/ evening side of the 
planet. This is because the morning side of the planet faces towards the direction of 
the Earth's orbital motion, hence it effectively sweeps up meteoroids as the Earth 
moves through space. Not only will this result in more meteors being detected 
in the morning but they will also occur at greater heights. The faster a body is 
travelling when it hits the atmosphere the more quicldy it will heat up and the 
higher an ionisation train will occur, since the diffusion rate is dependent on the 
atmospheric density meteor trains created higher in the atmosphere will give higher 
diffusion coefficients. For a more detailed explanation of this effect see [22]. 

Figure (5.4) demonstrates this. All the diffusion coefficients have been averaged 
into hourly bins, irrespective of which height they occurred at. This has then been 
analysed in exactly the same way as the data for the height dependent plots in 
figures (5.2) and (5.5) to (5.8). As can be seen there is a diurnal variation with 
a clear peak in the mid morning. One would expect a minimum to occur around 
15:00 by the above argument but because of the greatly increased uncertainty in 
this region of the day it is not surprising that this is not the case. The similarity 
between figure (5.4) and the height dependent figures is interesting considering that 
the variation in measured diffusion described above should not be present in the 

2The address is http:/ /nssdc.gsfc.nasa.gov fspacefmodel/models/msis.html 
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values at a specific height. No likely cause of the variation seen in figures (5.2) and 
(5.5) to (5.8) has been discovered, and it remains unclear whether it is due to some 
real atmospheric phenomena or a subtle feature of the measurement procedure. 
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Diurnal change in diffusion over all heights 
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Figure 5.4: Hourly means of all meteor diffusion coefficients, irrespec­
tive of measured altitude 
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Figure 5.5: Hourly means of all data between 90 and 102 km showing 
mean diurnal variation for autumn. Plots were done in the same method 
as figure(5.2). 
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Figure 5.6: Hourly means of all data between 90 and 102 km showing 
mean diurnal variation for winter. Plots were done in the same method 
as figure(5.2). 
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Figure 5.7: Hourly means of all data between 90 and 102 km showing 
mean diurnal variation for spring. Plots were done in the same method 
as figure(5.2). 
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Figure 5.8: Hourly means of all data between 90 and 102 km showing 
mean diurnal variation for summer. Plots were done in the same method 
as figure(5.2). 
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5.3 Long time scales 

The final time analysis done on the data set was designed to detect any 
annual variation in the data. The data were binned on a daily basis within each 2 
km altitude bin and then an unweighted regression fit of a 365.25 day oscillation 
was performed. The result of this is shown in figures (5.9) and (5.10) for the ten 
altitude bins between 84 and 104 km. 

As can be seen the annual oscillation is almost completely masked by scatter, 
but a annual cycle has still been found by the regression routine. Above 92 km the 
cycle has a maximum at near midyear (i.e. in winter) whereas below this the cycle 
suddenly switches, giving a maximum in the summer months. 

It is well known that both the temperature profile and zonal wind undergo a 
reversal near the mesopause (see section (1.4.1) and figure (1.2)). At lower altitudes 
there is a temperature maximum in the summer months and a minimum in winter, 
higher up this is reversed. As can be seen this is in agreement with figures (5.9) 
and (5.10) with a clear maximum in D / D0 near the new year at 91 km altitude 
and below, and a minimum in the same time region for altitudes 95 km and up. 
Figure (1.2) shows the reversal in temperature gradient occurring at the relatively 
low height of"-' 70 km, which is not what is suggested by the AMOR data, however 
the altitude of this switch is by no means fixed. It seems reasonable to postulate 
that the reversal in the phase of the annual variation shown in figures (5.9) and 
(5.10) is the result of the change zonal temperature profile shown in figure (1.2). 
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Figure 5.9: Daily binned data for all data from late July 1995 to July 
1997. The vertical scale is again relative change in diffusion coefficient, 
this time with the mean value taken over the entire data set. 
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1997. 
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Chapter 6 

Conclusions 

This work reports an investigation into the suitability of the AMOR incoherent 
multi-station meteor radar system to provide useful information on wavelike struc­
tun~s near the meso pause ( 80 100 km in altitude) using the measured am bipolar 
diffusion coefficient of meteor trains. Pre-existing code was modified to produce a 
large body of meteor echo decay time constants covering a time period of approxi­
mately 2 years starting in mid 1995. 

