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Abstract

This thesis formulates, implements and validates an integrated framework for

analysing Micro-Electro-Mechanical-Systems (MEMS) devices including non-linear

electrostatic loading, large deflections, structural contact and dynamic behaviours.

Utilizing the framework developed enables the simulation of electrostaticallly ac-

tuated thin film bifurcating MEMS devices, with specific application to Eastman

Kodak’s conformal Grating Electro Mechanical System (GEMS) device.

The resulting tool provides insight into the dynamic operation of MEMS de-

vices allowing an assessment of the impact of variations in device design and

fabrication on the dynamic response of such structures. The data obtained also

allows the postponement of expensive prototype fabrication and provides a vali-

dated foundation upon which future studies can be conducted.

Simulating perturbations in key device parameters for the GEMS device il-

luminates the edges of the feasible design space for that device. The results

obtained clearly illustrate the inadequacies of modelling techniques that neglect

the distributed nature of the structural problem, or the dynamics of the system.

The thesis concludes with a discussion of salient results noting future avenues for

research and development.





Chapter 1

Introduction

This thesis concentrates on developing, implementing, testing and utilizing nu-

merical models for the efficient simulation of Micro-Electro-Mechanical-Systems

(MEMS), enabling enhancements in operating lifetime, diagnosis of fabrication

problems and optimization of structural performance.

In particular the effects, of manufacturing process variability on device per-

formance is crucial as arrays of such structures are batch fabricated. Variations

in structural performance arising from process variability must be minimized to

ensure consistent device operation across the elements of an array. Due to the size

of such devices, typical dimensions on the order of 0.1-10µm, tiny variations in

device parameters can cause significant changes in performance, easily accounting

for order of magnitude changes in operating characteristics. Simulating variations

in parameters allows an assessment of the sensitivity of device performance.

The device of interest is the Grating Electro Mechanical System (GEMS)

device developed by the Eastman Kodak Company for high speed digital light

switching applications. The models created must provide understanding of device

performance beyond what is currently available through the inclusion of specific

physical phenomena. The modelling approach adopted should also allow for

future analysis of the interaction between material layers, the inclusion of non-

linear damping and possible failure mechanisms.

The scope of the research is not limited to the development of a model for

a single type of device. Instead, the development of a general framework for

capturing the operating dynamics of MEMS structures subject to time varying

electrostatic loads is presented. These structures are also under the influence

of initial material stresses and contact other structural bodies during normal

operation.



2 Why model MEMS

1.1. Why model MEMS

MEMS devices are typically designed around unique structural characteristics.

The GEMS device exhibits classical electromechanical hysteresis, as illustrated in

Figure 5 of Kowarz [2001] and Figure 4 of Furlani et al. [1998]. Electromechanical

hysteresis is also observed in the response of other common MEMS devices [Artz

and Cathey, 1992; Gilbert et al., 1996]. The reliability of the device is often

inextricably linked to the consistent reproduction of such behaviours across all

devices.

Figure 1.1 depicts an electro-mechanical hysteresis response. Where the volt-

age applied to the structure is increased, the structure deforms until the applied

electrostatic load overwhelms the restoring ability of the structure and significant

deflections are realised for small changes in voltage. Reducing the applied voltage

has little immediate effect as the electrostatic force on the structure is propor-

tional to the inverse of deflection squared. The structure remains in the deformed

configuration until the electrostatic force is reduced enough to allow the stiffness

of the device to snap the structure back toward the undeformed configuration.
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Figure 1.1. Device performance, indicating failure

Typically, such devices are held at a base voltage and a switching voltage

(∆V) is applied to drive the change of state. If a second device in the same
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array exhibits the response illustrated by the dashed line in Figure 1.1, then

applying the same base and switching voltages causes the second device to switch

to the deformed configuration. However, this second device will not return to

the undeformed configuration because the voltage is never low enough to allow

the return change of state. Such inconsistencies across arrays of devices causes

individual elements to function contrary to specification, appearing broken. This

type of variation can occur due to fabrication process variations.

MEMS devices are manufactured (fabricated) using processes similar to those

commonly used in the manufacture of integrated circuits and semi-conductors.

These processes are characterised by the four fundamental steps: deposit, mask,

expose and etch [Madou, 1997]. More specifically a layer of material is deposited

on a substrate and masked according to the desired features. It is then exposed

to an energy source changing the properties of the exposed regions, and then

washed with chemical etchant to remove unexposed areas. Devices are fabricated

in an additive fashion from the base upwards.

Due to the nature of the processes employed, arrays of devices are batch

fabricated on wafers to reduce material handling and production costs. However,

due to variations in the deposition, exposure and etching processes variations in

dimensions may occur across an array of devices fabricated adjacent to each other.

The observation of the resulting performance variations in manufactured devices

has led to the cultivation of the concept that the mechanics of micro-devices

differs from mechanics at larger scales.

It is important to ensure that the manufacturing processes employed in device

fabrication are capable of producing devices that operate with the desired per-

formance characteristics. Example of such an analysis is presented in Figure 6

of Douglass [2003] and Figures 5 & 6 of Meier [1998]. Figure 1.2 illustrates a

generalization of the effect. The shaded region in Figure 1.2 depicts the desired

performance region, the crosses represent the performance of fabricated devices

as a function of some parameter of the manufacturing process. The figure indi-

cates that the adopted manufacturing process produces devices that operate with

undesirable performance characteristics, the thin oval line. Thus, tighter control

over the manufacturing process is required to restrict the process variability to

the thick, red oval, resulting in all fabricated devices performing as desired.

When such variations occur across the elements in an array, the resulting per-

formance variability unnecessarily complicates control electronics, resulting in in-

creased cost to the consumer, if not an infeasible design. Comparative modelling
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Figure 1.2. Parameter variations on performance characteristics

allows different device designs to be benchmarked, allowing the costly one off fab-

rication of prototypes to be delayed until a workable device has been throughly

modelled and the complexities of the design space fully grasped. Delaying proto-

typing reduces device design costs and design time, lowering one of the barriers

to broad adoption of MEMS technology.

1.2. Optical switching micro-devices

Currently two types of optical switching micro-devices have found application

in off the shelf products: The two devices are the Texas Instruments Digital

Micromirror Device and the Silicon Light Machines Grating Light Valve.

1.2.1. Digital Micromirror Device

Developed from the work of Dr. Larry J. Hornbeck in 1987 the Texas Instruments

Digital Micromirror Device (DMD) was first demonstrated publicly in 1994 and

consists of a planar reflective surface, which is rotated causing incident light to

be reflected in a specified direction. Figure 1.3 illustrates two DMD pixels, one

on and the other off. A notable feature of the DMD is the small spring tips

placed at the outer edges of the rotational yokes, these spring tips limit the
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Figure 1.3. Texas instruments DMD

occurrence of structural contact, lessening the likelihood of device failure due to

friction (stiction). DMD devices offer excellent contrast control as the mirror

can be torsionally balanced if operated in an analogue fashion. The drawback of

this feature is the devices operate slowly, enabling only kilohertz (kHz) switching

speeds. Publicly available literature suggests current DMD devices operate in a

digital fashion with pixel response time of 10µs [Younse, 1993], which controls

the intensity of the light reflected by the pixel. The DMD device operates on

the principal of reflection requiring large structural deformations, as Figure 1.3

indicates ±10◦. The device layout also illustrates the complexity and many steps

required in the manufacturing process.

1.2.2. Grating Light Valve

Descended from the work of Olav Solgaard, [Solgaard, 1992], the Grating Light

Valve (GLV) [Bloom et al., 1994] shares a common ancestry with the Grating

Electro Mechanical System. Consisting of beam like elements suspended above a

subsurface cavity, a diffraction pattern is formed in the light reflected from the

device when operated in an arrayed configuration [Bloom et al., 1994]. Reflection

away from the light source is also possible when implemented in a torsional con-

figuration as illustrated in Figure 8 of Bloom et al. [1994]. Figure 1.4 shows six
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GLV beams in varying states, operating in a diffractive configuration. As with

the DMD the GLV can be operated in a digital or analogue fashion depending

on the desired application, but is currently utilized in an analogue fashion to

output multiple shades of grey. Early GLV devices were 1-2µm in width and

Figure 1.4. Silicon light machines GLV

approximately 220nm thick, consisting of an upper reflective Aluminium layer

that provides the optical properties while the lower Silicon Nitride ceramic layer

provides the structural characteristics of the device. This narrow cross section

places tight tolerances on the location of related optical equipment.

GLV devices typically have natural frequencies in the range of 1 Megahertz

(MHz) to approximately 6 MHz. The natural frequency of the device is controlled

by altering the length of the device, from 120µm to 40µm for published data.

Bloom et al. [1994] does not indicate a method for obviating the effects of stiction

between the movable and stationary structural elements, however later patents by

the same author indicate a method for adressing the effects of structural contact.

The small width of the GLV makes it highly susceptible to fabrication variations.

1.3. Grating Electro Mechanical Systems

Grating Electro Mechanical Systems (GEMS) [Kowarz et al., 2002] are a Kodak

patented [Jech et al., 2001; Kowarz, 2001] optical MEMS device containing an
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array of electrostatically actuated diffraction gratings. Similar devices are pre-

sented by Apte [1994]; Solgaard [1992] and Solgaard et al. [1992]. The GEMS

device is designed to be used in an arrayed configuration as a high speed digital

light switch, with potential applications ranging from data projection to optical

switching in telecommunications and networking, to digital printing.

