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right hand side is non-negattve. Lemma 4.1 implies that 

Hence. using (4.3.16) 

11 rll 11 ,+ 

Let 

P (x) 
n 

-k -1 
c24n w(h,n ) . 

j = 0, .•• ) k - 1 ' if t s d -~"4) !J . 

p(k)(x) 
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NOTE 

It has been pointed out that section 4.4 repeats some work, as yet 

unsighted by the author, of D. Myers: "Comonotone and Co-convex 

Approximation 11
, Ph.D. Thesis, Temple University 1975. 
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PREFACE 

This thesis is a study of the degree of uniform linear approximation 

with side conditions. 1·1any of the questions concerning best approximation 

with side conditions were settled before 1973. In contrast very few 

results concerning the degree of approximation with side conditions were 

known then (see for example [1], [2]). The present work has resulted 

from attempts to extend some of these previous results. 

The unifying theme is the cost of imposing the constraints; that 

is the relationship between the degrees of approximation with and without 

constraints; both for particular classes of functions, and for individual 

functions. For example in Chapter 2 Jackson type theorems are obtained 

which imply that the orders of magnitude, of the degrees of approximation, 

of many classes of functions, are unaffected by the imposition of Hermite-

Birkhoff interpolatory constraints. The degrees of approximation of an 

individual function with and without the constraints may however be of 

different orders of magnitude. 

The side conditions considered fall into four categories namely: 

Lagrange interpolatory side conditions imposed on approximation from 

finite dimensional subspaces of C(T) ,T compact Hausdorff; Hermite

Birkhoff interpolatory side conditions imposed on approximation by 

algebraic or trigonometric polynomials on finite intervals; the side 

condition "increasing to the right" imposed on approximation by algebraic 

polynomials on finite intervals (the results here are applied to rational 

approximation on [0, 00)); and generalized monotonicity side conditions 

imposed on approximation by algebraic polynomials on finite intervals. 

Jackson type estimates are obtained for the degree of approximation 

in each case. In addition, for the side conditions of an interpolatory 

type, best possible asymptotic bounds are found for the ratio of, the 



degree of approximation with side conditions, to, the degree of 

unconstrained approximation. 

(iv) 

In the thesis as a whole all the proofs are very strongly of 

the constructive as opposed to the existence type, and most depend 

heavily on the properties of algebraic or trigonometric polynomials. 

Several are based on proofs of the Jackson theorems for unconstrained 

approximation. 
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0. 

ABSTRACT 

This thesis is a study of the degree of uniform linear approxima

tion with side conditions. 

The side conditions considered fall into four categories namely: 

Lagrange interpolatory side conditions imposed on approximation from 

finite dimensional subspaces of C(T) ,T compact Hausdorff; Hermite

Birkhoff interpolatory side conditions imposed on approximation by 

algebraic or trigonometric polynomials on finite intervals; the side 

condition "increasing to the right" imposed on approximation by algebraic 

polynomials on finite intervals (the results here are applied to rational 

approximation on [0, 00)); and generalized monotonicity side conditions 

imposed on approximation by algebraic polynomials on finite intervals. 

Jackson type estimates are obtained for the degree of approximation 

in each case. In addition, for the side conditions of an interpolatory 

type, best possible asymptotic bounds are found for the ratio of, the 

degree of approximation with side conditions, to, the degree of 

unconstrained approximation. 



CHAPTER I 

THE ASYMPTOTIC COST OF LAGRANGE INTERPOLATORY 

SIDE CONDITIONS IN THE SPACE C(T). 

§1.1 SUMMARY 

Estimates are obtained for the increase in approximation error 

when Lagrange interpolatory side conditions are imposed. Let \! index an 

increasing sequence of finite dimensional approximation subspaces in C(T), 

whose union N is dense in C(T). If T is compact Hausdorff then the 

degree of approximation with Lagrange (function value) interpolatory side 

conditions, E (f,A), is related to the degree of unrestricted uniform 
\) 

approximation, E (f), by the inequali 
\) 

lim sup E (f,A)/E (f) 
\) + 00-- \) \) 

2 VfEC(T)\N. 

The constant 2 cannot be decreased in general. In particular it is best 

possible for uniform approximation of 

(i) entire (therefore continuous) periodic functions by 

trigonometric polynomials; 

(ii) entire (therefore continuous) functions on any closed finite 

interval [a,b) by algebraic polynomials. 

The results generalize to the additional cost of Lagrange inter-

polatory side conditions placed on approximations already satisfying 

restricted range side conditions, which are non-binding on f at the 

interpolation nodes. 

Return to the case where only side conditions of an interpolatory 

occur. Specify the interpolatory side conditions via a set of 

* point evaluation functionals in C(T) , the dual of C(T). If the triple 

(C(T), N, set of point evaluations) has the property SAIN then there is 

a v 1 , not depending on f E C(T), such that E (f,A) - \) 

Some of these results have in Beatson [l] . 

2E (f) 
\) 
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§1.2 INTRODUCTION 

Let T be compact Hausdorff, and let h, k belong to C(T), the space 

of continuous real valued functions on T, and satisfy 

h(t) < k(t) 1 t E T. (1.2.1) 

Define the set of functions 

X = {g E C(T) : h(t) .;;;,; g(t) k(t) for all t E T}. 

For convenience the case of no constraints will be denoted by X = C(T). 

Consider an increasing sequence of finite-dimensional linear 

- 00 

subspaces tN } of C(T), whose union N is dense in C(T), and the 
V V=l 

corresponding sequence of convex sets M = N n X whose union M is clearly 
\) \) 

dense in X. Given a finite set {x 1*, ••. , x *}of elements of C(T)*, the 
'Y 

dual of C(T), and f E C(T), define the set of functions 

where 

A { g E C ( T) : x. * (g) 
l 

X, * (f) t i = 1, • • • 1 Y} • 
l 

For each V 1,2,3, ... define = Ev(f) by 

E (f) = inf ~f - 9U 
V gEM 

lit - gU 

\) 

sup If ( t) - g ( t) I . 
tEr 

Similarly if Mv n A is nonempty define 

Ev(f,A) = inf II£- gil. 
gE(M ()A) 

\) 

Clearly EV(f) < EV(f,A) whenever the right member exists. 

(1.2.2) 

(1.2.3) 

It is 

natural to ask if the. ratio E (f,A)/E (f) has upper bounds. Paszkowski 
\) \) 

[6,7] first posed such questions, showing in [7]; 

THEOREM 1. 1. If X c[a,b], M = N is the spaae of algebraia 
\) \) 

polynomials of degree not exceeding v for v = 1,2,3, ••. , and 

{xi*}i=l {ft.}I=l are point evaluations 
l 

X, * (f) = f ( t, ) 1 
l.. l.. 

a i=l, ... ,y, 

then there is a number v 1 ~ not depending on f~ such that for all 
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f E c[a,b] and·v v 1 

More recently Johnson [4] has obtained theorems of a similar nature 

in a more general context. For the space C(T) a general theorem of 

Johnson [4, Theorem 2.1] reduces to 

THEOREM 1. 2. x = C(T), then given any x1*, .. 1 xy* E C(T}* 1 there 

exists a constant c and a positive integer v 1 ~ not depending on such 

that for every f in C(T} and v > \1 1 , Ev (f ,A) is defined and 

CEv (f). 

He also shows (Johnson [4, Theorem 3.5]) 

THEOREM 1. 3 . Suppose X= C{T) and f E C(T). Suppose 

{x.*}: = {f }y are point evaluations on C(T) such that 1 1=1 t. i=l 
1 

lf(t.>l <lltll, 
1 

then there exist c and v 1 such that for every v 

for which 

mv(ti) = f(ti), 

llmv'J ~llfll, 

II f - m II 
\) 

CE (f) • v 

i 1, ... , y, 

§1.3 GENERALIZATIONS OF PASZKOWSKI'S RESULT 

(1.2.4) 

(1.2.5) 

(1.2.6) 

(1.2. 7) 

(1.2.8) 

§1.3.1 Upper hounds onE (f,A)/E (f) when E (f) denotes the degree of v v v 

unrestricted approximation. 

The following theorem shows the unknown constant C of Theorem l . 2 

can be asymptotically replaced by the constant 2 of Paszkowski's theorem 

* when all the x. are 
l 

THEOREM 1. 4 . 

evaluations. This constant is best possible. 

If x = C(T) and {x *}y = {f }y are point 
, i i=l t. i=l 

1 
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evaluations on C(T), then there exist v 1 and a sequence {o }
00 

, not 
V V=V1 

depending on f, such that for any f E C(T), Ev(f,A) is defined for v ~ v1 

and 

E (f,A) ~ (2 + o )E (f), v v v (1.3.1) 

where 

lim ov = 0. 
v+oo 

The constant 2 in the inequality above cannot be decreased. 

Proof of inequality (1. 3.1). First we construct some "bump 

functions" essential to the proof. An approximation satisfying the side 

conditions will be constructed by perturbing the best approximation using 

approximations to these "bump functions". 

By the Hausdorff property of T we can find disjoint open sets 

Bl,···, BY containing tl, •.. , ty, respectively. T\Bj is closed j = 1, ... , y 

and so also are the singletons {t.}. Since compact Hausdorff implies 
J 

normal the Urysohn theorem (see, e.g., Dugundji [3]) guarantees the existence 

of functions f., j = 1, ... , y such that 
J 

f. (t.) = 1 
J J 

(1.3.2) 

O~f.(t) ~1, :tEB., 
J J 

(1.3.3) 

f . ( t) = 0 , t E T\ B .• (1.3.4) 
J J 

Consider the following theorem of Yamabe [9]. 

THEOREM 1. 5 . Let M be a dense convex subset of a real normed 

linear space X and let x 1 *, ... , ~*EX*. Then for each f Ex and each 

E > o there exists a g E M such that II f - gil < E and 

x.*(g) =x.*(f), 
J. J. 

i=l, ... ,y. 

By this theorem there exist functions inN arbitrarily close to f. 
J 

which interpolate to f. at the points t., i = 1, ... , y. 
J J. 

Using also the 

finite dimensionality of the NV, there exists a V1 such that for V ~V1 

there exist best approximations '\>. from N to f. with side conditions 
' J J 
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q .(t.) = f.(t.) = 0, ., 
vJ ~ J ~ 1J 

i=l, .•• ,y, 

where o .. is the Kronecker delta, and also if 
1] 

then 

0 
v max II qv . - f .II 

J J j=l, .•. ,y 

8 -+ 0 v as v -+ 00 • 

Let <lvo be a best approximation to f from NV 

y 

j=l, ••• ,y, 

For V ~V 1 define 

qv = qvo + j~l (f(tj) - qvo<tj)) qvj· 

Then ~interpolates fat the points tj, j = 1, ... , y and 

Since the B. are disjoint and 
J 

l + ov, t E B. 

lqvj(t) I ~ J j 1, ... , y, 
ov, t E T\B. 

J 

the second term on the right-hand side is bounded by 

This completes the proof of inequality (1.3.1). 

5. 

Proof that the constant 2 of inequality (1.3.1) cannot be decreased. 

A trigonometric approximation problem is constructed with 

lim sup f is chosen so that: the residual of best 
V+OO 

uniform approximation (f-h )(x) oscillates between extreme points much faster 
n 

than is possible for a polynomial of degree n; and (f-h ) (O) = E (f). 
n n 

Perturbing h to satisfy an interpolation condition at zero will then 
n 

asymptotically increase the error in the approximation by E . 
n 

Let T be the unit circle ; X C (T) ; N be the space of trigono
V 

metric polynomials of degree not exceeding V ; and A= {g E C(T) : g(O) = f(o): 

where f E C(T) will be chosen later. 

Consider the sequence of functions {g, (8) 
1 

i cos(3 8) 
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Since 

n 
g. (8) = (-1) 

1 
when e = n7T 

i 
n = 0,±1,±2, •. 

i 
gi has 2.3 extremes on T. Also gk, k ~ i has all the extremes of gi 

()() 

with the same sign as gi. Let iEl ai be some convergent series of positive 

real numbers, and define 

f(8) 

Consider the residual of best uniform approximation, to f from NV. This 

residual is characterized by the existence of a set of 2V+2 points, .its 

value at each such point being equal in magnitude to its norm but opposite 

in sign to its value at the two adjacent such points. Hence the best 

uniform approximation to f from N ( 2i) is 
3 

with 

and 

i.e. 

h. (8) 
1 

()() 

( f-h. ) r. ~ ak g k 1 1 k=i+l 2 

()() 

II f - h.ll E (2i) ~. ak 1 k=1+1 
3 

Let ti be any function in N
3

( 2i) 

ti E N
3

( 2i) and ti(O) = f(O). 

. 

n A. 

Then 

II f - t .II = II < f-h.) - < t. -h.) II = II r. - p .II 1 1 1 1 1 1 

where pi' the perturbation of the best approximation, is 

p. = t. - h .. 1 1 1 

The argument now proceeds using that 

P. (O) 
1 

[ 

7T I 
= r . ( 0) = II r .II while r . . 1 J 

1 1 1 ( 21+ ) 
3 

- II r .II; 
1 

and that the slope of p. (8) is related to its norm by Bernstein's 
1 

inequality. We treat two cases. 

Case 1. 

(1. 3.5) 

. (1. 3.6) 
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Then 

llr. 
1 

p.ll > llp.ll - llr.ll > 2E (2i) 
1 1 1 3 (1.3.7) 

Case 2. llp.ll 
1 

Then using Bernstein's inequality 

pi[3,,~+1)] = 0 [ 3E 3 (2i) 
(2i) 

I 

E (2i) + 3 ,)+1) j 3 
3 

r [ 1 n = E ( ) [1 + 0 3(i)JJ as i -+ oo. 
I 

3 

and since r = - E 1 
[ ff J . i 3(2i+l) 3(2) 

we find 

II r. - p .II > I ( -p. ) [ : + 1 
1
J I 

1 1 1 {2 ) 
2E (i) (l+o(l)). 

3 
(1.3.8) 

3 

By (1.3.6), (1.3.7), (1.3.8} 

lim sup(E (2i) (f,A)/E ( 
i -+ 00 3 3 

(f)) > 2. II 

Remarks. The second part of the proof above requires only that 

each a. be positive and that the series 
1 

converges. Hence there is 

no requirement that f be "non-smooth"; 

fact make f entire. 

suitable choice of the a. will in 
1 

The example above may be transformed to show the constant 2 of 

Theorem 1.4 is also best possible for approximation by algebraic polynomials 

on closed finite intervals. Simply use the standard transformation 

between, even 2TI periodic functions and functions defined on [-1,1], 

x = cos e , f* (x) f ( 8) • 

If t is any trigonometric polynomial satisfying the interpolation condition 

its even part twill also satisfy it. Hence standard arguments establish 

E *(f* A*) = E (fA)· v , v , , where Ev*(.) denotes the degree of approximation by 

algebraic polynomials of degree not exceeding V, and 

A* = {g E c[ -1,1] : f*(l) = g(l)}. Since also * (f*) 



Cost of Lagrange Interpolatory Side Conditions 

lim sup(E\l * (f* ,A*) /E\l * (f*)) 
\)-+00 

lim sup(E\l(f,A)/E\l(f)) ~ 2. 
\)-+00 

8. 