Software was developed in the IDL language to calclate ambipolar diffusion 
cofficients from the decay times, investigate both the altitude vs. diffusion coefficent 
relationship and time series dependence of the diffusion data, and provide graphical 
representation of the results. 

with previous studies a very large degree of real scatter was found in the 
altitude vs. diffusion coefficent relationship when compared to a simple theoretical 
modeL No investigation was made into this cause of this scatter as there have been 
many causes suggested in the past (see [24, 25, 27, 47]). A linear fit was done to the 
the data, taking into account the uncertainty in both altitude h and the logarithm 
of the diffusion coefficient ln D. This was then used to give a scale height of H 4. 8 
km for the atmosphere between rv 80 110 km using the theoretical relationship 
h = Hln D + This was compared to values given by Jones and Jones [37] and 
found to be in good agreement. 

The time series analysis of the data was done over three different period regimes; 
short period oscillations of less than 12 hours, tidal waves of ~ to 1 day, and annual 
variation. Evidence of waves with "' 6 hour period showing downward phase pro­
pagation were detected by the short time scale analysis. It is postulated that these 
are gravity waves as detected by the MU radar at Shigaraki Japan [29, 30]. The 
possibility of using the AMOR system to monitor gravity wave propagation near the 
mesopause is therefore real, however providing an automated system for detecting 
gravity wave-like structures in the data and determining parameters such as wave­
length, amplitude and vertical phase speed will provide significant challanges for 
future workers. 

The analysis of the data on time scale periods of the order of a day produ­
ced inconclusive results. There the AMOR data showed a weak diurnal variation 
with a maximum near midnight. Contrary to what might be expected there was 
no evidence of a semi-diurnal tide, or a seasonal dependance of the diurnal tide. 
Comparison to the MSIS-E-90 model shows that the predicted diurnal/semi-diurnal 
variation in temperature is well below the uncertainty margin of the AMOR data. It 
therefore seems likely that measurement of tidal variation by the method employed 
here is not practical. 
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Long time scale analysis of the data set showed a noticable variation in D / D0 , 

particularly over the 85 - 91 km altitude range. The annual variation found showed 
a change in phase of rv 180° at approximately 93 km, which is in agreement with 
the known temperature structure near the mesopause. 

From these time series analyses it would appear that using ambipolar diffusion 
data from the AMOR system to detect dynamical processes near the mesopause is 
indeed possibk The system provides sufficient data to detect wavelike structures 
with periods down to a few hours, and to follow the evolution of these structures 
over a few days. 

During the latter part of this project the data reduction routines have been up­
graded to improve the geometric height determination capabilities of the system, 
increasing the number of usable echoes by about a factor of five. With this impro­
vement and a more streamlined reduction package for determining the decay life 
times of the echoes it is believed the AMOR system should provide useful data on 
gravity wave propagation between 90 and 100 km. 

Although this study was unable to clearly detect tidal oscillations in the data 
this may be possible using the increased data set supplied by the improved altitude 
determination now avalible. The long period analysis of shows the potential for the 
AMOR data set (which contains data back to 1990) to provide a long term picture 
of the temperature structure of the mesosphere region. 



Appendix A 

Program listings 

This appendix lists some of the code used in this work. The listings are basically 
as they were used, however all plotting and other output code has been removed. 

The two languages used in this work were Borland Turbo Pascal and IDL from 
Research Systems Inc. Turbo Pascal is improved version of Pascal for standard PCs 
running DOS. It produces stand alone compiled programs and was used to produce 
the control, data collection and data reduction programs of the AMOR system. 

IDL is a high level interpretive language. Programs are run one line at a time 
in the IDL programming environment - an application that is available for all 
commonly used computer systems. It provides a powerful and user friendly system 
for data analysis and was used for all the analysis specific to this project. 

A.l The calculation of diffusion time 

The Turbo Pascal procedure for calculating the slope of the decay ofln( amplitude) 
(see section (3.3)) is given below. The main body ofthis procedure is taken directly 
from 'Numerical Recipes in Pascal' [36]. This procedure is basically the heart of 
the Turbo Pascal program used to do the initial analysis of the data. 