The GEMS structure consists of composite ribbons suspended above a sili-

con substrate by a series of intermediate supports. The composite nature of the

ribbon allows the use of ceramic materials which provide enhanced structural per-

formance over the Aluminium electrode in addition to electrical isolation. When

actuated, the ribbons conform to the underlying support structure or “standoffs”

as shown in Figure 1.5, to produce a grating. The intermediate supports, have

a periodic spacing (Λ), which is concealed beneath the ribbons. A single pixel

in a linear array typically has one or more suspended ribbons, each attached to

several intermediate supports. There is no requirement on the number of ribbons

or intermediate supports per pixel. Figure 1.5, adapted from Jech et al. [2001],

shows a schematic layout of a GEMS structure, where the vertical dimensions (z)

have been scaled significantly for illustrative purposes.
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Like the spring tips in the DMD, the standoffs beneath the GEMS ribbon are

included to obviate stiction by minimizing the area of structural contact. With-

out such structures it is possible, when drying the devices after releasing the

ribbon elements, that the ribbon conform to the underlying structural features,

remaining held in place by Van der Waals forces [Solgaard, 1992]. However, Ko-

dak addresses the stiction on release issue by adopting a dry etch process for the

release step of fabrication. In addition, excessive structural contact during oper-

ation can cause device failure as frictional forces overcome the restoring ability

of the device, resulting in a failed device. This group of failure mechanisms is

losely termed “stiction” [Madou, 1997].

A representative GEMS ribbon unit is 30µm long (x) 6µm wide (y) and 150nm

thick (z), wider and thinner than the GLV. The Silicon Nitride layer is 100nm

thick and the Aluminium layer is 50nm thick. The natural frequency of such a

device is 9MHz, greater than the 6.1MHz of the GLV. A switching speed of less

than 50ns is therefore attained, which is three orders of magnitude faster than the

DMD. The GEMS ribbon unit can be operated in either an analogue or digital

manner.
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Figure 1.6. Single GEMS ribbon unit

A single GEMS ribbon may consist of an arbitrary number of identical repeat-

ing units. Thus, computational efficiencies may be leveraged by modelling only

the base repeating unit. If the fluidic or electrostatic interactions between neigh-

bouring units are of interest, single unit models may be coupled to model a larger
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portion of the complete system. Hence, the need for a robust modelling frame-

work that allows a variety of dynamic effects to be added as necessary. Figure 1.6

shows a single unit from a GEMS ribbon, in both the unactivated, Figure 1.6(a),

and activated, Figure 1.6(b), states with vertical dimensions magnified. This the-

sis focuses on modelling the dynamics of a single GEMS unit within an integrated

framework, allowing interaction simulations to be performed at a later date.

1.4. Modelling approach

There are three common approaches to modelling thin, non-linear structures such

as the GEMS device:

1. Reduced order models

2. String models

3. Finite element models

Reduced order modeling is a popular approach often utilising a single parame-

ter model of the structural system and a second parameter for the electrostatic

system [Chen and Kang, 2000; Osterberg et al., 1994b; Senturia et al., 1997].

Such models, while excellent for global system simulation where the structure’s

interaction in a larger system is of interest, negate the distributed nature of the

structural system, severely limiting the structural detail available in simulation

results.

A second approach at reduced order modelling represents the dynamic de-

formation of the structure in terms of modal contributions from participating

dynamic modes of operation to represent the deformation of the structure. Com-

monly used in MEMS analysis, and specifically with the ANSYS package, this

approach requires the inclusion of an extreme number of modes to accurately

capture the dynamics of the GEMS ribbon unit as the structural deformation

around the standoffs requires a large number of modeshapes to be accurately

captured. Modal analysis methods also assume small deflection linear behaviour

and damping models that are modally decoupled, neither of which may be com-

pletely realistic for electrostatically actuated ribbons.

Thin structures can also be modelled as string structures [Kowarz et al., 2002]

since membrane tensile forces often dominate structural stiffness and the mass

of the structure is low due to small thickness. Hence, the structural response is
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assumed to be dominated by the membrane forces, so these models include only

axial tensile terms ignoring the effects of structural bending contributions. While

easy to model using analytical techniques, string idealizations do not allow the

modelling of points of zero rotation, making commonly used fixed end conditions

difficult to capture. While string models do accurately capture behaviours along

the most significant structural dimension, they neglect deformation across the

structure, which can be critical.

A finite element approach to modelling the structure allows simple modifi-

cation of material and geometric parameters without requiring changes in the

fundamental solution, as is the case in analytical approaches. A finite element

approach also provides distributed structural information and a discretization

ready for use in electrostatic force computation. A number of specialised soft-

ware solutions based on existing finite element solutions currently exist for solving

coupled electrostatic structural problems. The most common approach couples

the publicly available capacitance solver FastCap [Nabors and White, 1991] with

a reputable structural solver, using custom software to act as an intermediary

between the separate packages. In most published cases Abaqus is the structural

analysis software of choice [Gilbert et al., 1996; He et al., 1998; Osterberg et al.,

1994a].

The primary concern when selecting an existing off the shelf package for

dynamic simulation of MEMS devices, is that it accurately incorporates all the

necessary phenomena into a single cohesive framework. For the GEMS device

such a framework must include time varying dynamics, electrostatic loading,

structural contact and non-linear material behaviours. No package currently

available encompasses all these basic phenomena in a framework sufficient for

this study.

A less common approaches to modelling thin non-linear structures uses bound-

ary element models, which are not commonly used in structural mechanics as the

displacement solution is required throughout the structure of interest and not just

at the boundaries. However, boundary element techniques are commonly used

in the computation of electrostatic forces on arbitrary conductors as in FastCap

[Nabors and White, 1991]. Furlani et al. [1998] presents a method, and sub-

sequent results, of utilizing an iterative greens function to solve for the static

displacement of an electro–statically actuated thin film microbeam, ignoring the

dynamics of the system.
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The method developed is to utilize a finite element solution to the modelling of

thin film non-linear structures. Such an approach requires a robust framework in

which future additions can be included, allowing future investigators a basis from

which to investigate effects such as inter-facial delamination and optical coupling.

A framework based approach also allows the incorporation of novel approaches to

the modelling of contact. The approach developed provides distributed structural

deformation information, enhancing understanding of the operation of MEMS

devices and providing a platform to determine the impact of variations in device

design and fabrication, a goal of this thesis.





Chapter 2

Critical Dynamics, Finite Element
Formulation and Numerical Solution

This chapter presents the system dynamics, the finite element formulation needed

to capture these dynamics and the numerical solution procedure utilized to solve

the resulting non-linear system of equations. It also discusses the critical dynam-

ics of contact, electrostatic loading and non-linear bifurcation.

The dynamics of general structural systems under time varying loading may

be modelled using the second order linear ordinary differential equation,

[M ] {v̈} + [C] {v̇} + [K] {v} = {p} (2.1)

Where [M ], [C] and [K] represent the mass, damping and stiffness matrices of the

system respectively, {v} is the deflection column vector, the dot notation denotes

derivatives with respect to time, and {p} is the time varying applied load.

In Equation (2.1) {p} represents the applied structural loads. For electro-

statically actuated MEMS devices {p} is a function of both deflection (v) and

time (t), thus, the system described by Equation (2.1) is considered non-linear.

The adopted solution strategy maintains electrostatic equlibrium to accurately

capture the transient non-linear dynamics of the system.

For MEMS, the dynamics are no different to those of larger structures. Di-

mensions are many orders of magnitude smaller, and the dominance of different

effects may vary, but the same physical laws apply.

2.1. System representation

The system stiffness matrix ([K]) utilises Hybrid Stress quadrilateral finite ele-

ments [Horrigmoe, 1977, 1978], for both bending (vz, vθx
, vθy

) and membrane (vx,

vy, vθz
) contributions. The result is a stiffness model with six degrees of freedom
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per node (vx, vy, vz, vθx
, vθy

, vθz
) and uncoupled bending and membrane be-

haviours. Hybrid stress finite elements provide efficient stiffness representations

allowing accurate modelling using coarse meshes, and are commonly found in

modern finite element solutions. Figure 2.1, illustrates the six degrees of freedom

(DOF) per node and the 24 DOF per element. As illustrated the nodal num-

bering order is anticlockwise around the circumference of the element. As each
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Figure 2.1. Degree of freedom definition

element contains 24 DOF the elemental matrices ([k], [m] and [c]) will be 24×24

in size.

2.1.1. Hybrid stress element formulation

The Hybrid Stress finite element formulation is based on a modified complimen-

tary energy functional (Πmc2). Complimentary energy for a non-linear system is

defined as the area between the stress strain curve and the stress axis, as shown

in Figure 2.2. Typical energy based finite elements minimize the strain energy

in a finite element assemblage. Hybrid elements perform this minimisation on

the complimentary energy. Caution is required as Castigliano’s theorem is only

applicable for linear elasticity. For the hybrid stress finite elements the modifica-

tion to the complimentary energy functional is the relaxation of stress continuity

along the boundaries of adjacent elements. For such elements Πmc2 is defined

Πmc2 =
∑

n

{
∫

Vn

1

2
{σ}T [S] {σ} dV −

∫

∂Vn

{ũ}T {T} ds

}

+
∑

n

{
∫

Sσn

{ũ}T
{

T̄
}

ds

}

(2.2)
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Where [S] is the volume of the element, {ũ} are the boundary displacements,

{T} the element boundary tractions and
{

T̄
}

the prescribed surface tractions.

The stresses ({σ}) are interpolated in terms of a set of undetermined parameters

{β}.

{σ} = [P ] {β} + [PF ] {βF} (2.3)

Where [P ] and [PF ] are interpolation matrices for the homogeneous and partic-

ular solution with prescribed body forces and {β} and {βF} are the elemental

unknowns. If [P ] contains [PF ] then [PF ] {βF} can be omitted. If it is included,

the term [PF ] {βF} resulting from initial body forces, results in extra contribu-

tions to the applied load. Omitting initial body forces, Equation (2.3) reduces to

Equation (2.4).

