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In humans, damage to the mammillothalamic tract (MTT) as a result of localised strokes, 

tumours or alcohol abuse has consistently been implicated in the severe anterograde amnesia 

evident in these patients. This small neural pathway, which connects the mammillary bodies 

(MB) to the anterior thalamic nuclei (ATN), is thought to provide one important link in a 

larger extended hippocampal circuit involved in encoding and retrieval of episodic memory. 

Brain damage in clinical cases is, however, typically diffuse and contributions from 

additional sites of pathology cannot be ruled out. There are also inconsistencies within a 

limited animal literature on MTT lesions. The current study made MTT lesions in female rats 

and used multiple „episodic - like‟ memory tasks relevant to the proposed importance of this 

pathway. The project also intended to test whether enrichment reduces any impairments after 

MTT lesions. None of the lesions resulted in complete bilateral disconnection of the MTT, 

but many had moderate  to large bilateral (n = 6) (81% to 50%), or unilateral MTT damage (n 

= 4). Rats with bilateral lesions were compared to controls (n = 14, including 4 other lesion 

rats in which no lesion occurred). The severe working memory deficit in the water maze 

expected for rats with MTT lesion was not found and only a slight deficit in reference 

memory in the water maze was observed (so enrichment was not implemented). Although 

none of the bilateral MTT lesions were complete, they are also often incomplete in clinical 

cases and previous research has shown that lesions to the ATN in excess of 50% are 

sufficient to induce severe behavioural deficits in rats. Therefore, if the MTT is critical to 

memory then substantial but not total bilateral disconnection should be sufficient to induce 

profound deficits in rats, at least on spatial working memory. Taken together these findings 

suggest a less crucial role for the MTT in memory than previously suggested. Future research 

needs to resolve the inconsistencies observed in the animal literature by repeating the present 

study, using larger MTT lesions and both male and female rats.



 

 

1 

 

 

1. Introduction 

1.1 General  

Anterograde amnesia is characterised by a severely impaired ability to acquire new episodic 

information, that is after the onset of brain injury plus some retrograde amnesia. This 

debilitating disorder creates substantial burden for both patients and their families. In more 

severe cases patients may even forget their own marriages, births of their children, or the 

death of family members while anterograde memory can be virtually non-existent 

(Rosenbaum, Murphy & Rich, 2012).  Understandably there is confusion and frustration for 

the patient as their memory no longer corresponds to reality. This disorder results from 

damage to the medial temporal lobe, diencephalon or basal forebrain and prognosis is poor 

(Markowitsch & Staniloiu, 2012). There is currently no standardised therapeutic approach for 

human amnesic disorders. However, the ATN lesion animal model of diencephalic amnesia 

(Loukavenko, Ottley, Moran, Wolff & Dalrymple-Alford, 2007; Wolff, Loukavenko, Will & 

Dalrymple-Alford, 2008) suggests that exposure to enriched environments may help to 

attenuate memory deficits, while other work using the PTD model of Korsakoff‟s syndrome, 

which is associated with diecephalic injury, suggests that cholinomimetic drugs may be 

helpful (Savage, Hall & Rescende, 2012) 

As alluded above, the pathology associated with anterograde amnesia most commonly 

is found in two distinct brain regions, the medial temporal lobe and the diencephalon 

(Aggleton & Brown, 1999). Traditionally, medial temporal and diencephalic amnesias were 

often observed as two separate conditions. In fact, the core features of both medial temporal 

and diencephalic amnesia are strikingly similar. For instance, both share a particularly severe 

and persistent loss of new episodic learning, while other cognitive abilities, such as priming, 
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procedural learning and short term memory appear largely intact (Aggleton & Brown, 1999; 

Aggleton, 2008). The consistent symptomatic overlap observed between medial temporal and 

diencephalic amnesias was noted some time ago and led to the suggestion that the neural 

basis for episodic memory is represented by an extended memory circuit (Delay & Brion, 

1969).  In this extended memory system, areas of the hippocampal formation project via the 

fornix to the mammillary bodies and the ATN. The mammillary bodies in turn project 

information to the anterior thalamic nuclei (ATN) via the mammillothalamic tract (MTT) and 

the ATN project to the medial limbic cortex (Van der Werf, Jolles, Witter & Uylings, 2003a). 

The notion that these limbic structures function together in an integrated circuit had 

previously been raised in a different context in a paper by Papez (1939), but his focus was a 

limbic system circuit providing the basis of emotion, rather than memory.  

More recently Aggleton and colleagues (Aggleton & Brown, 1999; Aggleton, 2008) 

developed the formal hypothesis that an extended hippocampal system is critical for the 

efficient encoding and normal recall of new episodic information. From this perspective, 

damage to any component structure can result in anterograde amnesia. That is, damage to 

different parts of this system may produce similar memory impairments, although not 

necessarily identical ones, as some key structures will have a larger contribution to normal 

memory function (Aggleton & Brown, 1999). Later Aggleton (2008) made the important 

addition of a diaschisis effect throughout this extended memory system when any of its 

components received injury.  Diaschisis supposes that, in addition to the temporary effects of 

trauma, the mere disconnection of an area could induce impairment in the function of distal 

regions, especially those with strong functional connections, and that some of these 

impairments can be long lasting. The last claim followed extensive research showing hypo-

activation of immediate early genes (which provide an estimate of neural activation) in the 
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retrosplenial cortex, after lesions of the hippocampal formation, the ATN and the MTT 

(Jenkins, Vann, Amin & Aggleton, 2004; Poirier & Aggleton, 2009; Vann & Albasser, 2009).  

1.2 Critical Structures within the Medial Temporal Lobe and Diencephalon 

Figure 1.1 shows the key structures in both the diencephalon and the medial temporal lobe as 

well as the fibre tracts connecting the two structures. The diencephalon itself includes the 

thalamus, the hypothalamus and mammillary bodies. The fornix provides the primary link 

that connects the hippocampus to the ATN via two routes, the first directly through the fornix 

(a reciprocal route) and the second indirectly via the MB and MTT (Aggleton, 2008). 

Importantly, Vann & Aggleton (2003) suggest that it is critical to understand the role of the 

MTT because it is the only structure with connections confined within the Delay and Brion 

circuit. The MTT projects up from the lateral and medial MB to innervate and terminate in 

the ATN, but there is no reciprocal connection (Vann, 2010). Aggleton, Vann & Saunders 

(2005) have suggested that the ATN are the only efferent target of the MB and that the MTT 

must therefore reflect core aspects of MB function. Clearly, it is vital to understand the effect 

of both damage to the MTT itself and the nuclei that give rise to it. 

There is almost universal agreement that the critical region for temporal lobe amnesia 

is the hippocampal formation and its adjacent cortex (Aggleton & Brown 1999; Aggleton 

2008). Diencephalic amnesia, in the context of Wernicke Korsakoff syndrome, was 

investigated much earlier than temporal lobe amnesia yet its neural basis remains less certain 

(Aggleton 2008). Neuropsychological studies have failed to provide definitive evidence 

concerning the basis of diencephalic amnesia, primarily because such evidence would have to 

come from patients with well characterized amnesia that is pathologically restricted to just 

one brain structure and confirmed by post mortem (Aggleton & Brown, 1999; Van der Werf 

et al, 2003a).  Unfortunately brain injuries resulting from neurodegeneration or traumatic 

insults are often diffuse and non-specific making it difficult to attribute dysfunction to 
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individual structures. The various sub-regions implicated in diencephalic amnesia include the 

MB, the MTT and selective thalamic nuclei. Aggleton (2008) suggested that the MB and the 

ATN are of particular importance. This suggestion derives primarily from the conjunction of 

neuroanatomical and neuropsychological findings. These two diencephalic regions have an 

exceptionally close anatomical relationship. Despite the association of multiple subcortical 

regions with memory loss, the clinical evidence most consistently implicates the MTT/MB as 

among the most common diencephalic sites, as summarized below. 

  

 

 

 

Figure 1.1. Diagrammatic representation of the human limbic system showing the 

mammillary bodies, the mammillothalamic tract, and the anterior thalamic nuclei and the 

major fibre tracts running between them. Adapted from Aggleton, Omara, Vann, Wright, 

Tsanov & Erichsen (2010) pg, 2293. Specifically, it shows that the fornix connects the 

subiculum of the hippocampal formation to the ATN and MB and the MTT (circled in red) 

connects the MB to the ATN.  
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1.3 Thalamic Infarcts  

Cases of thalamic infarction are of significant interest as damage to the anterior portion of the 

thalamus not only disturbs the afferent nuclei of the MTT but often the trajectory of the MTT 

itself. Examination of the resulting dysfunction may help to elucidate the functional 

contribution of specific diencephalic structures. Although the studies that follow provide a 

compelling case for the involvement of the MTT in human amnesic syndromes, it must be 

stressed that in no case does disruption of the MTT occur in isolation. The close anatomical 

relationship between the MTT and its afferent structures the anterior thalamic nuclei of the 

thalamus means that concurrent damage to both structures is usually present.  

An excellent review by Van der Werf, Witter, Uylings & Jolles (2000) suggested that 

lesions restricted to the thalamic region regardless of aetiology can cause cognitive 

disturbances. The pattern of symptomatology present is not consistent among all cases of 

thalamic lesions with the resulting behavioural disturbances showing some regional 

specificity (Van der Werf et al 2000).  Van der Werf et al (2000) grouped cases according to 

the location of their lesions either in the anterior third of the thalamus, the middle third of the 

thalamus, or cases in which pathology extended into both the anterior and middle portions. 

They found that in all but two cases, regardless of group assignment, “the occurrence of an 

amnesic syndrome (was) associated with the lesioning of the MTT” (Van der Werf et al, 

2000, pg 622). This quote is important because it suggests that merely damaging the MTT is 

sufficient to induce the amnesic syndrome and implies that complete bilateral transection is 

not necessary. The relevance of the partial nature of this injury will become apparent later in 

the thesis.   

A later study by Van der Werf, Scheltens, Lindeboom, Witter, Uylings & Jolles 

(2003b) provided information on thalamic structures associated with executive function, but 

also attention, and confirmed the previously established structure function relationships for 
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memory.  Van der Werf et al (2003b) tested 22 cases of thalamic infarction on a fixed battery 

of tests so individual cases could be compared. MRI scans were taken from each patient and 

lesion sites were plotted both in standard stereotactic space and in an atlas of the thalamus. 

They found that memory performance within their group of patients varied from intact to 

severely impaired. A clear relationship between a specific kind of memory disorder, i.e. the 

amnesic syndrome, and structural damage to the MTT was found. Van der Werf et al (2003b) 

also suggested that, as the MTT contains fibres bound for the ATN, it is to be expected that 

infarctions affecting the ATN produce the same deficit as damage to the MTT, but AT 

infarctions are rarely encountered. No simple relationships were found between other 

thalamic structures and executive functioning or attention. 

A subsequent review by Carrera & Bogousslavsky (2006) examined the effect of 

anatomically distinct strokes in the thalamus on behaviour and reinforced Van der Werf et 

al‟s (2003b, 2000) findings. That is, they concluded that anatomic studies suggest that the 

amnesic syndrome results primarily from interruption of the MTT and its projections to the 

ATN and hence their influence on the cingulate gyrus, hippocampus, orbitofrontal and 

prefrontal cortex.  

A more recent review by Carlesimo, Lombardi & Caltagirone (2011) extended this 

earlier work by including a larger sample of patients and giving particular emphasis to 

Aggleton & Brown‟s (1999) recollection/familiarity distinction in the domain of declarative 

memory. Carlesimo et al (2011) examined 41 papers published between 1983 and 2009. 

These studies provided data on a total of 82 patients with lacunar infarcts in the mesial and 

anterior regions of the thalamus, both frequently associated with amnesic syndromes. Nearly 

all the patients with a neuroradiologically documented lesion to the MTT presented with a 

clinically relevant memory disorder confirmed by a formal neuropsychological evaluation. In 

agreement with Van der Werf et al (2000), Carlesimo et al (2011) also suggested that 
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complete bilateral disconnection of the MTT was not necessary to induce the amnesic 

syndrome. They state, “The presence of an amnesic syndrome (with both an anterograde and 

retrograde memory deficit) is strongly predicted by the involvement of the MTT” (Carlesimo 

et al, 2011, pg 787). Calesimo et al‟s (2011) study also lends support for Aggleton & 

Brown‟s (1999) conclusion regarding the extended hippocampal system as they found that 

the qualitative pattern of memory impairments observed after a focal lesion to the medial and 

anterior regions of the thalamus is very similar to that observed after medial temporal lobe 

damage. That is the chronic amnesic syndrome includes a prevalent deficit for long term 

anterograde memory, a less consistent deficit in long term retrograde memory and largely 

spared short term and implicit memory, but with relative sparing of familiarity based 

recognition memory. Carlesimo et al (2011) found that the data deriving from a few single 

case reports supported the hypothesis of a differential memory role of thalamic regions 

connecting to different areas of the medial temporal lobe. They suggested that the MTT/ATN 

axis is mainly implicated in recollective memory processes and that, by contrast, the ventro-

amdalofugal pathway/MD axis underlies familiarity processes.  

Two recent studies, Nishio, Hashimoto, Ishii & Mori (2011) and Edelystyn, Mayes, 

Denby & Ellis (2012), have provided partial support for the relationship between MTT 

damage and amnesia observed by Van Der Werf et al (2003, 2000) and Calesimo et al (2011). 

Support from these two studies was only partial because other circuits could not be ruled out 

or may have had an additional contribution to the deficit caused by the MTT damage alone.  

Despite the considerable evidence implicating MTT damage in clinically defined 

cases of the amnesic syndrome, not all reports of MTT damage have resulted in a memory 

deficit. Duprez, Serieh & Raftopoulos (2005) stereotactically implanted stimulation 

electrodes within the MB of three patients, passing through the MTT, in order to treat chronic 

refractory epilepsy. They state that none of the three patients experienced any memory deficit 
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either immediately after the surgical implantation, or during the global or elective 

stimulations. Additional comprehensive cognitive testing was performed all of which failed 

to reveal any early or delayed mental decline after implantation. Unfortunately, Duprez et al 

(2005) did not specify how many cognitive tests were performed or at which time points 

following implantation these were administered.  Duprez et al (2005) suggest that perhaps the 

lack of memory impairment can be attributed to the intact direct route from the hippocampus 

via the fornix to the ATN and this alternative pathway may explain why MB or MTT lesions, 

even if they are bilateral, are not as disruptive as ATN lesions. This work also suggests that 

when previous studies imply MTT involvement, the location of the injury might be such that 

fornix-ATN connections are also affected. 

1.4 Traumatic Brain Injury and Anterograde Amnesia. 

There are many case studies examining memory function after traumatic brain injury to the 

temporal lobes and other cortical sites. By contrast, reports of anterograde amnesia resulting 

from traumatic brain insults to the diencephalon are rare. Traumatic brain injury provides an 

important perspective as an exact time course for the insult can be established. Two cases are 

often cited in the literature (Squire, Amaral, Morgan, Kirtchovsky, & Press, 1989; Dusior, 

Kapur, Byrnes, Mckinstry & Hoare, 1990). While these cases are interesting to consider both 

are confounded because damage to multiple diencephalic sites occurred as a result of the 

penetrating injuries.  

Squire et al (1989) described patient N.A. who sustained a penetrating brain injury 

when a miniature fencing foil was thrust up his right nostril. A series of MRI studies 

conducted more than 20 years after the insult revealed three major areas of brain damage. A 

large lesion was observed in the left thalamus that interrupted the intralaminar and 

mediodorsal nuclei, but which also likely transected both the MTT and the post commissural 

fornix. The posterior hypothalamus was also markedly disrupted and the mammillary bodies 
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appeared to be missing bilaterally. There was also damage to the anterior temporal lobe 

which extended to the amgydaloid complex.  Patient N.A. presented with a verbal memory 

impairment that was considered to be unusually pure, differentiating him from patients with 

Korsakoffs syndrome. Additionally, unlike patients with Korsakoff syndrome, he showed 

good insight into his memory problem, accurately predicting his subsequent performance on 

a recognition memory test. Although Squire et al (1989) attributed the memory dysfunction to 

the internal medullary laminae and mammillothalamic tract damage many structures relevant 

to memory were disrupted by the trajectory of the penetrating object making attribution of the 

amnesic syndrome to a single structure difficult. 

The second key instance of diencephalic damage resulting in severe memory 

impairment concerned patient BJ (Dusior, Kapur, Byrnes, Mckinstry & Hoare, 1990). Patient 

B.J received a penetrating brain injury caused by a snooker cue which entered his left nostril 

into the basal regions of the brain. In the initial period after his injury his memory disorder 

had the clinical features of a dense amnesic syndrome with both retrograde and anterograde 

amnesia. However, formal memory testing 21 months after the insult showed marked verbal 

memory impairment, but relatively intact non-verbal memory and the retrograde amnesia had 

regressed to mainly affect the period 6 months before the injury. MRI showed bilateral 

damage to the MB. Importantly there was no damage to the body of the thalamus implicating 

MB injury as the primary cause of this memory loss.  

Aggleton and collegues (Aggleton, O‟Mara, Vann, Wright, Tsanov & Erichsen, 2010; 

Aggleton, 2008) have long suggested that an important consideration in understanding the 

functional relationship between temporal lobe amnesia and diencephalic amnesia depends on 

determining the role of the fornix, the major interlinking tract (see figure 1.1). A recent line 

of research by Tsivilis, Vann, Denby, Roberts, Mayes, Montaldi & Aggleton (2008) related 

fornix volume with memory impairment following the removal of colloid cysts. A colloid 
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cyst is a benign tumour that develops in the third ventricle adjacent to the fornix. These cysts 

are normally surgically removed, but this often causes substantial damage to the fornix 

accompanied by memory loss. Fornix status was assessed directly by fornix volume and 

indirectly by MB volume, as atrophy is observed in this structure following fornix damage. 

Overall fornix volume was not consistently correlated with memory performance. 

Unexpectedly Tsvilis et al (2008) found that MB volume significantly predicted the recall of 

episodic information and correlated significantly with 13 of 14 recall memory tests and 7 of 8 

memory indices. Furthermore individuals with colloid cysts and the smallest MB volume 

remaining performed significantly worse on tests of recall than those with the largest MB 

volumes. Another much older line of evidence for the involvement of the mammillary bodies 

and their efferent pathway in anterograde amnesia has come from the neurodegenerative 

disorder, the Wernicke Korsakoff syndrome.  

1.5 Wernicke’s Encephalopathy and Korsakoff’s Syndrome 

Wernicke‟s encephalopathy is an acute neuropsychiatric reaction to thiamine deficiency that 

is characterised by nystagmus (involuntary eye movement) and opthalmoplegia (paralysis of 

extraocular muscles), mental status changes and unsteadiness of stance and gait (Sechi & 

Serra, 2007, Kopelman, Thomson, Guerrini & Marshall, 2009).  It is diagnosed more 

commonly in alcoholics at post mortem than it is in life (Kopelman et al, 2009). Around 80% 

of those who survive Wernicke‟s encephalopathy develop the Korsakoff syndrome which is 

defined as a disproportionate deficit in memory relative to other features, due usually to 

thiamine deficiency. Thiamine (or vitamin B1) is an essential co-enzyme for intermediate 

carbohydrate metabolism, lipid metabolism and production of amino acids and glucose-

derived neurotransmitters such as GABA (Sechi & Serra, 2007). Wernicke‟s encephalopathy 

is most prevalent in patients who abuse alcohol, but also occurs in various illnesses where the 

absorption of nutrients has been compromised such as AIDs, anorexia nervosa (purging) and 
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peptic ulcers (Sechi & Serra, 2007). Brain lesions are often restricted to selective and 

vulnerable areas with a high thiamine turnover and can occur in as little as 2-3 weeks which 

correlates with the time taken to deplete the body‟s stores of thiamine as these are only 

sufficient for up to 18 days (Sechi & Serra, 2007). Sechi & Serra (2007) suggest that up to 

50% of patients have extensive midline pathology located primarily in the periaquaductal 

grey matter, the mammillary bodies and medial thalamus. Furthermore, autopsies show that 

approximately 82% of patients with mental status changes are associated with the 

involvement of the thalamus and the mammillary bodies (Sechi & Serra, 2007).  

The Korsakoff syndrome is characterised by a chronic and striking loss of everyday 

memory (Sechi & Serra, 2007). Patients with Korsakoff‟s present with severe anterograde 

amnesia and are unable to remember events even within the last half hour, but retain implicit 

learning so are still able to learn new motor skills or develop conditioned reactions to stimuli. 

A recent study by Jung, Chanrand & Sullivan (2012) suggested that mammillary body 

shrinkage is observed in upwards of 60-80% of neuorpathological studies and this damage 

has been proposed as a specific macroscopic lesion of Chronic Wernicke Korsakoff 

syndrome. However Jung et al (2012) also report that MRI findings show that mammillary 

body shrinkage has been observed in cases without amnesia and the correlations between 

mammillary body volume and memory impairment are inconsistent. 

Although mammillary body atrophy is most often associated with amnesia in the 

Korsakoff‟s syndrome, other diecenphalic structures have also been suggested to be critical. 