II 

§1.3.2 Upper bounds on Ev(f,A)/Ev(f) when Ev(f) denotes the degree of a 

certain type of restricted range approximation. 

Let T,h,k, etc. be as in §1.2. Then 

THEOREM 1. 6 . If {x.*}: = {ft }Y
1
• __ 

1 
are point evaluations on C(T) 

l l=l 
i 

and f E x\ M satisfies 

h(t.) <f(t.) <k(t.), 
l l l 

i=l, ... ,y, 

then there exists a v1 such that E (f,A) is defined for v ~v 1 and 
\) 

lim sup (E\l(f,A)/E\l(f)) < 2. 
\)-+00 

The constant 2 in the inequality above cannot he decreased. 

Proof of inequality (1.3.9). Firstly we need some lemmas. 

(1.3.9) 

LEMMA 1. 7. Let x, f, and f(t.), i = 1, ... , y, he as in the statement 
l 

of Theorem 1.6. Then for each E > o there exists gEM satisfying 

Proof. 

g(t,) = f(t,), 
l l 

i=l, ... , y, 

llg - fll <E. 

There exists Eo > 0 such that if Eo ~ E > 0 the function 

f (t) 
E 

k(t) - E if f(t) >k(t) - E, 

h(t) + E if f(t) <h(t) + E, 

f(t) otherwise, 

(1.3.10) 

(1.3.11) 

is continuous. Also there exists E 1 , Eo ~ E 1 > 0 such that for E 1 ~ E > 0 

i=l, ... ,y, 

For such an E, by Yamabe's theorem (Theorem 1.5) applied to C(T) and N 

there exists g E N such that 

g ( t . ) = fE ( t . ) , i = 1 , . . . , y , 
l l 

and II fE - gil < E • 

Thus 

gEM,g(t.)=f(t.), i 
l l 

1, ... , y and II f - gil < 2E. 

The result follows. II 
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Construct disjoint open sets Bl,•••t B containing t 1 , ..• , t 
y y 

respectively; and corresponding functions f. E C(T), satisfying 
J 

f. (t.) 
J J 

1; 0 ~ f . ( t) ~ 1 I t E B . ; f. ( t) = 0 I t E T\ B . 
J J J J 

as in the first part of the proof of Theorem 1.4. 

Given f E X satisfying the conditions of Theorem 1.6 define for each 

j = 1, ... , y, constants 

+ 
a. (k ( t.) - f ( t.)) /2, a. (h ( t.) 

J 
f (t,)) /21 

J J J J J 

and continuous functions 

+ 
f. (t) 

J 

f.- (t) 
J 

+ min[ (a. f. +f) (t) ,k(t)], 
J J 

max[ (a.-f.+ f) (t) ,h(t)]. 
J J 

9. 

By Lemma 1.7, and the finite dimensionality of theN , there exists a V1 v 
+ -such that for V ~ V1 there exist best approximations from M ,p .,p . of 

V VJ VJ 
+ -f. ,f. , respectively, satisfying 

J J 

Pv+.(t.) 
J l 

pv-. (t.) 
J l 

+ 
f. (t.), 

J l 

f, (t,) 1 

J l 

i=l, ... ,y, 

i = ·1, • • • I y I 

and the normalized maximum error in these approximations 

0 
v 

max max ( II p + . 
'-1 VJ J- I • • • ; "( 

min 
i=1,: .. ,y 

converges to zero as V goes to infinity. Let Pvo be a best approximation 

to f from MV. Define 

A~j max(0 1 (f(tj) 
+ 

Pv (t.))/a. ), 
0 J J 

- -A = max(O, (f(t.) 
vj - Pv (t.))/a. ) . 

J 0 J J 

+ A -We note that A ·I Vj 
are· both nonnegative and at least one 

VJ 

Define 

+ + A+ > 0, Pvj Pvj' a. a. I if 
J J Vj 

A - > o, Pvj = Pvj 1 
a. = a. I if 

J J Vj 

+ A+ A Pvj Pvj, a. a. I if o, 
J J v· Vj J 

( 1. 3.12) 

is zero. 
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and 

A =A+ 1 -
vj vj + 1\vj' j 1, ... , y. 

We choose v 2 >v 1 so large that A . is less than 1 for j = 1, ... , y and 
'VJ 

v > v 2 • Then 

LEMMA 1.8. Let ;\vj'Pvj' V 2 be defined as above. Then for aU 

v >v2 there exist 

sueh that 

where 

r y i~O 
\ 

e. 
l. 

eo > 0; 

e. <v > , 
l. 

8 > 0 i , 

y 
i: e. i=O l. 

i 

Sip vi l (tjl = f(t.), 
J 

e. <v> ~(l+E)A., 
V VJ. l. 

i = 1, • • • I l I 

1, 

j 1, ••• , y, 

i = 1, ... , y, 

as V + 00 ~ 

( 1. 3 .13) 

(1.3.14) 

( 1. 3 .15) 

( 1. 3 .16) 

(1.3.17) 

Proof. The existence of {e.}: 
0 

satisfying (1.3.13)-(1.3.15) can 
l. 1.= 

be established by induction. 

Induction basis. Take eo o = 1. 

Induction step. Given e , ... , e > 0 such that 
so ss 

s 
e > o· so , e . > o, i = 1, ... , s; i: e . = 1, 

Sl. 4 Sl. 

s 

i~oesiPvi (tj) f(t.), 
J 

j 1, .•. , s, 

( 1. 3.18) 

(1. 3 .19) 

for s = Y1, 0 y 1 <y, we prove the existence of es+l, 0 , ... , e s+l,s+l 

satisfying (1.3.18) and (1.3.19) for s y 1 + 1. Take 

p(a) = (l- a)[~ 8sipvi (ts+l1l + apv,s+l(ts+l1 - f(ts+11" 

If p(O) = 0, take e +1 . = e si' i ~ s; e o. If p (0) " 0, then by s , 1. s+l,s+l 

the choice of p 
1 and since ;\ 1, p(O) lies on one side of 0 and p(l) v,s+ Vj 

on the other. Hence by linearity of the function p(a) there is a unique 
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a, 0 <a< 1 such that p(a) = 0. Taking 

e = 
s+1,i 

(1 - a) e . , 
SJ.. 

a 

we have the induction step. 

i = s + 1, 

It remains to show (1.3.16) and (1.3.17). 

11. 

We note that on entering the inductive step we deal with a function 

s 

i~O 8sipvi 

whose value at ts+1 lies on the line segnent joining pVo (ts+l) and f(ts+l). 

This shows that each e +1 +1 is less than or equal to e• 1 where e• s ,s - s+ s+l 

is chosen so that (1- e· l)p + e• lp 1 interpolates to fat t 1' 
s+ Vo s+ -v,s+ s+ 

Since the 8 . , i = 0, ... , s, decrease towards the 8. 
SJ.. J.. 

8. (V) as s increases; 
J.. 

it follows that 

o < e. cv> < e:, 
J.. J.. 

i=l, ... /y. (1.3.20) 

Now if A . is zero then so is ' and from (1.3.20), (1.3.16) holds. 
VJ.. 

If A . is nonzero so is ' and 
VJ.. 

Thus 

e~ 

(f - Pv > (t. > 
0 J.. 

(p . - f) (t.) 

e• 
i 

(f- Pv )(t.) 
0 J.. 

<Pv· - Pv) (t.) 
J.. 0 J.. 

J.. VJ.. J. 
+ 1 as V + 00 through V such that A . ~ 0. 

Vl 

This proves (1.3.16) and (1.3.17). 

From the above lemma and the convexity of ~ there exists (V ~V 2) 

y 

in M which v 

Write 

Pv* = i~O 8 i (V) Pvi 

ir-terpolates to fat t., j = 1, ... , y, 
y J 

IP *(t)- f(t)l <L:. 
0 

8.(v>l p .(t)- f(t)j. -v 1= 1 VJ. 

Using the estimate of the last lemma, namely 

0 < 8. (V) < (1 + E ) A . 
J.. V Vl 

where s + 0 as v + oo, the estimate 
v 

II 
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1 p . ( t) - f ( t) 1 < 1 a. 1 ( 1 f. ( t) 1 + a ) 
Vl 1 l V 

lail 8v 

lail (l + 8v) 

and the estimates 

t E T\B. I 
l 

t E B. I 
l 

A . I a. I < Ev (f) , Vl l 
i=l, ... ,y, 

we obtain 

and writing cS~ 

EV + ( 1 + E ) ( 1 + o ) E v v \1 

Ev + Y(l + s )o E , v v v 

Y(l + s )o + s v v v 

llp~(t) - f(t)ll < (2 + o')E • v v 

i 

This concludes the proof of the first part of Theorem 1.6. 

12. 

1, ... , y; 

Proof of the best possible nature of the constant 2 in 1.:nequaZity 

(1.3.9.). As in Theorem 1.4 the proof is to construct a trigonometric 

approximation problem with 

lim sup Ev(f,A)/Ev(f) 2. 
v-+oo 

Note however that EV(f,A), EV(f) now have a different meaning. Since 

Theorem 1.6 does not apply to the example of Theorem 1.4, that example will 

be modified. Consider p (x) = 0. 2 x 5 
- 0. 75 x 3 + 0. 5 x , this algebraic 

polynomial has a derivative 

p' (x) (x2 
- 0.25) (x2 

- 2) 

with zeros at x ± 0.5 or x ± 12-. Also p(l) = - 0.05 p (-1) while 

p(0.5) = 0.1625 

[ -1,1] is 0.1625. 

numbers, and g (8) 
2i 

p(-0.5). Therefore the maximum modulus of p(x) on 
(X) 

Hence if ~ a is any convergent series of positive 
i=l i 

(2i) = cos(3 8), the function 
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00 

f (e) = - ( 0 . 2) (cos e ) 5 + 0 . 7 5 (cos e ) 3 
- 0 . 5 cos e + .; ~1 a. g . (e) 

.... l 2]_ 

will satisfy 
00 

II fll = .1625 + . ~ a. 
l=l l 

f(
4

7f) > f(O) > f(:!!_) 
3 3 

- II fll. 

Let 

X= {gEC(T):- 11£11 ~g(t) ~11£11 for all tET}, 

A = { g E C ( T) : g ( 0) = f ( 0) } , 

and 

NV= {trigonometric polynomials of degree ~v}. 

Theorem 1.6 applies to this new example. The proof that 

13. 

lim sup EV(f,A)/EV(f) ~ 2 imitates the proof in Theorem 1.4 from this 
v-+oo 

point. # 

Remarks. Again, as in Theorem 1.4, f can be chosen very smooth; and the 

example can be transformed to show that the constant 2 of Theorem 1.6 is 

best possible for approximation by algebraic polynomials on closed finite 

intervals. 

By [4, Theorem 4.1], in which we may take the constant as 2, there 

follows 

COROLLARY 1. 9 . If X= C(T), f E C(T)\N, and !f(t.) I <llfll for 
l 

00 

i 1, ... , y then there exist a v1 and a sequence {g} of~~ EN 
\) \)=\) 1 v \) 

satisfying g (t.) = f(t.) for i = 1, ... , y, II g"ll ~II fll and 
\) l l v 

lim sup <II f - g II /E (f)) ~ 4. 
V-+oo V V 

§1. 3.3 SAIN and the bound Ev (f., A) /Ev (f)~ 2 for aU v ~ v 1 when Ev (f) 

denotes the degree of unrestricted approximation. 

Let N be a subspace of C(T), and Jot , 
~ . 1 
l 

point evaluations in the dual space C(T)*. 

I Qty} be a finite Set Of 

Following Deutsch and Morris 

[ 2] make the following definition: The triple (C(T), N, Jo , •.. , o L) 
I. tl ty f 

will be said to have the property SAIN (simultaneous approximation and 
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interpolation which is nom preserving) provided that the following 

condition is satisfied: 

Par each f E C(T) and each £ > o, there exists a g EN such that 

II f - gil < e, at. (g) (i 
l 

l, ... ,y), and llfll II gil. 

Then 

THEOREM 1.10. LetT be compact Hausdorff, t1, .•. , ty be distinct 

Points ofT and {N }
00 

be an increasing sequence of subspaces of C(T) 
V V=l 

whose union N is dense in C{T). If the triple (C(T), N, fo , ... , o }> 
l tl ~ 

has the property SAIN then there exists a positive integer v 1, such that 

for arbitrary real numbers Yl•···• Yy there exists ann inN satisfying 
\)1 

and 

(i) n(t.) 
l 

{ii) II nil 
i 

y • I 
l 

max 

i 

l, ... ,y 

1, ... , y, 

I Y. I. 
l 

Fix the positive integer y, and t1, .•• , t . y Consider the 

set of 2Y points in Ry 

- 1 or 1 ; i=l, .•. ,y}. 

D t th · t b and the J.th t f b eno e ese po1n s y ~J, ••• , x componen o x. y x ... 
~:ty -l_ l] 

Clearly the convex hull, or set of all finite convex linear combinations 

of {x.: i = 1, •.. , 2Y}, is the set 
-l 

J(' {x = (Ylt•••r Y) : IY.I - y l 
1 ; i l, ... ,y}. 

Corresponding to each x. Urysohn's lemma implies the existence of a 
-:L 

function f. (t) E C(T) such that 
l 

(i) f. (t.) x .. j 
l J l.J 

(ii) II £.11 
l 

= 1 

By the SAIN property there exists 

( i) P. (t.) X •. i l. J l] 

and 

1, ... , y . 

a vl and p 1 , 

1, • • • I 2Y, j 

(ii) II pill 1, i 1, ... , 2y. 

P2, · · • , P2y in NV such that 
1 

1, ... , y, 
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Consider any Y real numbers Yl•Y2t•••• y. y 

15. 

Either all the y : 
J 

are zero or at least one is non zero. In the first case the theorem is 

obvious; otherwise, since N is closed under scalar multiplication, 
\)1 

assume without loss of generality 

Then ¥... = (Yl•···t yy) lies in X. 