{σ} = [P ] {β} (2.4)

{T} = [N ] {σ} (2.5)

{ũ} = [L] {v} (2.6)

Where [N ] is a matrix of direction cosines and [L] is an interpolation matrix relat-

ing edge deflections ({ũ}) to nodal deflections ({v}). The relaxed compatibility

requirement of the hybrid stress class of finite elements requires displacement

compatibility only between adjacent elements. Therefore, the following can be
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defined to simplify the derivation.

[H] =

∫

Vn

[P ]T [S] [P ] dV (2.7)

[G] =

∫

∂Vn

[NP ]T [L] ds (2.8)

{

Q̄T

}

=

∫

Sσn

[L]T
{

T̄
}

ds (2.9)

Where
{

Q̄T

}

is the consistent load vector. When Equations (2.7)-(2.9) are sub-

stituted into Equation (2.2), Πmc2 reduces to:

Πmc2 =
∑

n

{

1

2
{β}T [H] {β} − {β}T [G] {v} + {v}T

{

Q̄T

}

}

(2.10)

Since stresses ({σ}) are assumed independent within individual elements, the

stationary condition of the functional (Πmc2) with respect to {β} can be directly

obtained for each element.

[H] {β} − [G] {v} = {0}

{β} = [H]−1 [G] {v} (2.11)

Substituting Equation (2.11) into Equation (2.10) leaves:

Πmc2 =
∑

n

{

−
1

2
{v}T [G]T [H]−1 [G] {v} + {v}T

{

Q̄T

}

}

(2.12)

The elemental stiffness [k] can be defined:

[k] = [G]T [H]−1 [G] (2.13)

Thus, the stationary condition of the functional (Πmc2) with respect to deflection

({v}) is determined to be:

∑

n

(

[k] {v} −
{

Q̄T

})

= {0} (2.14)

Equation (2.14) is equivalent to the standard finite element expression,

{p} = [K] {v} (2.15)
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Where {p} are the external applied loads, [K] is the assembled system stiffness

matrix and {v} the associated deflections. The identical process is then repeated

for the membrane degrees of freedom, resulting in an elemental stiffness repre-

sentation ([k]) with six degrees of freedom per node and uncoupled bending and

membrane behaviours.

The Adini-Clough-Melosh (ACM) [Adini and Clough, 1960; Melosh, 1961],

cartesian polynomial based or the Bogner-Fox-Schmidt (BFS) [Bogner et al.,

1965], hermite polynomial based finite elements are used for determining a con-

sistent system mass representation ([M ]) for the bending degrees of freedom and

the membrane geometric contributions to bending stiffness. The ACM and BFS

elements are displacement based rectangles. The Hybrid Stress element formula-

tion is based on stress interpolations within individual elements, the displacement

basis of the ACM and BFS elements allows simple calculation of geometric effects,

which are more complex for the stress-based hybrids.

The contribution of membrane degrees of freedom to system mass was in-

cluded using an Iso-Parametric Quadrilateral including only the vx and vy degrees

of freedom. The vθz
degree of freedom is not included in the Iso–Parametric

formulation. The resulting elemental mass matrix ([m]) is 24×24, however it

contains one zero energy mode per node, due to this exclusion of the “screw”

rotation.

The mixing of element formulations has been shown to have no negative

impact on the accuracy of solutions obtained [Hinton et al., 1976; Pian, 1972].

However, static condensation is utilized to remove the screw rotation (vθz
) when

computing the undamped frequencies (ω) and mode shapes (v̂), as the result-

ing mass matrix does not contain contributions in this degree of freedom. This

approach is commonly used in the field.

In structural mechanics, the specific mechanism causing structural damping

is often unknown. However, for structures with characteristic lengths on the order

of µm, the mechanism is easily identified as pressure loading due to movement

through air [Keating and Ho, 2001; Naik et al., 2002]. For complex structures

involving interactions from adjacent elements, determining damping effects is

inherently complex requiring a solution to the Naiver Stokes equation. Some

thin film structures pump fluid between the movable and stationary elements,

causing non-uniform pressure gradients in arrayed configurations. For all its

added complexity fluid damping is commonly simplified by modelling the fluidic

effects as a lumped parameter system [Furlani, 1999; Vemuri et al., 2000]. Unless
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such fluid damping can be shown to have significant impact on the dynamics of

the structure of interest, Rayleigh damping can be used. Rayleigh damping is a

member of the Caughey, [Caughey, 1960], family of damping models, thus the

damping matrix ([C]) is determined from [K] and [M ].

2.1.2. Initial material stress

Often considered a second order effect in larger structures where initial material

stresses are relatively small and subsequently neglected, the contribution of in-

plane initial material stresses on micro-device performance must be considered

[Solgaard, 1992]. These initial stresses act to stiffen the structure in the out of

plane direction [Oden, 1966; Shames and Dym, 1991]. In addition, the character-

istic dimensions of MEMS structures are small, so the resulting inherent bending

stiffness is also small. Hence, these stresses can dominate the inherent bending

stiffness of the structure.

For the commonly used MEMS material Silicon Nitride (Si3N4) this initial

tensile material stress can be as great as 1440MPa [Lund and Wise, 1994]. Thus,

these second order effects become significant and can dominate the resulting

structural bending stiffness and response. Neglecting the effect of initial material

stress in MEMS devices can result in modal frequencies that are as much as an

order of magnitude less than that of the actual structure. Inclusion of the initial

material stresses requires two additions to the model to correctly incorporate the

effects of initial material stresses on the structure:

• Additional geometric bending stiffness ([Kg]), incorporating membrane con-

tribution to bending stiffness

• Initial membrane tensile forces ({q}) resulting from the initial stress

2.1.2.1. Additional bending stiffness

The additional stiffness introduced by the initial material stress ([Kg]) is anal-

ogous to increasing the tension on a wire line. As the tensile force increases,

additional force is required to achieve a specified deflection. It is not possible

to compute the additional stiffness contributions using a hybrid stress element

formulation. Either the ACM [Adini and Clough, 1960; Melosh, 1961], or BFS

[Bogner et al., 1965], displacement finite element formulations can be used and

give very similar results. Displacement based finite elements are ideally suited
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for the modelling of geometric effects as the element formulation interpolates the

displacement field within the elements using differentiable polynomials. The con-

tributions to system stiffness from the initial material stress can be calculated for

each element and assembled using existing techniques.

A constant thickness ACM element has been used to determine the additional

stiffness contribution.

[Kg] = t

∫ ∫

[A]−1T
{

dw
dx

dw
dy

}

[

σxx τxy

τyx σyy

]{

dw
dx
dw
dy

}

[A]−1
dydx (2.16)

Where w is the standard ACM interpolation polynomial and [A] the ACM inter-

polation matrix, as defined on pages 596–598 of Shames and Dym [1991], t is the

element thickness, and σxx, σyy and τxy are the initial membrane stress magni-

tudes. The additional stiffness [Kg] is then included in the equilibrium equation,

Equation (2.1), for use in the dynamic simulation of micro-devices.

[M ] {v̈} + [C] {v̇} + ([K] + [Kg]) {v} = {p} (2.17)

2.1.2.2. Initial membrane tensile forces

Initial stress effects are not included in the standard hybrid element formulation,

however it is straight forward to include such effects by redefining the hybrid stress

functional to account for the non-zero initial state by replacing Equation (2.4)

with Equation (2.3). Completing the derivation results in an additional term (E)

in the hybrid stress functional, Equation (2.12),

Πmc2 =
∑

n

{

−
1

2
{v}T [G]T [H]−1 [G] {v} + {v}T [G]T [H]−1 {E} + {v}T

{

Q̄T

}

}

(2.18)

Where,

{E} =

∫

Vn

[P ]T [S] [PF ] {βF} dV (2.19)

Assuming that the same interpolation is used for the initial forces and internal

reaction forces, the nodal forces resulting from the initial material stress are
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calculated:

{q} = [G]T [H]−1 {E} (2.20)

where {q} can be calculated using predefined quantities in the Hybrid Stress

formulation and represents the equivalent nodal forces resulting from the initial

material stress. These nodal loads are added to the applied nodal loads during

each time step.

Due to the lack of coupling between the bending and membrane behaviours

of the elemental stiffness matrix ([k]), the body forces arising from the initial

material stress do not effect the out of plane degrees of freedom until, the system is

reassembled to account for large deflection effects. A discussion of large deflection

effects can be found in Section 2.4. Both {q} and [Kg] are required to incorporate

the effects of initial material stresses into the model, {q} adds the initial material

stresses to the membrane stresses arising from device operation and [Kg] adds

the additional stiffness resulting from the initial material stresses.

2.2. Modal analysis

The dynamic modeshapes and corresponding natural frequencies describe a set of

basis vectors that can be combined to describe any deformation of the structure.

They are a function of both the mass and total stiffness of the structure. The

dynamic modes are calculated by assuming undamped free vibration.

[M ] {v̈} + ([K] + [Kg]) {v} = 0 (2.21)

Solutions to Equation (2.21) are assumed to be of the form:

v(t) = {v̂} sin ωt (2.22)

Differentiating Equation (2.22) to obtain, v̇(t) and v̈(t) and, substituting the

results into Equation (2.21) leaves an equation in {v̂},

−ω2 [M ] {v̂} sin ωt + ([K] + [Kg]) {v̂} sin ωt = 0
(

[K] + [Kg] − ω2 [M ]
)

{v̂} = 0 (2.23)

Equation (2.23) is the standard undamped structural eigen-problem used to ob-

tain the modeshapes ({v̂}) and corresponding natural frequencies (ω) of the struc-
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ture.

2.3. Numerical Integration Method

The Newmark, [Newmark, 1959], family of integration schemes are implicit inte-

gration schemes that use a total or incremental form of the equation of equilibrium

and assume a variation of acceleration during the time step.

