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EXTENDED ABSTRACT

Since the end of the last ice age the earth’s climate
has enjoyed a period of relative stability. As the
earth is now in a period of rising global temperatures
a number of authors have considered the stochastic
properties of time series of both atmospheric and
oceanic temperatures from instrumental and proxy
records on time scales of a few decades to several
millenia in an effort to estimate the natural variability
of the earth’s climate. These series almost universally
exhibit the property of statistical long memory.

Long memory time series were brought to prominence
by H.E. Hurst in 1951 in his study of river flows. Since
then the physical cause or causes of the so-called
Hurst phenomena have remained elusive. Two sets of
competing models have been proposed. The fractional
Gaussian noises (FGNs) and their discrete time
counter-parts, the fractionally integrated processes of
orderd (FI(d)), possess genuine long memory in the
sense that the present state of a system is temporally
dependent on all past states. The alternative are
models with a non-stationary mean. In these models
the long memory is merely an artifact of the method of
analysis. Some authors have proposed multifractals as
a potential model. These are FGNs or FI(d) series in
which the self-similarity parameter,H, or fractional
integration order,d, is allowed to change with time.

A number of authors have attempted to develop
statistical tests to distinguish between true long
memory and other types of processes displaying
statistical long memory. Most of these tests exploit,
in some fashion, the fact that the self-similarity
parameter,H, in the FGNs is required to be constant
across the whole series.

It is known that structural break location methods
tend to report breaks in simulated long memory
series where no breaks exist. We have combined
established methods for estimatingH and/or d

with a computationally fast structural break location
method, Atheoretical Regression Trees (ART), to
obtain empirical bivariate distributions ofH or d and
regime length for simulated FGNs.

These bivariate distributions are then compared with
a 2649 year warm season temperature reconstruction
using data from a stalagtite from Shihua Cave near
Beijing, China and with an existing test for fit to an
FGN due to Beran. We find the time series is notH-
self-similar.

We further compared several other empirically
determined bivariate distributions from the simulated
data with the Shihua Cave data. In all but one case
(mean vs regime length) the Shihua Cave data did not
fit the empirical distributions for FGNs.

We can discount the FGNs and FI(d)s as appropriate
models for the Shihua Cave data. However, we could
not establish statistical primacy between multifractals
and multiple regimes of short memory processes.

The implications for the climate change debate are
minimal. There seems little doubt the current
rising global temperatures are occurring because of
increases in greenhouse gas concentrations as a result
of human activity. Discounting of theH-self-similar
and the FI(d) models for this data leaves the doubters
with one less argument to support their case.
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1 INTRODUCTION

The British hydrologist H.E. Hurst (1951) published
a study of river flows which brought to prominence
a phenomena now known variously as long memory,
long range dependence, strong dependence, global
dependence, or the Hurst phenomena. We shall use
the term long memory.

This paper is concerned with the presence of long
memory in temperature reconstructions and proxies.
Long memory in the Moberg et al. (2005) Northern
Hemisphere reconstruction was considered in detail
by Mills (2007). Mills tentatively suggested the
evidence favoured a shifting trends in temperature
model over true long memory. Ballie and Chung
(2002) considered long memory in several tree ring
series as these series are often used in temperature
reconstructions. Ballie and Chung found the series to
be very well described by fractional differencing with
the exception of the period 1800 to the present in two
of their four data sets. Beran (1994) summarized some
studies of long memory in instrumental temperature
records.

A number of authors have attempted to develop
statistical tests to distinguish between true long
memory and other types of processes displaying
statistical long memory. See for example Smith
(2005) and Teverovsky and Taqqu (1999). These and
other tests appear to be soundly based in theory but
have not found wide application.

The use of structural break detection and location
methods are regarded as problematic because they
tend to find breaks in fractional Gaussian noises
(FGNs) and fractionally integrated processes (FI(d))
(both defined in Section (2) below) even though
the data generating process is uniform throughout.
For example, Wright (1998) proved that when
the standard cumulative summation (CUSUM) test
(Brown et al. (1975)) for detecting structural breaks
is applied to long memory series the probability of
finding a break converges to one with increasing
series length. Thus structural break location methods
have generally been overlooked when attempting
to distinguish between true long-memory and non-
stationary means, of whatever type, in real data sets.

If a series is generated by a true long memory process,
the use of a structural break location method to divide
the series into a number of subseries of differing
lengths should only yield subsamples of a single
population. If, in fact, the series contains structural
breaks which can be located by changes in the mean,
using a structural break location method will, instead,
divide the series into a number of subpopulations. In
the former case oura priori expectation is that the
subsamples will have the same statistical properties as

the full series. In the latter the data generating process
has one or more discontinuities and so statistical
properties other than the mean way well have changed
at the same time.