2y 

i.e. There exists 8. ~ 0; 
1 

1. = 1 2y 
I • • • 1 i 

2y 

with ~ 
i=l ei = 1 and i~l ei ~i Hence 

p(t) = 8. p. ( t) 
1 1 

belongs to N\!
1 

and satisfies 

p(t.) y., 
J J 

j 1, ... , y, 

llpll = 1 

as required. II 

THEOREM 1.11. If X= C(T) and the tPipZe (C(T), N, {o , ••. , 8t }) 
tl y 

has pPoperty SAIN then there ts an v1 not depending on such that 

defined 

v \) 

PPoof. Let \! 1 be the \! 1 of Theorem 1.10. Fix \! 

be a best uniform approximation to f from Nv. Let y, 
1 

i = 1, ... , y, and n EN be the function with n(t.) 
\)1 1 

max !Y. !; existing by virtue of Theorem 1.10 • 
. 1 l 1= , ••• , y 

belongs to A n N and 
\) 

= (f-p\)) (ti) 

llnll = 

II 

RemaPk. Deutsch and Morris [2] discuss which triples have the 

property SAIN showing for example [2, Theorem 4.1]; that with C(T), T 

compact Hausdorff, and a finite number of point evaluations; it is 

sufficient for N to be a dense subalgebra of C(T). Hence in particular 

Theorem 1.11 applies to approximation by trigonometric polynomials. 
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§ 1. 4 REMARKS ON THE CONSTANT 2 AND 

OTHER COST OF SIDE CONDITION THEOREMS. 

It is interesting to note that the constant 2 plays, in several 

other cost of restricted range side condition theorems, a role similar to 

that which it plays in Theorems 1.4, 1.6. 

For example: let X= c[a,b], 

A= {g E da,b]: g(t) ~ f(t) Vt E [a,b] }, 

and each N be a Haar subspace of c[a,b]. 
\) 

A glance at the alternation 

theorem for one sided uniform approximation (see e.g. Lewis [5, Theorem 

3.31) shows that when the function: eo (t) = 1, Vt E [ a,b] , is in N 
\)1 

If e 0 ~ N then at least it can 

be arbitrarily well approximated by functions in N, and we can conclude 

E\! ( f, A) < (2 + 8 ) E (f) 
\) \) 

where {8 > 0} does not depend on f E c[ a,b] and lim 8 = 0. 
\) 

\) -+ 00 
\) 

As a second example consider the cost of the side condition 

II approximation!! < II fll . Since we assume N is finite dimensional a best 
\) 

approximation to f E C(T) from N exists. 
\) 

Hence Johnson [4, Theorem 4.1] 

becomes 

THEOREM 1.12. For each f in C(T) there is an integer v 1 such that 

for every \! ~ v1 there exists n\! E N\! with lin} = II fll and 

II f - n II < 2E (f) • 
\) \) 

Thus with A = {g E C(T) II gil < II fll } it follows from Johnson's theorem 

COROLLARY 1. 13. For each fin C(T) there is an integer v 1 such 

that E (f,A) < 2E (f) for aU \! ~ \! 1 • 
\) \) 

A similar corollary will hold forE (f,B) with B 
\) 

II gil ~ II fll }. 

{g E C (T) 

The constant 2 of Corollary 1.13 is in fact best possible in that 
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there exists a trigonometric approximation problem with 

lim sup 
v-+oo 

E (f ,A) v = 2. 

17. 

As in the second part of Theorem 1.4 the proof consists of constructing 

a function f as far from satisfying the side condition as possible; and 

such that the residual of best approximation (f- h ) alternates much 
n 

faster than can any polynomial of degree n. Unfortunately constructing 

the function f involves considerably more algebraic detail .than did the 

corresponding part of Th~orem 1.4. 

Let T be the unit circle; X = C(T); NV be the space of 

trigonometric polynomials of degree not exceeding V; and A= {g E C(T) 

II gil II fll} where f E C (T) will be chosen later. Define the function 

1 if X is positive, 

sgn (x) 0 if X 0 

-1 if X is negative. 

( 2i) 
Define c(i) = 3 , and recall from the proof of Theorem 1.4 that 

cos(c(k)8), k > i has all the extremes of cos(c(i)8) and takes the same 

value as cos(c(i)8) at such points. 

Consider a function 
00 

f c 8 > j~l ( -1) j cos ( c (j) 8) (1.4.1) 

00 

where {a. >o}. 
1 

is to be chosen as follows: 
J ]= 

Let a 1 = 1. i ~ 2 have been chosen then a. > 0 is 
~ 

chosen so 

max{a., II a. cos" (c (i) 8)11} = 
~ ~ 

(c(i)) 2 ~ 110 ai-l • (1.4.2) 

00 

(1. 4. 2) implies a.(c(j)) 2 ~~ 
J 9 

hence the uniform convergence of the 

two series 
00 

r. (8) .2:. (-l}j a. cos(c(j)8) 
~ J=~+l J 

(1.4.3) 

00 
i -- 0,1, ••• 

r."(8) .2:. (-l)j+l a.(c(j)} 2 cos(c(j)8) 
~ J=~+l J 
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is guaranteed by the Weierstrass M test. This (see e.g. Widder 

[ 8, p305] ) implies that (8), r."(8) are given by the series above and 
l. 

continuous. Note f(8) = ro(8). 

Consider 

00 

r."(8) 
l. 

(-l)i+la
1
.+l cos"(c(i+l)8) + 2:. (-l)ja. cos"(c(j)8). 

j=H2 ] 
00 

Since the sum j~i+2 .. on the righthand side above has norm not exceeding 

ai+l/9 in modulus, 

sgn(r."(8)) 
l. 

i+l 
(-1) sgn cos" (c (i+l) 8) 

whenever I cos" (c(i+l) 8) I ~ 1 ; equivalently whenever 

lcos(c(i+l)8) I~ c(i+l)-
2 

r. '(8) 0 at least at all the points where 
l. 

cos' (c(i+l)8) = 0. 

(1.4.4) 

(1.4.5) 

Let 8* be 

such a point then r.'(8) = J8 
r'!(y)dy. 

l. 8* l. 
Hence (1.4.4), (1.4.5) above 

imply 

whenever 

Also 

and 

I r. <8> I 
l. 

i+l 
sgn(r.'(8)) = {-1) sgn(cos'(c(i+l)8)), 

1 

1 cos <c (i+l> 8> 1 

00 

llr.ll 
1 

00 

-2 a. 
1 

c(i+l) + .2:. 
2 

a. 
1+ ]=1+ J 

-2 c (i+l) . 

(8/9) a. 
1 1+ 

, if 1 cos <c <i+l> 8> 1 ~ c ci+l> - 2
• 

~ ai+l ((1/9) + c(i+l)-
2

) 

(1.4.6) 

(1.4. 7) 

(1.4.8) 

(1.4.7), (1.4.8) together imply that any minima/maxima of r. (8) occuring 
l. 

where lcos(c(i+l)8) j < c(i+l)-2 cannot be global maxima or minima. 

(1.4.6) then implies r. (8) has global maxima and minima only at the 
1 

extreme points 8* of cos(c(i+l)8) , where 

and 

sgn (r. (8*)) 
1 

lr. (8*) I 
l. 

i-:-1 = (-1) sgn(cos(c(i+l)8~)}. (1.4. 9) 

( 1. 4 .10) 
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Let 
i 

h. ( 8) = 1: ( -1) j a. cos ( c ( j) 8) . 
l j=l J 

(1.4.11) 

The above results about the global maxima and minima of 

r.(8) = (f-h.)(8) 
l l 

show that (f- h.) (8) alternates between ± II f- h.ll 1 2c(i+l) times on T. 
l l 

Hence hi is the best uniform approximation to f from Nc(i) 1 with error 

Ec(i)(f) =llrill jjEi+l (-l)j ajl· (1.4.12) 

i . 
Note that as i increases hl. (O) = .1:

1 
(-l)J a. alternately underestimates 

J= J 

and overestimates f(O) = - II fll 1 by Ec(i) (f). 

For the remainder of the proof choose i to be odd. Then 

II h .II ~ I h. ( 0) I = II fll + E ( . ) > II fll . l l c l . 
( 1. 4.13) 

Let ti be any function in Nc(i) n A. i.e . t. E N ( . ) and II t .II ~ II fll . Then 
l c l l 

II f - t .II = II ( f - h.) - ( t. -h.) II -= II r. - p .II 1 l l l l l l 
( 1. 4.14) 

where p, the perturbation of the best un,iform approximation is given by 
l 

p t - h 
i i i 

The argument now proceeds using that 

P.(O)~E(') 
l c l 

r. (0) 
l 

while 

and that the slope of p, (8) is related to its norm by Bernstein's 
l 

inequality. Treat two cases: 

Case 1. 

Then 

II r . - p .II ~ II p .II - II r .II ~ 2E . 
l l l l c(l) 

Case 2. II p .II ~ 3E ( . ) . 
l c l 

Then using Bernstein's . 1' d (') 3( 2i) lnequa lty 1 an c l 1 

[ 
'IT l 

pi c(i+l) 

( I 
~ E + 0 l3E c ( l. ) TI J 

c(i) c(i) c(i+l) 

Ec(i) [1 + o[
3
t

2
ill as i + 

00

• 

as. i +oo 

(1.4 .15) 

( 1. 4 .16) 
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( 1T I 
r l j - - E we find i c(i+l) - c(i) Now since 

llr. - p.ll ;;:. 
1 1 (ri -pi) [c(i~+l)] I;> 2Ec(i) (l+o(l)). (1.4.17) 

By (1.4.14), (1.4.15) and (1.4.17) 

lim sup 
\)-+00 

Remarks. The function f constructed above also has 

lim sup EV(f,B)/EV(f) = 2 where B is the set, B = {g E C(T) : II gil ;;:.11 fll}. 
\)-+00 

Transformation of the example into an example concerning approximation by 

algebraic polynomials on [-1,1] is accomplished in the usual fashion. 
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CHAPTER 2 

JACKSON TYPE THEOREMS FOR APPROXIMATION 

WITH 

HERMITE-BIRKHOFF INTERPOLATORY SIDE CONDITIONS 

§ 2.1 SUMMARY 

Jackson type theorems are obtained for approximation with Hermite-

Birkhoff interpolatory side conditions. Let EV(f,AK) denote the degree 

of uniform approximation of a function, f, on an interval, by polynomials 

of degree not exceeding V satisfying a fixed set of Hermite-Birkhoff 

interpolatory side conditions of order K. Then 

(i) If the polynomials are the trigonometric polynomials then there 

exists 
*K 

DK, not depending on f E C [-n,n], such that 

EV(f,AK) ~ DKV-Kev(f(K)) V sufficiently large V; (2.1.1) 

where (f (K)). th d f .. ff(K) ' ' ev 1s e egree o approx1mat1on o , by tr1gonometr1c 

polynomials of degree not exceeding V, with constant part zero. 

(ii) If the polynomials are the algebraic polynomials then there exists 

Lk(k ~ K), not depending on f E ck[-1,1], such that 

V sufficiently large V. (2.1.2) 

Also for certain restricted classes of function f and Hermite-Birkhoff 

interpolatory side conditions A , 
K 

E ( f A ) ~ D \) -k ( (k) ) 
V ' K k ev g 

where g E c*k[-n,n] is defined by 

The direct comparison 

V sufficiently large V; (2.1.3) 

g(8) = f(cos e). 

holds when (2.1.1) or (2.1.3) apply. In the other direction, given a 

set of interpolatory side conditions including at least one derivative 

constraint, there does not exist a sequence {G(V)} such that 

*K Vf E c [-n ,n] . 
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§2.2 INTRODUCTION 

Given a positive integer K; a finite set t1 1 ••• 1 t of distinct 
y 

points in-TI< t <n; for each i = 1 1 ••• , y a nonempty subset K. of the 
1. 

set {0,1, ... 1 K}; *K and f E C [-TI,TI], the set of K times continuously 

differentiable 2TI periodic functions; define the set 

*K A = { g E c [ -TI I TI] 
K 

: g(j) (t.) 
l. 

= f ( j ) C.t ) • J. E K · i • t , I 
l l. 

l, ... l y}. 

Let NV be the space of trigonometric polynomials of degree not exceeding 

V. For each V = 0 1 1 1 2 1 3 1 ••• define 

where 

inf II f - gil 
gENV 

II f - gil = sup 
-TI < t 

I f < t> - g c t> I . 

(2.2.1) 

(2.2.2) 

Similarly define e (f) as the infimum of (2.2.2) over those g inN with 
v v 

constant part zero; and if N n A is non empty, E (f 1 A ) as the infimum 
V K V K 

of (2.2.2) over gin NV n 

It is natural to ask whether Jackson estimates hold for 

E (f,A ) ; and whether they hold for the analogous algebraic polynomial 
V K 

problem. Also can E (f,A ) and E ( 
V K V 

be directly compared? 

questions will be considered in the rest of the chapter. 

§2.3 DEGREE OF TRIGONOMETRIC POLYNOMIAL 

APPROXIMATION WITH HERMITE-BIRKHOFF 

INTERPOLATORY SIDE CONDITIONS 

THEOREM 2. l. For each K = 1,2 1 3 1 ••• there exists an M 
K 

These 

0 1 and 

for each set of side conditions A~ a v 1 = V 1 (K 1 t 11 ••• 1 t) 1 not 
K . y 

depending on the function f E c*K[-TI,TI] 1 such that E (f 1 A) exists and 
V K 

satisfies 

Vv > v 1 • 
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Proof: We need the following version of one of the standard 

Jackson theorems (For the standard theorem see for example Cheney 

[ 3 ,pp.l45-146]) . 

LEMMA 2. 2. For all positive integers K~ there exists a positive 

*K constant c ~ and for each f E c [-n,n] a sequence of trigonometric 
K 

polynomials {T : T 
\) \) 

II ( f - T ) ( j) II 
\) 

E N } such that 
\) 

::;;:;; C _1_ (f (K)) • 
K K-j e\) ' 

\) 

j 0,1, ... , Ki \) 1,2,3, .... 

Proof: Let jv be the Jackson kernel normalized so that 

f TI j (t)dt = l. 
-TI \) 

( 2. 3 .1) 

* The corresponding trigonometric polynomial operator mapping C [-TI,TI] into 

It is well known that there exists an M > 0 such that 

llf-J (f)ll ::;;;Mil f(l)ll V = 1,2,3, •.. 
\) \) 

(2.3.2) 

*1 
for all f E C [-TI,TI]. The proof now proceeds by induction. 

Induction basis: Let t be the best approximation to f(K) from 
\) 

* N v' 
with constant part zero. Let P(g), gE C [ -TI, TI] , be the indefinite 

integral of g such that f_: p (g) = 0. Let PK be the K-wise composition 

of operators P, and s\) = PK (t ) . Then s EN and 
\) \) \) 

\) 1,2,3, ... 

Induction step. If for some m = 0,1, ..• , K- 1 and some C > 0, 
m 

there exists a sequence of trig polynomials {sv : SV 

II (f- S ) (K-j)ll ::;;:;; C V-je (f(K)) · · 0 m,· V m V , J = , ••• , \) = 1,2,3, ... 

then (SV + JV ( f- S)) E NV and with a constant Cm+l ::;;:;; em (M + 2) 

for j 0, ... , m+l; \) 1,2,3, ... To prove this use the identity 
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[J (f-S )](K-j) = J ((f-S )(K-j)). 
v v v v 

Now the induction step for j = m+l follows from the Jackson theorem 

(2. 3. 2); and that for j = 0, ... , m is a consequence of II J} = 1. II 

Proof of Theorem 2.1 continued. Let T be the unit circle. Let 

f; t. ,i = 1, ... , y; K. ,i = 1, ... , y satisfy the conditions of Theorem 
l l 

2.1; and {T } be a sequence of trigonometric polynomials providing the 
v 

estimate of Lemma 2.2. 