Victor, Adams & Collins (1989) argued that the mediodorsal nucleus of the thalamus was the 

only other structure together with the MBs to be affected in 100% of patients suffering from 

Korsakoff‟s or Wernicke Korsakoff‟s syndrome, therefore pointing to a possible role for the 

mediodorsal nucleus in the memory disturbances of these patients. More recently Harding 

Halliday, Caine & Krill (2000) reported that neurodegeneration in the anterior thalamus was 
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the only consistent lesion found in alcoholics with Korsakoff‟s, which differentiated them 

from other alcoholics with only Wernicke‟s encephalopathy.  These findings suggest that 

structural or neurochemical abnormalities within a wider circuit involving the mammillary 

bodies, mammillothalamic tract, and the anterior thalamus may account for the anterograde 

amnesia observed in Wernicke Korsakoff syndrome (Sechi & Serra, 2007). Recently however 

the MTT has been directly implicated in memory impairment associated with Wernicke‟s 

encephalopathy. 

Kim, Ku, Namkoong et al (2009) compared 7 chronic alcoholics recovering from 

Wernicke‟s encephalopathy, with 14 alcoholics without Wernicke‟s encephalopathy and 14 

healthy controls. The participants underwent functional connectivity fMRI scans, as well as 

verbal and non-verbal memory tests. A resting state functional connectivity strength between 

the ATN and the MB was generated over the duration of a five minute viewing task. Kim et 

al (2009) found the memory function in patients recovering from Wernicke‟s encephalopathy 

paralleled the level of MTT connectivity between the MB and ATN.  

A follow up study by Kim, Ku, Jung et al (2010) reinforced this finding by showing 

that improvement in delayed verbal and non-verbal recall memory after high dose thiamine 

replacement therapy paralleled MTT function connectivity between the MB and ATN. Kim et 

al (2010) followed an individual with Wernicke‟s encephalopathy over 20 months both 

before and after high dose thiamine replacement therapy. A direct transfer function analysis 

showed significant information flow between the MB and thalamus (in the direction of the 

thalamus) except in the acute illness state.  

Collectively, the mounting clinical evidence concerning anterograde amnesia 

following damage to the diencephalon, whether from stroke, trauma or neurodegeneration, all 

suggest a critical role for the MTT and MB in normal episodic memory function. Although 

the MTT and MB are the most consistently involved regions in the human amnesic syndrome 
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it is impossible to rule out the involvement of additional structures and/or neural circuits. 

This is especially true in Korsakoff‟s syndrome as thiamine deficiency causes diffuse change 

throughout the brain. This highlights the need for animal studies that can create localised 

lesions in single structures within the brain and measure the behavioural changes that result in 

order to elucidate specific functional importance of these structures.  The next section 

summarizes the findings of animal models of diencepahlic amnesia, including thiamine 

deficiency and lesions to the ATN, MB and MTT. Particular consideration is given to the MB 

and MTT because of their consistent implication in a clinical setting.  

1.6 Animal Models of Diencephalic Damage 

1.61 Thiamine Deficiency 

 A recent review by Savage (2012) shows that animal models of thiamine deficiency have 

increased understanding into the mechanisms associated with thiamine deficient 

neurodegeneration. These animal models are the result of treatment with the thiamine 

antagonist pyrathiamine (PTD). Similar to patients with Wernicke Korsakoff syndrome, the 

pathology induced in the PTD rat model is relatively diffuse and in addition to diencephalic 

damage there is also damage to major white matter tracts including the corpus callosum and 

the internal capsule (Vann, 2010). Savage (2012) suggests that induced neuropathy to three 

diencephalic regions, the AT, internal medullary laminae and the MB, primarily affect the 

performance of tasks that have heavy demands on spatial episodic working memory, but 

generally spare short term and implicit memory. PTD in rats also disrupts hippocampal and 

cortical acetylcholine and noradrenalin levels (Vann, 2010; Savage, 2012).   

1.62 The Anterior Nuclei of the Thalamus 

 In contrast to the human literature, studies in rats and monkeys have shown that damage to 

the anterior nuclei more consistently leads to more severe memory deficits than lesions of the 

MTT or MB. These deficits can be seen in paradigms of delayed non-matching to place, 
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delayed non-matching to sample, associative memory, allocentric learning and radial maze 

learning (Aggleton & Mishkin, 1983; Aggleton, Hunt, Nagle & Neave, 1996; Byatt & 

Dalrymple-Alford, 1996; Sziklas & Petrides, 1999; Mitchell & Dalrymple-Alford, 2005; 

Loukavenko et al, 2007). 

1.63 A Therapeutic Approach to Diencephalic Damage 

Recent research has suggested that enriched environments may provide a possible therapeutic 

approach to diencephalic damage (Loukavenko et al, 2007; Wolff et al, 2008). Loukavenko et 

al (2007) found ATN lesions in rats housed in standard cages produces long-lasting memory 

deficits, but these were ameliorated by postoperative exposure to enriched environments. 

Loukavenko et al (2007) found regardless of latency, either at day 5 (expt 1) or day 40 (expt 

2) exposing rats to an enriched environment after bilateral ATN lesions dramatically 

improved their spatial working memory compared to ATN standard housed rats. Correct 

performance in the tasks used required the rats to visit the alternate arm in a cross maze from 

that previously visited on the sample run of the trial. This cross-maze task controls for the use 

of egocentric cues. Additionally, the spatial memory gains observed in experiment 2 were 

maintained for 4 months post-surgery despite no further enrichment. 

  Subsequently, Wolff et al (2008) compared allocentric spatial memory (the use of 

relational spatial representations) recovery in rats with ATN lesions housed in enriched 

environments compared to lesion rats housed in standard environments. Rats were tested also 

on reference memory task in the water maze which used a fixed start point and fixed 

platform, followed by probes from novel start points. Wolff et al (2008) found that standard 

housed rats with ATN lesions showed a substantial deficit when probe trials utilised a novel 

starting position, whereas the ATN enriched rats‟ performance only mildly decreased when 

the novel probe trials were introduced, demonstrating that the latter rats were able to make 

flexible use of their spatial representation of the test room. 
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1.64 The Mammillary Bodies 

Despite being consistently implicated in amnesia resulting from Korsakoff‟s syndrome, the 

functional contribution of the mammillary bodies to memory is still not clear (Vann & 

Aggleton, 2004). Table 1.1 summaries a number of studies that tested either mice or rats in 

spatial memory tasks following MB lesions. The crucial observation from table 1.1 is that 

lesion studies that have involved ablation of the MB to varying degrees do not always 

produce consistent results. Lesion size seems to be an important consideration, with the 

greatest deficits being observed when the lesions extend beyond the MB to include adjacent 

structures and fibre tracts (Sziklas & Petrides, 1993; see table 1.1). 

 The effects of MB damage are not as severe as a hippocampectomy, and typically less 

severe than ATN damage. The resulting deficit of MB lesions also seems to diminish with 

training although possibly through the use of alternative routes/ strategies (Vann & Aggleton, 

2004). Traditionally, theories of MB function emphasised their connections with the 

hippocampal formation as the MB receive substantial input via the fornix from the 

hippocampus. Thus they were thought to provide a relay, passing information from the 

hippocampus to the ATN (Vann, Erichsen, O‟Mara & Aggleton, 2010).  

 A recent study by Vann et al (2010) suggests that the medial MB may have unique 

input into this memory system. Vann et al (2010) cut the descending component of post-

commissural fornix, which disconnects the dorsal subiculum from the MB, thus leaving intact 

the direct connection between the dorsal subiculum and the ATN. If the MB were an 

important hippocampal relay, then severing the post-commissural fornix should induce a 

marked behavioural deficit. In contrast, they found that cutting the post-commissural fornix 

only had a mild or sometimes no apparent effect on performance of spatial memory tasks, 

much less than impairments found previously after direct MB or MTT lesions (Vann & 
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Aggleton, 2003). Hence, the MB and MTT appear to have an independent contribution to the 

extended hippocampal memory system.  

 Additionally, Aggleton et al (2010) reported that connections from the subiculum to 

the MB and ATN arise from two different populations of subicular neurons. Furthermore, the 

segregated property of the subiculum extends dorsally into the retrosplenial cortex and 

ventrally into the entorhinal cortex as well as the post-pre and para-subiculum. Wright, 

Erichsen, Vann, O‟Mara & Aggleton (2010) suggest that hippocampal projections via the 

fornix to the MB and ATN are potentially capable of providing independent information 

despite the strong likelihood of a convergence in the ATN. 

The behavioural deficit following MB damage is suggested to be a result of the loss of 

head direction information, and/or the disruption of theta rhythms (Vann & Aggleton 2004). 

Head direction cells aid navigation by selectively firing when a rat is facing a certain 

direction on a horizontal plain (Vann & Aggleton 2004). These cells are concentrated in the 

lateral mammillary bodies and form a system with the dorsal tegmental nucleus (Dtg) and the 

anterior dorsal nucleus of the ATN. Theta activity refers to the regular bursts of firing of 

cells, which in conjunction give rise to theta rhythms. The interest in theta rhythms arose 

from their possible links with memory. For example Vann & Aggleton (2004) state that long-

term potentiation in the hippocampus can be elicited by stimulation at theta frequency. 

Therefore theta activity may act as a significance signal. Additionally recordings made in the 

medial MB reveal neurons that fire rhythmically in phase with hippocampal theta, thus the 

medial MB are considered to relay hippocampal theta rhythms to the ATN and beyond (Vann 

& Aggleton 2004).  

As selective disconnection of the fornix innervation to the MB did not result in “MB 

or MTT like” lesion deficits (Vann et al, 2010), another line of research has examined the 

behavioural outcomes of lesions to the ventral tegmental nucleus of Gudden (Vann, 2009). 
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This nucleus projects to the medial mammillary bodies via the mammillotegmental tract a 

route which is reciprocal. Rats with VTNg lesions were tested on a battery of standard 

memory tasks including the t-maze, water maze and radial arm maze (RAM). Vann (2009) 

found that VTNg lesions appeared to produce deficits on the same array of spatial memory 

tasks and to a similar degree as medial mammillary nucleus lesions. This study suggests that 

the VTNg and not the fornix afferents to the MB maybe critical to normal memory function. 

Unfortunately there is only one reported case of a man with amnesia that was attributed to 

pathology in the VTNg region (Goldberg, Antin, Bilder, Gerstman, Hughes & Mattis, 1981).  

 In contrast to the large amount of experimental research that has been conducted into 

the functional contribution to memory of the MB and the ATN, there has been little research 

directed at the MTT specifically. Given the mounting clinical evidence consistently 

implicating the MTT in cases of amnesia it would be a logical step to examine in detail the 

behavioural effects of MTT transection in an animal model. Table 1.2 shows the scarcity of 

the animal research examining the effects of “selective” MTT lesions conducted to date. 

Unfortunately vast differences in lesion methodology and histological outcome make the 

three earlier studies hard to interpret. Lesions in these studies ranged from small (Kreickhaus 

& Randall, 1968) to large lesions surrounded by large areas of necrotic tissue (Field et al, 

1978 and Thomas & Gash, 1985). The later studies (Vann, Honey & Aggleton, 2003; Vann & 

Aggleton, 2003) seem to have taken more care to minimise damage to the tissue surrounding 

the MTT. However these studies only confirmed this observation with a nissl stain. 

Considering the MTTs consistent implication in human amnesia it is surprising that no 

primate studies creating MTT lesions have been conducted to date.
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Year Authors Lesion site/s Lesion 

method 

Behavioural  tasks Deficits 

2005 Vann LMN Ibotenic  

acid 

1. T-Maze WM  

2. Water maze WM 

LMN not impaired on #1, impaired on #2 

2001 Gaffan, 

Bannerman, 

Warburton, 

& Aggleton 

FX 

MB 

ATN 

RH 

Severed 

NMDA 

NMDA 

NMDA 

1. Visual scene discrimination RH not impaired on #1 

Fx, ATN and MB enhanced performance on #1 

1999 Santin, 

Rubio, 

Begega, & 

Arias 

MB Electrolytic Water-maze 

1. Reference memory 

 

MB not impaired on #1 

1997 Neave, 

Nagle, & 

Aggleton 

 

MB 

FX 

CCB 

NMDA, 

Radio 

frequency 

1.T-maze,  

2.Cross maze  

3. RAM 

MB impaired on #1, #2 & #3 but not in #2 & 

#3 in egocentric discrimination. 

 FX/CCB impaired on #1 and #3, but not #2 

1995 Aggleton, 

Neave, 

Nagle, & 

Hunt 

ATN 

MB 

FX 

NMDA 

NMDA 

Radio 

frequency 

T-maze 

1. Forced Alternation task 

2.Object recognition 

ATN impaired on #1 

MB impaired on #1 

FX impaired on #1 

1993 Sziklas & 

Petrides 

 

MB 

MB-R 

Hipp 

A 

Electrolytic 

Electrolytic 

Electrolytic 

Electrolytic 

1.RAM (working memory) 

2. RAM extended ITI 

3. non-spatial DNMS 

4. Conditioned taste aversion 

 

MB no impairment on #1, #2, #3 or #4 

MB-R impaired on #2, but not #1,#3 or #4 

Hipp impaired on #1 & #2 (not tested on #3 & 

#4) 

A no deficit on #3 but impaired on #4 

1990* Beracochea, 

& Jaffard 

MB Ibotenic 

acid 

T-Maze 

1.Spontaneous Acquisition 

2. Sequential delayed alternation 

MB impaired on #1 but not #2, until ITI‟s 

extended from 50s to 3mins 

 

Table 1.1 Summary of studies on spatial memory tasks in rats following MB lesions 
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Abbreviations: ATN = Anterior Thalamic Nuclei, FX= fornix, FF= fimbria fornix, EC= entorhinal cortex, DG=dentate gyrus, NAcc =nucleus 

accumbens, MB= mammillary bodies, MMn= medial mammillary nucleus, LMn=lateral mammillary nuclei, MS= medial septum, CCB = 

cingulum bundle, RH= retrohippocampal region, Hipp = hippocampus, MB-R= mammillary body region (includes supramammillary nucleus 

and fibre tracts), A=amygdala, RAM = radial arm maze, DNMS = delayed non-matching to sample and  NMDA= N-Methyl-D-Aspartic acid 

(neurotoxin) 

* indicates studies that used mice.

1989 

 

 

 

 

Sutherland & 

Rodriguez 

FF 

ATN 

NAcc 

MS 

MB 

Electrolytic Water-maze, Reference memory 

1. Retention 

2. Acquisition 

FFC impaired on #1 and #2 

NAcc impaired on #2 

ATN impaired on #2 

MB modest impairment on #2 

MS modest impairment on #2 

1987* Beracochea 

& Jaffard 

 

MMn Radio 

Frequency, 

or Kainic 

acid 

T-Maze  

1.Spontaneous Alternation (S.A) 

2.S.A reduced ITI 30s to 5sec 

3.Adding external cue 

MM impaired on #1 not on #2 or #3  

1984 Jarrad, 

Okaichi, 

Steward & 

Goldschmidt 

FF 

EC 

DG 

MB 

Electrolytic 

Electrolytic 

Colchicine 

Electrolytic 

RAM 

1. Place task 

2. Cue task 

FF impaired on #1 and #2 

EC impaired on #1 and #2  

DG not impaired on #1 or #2 

MB not impaired on #1 or #2 
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1.7 The Mammillothalamic tract 

1.71 Anatomical Trajectory and Connectivity of the MTT 

Efferent fibres of the MTT project from both the medial and lateral mammillary nuclei to all 

three elements of the anterior nuclei of the thalamus (Powell & Cowan, 1954; Cruce, 1975; 

and Seki & Katuyazyo, 1984). More specifically, the medial mammillary bodies project 

unilaterally via the MTT to both the anterior medial and anterior ventral nuclei, while the 

lateral mammillary bodies project bilaterally to the anterior dorsal nuclei of the thalamus 

(Cruce, 1975). Furthermore, it is believed that the neurons contained within the various nuclei 

of the mammillary bodies have very few, if any, interconnecting neurons suggesting that their 

primary function is to pass information on to the ATN (Vann & Aggleton, 2004).  

1.72 The Developmental Course of the MTT in the Rat Brain 

Recently Alpeeva & Makarenko (2009) described the schedule of mammillothalamic tract 

development in the rat by using carbocyanine dye tracing. The fibres of the MTT are initially 

formed as collaterals of the mammillotegmental tract, and axons start bifurcating from the 

mammillotegmental tract 17 days after fertilization (E17). Subsequently the MB axons of the 

MTT grow simultaneously and reach the ventral region of the anterior thalamus where they 

first start to form terminal arborisations from E 20-21. Ipsilateral projections form the medial 

mammillary nucleus to the anteromedial and anteroventral thalamic nuclei develop from E20 

to post-natal day 6 (P6). Finally the bilateral projections from the lateral mammillary bodies 

to the anterodorsal nuclei develop later, between P3-P6, after the formation of the thalamic 

decussation of the mammillary body axons. Alpeeva & Makarenko (2009) suggest the 

possible importance of timing in the development of the MB fibres within the MTT, because 

it had previously been shown that the neurons of the thalamus develop between E15 and E17 

and separate thalamic nuclei can be defined by E21. As later development in the thalamus 
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coincides with MTT development Alpeeva & Makarenko (2009) suggest that the unique 

spatial and temporal pattern of the perinatal development of the ascending mammillary body 

connections to the ATN may reflect the importance of these connections within the limbic 

circuitry. 

1.73 Behavioural Studies 

The three early studies shown in table 1.2 (Krieckhaus & Randal, 1968; Field et al, 1978 and 

Thomas & Gash, 1985) are confounded by considerable variation in lesion size. For example 

Kriekhaus & Randall (1968) produced relatively localised MTT lesions that did not 

substantially encroach on surrounding areas. In contrast Field et al (1978) and Thomas and 

Gash (1985) both had very large lesions extending significantly beyond the outer boarder of 

the MTT.  All three studies conducted their behavioural testing in the T-maze apparatus, but 

only Thomas & Gash (1985) used a working memory task.  

The behavioural procedures adopted by third Kreickhaus & Randall (1968), are hard 

to interpret due to lack of detail and poor rationale. The simplest interpretation is they were 

trying to measure whether MTT lesions interfered with behavioural flexibility between days 

and between trials.  In their first experiment Kreickhaus & Randall (1968) trained rats to go 

to a single place, either the left of the right arm of the t-maze for water. Training for each day 

concluded when rats had successfully entered the correct arm for ten consecutive trials. For 

each day of training thereafter the correct arm was reversed from the previous day. 

Kreickhaus & Randall (1968) found rats with bilateral MTT lesions showed no decrement in 

daily alternation compared to controls. The first task seems to suggest that rats with MTT 

lesions were able to alter their behavioural strategy between days at a level comparable to 

controls. For their second experiment both arms were initially rewarded and the rat was 

allowed free choice. Following this trial the rat had to alternate to the opposite arm in order to 

receive water. If the rat failed to alternate and went to the same arm twice it was allowed to 
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go to the correct arm (an informing trial) and on the next trial the rat was required to visit this 

arm again before returning to alternating. Rats with MTT lesions were found to be 

significantly inferior at returning to the rewarded arm on a trial after an informing trial (i.e. 

failure to persevere). The results of this second task are somewhat difficult to interpret as not 

returning to the same arm on a trial after an informing trial suggests the adoption of the 

“correct” alternation strategy necessary for the main task, whereas the control rats seem to 

show a perseverance of behaviour returning to the previously rewarded arm. Kriechaus & 

Randall (1968) concluded that the findings of their two experiments offer no support for the 

notion that the MTT mediate short-term memory. 

Field et al (1978) compared the behavioural outcomes of MB, mammillotegmental 

tract (MTg) and MTT lesion rats on a massed alternation task in the t-maze. In this task the 

rats were initially given a choice trial where they could select either arm for a water reward 

following which they had to alternate across the subsequent 20 trials. The completion 

criterion was set at 18 of 20 responses correct over two days. Testing was terminated if the rat 

had not reach criterion at the end of day eight.  All lesion groups made significantly more 

errors compared to control rats in this task and there were no differences between the lesion 

groups. Field et al (1978) also measured ambulation in the open field, as hyperactivity is 

commonly reported after lesions to the hippocampus and fornix. Both the MB and MTg 

lesion rats showed significantly increased levels of activity compared to controls. By contrast 

the MTT group seemed relatively lethargic, initially showing less activity than the control 

group; however, this difference was not significant.  

A later study by Thomas & Gash (1985) used a standard delayed non-matching to 

place procedure in the t-maze. In this procedure each trial consists of two parts, a forced run 

and a choice run. In the forced run one of the arms is blocked off forcing the rat to enter the 

open arm for a food reward. The rat was then immediately returned to the starting area for the 
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choice run. In the choice run the block was removed and both arms were open. A correct 

choice required the rat to alternate from the forced run and enter the previously closed arm. 

Thomas and Gash (1985) found that with sufficient training the initial severe deficit they 

observed in MTT lesion rats substantially improved. In fact five of the nine rats that sustained 

complete bilateral damage to the MTT eventually (after 72 trials) reached a high level of 

performance 80% + correct.  In the remaining four, two reached 80% + performance but not 

consistently and the other two showed near chance performance for the entire testing period. 

No effect of partial MTT lesions was observed. Partial lesions included any damage that 

failed to destroy the MTT bilaterally, ranging from complete sparing to unilateral MTT 

destruction. 