[

[M ] + γ∆t [C] + β (∆t)2 [K]
]

{∆v̈} = {∆p} − [C] {v̈n}∆t

− [K]

{

{v̈n}
(∆t)2

2
+ {v̇n}∆t

}

(2.24)

Where [M ], [C], [K], {v}, {v̇}, {v̈} and {p} are as defined in Equation (2.1), ∆t

is the length of the numerical time step, subscript n indicates the value at the

start of the time step, and γ and β are scalar parameters defining the acceleration

assumption during the time step. The two most common schemes are the linear

(γ = 1

2
, β = 1

6
) and constant average acceleration (γ = 1

2
, β = 1

4
). The latter

is used due to its unconditionally stable behaviour. The Newmark Constant

Average Acceleration (NCAA) is unconditionally stable, but not unconditionally

accurate, so as ∆t is reduced the error in the resulting acceleration approximation

decreases.

The generally accepted method for determining a sufficient value for ∆t is

to perform a modal analysis on the structure of interest, analyse the expected

loading pattern, and select the number of modes that are expected to participate

in the dynamic response of the structure. The initial time step size (∆t) is then

set to be 10% of the period of the highest contributing mode. For all analysis

presented in this work the first ten modes were selected.

∆t = 0.1 × T10 (2.25)

where T10 is the natural period of mode 10.

The incremental form of the NCAA is defined, [Carr, 2001; Humar, 1990]:

(

4

∆t2
[M ] +

2

∆t
[C] + [K]

)

{∆v} = {pn+1} + [M ]

(

4

∆t
{v̇n} + {v̈n}

)

+ [C] {v̇n} − [K] {vn} (2.26)
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{∆v̇} =
2

∆t
{∆v} − 2 {v̇n} (2.27)

{∆v̈} =
4

(∆t)2
{∆v} −

4

∆t
{v̇n} − 2 {v̈n} (2.28)

These equations compute the changes in displacement ({∆v}), velocity ({∆v̇})

and acceleration ({∆v̈}) from the structural state at the start of the time step

({vn}, {v̇n}, {v̈n}) from the forces at the end of the time step ({pn+1}). Hence

{vn+1} = {vn} + {∆v} (2.29)

and similarly for the other response quantity vectors.

2.3.1. Equilibrium

If the properties of a system change causing changes in the stiffness of the system,

as is common in systems exhibiting non-linear force deflection relationships, the

NCAA will not adequately maintain equilibrium within the system. Thus, exter-

nal means are required to ensure that equilibrium is maintained at the conclusion

of each time step. In the current framework changes in stiffness only occur as a

result of configuration updates to account for large deflections.

For linear, or largely linear, elastic systems, applied loads are always re-

sisted by the internal actions. Figure 2.3 displays the response of such a system.

However, in the case of non-linear systems where the system stiffness changes as
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Figure 2.3. Linear system force deflection relationship
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the load is applied the tangent stiffness [KT ] is used to represent the instanta-

neous system stiffness. A reasonable approximation would be to use the average

tangent stiffness
[

K̄T

]

, however the change in displacement (∆v) for the current

time step is not known at the beginning of the timestep. Thus, it is necessary to

iterate during the timestep. Figure 2.4 shows the effect of such iterations for the

initial (tangent) stiffness method and the tangent stiffness method.
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Figure 2.4. Non–linear system force deflection relationship

Zienkiewicz’s procedure for maintaining equilibrium in a finite element as-

semblage utilizes the tangent stiffness at the beginning of the timestep, as the

stiffness for all subsequent iterations, however this approach can take a significant

number of iterations to achieve equilibrium, as Figures 2.4 (a) & (b) illustrate.

Carr [1967] reduced the number of iterations required by recomputing the tangent

stiffness at each iteration.

For the GEMS structure the system stiffness assembly procedure is extremely

computationally expensive, which is not the case with finite element assemblages

containing only beam and column elements. In the interests of solution efficiency,

if an equilibrium strategy is required the use of the Zienkiewicz approach is rec-

ommended.

Problems can also arise when a system is pushed beyond yield and the sys-

tem deforms with no additional applied load. This phenomena occurs when the

system achieves a state of zero effective stiffness. The determinant of the system

stiffness matrix changes sign and the sign changes on the additional load in-
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crements. Clearly the Zienkiewicz approach is invalid in such a case, and Carr’s

approach also poses difficulties, as illustrated by the dashed line in Figure 2.5 (a).

For treatment of such systems the reader is encouraged to explore the work of
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Figure 2.5. Problematic system force deflection relationships

Horrigmoe and Bergan [1978], who modelled the snap through buckling dynamics

of curved thin shell structures, covering both the zero and infinite stiffness phe-

nomena. For electro-mechanical MEMS structures the zero stiffness case occurs

at well defined points, called bifurcation points, discussed in Section 2.5.

2.4. Large deflection

The deformation of such MEMS structures can typically be characterised as small,

with deflections typically on the order of nm and structural dimensions in the µm

range. However, as the structure deforms the initial planar system model must

be updated to include the effects of the deformation, as the assumed linearity

of the finite element method degenerates. Commonly termed large deflection

effects, as the structural configuration is significantly different from the original

configuration, this update includes reforming and assembly of the three system

matrices, [M ], [C] and [K].

In this configuration update, the elemental formulation process occurs in

the elemental co-ordinate system. Denoted in Figure 2.6 with a prime, this
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elemental information must be transformed into the global co-ordinate system

to be assembled with the other elements. The form of this transformation is a
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Figure 2.6. Large deflection elemental transformations

rotation, as the elemental properties are a function of element size and not of

elemental location in the global system.

For thin film structures two criteria need to be considered, the strain in the

structure and the local rotation experienced. The two criteria used to assess the

need for a large deflection update are:

• Elemental rotation

• Elemental strain

The values at which such an update should occur are user defined. The technique

for updating the system configuration utilises transformations to map the local

system properties to the global orientation. This transformation involves rotating

the frame of reference for each element, to reflect the deformed position. A

treatment of such effects is covered in Rajasekaran and Murray [1973].

2.5. Electrostatic loading

Electrostatic loading is generated by the electric field between the two charged

conductors and is non-linearly position dependent. If one of the conductors is
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free to move it will move towards or away from the other, depending on the

sense of the applied load. Modelling forces on capacitive elements requires the

computation of the electric field surrounding the capacitive elements, including

the effects of any dielectric materials that may be present. From the electric field

the forces on the conductors can be determined.

Computation of electrostatic forces is typically performed using a boundary

element formulation in a package such as FastCap [Nabors and White, 1991].

However, this tool requires that the model state be translated to a separate file

format and an external program used, deviating from the desire to capture the

dynamics in a single cohesive framework. Care must be taken when sizing meshes

in a mixed finite and boundary element solution, as the location of nodes, can

impinge on solution accuracy.

Adopting a finite element approach to the solution in the electrostatic domain

is also difficult as it requires remeshing or mesh adaption for each update to the

structural configuration, which is computationally expensive. Furlani et al. [1998]

has shown that for simple planar structures utilizing a parallel plate capacitor

model is sufficient, particularly when the movable conductor is the active elec-

trode and the substrate acts as earth. As the GEMS device deforms the finite

element mesh does not remain planar, however if a sufficiently small mesh size is

used the approximation of the forces on the movable structure is adequate.

In this research the existing finite element discretization is utilized as the

basis for computing the forces on the movable structural elements. The element

discretization describes a series of small parallel plate capacitors, which as the

mesh is refined provide an increasingly accurate approximation of the electro-

static forces on the movable electrode. This approach integrates the electrostatic

solution within the general model framework. It does not require a detailed de-

scription of the fixed electrode, or the expression of the model in a foreign format.

The overall result is a simple efficient approach to modelling the electrostatic

forces on the movable structure.

The formulation for the specific parallel place capacitor model used, ignores

any small discontinuous regions of dielectric between the conductors as 2D finite

element modelling has shown that they only act as local concentrators of electric

field and have little effect on the total force experienced by the conductors. The

specific structures ignored are the standoffs which cover less than 9% of the plan

area between electrodes. The governing force relationship for the parallel plate

capacitor, shown in Figure 2.7, can be obtained by using the Maxwell Stress
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tensor [Davey and Klimpke, 2002] or virtual work approach.

pz =
−ε0V

2wl

2
[

tSi3N4

ε0

εSi3N4
+ tStandoffs + tA0 + tOxide

ε0

εOxide
− vz

]2
(2.30)

Where ε are electric permativities, t, w and l are the structural dimensions, V is

the applied voltage, vz is the vertical deflection of the movable conductor and pz

is the resulting force on the movable electrode. Equation (2.30) states that the

force generated between conductors is proportional to the inverse of the square

of the electrode deflection. Thus, as the structure deforms the force increases as

a function of that displacement, as illustrated in Figure 2.8. Hence, the com-

putation of electrostatic forces requires an iterative approach to determining the

structural equilibrium state at the end of each time step.

An iterative approach to the structural solution is also required because the

NCAA method requires the forces on the structure at the end of the time step

(pn+1) to determine the final structural state from the state at the beginning of

the time step (vn, v̇n, v̈n). Iteration is required to determine the correct set of

structural displacements and electro-static forces during each numerical time step.

This iteration is called Self–Consistent–Electro–Mechanics (SCEM) [Osterberg

et al., 1994a]. A relaxation algorithm is typically used to determine when electro-

mechanical equilibrium has been achieved, but more efficient methods also exist

[Cai et al., 1993]. A relaxation method was adopted by comparing the L2 norms

of the vertical deflection of the electrostatic and final ribbon unit positions.

For simple micro-device structures such an iterative algorithm has been shown
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Figure 2.8. Parallel plate force (pz) variation with applied voltage (V) and electrode deflec-
tion (vz)

to be sufficient, as the additional solution complexity of other methods is not

warranted. Finally, integrating more complex procedures with the NCAA is not

currently well documented.

2.5.1. Bifurcation

Electrostatically actuated thin structures reach a deflection where the non-linear

electrostatic force exceeds the linear restoring forces, causing a bifurcation of

state. Bifurcating thin strip structures exhibit two inherently stable states shown

schematically in Figure 2.9, and switch in a binary fashion between these two

states on the application of sufficient voltage. These two states are the key fea-

ture of bifurcating MEMS structures that suits them to switching applications.