By the Hausdorff property of T there exist disjoint open sets 

B1 , ... , B in T containing t1, ... , t respectively. 
y y 

Urysohn's theorem 

now guarantees the existence of functions f. E C(T), j = 1, ... , y, such 
J 

that f . ( t . ) = 1 
J J 

0 ~ f. (t) ~ 1' 
J 

f. (t) = 0 
J 

t E B 
j 

t E T\B. 
J 

By the SAIN property of trigonometric approximation in conjunction 

with point evaluations, Deutsch and Morris [4; Theorem 4.1], there exists 

a V 2 such that v ~v 2 there exist approximations ~j from NV to the fj 

satisfying 

q",(t.) = f.(t.), 
v] l J l 

i 

max II qv . - f .II 
j=l, ... ,y J J 

lim 
v+oo 

cS = 0 v 

1, ... , y; j 1' ... ' y; 

then 

(2.3.3) 

Let A [V/(K+l)], A1 = [A/K+l] ,where [ .] is the integral part 

function and V 3 be so large that A 1 ~ max (V 2 , 1 ) . Suppose throughout 

the following that V ~v 3 • Note 

j=l, ... ,K. (2.3.4) 

Define trigonometric polynomials of degree not exceeding V 
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h .. 
l.J 

K+l j 
( q 1 • ) (sin A ( t - t. ) ) , 

/\.1 I J.. J.. 
j=O, •.• ,K; 

26. 

i=l, ... ,y. 

h .. plays a role similar to that of the correcting "bump functions" of 
l.J 

Theorems 1.4, 1.6. Loosely speaking it is a correcting "bump" for the 

jth derivative at t.. From the definition 
1. 

and 

llh .. II ~ 1 
l.J 

h (r) (t ) 
ij e 

h~~)(t.) 
1.] 1. 

0 r=O, •.• ,K; e 'f i 

0 I r < j 

Also by the Bernstein inequality, (2.3.5) and (2.3.4) 

k = 0,1,2, ... 

(2.3.5) 

(2.3.6) 

(2.3.7) 

(2.3.8) 

(2. 3. 9) 

Now fix i. Let j 1 , ••• , j be the members of K. in ascending order. 
p 1. 

We seek a linear combination of h. , ... ·, h. which wi U correct the values 
1.0 J..K 

of TV(j) (t.), j E K. to the f(j) (t.). From (2. 3. 7) we seek a solution 
1. 1. 1. 

b to the equation 

h~~ 1 )(t.) 0 .•.. 0 b. 
1.]1 1. J 1 

(2.3.10) 

Dividing the k-th row of the matrix above, and the k-th element of the 

jk 
d t t b . ,, 

pro uc vee or y Jk. A ; and using (2.3.8) the equation may be written 

1 

a 
P1 

a 1 
p,p-1 

b. 
]1 

c. 
J 1 

(2.3.11) 
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Since the matrix A = (ake) above is lower triangular and has 

determinant one a solution exists. By (2.3.9) there exists an M, 

depending only on K such that 

M, k = 1, ... , p, e=1, ..• ,p. 

By Lemma 2.2 there exists an L depending only on K such that 

,k=1, ... ,p. 

Employing Cramer's rule; 

Writing 

IH. (t) I 
l 

where 

H. 
l 

k=l, ... ,p. 

and using (2.3.12) 

tE 

D (K+1)!(K+l)MKL. 
K 

(2.3.12) 

(2.3.13) 

The analysis above holds for i 1, ... , y. Also since by (2.3.6) 

(r) 
H. (x ) = 0, 

1 e 

we can find H1, ••• , H 
y 

e -:j: i, r=O, ... ,K, 

separately, by the 
y 

H = TV + i~l Hi 

above, and 

will belong to AK, the set of functions satisfying the interpolatory side 

conditions. It remains to estimate II f- H II; using ( 2. 3 .13) we find 

I (f- H) I (t) 

y 
t E T\ .U 

l=l 
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Thus 

II£- Hll (C + 2D) e (f(K)) 
K K \) 

\) 

,.r 
1 where V1 ~ v 3 is chosen so that o ~ 

A.l y 

This concludes the proof. 

§2.4 DEGREE OF ALGEBRAIC POLYNOMIAL 

APPROXIMATION WITH HERMITE-BIRKHOFF 

INTERPOLATORY SIDE CONDITIONS. 

28. 

II 

Consider now approximation off E CK[-1,1] by algebraic polynomials 

satisfying Hermite-Birkhoff interpolatory side conditions. Redefining 

AK, Ev(f), and Ev(f,AK) appropriately; Platte .[7, Theorem 2.3.1] has 

shown 

THEOREM 2 • 3 . f E cK[-1 1 1] t~en thePe exists a constant c, 

independent of v_, guah that 

~ (K) 
EV(f,AK) ~ C EV-K(f ) , Vv ( (K + 1) Y - 1) • 

He also shows that if f can be extended to an analytic function in some 

domain of the complex plane which contains [-1,1], then 

1-E 
) , o. 

Platte's results can be greatly improved. In the following the 

estimate E (f,A) = O(v-kw(f (~)v-1 )) will be shown for f E ck[-1,1], (k~K). 
V K 

Also estimates E (f,A) O(v-ke (g(~)v- 1 )) with g(8) f(cos e) I will 
V K V 

be shown for restricted sets of interpolation conditions, (k = K), and 

for functions in c 2K [ -1, 1) , (k = 2K) . These last estimates imply 

1-c 
Ev(f,AK) = O(EV(f) ) 1 VE > 0; whereas the first estimate in terms of 

v-kw(f(~)v-1 ) does not. (This point is discussed in Section 2.5). 
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For each k = 1,2,3, ... , there exists an Lk, and 

for each set of side conditions A with K <k, a v1, not depending on 
K 

THEOREM 2.4. 

the function f E ck[-1,1], such that Ev(f,AK) exists and satisfies 

Proof: (Sketch only} . The proof is analogous to that of 

Theorem 2.1. Lemma 2.2 is replaced by the following theorem of Trigub [g]. 

THEOREM 2.5. There exists for v >k a polynomial p of degree v 
v 

satisfying the estimate 

j = 0,1, .•. , k, 

where R depends only on k. 

For the remainder of the proof let K and k ~ K be fixed. Let Pv be the 

polynomial approximation to f whose existence is guaranteed by Trigub's 

theorem. 

It remains to construct algebraic polynomial 11hwnp functions 11 

* h .. linear combinations of which will be used to correct the values of 
~J 

p(j) (t.) to the f(j) (t.). there exist disjoint intervals 
\) ~ ~ 

* * B1 , ••• , B in [-1,1] containing t 1 , ••• , t respectively. Arguing as in 
y y 

Theorem 2.1 we can find a V 2 and for V * v2 algebraic polynomials qvj 

of degree not exceeding V satisfying 

1 * q . (t.) 
vJ J 

1 * q .. (t.) = 0 ' 
vJ ~ 

i =f j 

and * * ov =~ax ll~jll [-l,l]\B. 
J=l, ••• ,y J 

goes to zero as v + oo • 

* By renumbering the ~j and redefining V2 (if necessary) it is possible to 

* (.R,} .R, 
impose the extra condition l!qvj II [-l,l] < V , .R, = 1, ... , K. In the 

* construction of the h .. the function sin(Ax) used to construct the h .. 
~J ~J 

is replaced by the Maclaurin polynomial of degree A corresponding to 

sin ( [ ~] x) , where [ .] is the integral part function, that is by 
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The jth derivative of pA(x) 

corresponding to sin(j) ([~] 

is the Maclaurin polynomial of degree A-j 

x) . Hence the error expression for Maclaurin 

expansions shows 

A-'+1 
I . Cj) [A] (j) II ~ 2 J II . CA-j+l) A 
I s1-n ( 8 x) - pA (x) [-2 , 21 """(A-j+l) 1 s1-n c[8] x)ll[- 2 , 21 

Stirling's formula implies that the right hand side is 

2 A-j+l(A/B)A-j+l 
< 

hn (A-j+l) A-j+ % e- ( A-j+l) (l+o (l)) 

1 r 1 A-j+l rl~) A-j+l 
(l+o(l)) (A-j + l) -"2 l ~ j 

;2-IT A-J+l 

< c (A J A + l ( ~) A+ l 
1 A-K+l 4 ' 

j O,l, ... ,K, A>K 

where C1 depends only on K. ( 

1 A+l 
Since l' A j 

A ~moo A-K+l 
exp (K - l) , there 

exists C2 depending only on K ( <k) such that 

( ') A (j) A 
llsin J ([8] x)- PA (x)ll[-

2
,

21 
<c2(e/4) 

for j = 0,1, ... , KandA> K. 

Now define algebraic polynomials of degree not exceeding V 

* h .. 
lJ 

j O,l, ... ,K; i = l, ... ,y; 

where A= [V/(K+l)] 
' Al [ A/K + 1] . Then if A1 ;;;:. max(v 21 1) 

* II h .. II [ ] < l + c2 ; lJ -1,1 
(2.3.5') 

h~~r)(t) 
lJ e 

0 
' 

r 0' l' ... ' K; e f. i ( 2. 3.6 I) 

* (r) 
0 r < j h.. (t.) ' l] ]_ 

(2 • 3 • 7 I) 

and 

(2.3.8') 

Also from the degree of approximation of the functions p~j)(x) to 
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the functions sin< j > < ri J x) ; and the condition II q~y > 11 [ _
1

, l] .,;;;; .. } , 

~ = 0, ... , K; there exists an C3 depending on K alone such that 

~=O,l, ••• ,K. (2.3.9') 

The remainder of the proof is analogous to that of Theorem 2.1 

from equation (2.3.9) on. In brief the matrix equation to be satisfied 

if 

* * H. (x) b. h. . (x) 
l. J~ l.,J~ 

is to provide the correction/perturbation 

H~ (j) (t.) = (f- p") (j) (t.) I 

1. l. v 1. 
j = j 1 I • • ' f jp 

is non-singular and has a unique solution b. , ... ,b .. 
J 1 Jp 

Also 

-k (k) -1 < c4v w(f ,v ) , R,=l, .•. ,p; with c 4 depending only on k. 

Hence 

* [H. (x) I ~ 
J.. 

if X E Bi I 

if X E [-l,D\B .• 
J.. 

By choice of the the correction equations separate and 

* y * 
p = p (x) + ,L

1 
H. (x) v v l.= l. 

is an algebraic polynomial of degree not exceeding V which satisfies the 

Hermite-Birkhoff interpolation conditions and provides the order of 

approximation required. II 

The following corollaries to Theorem 2.1 provide the estimate 

0 whenever they apply (see Section 2.5). 

COROLLARY 2 • 6 • For each K = 1,2,3, •.. there exists an M > 0; 
K 

and for each set of side conditions A , provided that 
K 

- 1 t. < 1 
J.. 

i 1, ... , y, a v 1 ; not depending on f E cK[-1,1]; 
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such that E (f,A ) exists and satisfies 
V K 

-K (K) 
E (f ,A ) < M V e (g ) , 

V K K V 

for all v greater *K than v 1 ~ where g E c [-n,n] is defined by g(8) = f(cos 8). 

Proof: (K) 
•.• , g (8) 

dKg (8) 

df dKf 
in terms of f(x), (x), ... , (x); as 

dx dxK 

r g(8) l 0 0 0 l f (x) 

g (l) (8) 0 - sin8 0 df (x) 
dx 

g(2) (8) 0 a 21 (8)sin 2 8 
d 2 f 

(x) 
dx 2 

0 

0 a (8)a (8) 
K1 K2 

(-sin 8 ) K 

Note that the lower triangular rna trix involved is invertible, x f ± l, and 

(l) (K) 
therefore g(8), g (8), ... , g (8) are uniquely determined by 

dKf 
f(x), ... , ~ (x), x f ± l, and vice versa. Thus the algebraic 

dx 
interpolation conditions are equivalent to trigonometric interpolation 

conditions of the same order, K. To each node t., of the algebraic 
l 

problem, there correspond two nodes 82i-l' 82i of the trigonometric where 

8 -1 / 
0 < = cos t , "'-- TI 

2i-l l 
and 8 

2i 
8 . 
2l-l 

(2.4.1) 

00 

We apply Theorem 2.1 and find a v 1 and a sequence {T } satisfying v v=v 1 

the trigonometric interpolation conditions, such that 

-K (K) II g - T II < M V e (g ) • 
V K V 

(2.4. 2) 

Since the interpolation conditions occur in pairs (see (2.4.1)) 

and g(8) is even, the even functions T given 
v 

~ -1 
satisfy them also. Let pv(x) = TV(cos x) . 

by T (8) = (T (8) + T (-8) )/2 v v v 

As discussed previously 

pv satisfies the interpolation conditions of the algebraic problem. 
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Since TV is an even trigonometric polynomial of degree not exceeding v, 

pv(x) is an algebraic polynomial of degree not exceeding v. Now the 

eveness of g implies 

hence by (2.4.2) 

-1 II f - P} = II g (cos x) 
~ -l -K (K) 

- T" (cos x) II ~ M V e ( g ) . 
v K \) 

Hence p (x) provides the estimate of the Corollary. 
v 

COROLLARY 2. 7. For each K = 1,2,3, ..• there exists an M > 0 
2K 

and for each set of side conditions A ~ a V 1 ~ not depending on 
K 

f E c2 K[-l,l] ; such that E (f,A) exists and satisfies 
\) K 

*2K for all v greater than v 1 ~ where g E c [-rr,rr] is defined by 

g(8) = f(cos e). 

Proof: As in the last Corollary the argument is that the given 

II 

algebraic interpolation conditions are equivalent, under the transformation 

g(8) = f(cos8), to certain trigonometric interpolation conditions. 

However the relationship between the algebraic and the trigonometric 

interpolation conditions, at t. (i E {1, ... , y}), varies with the position 
J.. 

of t. in [-l,tl. 
J.. 

If t. with lt.l < 1 is a node of the algebraic problem, then 
J.. J.. 

algebraic interpolation conditions of order K at t. are equivalent to 
J.. 

trigonometric interpolation conditions of the same order at two points 

-n<e <o<e <rr. 
2i 2i-l 

This has been discussed already in the previous 

corollary. 