More recent studies made a concerted effort to clarify the behavioural impact of MTT 

lesions with the addition of well validated paradigms and more localised and consistent 

lesions (Vann & Aggleton, 2003; Vann, Honey & Aggleton, 2003). Vann & Aggleton (2003) 

compared both MB and MTT lesion rats to sham operated controls in the t-maze, radial arm 

maze and water maze. As indicated in Table 1.2 MB and MTT lesions impaired acquisition 

of all three spatial tasks but a closer examination of the results suggests a more complex 

story. The performance deficits found in t-maze alternation for both lesion groups were only 

transient (as in Thomas & Gash, 1985) and over the final four days of testing (12 days in 

total) there were no significant differences between the lesion and control groups. 

Furthermore, when proactive interference was increased for this task by using massed trials 

accuracy decreased for all groups, but neither lesion group was differentially affected by this 

manipulation and remained at control levels. The MTT group showed a more persistent 

deficit in the radial arm maze (RAM) whereas the MB rats were only impaired for the first 

few sessions. With training, both lesion groups improved on the RAM but subsequent maze 

rotation showed that neither lesion group performed the task in the same way as the control 
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group, which suggests, that the transient impairment on this task may have hidden a more 

permanent abnormality in spatial learning. The most robust behavioural deficit for MB and 

MTT groups was observed during the delayed matching to place working memory procedure 

in the water maze. Both lesion groups had significantly longer escape latencies than the 

control group, but there were no significant differences between the MB and MTT groups 

over the 12 days of standard testing. Increasing the interference in the water maze by 

extending the inter trial interval between trial 1 and 2 to 30 minutes only revealed a 

significant effect of group when examined with path length. There was also a significant 

effect between MTT and control when water maze testing was conducted in a novel room.  

This study suggests that damage to the MTT/MB impairs the learning of new spatial tasks but 

does not necessarily increase sensitivity to proactive interference or delay. According to 

Vann & Aggleton (2003) this pattern of results points to an encoding deficit for spatial 

memory tasks that includes learning new locations in familiar settings.  

 Vann, Honey & Aggleton (2003) extended the previous study in the same rats (Vann 

& Aggleton, 2003) by showing that MTT lesions disrupted the acquisition of a contextual 

conditioned discrimination when visual cues served as context, but not when thermal cues 

were used. Importantly, as in their previous study, acquisition was retarded but not precluded 

altogether. The findings from this study indicate that MTT lesions may have a 

disproportionate influence on the encoding of visuospatial information rather than resulting in 

a general deficit in encoding or using contextual information per se. As the same rats as in 

Vann & Aggleton (2003) were used the rats already had extensive training on spatial tasks in 

the t-maze, RAM and water maze.  

During the course of the present study in this thesis a recent paper by Winter, Wagner, 

Mc Millin & Wallace (2011) came to light suggesting that the MTT may not be as crucial in 

spatial learning as the last two studies suggested. Winter et al (2011) examined the effect of 
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MTT lesions on spatial orientation in the food hoarding paradigm and in the water maze. In 

the food hoarding paradigm rats carried items of food to a refuge under conditions where 

access to various environmental cues was controlled. In this procedure the MTT lesion rats 

were only found to be impaired when having to rely on self-movement cues to return to the 

refuge, but not when having to rely on the use of environmental cues. Following the food 

hoarding procedure rats were trained on a standard reference memory and a delayed matching 

to place task in the water maze. In the reference memory task, MTT lesion rats had 

significantly longer escape latencies over the 5 days of testing compared to control and 

unilateral lesion rats. Further examination suggests this effect was weak as the bilateral lesion 

group showed similar level of performance to controls and the unilateral group on days 1, 2 

and 5. It is entirely possible that given an extended training period the group difference would 

not persist. Unlike Vann & Aggleton (2003), Winter et al (2011) found no effect of group in 

the previously sensitive delayed non-matching to place task across the four days of testing. 

There was an indication that rats with bilateral MTT lesions out performed both the control 

and unilateral lesion group on trial 1 of this task. This may suggest an increased swim speed 

or more effective swim strategies.  

1.74 Suggestion of Circuit Wide Dysfunction Following MTT Damage 

As alluded to previously, the concept of diaschisis suggests that damage to one part of the 

brain can affect a wider neural circuit. Vann & Albasser (2009) recently examined how MTT 

damage may influence the wider memory system. They measured the impact of MTT lesions 

on the expression of c-fos, an immediate early gene (IEG), in three key regions: the 

hippocampus, the prefrontal cortex and the retrosplenial cortex. Vann & Albasser (2009) 

found that MTT damage produced pervasive c-fos hypoactivity in the hippocampus, 

retrosplenial cortex and prelimbic cortex sites, which have all been critically linked to the 

encoding and recall of episodic memory. Furthermore this study suggests that c-Fos 



 

 

26 

 

hypoactivity can occur in the hippocampus or retrosplenial cortex without direct 

deafferentaion, as the MTT is only indirectly connected to these two regions. Vann & 

Albasser (2009) concluded that as MTT lesions that produced severe persistent deficits on 

tasks such as delayed matching to place in the water maze, in the Vann & Aggleton (2003) 

study, a task which is sensitive to hippocampal and retrosplenial cortex lesions, it is possible 

that MTT lesion effects on c-fos underlie functional disturbances in this network of 

structures.
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Year Authors Lesion 

site/s 

Lesion 

method 

Behavioural  tasks Deficits 

2011 Winter, 

Wagner et 

al  

 

MTT Electrolytic 1. Food Hoarding Paradigm  

Water maze 

2. reference memory 

3. DNMP 

MTT impaired on #1, but only when using self-movement 

cues, 

Impaired on #2, no impairment on #3 

2003 Vann & 

Aggleton  

 

MTT, 

MB‟s 

Radio 

frequency, 

NMDA 

T-maze 

1. DNMP 

Radial Arm Maze 

2. DNMP 

Water maze 

3. DNMP 

MTT transient deficit on #1, deficit in #2 & #3 

MB transient deficit on #1, no deficit on #2, deficit on #3 

 

2003 Vann, 

Aggleton & 

Honey 

MTT Radio 

frequency 

Contextual discrimination 

1. Spatial cues 

2. Thermal cues 

MTT impaired acquisition on #1, but not on #2 

 

1985 Thomas & 

Gash 

 

MTT Electrolytic T-maze 

1. DNMP 

MTT transient deficit on #1 

1978 Field, 

Rosenstock, 

King and 

Greene 

 

MTT 

MTg 

MB 

Electrolytic 

Electrolytic 

Electrolytic 

1. T-maze, massed trials 

2. Ambulation in the open field 
 

MTT impaired on #1, equivalent to control on #2. 

MTg impaired on #1, hyperactivity on #2 

MB impaired on #1, hyperactivity on #2 

1968 Krieckhaus 

& Randall 

 

MTT Electrolytic  T-maze 

1. Alternation between days 

2. Alternation between trials 

MTT not impaired on #1, but impaired on #2 

Abbreviations: MTT = mammillothalamic tract, MTg = mammillotegmental tract, MB = mammillary bodies, DNMP = delayed non-matching to 

place, and NMDA = N-Methyl-D-Aspartic acid (neurotoxin). No mouse studies in this table. 

Table 1.2 Summary of studies on spatial memory tasks in rats following MTT lesions  
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1.8 Aims of the Present Study 

There is considerable clinical evidence consistently implicating the mammilothalamic tract in 

cases of anterograde amnesia. Despite these clinical findings there are few studies examining 

the behavioural effects of MTT lesions in animal models. Some of the scant early studies are 

hard to interpret because of the tasks used and large variations in non-target damage. More 

recently, Vann & Aggleton (2003) found rats given restricted MTT lesions showed a 

substantial acquisition deficit in working memory versions of the t-maze, radial arm maze 

and especially water maze. A subsequent study also found a deficit in spatial contextual 

discrimination following MTT lesions (Vann, Honey & Aggleton, 2003).  A recent study 

however (Winter et al, 2011) did not support Vann & Aggleton‟s (2003) findings. As the 

behavioural deficits following MTT lesions may be similar to those observed after ATN 

lesions, together with evidence that these structures are strongly connected, it is also 

reasonable to assume that enriched environments would ameliorate the behavioural deficits 

associated with MTT lesions in a similar manner to that observed after ATN lesions. If 

environmental enrichment is hoped to provide a therapeutic approach for anterograde 

amnesia in humans, then it is important to validate a similar effect in the MTT, the structure 

most often implicated in human diencephalic amnesia.  

 The primary aim of the present study was to create localised lesions to the MTT in 

line with those of Vann & Aggleton (2003) and Winter et al (2011). Furthermore as this study 

intended to expose half of the lesion and half of control rats to enriched environments it was 

important to establish a behavioural deficit before examining recovery effects associated with 

enrichment. For this reason the delayed non-matching to place procedure in the water maze 

was the primary task investigated as Vann & Aggleton (2003) found this task to have the 

most robust behavioural deficit for both MTT and MB lesion groups. This task was run in 

two parts: phase one which followed Vann & Aggleton‟s (2003) procedure in an attempt to 
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replicate their results. In phase two, instead of being tested individually with massed trials, 

rats were tested in squads of three (plus one group of four), all rats in a squad completing one 

trial before moving on to the next.  

Standard reference memory testing in the water maze was used to clarify the effect of 

MTT damage on this task. Rats with lesions to the ATN showed a persistent and severe 

impairment on this task (Warburton, Morgan, Baird, Muir & Aggleton, 1999; Warburton & 

Aggleton, 1999; Lopez, Wolff, Le Courtier, Cosquer, Bontempi, Dalrymple-Alford & Cassel, 

2009; Wolff et al, 2008), but rats with lesions to the mammillary bodies show only a transient 

deficit on this task (Sutherland & Rodriguez, 1989). A weak effect was observed for MTT 

lesions on this task (Winter et al, 2011), but testing was not conducted long enough to draw 

absolute conclusions.  

It is also possible that the MTT plays a role in memory long term memory 

consolidation. Thus, following reference memory training the rats were pseudo randomly 

assigned to a 5 day or 25 day retention interval after which they completed a probe trial, 

testing memory consolidation of the last experienced platform location. Lopez et al (2009) 

found that rats with rostral intralaminar thalamic lesions showed no deficit in acquisition of 

the reference memory task or on a probe trial 5 days post-training, but were significantly 

impaired on a probe trial 25 days after reference memory training. It is possible that the ATN 

also contribute to consolidation of memory, but rats with ATN lesions performed so poorly 

on the reference memory task that detecting any differences in later probe trials was not 

feasible. 

Previous studies giving MTT lesions have found a transient deficit on the delayed-non 

matching to place procedure in the t-maze, but only in the simpler version of this task (Vann 

& Aggleton, 2003; Thomas & Gash, 1985). Because both components of a trial, the sample 

and choice run, were started from the same end then the rat can use egocentric (body turn) 
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information to correctly alternate from the sample to choice run. The present study 

substantially increased task demand by using a t-maze embedded in a cross-maze. This meant 

that the sample and choice runs of each trial could be started from any of two opposite ends. 

To maximise rewards the rat must use allocentric and directional (environmental) information 

to alternate when the choice run starts from an opposite start area to that used for the sample 

run. Rats with ATN lesions show a substantial deficit in this task and control rats take longer 

to learn this task than they do the simple version (Loukavenko et al, 2007).  

Diencephalic amnesia in the clinical setting is characterised by a severely impaired 

ability to acquire new episodic information (Aggleton, 2008). It is therefore important to test 

rats with tasks with some analogy to episodic memory. Episodic memory essentially 

comprises three subcomponents, “what”, “when” and “where” (Tulving & Markowitsch, 

1998).   A recent study using an object recognition task compared mice with hippocampal 

and prefrontal cortex lesions to controls using a combination of two different sets of four 

identical objects (Devito & Eichenbaum, 2010). Including this procedure also allows a test of 

Aggleton & Browns (1999) extended hippocampal memory system as MTT lesions would be 

expected to show a similar albeit reduced pattern of results. Mice with hippocampal lesions 

were found to be significantly impaired on all three components compared to controls, 

whereas mice with PFC lesions were only impaired on the “where” component. Object 

recognition tasks rely on the rodent‟s innate preference for novelty, and as such these tasks do 

not require any extensive pre-training and are relatively quick to administer.  

Exposure to four objects concurrently may diminish rats‟ performance on components 

of the episodic memory task, so further testing broke this task down in to its constituent parts, 

only requiring the rats to discriminate between two objects. The object location test replicated 

the “where” component of episodic memory. For this task the rats had to discriminate a 

moved object from a stationary one. Previous studies have found lesion to the fornix, 
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cingulate gyrus and (Ennaceur, Neave & Aggleton, 1997) hippocampus (Mumby, Gaskin, 

Glenn, Schramek & Lehmann, 2002) significantly impaired performance on this task. The 

temporal order task replicated the “when” aspect of the episodic memory task exposing rats 

to two different previously experienced objects; they then had to discriminate the “older” 

object from the more “recent” one. In contrast to the hippocampal findings of De Vito and 

Eichenbaum (2010) a previous study reported that rats with ATN lesion were not impaired at 

discriminating between an earlier and more recently presented object (Mitchell & Dalrymple-

Alford, 2005) 

 As well as including tasks that would be expected to show a deficit in the lesion group 

it is also helpful to include tasks that should not show a difference between groups to ensure 

the lesion rats are relatively specific. For this reason the rats were also tested on a novel 

object task. This task required the rat to distinguish between a “novel” and previously 

experienced or “familiar” object. Hippocampal lesions generally fail to disrupt judgments of 

familiarity in animals (review by Mumby, 2001). Additionally rats with ATN and MB lesions 

discriminate at a level comparable to controls (Aggelton et al 1995; Mitchell & Dalrymple-

Alford, 2005).  

1.9 Expected Findings 

It was expected that rats with MTT lesions and sham surgery rats would show a similar level 

of preference for the novel object in the object recognition test given that previous research 

shows no effect of hippocampal or ATN lesions. In the “what”, “where” and “when” episodic 

memory test it was expected that the rats with MTT lesions would perform significantly 

worse than controls on all aspects of this task, in line with the deficit found following 

hippocampal lesions on this task. Similarly, as the object location and temporal order tasks 

essentially replicate the “where” and “when” aspects of the episodic memory test it was 

expected the MTT lesion would show a significantly lower level of discrimination than 
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controls in the object location task given that both hippocampal and ATN lesions 

significantly impaired discrimination on this task. However, ATN lesions did not disrupt 

temporal order memory when rats had to discriminate between a “recent” and “less recent” 

object, so it was expected that the rats with MTT lesions might discriminate at a rate 

comparable to controls. 

Given the robust and consistent spatial working memory deficit observed by Vann & 

Aggleton (2003) it was expected that the MTT lesion group would take significantly longer to 

locate the submerged platform in the Morris water maze, the primary measure for this thesis. 

This deficit should be apparent in both phase one and phase two. Groups may perform better 

in phase two because they had time to consolidate learning in between trials. It was expected 

that the MTT lesion group would perform significantly worse than controls in the standard 

reference memory task in the Morris water maze, in line with previous research (Winter et al, 

2011), but this deficit was not expected to be as pronounced as that observed in rats with 

ATN lesions in other studies. Furthermore there is as yet no information whether the MTT 

plays a role in consolidation and remote memory retrieval, so the comparison of the probe 

trial at 5 days or 25 days post training is highly novel.  

As discussed above, various studies have indicated a transient deficit in t-maze 

alternation with lesions to the MB or the MTT. These studies, however, used a relatively 

simple version of the t-maze requiring the animal to only start from one place for each trial. 

The present study increased task difficulty by starting the rats from either of two opposing 

ends of a t-maze embedded within a cross maze, and used trials in which the test run began 

from the opposite start area to that used for the sample run. It was predicted MTT lesions 

would produce a particularly severe deficit in these “opposite start” trials because they 

emphasis the uses of allocentric and directional visual cues for successful performance. 
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Following testing it was intended that matched pairs of rats would be randomly 

allocated to either standard or enriched housing for 30 days, before being retested on the 

complete battery of tests.  
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2. Method 

2.1 Subjects and Housing Conditions 

Fifty two female PVGc hooded rats were used (3 were subsequently lost due to complications 

associated with surgery) all were approximately 12 months old and weighed between 185g 

and 245g at the time of surgery. The rats were randomised to either lesion or sham surgery: 

28 rats received MTT lesions and 24 received sham surgery. Prior to surgery all rats were 

housed in standard housing conditions of three or four rats per opaque plastic cage (50 cm 

long by 30 cm wide by 23 cm high), with reversed lighting conditions (lights off from 8am to 

8pm) during which behavioural testing was conducted. Following surgery all rats were 

housed individually for a recovery period of approximately 4 weeks. Food and water were 

available ad libitum during surgery, recovery and the initial behavioural tasks. The final task 

required the rats to be deprived to 85% of their free feeding body weight with water was still 

available ad libitum. Unfortunately the deficit expected for the MTT lesion group in the 

delayed matching to place task in the water maze was not found so the use of enrichment 

housing was abandoned. 

 2.2 Surgical Procedure  

Aseptic conditions were used. An intra-peritoneal (IP) injection of ketamine and domitor (for 

doses see table 2.1) were administered (half the dose of ketamine first, followed by the 

remaining half of ketamine with domitor added), followed by Hartman‟s saline (sodium 

lactate) IP. Methopt Forte eye drops were given plus a moist gauze placed above and clear of 

the eyes was used. The rats were given local analgesia (mepivacaine) to the scalp during the 

course of the surgery and skull was exposed before Bregma, Lambda and the mid sagittal 

suture were identified to locate the MTT coordinates (see table 2). Lesions were made using a 

Radionics TCZ radio frequency electrode, with a 0.3 mm tip length and a 0.25 mm diameter 
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(Radionics, Burlington, VT).  The electrode was lowered vertically to the mammillothalamic 

tract coordinate and the tip was raised to 58°c and maintained at that temperature for 60 

seconds using a RFG4-A Lesion Maker (Radionics). Sham animals received the same 

procedure except the electrode was lowered 1mm above the site and the temperature was not 

raised. The rat‟s body was kept warm during surgery. Additional ketamine (only) was given 

if necessary. The rat‟s condition was monitored carefully throughout surgery and 

immediately after surgery. Emla analgesic cream was applied to the scalp area following 

suturing and the rat was given additional Hartman‟s saline, followed by antisedan (table 2.1) 

to promote recovery. Post-operatively, especially during the first week, both the researcher 

and laboratory technicians monitored recovery to check that the rats were drinking, eating 

and remained bright, alert and responsive. All procedures complied with the University of 

Canterbury animal ethics guidelines and were subject to AEC approval. 

  

Table 2.1. Doses for the various drugs used during surgery 

 

Drug Dose (solution) Dose (mg/kg) Dose (surgery) 

Carprofen 5mg/ml 5mg/kg  

Ketamine 50mg/ml 75mg/kg  

Domitor 0.35mg/ml 0.245mg/kg  

Hartmans solution   1ml (half at start half at end) 

Mepivacaine 2mg/ml  0.2ml 

Antisedan 2.5mg/ml 1.75mg/kg  
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Table 2.2. MTT Surgery Coordinates 
 

Distance  B to L  AP Laterality  DV (from dura) 

< 0.65 -0.26 +/- 0.088 -0.7 

0.65-0.67 -0.265  -0.6 (shams) 

>0.67 -0.27   

B= bregma, L= lambda, AP= anterior posterior (relative to bregma), DV= dorsoventral  

2.3 Object Recognition Tasks  

2.31 Apparatus 

All testing in the activity box (including habituation, object location and the temporal order 

tasks) was recorded using a webcam mounted on a beam 1 meter above, in a windowless 

room (4m by 4.7m). The rectangular boxes (30×30×60cms) were made of custom wood and 

painted with black gloss enamel. Different flat geometric stimuli made from laminated 

coloured paper were stuck on each of the 4 internal walls (Figure 2.1) to make each side of 

the box distinct.  The boxes were situated on a table 70 cm above the floor and were placed 

approximately 50cm apart. For the entire duration of testing the rats were tested in pairs 

(singly per box) with diffuse lighting being provided by overhead florescent lights. The 

experimenter was not present in the room during testing. 
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Figure 2.1. Photograph of the rectangular boxes used for all object recognition testing 

showing the internal cues adhered to the walls. The photograph on the left depicts the 

configuration used for the novel object and episodic memory task and the photograph on the 

right depicts the configuration used for the object location and temporal order tasks. 

 

2.32 Novel Object Task 

The rats were split into two groups (n = 24 & 25) and tested a week apart. Each group 

consisted of a number of lesion and control animals. The order in which the rats were tested 

was randomised for each of the two groups.  For the first two days the rats were placed in the 

centre of the empty box to habituate for a five minute period. On day 3 the rats received a 

novel object recognition task (figure 2.2). For this they were released in the centre of the open 

field and presented with two identical objects occupying adjacent corners along one of the 

larger walls. They were allowed five minutes to explore these objects before being returned 

to their home cages. Each rat was then given a 50 minute retention interval before being 

returned to the box where one of the previously encountered objects had been replaced with a 

novel object and an old object was replaced with a replica and allowed to explore for five 

minutes. Between trials each of the boxes and objects were thoroughly cleaned with 
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powerquat blue 2% and dried to remove any residual odour cues. Multiple copies of each 

object were used to ensure quick resetting for the next rat. 