Figure 2.9 (a) is the natural state of the structure with no load applied (V = 0).

To change state a voltage greater than the pull down voltage (VPD) is required.

The force on the structure increases as an inverse quadratic function of gap be-

tween the structure and ground electrode as seen in Equation (2.30). Thus, a set

of state variables exist where the applied force exceeds the restoring ability of the

structure.

This effect can be shown mathematically by examining Equation (2.17) and
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(a) Unactivated state (V = 0) (b) Activated state (V > VPD)

Figure 2.9. Finite element mesh of stable structural states

recognizing that the applied load (p) is proportional to the inverse of the square

of displacement,

p ∝
1

v2
(2.31)

Thus Equation (2.17) reduces to,

Mv̈ + Cv̇ +

(

K − β

(

1

v3

)

+ Kg

)

v = 0 (2.32)

Where β
(

1

v3

)

is a matrix function of
(

1

v3

)

, including a proportionality constant

that maps the electrostatic load to the vertical degrees-of-freedom. Thus, for a

given velocity and acceleration a voltage and displacement exist such that the

system exhibits zero stiffness. Assuming that small deflection theory applies and

K does not change, Equation (2.32) resembles a constrained linear buckling prob-

lem. At this point, additional voltage only acts to accelerate the structure and for

little change in applied voltage, large changes in displacement are realized, The

structure bifurcates to the new stable position. The voltage at this bifurcation

point is commonly termed the pull down voltage (VPD). Deflection is limited by

spacing structures, called standoffs, as shown in Figures 1.5 and 2.9.

When contact with the underlying structural elements occurs the displace-

ment of the contacted portions of the movable structure stop as additional con-

straint is enforced, changing the behaviour of the system. Additional applied

forces are distributed in the new system causing deflection where the structure is

least stiff, in the non-contacted regions. This phase of operation is termed zipping
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and occurs in an extremely short period of time. Zipping ends when the struc-

tures restoring forces exceed the additional applied load. Thus, the second stable

state is reached, as shown in Figure 2.9 (b), effectively a new stable structure.

Increasing the voltage above this value typically yields little change in dis-

placed shape, with extreme voltages required to pull the remaining free structure

portions into contact with the standoffs. Decreasing the applied voltage reduces

the number of points of contact and release ensues, starting with the outermost

contact points moving back toward the point of first contact. Eventually, the

stiffness of the system becomes positive once more as restoring forces exceed

electrostatic forces and the structure releases. At this release voltage (VRL) the

structure resorts to the initial stable state. In the deformed state the two elec-

trodes are in close proximity, resulting in large loads on the movable structure.

As the voltage is reduced this force reduces but only slowly, due to the quadratic

relationship between deflection and applied force. Hence, VRL < VPD and the

occurrence of electro-mechanical hysteresis in the response of the structure, as

seen in Figure 1.1.

2.6. Contact

Common approaches to numerically modelling contact between structural ele-

ments apply pseudo-loads to structural elements, restricting penetration based

on a penalty function formulation [Hirota et al., 2001]. Other methods incorpo-

rate the mass and stiffness of the surrounding structure or try to approximate the

mass and stiffness of the surrounding structure, thus providing an energy sink

and removing kinetic energy from the deforming structure.

Including the surrounding structural elements in the model domain, requires

care as such an approach can potentially add more degrees of freedom then cur-

rently exist in the model. For the GEMS ribbon unit such an approach is in-

feasible, since beyond the oxide layer nothing is known about the body to which

the GEMS device is connected. The ribbon unit also moves very rapidly with

large accelerations so a significant portion of the connected structure would be

required to remove sufficient energy from the ribbon unit to cause it to come to

rest after making contact.

Approximating the mass and stiffness of the surrounding structure, also

causes problems. Specifically how to distribute the approximated stationary

structure to the one in motion. More specifically, how to achieve this effect
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in such a manner as a “hard” surface is presented to the structure in motion.

It was subsequently decided that neither of these approaches were suitable for

the GEMS ribbon. An efficient approach to contact must retain the connectivity

of the structural system. Disconnecting a node from its surrounding neighbours

causes the modified node to feel the effects of contact due to the additional

constraint, but the effect does not propagate into the surrounding structural

domain. The result is that the non-contacted portions of the structure continue

in motion, unaffected by contact, experiencing no loss in energy, resulting in a

poor deformation solution surrounding the points of contact.

Contact in dynamic models is complicated due to the lack of prior knowledge

as to how the structure will deform during the timestep, how the structure will

conform to the other structural elements, and which nodes will be in contact at

the end of the time step. In addition, the movable structure must be allowed to

break contact given correct application of forces. Thus, the structure must not

be deliberately held down between consecutive timesteps to allow an accurate

determination of the release voltage (VRL). Ideally, energy must be conserved in

the system model during the elastic collision.

In a practical model, conservation of energy gives rise to perfectly elastic

collisions, removing no energy from the system. Problems arise as real devices

dissipate energy when contact occurs, causing the device to slow down and, lo-

cally, come to rest. All numerical approaches to contact must decide how much

energy to remove. Thus, it is only possible to determine the actual energy loss

by tuning the model with real experimental data, which is infeasible for pre-

production simulation of experimental MEMS devices.

The adopted approach is to zero the velocities and accelerations of the node

that is in contact. This technique violates elastic conservation of energy and acts

as an energy sink, removing energy from the model during the collision. Such

an approach prevents energy from being reflected back into the movable struc-

tural elements, preventing the unrealistic bounce observed in simulations with

perfectly behaviour. From a maximum deflection stand point such an approach

is considered conservative as it allows the movable structure to conform to the

underlying structural elements in a manner that may exceed that of the real

system.

Examination of the equations for the Newmark Constant Average Acceler-

ation (NCAA) scheme, suggests that contact is just a special case, of the gen-

eral scheme. Assuming the modelling approach can accurately determine the
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time of contact, in subsequent timesteps if the node is still in contact in the

following timestep the vertical (z) deflection of the contacted node ({∆vz}) in

Equation (2.26) is known a priori as zero. Hence, the change in deflection for

the contacted nodes is known, the applied electrostatic force at the end of the

timestep {pn+1} is known but is of little value as the contact forces are a desired

model output. Thus, {pn+1} for the contacted nodes is unknown and Equa-

tion (2.26) can be augmented, collecting the equations relating to the contacted

nodes and those related to the non-contacted or free nodes.

[

A11 A12

A21 A22

]{

∆v1

∆v2

}

=

{

pn+11

pn+12

}

+

{

b1

b2

}

(2.33)

Where,

[A] =

[

4

∆t2
[M ] +

2

∆t
[C] + [K]

]

(2.34)

{b} =

{

[M ]

(

4

∆t
{v̇n} + {v̈n}

)

+ [C] {v̇n} − [K] {vn}

}

(2.35)

And {∆v1} are the unknown changes in deflection, {∆v2} are the known changes

in deflection for the contacted nodes so {∆v2} = 0, pn+11
are the applied nodal

loads at the end of the timestep and pn+12
are the unknown contact forces.

Determining when a model node should experience additional constraint is

critical to accurate determination of the pull down and release voltages of the

structure. Thus, it is important that at each numerical integration step, addi-

tional constraints due to contact be removed from the model and the model be

allowed to freely deform. If during this initial step model nodes make contact,

additional constraint is applied (or re-applied) and the step repeated to determine

the effects of the additional constraint(s).

Accurately modelling contact between movable and stationary structural

components requires consideration of the energy transferred between the partici-

pants. However, micro-devices are typically assembled to form part of a product

that is many orders of magnitude larger, with much larger mass and stiffness

than the movable structural element. In this case, consideration must include

the extent of the model, as the micro-device is the structure of interest not the

system as a whole. Hence, the decision to remove energy through the zeroing of

the velocities and accelerations of contacted nodes.

The dynamic time step size (∆t) must also be controlled to determine when



Opto–mechanical coupling 33

contact between the structure of interest and the surrounding structure first

occurs. This control is achieved by allowing a small penetration buffer in the

surrounding structural elements. This buffer is easily rationalised due to the

variation that occurs in batch fabricated MEMS devices. The adopted buffer size

is 0.001nm, much less than 1% of the smallest critical structural dimension, the

thickness of the device.

The time step size is reduced as previously free nodes penetrate the under-

lying structure and the time step restarted with the new, reduced ∆t until the

penetration is within the buffer limit and the node is deemed to be in contact.

For dynamic modelling using the NCAA it is difficult to know when to grow ∆t

to maintain computational efficiency. This issue is overcome by attempting to

constantly grow the time step size, ∆t, back to its more efficient base value.

2.7. Opto–mechanical coupling

For planar optical microdevices it is possible to compute the diffractive efficiency

using scalar diffraction theory [Bass, 1995]. Kowarz et al. [2002] presents such

an analysis for a GEMS device using a quasi-static model, using both square and

trapezoidal assumed profiles.

Equation (2.36) allows an arbitrarily deformed ribbon unit profile to be used

to compute the diffractive efficiency (ηm).

ηm =

∣

∣

∣

∣

1

Λ

∫ Λ

0

e
−i4πz(x)

λ e
−i2πmx

Λ dx

∣

∣

∣

∣

2

(2.36)

Where Λ is as defined in Figure 1.5 and Figure 1.6 (a), λ is the wavelength of

incident light and m is the order of diffracted light collected.

Utilizing the existing finite element discretization for the GEMS ribbon unit,

the trapezium rule can be used to numerically evaluate the complex integral in

Equation (2.36). Computing the magnitude of the resulting quantity ensures that

only the amplitude of the diffracted light is considered not the phase.