PROCEDURE fit(Amp: IntVector; Istart,Iend: byte; mwt: integer;noise:byte; 
VAR a,b,siga,sigb,chi2,q: real); 

VAR 
x array[l .. 250] of byte; 
y array[1 .. 250] of real; 
sig array[1 .. 250] of real; 
i integer; 
wt,t,sy,sxoss,sx,st2,ss,sigdat: real; 

BEGIN 
{The value of xis just the indexes .. } 
ndata:= abs(Iend-Istart); 

{Create dummy values for ocations where decay is extremely short} 
if (ndata < 3) THEN BEGIN 

a:= 0{999}; b:= 999; siga:= 999; sigb:= 999; chi2:= 999; q:= 999; 
END ELSE BEGIN 

FOR i:= !start to Iend DO 
x[i] :=i; 

{They values are the logs of the amplitudes .. } 
BEGIN 
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FOR i:= Istart to Iend DO BEGIN 
IF Amp[i] = 0 THEN 

y[i]: = 1 
ELSE 

y[i] := ln(Amp[i]); 
END; 

END; 

IF (Noise< 1).THEN Noise:= 1; 
BEGIN 

FOR i:= Istart to lend DO BEGIN 

{Estimate uncertanties in ln(amplitude)} 
IF (Amp[i) <= 5) THEN 

sig[i] :=noise/10 
ELSE 

sig[i] := noise/(2.5*(Amp[i])); 
END; 

END; 

sx := 0.0; sy := 0.0; st2 := 0.0; b := 0.0; 
IF (mwt <> 0) THEN BEGIN 

ss := 0.0; 
FOR i := !start TO lend DO BEGIN 

wt := 1.0/sqr(sig[i]); ss := ss+wt; sx := sx+x[i]*wt; sy :=sy+y[i]*wt 
END 

END ELSE BEGIN 
FOR i .- Istart TO lend DO BEGIN 

sx := sx+x[i]; sy := sy+y[i] END; ss := ndata 
END; 
sxoss := sx/ss; 
IF (mwt <> O)THEN BEGIN 

FOR i := Istart TO Iend DO BEGIN 
t := (x[i]-sxoss)/sig[i]; st2 := st2+t*t; b := b+t*y[i]/sig[i] 

END 
END ELSE BEGIN 

FOR i := Istart TO Iend DO BEGIN 

END 
END; 

t := x[i]-sxoss; st2 := st2+t*t; b := b+t*y[i] 

b := b/st2; a:= (sy-sx*b)/ss; siga := sqrt((1.0+sx*sx/(ss*st2))/ss); 
sigb := sqrt(1.0/st2); 

chi2 := 0.0; 
IF (mwt = 0) THEN BEGIN 

FOR i := Istart TO lend DO BEGIN 
chi2 := chi2+sqr(y[i]-a-b*x[i]) 

END; 
q := 1.0; sigdat := sqrt(chi2/(ndata-2)); siga := siga*sigdat; 
sigb : sigb*sigdat 

END ELSE BEGIN 
FOR i := Istart TO Iend DO BEGIN 

chi2 := chi2+sqr((y[i]-a-b*x[i])/sig(i]) 
END; 
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q :~ gammq(0.5*(ndata-2),0.5*chi2) 
END; 

Appendix A. Program listings 

END; 
END; 

{ end of usual case of > 3 data values} 

A.2 Diffusion coefficient vs. altitude calculation: dal t. pro 

The following is a listing of the program used to calculate the atmospheric scale 
height from the AMOR diffusion data, as well as preparing the data and various 
equations for plotting. The program starts by calculating ln D from the raw dif­
fusion coefficient array D. The ln D values are then binned in a three dimensional 
array (using the histogram routine) for plotting. Next the lines given by Jones 
and Jones are then computed so that they can be plotted latter. The least absolute 
deviation fits are then done on the AMOR data set using the IDL routine ladfi t · 
and these are then used to calculate the slope of the best fit m2. 

tmp = where(D gt 0) 
ii = tmp MOD n_data 
jj = fix(tmp/n_data) 
lnD = alog(D(ii,jj)) 
h = alt(ii,jj) 

barray = intarr(50,50) 
h2 = indgen(SO) + 70.0 
D2 = findgen(50)/10 - 1 

for j = 0,49 do begin 
tmp = where(h ge h2(j) and h lt h2(j)+1) 
kk = tmp MOD n_elements(ii) 
ll = fix(tmp/(n_elements(ii))) 
lnD2 = lnD(kk,ll) 
barray(*,j) = histogram(lnD2, max= 4, min= -1·, binsize = 0.1) 

endfor 

; Theory based Dalt from Jones and Jones 
lnDth = alog(10)*(0.06*h2- 4.74) 