Sample               Test 

 

 

 

 

Figure 2.2. Representation the novel object tasks in the sample phase the rat is presented with 

two identical objects and then removed for a 50 minute delay. In the „test” a novel objects is 

present with one of the previous objects.  

 

 Simple discrimination indices and discrimination ratios were calculated to assess 

object preference. The discrimination index was expressed as the time exploring the “novel” 

object minus the time spent exploring the “familiar” object. A positive score indicates 

discrimination for the “novel” object. The discrimination ratio was expressed as the time 

spent exploring the “novel” object minus the time spent exploring the “familiar” object 

divided by the sum of those two times. A score greater than zero indicated a preference for 

the “novel” object over the “familiar” one. The rat had to be within 2cm of an object and be 

actively engaged in exploration i.e. head oriented towards the object without touching it. 

Sitting beside an object was not considered to be exploration. This criterion was followed for 

all of the subsequent object exploration tests 

2.33 Episodic Memory Task  

This procedure was based on DeVito & Eichenbaum‟s (2010) task and consisted of two 

sample phases and a “test” phase (figure 2.4). In sample phase one, four identical objects 

were arranged in a triangular configuration in the rectangular box with three equidistant along 

the northern (long) wall (two in corners one in the middle) and one in at the centre of the 

50 

minute 

delay 
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southern wall. The rats were placed in the centre of the field and allowed to explore for five 

minutes. After a 50 minute delay the rats were exposed to sample phase two in which four 

new, identical objects were arranged in a square formation in the open field (one in each 

corner) and again allowed to explore for five minutes. After another 50 minute delay the rats 

were exposed to the test phase in which two objects from each of the sample phases were 

presented in a square formation in the open field. The two objects from sample phase one 

now occupied the northwest and southeast corners of the open field and the more recent 

objects (sample phase two) occupied the northeast and southwest corners relative to their 

previous positions. Hence, this test phase configuration consisted of one “old object” (sample 

phase one) in a stationary position as well as a sample of one “old object” in a displaced 

position, while the two “recent objects” (sample phase two) remained stationary (see figure 

2.4). Between trials each of the open fields and objects were thoroughly cleaned with 

powerquat blue 2% and dried to remove any residual odour cues. Multiple copies of each 

object were used to ensure quick resetting for the next rat. 

 

 

 

 

 

 

 

 

Figure 2.3. The objects used for the object recognition tasks novel object (A & B), episodic 

memory task (C&D), object location (E) and temporal order (G&F). 

 

 

A. 

B. 

C. 

D. 

E. 

F. 

G. 
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Sample 1                                              Sample 2                                           Test 

 

 

 

Figure 2.4. Representation of the episodic memory task. In sample one the rats were 

presented with four identical copies of object D (from figure 2.3) in a triangular formation. 

They were then removed for a 50 minute delay. In sample two they were exposed to four 

identical copies of object C (from figure 2.3) in a rectangular formation, before being 

removed for another 50 minute delay. Finally, in the test phase they were exposed to a 

combination of objects D and C, some in familiar and some in novel locations. 

 

2.34 Measures of Object Preference in the Episodic Memory Task 

Discrimination ratios (DeVito & Eichenbaum 2010) were calculated based on exploration of 

particular combinations of objects in the test session and were used to provide different 

memory measures. The discrimination ratio for “what” memory was calculated as the 

difference between the average exploration times for both sample one objects minus that of 

the sample two objects, divided by the sum of those times. “What” memory was indicated by 

a greater than zero “what” discrimination ratio, which reflects greater exploration time for 

sample one objects compared to sample two objects. The discrimination ratio for “where” 

memory was calculated as the difference between the exploration time for the displaced 

sample one object and that for the stationary sample one object, divided by the total time 

exploring both objects. “where” memory is indicated by a greater than zero “where” 

discrimination ratio, which reflects greater exploration time for the displaced sample one 

object compared to the “stationary” sample one object. The discrimination ratio for “when” 

memory was calculated as the difference between the exploration time for the “stationary” 

sample one (“old”) and that for the average exploration times for sample two (“recent”), 

50 minute 

delay 

50 minute 

delay 
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divided by the sum of those times. “When” memory is indicated by a greater than zero 

“when” discrimination ratio, which reflects greater exploration time for the “stationary” 

sample one compared to sample two objects. 

2.35 Object Location Apparatus  

This procedure used the same rectangular box as the novel object and episodic memory task, 

but different intra maze cues were used (figure 2.1).  The rats were tested in the same two 

groups and same randomised order as before, approximately a week after the novel object 

and episodic memory tasks. To control for any order effect the rats were counterbalanced 

within their groups, so half completed the object recognition first and the other half 

completed the temporal order task first. Prior to testing the rats received only one five minute 

habituation sessions (per rat) due to their previous experience in the apparatus.  

2.36 Object Location Task  

This occurred on either the 2
nd

 or 3
rd

 day after habituation (depending on allocation). The rats 

were placed in the centre of the testing box which contained two identical objects in adjacent 

corners and allowed to explore for five minutes. The rat was then removed from the testing 

box and placed back in its home cage for a 50 minute retention interval. In the test phase of 

this procedure both objects were removed and replaced with replicas, one in the top right 

hand corner as before and the other was placed in a novel location i.e. the bottom left corner 

(see figure 2.5). As before the rat was placed in the centre of the box and allowed five 

minutes to explore. 
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Sample                                                                                  Test 

 

 

 

 

Figure 2.5. Representation of the object location task. In the sample phase the rat was 

presented with two identical objects in adjacent corners of the box. Following a 50 minute 

delay the rats was exposed to the same two objects, but one had been moved to a novel 

location so the two objects were now diagonal to one another. The red lines were added to 

highlight the location of the objects. 

 

2.37 Temporal Order Apparatus 

This procedure utilised the same rectangular box and habituation procedure as the object 

location task.  

2.38 Temporal Order Task 

The rats experienced this task on the 2
nd

 or 3
rd

 day after habituation depending on their 

allocation. This task consisted of two sample phases where rats were presented with two 

different sets of two identical objects and one test phase with a replica object from each of the 

sample phases. In the first phase, the rat was placed into the testing box which contained two 

identical objects occupying adjacent corners and allowed five minutes to explore. The rat was 

then removed and placed back in its home cage for 50 minutes. On their return, the test box 

now contained a different pair of identical objects in the same position as the previous pair. 

Again the rat was allowed five minutes to explore then removed for another 50 minute 

period.  In the test phase, one replica object from each of the previous two phases was placed 

in the box and the rat was again allowed five minutes to explore before being removed and 

returned to its home cage.  

50 

minute 

delay 



 

 

43 

 

Sample 1                                              Sample 2                                                   Test 

 

 

          

Figure 2.6. Representation of the temporal order task. In sample one rats were presented with 

a pair of identical objects were then removed for a 50 minute delay. In sample two they were 

exposed to a different pair of identical objects and subsequently removed for another 50 

minute delay. In the test the rats were presented with a replica of one of each of the objects 

from the two sample phases in the same spatial configuration.   

 

 For both the temporal order and object location task discrimination indices and simple 

discriminations ratios were calculated for each rat. The discrimination index was expressed as 

the time exploring the target object (“moved” or “old”) minus the time exploring the non-

target object (“stationary” or “most recent”). A positive value indicates discrimination for the 

target object. The discrimination ratio was calculated for each rat by subtracting the 

exploration time of the non-target object (“stationary” or “most recent”) from that of the 

target object (“displaced” or “old”) and dividing this by the total of both times. A value 

greater than zero indicates the rat has a preference for the target object over the non-target 

object. 

2.4 The Morris Water-maze 

2.41 Apparatus  

The water maze was constructed out of white rigid plastic and had an internal diameter of 

180cm with a height of 45cm with an outer lip protruding 5cm. It was located off centre on 

the on the floor of the same windowless room used in the object recognition tests. The water 

maze was filled to a height of 30cm with water that was 21 ± 2°c made opaque by the 

addition of acrylic non-toxic paint (Super Tempera, Fine Art Supplies, New Zealand). The 

water maze was divided into 4 virtual quadrants (1, 2, 3, 4) using four compass points on the 
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rim of the pool. Each quadrant was further divided evenly in half by four release points (R1, 

R2, R3, R4) (see figure 2.8), thus dividing the pool into 8 equal sectors. A 10cm circular 

white perspex escape platform was placed in the pool at various positions and distances from 

the pool edge and sat 2cm below the surface of the water.  During the testing phase the 

room‟s salient visual cues were visible, such as geometric shapes and high contrast visual 

stimuli placed on the walls, e.g. small road cones, sink unit, a computer, tables and posters. 

The testing room also contained a beige curtain hanging from the ceiling on a circular track 

around the pool that could be opened or closed.  A camera fixed to the ceiling above the 

centre of the pool was used to track swim pathways (Ethovision XT 5.0.212, Noldus 

Information Technology, The Netherlands). Measures recorded were path-length, escape 

latency and swim speed. Three CPUs were placed around the room and left running; one of 

which was the data recording computer. Lighting was provided primarily by a large upward 

facing lamp (300 watts) on a stand approximately 180cms tall and positioned 40cms from R1 

(see figures 2.7 & 2.8). Two additional lamps (60w) located in the corner of the room 

opposite R1 (see figures 2.7 & 2.8) that were used to keep the rats warm during testing 

provided an additional light source. 

2.42 Pre-surgery Training  

All 52 rats received three days of training prior to surgery, consisting of four swims per day. 

The curtain surrounding the pool was drawn closed, and both the start position and platform 

position were changed for each swim. For the first two days, each swim was terminated when 

the rat either located the platform or 120 seconds had elapsed. If the rat did not locate the 

platform within the 120 seconds it was guided there by the experimenter‟s hand. Rats 

remained on the platform for 15 seconds. On the third day of pre-training a swim was 

terminated when the rat had located the platform or 60 seconds had elapsed in which case the 
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rat was guided to it. Following their four trials the rats were placed back into opaque cages 

and kept warm with towels and the heat of a 60w lamp. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Photograph depicting the spatial layout of the testing room for the Morris  

water maze. The lamp in the left hand corner of the picture was the primary light  

source for all procedures. The beige curtain in the background could be drawn closed  

around the pool to obscure all extra-maze cues 

  

 The rats all received a one day “reminder” session after they had recovered from 

surgery. This “reminder” session followed the same procedure as the first two days of pre- 

surgery training described above. 

2.43 Spatial Working Memory: Delayed Matching to Place: Phase 1  

(2 second ITI) 

For the spatial working memory task the curtain was drawn from around the pool. The rats 

were split into two groups (n = 25 & 24) and the testing was staggered so that the first day of 

testing for the second group commenced on the fifth day of testing for the first group. The 

testing order of the rats was randomised and the same order was used over all the days of 

testing. The rats were given four trials a day for 10 sessions (40 trials in total). The task used 
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10 of a 16 possible platform positions, which varied in their distance from the pool perimeter 

and 8 possible release points (see figure 2.8). The location of the platform remained constant 

across the four trials of a given day but varied between days. The same start position was 

used for the first two trials of each session but was changed for the remaining two trials. Start 

points could only be in the 4 sectors directly opposite to the platform location e.g. if the 

platform was located in Q3 (see figure 2.8) then the four possible start points for that day 

would be Q2, R2, Q1, and R1. This insured the rats were never released in a sector to the left 

or right of the platform.  Keeping the release point the same for trial 1 and trial 2 allowed a 

direct comparison of the latencies and distances. As before the trials were terminated after the 

rat located the platform or 120 seconds had elapsed at which point they were guided to the 

platform by the experimenter‟s hand. The animals were then left on the platform for 15 

seconds to allow for spatial orientation. The next trial began almost immediately afterwards 

giving an ITI of ~2 seconds.  

2.44 Spatial Working Memory Phase 2 (4-6 minute ITI) 

After the first 10 days of testing in the water maze all of the rats were given a three day break 

before returning to the water maze for an additional six days of delayed matching to place 

testing. Phase 2 of water maze testing utilised the same procedure as phase one. Additional 

lighting was however added to one relatively dark corner of the room to help improve the 

rats‟ recognition of room cues. The inter trial intervals were extended to 4-6 minutes, by 

testing the rats in squads of three (plus one squad of four). Instead of massed trials, all three 

rats completed a given trial before moving on to the next one. Spaced trials were 

implemented to allow the rats a chance to dry off, warm up and for consolidation of the 

spatial information acquired. Again, the trials were terminated when the rat located the 

submerged platform or 120 seconds had elapsed, in which case they were guided to the 
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platform by the experimenter‟s hand. In this procedure the rats remained on the platform for 

30 seconds before being removed from the pool. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Representation of the Morris water maze showing the 10 (from a possible 16) 

platform positions used (solid black circles) for both phase 1 and phase 2 of testing. R1, R2, 

R3, R4 as well as Quadrant 1, 2, 3 & 4 represent the 8 release points around the edge of the 

pool used for all trials. The pool was also divided into 8 arbitrarily placed sectors (broken 

lines) in each of which two possible platform locations were placed. P = platform positions 

not used. 

 

2.45 Reference Memory 

Following the working memory procedure the rats were given a five day break before being 

trained on a standard reference memory task in the water maze. For this task the rats were 

split into four squads based on equal performance during the last three days of working 

memory testing. Each group was assigned to one of four platform locations (NE, NW, SE, 

SW), as all rats swimming to a single location may provide a strong odour cue aiding 

navigation. Each group was only trained to go to one platform position which remained 

constant over the 8 days of training. Each rat received four trials per day from four different 
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starting points N, S, E, W. The order of these starting points was varied each day so each rat 

did not receive the same order of start points over the 8 days of testing. Release points were 

also varied within each group per day to reduce systematic error. On the first day of testing 

trials were terminated when either the rat located the hidden platform or 120 seconds had 

elapsed, in which case they were guided there by the experimenter as per their previous 

training. From days 2-8 trials were reduced to 60seconds which is the standard protocol for 

reference memory. Once on the platform they remained there for a further 30 seconds before 

being removed. The rats were trained in squads of three giving an ITI of ~2-4 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Water maze configuration for the reference memory and probe trials. Small 

circles indicate the possible platform locations used, larger red circles indicate the annulus 

used for the probe trials.  N, S, E, W represent the 4 release points used for the duration of the 

reference memory procedure. NW,  NE, SE, SW the 4 platform locations used. The cardinal 

compass points were also used to split the pool into 4 equally sized quadrants each containing 

a platform so the time spent by each rat in different areas of the pool could be quantified. 
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2.46 Remote Memory Probes 

The rats were ranked by their performance for the 7 days of reference memory training and 

randomly assigned to only one of two probe conditions, a short retention interval (5 days after 

training) and a long retention interval (25 days after training). No testing was conducted 

during these retention intervals and all rats remained in their standard housing conditions. 

The probe retention test on days 5 and 25 consisted of a 60 second trial with the platform 

removed from the water maze. Rats were released directly opposite to the platform location 

they were trained to either, (NE, NW, SE, SW). The primary retention measure used was the 

accuracy ratio (Lopez et al 2009) time spent in the target quadrant multiplied by 3 and 

divided by the time spent in all other quadrants. An additional index of memory precision 

was the number of crossings in the target area, corresponding to the platform diameter 

enlarged by 20cms (see figure 2.9). 

2.5 Cross Maze Spatial Working Memory 

2.51 Apparatus 

Spatial working memory was tested in a cross-maze with two stems (one at each end of the 

arms) so the rats were released from either north or south towards a “T” intersection (the 

opposite stem was blocked). The cross-maze sat on a stand raised 75cm above the floor.  The 

wooden runways were 10.5 cm wide and painted gray, with 2.5 cm high galvanised steel 

walls. The two stems were 1 m long with a guillotine door located 28 cm from either end to 

create a North and a South starting area. The two goal arms were 40 cm long at the end of 

which was a raised wooden food well (2.5 cm diameter, 1cm deep) with some inaccessible 

food to control odour cues. Wooden blocks (10.5cm wide by 30cm high by 10cm deep) were 

used to restrict access to any stem or arm. The maze was located in a diagonal orientation in a 

windowless room (3 by 3.5m) which contained a number of distal cues including high 

contrast stimuli on the walls such as posters, small road cones, a curtain, tables and a 
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television and VCR recorder. Diffuse lighting was provided by overhead fluorescent lights. 

The maze was rotated every 3-4 days to reduce the influence of odour cues. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Photograph of the elevated cross-maze. The picture shows the two possible 

starting areas with removable guillotine doors leading down the stem to two reward arms 

each with a small food tray at the end. Both the stems and arms could be blocked off with use 

of a large wooden block shown in the picture. 

 

2.52 Food Deprivation and Reward Habituation 

Prior to testing rats were deprived to 85% of their free feeding weight. This ensured the rats 

were sufficiently motivated to perform the task. To habituate the rats to the food reward 20 

small chocolate drops (1g) were placed into the rats home cages each day for the week prior 

to pre-training.  

2.53 Pre-training 

All rats then received a minimum of 6 days (up to 8 days) of pre-training in the T-maze as 

follows.  On days 1 and 2 the rats were put on the apparatus in cage groups (3-4 rats) and 

allowed to roam freely for 10 minutes, with chocolate drops scattered in the middle of each 
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stem close to the reward arms and scattered down each arm ending with piles in each food 

well. All doors and arms were open. On day 3 the rats were placed individually in the T-maze 

for 3 minutes in total, first in one start arm and then after 90 seconds they were placed in the 

other start arm. A trail of chocolate drops was left in each of the goal arms with a small pile 

in each of the food wells. On day 4 the rats were placed individually in the maze for up to 10 

minutes, each rat received a maximum of 12 chocolate drops. The rats were placed 

individually in a start area and the door was lifted. Once the chocolate pieces were eaten the 

rat was placed back in the opposite start area and so on until all 12 chocolate pieces had been 

eaten or 10 minutes had elapsed. Day 5 followed the same general procedure as day 4 but the 

session time was reduced to 6 minutes and the rat only started from one start area. Day 6 was 

the same as day 5 but this time the rats started in the opposite start area. Day 7 and 8 repeated 

days 5 and 6 for rats that were slow to run. 

2.54 Delayed non-Matching to Place Testing 

Testing in the cross-maze was run for a maximum of 16 days with six trials per rat per day 

 (96 trials in total). Each trial consisted of two parts, a „sample‟ and a „test‟ run. Correct 

performance on the test run required the rat to choose the alternate arm form that previously 

visited during the sample run of the trial (reinforced spatial alternation). To ensure the rats 

were not simply using an egocentric strategy from “sample” to “test” runs a pseudorandom 

half of the trials used the opposite start area across “sample” and “test” runs (e.g. S for the 

“sample” run and N for the “test” run of a given trial).  At the start of each trial two chocolate 

drops (1g) were placed in each of the food wells in the reward arms. A wooden block was 

then placed in the neck of one of the two reward arms blocking it off. In each sample run the 

rat was forced to enter the open arm and confined there for 5-10 sec while it ate the chocolate 

pellets, it was then returned to the appropriate start area for a delay of 5-10 sec while the arm 

barriers at the choice point were removed or repositioned as required. When the door was 
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raised for the test run the rat was thus allowed a free choice between the two maze arms 

(Hind foot down that arm; no retracing).  If the rat entered the previously blocked arm it was 

rewarded with two (1g) chocolate drops and confined to the arm for 5-10 seconds while it ate 

the reward and was then returned to the holding cage. If the rat chose the same arm it had 

entered on the sample run it received no reward and was confined to the arm for 10 seconds 

before being returned to the holding cage. The correct arm for the sample run was determined 

on a pseudorandom basis so that each rat experienced both the left and right being correct 

equally. The rats were tested in groups of three or four with each rat completing a trial before 

moving on to the next trial giving an inter trial interval of 3-4 minutes. 

2.55 Completion Criteria 

A rat was deemed to have reached criterion if over 3 consecutive days (from day 11 onwards) 

it achieved 14 out of 18 trials correct with each day having a score of 4/6 or above. Any rat 

that did not meet these criteria was tested for the full 16 days. 

2.6 Histology 

2.61 Perfusion 

The rats were euthanized with an overdose of sodium pentobarbital (1ml of 300mg/ml, i.p.) 

and transcardically perfused with ~150mls of chilled saline solution (4˚c) followed by 

~100mls of 4% paraformaldehyde solution. The brains were post-fixed in 4% 

paraformeldehyde for a minimum of seven days. Coronal sections (50μm) were taken 

through the  mammillothalamic tract from ~-2.80 AP to -4.20 AP using a vibratome 

(Campden Instruments). The extent of the MTT lesion was assessed using a black gold II 

myelin stain and a light creysl violet counter stain. 
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2.62 Black Gold II Myelin Staining 

Coronal slices were mounted from distilled water onto gelatine coated slides and then air 

dried over night at ambient temperature. The following day the slides were rehydrated in 

distilled water for 3 minutes. 150mg of black gold II powder (Histochem, Arkansas) was 

added to 50mls of 0.9% saline solution and stirred until dissolved. At this point the black gold 

II solution was transferred into a water bath set at 65°c and allowed to heat until the solution 

reached a stable temperature between 60-65°c. The rehydrated slides were placed in to the 

beaker containing the black gold stain five at a time and allowed to incubate for 

approximately 6 minutes while monitoring the degree of labelling of the slides under a 

microscope (for full black gold II staining protocol see Appendix A). The slides were 

considered to be impregnated as soon as the finest myelin fibres in the first layer of the 

cerebral cortex had been labelled. At this point the slides were immediately removed from the 

stain and submerged in distilled water for 2 minutes to rinse off excess stain. The slides were 

then fixed in a 1% solution of sodium thiosulfate (1g to 100mls of 0.9% saline) and incubated 

for 3 minutes at room temperature. After being removed from the thiosulfate solution the 

slides were transferred into three 5 minute washes of cold tap water, to remove any residual 

thiosulfate and to weaken any background staining. Finally the slides were delipidised, first 

with 10 dips in 70% ethanol and then they were left in 70% ethanol for 2 minutes before 

being counterstained with cresyl violet acetate. 