Such an approach fails to consider the deformation across the ribbon. A more

complex approach similar to the one presented in Kurzweg et al. [2003] must be

considered to accurately capture the effect in three dimensions. The adoption of

a numerical approach does not effect the accuracy of the result as it exact for

the chosen finite element discretization. This research has adopted the simplified

approach in the interest time.





Chapter 3

Implementation

Integrating residual stress, electrostatic loading, contact and large deflections into

a dynamic finite element framework utilizing the Newmark Constant Average

Acceleration scheme to perform numerical integration, results in the decision

structure shown in Figure 3.1. The resulting two loops, control the numerical

marching procedure and electrostatic equilibrium at each time step. Contact and

large deflections are handled using simple branches, although contact can require

recursion, to be captured accurately. The complete framework is implemented in

the Matlab environment, in a cohesive system designed to handle MEMS devices.

No data is passed to any external program.

Simulations are conducted in blocks, allowing partial data to be analysed be-

fore simulations reach completion, and allowing simulations to be run that require

history data above the capacity of the host system (Table C.1, Appendix C). A

restart block mechanism is also present to enable efficient debugging, and faster

computation for multiple simulations.

3.1. Multilayer approximation

Idealizing the composite GEMS ribbon of Figure 1.5 as a single layer of material

and utilizing a single layer of hybrid stress finite elements to increase computa-

tional efficiency, it is necessary to account for the difference in both stiffness and

density observed in the two materials (Al, Si3N4) present in the physical struc-

ture. The GEMS device response is bending dominated, hence the variation in

stiffness can be accounted for by calculating an equivalent thickness (t̃) from an

equivalent stiffness of the composite ribbon unit. While the variation in density

can be expressed using an equivalent density (ρ̃) to obtain a correct mass matrix.
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3.1.1. Equivalent thickness

By requiring identical equivalent bending stiffness (EI) for the physical device

and model cross sections shown in Figure 3.2, it is possible to calculate an ap-

propriate t̃ for the model. The y axis, in Figure 3.2, is chosen as the axis about

which the second moment of area (I) is to be calculated as it is common to both

Figures 3.2 (a) and (b) and is independent of t̃.

PSfrag replacements

Al tAl

Si3N4
tSi3N4

w

z

y

(a) GEMS device
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Figure 3.2. Structural ribbon cross section approximation (exaggerated vertical scale)

Neither Figures 3.2 (a) or (b)’s neutral axis is located at the y axis, thus it is

necessary to use the parallel axis theorem. The calculation of t̃ is derived from

established device parameters:

t̃ = 3

√

EAlt
3
Al

+ 3EAltAlt
2
Si3N4

+ 3EAlt
2
Al

tSi3N4 + ESi3N4t
3
Si3N4

ESi3N4

(3.1)

Where t indicates a thickness and E a modulus of elasticity. For the model device,

tAl = 50nm

tSi3N4 = 100nm

EAl = 70GNm−2

ESi3N4 = 250GNm−2

The resulting equivalent thickness t̃ = 118.52nm, slightly thicker than the Silicon

Nitride of the GEMS device, reflecting the small contribution to stiffness from

the Aluminium.
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3.1.2. Equivalent density

Using a unit plan area of ribbon unit, the equivalent density (ρ̃) can be calculated.

ρ̃ =
tAlρAl + tSi3N4ρSi3N4

t̃
(3.2)

For the model structure,

ρAl = 2710kgm−3

ρSi3N4 = 3180kgm−3

For the model device ρ̃ = 3826kgm−3, greater than both ρSi3N4 and ρAl but less

than the sum of the two, reflecting the additive contribution to device weight

from both constituent materials.

3.1.3. Equivalent initial stress

The GEMS device contains both stressed Silicon Nitride and unstressed Alu-

minium. The simplified model structure consists of a single layer of material,

so the whole model cross section is placed in a state of tensile stress. The level

of stress in the model needs to reflect both the unstressed aluminium and the

equivalent ribbon thickness.

For a string structure, the tensile axial stress can be related directly to the

axial force in the structure. Requiring similarity in the axial forces of the man-

ufactured device and the model allows the calculation of an equivalent initial

material stress (σ̃).

σ̃ =
tSi3N4

t̃
σn (3.3)

Where σn is the normal stress present in the Silicon Nitride of a manufactured

GEMS device (1100 MPa). Therefore, for the simplified single material model

structure, σ̃ = 932MPa.

3.2. Symmetric model reduction

Using the principals of symmetry it is possible to significantly reduce the number

of degrees of freedom in the dynamic finite element model. The GEMS ribbon
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unit is symmetric about two axis; the centerlines in both the x and y directions.

By only including the elements in the model in the lower quarter of the ribbon

unit it is possible to reduce by 75% the number of degrees of freedom in the

model, with obvious gains in computational speed and storage requirements.

Symmetric reduction is achieved by only including one quarter of the ribbon

unit in the finite element model and applying appropriate constraints at the lines

of symmetry, to stop the structure moving out of plane and enforce rotation

compatibility.

The drawback of symmetrical model reduction is removal of the ability to cap-

ture the torsional dynamics of the ribbon unit, which a quick comparison of the

modeshapes of the normal and reduced structure reveals. However, the applied

electrostatic force shares the same planes of symmetry as the structure, and the

electroding of the GEMS structure is such that even minor electrostatic attrac-

tion to neighbouring ribbon units is not anticipated to occur. Thus, symmetric

reduction has been utilised.

Symmetric reduction would not be applicable if the modelling of fluid damp-

ing in the system were to include pressure effects, giving the ribbon the ability

to pump fluid. In this case a full GEMS ribbon unit would be needed to ensure

that the varying pressure distribution beneath the ribbon did not cause torsional

excitation. The finite element implementation utilized is such that it is possible

with the developed code to model full, half and quarter of the GEMS ribbon unit.

3.3. Stress calculation

The absence of coupling between the bending and membrane characteristics in

the mixed finite element formulation developed, requires the superposition of the

resulting stress components in order to determine the magnitude of the stresses

in the materials of the GEMS ribbon unit. The bending degrees of freedom

provide the peak bending stresses in the ribbon unit, maximum at the upper and

lower surfaces, consistent with standard notation for bending structures centrally

deflected downward. Thus the peak tensile bending stress occurs at the lower

surface of the ribbon (+σb) and the peak compressive bending stress occurs at

the upper surface of the ribbon (−σb). The membrane stress, the result of the

initial material stress, via {q} unless reassembly is enabled, is uniform throughout

the structure.

Figure 3.3 (a) & (b) illustrate the stress distribution in a generic single layer
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bending structure with an applied initial material stress. A tensile stress value is

indicated by an arrow in the positive x direction. The dashed lines indicate the
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Figure 3.3. Single layer structure stress distributions

location of the key planes of the structure and the arrows indicate the direction

of the induced stresses.

From Figure 3.3 the maximum compressive stress in the structure is:

σmin = −σb + σ̃0 (3.4)

And the maximum tensile stress:

σmin = σb + σ̃0 (3.5)

For values of σb less then the initial material stress, the effects of the initial

material stress dominate the stresses in the structure. Also the high tensile initial

material stress reduces the structures propensity to buckle.

For a composite structure the stress distribution differs from that shown in

Figure 3.3. As Figure 3.4(a) illustrates the centroidal plane and neutral plane no

longer coincide. the centroidal plane remains in the same location as in Figure 3.3

as its location is a function of the cross sectional area of the structure, however due

to the differing stresses in the structure the neutral plane is moved. Figure 3.4(b)

illustrates the presence of the initial material stress in the Silicon Nitride layer.

Determining the stresses in the composite structure requires information in

addition to what is available in the results from the single layer structure. While

it is possible to locate the neutral plane of the composite structure and maintain
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Figure 3.4. Composite structure stress distributions

equivalent areas beneath the stress distributions, the stresses at the upper, lower

and interfacial surfaces are unknown, providing no reference from which to derive

the remaining stress distribution. Thus the results of a the single layer model

can only be used to approximate the stresses in the GEMS ribbon unit.

Combined with a knowledge of the alloy system used in the Aluminium layer

it is possible to estimate the service life of the simulated structure, subject to the

assumed loading pattern, with respect to stress cycling and high cycle fatigue.

From this information the lifetime of the structure and the product in which the

device is used may be determined.





Chapter 4

Model Verification

Incrementally verifying the solution technique developed as the framework de-

velops allows the accumulation of functioning code providing verifiable results.

This chapter discusses the model implementation and verification. Specifically,

the steps in the verification process and what was tested and presents results for

the verification test cases.

4.1. Felippa cantilever

To assess the accuracy of the element formulation utilized and determine the

functionality of the assembly, solution and visualization routines a structure called

the Felippa cantilever [Carr, 1967; Felippa, 1966], with the C1 mesh, was utilized.

The results are compared with the structural dynamics package RUAUMOKO,

[Carr, 2001], and results presented in the literature.
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Figure 4.1. Deformed Felippa cantilever, illustrating bending stress contours
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As the bending and membrane behaviours are uncoupled it is possible to

test the structure in bending and shear simultaneously. Applying a load of 20N

in the +vy and +vz directions and solving for the deflections of the structure,

using {p} = [K] {v}, produces the deformed structure shown in Figure 4.1. As

expected, the greatest bending stresses occur at the fixed end of the cantilever.