; Experimentally based Dalt from Jones & Jones 
InDex= alog(10)*(0.086*h2- 7.23) 

; Do 2 ''least absolute deviation" fits to AMOR data 
coef = ladfit(lnD,h) 
coef2 = ladfit(h,lnD) 

fit = coef(O) + coef(1)*D2 
fit2 = coef2(0) + coef2(1)*h2 

; Now calculate slope of best fit line 
tmp = where(h gt 94 and h lt 96) 
mom= moment(lnD(tmp)) 
dlnD sqrt(mom(1))/(sqrt(n_elements(lnD(tmp)))) 
tmp where(lnD ge 2.0 and lnD lt 2.2) 
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mom = moment(h(tmp)) 
dh = sqrt(mom(1))/(sqrt(n_elements(h(tmp)))) 

a= (dlnD/dh)-(2) 
b = (dlnD/dh)-(2)*coef2(1) 1.0/coef(l) 

m2 = (-b 

end 

A.3 Short time scale analysis: filter. pro 

The program used for the analysis found in section (5.1) is listed below. Each 2 
km altitude bin is analysed independantly and the data is placed into 1 hour bins. 
Once the time binning has been done and the null data has been removed a spline 
is fitted to the data to interpolate any missing hours of data. The spline is then 
passed through a low pass filter to provide with a cut off frequency corresponding 
to 11 hours, this is then used to provide Do values to calculate the D /Do array for 
plotting. 

print, 'Enter a lower altitude bin followed by a upper altitude bin $ 
(71' 73' 75' .... ' 119 km) ' 
read, level1 
read, level2 
bot_lev = level1 
p=O 

; Time binning section 

if date(O,O) MOD 4 eq 0 then begin 
thins = ((date(O,n_data-1)-date(0,0))*366 + date(3,n_data-1) - $ 

date(3,0))*24 
endif else begin 

thins = ((date(O,n_data-1)-date(0,0))*365 + date(3,n_data-1) - $ 
date(3,0))*24 

endelse 

dhrbin = fltarr(tbins) 
Dbin = dhrbin 
Dbinsig = dhrbin 
Dbinerr = dhrbin 
resultarray = fltarr(tbins,((level2-level1)/2)+1) 
dhrbin = findgen(tbins) + 0.5 

count = -1 

while level1 le level2 do begin 

count = count+1 

m=O 

;Begining of altitude 
;incrementing loop 
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while level! gt altbin(m) do m = m+1 

a = where(binindx eq m) 
i = fix(a MOD n_data) 
Draw = D(a) 
if date(O,O) MOD 4 eq 0 then begin 

Appendix A. Program listings 

dhrraw = dhr(a) + 24*((date(O,n_data-1)-date(0,0))*366 + $ 
date(3,i) date(3,0)) 

endif else begin 
dhrraw = dhr(a) + 24*((date(O,n_data-1)-date(0,0))*365 + $ 

date(3,i) - date(3,0)) 
end else 

i=O 
q=O 

for i = O,tbins-1 do begin 
tmp = (dhrraw ge (dhrbin(i)·0.5))*(dhrraw lt (dhrbin(i)+0.5)) 
h = total(tmp) 
if h ge 2 then begin 

Dbin1 = fltarr(h) 
a= where((dhrraw ge (dhrbin(i)-0.5)) and (dhrraw lt (dhrbin(i)+0.5))) 
Dbin1 = Draw(a) 
Dmom = moment(Dbin1) 
Dbin(i) = Dmom(O) 
Dbinsig(i) = Dmom(1) 
Dbinerr(i) sqrt(Dmom(1))/sqrt(h) 

endif else begin 
Dbin(i) 0 
Dbinerr(i) = 0 

endelse 
endfor 

x = where(Dbin ne 0 and abs(Dbinerr) lt 10) 

if n_elements(x) lt tbins/3 then begin 
rawarray(*,count) = 0 
resultarray(*,count) = 0 
goto, rubbish 

endif 

Dbin2.= Dbin(x) 
Dbin2sig = Dbinsig(x) 
Dbin2err = Dbinerr(x) 
dhrbin2 = dhrbin(x) 

Dspl = spline(dhrbin2, Dbin2, dhrbin) 

;Smoothing with a digital filter 
fltcoeff = digital_filter(O, 0.18181818, 50, 4) 
Dlpf convol(Dspl, fltcoeff) 
Dlpf 1.4 * Dlpf 