2.63 Cresyl Violet Counter-staining 

After being removed from the 70% ethanol the slides were rinsed in distilled water for 1 

minute before being submerged in 250mls of 0.5% Cresyl violet acetate solution and 

incubated for 5 minutes at room temperature. The sections were then rinsed in 2×2 minute 

dips of distilled water to remove excess stain.  The slides were then dehydrated and 

differentiated using a 70% ethanol solution for 2 minutes, then a 95% ethanol solution for 2 
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minutes.  Followed by 95% acid alcohol solution for 40 seconds (400mls of 95% ethanol with 

1ml of glacial acetic acid added). The dehydrated sections (2×100% ethanol for 2 minutes) 

were then cleared in xylene for 5 minutes before being cover slipped with DPX.   

2.64 Lesion Verification 

Photomicrographs were taken for the MTT of each rat at 4 × magnification with a Nikon 

camera (DS Fi1) mounted to a Nikon microscope (Eclipse E800). For sham rats 

photomicrographs of the MTT were taken at approximately -3.3 and -3.6 from bregma. The 

relative anterior and posterior coordinates for each section were obtained from the rat brain 

atlas (Paxino & Watson, 1998). For the lesion rats, photomicrographs were taken from the 

first evidence of  lesion related damage until damage was no longer apparent (approximately 

-3.3 through to -3.8 from bregma). Photomicrographs were also taken for the MB of sham 

and lesion surgery rats from – 4.30 to -5.20 from bregma. The MTT areas were quantified by 

loading the photos in to UTHSCSA Image Tool (University of Texas) and calibrated with a 

1000 micrometer slide (Nikon). The outer perimeter of each tract (left and right) was traced 

for all rats. 
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3. Results 

3.1 Histology 

On removal of the brains for histology many unexpectedly had tumours protruding from the 

ventral surface of the brain. These pituitary gland adenomas occasionally occur in female rats 

over 12 months old (Gilbert, Gillman, Loustalot and Lutz, 1958; Crain, 1957). The tumours 

were usually a few millimetres in diameter but one was 12×7×6 mm, weighed half a gram 

and had dramatically distorted the adjacent brain tissue. Surprisingly, 14 out of 49 rats were 

found to have a pituitary gland tumour. After sections were stained, any rat with visual 

distortion in the region of the mammillary bodies was removed from further analysis to rule 

out any deficits that might be related to the tumours. The final sample for analysis consisted 

of 14 sham surgery rats and 21 lesion surgery rats. 

3.11 Lesion Verification and Quantification 

Myelin staining showed that complete bilateral destruction of the MTT did not occur in any 

of the rats with lesions. This was unexpected because trial surgeries produced large amounts 

of tract damage (see figure 3.3 ). Nonetheless many rats in the lesion group had bilateral or 

unilateral MTT damage (figure 3.3). Total left and right MTT damage was compared to the 

mean tract areas of the control rats. The total area of the left and right MTT tract at 

approximately -3.3 (see appendix A) and -3.6  from bregma  (see figure 3.1) was calculated 

in micrometers squared for all rats, including sham controls. Some damage was found 

posterior to -3.6 from bregma but because the tract starts to descend more rapidly toward the 

MB posterior to this point these cases produced lesions that were too dorsal. Additionally, at 

this posteriorty the tract becomes poorly defined making quantification of tract size too 

difficult (figure 3.2). No lesions occurred anterior of -3.3 from bregma.  
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Figure 3.1. Photomicrographs (left) of control rat brains at approximately -3.3 (A) -3.6 (B) 

and -3.8 (C) from bregma. The sections were stained with Black Gold II myelin stain (myelin 

stain is red) and light counter stain with cresyl violet (purple blue colour).  Photomicrographs 

are presented with the corresponding plate (33, 34, 35) from the rat brain atlas (Paxinos & 

Watson, 1998). The MTT is shown in red and the post commissural fornix in blue in the 

schematics. The MTT region corresponds to the atlas plates, but note that the angle of the cut 

means that dorsally the hippocampus appears more posterior than shown in the plate.  
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Figure 3.2. Photomicrograph at 4×magnification of a coronal section from a control rat at 

approximately -3.8 from bregma the MTT (arrows) and post commissural fornix (dark red 

spots below) are shown. At this AP it becomes difficult to distinguish the MTT from 

surrounding tissue.  

  

 Because of variability in lesion size, the MTT rats were classified on the basis of the 

amount of tract damage present at -3.6 from Bregma (for group means see table 3.1), which 

was the primary target for the MTT lesions. Anterograde atrophy of the MTT was also found 

at -3.3 from bregma and generally mirrored the pattern of damage observed at -3.6 (see 

Appendix B). Rats (n=6)  with a total of 50% or more  damage across the left and right MTT, 

with at least 30% damage on each side were labelled as a  „moderate‟ damage group 

(moderate in table 3.1). Rats with at least 35% damage on one side only (n= 4) formed the 

„unilateral‟ MTT damage group (unilateral in table 3.1). Of the remaining twelve rats seven 

had only minor damage to the tract with 9-23% overall reduction (minimal in table 3.1). 

These last two groups of rats were removed from further analysis because they did not fit 

within the lesion or control groups. The MTT in the remaining four rats (listed with the 

controls in table 3.1) did not differ from controls in that estimates of their MTT areas were 

within the 2.5- 97.5 percentile range of those found in the sham controls so these rats were 
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assumed to have no lesion and were included in the control group for analyses. There was 

also some evidence of MB atrophy in the moderate lesion group following MTT damage as 

shown in figure 3.4, but this observation was not quantified due to time constraints.
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Table 3.1 Percentage decrease in both left and right tract volumes for all the rats in the lesion surgery group at approximately -3.6 from bregma  (the closest 

quantifiable site to the lesions). These values were calculated from the control tract means for the left and right tracts separately.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean of left volume in controls = 93071.69, mean of right volume in controls = 92960.53, Percentile boundaries (left and right combined) of control tracts 

2.5% = 76823.17 and 97.5% = 120112.2

Group Rat ID  Left volume % reduction right volume % reduction overall % reduction Mean Volume for Group 

Moderate  N6 14310.43 0.85 21468.63 0.77 0.81 left              39602.63 

(included in B3 42540.74 0.54 35534.59 0.62 0.58 right            39347.23 

Analyses) N13 53993.56 0.42 29507.81 0.68 0.55 

 

 

N2 41776.03 0.55 49278.57 0.47 0.51 

 

 

R8 48437.83 0.48 44181.97 0.52 0.50 

   N12 36557.19 0.61 56111.80 0.40 0.50   

Unilateral  R13 79409.49 0.15 35257.33 0.62 0.38 left              73610.48 

(excluded from N1 82241.76 0.12 47380.95 0.49 0.30 right            55348.95 

analyses) P12 53163.26 0.43 78643.28 0.15 0.29 

   B12 79627.39 0.14 60114.25 0.35 0.25   

Minimal  P13 72841.59 0.22 70076.4 0.25 0.23 left              79896.22 

(excluded from B1 74841.59 0.20 69210.32 0.26 0.23 right            73340.33 

analyses) B2 67226.24 0.28 77933.72 0.16 0.22 

 

 

B13 77072.11 0.17 70750.18 0.24 0.21 

 

 

B8 78114.09 0.16 74797.35 0.20 0.18 

 

 

N5 93596.19 -0.01 74794.37 0.20    0.09 

   P6 95581.76 -0.03 75819.95 0.18 0.08 

 Control-like P9 90744.54 0.03 83875.53 0.10 0.06 left              99586.08 

(included with N11 96628.21 -0.04 89550.51 0.04 0.00 right            88353.51 

control group) N3 98904.47 -0.06 93791.47 -0.01 -0.04 

 

 

B7 112067.08 -0.20 86196.51 0.07 -0.07 
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Figure 3.3. Photomicrographs at 4× magnification of coronal sections stained with Black 

Gold II and/or  Cresyl Violet, at approximately -3.6 AP showing the MTT (arrows) in a 

control rat (A), the rat with the largest extent of MTT damage from the moderate damage 

group (B), a rat from the unilateral damage group (C), and lesion surgery rat with MTT 

estimates within the 2.5-97.5% percentile range of those found in controls (D). The two 

coronal sections at the bottom (E & F) show the extent of the lesions created during trial 

surgeries (Cresyl only). 
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Figure 3.4. Photomicrographs at 4.0 × magnification showing the mammillary bodies the 

moderate lesion rat with the largest extent of MTT damage (A), and a control rat (B), at 

approximately -4.52 from bregma. The broken lines give an approximate outline of the 

boundaries of the lateral mammillary nuclei (LMn), and the medial mammillary nuclei 

(MMn). There is an apparent increase in ventricle size of the MTT lesion rat. Additionally the 

medial MB‟s are visibly smaller in this rat. 

 

 

3.2 Behavioural Results 

Only behavioural data from the control (+ no damage) and the moderate lesion groups 

(referred to as the MTT group from this point on) were analysed. Although the group with 

unilateral MTT damage was not included in the primary analyses, the mean and standard 

deviation for this group are presented and discussed separately at the very end of the results 

section. Given the small size of the final lesion group individual data were plotted along with 

group means wherever possible to more accurately compare the performance of individual 

lesion rats to the distribution of control scores. Additionally, the results of the rat with the 

greatest extent of MTT damage are highlighted (circled in black) where individual data have 

been presented. The results of this rat have been considered separately at the end of the 

results section because any behavioural deficits resulting from MTT damage should be the 

most pronounced in this rat. An alpha value of 0.05% was used for all significance testing.  
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3.3 Episodic Memory Task 

Group mean total exploration time for all objects across the ten consecutive 30 second 

intervals of testing was analysed using the between subject factors group and interval as the 

repeated measure (figure 3.5) . For all three components of this task, “what”, “where” and 

“when” mean discrimination ratios for the control and MTT group were analysed in the same 

manner as the total exploration data (figure 3.6). Finally cumulative mean discrimination 

ratios for the “what”, “where” and “when” components across the entire five minutes of 

testing were analysed (figure 3.6) and these were used as the primary performance measure 

for this task per De Vito & Eichenbaum, (2010). For the latter, t-tests for independent means 

were performed on each component to assess group effects and a series of one sample t-tests 

were performed (for each group) on each component to test whether any group was 

discriminating between the target and non-target objects significantly above chance (i.e. 

relative to zero).  

3.31 Episodic Memory Task: Total Object Exploration 

Figure 3.5 shows the mean total object exploration for the control and MTT group across the 

ten consecutive 30 second intervals of testing. The two peaks in activity observed in the MTT 

group at 120 and 180 seconds were not representative of the group in general (in both 

intervals extreme values from the same two rats (N2 & N12), pulled the average up. There 

was a significant difference between the groups in total exploration, F(1,22) = 6.06, p<0.03, 

indicating the MTT group spent a greater amount of time exploring the objects than the 

control group. There was also a significant effect of interval, F(9,198) =7.3, p<0.001 

reflecting the reduction in exploration over time. The interval by group interaction was not 

significant, p = 0.39. 
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Figure 3.5. Episodic memory task: mean exploration time +/- SE for the control and MTT 

groups across the ten consecutive 30 second intervals of testing. There was a significantly 

higher level of exploration shown by the moderate lesion group. There was also a significant 

reduction in total exploration by both groups over time.  
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3.32 “What”, “Where” and “When” Memory 

“What” memory reflected a greater exploration time for all less recently experienced objects 

by comparison to the more recently experienced objects irrespective of location, whereas 

“where” memory reflected a greater exploration time for objects in novel places and “when” 

memory reflected a greater exploration time for objects that were experienced earlier during 

testing, but in the same location. The top row panels in figure 3.6 show the mean „”what”, 

“where” and “when” discrimination ratios for the control and MTT groups across the ten 

consecutive 30 second intervals of testing.  There were no significant main effects of group 

on any of the components( F<1), nor were there any significant interval by group interactions 

(F<1).  However the “where” and “when” memory components both had a significant effect 

of interval F(9,198) = 2.05, p<0.05 and F(9,198) = 3.54, p<0.001 respectively, reflecting the 

alternating pattern of preferences exhibited by both groups across the intervals.  

The box plots on the bottom panels of figure 3.6 display the cumulative mean “what”, 

“where” and “when” memory discrimination collapsed across the whole of the five minute 

testing period. Both groups exhibited weak discrimination on all components of this task. 

Neither group discriminated significantly above the level of chance on the “where” or 

“when” memory components (p > 0.05) and only the controls discriminated significantly 

above the level of chance in the “what” memory component, t(17) = 2.98, p<0.01, (moderate 

group had a t<1). The mean group discrimination ratio‟s did not differ significantly for any of 

the memory components (p>0.1).
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     “What” Memory                           “Where” Memory    “When” Memory                         

                                                          

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. The top panels show the  mean discrimination ratio +/- SE for the control and MTT groups on the “what”, “where” and “when‟  components of the 

episodic memory task across the ten consecutive 30 second intervals of testing. There were no significant differences between the groups on any of these 

components, but there was a significant effect of interval for “where” and “when” memory reflecting the alternation in object preference found across the 

intervals. The box plots on the bottom display the cumulative mean discrimination ratio‟s +/- SE for the “what”, “when” and “where” memory collapsed across 

the total five minute testing period. There was no significant effect of group for any of the components, and all groups exhibited weak discrimination for the 

target objects across the components. The control group only discriminated above the level of chance on the “what” component. For both groups “where” and 

“when” discrimination were not significantly greater than chance.
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3.4 Novel Object Task 

 

 The data for this task were analysed in four ways. First, the mean total exploration time for 

the objects was plotted for each group in ten consecutive 30 second increments across the 5 

minute testing period (figure 3.7) and analysed with a repeated measures ANOVA using the 

factors interval and group. The same procedure was followed for the discrimination index 

means (figure 3.8) and the discrimination ratio means (figure 3.9, left). The discrimination 

index is a widely used measure in object recognition tasks (see Akkerman, Prickaerts, 

Steinbusch & Blokland, 2012) which gives a gross indication of time spent exploring the 

target object over and above the non-target object. In contrast, the discrimination ratio 

indicates the proportion of time spent exploring the target over the non-target object. Finally, 

cumulative mean discrimination ratios (figure 3.9, right) were analysed (for each group) 

following two minutes and five minutes of testing, and these were the primary performance 

measures for this task. An analysis following two minutes of testing was included because 

Dix & Aggleton (1999) suggested that discrimination for objects significantly declines after 

this time point over the five minutes of the test period. For the cumulative mean 

discrimination ratios group effects were analysed with t-tests for independent means and a 

series of one sample t-tests compared the total mean discrimination ratio (for each group) at 

two and five minutes to chance discrimination (i.e. zero).  

3.41 Novel Object Task: Exploration and Discrimination 

There were no main effects of group for total object exploration times (figure 3.7) or 

discrimination index values (figure 3.8) (p>0.2), but both groups exhibited a significant 

reduction in exploration time and discrimination indices across the intervals of testing 

F(9,189 ) = 10, p<0.001,  F(9,189) = 4.09, p<0.001,  respectively. The Interval by Group 

interaction was not significant for either measure, (F<1). In terms of the discrimination ratios 
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across intervals, there were no significant effects of group, interval, or interval by group 

interaction (figure 3.9a ) (p > 0.1).  

 For the cumulative mean discrimination ratios (figure 3.9b) both groups exhibited 

strong preference for the novel object over the two minutes control, t(16)=9.36, p<0.001; 

MTT, t(5)=5.3, p<0.01) and five minutes of testing control, t(17) = 13.78, p<0.00; MTT t(5) 

= 8.44, p<0.001. No significant effect of group was found across either two minutes or five 

minutes (t<1). 
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Figure 3.7. Novel object task: total object exploration mean +/- SE  for the control (minus 

one control rat, recording error) and MTT groups across the ten  consecutive 30 second 

intervals of testing. There was no significant difference between the groups in object 

exploration over the testing period, but both groups showed a significant reduction in object 

exploration across intervals. 
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Figure 3.8. Novel object task: mean discrimination index +/- SE for the control and MTT 

groups across the ten consecutive 30 second intervals. There was no significant difference 

between the group discrimination indices. Both groups exhibited a significant reduction in 

preference for the novel object over time. 
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 Figure 3.9a. Novel object task: mean discrimination ratio +/- SE for the control and MTT groups over the ten 30 second intervals of testing. 

There were no significant effects of group, interval, or group by interval interaction. Figure 3.9b. Novel object task: cumulative mean 

discrimination ratio+ SE (columns) for the control and MTT groups collapsed across two minutes (left) and five minutes (right) of testing. The 

overlaying dot plot shows the raw scores for individual rats. The black circles show the performance of the rat with the largest extent of MTT 

damage and its raw score has been presented to the right of the column. Both group show discrimination ratios significantly above the level of 

chance whether the data was analysed after two or five minutes of testing. There was no effect of group at either time point.. 
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3.5 Object Location Task 

The same procedure of data collection and analysis was used for this test as detailed in the 

novel object test. However, Dix & Aggleton (1999) suggest that, in object recognition tests 

involving a change of location, rats only show significant discrimination in the first minute of 

testing, so cumulative discrimination ratios were analysed following one and five minutes of 

testing. 

3.51 Object Location Task: Exploration and Discrimination 

No significant effects of group were found for total object exploration (figure 3.10) or 

discrimination indices (figure 3.11), but there was a significant effect of interval on both 

measures, F(9,198) =7.73, p<0.001 and F(9,198) = 2.76, p<0.01, respectively, which reflects 

a reduction in exploration and preference over time.  The peak in activity observed at 240 

seconds by the MTT group relates to one rat (B3) and is not representative of the rest of the 

group. Interestingly this task had the lowest initial exploration for both groups (first 30 

seconds) for all object recognition tasks, which likely reflects the consecutive exposure to 

identical objects in a novel configuration. There was no significant effect of group for 

discrimination ratios (figure 3.12a) across intervals, F<1, but a significant effect of interval 

F(9,198)=2.05, p<0.05, reflecting the variability in preference found in both groups across 

the testing period. The interval by group interaction was not significant (F<1).  

 The analysis of the cumulative mean discrimination ratios (figure 3.12b) revealed that 

the control group discriminated significantly above the level of chance following one minute 

t(18)=3.5, p<0.01 and five minutes; t(18)=3.2, p<0.05 of testing, but the MTT group did not 

at either time (p >0.1). However, given there was very little difference between the means of 

the groups the fact that the moderate lesion group did not discriminate significantly above 

chance is likely due to a lack of power from a small sample size and variability in 



 

 

71 

 

performance with poor discrimination by one rat. The cumulative mean discrimination ratios 

did not differ significantly from one another at either point in time (t<1).   
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Figure 3.10. Object location task: mean exploration time +/-  SE for the control and MTT 

groups across the ten  consecutive 30 second intervals of testing. There was no significant 

difference between the groups in total exploration time, but both showed a significant 

reduction in object exploration across the intervals of testing. 
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Figure 3.11. Object location task: mean discrimination index +/- SE for the control and MTT 

groups across each of the ten consecutive 30 second intervals. Both groups generally 

exhibited low preference for the displaced object across all intervals of testing. The groups 

did not differ significantly on this measure, but a significant effect of interval suggested a 

reduction in preference for the displaced object across intervals.
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Figure 3.12a. Object location task: mean discrimination ratio +/- SE for the control and MTT groups across the ten 30 second intervals of testing. 

There was no significant effect of group, but there was a significant effect of interval reflecting the varied discrimination ratios across the 

intervals. Figure 3.12b. Object location task: cumulative mean discrimination ratio +SE (columns) for the control and MTT groups collapsed 

across one (1), and five minutes (5), of testing. The overlaying dot plots show raw scores for each rat. The black circles indicate the performance 

of the rat with the largest extent of MTT damage and the raw score for this rat has been presented to the right of the columns. There was no 

significant effect of group and only the control group discriminated significantly greater than chance at both time points.

0.2 

a. b. 

 Control
 

MTT

30 60 90 120 150 180 210 240 270 300

INTERVAL

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
b
je

c
t 
L
o
c
a
ti
o
n
 T

a
s
k
: 
D

is
c
ri
m

in
a
ti
o
n
 I
n
d
e
x

a. 



 

 

74 

 

3.6 Temporal Order Task 

The same method of data analysis was used for this procedure as for the novel object task.  