Despite this risk of model misspecification we could
find no empirical study of the statistical properties
of the “regimes”, (that is, the sections of the series
between the reported breaks) in simulated FGNs
or FI(d) series of finite sample size when they
were incorrectly analyzed by applying structural
break location methods to them. Cappelli et al.
(2007) introduced ART , a computationally very fast
structural break method, which has allowed large
scale simulation studies, such as this one, to be
conducted. These would have been computationally
impractical with established techniques such as that
described by Bai and Perron (1998, 2003).

2 MODELS

A number of models have been proposed to account
for the extraordinary persistence of the correlations
across time found in long memory series. There
are two common sets of models applied across long-
memory series from diverse fields. One set are true
long memory models, in particular, the FGNs and
FI(d) processes.

The other set are models with a non-stationary
mean. For simplicity the types of non-stationary
mean models studied are ones in which the time
series can be broken in a series of “regimes” within
which it is a reasonable assumption that the mean is
stationary. Some examples are structural break and
Markov switching models.

2.1 Fractional Gaussian Noises and Fractionally
Integrated Series

Mandelbrot and Ness (1968) introduced FGNs to
applied statistics as the stationary increments of a
GaussianH-self-similar stochastic process.

Definition 1 A real-valued stochastic process
{Z(t)}t∈R is self-similar with indexH > 0 if,
for anya > 0,

{Z(at)}t∈R =d {aHZ(t)}t∈R

where =d denotes equality of the finite
dimensional distributions.H is also known as
the Hurst parameter.

Definition 2 A real-valued processZ = {Z(t)}t∈R
has stationary increments if, for allh ∈ R
{Z(t+h)−Z(h)}t∈R =d {Z(t)−Z(0)}t∈R.
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It is important to note in Definition 1 thatH is
constant for the whole series and hence for all
subseries of anH-self-similar process. As a parameter
only has meaning in the context of a model, ifH
varies over time then the process is, by definition, not
H-self-similar.

FGNs are a continuous time process while Frac-
tionally Integrated series (FI(d)) series introduced
independantly by Granger and Joyeux (1980), and
Hosking (1981) are their discrete time counter-parts.

FI(d)s are a generalization of the “integration” part
of the Box-Jenkins ARIMA (p,d,q) (Autoregressive
Integrated Moving Average) models to non-integer
values of the integration parameter,d. Denoting by
B the backshift operator, the operator(1−B)d can be
expanded as a Maclaurin series into an infinite order
AR representation

(1 − B)dXt =
∞∑

k=0

Γ(k − d)
Γ(k + 1)Γ(−d)

Xt−k (1)

where Γ(·) is the gamma functionΓ(t) =∫∞
0

xt−1e−xdx. The operator in Equation (1) can
also be inverted and written in an infinite order MA
representation.

ARIMA models with non-integerd are known
as Autoregressive Fractionally Integrated Moving
Average (ARFIMA) models. The AR(p) and MA(q)
parameters in ARFIMA models may be used to
model any additional short-range dependence present
in the series. Both FGNs and FI(d)s have been
extensively studied. See the volumes by Beran (1994),
Doukhan et al. (2003), and Embrechts and Maejima
(2002) and the references therein.

A variant of these models are the so-called
multifractals in which the value ofH or d is allowed
to vary with time.

2.2 Non-Stationary Mean Model

Klemes (1974) argued that statistical long memory
in hydrological time series was the result of non-
stationarity in the mean. Klemes pointed out that
the assumption of stationarity was often made to
facilitate mathematical analysis of the data rather than
being based on knowledge of the underlying physical
mechanism(s) driving the data generating process.
The types of non-stationary mean models which have
been studied in any detail typically have stochastic
shifts in the mean about some long term average.

A common non-stationary mean model is a series
which has structural breaks in the mean. We define

the structural break model as follows:

µyt
=

p∑

i=1

Iti−1≤t<ti
µi (2)

whereµyt
is the mean of the time series,It∈S is an

indicator variable which is 1 only ift ∈ S, t is the
time, ti, i = 1, . . . , p, the breakpoint andµi is the
mean of the regimei. In this case, a regime is defined
as the period between breakpoints.

It is important to note that (2) is just a way to represent
a sequence of different models (i.e. models subjected
a structural breaks). However, this model only deals
with breaks in mean. Given a true break each regime
must be modeled separately. This will be important in
what follows.

3 METHOD

In Section (4) we give details of the data sets for
which we had obtained an estimate ofH and d.
We simulated by computer up to 26,000 FGN and
FI(d) series for each length and value ofH andd as
estimated for our example data sets. We broke these
simulated long memory series into “regimes” using
Atheoretical Regression Trees (ART).