Ddif Dlpf 
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a = where(Dlpf 0) 
Ddif(a) = Dspl(a)/Dlpf(a) 
a = where(Dlpf le 0) 
Ddif(a) = Ddif(a-1) 
Ddif(O) = 0 

resultarray(*,count) = Ddif 

rubbish: 

level! = level! + 2 

end while 
end 

;Contains data to be plotted 

;landing point for lack of data goto 

;end of altitude incrementing loop 

A.4 Mid time scale analysis: average. pro 
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Below is the program used to calculate the average daily variation in D/Do (figure 
(5.2). The analysis for figures (5.4) to (5.8) was similar to this. Once again each 
altitude is analysed separately. The data is placed into one hour bins and then 
a multiple linear regression fit is done using the IDL routine regress using sine 
and cosine functions of 12 and 24 hour periods. The plotting was done inside the 
altitude incrementation loop, but the plotting commands have not been included 
in this listing. 

p=O 

print, 'Enter a lower altitude bin followed by a upper altitude bin $ 
(71, 73, 75, .... ' 119 km)' 
read, level! 
read, level2 

while level! le level2 do begin ;begining of altitude incrementing loop 

m=O 
while level! gt altbin(m) do m = m+1 

p = where(binindx eq m) 

Draw = D(p) 
dhrraw = dhr(p) 
p = where(Draw gt 0) 
Draw = Draw(p) 
dhrraw = dhrraw(p) 

; now do time bining of values (using 1 hour bins) 
tbins = 24 
dhrbin = fltarr(tbins) 
Dbin = dhrbin 
Dbinvar = dhrbin 
Dbinerr = dhrbin 
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dhrbin findgen{24} + 0.5 

i=O 
q=O 
for i = O,tbins-1 do begin 

h = where(dhrraw ge (dhrbin(i) - 0.5) and dhrraw lt (dhrbin(i) + 0.5)) 
if n_elements(h) gt 1 then begin 

Dbin1 = Draw(h) 
Dmom = moment(Dbin1) 
Dbin(i) = Dmom(O) 
Dbinvar(i) = Dmom(1) 
Dbinerr(i) = sqrt(Dmom(1))/sqrt(n_elements(h)) 

endif else begin 
Dbin(i) = 0 
Dbinerr(i) = 0 

end else 
endfor 

; Do a non-linear least squares fit with semidiurnal and diurnial oscilations 
h = where(Dbin ne 0) 
dhrbin2 = dhrbin(h) 
Dbin2 = Dbin(h) 
Dbin2err Dbinerr(h) 
Dbin2var Dbinvar(h) 

nterms = 4 
nz = size(dhrbin2) 
npts nz(1) 
xdhr = fltarr(nterms, npts) 

xdhr(O,*) 
xdhr (1, *) 
xdhr(2,*) 
xdhr(3,*) 

sin(dhrbin2(*) *2*!pi/24) 
cos(dhrbin2(*) *2*!pi/24) 
sin(dhrbin2(*) *2*!pi/12) 
cos(dhrbin2(*) *2*!pi/12) 

Wgt = 10/Dbin2var 
aO = fltarr(1) 
Ft = aO & Rm = aO & Chi = aO 

;daily cycle 

;12 hour cycle 

coef = fltarr(nterms) & R = coef & sig = coef 
yf = fltarr(npts) 

nlcoeffs =regress( xdhr, Dbin2, Wgt, yf, aO, sig, Ft, R, Rm, Chi ) 

; Produce arrays for plotting 
xvals = findgen(10*tbins)/10 

nllsq = aO + $ 
nlcoeffs(O) * [sin(xvals *2*!pi/24)] + $ 
nlcoeffs(1) * [cos(xvals *2*!pi/24)] + $ 
nlcoeffs(2) * [sin(xvals *2*!pi/12)] + $ 
nlcoeffs(3) * [cos(xvals *2*!pi/12)] 

;Find average value for calculation of D/Do 
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tmp = moment(nllsq) 
dDerr sqrt(Dbin2var + tmp(1))1n_elements(Dbin2) 
dnllsq = nllsq I tmp(O) 
dD = Dbin2 I tmp(O) 

level! = level! + 2 

endwhile ;end of altitude incrementing loop 

end 

A.5 Long term analysis: tseries. pro 
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The final analysis program, that which does the long term analysis, is listed below. 
As with the previous two programs the analysis of each altitude level is independant. 
Once again time binning is done first, this time on a daily basis. A new time array 
is created in which each record has it's time of occurance stored as the number of 
hours since the start of the data record. This is then used to bin the data. 