3.61 Temporal Order Task: Exploration and Discrimination 

No significant effect of group was found for total object exploration (figure 3.13) on this task 

(p>0.2) but the groups differed significantly on the discrimination index for this task (figure 

3.14,  F(1,19) = 5.08, p<0.05), indicating that the MTT group had a mildly stronger 

preference for the target object than the control group on this measure. A significant effect of 

interval was found for both measures reflecting a reduction in total exploration over time, 

F(9,191) =7.32 , p<0.001, and a reduction in the magnitude of preference for the target object 

over time, F(9,171) = 2.53 p<0.01. Neither measure had a significant interval by group 

interaction (F<1). The peak observed at 180 seconds (figures 3.13, 3.14) by the MTT group 

was caused by two rats (B3 and R8) that showed substantially more exploration than the 

remaining four rats in the moderate lesion group. For the discrimination ratio across intervals 

(figure 3.15a), however, there were no effects of group, interval or group by interval (p >0.1).  

Interestingly, the strong preference for the incorrect object by the MTT group at 180 seconds 

(figure 3.15a) was a reflection of group performance as only one rat (N6) had a 

discrimination ratio more positive than -0.7 for this interval.  

 The analysis of cumulative mean discrimination ratios (figure 3.15b) revealed that the 

MTT group discriminated significantly above the level of chance following both two 

minutes, t(5) = 3.2, p<0.05,  and five minutes, t(5) = 3.2, p<0.05, of testing. In contrast, the 

control group discriminated above the level of chance for the first two minutes of testing 

t(15)= 2.19, p<0.05, but not after five minutes of testing, p>0.1. There were no significant 

effects of group at either point in time (p >0.1). 
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Figure 3.13. Temporal order task: mean total exploration times +/- SE for the control and 

MTT groups (minus two control rats, escaped testing box) across the ten consecutive 30 

second intervals of testing. There was no significant difference between the groups, but a 

significant effect of interval indicated that group exploration reduced across the intervals of 

testing. 
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Figure 3.14. Temporal order task: mean discrimination index +/- SE for the control and MTT 

group across the ten consecutive 30 second intervals of testing. The MTT group showed a 

mildly stronger preference for the target object than the control group for the duration of 

testing. Additionally there was a significant effect of interval indicating that preference for 

the target object reduced across the intervals for both groups.
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Figure 3.15a. Temporal order task: mean discrimination ratio +/- SE for the control and MTT groups across each of the ten consecutive 30 

second intervals of testing. There were no significant effects of group or interval or group by interval interaction. Figure 3.15b. Temporal order 

task: mean cumulative discrimination ratios + SE (columns) for the control and MTT groups collapsed across two (2), and five minutes (5), of 

testing. The overlaying dot plots show raw scores for each rat. The score of the rat with the largest extent of MTT damage has been circled in 

black and its raw score has been presented to the right of the columns. There were no significant differences between the groups, but only the 

MTT group discriminated significantly above the level of chance following five minutes of testing.
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3.7 Water-maze Testing  

For all tasks in the water maze, escape latency, path length and swim speed were obtained 

from the tracking software. No substantial differences were observed in mean swim speed in 

phase 1, phase 2 (control =27.08cm/s; MTT = 25.93cm/s) or (control = 25.7 cm/s; MTT = 

26.9 cm/s) of working memory testing, or during reference memory training (control = 

30.07cm/s; MTT = 30.29 cm/s). Both escape latency and path length are shown but only path 

length analyses are described as the conclusions were generally the same across these 

measures. 

3.71 Working Memory Phase 1 (Short ITI) 

The first 9 days of testing in the working memory task in the water maze involved massed 

trials with a short ITI (~2 seconds) after the rat had rested on the platform. The 9 days of 

acquisition were blocked in groups of three and a repeated measures ANOVA was performed 

using the factors group, block and trial. As shown in figure 3.16, there was a significant effect 

of block F(2,210) = 7.5, p<0.001 reflecting a significant reduction in path lengths with 

training. The significant effect of trial F(3,630) = 35.69, p<0.001 shows improved 

performance suggesting that both groups learned within each session. There was no 

significant effect of group, and no significant interactions between any factors (p >0.05) with 

the exception of trial by block F(6,630) = 2.19, p = 0.04. This interaction was primarily due 

to improved performance on the first day‟s trial across blocks reflecting improved search 

strategies for the new daily location. 
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Figure 3.16. Mean path lengths (top) and mean escape latencies (bottom)  +/- SE, for the 

control and MTT groups across trials 1-4, for each of the three blocks of testing on phase 1 of 

working memory in the water maze. There was no significant difference between the groups, 

both performing at a similar level over the three blocks of training. However, both groups 

showed a significant reduction in path lengths across trials 1-4, which indicated they were 

learning within a session. A significant effect of block indicated that both groups improved 

significantly with training. 
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3.72 Working Memory Phase 2 (Long ITI) 

Testing for phase 2 of the working memory task in the water maze, which occurred 3 days 

after phase 1, involved running the rats in squads of 3 to extend the inter-trial interval to 4-6 

minutes. The 6 days of testing in were blocked into two groups of 3 days. Figure 3.17 shows 

the mean path lengths (top) and escape latencies (bottom) for trials 1-4 over the two blocks of 

testing. A repeated measures ANOVA revealed there was no significant effect of block, F<1, 

or group,  p = 0.24, but there was a significant effect of trial F(3,420) = 83.5, p<0.001, which 

reflected the reduction in path length to the hidden platform after trial 1 especially, showing 

that both groups showed excellent spatial working memory within a session. No interaction 

terms were significant (all F<1).  

To assess whether the rats performed significantly better with longer inter-trial 

intervals, the final block of training in phase one was compared to the first block of training 

in phase two. There was a significant effect training phase, F(1,140) = 4.31, p<0.05, 

reflecting a reduction in path lengths by both groups when the inter–trial interval was 

extended. The significant trial by training phase interaction, F(3,420) = 9.7, p<0.001, 

reflected superior performance trials 2 (especially), 3 and 4 when the ITI was extended. The 

reduction in path length from trial 1 to trial 2 is the strongest measure of working memory in 

this protocol. 

 

 

 

 

 

 

 

 

 

 



 

 

80 

 

 

 

 

Path length 

 Control

 MTT
Trial

Block: 1

1 2 3 4
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

W
o
rk

in
g
 M

e
m

o
ry

 P
h
a
s
e
 2

: 
P

a
th

le
n
g
th

 (
c
m

)

Trial
Block: 2

1 2 3 4

 
Escape Latency 

  

 Control

 MTT
Trial

Block: 1

1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

110

120

W
o
rk

in
g
 M

e
m

o
ry

 P
h
a
s
e
 2

: 
E

s
c
a
p
e
 L

a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Trial
Block: 2

1 2 3 4

 
 

Figure 3.17. Mean path lengths (top) and mean escape latencies (bottom) +/- SE, for the 

control and MTT groups across trials 1-4, during the two blocks of testing on phase 2 of 

working memory in the water maze. There was no significant difference between the group 

path lengths for either block, but there was a significant effect of trial which suggested that 

both groups learnt within a session.  
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3.73 Reference Memory 

All rats were then given 7 days of training on the standard reference memory task in the 

water maze. The rats were run in squads of 3 giving a 2-4 minute inter-trial interval. Figure 

3.18 shows the path length (top) and escape latencies (bottom) for each group over the 7 days 

of training in the reference memory task. A repeated measures ANOVA (group by day) 

revealed a significant effect of group, F(1,21) = 4.5,  p<0.05, indicating a modest effect in 

which the control group had shorter path lengths to the hidden platform across training. There 

was also a significant effect of day,  F (6,126) = 3.6, p <0.01, indicating a reduction in path 

lengths by both groups to the platform with training. The day by group interaction was not 

significant (F <1).  
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Figure 3.18. Mean path lengths (top) and mean escape latencies (bottom) +/- SE, to reach the 

hidden platform for the control and MTT groups across the 7 days of training in the reference 

memory task. The control group had significantly shorter path lengths to the hidden platform 

across the 7 days of training. Both groups significantly reduced the distance swum to reach 

the hidden platform with training. * Indicates a significant effect of group at p<0.05. 
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3.74 Five and Twenty Five Day Reference Memory Probes 

Pairs of rats from the sham and MTT groups were matched for performance for the last 3 

days of reference memory training and randomised to either a 5 or 25 day probe, testing their 

memory of the location used in the reference memory test. Two measures were used:  the 

accuracy ratio, which gives an indication of the proportion of time spent in the correct 

quadrant of the pool; and crossings of the annulus region, which is the diameter of the 

platform enlarged by 20 centimetres to provide an estimate of search accuracy. Mean group 

performance was plotted for both measures and due to the small sample size the raw data are 

also shown to compare the performance of individual rats. Examples of swim paths from rats 

with median performance (on both retention intervals) and the rat with the largest lesion (25 

day retention interval) are also presented (figures 3.21 & 3.22). The two delays were analysed 

with a 2 × 2 factorial ANOVA using the factors retention interval and group.  A regression 

analysis was also performed to see if mean path length for the final 3 days of testing in the 

reference memory task was a significant predictor of accuracy ratios or crossings of the 

annulus (separately), first in the 5 day groups and then in the 25 day groups.  

3.75 Accuracy Ratio 

As shown in figure 3.19 there was significant effect of retention interval, F(1,20) = 4.77, 

p<0.05, providing a manipulation check in which rats were more accurate if they completed 

the 5 day retention interval than if they completed the 25 day retention interval. The groups 

did not differ significantly in their accuracy for the last known location of the platform (F<1) 

and there was no significant interaction between retention interval and group (p = 0.3). 

Performance for the last 3 days on the reference memory task did not significantly predict the 

accuracy ratio for rats completing the 5 day retention interval (b -0.19, p>0.5), but it did 

significantly predict the accuracy ratio of rats completing the 25 day retention interval (b -.71, 

p<0.01). This suggests that the strength of the memory formed for the location of the hidden 
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platform by the end of training was more important when retrieval was weaker after a long 

delay. 
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Figure 3.19. Mean accuracy ratios + SE (columns) for the control group and the individual 

rats in the MTT group following a 5 day (left), or 25 day retention interval (right). Dot plots 

of the raw data for the control group is also shown. The black column (N6) indicates the rat 

with the largest extent of MTT damage. The groups that completed the 5 day probe were 

significantly more accurate than the groups that completed the 25 day probe. There was no 

significant difference between the control and MTT groups in terms of accuracy for the 

platform location for either retention interval. 
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3.76 Crossings of the Annulus 

There were no significant differences in annulus crossings between the retention intervals (F= 

1.26) and no group (F<1) or group by retention interval (p = 0.29) in figure 3.20. Mean path 

lengths for the final three days of reference memory training did not significantly predict the 

performance of rats completing the 5 day retention interval, (b =-0.18,  p>0.5), but 

approached significance for rats that completed the 25 day retention interval, (b = -0.55, p = 

0.06).  

 

 
 

Figure 3.20. Mean crossings of the annulus (platform diameter area enlarged by 20 

centimetres) for the control group and the individual MTT rats following a 5 day (left), or a 

25 day retention interval (right). Dot plots of the raw data for the control group is also shown. 

Where a marker represents more than one rat the frequency is presented to the right of the 

column. The black column (N6) indicates the performance of the rat with the largest extent of 

MTT damage. There were no significant effects of retention interval or group in annulus 

crossings. 
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Figure 3.21 Examples of the swim path of  the median control (A), and  median MTT rat (B), 

on the 5 day reference memory probe. The control rat‟s  swim path is more concentrated 

around the platform location than the rat in the MTT group. 

 

 
Figure 3.22 Examples of the swim path of the median control rat (A), the median MTT rat 

(B), and the rat with the largest extent of MTT damage (C), on the 25 day retention probe. 

The control rat showed the most accurate swim pattern with the majority of the swim path 

within the platform quadrant. In contrast, the rat in the MTT group showed a less precise 

swim strategy. As with the control rat, the rat with the largest extent of MTT damage spent 

the majority of time in the correct quadrant, but seems to have covered less total distance 

during the probe trial. 
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3.8 Spatial Working Memory in the Cross-maze 

Two rats did not complete this task (1 control and 1 moderate) because they refused to leave 

the start area and were disrupting the performance of the other rats and were dropped after 12 

trials. The 15 days of testing were blocked into 5 three day groups and analysed using a 

repeated measures ANOVA with the factors block and group. Data for this task were 

analysed in three ways. First group performance was compared for all trials over the 5 blocks 

of testing. Next group performance was analysed separately for those trials that used the same 

start end for both the sample and choice runs (standard t - maze task) and those that used 

different start ends. Finally, the mean performance of the few rats that reached criterion 

across the five blocks of testing have been plotted in figure 3.25 to observe the progression of 

responding exhibited by these rats .  
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3.81 Group Performance All Trials 

As indicated in figure 3.23 all groups performed poorly on this task, as it was expected that 

the control group would reach at least 85% correct over two consecutive days before the end 

of testing. The control rats made more correct arm choices on average than the moderate 

lesion group for the duration of testing, but this difference did not approach significance, ( p= 

0.12). In addition, the mean for the MTT group was the same as that for the control group on 

the last block. There was a non- significant effect of block (p>0.05) reflecting the relatively 

stable level of performance observed in both groups across blocks. The block by group 

interaction was not significant F<1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Group mean percentage of correct choices for total trials (same and different) +/- 

SE,  across the 5 blocks of testing on the spatial working memory task in the cross maze. The 

control group on average made more correct arm choices than the MTT group, but this 

difference was not significant. Neither group made significantly more correct choices with 

training. Unfortunately, most controls did not reach the expected level of performance for this 

task (85% over two consecutive days).  
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3.82 Group Performance: Same and Different Start Trials 

As shown in figure 3.24 both groups performed better on trials where both the sample and 

choice run were started from the same end of the cross-maze (top) and worse when the runs 

were started from different end (bottom). The MTT group appeared to have been more 

affected by different start trials than the control group, but there were no significant effects of 

block (p >0.2) or group (p >0.1) or block by group interactions (p >0.3) for either trial type. 
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Figure 3.24. Mean percentage of correct choices for same (top) different start trials (bottom) 

+/- SE, for the control and MTT groups across the 5 blocks of testing for spatial working 

memory testing in the cross maze. Both groups performed better on same start trials and the 

MTT group appear to be more affected by different start trials than the control group, but 

there were no significant effects of block or group for either trial type. 
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3.83 Individual Completion Criteria 

Unfortunately only six rats (five controls and one MTT rat “R8” 2
nd

 smallest lesion in this 

group) reached criterion, three on day 12, one on day 13 and two on day 15. Figure 3.25 

shows the mean percentage of correct choices of the six rats that reached the completion 

criteria over the 5 blocks of testing. Generally these rats showed acquisition that peaked in 

the final block of testing. A fishers exact chi square test showed the proportion of rats that 

reached criterion was not significantly different between the groups (p = 0.58). Interestingly, 

the MTT rat that reached completion criteria had the highest percentage of correct choices in 

the last block of training (6 out of 6 trials correct for three consecutive days). 
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Figure 3.25. Individual percentage of correct choices for the six rats that reached completion 

criteria across the 5 blocks for the spatial memory task in the cross maze. Generally, these 

rats showed gradual improvement that peaked in the final block of testing. There was no 

significant difference in the proportion of control and MTT rats that reached criterion 
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3.9 Results of the Rat with the Largest Extent of MTT Damage ( Rat # N6) 

In general N6 performed unexpectedly well across the behavioural tasks and often had 

comparable if not better performance than many control rats, and with few exceptions 

consistently performed in the middle of the MTT rats. One exception was the episodic 

memory task, for the “what”, “when” and “where” memory components when N6 was the 

poorest performer in the MTT group (see figure 3.6 bottom row). When compared to the 

control rats N6 was the second to worst performer on the “what” memory component, the 

worst performer on the “where” memory component, but fell within the spread of control 

discrimination values on the “when” memory component. However when N6 was tested on 

the object location (figure 3.12b) and temporal order tasks (figure 3.15b), which replicated 

“simplified” aspects of the “where” and “when” components of the episodic memory task, no 

impairment was observed. At both testing intervals (one or five minutes) on the object 

location task N6 discriminated appropriately and had the strongest preference for the target 

object of all rats after five minutes of testing. Similarly in the temporal order task N6, showed 

a strong preference for the target object at both testing intervals (two & five minutes) and 

outperformed the majority of the control rats. For the novel object task (figure 3.9b), although 

this is a task where no impairment with MTT would be expected, N6 had a strong preference 

for the target object comparable to the better performing control rats at both testing intervals 

(two & five minutes). 

 For phase 1 of working memory testing in the water maze N6 was slightly impaired 

compared to the control group mean and had longer path lengths for block 1 (trials 1-4: 

2814cm, 1634cm, 1206cm & 1573cm, compare with figure 3.16). Improvement was 

observed in block 2 and N6 had path lengths comparable to the control group mean (trials 1-

4: 1227cm, 989cm, 921cm & 409cm). In block 3 N6 had comparable path lengths to control 

mean and performed well on (trials 1 and 3: 858cm & 586cm), but struggled on trials 2 and 4 



 

 

94 

 

(1110cm & 1172cm).  For phase 2 of working memory testing ( compare with, figure 3.17) 

N6 was initially impaired in block 1, especially trial 2 (trials 1-4: 1159cm, 1086cm, 585cm & 

814cm), for which it swam nearly twice the distance of the control mean to find the platform. 

This is important because the reduction in path length from trial 1 to 2 is considered the 

strongest measure of working memory. However, by block 2 N6 had similar path lengths to 

the control group (trials 1-4: 1351cm, 326cm, 459cm & 745cm).  

 Across the seven days of reference memory training (figure 3.18) N6 had similar path 

lengths to the platform as the control group mean (days 1-7: 319cm, 429cm, 322cm, 299cm, 

344cm, 399cm, & 247cm) despite this the MTT group as a whole showed a weak deficit. N6 

completed the completed the 25 day reference memory probe test and had a comparable 

performance to the superior control rats for the accuracy ratio (figure 3.19) and crossings of 

the annulus (figure 3.20).  

 Finally, N6 acquired the delayed non matching to place task in the cross maze (blocks 

1-5: 33%, 55%, 44%, 61% & 66%) at a slower rate than the control group (compare with 

figure 3.23). Furthermore, N6 was disproportionately affected by different start trials (blocks 

1-5: 33%, 44%, 33%, 52% & 52%) compared to same start trials (blocks 1-5: 33%, 72%, 

52%, 80% & 88%). However, it made more correct choices than the control mean across the 

final two blocks of training for the same start trials (compare with figure 3.24). 

3.10 Results of the Unilateral MTT Damage Group 

The unilateral MTT damage group (uniMTT) had a variable pattern of results across tasks. In 

some tasks they outperformed the moderate lesion and control group and in others they were 

more impaired than the MTT group. For the episodic memory task the uniMTT group had 

stronger mean discrimination on the “what” and “where” memory components (mean = 0.38, 

SD = 0.06) and (mean = 0.19, SD = 0.7) than the control and MTT groups (compare with 

figure 3.6 bottom row). However they exhibited virtually no discrimination (mean = 0.07, SD 
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= 0.85) for the “when” memory component. The uniMTT group were not impaired in the 

novel object recognition task had a comparable mean level of discrimination to the control 

group (figure 3.9b) after two (mean = 0.52, SD = 0.2) and five minutes of testing (mean = 

0.52, SD = 0.28). However, in the object location task the uniMTT group had weaker mean 

discrimination than the control group and MTT group (compare with figure 3.12b) after one 

minute (mean = 0.18, SD = 0.11) and five minutes of testing (mean = 0.03, SD = 0.22). For 

the temporal order task the unilateral group showed greater mean discrimination than the 

control group, but not the MTT group (compare with figure 3.15b) after both two (mean = 

0.31, SD =0.15) and five minutes (mean = 0.25, SD = 0.20).  

 For the first phase of working memory testing in the water maze the uniMTT group 

tended to have longer path lengths across trials 1-4 on block 1 (trials 1-4: 2615cm, 1721cm, 

1233cm & 1047cms) than the  control and MTT groups (compare with figure 3.16), but 

comparable path lengths to both groups in block 2 (trials 1-4: 1369cm, 770cm, 684cm & 

951cm). In the final block of testing the uniMTT group had shorter path lengths than the 

MTT group, but not the controls (trials 1-4: 1845cm, 915cm, 801cm & 858cm). For phase 2 

of working memory of the water maze (Compare with figure 3.17) the uniMTT groups mean 

path lengths to the platform fell between the control and MTT groups in block 1 (trial 1-4: 

1671cm, 566cm, 420cm, & 596cm), but were longer than both groups in block 2 especially 

on the second trial (trial 1-4: 1798cm, 936cm, 502cm & 490cm).   

 The uniMTT group generally had longer path lengths than the control and MTT 

groups ( compare with figure 3.18) across the seven days of reference memory training (days 

1-7: 608cm, 445cm, 389cm, 403cm, 385cm, 335cm & 226cm). Coincidentally, two rats from 

the uniMTT group performed the 5 day reference memory probe and two performed the 25 

day probe. The two rats that completed the 5 day probe had a comparable level of accuracy to 

the control group (mean = 2.20, SD = 0.89). In addition, they made more crossings of the 
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annulus (mean = 4, SD = 1.4) than the control group, but not the MTT group (compare with 

figure 3.19 and figure 3.20). However, the two rats that completed the 25 day probe test were 

less accurate (mean = 1.3, SD = 0.44) and made fewer crossings (mean = 0.44, SD = 0.7) 

than the control and MTT groups. 