If t. = l is a node of the algebraic problem then the previous 
J.. 

argument fails. That the algebraic interpolation conditions at t. = l 
J.. 

cannot always be equivalent to trigonometric interpolation conditions of 



Cost of Hermite-Birkhoff Interpolatory Side Conditions 

the same order at e. = 0 may be deduced 
~ 

since the function mapping (f(l), df (1) 
dx 

K 

(g(O) 1 (O) , ... , d ~ (O)) cannot have 
d8 

from the eveness of 
K 

, ... , d f (1)) into 
dxK 

dj 
an inverse when~ 

d8] 

34. 

g. This 

( 0) 0 for 

all odd j between 1 and K. Indeed algebraic interpolation conditions of 

order K at t. = 1 are equivalent to trigonometric interpolation conditions 
~ 

of order 2K at 8 0. 

k 
-~.....:...= 2: a . 

i=O k 1 1 

To see this note 

k > 01 

where the ak . are constants not depending on f E ck[-1,1]. 
,1 

k 
function f (x) = (x- 1) /k! with 

djf 
(1) = 0 , j ~ k; and ( 1) = l. 

(2.4.3) 

Consider the 

The corresponding periodic function g is given by the everywhere convergent 

power series 

g(8) = 
k 

cos e - 1 
k! 

r 8 2 e'-~ 

l-- + 
2! 4! 

+ .. 
6! 

This series is differentiable term by term with 

(0) = 0, j 01 • • • t 2k-l (k > 0) , 

and 

(O) 

Since the only non-zero derivative 
djf 

at x = 1 is the kth derivative 
dxj 

which is 1, the equations above and (2.4.3) imply 

while 

= 0 
lk 

j 

Hence the matrix equation 

kl .•• , 2k-l (k > 0) 
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l 
g(O) 1 0 f(l) 

2 
df (1) d g (0) 0 a21 

d8 2 dx 

d4g 
(0) = 0 a41 a42 

d 2f 1) 
d8 4 dx2 

0 

2K K 
~0) 0 a a a ~1) 
d82K 2K 1 1 zK ,2 2K 1 K dxK 

, in which only even order derivatives of g(8) occur, is nonsingular since 

all the diagonal elements of the lower triangular matrix involved are 

non-zero. Thus algebraic interpolation conditions of order K at x = 1 

are equivalent to trigonometric interpolation conditions of order 2K at 

e = 0, under the transformation g(8) = f (cos e ) . 

If x = - 1 is a node of the algebraic problem then arguments, 

similar to those above, show that algebraic interpolation conditions of 

order K at - 1 are equivalent to trigonometric interpolation conditions 

of order 2K at 8 'IT and 8 = - 'IT. 

All choices of nodes in [ -1,1] have now been considered. Hence 

algebraic interpolation conditions of order K on [-1,1] are equivalent 

1 under the tranSformation g(8) = f(COS e) 1 tO trigonometriC interpolation 

conditions of order not exceeding 2K on [-n,nJ. Moreover the nodes of 

the trigonometric problem occur in pairs symmetrical about e 0. 

Apply Theorem 2.1 to find an approximation TV to g(8) satisfying 

the trigonometric interpolation conditions. Let Tv be the even part of 

The argument of the last part of this trigonometric polynomial. 

- -1 
Corollary 2. 6 shows the algebraic polynomial, p\! ( x) = T\! (cos x ) , 

satisfies the algebraic interpolation conditions and provides the order 

of approximation of the present Corollary. II 
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§2.5 COMPARISON OF E (f) AND E (f,A ) 
\) \) K 

The question of a direct comparison of Ev (f) and E\) (f ,AK) , as 

opposed to a comparison ofe (f(K))/VK 
\) 

and EV(f,AK) remains. Below are 

results in two opposing directions. 

NOTATION: The following convention will be adopted. If it is specified 

*K [ that f E C -TI,TI] then E (f), E (f,A), etc. refer to approximation by 
\) \) K 

trigonometric polynomials. If, on the other hand, it is specified the 

f E ck[-1,1] then E (f), E (f,A), etc. refer to approximation by 
\) \) K 

algebraic polynomials. 

LEMMA 2.8. 
*K Iff E C [-TI,TI), K ~ 1, then for all E > 0 

Proof: Either f has only a finite number, k, of continuous 

derivatives or f has an infinite number of continuous derivatives. 

In the first case~ using the well known Jackson and Bernstein 

Theorems (see e.g. Butzer and Nessel [2, Corollary 2.2.4 and Theorem 

2.3.6]) characterizing the rate at which E (f) goes to zero in terms of 
\) 

the order of magnitude of the second modulus w 2 (f(~)o), defined by 

w2 (f(~)o) =sup llf(k) (t+h) +f(k) (t-h) -2f(k) (t)ll 

JhJ ~0 

we find either 

(i) 0 (1) 
k+E 

but EV(f)V is unbounded for all E > 0 

or 

(ii) there exists a , 0 <a~ 1, such that 

e ( f (k)) = 0 (V-a) but E (f)vk +a + E is unbounded for all E > 0. 
\) \) 

In either case 

1 
and since v = O(E (f)- K) this implies 

\) 
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The desired result follows as l 
(k) ) 

(K) ev (f ) J 
(f ) "' 0 • 

k-K 
\) 

If f has an infinite number of continuous derivatives~ let T be 
\) 

the best approximation to f from N; then for p = 1,2, ... 
\) 

1-E: 
) for all E: > 0. 

This follows from a modification of the argument of Platte [7, Theorem 

2.3.3]. Briefly fixing E:, 1 > E: > 0, and p, write 

00 

llf(p) - T (p)ll < L IIT(p) - T {p)ll 
v n=V n+l n 

00 

2 ~ (n + l)P E 
n=V n 

00 

1: (n+l)p 
n=V 

where the term in angular brackets is bounded since 

E (f) 
n 

0 (_!_) 
k 

n 
1 k = 1,2,3,. •• 

1-E 
E 

\) 

Hence e ( f (p) ) 
v 1; 2, ... In particular 

e (f(K)) = O(E (f)l-E) v v . 

Rema'l'ks. Analogous to Lemma 2.8 is the following: If to 

*K 
f E C [-TI,TI] corresponds a quantity BV 

f E c*k[-TI,TI] and B = O(e (f(K))); then B 
\) v v 

O(E (f)l-E) 
\) , VE > 0. 

A similar result does not hold when E { 
\) 

denotes the degree of 

approximation by algebraic polynomials of degree not exceeding V of 

f E CK [-1,1] . i.e. 

ck [-1,1] \ ck+l [-1, 1] 

In this case B = O{V-k w(f(k~v- 1 )) and f E 
v 

does not imply B = O(E (f)l-E) for all E: > 0. 
\) \) 

The reason for this is the lack of an inverse theorem of the Bernstein 

type. For example f(k) E C [-1,1], and f(k) E Lip a., 0 a. < 1, is 

sufficient but not necessary for (f) = O(V-k-a.). The following 

example occurs in Timan [8,pp.342-343]. Let f(x) Then 

* here E is the degree of 
\) 

II 
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trigonometric polynomial approximation. At the same time as V + oo, the 

modulus of continuity W(f,V-1) on the whole segment [-1,1] is of the exact 

-1/4 .. /~ 
order V • Similarly if f' (x) iYl- x then E (f) 

v 
O(V-lE (£')) = O(v- 312 ) while v- 1w(f;v-1 ) is of the exact order v-5/ 4 . 

V-1 

The above remark shows that in a sense Corollaries 2.6, 2.7 are 

stronger than Theorem 2.4. 

We also have the following, showing that no inequality of the form 

E (f,A ) 
V K 

can exist where G(V) does not depend on f. The proof is an adaptation 

to the trigonometric case of the argument of Lorentz and Zeller[6]. 

LEMMA 2.9. Given any sequence {h }
00 

1 
of positive numbers~ and a 

V V= 

set of interpolatory side conditions A (K ~ 1) including at least one 
K 

( K) • *K [ ) constraint on f , there ex~sts f E c -n,n such that 

lim sup Ev(f,AK)/hv Ev(f) ~ l 
v+co 

Proof: 

on f(K) is at 8 

We assume, without loss of generality, that the constraint 

0. If (K 

if K ( l) is even take g, 
l 

1) is odd we take 

cos < i e > , i = 1 , 2 , 3 , ••• 

we can choose an N such that 

N 
~ iK/N b 

i=l 

N 
Now with H ~ g./N 

i=l l 

lrr(K)(O)I b 

Take 

2VK (h +1) v 

II Hll 1 

v = 1,2, ••• 

= sin (i 8 ) , i 1,2,3, ... ; 

Given any b > 0 

(2.5.1) 

(2.5.2) 

(2.5.3) 

and N0 == 1. Given N. 
1 

(j 
]-

1), there exists, according to (2.5.2), a 

polynomial, f., such that 
J 

I (K) (O) I ~ b I II f. II = 1 
Nj-1 J 

We denote the degree of this polynomial by N .• 
J 

(2.5.4) 



Cost of Hermite-Birkhoff Interpolatory Side Conditions 

The function f of the Lemma will be given by the series 

where the c.> 0 satisfy 
J 

and 

-2 -1 
c.~j M., M. 

J J J 

00 

. ~ c . ~ c II f II J=V+l J V V 

00 

f ).:
1 

c.f. 
J= J J 

(K) 
max (II f .II , ... , II f. II > 

J J 

39. 

(2.5.5) 

( 2. 5. 6) 

For instance, we can define the numbers c. inductively by means of the 
l 

relation 

c. 
l 

II II 1 II II · - 2 -l} min { ~ c . 1 f. 
1 

, ... , 
1
. _

1 
c 1 f 1 , 1 M. 

l- l- 2 l 

Note that (2.5.5) implies f is 
\) 

Let F 
v .~1 C, f .. 

l= l l 
Clearly 

EN (f) ~II f - FV-111 
V-1 

and using (2.5.6) 

EN (f) ~ 2cv II fv II 
V-1 

i 2,3, ... 

K times continuously differentiable. 

00 

II iEv c if ill , v 2, 3, ... 

(2.5.7) 

Let Q be any trigonometric polynomial of degree not exceeding N 
1 

such v-
that Q (K) (0) = f (K) (0) • 

Writing 

it follows using Bernstein's inequality that 

and by (2.5.3), (2.5.4) that 

II Q- fll ;;;. 2cvhN 
V-1 

Since Q was an arbitrary polynomial subject to Q(K) (0) 

follows that 

EN (f ,AK) ;)> 2cVhN 
V-1 V-1 

f(K) (0) it 

(2.5.8) 
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(2.5.7) and (2.5.8) together imply 

(f) > h 

the desired result. 

N 
\l-1 

\) 2 1 3 1 , • • 

40. 

* Remark. Lemma 2.9 may be used to show that if E (f) denotes the 
\) 

error in SAIN approximation, with interpolation at a node t. where 
J_ 

* If (t.) I = II f II 1 then no relation of the form 
J_ 

(f) = O(G(\l)E\l(f)) exists 

with G(\l) not depending on f. This is interesting in view of Theorem 1.3 

* and Corollary 1.9; which imply that if E (f) denotes the error in SAIN 
\) 

approximation, by trigonometric polynomials of degree \l or less, with 

* interpolation only at nodes t. where If (t.) I <II f II , then E ( 
J_ J_ \) 

To prove this; given {h } and with A1 = {g : g' (O) = f' (0)} 
\) 

*2 
construct as in Lemma 2.9 a function f E C [-n,n] for which 

lim sup (E (f,A 1 )/h E (f)) 1. - \) \)\) 
\)+00 

Take f1(8) = f(8)- f'(O)sin8 + C(l+cos8) 2 where C 

will be chosen later. Note f~ (0) = 0. Also since fn(8) is bounded and 

d2 TI TI 
(1 +cos 8 ) 2 is negative on [-4 , 4J , f" (8) will be negative on 

d8 2 

[-Tij4,TI/4] for all C than some Co. 

Also II (1 +cos e ) 2 11 [-n ,nJ\ n/4,n/4] ll(l+cos8)
2
11[ ] 

-'lT,'lT 

implies the maximum modulus of f 1 (8) on [-n,n] occurs within [-'1T/4,'1T/4] 

for all c greater than some C1 • Hence with C = max(Co,Cl), llf1ll If co> I 

' and each SAIN approximation to f 1 has f ~ ( 0) 0. Then for V > 3 

<E * E\l(f,AI) (fi,All ( f 1) and (f) = E\l( 
\) 

implying lim sup *(fr)/h E (fl)) >l. 
\)+00 

\) \) 
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FinaZ Remark. After the author had completed this investigation 

the results of Hill, Passow, and Rayman [5] came to his attention. 

These include a Jackson type theorem for algebraic polynomial approximation 

with Hermite-Birkhoff interpolatory side conditions. This theorem [ 5 , 

Theorem 2] is similar in intent to Theorem 2.4 of this thesis. Note 

however that both its statement and proof are incorrect. An initial 

mis-statement of a lemma attributed to Teljakovskii has propagated through 

the Theorem. [The lemma should read as Theorem 2.5 of this thesis does; 

The stated lemma is 

untrue. For example with k = 1, i = 0 and Z = {f E c1 [-1,1] : f' (O) = 0 and 

n < w ( f' , n -l) < 2n for n = 1,2,3, •.. } it guarantees 

E (Z) 
n 

max E (f) 
n 

-2 
O(n ) which is untrue; 

- 3A 
to be of the order n 2 exactly.] 
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CHAPTER 3 

THE DEGREE OF APPROXIMATION BY RECIPROCALS 

OF POLYNDr<UALS ON [ 0, oo) • 

§ 3 . 1 S UMl'ilARY 

Asymptotic estimates are obtained for the error in uniform approx-

imation by reciprocals of algebraic polynomials of degree non [o,oo). 

The theorems concern the approximation of 1/f where; either f is an entire 

function of finite order (logarithmic order) and type (logarithmic type); 

or f has k ( :> 1) continuous derivatives on [ 0 , 00). 

§3.2 INTRODUCTION 

Many results are known concerning the degree of approximation of 

differentiable functions by reciprocals of polynomials on [0, 00). However 

most of these results concern approximation of 1/f where 

f(j)(x) :>o, Vx :> 0, j = 0,1,2, ... (3.2.1) 

(see for example [6]). This chapter extends these results in two direc-

tions: weakening the positivity condition (3.2.1) for entire functions, 

and showing some results for functions with only a finite number of 

derivatives. In each of the proofs that follow rational approximations 

to 1/f on [0, 00 ) are derived from polynomial approximations, p , to f on - n 

[o, r(n)] satisfying the side condition that p' (x) :> 0, -n Vx :> r(n). 

Notation: As usual the degree of approximation by reciprocals of 

polynomials is denoted by 

Ao ( ,n inf 11-1-
P E TI f (x) 
~ n 

1 
p 
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where throughout II. II indicates the uniform norm on the interval I, and 
I 

rr is the class of polynomials of degree ~ n. 
n 

§3.3 ORDER OF APPROXIMATION RESULTS FOR CERTAIN ENTIRE 

FUNCTIONS 

Some of the known results on the order of approximation of 

reciprocals of entire functions, f, follow from Taylor series expansion 

of the function f about zero. The basis of these arguments is: take 

* p , the Maclaurin polynomial of degree n corresponding to f; choose -n 

upper end points r(n), and discuss 

* 
llf-pnll [O,r(n)] inf f (x) , 

x ;;;;;.r(n) 
* inf (x) 

x;;;;;.r (n) 

*' using the positivity conditions to deduce that pn (x) ;;;;;. 0, Vx 0. It is 

easily seen that it is not necessary for these arguments that the approxim-

ation, pn to f, increase for all x 0, .only that it increase for all 

x ;;;;;. r (n) • Thus in Theorems 3.1, 3.3 a Taylor expansion about r(n), as 

opposed to a Maclaurin expansion about zero, is used. This allows the 

positivity conditions to be weakened dramatically. The results obtained 

are best possible in the sense that the power of A ; 
o,n 

-1 - (1+1/Al 
n , n ; 

in Theorems 3.1, 3.3 respectively; is known to be best possible ([4] ,[5]). 