As with average. pro a curve is fitted using the regress routine, after missing 
days of data have been linearly interpolated. In this case the curves fitted are a 
straight line and sine and cosine curves of one year period. Again the plotting was 
done within the altitude incrementing loop. 

level = 93 
while level ge 85 do begin 

; Time binning section 

tbins = 0 
yr = date(O,n_data-1)-date(O,O) 
if yr ge 1 then begin 

;start of altitude incrementation 

for i = O,yr-1 do thins =thins+ 365 + (((date(O,O)+i) MOD 4) eq 0) 
tbins = thins + date(3,N_data-1) 

endif else begin 
tbins = date(3,N_data-1) - date(3,0) 

endelse 

; Put data in daily bins 
dhrbin = 24*findgen(tbins) + 12 
Dbin = fltarr(tbins) 
Dbinvar = dhrbin 
Dbinerr = dhrbin 

m=O 
while level gt altbin(m) do m = m+1 

a = where(binindx eq m) 
Draw = D(a) 
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; Create new array that stores the time of an echo in an hour format 
dhrraw = dblarr(n_data,max) 
if yr ge 1 then begin 

fork = O,yr do begin 
b where(date(O,*) eq (date(O,O)+k)) 
tmp = dhr(b,*) 
tmp(*,O) = 24*((((date(O,O)+k) MOD 4) eq 0) + 365*k + date(3,b)) 
for 1=1,max-1 do tmp(*,l) = tmp(*,O) 
dhrraw(b,*) = double(dhr(b,*) + tmp) 

endfor 
dhrraw = dhrraw(i,j) 

endif else dhrraw = long(dhr(i,j) + 24*(date(3,i)-date(3,0))) 

i=O 
q=O 

; Bin data into day long bins 
for i = O,tbins-1 do begin 

endfor 

tmp = (dhrraw ge (dhrbin(i) - 12)) * (dhrraw lt (dhrbin(i) + 12)) 
h = total(tmp) 
if h ge 2 then begin 

a = where((dhrraw ge (dhrbin(i) - 12)) and $ 
(dhrraw lt (dhrbin(i) + 12))) 

Dbin1 Draw(a) 
Dmom = moment(Dbin1) 
Dbin(i) = Dmom(O) 
Dbinvar(i) = Dmom(1) 
Dbinerr(i) sqrt(Dmom(1))/sqrt(h) 

endif else begin 
Dbin(i) = 0 
Dbinerr(i) 0 

end else 

Dbin = Dbin*(Dbinerr lt 5) 
Dbinerr = Dbinerr*(Dbinerr lt 5) 
Dbinvar Dbinvar*(Dbinerr lt 5) 

; Create arrays without null data 
a where(Dbin ne 0) 
dhrbin2 = dhrbin(a) 
daybin = dhrbin2/24 ;Store time as days 
daybin2 = dhrbin/24 
Dbin2 = Dbin(a) 
Dbinerr2 Dbinerr(a) 
Dbinvar2 = Dbinvar(a) 

mom = moment(Dbin2) 
dD = Dbin2 I mom(O) 
dDerr = (Dbinvar2 + mom(1))/n_elements(Dbin2) 

; Do linear interpolation through the vector to enable regression 
Dbinr = interpol(dD,daybin,daybin2) 
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x = [ transpose(daybin), $ 
transpose(cos((2*!pi *daybin)/365.25)), $ 
transpose(sin((2*!pi *daybin)/365.25)) ] 

weights= replicate(1.0, n_elements(Dbin2)) 
yrwave = regress(X,dD,weights,yrwavefit,const, /relative_weight) 

level = level-2 
end while 

end 

;end of altitude incremation 



Appendix B 

The x2 parameter 

The x2 (or "chi-square") statistic is used in this work as a measure of "goodness 
of fit" . It is given by the equation 

(B.l) 

where we have N data points (xi, Yi) (with standard deviations a-i) and we are 
fitting a function y with M parameters, ai. 

As we are trying to minimise the difference between the data and the fitted 
function the smaller the value of the chi-square the more closely the data is de­
scribed by the function. See any of the Numerical Recipes series (for example 
Numerical Recipes in Pascal [36]) for a more detailed description of all aspects of 
the modelling of data. 
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