 Finally, the uniMTT group generally made fewer correct choices than the control or 

MTT groups  on the spatial working memory task in the cross maze (compare with figure 

3.23) (blocks 1-5: 55%, 48%, 47%, 48% & 55%). Like the control and MTT groups (compare 

with figure 3.24) the uniMTT group made more correct choices on same start only trials 

(blocks 1-5: 74%, 61%, 55%, 58% & 63%) but performed poorly on different start trials  

(blocks 1-5: 37%, 36%, 42%, 42% & 52%).  
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4. Discussion 

4.1 Summary of Results 

This study provides evidence that the MTT may not be as critical to the normal functioning of 

the extended hippocampal memory circuit as previously suggested (Vann & Aggleton, 2003; 

Vann, Honey & Aggleton, 2003; Vann, 2010). A deficit in spatial working memory in the 

water maze represented the clearest deficit in a previous MTT lesion study (Vann & 

Aggleton, 2003). In the present study, no deficit was evident for this task despite moderately 

large damage to the MTT, consistent with the negative result in another recent study (Winter 

et al, 2011). As with that recent study, damage to the MTT produced a mild deficit in the 

standard reference memory task in the water maze (Winter et al, 2011), which was not tested 

by Vann & Aggleton (2003). Also, in contrast to previous studies, no deficit was found for 

the spatial working memory task in the cross maze (Vann & Aggleton, 2003; Thomas & 

Randall, 1985). Despite the mild reference memory deficit, the additional recent (5 day) and 

remote (25 day) reference memory probes provided no evidence that the MTT has a 

significant role in memory consolidation. No study has previously examined long term 

retrieval of spatial memory after MTT lesions. In line with previous reports following lesions 

to the MB and ATN in rats (Aggleton et al, 1995; Mitchell & Dalrymple-Alford, 2005) rats 

with MTT damage showed no impairment in their ability to discriminate between a “novel” 

and a “familiar” object or the temporal order of objects. Another contrast to the predicted set 

of findings, however, subsequent object recognition tasks testing “episodic like” memory and 

memory for the location of objects also found no significant differences between rats with 

MTT damage and controls. The overall lack of effect of MTT lesions was reinforced by the 

fact that the rat with the largest extent of MTT damage, 81%, performed unexpectedly well 

during the spatial working memory task in the water maze and across reference memory 
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training. In Addition, this rat had an accurate memory for the last known platform position in 

the 25 day retention interval probe test. These findings when combined with those of Winter 

et al (2011) suggest that more research is needed before any definitive conclusion regarding 

the role of the MTT in memory can be reached. 

4.2 Behavioural Tasks 

Each of the behavioural tasks in now examined in more detail. 

4.21 Water Maze: Working Memory Task  

As stated, it was unexpected that there were no significant differences between the groups in 

either phase 1 or phase 2 of working memory testing in the water maze. Of particular 

relevance, the significant effect of trial across all blocks of testing indicated that both groups 

could learn a novel platform position within a session and use this information to reduce the 

distance they had to swim to find the platform on subsequent trials. More generally, this 

evidence suggests that both groups successfully used environmental and spatial cues to 

navigate to the platform. Previous work by Vann & Aggleton (2003) found rats with either 

MTT or MB lesions had severe deficits in the acquisition of this task, so rats with MTT 

lesions in the present study were expected to have a severe and pervasive acquisition deficit 

here too. Whilst completing behavioural testing for the current study, a new study by Winter 

et al (2011) was published. Winter et al (2011) also found that rats with complete bilateral 

MTT lesions were unimpaired on this task and performed at the level of their control rats.  

 It is possible that the discrepancy between the present study and that of Vann & 

Aggleton (2003) was the result of subtotal MTT lesions but this was not true of the MTT 

lesions in the study by Winter et al (2011). The idea that the MTT requires complete 

disconnection before a behavioural deficit emerges, is consistent with the suggestion in the 

context of MB damage made by Sziklas & Petrides (1993) who found that marked 

behavioural deficits in rats were only observed following MB lesions if damage was total and 
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extended to a wider region, including adjacent nuclei and fibre tracts. However, if the MTT is 

as critical to memory, as Vann and Aggleton (2003) suggest, substantial damage would be 

expected to cause a robust deficit. Less than total damage to other diencephalic structures has 

been shown to produce robust and severe behavioural deficits. For example, Byatt & 

Dalrymple-Alford (1996) deliberately created small radio frequency lesions in either the 

anteromedial or anteroventral components of the ATN. This substantial, but incomplete ATN 

damage produced a robust behavioural deficit in working and reference memory versions of 

the RAM. This is an important consideration given the MTT/MB are more consistently 

implicated in human amnesic syndromes than the ATN.  Furthermore, it is not known 

whether the remaining myelinated MTT tissue in the MTT group in the current study was 

healthy, so it is possible that the MTT tract damage is greater than reported.  

 The point at which the MTT is interrupted may also be a factor to consider, as it is 

possible that the deficit observed by Vann & Aggleton (2003) resulted from damage to 

midline thalamic structures in addition to the MTT. The surgical procedure used Vann & 

Aggleton (2003) produced lesions at approximately -2.8 from bregma (see Vann & Albasser, 

2009). At -2.8 from bregma the MTT is directly adjacent to the nucleus reuniens (RE) of the 

midline thalamus. Given the close proximity of these structures, lesion to the MTT at this 

level would likely cause damage to the RE. A recent study has shown that the RE is the 

principal source of thalamic input to the hippocampus (Vertes, Hoover, Szigeti-Buck & 

Leranth, 2007). In addition, they showed that the RE may represent a critical link between the 

medial prefrontal cortex and the hippocampus, structures which are consistently implicated in 

memory.  

 Although Winter et al (2011) only ran their spatial working memory task for four days 

there were no noticeable differences in escape latencies between their lesion and control 

groups. By contrast, the deficit reported in the comparable task by Vann & Aggleton (2003) 



 

 

100 

 

was immediately apparent with controls locating the platform with substantially shorter path 

lengths than either the MB or MTT rats after only three days of training. Vann & Aggleton 

(2003) suggested that rats with MTT lesions have an acquisition deficit on this task and if this 

is true then it would be expected that any group differences should emerge early in training. 

Winter et al (2011) proposed that a strain difference may explain the contrast between their 

study and Vann & Aggleton (2003) as they used Long Evans compared to Dark Agouti rats, 

respectively. Long Evans rats generally exhibit superior performance to other strains on 

spatial memory tasks suggesting this factor may have exaggerated any differences between 

their groups. However, this premise seems unlikely given that there is no discernible 

difference between the mean escape latencies for Winter et al‟s (2011) lesion or control 

group. Interestingly, both the present study and Winter et al (2011) used female rats, in 

contrast to the male rats used by Vann & Aggleton (2003). It is possible that the 

discrepancies between the findings of the present study and Winter et al (2011) and the 

findings of Vann & Aggleton (2003) may also relate to sex differences. 

 The control group in the present study had a slower rate of acquisition of spatial 

working memory than is typically expected for this task. After nine days of training in phase 

1 in the water maze, the control rats still had an average path length of ~950 cms (on trial 

two) to locate the platform in the 180cm diameter pool. In contrast, after the same amount of 

training the control rats used by Vann & Aggleton (2003) were swimming approximately 300 

cms to reach the platform in a 200cm diameter pool. However, the present study used a more 

demanding spatial working memory procedure, which required the rats to locate ten different 

platform locations across training, compared to Vann & Aggletons (2003) four platform 

locations. In addition, the quicker task acquisition shown by Vann & Aggletons (2003) rats‟ 

may have reflected more extensive training, as their rats received testing in the t-maze and 

radial arm maze before being trained on the spatial working memory task in the water maze. 
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That is, the rats of Vann & Aggleton (2003) had perhaps already learnt to pay attention to 

environmental cues which in turn helped them acquired the water maze working memory task 

in a shorter period. 

 As expected all groups performed significantly better when the inter-trial intervals 

were extended from ~2 seconds to 4-6 minutes and the rats were allowed an additional 15 

seconds on the platform to orientate themselves to the environment. The quick improvement 

was likely a result of both these factors. The rats‟ performances on massed trials in phase 1 

may also have been retarded by the use of a lower water temperature in the present study (19-

21°c) compared to (23-25°c) used by Vann & Aggleton (2003), in combination with the use 

of smaller female rats. A lower water temperature was used in this study is commonly used to 

motivate the rats to escape from the water. 

4.22 Reference Memory Task 

As expected the moderate lesion group took significantly longer path lengths to find the 

platform, but this deficit was unexpectedly very mild in contrast to markedly severe and often 

persistent deficit evident with ATN lesions (Warburton et al, 1999; Warburton & Aggleton, 

1999; Wolff et al, 2008; Lopez et al, 2009). It is possible given the trend in the data that the 

observed deficit may have resolved with more than seven days of training. A previous study 

also found rats with complete bilateral MTT lesions took significantly longer to locate the 

hidden platform in a spatial reference memory test (Winter et al, 2011). However, Winter et 

al‟s (2011) analyses similarly indicated that this deficit was mild and their MTT lesion group 

was trending back towards control performance by the final day (of five days) of training. 

Lesions of the MB have produced mixed results for this task. Sutherland & Rodriguez (1989) 

found a transient deficit in rats with MB lesions, but Santin et al (1999) found rats with MB 

lesions were not impaired on this task.  
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4.23 Reference Memory Probe Trials 

There were no significant group differences observed for the accuracy ratio or crossings of 

the annulus after either a 5 day or 25 day retention interval. Individually, the rats in the 

moderate lesion group performed within the range of controls on both measures, which 

suggests that the MTT does not play a significant role in the retrieval of remote memory. It 

was not previously known whether rats with MTT lesions would be impaired in recent (5day) 

or remote (25 day) memory consolidation, but this task was included because previous work 

(Lopez et al, 2009) found that rats with a rostral intralaminar thalamic lesion, which showed 

no deficit during reference memory training or after a 5 day retention interval, were 

significantly impaired following a 25 day retention interval. It is also thought that the ATN 

may play a role in long-term retrieval, but rats with ATN lesions are so severely impaired 

during reference memory acquisition that any decrement in performance following a 

retention interval would be difficult to detect.  

 There was however, a significant effect of retention interval on accuracy for the last 

known location of the platform suggesting that the general manipulation was successful in 

that the rats performing the task after five days were more accurate than rats performing the 

probe after 25 days. Interestingly, mean path lengths over the final three days of the reference 

memory task did not predict accuracy for platform location after a 5 day retention interval, 

but significantly predicted accuracy after a 25 day retention interval. This novel finding 

suggests that the strength of the memory formed for the platform location by the end of 

training was more important if rats had to retrieve spatial information after a longer delay. 

This association has never been examined in the literature previously to the experimenter‟s 

knowledge. 
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4.24 Spatial Working Memory in the Cross-maze 

The MTT group, on average, made fewer correct choices than control rats over the 15 days of 

delayed non-matching to place training in the cross maze. However this deficit did not 

approach significance, perhaps because of the poor performance of the control group. 

Furthermore, no deficit was observed when trials where the sample and choice runs were 

started from the same or different ends of the apparatus were analysed separately. Both 

groups had a greater percentage of correct choices in same start only trials, likely reflecting 

the possible benefit of egocentric information for arm selection by simply alternating body 

turn with the trial. Rats with MTT lesions were expected to have a severe behavioural deficit 

on the delayed non-matching to place task in the cross-maze when all trials were included in 

the analysis, and especially when different start trials when the sample and test runs began 

from opposite start areas. Previous research has shown that rats with ATN lesions are 

severely impaired on this task (Loukavenko et al, 2007). Given the transient deficit observed 

by Thomas & Randall (1985) and Vann & Aggleton (2003) on a simplified t-maze task, it 

was expected that a similar transient impairment would be found when only same start trials 

were analysed. 

 Unfortunately, only 5 of the 17 rats in the control group managed to reach the 

completion criteria for this task and many of the controls were still performing at the level of 

chance (fifty percent) on the last block of trials. As a result group performance for all trials in 

the control group peaked just below 70 % correct even in the last block. Previous research 

using a similar procedure (Loukavenko et al, 2007) found that control rats reached a stable 

level of performance above 80% after 10 sessions. However, Loukavenko et al‟s (2007) rats 

were much younger, approximately 6 months old at the time of surgery, in contrast to 12 

month old rats used in the present study. Due to time constraints training in this task had to be 
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cut short and a greater proportion of the control rats may have reached criterion with 

additional training. 

4.25 Episodic Memory task 

The MTT group did not discriminate significantly above chance on any of the components of 

the episodic memory task, while the control group also performed poorly and only 

discriminated above chance on “what” memory, but there were no significant effects of 

group. The control group but not the MTT group was expected to discriminate significantly 

above the level of chance across all the “what”, “where” and “when” memory components in 

this task. Previous research by De Vito & Eichenbaum (2010) found mice with hippocampal 

lesions were significantly impaired in all three memory components.  

 The control rats in the present study were not able to replicate the robust 

discrimination shown by mice in the De Vito & Eichenbaum (2010) study discriminating 

marginally lower in comparison on the “what” memory component but approximately half as 

much on the “where” and “when” memory components. The most obvious difference 

between the present study and De Vito & Eichenbaum‟s (2010) is the species of rodent used 

(rat vs. mouse). Perhaps the parameters of testing used for this task were not directly 

transferable across species and the procedure needed to be adapted for use with rats. 

Additionally, the objects used may be relevant as the rats may have had a particular 

preference for one set of objects over the other and as all the analyses for this task relied on 

the same data expressed in different ways which would interfere with the results of all 

components.  

 The inability to find a group difference in any of the components of this task could be 

related in this instance to the size of the MTT lesions. The rat with the largest lesions was the 

poorest performer in the MTT group on all three measures. It is also important to consider 

that MTT lesions would not be expected to disrupt performance to the same degree as 
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hippocampal lesions. Also, the small group size of the MTT group made the group means 

sensitive to extreme values in this task especially.  

4.26 Temporal Order Task  

In the temporal order task, both sham and MTT groups discriminated significantly greater 

than chance after two minutes of testing, but only the MTT group discriminated significantly 

above the level of chance after five minutes of testing. There were, however, no significant 

differences in group performance at either time point. Rats with MTT lesions would be 

expected to discriminate between a “less recent” and “recent” object at a rate significantly 

greater than chance.  A previous study found that rats with ATN lesions did not differ 

significantly in their ability to discriminate between a “recent” and “less recent” object 

compared to controls (Mitchell & Dalrymple-Alford, 2005). In contrast, lesions of the 

perirhinal and medial prefrontal cortex significantly impaired temporal order discrimination 

in rats but, these two regions are suggested to support different memory processes than the 

MTT (Barker, Bird, Alexander & Warburton, 2007).  

 This task replicated a “simplified” version of the “when” memory component of the 

episodic memory task with only two objects.  Comparatively, both groups performed better 

on this task than the “when” component of the episodic memory task which likely relates to 

decreased task demands i.e. discrimination between two as opposed to four objects. 

4. 27 Object Location Task 

Only the controls were able to significantly discriminate between the two objects after one 

minute and five minutes of testing in the object location task, but there were no significant 

differences between the groups at either time point. Given the similarity of the group means 

the fact that the MTT group did not discriminate significantly above chance is most likely 

due to a small sample size, variability in performance and lack of statistical power, rather 

than a behavioural deficit. It was expected that rats with MTT lesions would not be able to 
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discriminate between the “stationary” and “displaced” objects in this task. Previous research 

found that rats with hippocampal lesions were not able to discriminate between a displaced 

and stationary object and performed significantly worse than the control group (Mumby et al, 

2002). As mentioned previously, MTT lesions would not be expected to disrupt performance 

to the same degree as hippocampal lesions, which may account for the non-significant group 

difference found in the present study. However these results did not reflect a particularly poor 

performance of the control rats in general as they performed at a similar level following one 

minute of testing as displayed by control rats in previous studies (Dix & Aggleton, 1999; 

Barker et al, 2007). 

 Both groups exhibited a mildly greater mean preference for the target object after one 

minute of testing than five minutes of testing, but the results did not support the findings of 

Dix & Aggleton (1999) who suggested that, for object recognition tasks that use a change of 

location, intact rats only discriminate significantly in the first minute of testing. This may 

relate to differences in testing environments and the use of female as opposed to male rats. 

 Interestingly, this task showed a different pattern of results to the “where” memory 

component of the episodic memory task, as the controls discriminated significantly between 

the objects in this task but not in the episodic memory task. As for the temporal order task, 

this likely relates to a reduction in task demands. 

4.28 Novel Object Task 

While there was no effect of group for this task, both sham and MTT groups showed a robust 

and significant preference for the “novel” over the “familiar” object, after two minutes (as per 

Dix  & Aggleton, 1999) and five minutes of testing. Both groups exhibited a mild reduction 

in mean discrimination for the novel object following five minutes of testing, but the 

discrimination ratios of both groups remained significantly above chance. Previously, Dix & 

Aggleton (1999) reported that intact rats fail to discriminate significantly above the level of 
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chance after two minutes of testing. This difference could relate to factors such as strain 

differences, the objects used, differences in the apparatus and testing environment and sex 

differences as female rats (used here) are generally more active than male rats (used by Dix & 

Aggleton, 1999). Lesions of the MTT would not be expected to disrupt discrimination in a 

simple object recognition task, which has been shown to be dependent on the perirhinal 

cortex (Mumby, 2001). Previous studies have found that lesions of the hippocampus, ATN 

and the MB do not disrupt these familiarity-based discriminations (Mumby, 2001; Aggleton 

et al, 1995; Mitchell & Dalrymple-Alford, 2005).  

4.3 Results of N6 (Largest extent of MTT damage) 

With the exception of the episodic memory task and low performance for the different start 

trials in the spatial working memory task in the cross maze, N6 was generally unimpaired. N6 

showed slightly poor performance in phase 1 and phase 2 of working memory in the water 

maze and a slower acquisition in the cross maze compared to mean of the control group, but 

this was also true of  many individual rats in the control group that performed either 

comparatively or worse than N6 on these tasks. Given the extent of the damage bilaterally, it 

would be expected that N6 would be impaired in the working memory version of the water-

maze especially. There are at least two possible explanations for the performance of this rat. 

Either the MTT is not as important to memory as previously thought and rather damage to 

multiple diencephalic sites including the MTT results in the human amnesic syndrome or 

complete bilateral transection is required for a deficit to appear. The latter seems unlikely in 

humans given the diffuse but often incomplete pattern of brain damage to different structures 

including the MTT following stroke, trauma, or disease related neurodegeneration in human 

amnesic syndromes. Additionally, it is important to note that Vann & Aggleton (2003) and 

Winter et al (2011) verified their lesions with a nissl stain only, so it is entirely possible that 

not all of the MTT was destroyed in their studies either. Despite not using a myelin specific 
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stain, both studies explicitly stated that rats included in their MTT lesion groups had 

complete bilateral lesions. 

4.4 Results of Unilateral MTT Damage Group 

While it is interesting to consider this group because unilateral MTT damage is common in 

human cases, the small size of this group and variability of performance across behavioural 

tasks make definitive conclusions difficult. It is not clear whether the poor performance of 

these rats on spatial working memory in the cross maze or reference memory training was 

related to MTT damage or another extraneous common elements within rats tested in this 

study. Previous research would suggest that the results of this group are not a attributable to 

unilateral MTT damage. Winter et al (2011) reported no behavioural differences between rats 

with unilateral MTT lesions and control rats during working memory or reference memory 

training in the water maze (Winter et al, 2011). 

4.5 Limitations     

When brains were extracted it was found that several rats had tumours protruding from the 

ventral surface of the skull up into the brain. In total, 14 out of 49 rats used in this study had a 

tumour of some description. These ranged in size from a few millimetres in diameter through 

to one that was 12×7×6 mm and weighed half a gram. Interestingly more control surgery rats 

than lesion surgery rats were found to have tumours and the tumour bearing rats were 

asymptomatic until just prior to all rats being sacrificed. A search of the literature revealed 

that the tumours were most likely anterior pituitary adenomas which are relatively common 

in older female rats (Gilbert, et al 1958; Crain, 1957). Studies have shown that diet, strain and 

age have a significant influence over tumour development. A low carbohydrate, high protein 

diet has been shown to significantly reduce the occurrence of all tumour types including 

pituitary tumours without reducing total life expectancy (Gilbert et al, 1958). Furthermore it 

has been suggested by others (Ross, Bras & Ragbeer, 1969) that long term food restriction is 
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sufficient to delay the time of occurrence and reduces the overall incidence of spontaneous 

tumours in mice and rats. These tumours are thought to be caused by growth hormones 

including estrogen and prolactin (Lloyd, 1983), as long term estrogen exposure leads to 

hyperplasia of the prolactin cells in the pituitary gland and a 100% incidence of pituitary 

gland tumours (Lloyd, 1983). It seems likely that the age of these rats in combination with 

free feeding up until the last few months of their lives may have contributed to the high 

incidence of tumours in this particular cohort. 

 For reasons beyond the control of the experimenters at the time of surgery the rats 

were already 12 months old (Christchurch quakes). This was not expected to be a problem as 

rats typically live two years and testing was expected to conclude after approximately 3-4 

months. Generally the controls in this experiment performed poorer than expected and the 

most likely explanation is their age. It is also possible that some pathological changes in the 

rats associated with pituitary gland adenomas could underlie the poor performance even in 

cases that had not yet developed a tumour. In any case it would be advisable to use much 

younger rats in future.  