Table 4.1 lists the deflection results obtained from the Felippa cantilever test

and Table 4.2 lists the corresponding results from the RUAUMOKO structural

dynamics package. Comparing Table 4.1 and Table 4.2 the agreement obtained

Table 4.1. Fellipa Cantilever test deflection results

Node vx vy vz vθx
vθy

vθz

N3 -0.02755 0.03090 3.771 -0.09121 -0.6389 0.004949
N4 0.02755 0.03090 3.771 0.09121 -0.6389 0.004949
N5 -0.04710 0.1090 14.59 -0.05738 -1.120 0.008275
N6 0.04710 0.1090 14.59 0.05738 -1.120 0.008275
N7 -0.05881 0.2185 30.01 -0.02920 -1.408 0.01024
N8 0.05881 0.2185 30.01 0.02920 -1.408 0.01024
N9 -0.06271 0.3435 47.74 0.009367 -1.502 0.01089
N10 0.06271 0.3435 47.74 -0.009367 -1.502 0.01089

Table 4.2. RUAUMOKO Fellipa Cantilever test deflection results

Node vx vy vz vθx
vθy

vθz

N3 -0.02755 0.0309 3.771 -0.09121 -0.6389 0.004949
N4 0.02755 0.0309 3.771 0.09121 -0.6389 0.004949
N5 -0.0471 0.109 14.59 -0.05738 -1.12 0.008275
N6 0.0471 0.109 14.59 0.05738 -1.12 0.008275
N7 -0.05881 0.2185 30.01 -0.0292 -1.408 0.01024
N8 0.05881 0.2185 30.01 0.0292 -1.408 0.01024
N9 -0.06271 0.3435 47.74 0.009367 -1.502 0.01089
N10 0.06271 0.3435 47.74 -0.009367 -1.502 0.01089

is exact to the number of significant figures available in the output from RU-

AUMOKO. The agreement is equally good for the computation of both elemental

and average nodal stresses. Thus, the implementation of the hybrid stress finite

element was successful and the assembly and static solution routines function as

expected.
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4.2. Model structure

The initial GEMS model parameters provided by Kodak were used to form the

single layer structure described by Table 4.3 and Figure 4.2. The modifications

required to achieve the equivalent single layer parameters t̃, ρ̃ and σ̃0 are defined

by Equations (3.1)-(3.3).

Table 4.3. Model structure parameters

Parameter Value Units

Length (l) 30 µm
Width (w) 6 µm
Thickness (t̃) 0.12 µm
Youngs modulus (E) 250 GNm−2

Poissions ratio (ν) 0.33
Density (ρ̃) 3826 kgm−3

Initial stress (σ̃0) 928 MNm−2

This structure was used as the basis for the validation and verification of

the analysis code, providing both existing experimental and numerical results for

comparison. In subsequent tests this basic structure has been used as the basis

of the specified test. Where alterations to this base structure are necessary they

have been detailed in the individual sections.
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Figure 4.2. Model structure for code verification
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4.3. Fixed-fixed beam comparison

Omitting the effects of the initial material stress (σ0) and setting Poissions ratio

(ν) to zero, matching the assumptions of beam theory, results in the structure

outlined in Table 4.3 idealized as a fixed-fixed beam. Applying a central point

load that will not cause contact, is not a whole number (p = 8.27), and is equally

distributed among the nodes at the model center line, allows a direct comparison

with standard analytical solutions. The analytical beam theory result is:

vz =
pl3

16Ewt3
(4.1)

Comparing this solution with the finite element results listed in Table 4.4 and

illustrated in Figure 4.3, for different numbers of elements in the finite element

model shows very good correlation.

Table 4.4. Fixed-fixed beam deflection results

Elements Elements vz edge vz center
across (y) along (x)

1 4 5.6425314 -
2 8 5.6030429 5.5823987
4 16 5.5917989 5.5863410
8 32 5.5888316 5.58747445
16 64 5.5880857 5.58774795
32 128 5.5878997 5.58781544
64 256 5.5878537 5.58783265

The fixed-fixed beam model allows the verification of the symmetric reduc-

tion of the model and shows the efficiency of the hybrid stress formulation at

representing the stiffness of such a structure. The number of degrees of freedom

in the finite element model was controlled by altering the number of element di-

visions across the width and along the length of the beam, as seen in Table 4.4.

The efficiency of the hybrid element formulation is clear in the result for

the coarsest mesh, where the discrepancy is less than 2%, much lower than other

element types. Such a mesh would not be adequate for capturing the deformation

of the GEMS ribbon unit between standoffs, but is adequate for capturing central

deflection.
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Figure 4.3. Fixed-fixed beam deflection comparison

Figure 4.3 shows that unlike displacement based finite element formulations

the hybrid stress formulation does not exhibit the typical upper bound on dis-

placement observed in displacement based elements. Thus, mesh refinement stud-

ies are required to determine the accuracy of the solution obtained. As Poissions

ratio effects are neglected, the center and edge deflections are expected to be

identical if the structure is loaded in a kinematically equivalent manner. Kine-

matically equivalent loading has not been used in this example as it allows a more

conservative evaluation of element efficiency.

4.4. Dynamics comparison

Both the numerical representation of the system and the implementation of the

NCAA method were tested to ensure correct operation. These two features were

tested against the commercial finite element analysis package ANSYS in both

modal and transient dynamic analyses with excellent results obtained. The AN-

SYS code for running the comparisons can be found in Appendix A.

4.4.1. Modal analysis

Comparing the modeshapes and frequencies of the model structure as computed

using Equation (2.23) with the results obtained from ANSYS, verifies the accu-

racy of the system mass and stiffness representations. The frequencies of the
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structure are listed in Table 4.5 and the first eight modeshapes are illustrated in

Figure 4.4.

Table 4.5. Model structure and ANSYS natural frequencies

Mode Model structure ANSYS Model structure
(Table 4.3) (MHz) (MHz) (σ0 = 0) (MHz)

1 8.56 8.56 1.12 (1)
2 9.19 9.16 3.66 (3)
3 17.21 17.22 3.09 (2)
4 18.46 18.42 7.58 (5)
5 26.05 26.07 6.07 (4)
6 27.91 27.87 11.96 (7)
7 31.05 31.14 29.90 (14)
8 35.17 35.23 10.07 (6)
9 36.61 36.62 32.58 (15)
10 37.63 37.60 16.97 (9)

For comparison the the frequencies of the structure in the absence of the

initial material stress are also listed in Table 4.5 with their corresponding mode-

shape listed in parentheses. The dominance of the initial material stress on the

structural dynamics is clear, in both the dramatic rise observed in fundamental

frequency (≈ 8×) and the changes observed in the order in which modes occur.

4.4.2. Dynamic analysis

Testing the Newmark integration scheme used to capture the linear dynamics of

the model structure with the implementation in ANSYS for small deflections and

with a Rayleigh damping model, gives the results presented in Figure 4.5. The two

lines represent the displacement traces of the center point of the structure. The

structure was subjected to a ramped centrally applied point load to a maximum

of −5.5×10−3N, which is removed in a single time step, allowing the structure to

oscillate. The model was tested without the presence of the initial material stress,

as ANSYS was unable to easily apply the initial material stress to a transient

dynamic analysis. Note that the two lines in Figure 4.5 are effectively identical,

verifying the approach and model.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

Figure 4.4. Model structure undamped dynamic mode shapes 1–8
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Figure 4.5. Model structure dynamics comparisons (σ0 = 0)

4.5. Quasi–static static limit comparison

Lowering the initial material stress in the Silicon Nitride (σ0) to 850MPa the

test structure is subjected to a static limit test, where the applied voltage ramps

from 0 → 25V in 25µs followed by a return to 0V in a further 25µs. Examining

the centerline profile (x = 3µm) of the structure at 16, 18, 20 and 22V under

both increasing and decreasing voltages provides the comparisons illustrated in

Figure 4.6. The solid lines are centerline profiles from the full dynamic simulation

of the test structure and the dashed lines are obtained using information provided

by Kowarz et al. [2002] from a quasi-static model. Generally, the agreement is

adequate, however the comparison does highlight the deficiencies of the quasi-

static model. The quasi-static model is unable to model points of zero rotation,

due to the removal of the bending contribution to stiffness. Thus, the quasi-

static model does not capture the fixed end conditions or the point of symmetry

at mid-span correctly. The differences in contact criteria are also apparent, the

quasi-static model expresses the underlying standoffs as a single surface while the

full dynamic model possesses discrete structures and allows the ribbon to drape

over the standoffs. The test structure does not posses standoffs along the ribbon

unit center line, as seen in Figure 4.2, and no contact with the oxide layer occurs

during the static limit test.

Electromechanical hysteresis is observed during device operation and in Fig-

ure 4.6, Figure 4.7 illustrates the dynamic voltage deflection behaviour of the
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Figure 4.6. Model structure profile comparisons

center point of the test structure during the static limit simulation. Arrowheads

have been added to illustrate the direction of movement around the hysteresis

loop as the voltage rises and falls. The quasi-static model also does not capture

the ringing observed when the device releases, as it has no dynamics. It is ex-

pected that this ringing will significantly impact the device’s optical performance

in switching applications.

0 5 10 15 20 25
-0.165

-0.145

-0.125

-0.105

-0.085

-0.065

-0.045

-0.025

-0.005

0.015

0.035

Quasi-Static

3D Dynamic FE

PSfrag replacements

D
efl

ec
ti

on
[µ

m
]

Voltage [V]

Figure 4.7. Test structure, quasi-static hysteresis comparisons

Comparing the pull down (VPD) and release (VRL) voltages from the two
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models, Table 4.6 highlights the efficiency of the string models. With the reported

Table 4.6. Critical voltage comparison

Critical Voltage Dynamic Quasi–static
3D 2D

Pull Down (VPD) 21.38 21.14
Release (VRL) 17.80 17.57
Difference (∆V ) 3.58 3.57

values showing very good agreement. The slightly lower quasi-static values are

likely due to the damping and inertia in the dynamic model.



Chapter 5

Trade-off Analyses

Utilizing the modelling approach validated in Chapter 4 the sensitivity of the

GEMS ribbon unit to variations in key parameters is assessed. The GEMS ribbon

unit design space is bounded by multiple variables exhibiting varying degrees

of coupling. Thus, simulating variations in a single parameter from a stated

reference configuration is the only computationally feasible approach given the

timeframe of this research.