If f(x) has n + 1 continuous derivatives on [ O,r] then 

with p (x) 
n 

n 

(3.3.1) 

a classical formula for the error in truncated Taylor series expansion. 

If also f(z) is entire then by Cauchy's inequalities (see e.g. [3, p.202]). 

II f(n+l)ll ~ (n+l) !M( /(s- r) n+l , 
[o, r] s > r > 0, (3.3.2) 

where M(.) is the maximum modulus function. Combining (3.3.1) and (3.3.2) 

II f- pnll [O ,r] ~ M(s) (r/(s- r)) n+l , Vs > r. (3.3.3) 
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If f(z) is a non-constant entire function then the order p of f is 

defined by 

p lim sup log log M(r) O~p~ oo. 

log r 

If 0 p <co, then the type T off is defined by 

T = lim sup log M(r) O~T 00 

r -+ co rp 

THEOREM 3.1. Let f(z) be an entire function of order P> type T> 

positive on [o,co) and satisfying 

lim inf r-p log f(r) = w 
r-+oo 

(0 < p < oo, 0 < W < T <co). 

Chooser= r(n) = anl/P, and assume that for aZZ sufficiently large n 

( . ) 
f J (r (n) ) ~ 0, j 1, ... , n; 

where a > 0 is the unique a> minimizing over a> S > 0 the maximum of 

and 

Then 

loga -logS + T(a+S)p. 

lim sup 
n+co 

(3.3.4) 

(3.3.5) 

(3. 3 .6) 

Proof. We first discuss the nonlinear program contained in the 

statement of the theorem. Let 

e (a,S) = max(-waP I log a - log s + T (a+ S> p). 

Since for each S 0; ( 3. 3. 4) decreases from 0 to - co and ( 3. 3. 5) increases 

from _co to + 00 , as a increases from 0; there is a unique a {S) minimizing 

8(a,S) for each fixed 8, and 

8(a{S),8) (3.3.7) 

Choosing 8 = 1 and letting a -+ 0+ it is clear 

8(a(l),l) <o and a(l) > o. Now from (3.3.4) 

8(a,S) >- wa(l)P Va a (1) 
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and also 

8(a,l3) > o, 

Therefore in seeking to minimize 8(a,{3) we may assume a,S ~ a(l). Given 

this, it follows from (3.3.5) that a,S may also be restricted from above. 

The existence of some minimizing a,S follows from the uniform continuity 

of (3.3.4), (3.3.5) and therefore their maximum, on the restricted range. 

The unicity of the minimizing a follows from (3.3.7). 

Let s = s (n) = (a+ 13) nl/p, where a, 13 are some minimizing pair. 

Now using the estimate (3.3.3) 

n+l 
M(s) (r/ (s- r)) 

< exp( (T +E) n(a + f3) P). (a/13) n+l 

where E + 0 as n + 00 ; implying 

log(lif- pnll [O,r(n)]) < 0(1) + n[(T +E) (a+ f3)p +log a- logS] 

and by {3.3.7) 

Writing 

II 1 
f 

we conclude 

-l 

lim sup II f- pnll ( 0 ,r (n) J <. exp{-waP). 

1-- II 
pn [O,r(n)] 

< II f-pnll [O,r(n)] 
in£ f(x) p (x) -n 

xE [O,r(n)] 

-1 
1 1 n 

lim,s~p II£- p II [O,r(n)] exp ( -waP) . (3.3.8) 
n ~ n 

Since p is the truncated Taylor expansion off about r(n), the 
n 

positivity conditions imply that p increases to the right of r(n) for all 
n 

sufficiently large n. Since also p(r(n)) = f(r(n)), and 

f(x) exp( (w-E) r(n) P) , x ~ r (n) 

where £ + 0 as n + oo ; 

ul:._ 1 11 
f [r (n) ,oo) 

2 exp(-(w- E)aPn), (3.3.9) 

where E + 0 as n + oo • Combining estimates (3.3.8) and (3.3.9) gives 

the theorem. II 
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Remarks 3. 2. Certain limits on the degree of relaxation of the 

positivity conditions are inherent in this argument. In the preceding 

theorem the positivity conditions (i.e. a) have been chosen so as to give 

the best result, in terms of order of approximation, using the method of 

Taylor expansion about the upper end point. Alternatively a 1 (and thus 

r(n) where r(n) 
1/ (.) 

a1n p and f J (r(n)) ~ 0, j = 1, ... , n, for all 

sufficiently large n) could be fixed and the result optimized for this 

value of a 1. 
(j) 

If a 1 ~ a and f ( x) ~ 0 ; j = 1 , ... , n; x ~ r (n); for 

all sufficiently large n, this "optimal" result will be the previous 

theorem. If a 1 >a then geometric convergence can still be proved 

provided 

inf log a 1 - log 6 + T (al + 6) p 
6 > o 

is negative. It is clear that there exists an a 2 >a such that 

inf log a 2 - log 6 + T (a 2 + 6) p = 0, 

6>o 

and geometric convergence can be shown with this argument only if 

(3.3.10) 

Note that very slight modifications of the proof of Theorem 3.1 

give a result for Taylor expansion about r(n)/2. 

If f(z) is a nonconstant entire function of growth p 

the logarithmic order A + 1 of f is defined by 

A+l lim sup log log M(r) 
r + oo log log r 

o~A~oo. 

If 0 < A < 00 , then the logarithmic type T .Q, of f is defined by 

lim sup 
r+oo 

log M(r) 
A+l 

(log r) 

II 

0; then 

THEOREM 3 . 3 . Let f(z) be an entire function of logarithmic order 

A+ 1, type T~ positive on [0, 00 ) and satisfying 

lim inf log f(r) = w, 
r + oo (log r)A+l 
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Choose r r(n) = exp(anl/A) and assume that all sufficiently large n 

where a 0 

where 

Then 

Let 

Choosing 

f(j) (r(n)} 0 j=1, ... ,n, 

is the unique positive solution the system 

(a+S>A 1/(T(l +A)) 

f1 (a) (a 1 f3) 

f1 (a) -wa 1+1\. 

f2 (a,S) T(a+S}l+A + a - S • 

-(1+1/A) 

lim sup (A (!))n 
l+A 

n+oo O,n f 
exp(-wa ) . 

First we discuss the nonlinear program: 

minimize 
als~o 

max ( f 1 (a) 1 f 2 (a , S) ) . 

1+1\. 1+1\. 
6(a1Sl = max(-wa 1 T(a+S) +a-S>. 

we find 

(3.3.11) 

(3.3.12) 

(3.3.13) 

( 3. 3.14) 

(3.3.15) 

k
. i\. Ta 1.ng a 1/(T(l+.i\.)) observe (3.3.14) has a positive minimum, as a 

function of f3 ~ 0 where S = 0. Taking Si\. ~ 1/T observe (3.3.14) is non-

negative for all nonnegative a. Thus ((3.3.15)) in seeking to minimize 

8(a,S) we may assume 

o < ai\. < 1/ ( T ( 1 + .!\.) ) I 1/T. 

The existence of some minimizing a 1 S now follows from the uniform 

continuity of (3.3.13) 1 (3.3.14) on the restricted range. Write the 

program equivalently as 

minimize max !f1 (a) 1 min 

o<ai\.<l/(T(1+i\.)) l o<s.i\.<1/T 

or 

minimize max 1 (a), f 2 (a,j3)] with (a+S)i\. = 1/(T(l+.i\.)). 

o <a.i\.<1/ (T (1+1\.)) 



Approximation by Reciprocals of Polynomials on [0, 00 ) 49. 

(3.3.15) and elementary arguments about increasing and decreasing functions 

now show there is a unique a,S > 0 solving the program; given by the 

system in the statement of the theorem. 

Using these unique values a,S > 0, let s 

Using the estimate (3.3.3) 

n+l 
II f- pnll [O,r(n)] < M(s) (r/(s- r)) 

implying 

logll f- pnll [o ,r (n)] 

where ~ + 0 as n + oo 

Since p (x) ~ f(r(n)), x ~ r(n) 
n 

and 

s (n) 

f (x) (( ) l+A 1+1/A) exp w- ~ a n , x ~ r (n) 

where ~ + 0 as n + oo 

II 1 1 II f (x) - p (x) [r (n) ,oo)] 
n 

1 +A 1+ 1/ A 
2 exp (- ( w - ~)a n · ) , 

where ~ + 0 as n + oo 

1/A exp ( (a + S) n ) . 

(3.3.17) 

Combining (3.3.16) and (3.3.17) with an argument analogous to the latter 

part of the proof of Theorem 3.1 will the estimate of this theorem. # 

Remark 3.4. Remarks analogous to Remarks 3.2 apply to Theorem 3.3. 

§3.4 THE DEGREE OF APPROXIMATION OF THE 

RECIPROCALS OF FUNCTIONS POSSESSING A FINITE 

NUMBER OF DERIVATIVES. 

In contrast to the case when f is entire relatively few estimates 

are known for A ( 1
) when f has only a finite number of derivatives. 

o,n 

(There are some results in Blatt [1] and in Freud and Szabados [2]). 

In this section we prove a lemma on the degree of approximation, by 

polynomials,satisfying a side condition, of functions possessing k 
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continuous derivatives and satisfying another side condition. Corollaries 

to this Lemma are theorems on the degree of approximation by reciprocals 

of polynomials. 

LEMMA 3.5. For each k 1,2, ... there is a constant B (=B(k)) 

with the property that if 

k 
f E C [O,r] ~· 3 r > 0 

(l) (k-1) 
f (r) , f (r) , ... , f (r) ;;;;;. 0 

there exists, for every n ;;;;.k, a polynomial q of degree not exceeding n 
n 

such that 

where 

q (x) ;;;;;. f(x), 
n 

q' (x) ;;;;;. 0 
n 

x;;;;.r 

Proof. If f is a polynomial of degree not exceeding k we take 

f and obtain the result. 

Otherwise we may assume II f (k) II 'I 0 and proceed to construct 
[o ,r] 

Since the transformation 

* x = (r/2)x- l, 

* ( * g (x) -+ g x ) 

* * g (x ) 

is invertible, preserves the signs of derivatives, and takes polynomials 

into polynomials; we have only to prove the result for all f E ck[-1,1] 

(k) 
with II£ II [-l,l] = 1. More precisely the result is equivalent to the 

existence of an R such that for each f E ck[-1,1] with 

llf(k)ll = l 
[ -1' l] 

(l) ( 2) f (k-1) (l) :::;;, 
f (l)' f (l) ' •.. ' p- 0 

there exists a polynomial s of degree not exceeding n satisfying 
n 



Approximation by Reciprocals of Polynomials on [0, 00 ) 

s (l) (x) ~ 0 
n 

k 
II f- snll [-l,l] < R/n 

X~ 1 

since then s* = s + R/nk satisfies 
n n 

* s (x) ~ f (x) , -1 < X < 1 
n 

* and (3.4.1), (3.4.2) with R = 2R. 

51. 

(3. 4.1) 

(3.4.2) 

(3 .4. 3) 

we proceed to prove this equivalent result. Using a theorem of 

Trigub [8] there exists C depending only on k, and p a polynomial of 
n 

degree not exceeding n with 

(3.4.4) 

j=O, ... ,k. 

In particular 

(k) 
llpn II [-l,l] < c + 1. 

We perturb pn in order to obtain an approximation increasing to the right 

of x = 1. By a classical result (see Rogosinski [7]) if h is any kth 
n 

indefinite integral of (C + 1) T , T being the Tchebycheff polynomial 
n-k n-k 

of the first kind of degree n - k, then 

(h + p ) (k) ( x) ;;;:, 0 
n n 

We use the formula 

I 1 (T.) 
l 

Tl 

Td4 

T. 1 l+ 

2(i+l) 

X~ 1. 

T. 1 l-

2 (i-1) 

i 0, 

i 1, 

i ~ 2; 

to specify a particular indefinite integral of the T. with certain 
l 

desirable properties. Let I. represent the j-fold composition of 
J 

(3.4.5) 

operators I . It is easy to see that if n - 2k ~ 1 and 1 < j <k, then 

j 
I. (T k) = . 2: . a.T 

n-k+i J n- l=-J l 
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with 

Also 

j 

llrj (Tn-k>ll [-l,l] :;;;;;; (2j + l)/(2i~l (n-k-i)). 

I(j)(T ) 
k n-k Ik . (T k) -J n-

52. 

and the number of n such that k :;;;;;; n :;;;;;; 2k is finite. Therefore there 

exists E, depending on k alone, such that 

0 :;;;;;; j :;;;;;; k, Vn ~ k. (3.4.6) 

Taking 

(3.4.4) and (3.4.6) imply the existence of R1, depending only on k, such 

that 

(.) k . 
II (f- hn- pn) J II [-l,l] :;;;;;; R1/n -J (3.4. 7) 

, j = 0, ... , k; n ~ k. 

Define A as the least positive real such that 

Take 

then 

where 

k k-' 
An!/((n-j) !n) ~ R1/n J j = 0,1, ... , k-1, 

s (k) (x) ~ 0 
n 

s (j) (1) ~ 0 
n 

n k 
s h + p + Ax /n n n n 

x~l 

j 0, ... , k-1, 

R = k!A + R1 . 

(3.4.8) and (3.4.9) imply 

s' (x) ~ 0 
n 

X~ 1. 

(3.4.10) and (3.4.11) together imply the Lemma. 

n ~ k. 

(3. 4. 8) 

(3. 4. 9) 

(3.4.10) 

(3.4.11) 

II 
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Clearly this Lemma has many corollaries concerning rational 

approximation on [0, 00). We cite two of the simplest. 

COROLLARY 3.6. Suppose the function f satisfies: 

f(k) is continuous on [0, 00 ) (3.4.12) 

llf(k)ll ~ p{r)g(r); f(x) ~ g(r), 
[o ,r] 

(3.4.13) 

where g(r) is a positive~ increasing~ continuous function~ p(r) any 

positive function and 

lim max(log p(r), log (r)) = 0 , 

~- sign[f<:~:r~)~:(j)~)" 0 [p(r) (g(r)) 2tk], 
(3. 4 .14) 

j 1, ... , k-1. 