 Although full bilateral destruction of the mammillothalamic tract was not achieved in 

any of the lesion rats, many had a substantial localised damage of MTT. Trial lesion surgeries 

conducted prior to the start of the experiment suggested that 58°Celcius for a total of 60 

seconds was sufficient to extensively damage and disconnect the MTT. Lesion verification in 

these cases consisted of a nissl stain (cresyl violet acetate) of the damaged region and the rats 

were culled a few days after receiving the lesion as per normal practice, but it is possible that 

inflammation of the damaged region may have made the lesion appear larger than it actually 

was. Additionally, without the inclusion of a myelin stain which visualises the myelinated 

tissue in the brain, it is hard to tell whether any small remnant of the tract remained although 

this seemed unlikely. Another explanation for the incomplete lesions in this study may have 
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been a malfunction of the radio frequency generator which occurred sometime in between the 

last trial surgery and the first experimental surgery.  The latter is probable given the vast 

differences in lesion extent between the trial and experimental surgeries as the exact same 

methodology was used for each. 

 Many lesions, however, were extremely accurate given the small and difficult target, 

but a few lesions missed because they were located too posterior in the brain. Lesions that 

posterior are problematic because caudal to -3.6 from bregma the MTT starts to disperse as it 

descends rapidly into the MB so any lesions that hit beyond this AP level were too high and 

resulted in little or no damage to the tract.  Given the small margin for error there were also a 

few occurrences where the midline coordinate was not correct so the lesions hit the side of 

the tract. A very methodical approach was taken to locate the midline of the brain using the 

mid sagittal suture and the midpoints of both bregma and Lambda, but this did not prove 

successful in all cases. One accurate approach to establish midline would be to remove a bone 

flap and use the mid sagittal sinus as a midline, but variation can still occur and  this greatly 

increases the chances of extensive bleeding, so is not the preferred method. Additionally 

using female rats made determining the anterior-posterior coordinate more difficult as most 

previous studies creating MTT lesions, except one (Winter et al, 2011), used male rats. 

Winter et al (2011) had some success with an absolute AP coordinate of -1.9 from bregma, 

but the method used in the present study is preferable as it accounts for head size variations 

within a given cohort of rats. 

 The present study created a novel method for verification/quantification of MTT 

damage as all previously published studies creating MTT lesions simply categorized their 

lesions into either full bilateral lesion, full unilateral lesion or a miss. To quantify the tract in 

the present study an AP coordinate was chosen that was as close as possible to the intended 

lesion site which allowed accurate quantification. Furthermore it is not clear whether the 
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remaining myelin that was quantified was pathogenic, so it is possible that the damage 

observed in the MTT group was greater than reported. It is possible to visualise neural 

degeneration in brain tissue through specialised stains such as amino cupric silver stain and 

flouro jade C stain, but the potential value of doing this in the present study only became 

apparent after the histological procedures had been carried out (Wozniak, Hartman, Boyle, 

Vogt, Brooks, Tenkova et al, 2004; Schmued, Stowers, Scallet & Xu, 2005). 

4.6 Contributions of the Current Study 

Given the relatively small sample size of the MTT lesion group in the present study, 

conclusions must be tentative. However, there are sufficient observations that suggest the 

MTT  may not be as important to memory as previously suggested, especially when the 

findings of the present study are combined with those of Winter et al (2011), at least when 

female rats are used.  

 One important issue is that, if the MTT is critical to memory, then extensive but 

subtotal damage to the MTT should be sufficient to induce a severe memory deficit. There is 

now a wide range of evidence strongly implicating the MTT in human amnesic syndromes. 

Importantly, neither of the large reviews examining behavioural and cognitive deficits 

following thalamic infarction (Van der Werf et al, 2000; Carlesimo et al, 2011) suggested that 

complete bilateral destruction of the MTT was required to induce the amnesic syndrome. In 

fact many of the studies included in these reviews reported anterograde memory deficits 

following unilateral MTT damage. Furthermore, in none of the cases examined in these 

clinical reviews was damage restricted solely to the MTT, but rather damage extended into 

various nuclei of the thalamus. It is possible then, despite the fact the MTT is consistently 

implicated in the human literature (Van der Werf et al, 2000, 2003b; Calesimo et al, 2011; 

Kim et al, 2009, 2010), the diffuse pathological changes in adjacent brain regions that 

accompany the MTT damage may account for the memory impairment, not just the MTT 
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injury.  Indeed, one seldom reported study suggested that localised damage to the MTT 

produced no cognitive or behavioural changes in their three patients (Duprez et al, 2005). 

Unfortunately, it is hard to substantiate how much if any physical damage was caused to the 

MTT in that study as electrodes were inserted into the tracts, which may have simply moved 

or displaced, rather than damaged them.  

 Given the anatomical trajectory of the MTT it is inevitable that in cases of amnesia 

involving MTT damage, nuclei within the adjacent thalamus are also damaged. This is 

especially true for the ATN. Paradoxically, studies in rodents have consistently shown severe 

memory deficits in working memory tasks following lesions to the ATN (for a review see 

Van der Werf et al, 2003a) and these deficits appear to be more pervasive and severe than 

those observed following MB or MTT lesions (see review by Vann, 2010). Furthermore, a 

study by Harding et al (2000) suggested that neurodegeneration in the anterior thalamus was 

the only consistent lesion found in alcoholics with Korsakoff‟s syndrome that differentiated 

them from other alcoholics with Wernicke‟s encephalopathy.  In their review Van der Werf et 

al (2000) concluded that the MTT was the critical region for human amnesic syndromes, but 

they also suggested that because MTT contains fibres bound for the ATN it is to be expected 

that infarctions affecting the ATN would produce the same deficits as damage to the MTT. 

This suggests an important role for both of these structures in diencephalic amnesia but 

actually places a greater precedence and emphasis on the MTT. It cannot be disputed that the 

MTT is associated with in the amnesic syndrome, but given the diffuse nature of brain injury 

and additional damage present in patients, it is not sufficient to suggest that damage to the 

MTT alone results in amnesia. Rather it may be that damage to the MTT in combination with 

damage to surrounding thalamic nuclei more accurately describes the resulting memory 

impairment. 
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 Although none of the lesions in the present study resulted in complete bilateral 

transection of the MTT it would still be expected that damage to over 50% of the tract should 

cause pervasive deficits, especially in spatial working memory tasks. In previous studies any 

lesions that failed to destroy the tract bilaterally were removed from the lesion groups and 

usually combined with controls (Krieckhaus & Randall, Field et al 1978, Thomas & Gash 

1985; Vann & Aggleton, 2003). In contrast, studies giving ATN lesions to rats have shown 

that less than total damage is sufficient to induce severe behavioural deficits (Byatt & 

Dalrymple-Alford, 1996; Loukavenko et al, 2007; Aggleton et al, 1996; Warburton et al, 

1999). Furthermore, Loukavenko et al (2007) found that, with lesions that were >50%, there 

was no correlation between the size of an their ATN lesions in their female rats and the 

resulting behavioural deficit for the last three days of spatial working memory in the cross 

maze.  If the MTT is as critical to memory as suggested by Vann & Aggleton (2003) and the 

clinical literature, then substantial but subtotal damage would be expected to result in a 

profound and chronic behavioural deficit in rats. 

 There is now a substantial body of research concerning behavioural impairments 

following lesions to the MB in rats and mice. Despite early inconsistent findings, it is widely 

accepted that MB lesions create task-dependent spatial working memory deficits. 

Given the results of the present study, and those of Winter et al (2011), it is important to 

consider why lesions to the MTT would not produce equivalent deficits to MB lesions. One 

interesting feature is that the MB are not solely connected to the ATN, but also have a 

reciprocal connection with the tegmentum nucleus of Gudden (Aggleton et al, 2010). 

Disconnection of the MTT removes the MB input into the ATN, but does not disrupt 

communication between the MB and the tegmentum nucleus. A recent study by Vann (2009) 

showed that lesions to the ventral tegmentum nucleus  (VTNg) produced deficits on a similar 

array of tasks and to a similar degree as do medial MB lesions. These considerations lead to 
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the unusual and important suggestion that the loss of VTNg input or disruption of VTg 

function caused by deafferentation following MB lesions may better account for the 

behavioural deficit than the loss of MB information per se. Of course, disconnecting the MTT 

would also remove the indirect VTNg input to the ATN, but the VTNg also projects to 

numerous peripheral sites including, the prefrontal cortex, cingulate cortex, and entorhinal 

cortex (Simon, Le Moal & Calas, 1979). Perhaps these other pathways are able to 

compensate for the loss of MB information through the MTT.  

4.7 Future Directions 

Surprisingly, there are still very few studies that have examined the behavioural impact of 

MTT lesions. This is somewhat puzzling given the mounting implication of this fibre 

pathway in human amnesic disorders. Vann & Aggleton (2003) found that male rats given 

MTT lesions had an acquisition deficit on working memory versions of the water maze, t- 

maze and RAM.  However, a more recent study by Winter et al (2011) found no deficit in 

female rats with MTT lesions on the working memory task in the water maze, but their rats 

showed impaired reference memory acquisition and in a food hoarding task where they had to 

rely on self-movement cues to navigate. It is clear that bilateral MTT damage or 

disconnection results in behavioural deficits, but given the inconsistent nature of these 

findings absolute conclusions cannot be reached without further investigation. 

  For future work to elucidate the functional role of the MTT in memory the present 

study needs to be replicated with a younger population of male and female rats and variation 

in lesion size. If a sex difference was confirmed, then we would still need to explain why 

ATN lesions substantially impair spatial memory in both sexes. The most important 

behavioural paradigm would be the working memory version of the water-maze as this 

discrepancy in findings must be resolved. Furthermore, subtle alterations in the water-maze 

task such as number of platform positions used could be employed to determine the 
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conditions necessary and sufficient to induce a behavioural deficit. If the deficit reported by 

Vann & Aggleton (2003) is established then further studies attempting to ameliorate this 

deficit through environmental enrichment or other neuroprotective strategies would be 

warranted. 

 Another important line of enquiry would be to compare directly the behavioural 

outcome of MTT, MB and ATN lesions on standard spatial working memory tasks within a 

single study. This is of interest because in human cases of diencephalic amnesia the MTT and 

the MB are more consistently implicated than the ATN. However, in the animal literature 

lesions to the ATN have been found to induce a more severe and persistent memory deficit 

than either MTT or MB lesions on several types of spatial and non-spatial learning tasks. 

 It is also important to untangle the functional contributions of the hippocampal inputs 

into the ATN, i.e. via the MTT and the fornix. A recent study by Vann et al (2010) found that 

the hippocampal inputs in to the MB are not as functionally important as previously thought. 

Vann et al (2010) disconnected the post-commissural fornix and removed the hippocampal 

input to the MB and found the subsequent behavioural deficits to be much less severe than 

either MB or MTT damage. Their finding is important because it suggests that the MB are 

not merely a relay of hippocampal information but provide a unique input into the extended 

hippocampal memory system which it is suggested is through the MTT. This being the case it 

would be of interest to compare in a single study the effect of MTT lesions and lesions that 

transect the hippocampal inputs into the ATN (pre-commissural fornix) thus severing the 

hippocampal inputs to the ATN either directly through the fornix or indirectly through the 

MTT. This could be tested with four groups of rats, bilateral MTT lesions, bilateral pre-

commissural fornix lesions, a mixed lesion group with a disconnection lesion to the MTT on 

one side and a unilateral lesion to the pre commissural fornix on the other, and a control 
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group. It would be best to test these groups on the same procedures used by Vann & Aggleton 

(2003) i.e. working memory versions of the t-maze, RAM and water maze.  

 Finally, given that human cases of diencephalic amnesia involving the MTT report 

diffuse diencephalic damage, usually involving various thalamic nuclei, it seems unlikely that 

MTT damage alone is responsible for the human amnesic syndrome. Rather, damage to the 

MTT either bilaterally or unilaterally in combination with damage to other memory specific 

regions may be responsible for the severe memory impairments observed. This speculation 

could be tested in mixed lesion animal models. For example, it would be beneficial to find 

out whether contralateral MTT/ATN lesions and ipislateral MTT/ATN lesions produce a 

greater behavioural deficit than bilateral MTT lesions alone. The same procedure could also 

be adopted for MTT lesions combined with mediodorsal or intralaminar thalamic lesions. 

This could increase understanding of how damage to multiple diencephalic structures may 

interact to compound memory deficits. Furthermore the impact of these mixed lesion models 

on the functioning of other regions important for memory, such as the hippocampus and the 

retrosplenial cortex, could also be measured by looking at c-fos or acetylcholine expression 

(Vann & Albasser, 2009; Jenkins et al, 2004; Poirier & Aggleton, 2009; Savage et al, 2012).  

4.8 Conclusions 

The results of this study suggest the contribution of the MTT to the extended hippocampal 

memory system may not be as pronounced as previously suggested. It is clear from the 

reviewed literature that the MTT is consistently implicated in the human amnesic syndrome, 

yet little attention has been paid to this structure in the animal literature. One key study found 

severing the MTT bilaterally results in a transient deficit in the working memory versions of 

the t-maze and RAM, but a robust acquisition deficit in the working memory version of the 

water maze (Vann & Aggleton, 2003). However a recent study (Winter et al, 2011) was 

unable to replicate the robust deficit found previously in working memory, but found rats 



 

 

117 

 

with MTT lesions showed a mild impairment in reference memory learning and when they 

had to use self-movement cues for navigation. Although it seems the MTT has at least some 

involvement in spatial memory formation, the inconsistencies in results from this scant 

animal literature certainly suggests that the MTT may not be as important as previously 

thought. Damage to the MTT in the present study did not result in the robust behavioural 

deficit in the working memory version of the water maze previously reported, but again 

found very mild deficits in reference memory in the water maze. Future research needs to 

resolve the inconsistent results found in the animal literature and further delineate the 

functional role of the MTT in the extended memory circuit. Clearly, this has important 

implications for our understanding of the neuroanatomical circuits associated with episodic 

memory. As the MTT is consistently implicated in human amnesic syndromes, understanding 

its role in memory formation may suggest possible therapeutic approaches to improve the 

prognosis of patients with diencephalic amnesia. 
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6. Appendices 

6.1 Appendix A: Black Gold II Staining Protocol 

Equipment  

“Subbed” slides (gelatine coated) 

2 × 50ml beakers (for the stain and fixing solutions) 

Rectangular staining trays (for the counter stain and reagents) 

Water bath 

Slide holders 

Cover slips 

Stains and Reagents 

Black Gold II – Myelin stain (can be purchased in powder or liquid concentrate) We got it 

from biosensis initially in a kit and then later in a powdered from histo-chem a company 

based in Jefferson Arkansas. The black gold II can be re-used multiple times even after a fine 

black precipitate starts to form. 150mg should process approximately 50-60 slides. Stop using 

stain when myelin impregnation takes in excess of 20 minutes. 

Sodium Thiosulfate- fixative (can be purchased in powder or liquid concentrate). Again 

initially it came in the biosensis kit but later from Sigma Aldrich as a powder (Reagent 

grade). 

Cresyl Violet Acetate - counterstain (tech‟s always have some made up) 

70% ethanol solution 

95% ethanol solution 

100% ethanol solution 

95% Acid Alcohol Solution (95% alcohol with 1ml of glacial acetic acid added) 

Xylene (MUST BE USED IN FUME HOOD) 

DPX mounting media (also used in fume hood) 

Preparation of the Specimens for staining 

IMPORTANT: this type of stain does not work on fresh or paraffin embedded tissues. The rat 

must be perfused with either 10% formalin or 4% paraformaldehyde (preferable). 

Following perfusion the brains should be left to post fix for at least 24 hours.  
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NOTE:  If brains are left to post fix for more than 12 months the black gold may fail to 

capture the finest myelin fibres. 

50μ coronal sections can be cut on either the vibrotome or sliding microtome. If using the 

sliding microtome brains should be transferred to long term solution after 24 hours in post 

fixative then allowed to sink before cutting. The slices should then be mounted onto the 

subbed slides from distilled water and allowed to dry in ambient temperature overnight. 

Myelin staining (after the slides have been allowed to dry) 

Switch on water bath and set both temperature and max temperature at 70˚c. Give the water 

bath at least 45mins to warm up. Setting the temp at 70˚c seems to result in a stable water 

temperature of 65˚c. NOTE always check the temperature with a thermometer first. 

For concentrated black gold II solution (keep dark and at 4˚c): 

 Add 1 part Black Gold II to 9 parts distilled water -. in a clean 50ml beaker add  5 mls of 

Black Gold II to 45 mls of distilled water (use a pipette/cyclinder as markings on the beaker 

are only a rough guide). This makes a 0.3% Black Gold II solution. If using powder 150mg of 

black gold II get dissolved in to 0.9% saline solution (it dissolves very easily). 

In a second clean beaker add 5 mls of sodium thiosulfate to 45mls of distilled water (again 

1:9). This makes a 1% Sodium Thiosulfate solution. Or powder 0.5 g to 50mls of distilled 

water. Put on stirrer with flea. 

First rehydrate the slides in distilled water for approximately 3 minutes( if slides are dried 

overnight, longer periods may be necessary for extended drying times) 

Place the beakers containing the Black gold into the water bath and allow it to reach 60˚ +. 

The stain in the beaker will not be as hot as the water in the water bath! Having the water 

bath at 65˚c results in a stain temperature between 60 and 62˚ (which is fine). It will take at 

around 10-15 minutes for the stain to reach this temperature from room temperature. NOTE 

the black gold will not stain unless it is at the right temperature so check the temperature 

before staining. The hotter the stain becomes the quicker it will impregnate the myelin so 

make sure to keep the stain at a constant temperature otherwise it becomes very hard to 

achieve the desired level of staining.  

Place slides in slide holder and submerge them in the black gold solution: staining should 

take approximate 8-9  minutes but check under microscope every 2-3minutes until desirable 

level of satin is obtained. You will most likely not see any colour changes in the tissue  for at 

least 4-5 minutes but once something starts to happen it progresses fast so keep a close eye on 

it. Slides are said to be ready when the finest myelin fibre in the cortex are stained. The tissue 

should be red in colour – pink needs longer- black/ purple too much. NOTE: the appearance 

of a conspicuous lavender coloured background stain indicates the tissue is becoming over 

stained and should be removed from the stain at once. 
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Rinse the slides by submerging them in a rectangular staining dish of distilled water for 2 

minutes. 

Remove the slides from the distilled water and submerge them in the sodium thiosulfate and 

incubate for 3 minutes.  

Rinse the slides in 3×5minute changes of tap water.  

Then into distilled water for 1 minute to remove any impurities 

Cresyl Violet Counterstain 

After being removed from the distilled water the slides (10 at a time in glass slide holder) are 

dipped 10× in 70% ethanol 

They are then submerged in 70 % ethanol solution for two minutes  

Before being rinsed for 1 minute in distilled water  

Then into 250mls of 0.5% Cresyl violet acetate solution (in a rectangular staining dish) and 

incubated for 5-7 minutes (depends on the strength of the cresyl) at room temperature.  

The slides are then rinsed in distilled water for 2 minutes each.   

The slides are then dehydrated and differentiated  

First, in a 70% ethanol solution for 2 minutes  

Then, a 95% ethanol solution for 2 minutes 

Then a 95% acid alcohol solution for 40 seconds (400mls of 95% ethanol with 1ml of glacial 

acetic acid added).  

They are then submerged in 2× 100% ethanol for 2mins.  

The dehydrated sections are then cleared in xylene for 5 minutes before being cover slipped 

with DPX.  

Let them dry for 24 hours before use. 
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6.2 Appendix B  

Table 6.1 Left and Right MTT tract Volume for all rats in the lesion surgery group at -3.3 from bregma. 

Rat ID  Left Volume % Reduction Right Volume % Reduction Overall % Reduction 

N13 59989.04 0.31 33699.58 0.61 0.46 

N6 49517.08 0.43 47808.77 0.45 0.44 

B3 51128.49 0.41 52699.66 0.39 0.40 

R8 56943.60 0.34 57044.96 0.34 0.34 

N12 46766.79 0.46 72527.06 0.16 0.31 

N2 54895.42 0.37 65468.74 0.24 0.30 

B12 59999.47 0.31 64350.74 0.26 0.28 

R13 72436.13 0.16 53424.12 0.38 0.27 

P12 66234.94 0.23 60203.69 0.30 0.27 

P13 58195.76 0.33 73248.55 0.15 0.24 

B13 71652.04 0.17 62813.86 0.27 0.22 

B8 71021.48 0.18 65616.31 0.24 0.21 

N5 77565.53 0.10 65771.34 0.24 0.17 

N1 78155.83 0.10 65435.94 0.24 0.17 

B2 74315.87 0.14 69828.95 0.19 0.17 

P6 67664.50 0.22 77107.89 0.11 0.16 

N3 75696.23 0.12 73329.04 0.15 0.14 

P9 79072.59 0.09 73598.85 0.15 0.12 

B1 91337.83 -0.06 67752.45 0.22 0.08 

N11 84683.48 0.02 75484.55 0.13 0.07 

B7 81615.68 0.06 82921.50 0.04 0.05 
Control left volume mean = 86458.01 and Control right volume mean = 86484.42 