The standard deviation was standardized so the series
standard deviation was one in all cases. For each
“regime” we estimated the length, mean, standard
deviation, skewness, kurtosis, normality by the
Jarque-Bera test,H using the Whittle estimator. In
addition, for the whole series we estimatedH, the
goodness-of-fit to a long memory process by the test
of Beran (1992), the number of breaks detected by
ART and the CUSUM range.

We obtained empirical (usually bivariate) distributions
of the above quantities (e.g. regime length against
standard deviation). We then compared the (usually
bivariate) distributions obtained from the simulated
series with the real data set to see if the real data
set also resembled incorrectly analysed FGNs or FI(d)
processes.

For the real data sets the whole series, the regimes and
sometimes aggregations of the regimes discovered by
ART were subjected to the Beran (1992) goodness-
of-fit test for time series with long-range dependence.
In this test the null hypothesis is that the series has a
spectral density of the form

f(λ) = cf |λ|−γ ; 0 < γ < 1 (3)

where cf is a constant and−γ = 1 − 2H, H ∈
(1/2, 1). We applied the Beran test using functions
implemented in theRpackagelongmemo .

More formally, assumeZ(1,T ) = {Zt}T
t=1 is a

realization of a FGN andB = {t1, t2, . . . , tp} the set
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of breakpoints identified by ART. The series is divided
into p + 1 sub-series or “regimes”. Denote any sub-
seriesi asZ(ti−1,ti), i = 1, 2, . . . , p + 1 with t0 = 1
andtp+1 = T . Then, defineL = {l1, . . . , lp+1} as
the sets of lengths of the “regimes”.

For eachli ∈ L we estimated the various statistical
parameters above. We illustrate our method for the
H parameter. We obtain a set of estimatesh =
{H1, H2, . . . , Hn+1} for the “regimes”. To evaluate
the hypothesis that the real data sets are incorrectly
analysed FGNs we testP [(li, Hi) ∈ Iα] < (1 − α)
whereP is a probability measure andIα is the α-
confidence set (equivalently, we check if(li, Hi) ∈
Iα). This test is carried out by simulation as described
below:

1. SimulateN true FGN(H) series each withT
observations;

2. For each series calculate the setsL andh;

3. Estimate the empirical distribution and the
confidence setIα.

4. Verify if (li, Hi) ∈ Iα for the real data.

As the estimator we used forH exhibits bias in short
sub-series which is dependent on the value ofH, it is
preferable to evaluate the hypothesis graphically (e.g.
verify if the point(li, Hi) is inside the region defined
by Iα). The structural break method we used, ART,
breaks the series into regimes based on local changes
in the levels. As indicated above there is noa priori
reason to suspect that any other statistical property of
the regimes should change with the level in anH-self-
similar series.

4 THE DATA

The data we use is a warm season average temperature
reconstruction by Tan et al. (2003) based on an
analysis of a stalagtite from the Shihua Cave near
Beijing, China. A temperature reconstruction is
available for the period 665 BC to 1985 AD, giving
a total of 2649 annual observations.

Figure (1) presents a plot of the reconstruction
together with the break points determined by ART.
Figure (2) presents the autocorrelation function for
the Shihua data. The correlations decay at an
exceptionally slow rate which is typical of long
memory series. Figure (3) presents a smoothed
periodogram for the Shihua data. The basic shape of
the spectrum is known as red noise and is typical of
long memory series.
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Figure 1.Shihua Cave temperature reconstruction and
structural breaks located by the regression tree.

5 RESULTS

Table (1) presents the results of the Beran (1992)
goodness-of-fit test for long memory time series.
These results should be consider in conjunction with
Figure (4). The first column gives the period of the
reconstruction being considered. The second column
gives the H estimate as returned by the Whittle
estimator. The three and four columns gives the p-
value of the Beran (1992) test using the value ofH
estimated from series and the regime respectively.

It is clear that on the basis of this test there is no period
in which the null hypothesis of a FGN withH=0.838
is not accepted. Thus we would be lead to believe
the long range dependence properties of the series is
adequately modeled by a single value ofH.

Figure (4) presents the results for theH estimates
using the graphical method outlined above. The
dots in the graph represent approximately five percent
of the simulated data and are included to give a
visual representation of the bivariate distribution.
The empirical 95% and 99% confidence intervals,
represented by the solid and dashed lines respectively,
were determined by analysing the results from 26,000
simulated series. The “S” symbols are the Shihua
temperature reconstruction regimes’ estimatedH
values. As can be seen, five of the 12H estimates for
the regimes lie outside the empirical 95% confidence
interval. Four of these fiveH values are outside the
empirical 99% confidence interval.

In contradiction to Table (1) the evidence here is that
this series is notH-self-similar in the sense of the
above definition as the value ofH does appear to vary
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Figure 2. The autocorrelation function for the Shihua
Cave temperature reconstruction.