(3 .4.15) 
Then 

( I 
I -~+ EJ 

o l n 2 for every E > 0 • 

Proof. Take N1 >k so large that for n > N1 there exists 

r(n) > l, with 

g(r{n)) = 
k/2 

n ( 3 .4 .16) 

Assume in what follows that n >N1. 
k 

Defining the function h(n) = r(n) , 

(3.4.14) implies 

Let 

E E 
h(n) = O(n ), p(r(n)) = O(n) VE > 0. 

n n 
q (x) = x /r(n) 

n 
then 

q(j)(r(n)) = n!/((n-j)!r(n)n-j), j 
n 

0,1, ... , n 

and therefore there exist 0 < C < D <oo such that 

-1 . (j) . 
C(h(n)) nJ ~ q (r(n)) ~ DnJ, 

n 
j = 0,1, ... , k. 

(3. 4 .l 7) 

(3.4.18) 

(3.4.15) and (3.4.16) together imply the existence of a constant E such 

that 

( . ) ( . ) . k 
(1- sign(f J (r{n)))) f J (r{n)) ~ EnJ -2 p(r(n)), j 1, ... , k-1. 

(3.4.19) 
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By (3.4.18), (3.4.19) there exists a constant F such that 

[1- sign(f(j) (r(n)) )] f(j) (r(n) )/2 < Fn-k/2p(r(n) )h(r(n) )q~j) (r(n)), 

j = 1, ... , k-1. 

Let 

f = Fn-k/2 p(r(n))h(r(n))q (x) + f(x). 
n n 

Then using (3.4.17) 

also 

II f - f nil [ 0 , r ( n) ] 

f (x) ;;;:. f (x) , 
n 

( 1 

l -~+ EJ 
0 n , VE > 0 

f(j)(r(n)) ;;;:.o, 
n 

j = 1, ... , k-1 

and by (3.4.13), (3.4.17), (3.4.18) 

[ 

k 1 
(k) 2+ E 

llfn II [O,r(n)] = 0 n J , E > 0. 

(3.4.20) 

(3.4.21) 

(3.4.22) 

(3.4.23) 

We apply the Lemma to the sequence of functions {f } on the sequence 
n 

of intervals {[O,r(n)]} to obtain the corollary. It follows from the 

Lemma, (3.4.22) and (3.4.23) that there exists a sequence of polynomials 

{p }, p of degree not exceeding n, such that 
n n 

p (x) ;;;:. f (x) 
n n 

p' (x) ;;;:. 0 
n 

By (3.4.21), (3.4.22) also 

p (x) ;;;:.f(x), 
n 

o<x<r(n) 

E > 0. 

0 < x < r(n), 

o[n-~+£], £ >o. 
Since 

k/2 f(x);;;:. g(r(n)) = n , x;;;:.r(n), 

(3.4.24), (3.4.25) imply 

(3.4.24) 

(3 .4. 25) 

(3.4.26) 
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k/2 
f(x), p (x) > n , 

n 

Combining the bound ((3.4.26)) 

11f-: 11
ro,r(n)] 

n 

with the bound ((3.4.27)) 

gives the required result. 

x>r(n). 

VE > 0; 

Remark :3. ? • In constructing Corollary 3.6, the conditions 

55. 

(3.4.27) 

II 

( ) 
. . (1) (k-1) . 

, 3.4.15 on the der1vat1ves f , ... , f were chosen 1n order to 

preserve the order of approximation obtained, by the same argument, under 

the stricter condition 

f(l) (r(n)), ... , f(k-l) (r(n)) > 0 . (3.4.15*) 

Results concerning other trade offs between conditions on 

f ,. f(k) ; f(l), ... , f(k-1) ,· can clearly be shown by arguments resembling 

the corollary. II 

COROLLARY 3. 8. Suppose the positive function f satisfies 

f(k) is continuous on [0, 00 ) (3.4.28) 

II f (k) II 
[o ,x] 

0 (xYl) ' as x+oo (3.4.29) 

f(x) > Cxy 2 x>o (3.4.30) 

where oo>yl >o, oo>y2 >a, c >a 

f(j)(x) >o, X> M, j 1, ... , k- 1, (3.4.31) 

with M 

Proof. WriteS= y 2/(k+y 1 ) and let (r(n))k+y 1 ka 
n , where 

a> 0 is to be chosen later. By an argument analogous to the second part 
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of the previous corollary there exists a sequence of polynomials {p } 
n 

such that 

11! .l:_ II -k(l-a) 
f p [O,r(n)] 

0 (n ) , 
-n 

11!- .l:_ll O(n-kSa) . 
f p [r(n), 

n 

Maximizing the minimum of (1-CX) , aS by taking a 1/(l+S) gives the 

corollary. II 

Remark 3. 9. The condition (3.4.31) may be relaxed as in the last 

corollary, the relaxing perturbation again satisfying conditions on its 

norm and the norm of its k-th derivative. The writer does not know of a 

general form for the relaxed conditions. 
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CHAPTER 4 

THE DEGREE OF MONOTONE APPROXI~~TION 

.l SUMMARY 

Jackson type theorems are obtained for monotone 

approximation. Let E k( n, be the degree of approximation of f by nth 

polynomials with kth derivative non-negative on[-~, ~]. Then 

for each k ~ 2 there exists an absolute constant Dk, such that for all 

f E c[-~, ~] with kth forward difference 

If in addition f' E C[ 

Let E* (f) be the 
n,2 

on [ -~, ~] ; 

, ~] then 

of approximation 

on [-1,1], off, by nth degree polynomials convex on the whole real line. 

Then there exists a constant M such that for each f convex on [-1,1] 

* (f) ~ M UX f, n -l ) • 
, 2 

Beatson [l]. 

The results concerning ,k are to appear in 

§4.2 INTRODUCTION 

Let f be a function with non-negative kth forward difference over 

each set of k equally points in[-~,~] (equivalently any finite 

real interval) . It is natural to ask whether Jackson type estimates 

hold for 

E k(f) n, (k) inf 
{p E TI : p (x) ~ 0 ,x E [ 
- n 

II f-pll[ !: !:J 
!:!] } ,., 4 

where the norm is the uniform norm, and TI is the space of algebraic 
n 

polynomials of degree not exceeding n. In the case k = l, Lorentz and 

Zeller [ 5] and Lorentz [ 6] have shown that there exists a constant D1 

such that iff is increasing on[-~, ~] 
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~ -1 E 1 (f) ~ D1w(f,n ) , n, n 

59. 

1,2, ... (4.2.1) 

where W(f,.) denotes the modulus of continuity of f. If, in addition 

f' E c[~, ~] then 

~ -1 -1 E 
1

(f) ~ D1 n w(f' ,n ) , 
n, 

n = 1,2, ... 

Let f be a function convex on [-1,1], and 

E* (f) = inf ~f-p~[ ] 
n, 2 {p E II : p"(x) ;;;:. 0, Vx E R} -l,l 

n 

The lowest order Jackson type estimate will be shown for E* 
2 n, 

(4.2.2) 

Higher 

order Jackson type estimates for E* 
2

, if they exist, would have immediate 
n, 

practical application. Combined with standard arguments they would yield 

results concerning uniform approximation by reciprocals of polynomials 

on semi-infinite or infinite intervals. 

§4.3 TWO JACKSON TYPE ESTIMATES OF E 
n,k 

DeVore [3,4] has given a much simpler proof of the k = 1 results. 

Partly similar arguments, are used in this section, to show Jackson 

estimates analogous to (4.2.1), (4.2.2) forE . 
n,k 

Notation. Throughout c 1 , c2 , ••• denote positive constants 

depending on k, but not depending on f, x or n;;;:. k. Whenever it causes 

no confusion, 11.11(3 denotes 11.11[-(3,(3] and W(e,.) denotes w[-~, ~] (e,.). 

A function with non-negative kth difference on [a,b] cannot, in 

general, be extended to a function with non-negative kth difference on a 

larger interval. For example the 
00 

f E c[o, nEl n-
3
], with slope non 

cannot be extended to the right and remain convex. This motivates the 

construction of a pre-approximation (see Lemma 4.1) to f, to which we 

will apply appropriate polynomial convolution operators (see Lemma 4.2). 
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LEMMA 4.1. Suppose k ;:;:;. 2. Let 

-k (A. JA 
Ln(h,x) = (2A) J ... h(x+t1 + ... + tk)dt1 •.• dtk 

-A -A. 
(4.3.1) 

where hE c[-~, ~] and 

A = l/8n, n = k,k + 1, ... (4.3.2) 

Extend the definition of L (h) from 
n 

[ -a,a] = [ -~ + _!__ 
8n' 

~ - _!__] 
8n 

(4.3.3) 

to[-~,~] by adjoining~ to the right and left, the Taylor polynomials of 

degree k, corresponding to L (h) at the points a, -a. 
n 

Then there 

such that; for aU 

f E c[-~, ~] with£(-~) = £(\) = o and non-negative kth difference on 

[ -~, l-.] . 
4 ' 

for n = k, k + 1' ... 

(k) :::;;, 
xER L (f ,x) 9' 0, 

n 

ilL (f) (j)ll ~ E nj -1 

n ~ k 
w(f,n ) (j 

IILn(f) (k)ll~ ~Ek k -I 
n W(f,n ) 

II£- L (£)11 1 ~Fk W(f,n-
1

) 
n '4 

and 

If in addition £ 1 E c[-~, ~] then 

IlL (f) (j)ll ~ E nj-l w(£ 1 ,n- 1) 
n ~ k 

IlL (f) (k)ll ~ E nk-l w(£ 1 ,n- 1 ) 
n ~ k 

and 

Proof. For x E [ -a,a] 

-k rA (A Jx + 
Ln(f,x) = (2A) j ... J 

-A -A X+ 

implying 

L ( f ,x) 1 

n 

(4.3.4) 

1' .•. ' k - 1) ' (4.3.5) 

(4.3.6) 

(4.3.7) 

(4.3.8) 

( j 2' ••. ' k - 1) ' (4 • 3 • 5 I) 

(4.3.6 1
) 

(4.3.7 1
) 

(j 1' 2) . (4.3.8 1
) 
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repeating the argument, j times, j = 1, .•. k, 

k rA rA . 
L (f,x)(j) = (2A)- J ··J t:.\ f(x+t. 

1
+ ... +tk-jA)dt. 

1 
dtk. 

n -A -A 2/\ J+ J+ 

(4.3.9) 

(4.3.4) follows immediately. (4.3.9) and the definition of A imply 

-1 
w(f,n ) ( j ::: 1 1 • • • 1 k) • (4.3.10) 

(4.3.5), (4.3.6) follow from (4.3.10) on estimating the derivatives of 

the Taylor polynomials extending L (f) to the larger interval. 
n 

To prove (4.3.7). The definition of L (f,x) clearly implies 
n 

Also 

-1 !If- L (f)il ~ c2 w(f,n ) • 
n a (4.3.11) 

(f,a) J +IlL (f,a) -
n (£)11[ 1]; a,'4 

so by (4.3.2); (4.3.11); (4.3.5) 1 (4.3.6); and the manner in which 

L (f) was extended 
n 

A similar result holds on[-~, -a]; (4.3.7) follows. 

and 

To prove (4.3.8). Note that ( 4. 3. 7) implies both 

-I ~ -1 
W(L (f) ,n ) ""'C4 W(f,n ) 

n 

-1 
Fk W(f 1 n ) 

the second since f(-~) 0; (4. 3. 8) follows. 

We proceed to prove the results for£' E c[-\, \]. Arguments 

analogous to those leading from (4.3.9) to (4.3.5), (4.3.6); lead from 

L (fx)(j) n , 
-k JA (A j-1 

(2A) ··J t:. f'(x+t.+ .• +tk-(j-1)/c)dt. 
-A -A 2A J J 

(j = 1, ... , k) to (4.3.5'), (4.3.6'). 

To show (4.3.7') use the quantitative Korovkin type estimate 

(see e.g. DeVore [3, pp28-32]) 
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IL (f,x)- f(x)l ~ lf(x)lll- L (l,x)l + lf'(x)IIL ((t-x),x)l n n n 

(4. 3 .12) 

where 

a 2 (x) = L ((t- x) 2
, x). 

n n 
(4.3.13) 

Now 111-L(l)il 
n 

II L ( ( t - x) , x) II 
n 

0, 

while 

L ( (t-x) 2 ,x) 
n dt1 ... dtk 

Substituting into (4.3.12), (4.3.13) we find 

ilL (f) - fil ~ C6 n- 1 W(f' ,n- 1
). 

n a 

Since for this particular operator 

Ln (f,x)' = Ln (f' ,x), x E [ -a,a] 

and L (f,x)' is continued outside [-a,a] by adjoining the Taylor 
n 

(4.3.11') 

polynomials of degree k - 1, corresponding to f', at either end point; 

reasoning, similar to that yielding (4.3.7), implies 

llf' - L (f) '11 1 ~ c 7 w(f' ,n- 1). 
n '4 

(4.3.14) 

Writing 

llf- L (f)ll[ 1 ] ~ lf(a) - L (f,a) I + J\ If' (t) - Ln(f,t) 'ldt n a,'4 n 
a 

(4.3.11'); (4.3.2) and (4.3.14) imply 

llf- L (f)ll[ 1 ] ~ Cs n- 1 w(f' ,n- 1). n a,'4 

Combining the above, the similar result on[-\, -a], and (4.3.11') proves 

(4.3.7'). 

To show (4.3.8'). Note (4.3.14) implies 

and also 

I L ( f, ~) ' I ~ C 7 W ( f' , n- 1 ) where f ' ( ~) 
n 0' -\ < ~ < \; 
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the existence of such an ~ following from f(-~) f (~) 0. 

Hence 

(4.3.8') follows since (4.3.7') implies 

I ( 1) I ~ F- -I ( I -I) Ln f,-~ ~ k n w f ,n . 

We now know how well L (f) approximates f, and concern ourselves 
n 

with how well L (f) may be approximated by convolutions with positive 
n 

polynomials. 

LEMMA 4. 2. Suppose k ~ 2. Then there exist constants Hk , Ik 

II 

and a sequence of even positive algebraic polynomials 

(I 

{ A }oo n n=k satisfying 

J 
;\(t)dt = 1 

-I 

( 4. 3. 15) 

and 

II An (j)ll [ -1,1]\[ -~.~] ~Hk n2-4k+2j ( ~Hk n -2k), (j 0, ... , . k - 1) • 

(4.3.16) 

Further iff satisfies the conditions of Lemma 4.1, g L (f) and 
n 

L* (g) 
n 

then if f E c[ -~, ~] 

and if f' E c[ -~, ~] 

Proof. 

For n ~ 2k, let 

(4.3.17) 

(4. 3.18) 

(4.3.19) 

(4.3.20) 

where P2n is the Legendre polynomial of degree 2n and x 1 , 2n, ... ,xn, 2n 

are its positive zeros in increasing order. c is a normalizing 
n 
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constant for (4.3.15). Define the remaining A 's with the relation 
n 

n;;;:, k. 