Period H Est. H=0.84 H = H(t)
1-2549 0.84 0.38 -
1-158 0.63 0.39 0.85

159-598 0.68 0.24 0.65
599-1123 0.81 0.56 0.49

1124-1190 0.80 0.57 0.49
1191-1447 0.82 0.80 0.80
1448-1511 0.69 0.81 0.90
1512-1608 0.67 0.46 0.65
1609-1863 0.66 0.64 0.76
1864-2114 0.78 0.88 0.88
2115-2245 0.87 0.78 0.80
2246-2451 0.84 0.91 0.91
2452-2549 0.94 0.10 0.26

Table 1. H Estimates and P-values for the Beran
(1992) goodness of fit test for the Shihua Cave series
and regimes.

with time. We suggest the graphical method is more
sensitive to changes inH than the Beran (1992) test.

Figure (5) presents the results for the means of
the regimes of both the simulated and real series.
As can be seen the means of the regimes in the
Shihua data had be adequately modeled by an FGN.
Figure (6) plots the number of breaks reported by
the regression tree against the CUSUM range. There
are two measures used to detect structural breaks.
As can be seen the Shihua data has an unusually
high number of breaks. Only 16 data points of the
1000 simulations have an equal or higher number of
reported breaks. Thus the Shihua Cave data is extreme
at approximately the 0.02 level.

Figure (7) presents the results for the standard
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Figure 3. The smoothed periodogram for the Shihua
Cave temperature reconstruction.

deviations. As can be seen fully half of the data
points for the Shihua data lie below the empirically
determined 95% confidence interval. Thus the data
within the regimes are more homogeneous than we
would expect if the data were generated by a uniform
FGN throughout. This suggests we are dealing
with distinct sub-populations rather than simply sub-
samples of a single uniform population.

The results for skewness and kurtosis are not
presented here for reasons of space but are available
on request from the authors. For skewness two values
are above the upper 95% confidence interval and one
s below the lower 99% confidence interval. For the
kurtosis one regime lies below the 95% empirical
confidence interval and one well above the upper 99%
interval.

6 DISCUSSION

There are a number of reasons why one would
suspect that any long memory observed in temperature
reconstruction time series would be spurious. There
are a number of known cyclic influences on climate
such as a several solar cycles and atmospheric
oscillations such as the El Niño Southern Oscillation.
Each of these have variable periods and may thus
be difficult to discover in time series with traditional
tools such as the periodogram. Theoretical work
by Bhattacharya et al. (1983) and others showed that
some estimators ofH will report long memory when
the data contains a small trend. In the long term the
three Milankovich cycles are all of sufficient length
that over short periods of time they would appear as a
trend.
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Figure 4. H estimates for Shihua Cave temperature
reconstruction and simulated FGNs with H=0.838.

The particular hypothesis examined here is whether
the time series exhibitsH-self-similar behaviour as
claimed in past literature. The evidence in Figure (4)
is clearly that the time series is notH-self-similar.

As a parameter only has meaning in the context of a
model, if H is allowed to vary with time we are led
to consider the so-called multifractal models. These
models appear perfectly adequate. The evidence
from Table (1) is that each regime has a good fit
to an FGN, the lowest p-value being 0.26. Indeed,
seven of the 12 regimes show an improved fit by
using the within regimeH value rather than the
seriesH value. To further discriminate between FGN
and multiple regimes of short memory processes is
difficult because there is inadequate data to make
meaningful comparisons.

The alternative is to consider the types of models
proposed by Klemes (1974) in which the mean is
non-stationary. By considering a time-varyingH
we have already conceded that the series is non-
stationary inH. To demonstrate adequate levels of
statistical significance that the series is non-stationary
in the mean cannot be done directly. FGNs are
stationary models and Figure (5) shows that FGNs can
indeed model the changes in the mean in a perfectly
satisfactory manner.

However, by examining higher moments the FGN
model fails to adequately account for the data. In
particular the standard deviation evidence (Figure 7)
is problematic. It indicates the data within the regimes
is often more homogeneous that we would expect with
an FGN. If there is a structural break at the points
discovered by the regression tree we currently have no
way to predict the properties of the new regime. We
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Figure 5. Estimates of regime means for Shihua Cave
temperature reconstruction and simulated FGNs with
H=0.838.

must estimate them from the data.

7 CONCLUSION

The evidence is clear that the Shihua Cave
temperature reconstruction is not anH-self-similar
time series. It is also clear that some type regime
shifting model is appropriate for this data. But that
is the extent of what we can say from the data. We
cannot, at this stage, discriminate between shifting
regimes of short memory process or a multifractal
model.

The implications for the climate change debate are
minimal. There seems little doubt the current
rising global temperatures are occurring because of
increases in greenhouse gas concentrations as a result
of human activity. Discounting of theH-self-similar
model for this data leaves the doubters with one less
argument to support their case.
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