Observe firstly that a theorem of Bruns (see e.g. DeVore 

[ 3, p.20]) implies 

-I __. 
C11 n ~ x 

1,2n < < __. -I 
x ~ C 1 2 n 
k,2n 

(4.3.21) 

Using the normalization II P nil [ _1 , l] = 1 and the corresponding Taylor 

expansion of P (see e.g. Davis [2, p.365]), 
n 

-2n [2nl ;=-2 n = ( 1 + o ( 1) ) I v 1Tn 

the ·last equality being a consequence of Stirling's formula. 

(4.3.20), (4.3.21) and (4.3.22) together imply 

Let n ;;;:, 2k. Write 

(1 

1 J A4n-4k(t)dt 
-1· 

n 
~ 

k=-n 

4k-l 
n n ;;;:, 2k. 

~( 2n+l)A4n-4k(~,2n+l) ; 

where the ~ (2n+l) are the weights of the Gaussian quadrature 

exact for polynomials of degree 4n+l, with nodes at the zeros 

Legendre polynomial of degree 2n+l. Therefore 

and since (Szego [ 8, p.350]), A0 (2n+l) = 1T (1 + o(l)) 
2n+l 

(4.3.23) and (4.3.24) imply 

2-4k 
c ~ C1s n 

n 

(4.3.22) 

(4,. 3. 23) 

formula, 

of the 

(4.3.24) 

which together with the normalization of the P , the definition of the 
n 

An' and (4.3.21) implies 

~ C16 
2-4k 

n 

(4.3.16) follows by means of Markov's inequality. 
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It remains to show the order of approximation results. 

We cannot use the standard quantitative Korovkin theorem as 

-I -I 
,l.a] (g,n ) 'I O(w[-~,l..d (f,n )) ; at least not in general. However 

a related method is applicable. 

Again let n ~ 2k. 
2k 

The polynomial t A4n-4k(t) is of degree 

4n - 2k. Therefore for j = 1, ... , k 

M. = 
J 

2' 
t JA4n-4k(t)dt 

n 2' 
21.~1 x. J2 A. (2n)A4 4k(x. 2 ) 

J.., n J.. n- J.., n 

where the A. (2n) are the weights of the Gaussian quadrature formula, 
J.. 

exact for polynomials of degree 4n - 1, with nodes at the zeros of the 

polynomial of 2n. Since A4n- 4k has zeros at 

k 2' 
M. = 2 1.~1 x.J

2 
A. (2n)A

4 4k(x. 2 ). 
J J.., n J.. n- J.., n 

Since also A4n-4k has a local maximum on [-xk+l, 2n, xk+l, 2n] at zero, 

and (Szego [ 8, p.350]) 

'iT 
A . ( 2n) < 

2 
( 1 + o ( 1) ) 

J.. n 
(i = 1, ... , k) 

( 4 . 3 . 21} , ( 4 . 3 . 2 4) imp 1 y 

fl t
2

j '\ (t) dt 
-2j 

Ct7 n j 1, ,k, n k. (4.3.25) 

(4.3.25), (4.3.16) and that A {t) is even and non-negative may be used 
n 

to estimate certain 

uniform in I xi ~ ~. 

0 

0 

(1 ,x) 
n 

* 2' L ( ( t-x) J, x) 
n 

* involving L . 
n 

= fl.a (t-x) 2
j A (t-x)dt 

-l.a n 

= J
l.a-1 X 2 • 

t J A (t)dt 
n 

-"2-X 

<( A (t)dt 
n 

and applying (4.3.25) 

All the estimates are 

(4.3.26) 
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* k o ~ L ( I t - xI , x) 
n 

-2j 
C19 n 

66. 

j=l, ... ,k. (4.3.27) 

(4.3.28) 

where we have used the Schwartz inequality, (4.3.15) and (4.3.27). 

since A 

For j odd, 

* x) j ,x) I IJ~~x I L ( (t = 
n 

is even. Applying 
n 

IL*((t-x)j,x) I 
n 

-"':a-X 

(1 
tj 2 J~ 

(4.3.16) 

2-4k 
1 n 

tjA (t)dtl 
n 

A (t)dt 
n 

j 1,3,5, ... 

If tE[ -~,~] and xE[ -~,~], Taylor's theorem gives 

= [~~l g(j) (~) (t-x) j] + 1 
g(t) ]=0 ]! (k-1)! 

rt: (k) k-1 J g (u) (t-u) du. 
X 

(4.3.29) 

(4.3.30) 

Since the last term on the right hand side is bounded in modulus by 

* , the linearity and monotonicity of L imply 
n 

* L (g,x) -
n 

k-1 ( j) 
g ( x) L * ( ( t-x) j , x) 

j! n 

or 

* * k-1 I <j> I * . 
IL (g,x) -g(x)l ~ lg<x>lll-L(J,,x)l+g. (x) IL ((t-x)J,x)l 

n n J! n 

1 <k> * I lk + kl II g II[-~,~] Ln ( t-x ,x). 

Thus 

k-1 II Cj)ll * · 
+ .~1 g [-~~]IlL ((t-x)J,x)ll[-~ ~] 

J- j ! , n , 

!-.) • 
, 4 
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Combining the above, the estimates of all the terms involving g from 

Lemma 4.1 (g = L (f)), and the estimates (4.3.26), (4.3.27), (4.3.28), 
n 

(4.3.29) of all the IIL*(.,.)II 1 s yields (4.3.18), (4.3.19). II 
n 

* Given Lemmas 4.1 and 4.2 it remains to discuss how close L (g) 
n 

is to a polynomial with non-negative kth derivative on [-~~~1. 

THEOREM 4. 3. For each k ~ 2 there exists a constant Dk, such 

that for aZZ hE c[-~,~1 with kth forward difference non-negative on 

[ -~ ,~1 

E k (h) ~ D W[ 1 1 1 n, k -"!,"! 

-I 
(h, n ) , n = k,k+l, ... 

If in addition h 1 E c[-~,~1 then 

(h) ~ D -I (hI -1) 
En,k k n w [-~,~1 ,n , n = k,k+l, ... 

Proof. Fix k ~ 2. Let f = h - p where 

p(x) = h(-~) + 2(h(~) - h(-~)) (x+ ~). 

-I _...- -I -I 
Clearly W(f,n ) ~ 2W(h,n ) and when h 1 exists W(f 1 ,n ) 

Lemmas 4.1, and 4.2 apply to f. Writing 

* L (h)= p(x) + L (L (f)) 
n n n 

Lemmas 4.1 and 4.2 imply 

- * II h - L (h) Ill = II f - L (L (f) ) II n "~ n n 

Let g 

L (h) 
n 

L (h,x) 1 

n 

* ~~~f-L (f)ll 1 +ilL (f) -L (L (f))ll 1 n "~ n n n "~ 

L (f). 
n 

-I 
c2: 2 w(h,n ) , 

-1 -I c22 n w(h 1 ,n ), 

Then 

p(x) +L*(g) = p(x) + f~ g(t)A_ (t-x)dt, 
n 1 n 

-"2 

p' (x) + f~, g(t), A 1 (t-x) dt 
n 

-I w (h 1 ,n ) . 

(4. 3. 31) 

!, (~ 
P 1 (x) + [-g(t)An(t-x)1~~ + j_~ g 1 (t)An(t-x)dt. 

k ~ 2 alternate differentiations and integrations by parts yield; 
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L (h,x) (k) 
n 

(-1) k .:2: (-1) j (j) (t) A (k-l-j) (t-x) lk-1 l, -] J 
J=O g n t=-~ 

(~ 
+ J g(k) (t)A (t-x)dt 

-~ n 

(~ 

= r (x) + J (k) 
g (t)A (t-x)dt. 

n 

68. 

(4.3.4) and the positivity of the kernels imply the second term on the 

right hand side is non-negative. The estimates (4.3.5), (4.3.8); 

{4.3.16) imply 

-2k+l -I 
llrll;t,. :;( C23 n W(h,n ) , hE C [ -~, ~], 

4 

and the estimates (4.3.5'), (4.3.8'); (4.3.16) imply 

llrll~ 

In the first case let 

- xk -2k+l -1 
pn(x) = Ln(h,x) + kT c23 n W(h, n ) , 

and in the second let 

p (x) 
n 

k 
- X -2k+2 -1 

= Ln(h,x) + k! C24 n W(h', n ) . 

Then p (k) (x) 
n 

is non-negative on ,~]; and by (4.3.31) p (x) provides 
n 

the estimate of the theorem. 

* §4.4 A JACKSON TYPE ESTIMATE OF E 2 • n, 

The argument, used in this section, is derived from the delightful 

proof of Jackson's theorem given by Passow [7]. * Define E 
2 

( as in 
n, 

section 4.2. 

~~~~4~4 There exists a constant M, such that for any 

function f convex on [-1,1] 

n = 2,3,4, •.. 

Following [7] construct the polygonal pre-approximation 

L(x) with L(k/n) f(k/n), k = -n, ... , n; and L linear in each of the 

intervals [k/n , (k+l)/n]. Then I L ( x) - f ( x) I :;( w [ _
1

, l] ( f, n -l) for all 
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x E [-1,1] and L is convex with f. Let Sk be the slope of L(x) in 

({k-1)/n, k/n) and let 

Then 

a 
n 

-(S + S 
1
)/2 

n -n+ 

- n+l ~ k ~ n-1 

a -n 

L(x) = A1 +k~-n+l aklx-k/nl = A1 + r lx-tldg1 (t) 
-1 

(4.4.1) 

where g 1 (t) is the step function having jumps at x = k/n (k = - n +1, ... ,n) 

equal to ak' g(-1) = 0, and A1 a constant. Alternatively L(x) may be 

expanded as 

L(x) 
n-1 k (1 

Az +k~-n aklx-~1 = Az + J lx-tldgz(t) ; 
-1 

(4. 4. 2) 

where g 2 (t) is the step function having jumps at x = ~ (k = - n +1, •.. ,n-1) 
n 

equal to ak, g(-1) = 0, g(x) =a for -l<x <-1 + (1/n); and A2 is 
-n 

a constant. These expansions are easily verified by calculating the 

slope of l: a I x- k/n I in each subinterval ( (k-1) /n, k/n) . 
k . 

Since the slope of L is increasing, a. will be non-negative for 
]. 

i =- n+l, ... ,n-1. Also a is either negative or non-negative; hence 
n 

at least one of g 1 , g 2 will be increasing. Let 

L ( x) = A + f 
1 

I x- t I dg ( t) ( 4. 4. 3) 

be an expression (4.4.1), (4.4.2) with g. increasing. 
J 

Then 

LEMMA 4.5. Let q(x) be a polynomial of degree not exceeding n, 

convex on the whole real line~ satisfying q(O) = o and 

Then 
(1 

Q (x) =A+ j q(x-t)dg(t) 
n -1 

is a polynomial of degree not exceeding n, convex on the whole real 

line~ satisfying 

UN!VE,\SITY OF CANTERBURY 
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max Jf(x) - Q (x) J ~ (2b+l) w[ ] (f,n- 1
). 

-l~x~l n -1,1 

Proof. The degree of the approximation follows exactly as in 

[ 7 , Lemma 1] . The argument is repeated for completeness. 

Now 

if(x) -A- J
1 

q(x-t)dg(t) J ~ if(x) -A- J1 

Jx-tJdg(t) J 
-1 -1 

+ J~ 1 {Jx-tJ - q(x-t)}dg(t) I 

~w[-l,l] (f,n-
1

) + I{Jx-tJ- q(x-t)}g(t)J~ 1 
- !_\g(t) d { Jx-tJ - q(x-t)} I 

~ w[-l,l] (f,n-
1

) + Jg(l) J~ + max Jg(t) lb/n. 
n -l~t~l 

max 11 if g = gl ' 

maxi g(t) J = 
-l~x~l 

-n + l~j ~n Jk=-n+l 

max ~k~-n if g = g2 ' 

Thus 

-n~j ~n- 1 

~ max 
j 

I I ::;;;:: -1 
S j "'"""' nw [ _1 , l] ( f, n · ) . 

lf(x) -A- J1 

q(x-t)dg(t) I ~ (2b+l)W[-l,D (f,n-
1
). 

-1 

The convexity of Qn follows from the convexity of q and the 

monotonicity of g, since 

LEMMA 4.6. 

0 "(x) 
'-n 

(1 

J 
q"(x-t)dg(t). 

-1 

There exists a constant c > o, and for each 

n = 1,2,3, ... a polynomial q
4
n_

2 
of degree 4n- 2, convex on the whole 

real line satisfying q
4
n_

2
(0) = 0 and 

II 

J
2 

Jd{JxJ - q 4n_ 2 (x)}J ~ C/n. 
-2 

(4.4.4) 



The Degree of Monotone Approximation 71. 

Proof. Let 

where P
2
n is the Legendre polynomial of degree 2n ; x1 , 2n its smallest 

positive zero; and c is a normalizing constant chosen so that 
n 

(1 \n-4(t)dt l. (4.4.5) 

Then [ 3, ppl74-176] A.
4

n_
4 

is an even, non-negative, algebraic polynomial 

of degree 4n - 4 such that 

(4.4.6) 

for some constant C1, n 1,2, ... (4.4.5), (4.4.6) and the Schwartz 

inequality imply 

(1 

0 < J It lA. 4 (t)dt ~ C2/n. 4n-
-1 

Take as the approximation to lxl 

q4n_ 2 (x) = J: u: A.4n-~ (t/2) dt) du • 

The non-negativity of A. 4n_ 4 implies the convexity of q4n_ 2 . 

( (4.4.8)) 

0 

using in addition the properties of A.
4

n_
4 

- 1 = q' (-2) ~ q' (x) ~ 0 
4n-2 4n-2 

1 , 

(4.4.7) 

(4.4. 8) 

Also 

(4.4.9) 

( 4. 4 .10) 

From (4.4.9), (4.4.10) and the eveness of q
4

n_ 2 , it follows that ; 

lxl - q
4
n_

2
(x) is monotone decreasing on [-2,0], monotone increasing on 

[ 0, 2] , with 

I d { I x I - q ( x) } I 
4n-2 

2(2-q (2)). 
4n-2 

(4.4.11) 

Taylor's theorem implies 
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(X 

q4n-2 (x) + J q" (u) (x-u) du 
4n-2 

0 

(X 

J 
A (u/2) (x-u) du . 
4n-4 

0 

Hence 

2 - q4n-2 (2) 2 - f2 

A (u/2) (2-u)du 
4n-4 

0 

2l( 1 - f 1 

A ( t) ( 1 - It I ) d t) 
4n-4 

-1 

A (t) ltldt , 
4n-4 

by the eveness of A 
4 

and (4.4.5). 
4n-

Now (4.4.7) implies 

O < 2 - q (2) ~ 2C2 /n. 
-4n-2 

Substitute in (4.4.11) to obtain 

where C 

f2 ld{lxl - q4n-2(x)}~ ~ C/n ' 
-z 

4Cz does not depend on n; as required. 
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