In consultation with Eastman Kodak staff the parameters varied include:

• Slew rate, the rate at which the voltage is applied and removed

• The post-deposition initial material stress in the Silicon Nitride layer (σ0)

• Thickness, the thickness of the Silicon Nitride layer (tSi3N4)

• Standoff layout, the distribution of standoffs, spacing in both directions (sx

& sy, Figure 5.1) and the thickness of the standoff layer (tStandoffs), hence

the height of the standoffs.

These variables are the parameters most likely to vary significantly across a wafer,

between wafers or as a result of driving input signals. Such variations can cause

device failure or result in devices with dynamic behaviour outside desired oper-

ating limits.

Of interest during these studies are the pull down (VPD) and release (VRL)

voltages of the structure, and how they vary with changes in parameters. The

design intent of the standoffs in the GEMS ribbon unit is the mitigation of contact

between the ribbon and the oxide layer, lessening the probability of stiction and

device failure. Thus, the incidence of contact between the ribbon unit and the

oxide layer is of interest, as are the stresses in the ribbon during operation.
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5.1. Reference ribbon unit configuration

The reference configuration for the GEMS ribbon unit is an 8 × 30µm ribbon.

Figure 5.1 depicts a full finite element mesh of this reference configuration and

identifies the critical dimensions listed in Table 5.1. The mesh represents the

location of the ribbon mid plane and the shaded regions beneath the mesh rep-

resent the location of the standoffs. When the mesh meets the standoffs or oxide

layer, the node at which the meeting occurs is considered in contact. The dashed

lines, in Figure 5.1, are construction lines and indicate the vertical (z) location

of the underlying standoffs. The position of the upper surface of the standoffs is
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Figure 5.1. Reference ribbon unit layout

the height at which the ribbon makes contact not the actual location. The true

location is one half a ribbon thickness below the illustrated position, where the

additional half a ribbon thickness accounts for the thickness of the real ribbon

structure.

Section 4.3 highlights the efficiency of the hybrid stress element formulation

in accounting for the stiffness of structures using coarse meshes. Thus, the suit-

ability of a coarse (8 × 34) element mesh was evaluated against a fine (16 × 68)
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Table 5.1. Reference ribbon unit parameters

Parameter Value Units

Length (l) 30 µm

Width (w) 8 µm

Thickness (t̃, Equation 3.1) 0.12 µm
tAl 0.05 µm
tSi3N4 0.1 µm
tA0 0.15 µm
tOxide 0.05 µm

Youngs modulus (E) 250 GNm−2

EAl 70 GNm−2

ESi3N4 250 GNm−2

Poissions ratio (ν) 0.33

Density (ρ̃, Equation 3.2) 3826 kgm−3

ρAl 2710 kgm−3

ρSi3N4 3180 kgm−3

Initial stress (σ̃0, Equation 3.3) 928 MNm−2

σ0Si3N4
1100 MNm−2

σ0Al
0 MNm−2

Standoffs
Rows 3
tStandoffs 0.05 µm
sy 2.5 µm
sx 4 µm
slx 1 µm
sly 1 µm
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mesh. Recall that Figure 5.1 depicts a full 16×68 finite element mesh. Figure 5.2

illustrates the modelled regions of the the two meshes, when symmetric model

reduction considerations are applied. The two meshes presented in Figure 5.2
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(a) Coarse mesh (08 × 34 elements)
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Figure 5.2. GEMS ribbon unit model mesh densities, showing node numbers

show one quarter of the ribbon unit, and the red dashed lines indicate the lines

of symmetry (LOS) within the structure. The first eight natural frequencies of

the reference structure are listed in Table 5.2, and are identical for the two mesh

densities.

Altering σ0 and tSi3N4 alter the inherent structural characteristics of the rib-

bon unit. Thus the mode shapes and frequencies must be computed for each of

the simulation cases, in the σ0 and tSi3N4 families of simulations, to determine
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an efficient base time step. As discussed in Section 2.3 the first ten modes of

operation are deemed as significant contributors to device response, so the initial

time step size for the reference simulation configuration is 2.8 × 10−9s.

Table 5.2. Reference structure natural frequencies

Mode Frequency
(MHz)

1 8.56
2 8.92
3 17.22
4 17.93
5 19.18
6 26.02
7 26.06
8 27.12
9 34.70
10 35.18

Using this initial time step size and subjecting the reference ribbon unit

configuration to the static limit test, 0 → 24 → 0V in 50µs, causes the ribbon

unit to bifurcate as expected. The electromechanical hysteresis of the center point

of the ribbon unit (Node 86 in Figure 5.2(a) and Node 307 in Figure 5.2(b)),

is illustrated in Figure 5.3. The two lines represent the response of the two

mesh densities and arrow heads have been added to indicate the traversal of the

loop. The agreement obtained is excellent for the two mesh densities. The most

pertinent feature of Figure 5.3 is the high frequency oscillation that occurs as the

ribbon breaks contact with the standoffs. Also of interest is the small oscillation

observed prior to the release bifurcation for the fine (16× 68) mesh, circled with

a dashed line in Figure 5.3, resulting from the redistribution of the applied load

as contact is lost with all standoffs but the center row. The absence of the

small pre-release oscillation from the hysteresis response of the coarse element

mesh confirms that the coarse mesh does not sufficiently capture the localized

dynamics of the GEMS ribbon unit.

Traversing this hysteresis loop the reference ribbon unit is observed to bifur-

cate between the two characteristic stable states, as discussed in Section 2.5.1.

The voltages at which these bifurcation points occur are tabulated in Table 5.3.

The reference configuration static limit simulation yields the runtime profile

illustrated in Figure 5.4, where the stepped upper line plotted on the left hand
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Figure 5.3. Reference simulation electro-mechanical hysteresis trace

Table 5.3. Critical voltages for reference simulation

VPD VRL ∆V

[V] [V] [V]

Reference 22.28 18.67 3.61
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axis represents the number of nodes that are in contact with either the oxide

layer or the standoffs in any given time step. The jagged lower line plotted on

the right hand axis is the current time step size in the simulation. The presence

of a second dashed line (also plotted on the left hand axis) indicates the number

of nodes in contact with the oxide layer during each time step, however for the

reference simulation no contact with the oxide layer occurs. The vertical dotted

lines indicate simulation block boundaries. As nodes come into contact it is
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Figure 5.4. Reference simulation runtime profile

anticipated that the time step size decreases to ensure penetration is controlled.

As expected the time step size does not reduce until contact first occurs. While

in contact the time step size remains small and is barely visible in Figure 5.4.

The runtime profile provides an index to the simulation and highlights areas

of interest that require investigation. Figure 5.4 illustrates the “zipping” phe-

nomena, where the ribbon unit makes contact with the first standoffs, at mid

span, and quickly “zips” into the second stable structural configuration. The

steps in the number of contacted nodes between step 1000 and step 2000 of the

simulation indicate the presence of structural oscillations post pull down and it is

likely that such oscillations that cause the oscillations in reflected light intensity

of Figure 5 Kowarz et al. [2002].

The decreasing steps from step 15000 to 35000 are the the gradual release of

the ribbon as the voltage is reduced. The short increasing step before step number

35000 is the ribbon unit redistributing the decreasing load on the edge standoffs

causing a momentary increase in contact. This increase causes the center node

of the model to release which is manifested in Figure 5.3 as the small pre-release

oscillations.

During the static limit simulation the reference ribbon unit is not observed

to contact the oxide layer. The minimum separation between the lower surface



60 Reference ribbon unit configuration

of the ribbon and the upper surface of the oxide layer, of 0.040µm, occurs at

x = 12.794µm, y = 0µm when the applied voltage is 22.28V. The point that

attains this minimum separation is situated between two standoffs where the

ribbon unit is least constrained. Table 5.3 indicates that this voltage value is the

pull down voltage (VPD). Thus, the ribbon unit comes closest to the oxide layer

during “zipping” and not when the structure is subject to the peak voltage of

25V. This result suggests that the inertial dynamics of the structure are more

important than the applied voltage for locating contact, invalidating all modelling

approaches that do not consider the dynamics of the structure.

While the agreement between the modal analysis and hysteresis results for

the two mesh densities is striking, the coarse mesh (8 × 34) does not fully incor-

porate the effects of the upper standoff surfaces into the model, as the contact

model adopted uses point contact with nodes in the finite element mesh. The

absence of nodes overlapping the edges of the standoffs causes the coarse mesh

to over predict sagging beneath the standoffs. Subsequently, all ribbon unit pa-

rameter variations utilise the fine (16 × 68 element) mesh. All simulations are

modelled using one quarter of the full finite element mesh for the GEMS ribbon

unit reducing computational costs with reassembly and initial material stress con-

tributions to applied forces ({q}) disabled. The computational requirements of

the simulations are listed in Table C.1 of Appendix C.

Using Equation (2.36) the diffractive efficiency (ηm) of the reference GEMS

ribbon unit configuration may be calculated. Equation (2.36) assumes a planar

device, thus the finite element discretization may be used to compare the diffrac-

tive efficiency of each row of nodes along the models length. As symmetry has

been utilized in the modelling of the GEMS ribbon unit only the rows of nodes at

the ribbon unit edge (0), ribbon unit quarter line (w
4
) and ribbon unit centerline

(w
2
) are illustrated in Figure 5.5. Figure 5.5 illustrates the diffractive efficiency

for collected 0th order light for the reference GEMS ribbon, with;

Λ = 36µm

λ = 532nm

Figure 5.5 clearly illustrates the influence of the post realease oscillations on

optical performance and compares extremely favourably with the experimental

data illustrated in Figures 5a and b of Kowarz et al. [2002]. The variation in

diffractive efficiencies for collected 0th order light do not vary significantly across

the width of the GEMS ribbon unit, ≤ 1%, as the order of collected light is
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increased the difference becomes more significant, ≈ 5% for second order light.

Unlike Figure 5.3, the diffractive efficiency of the GEMS ribbon illustrates

the distributed nature of the deformation of the structure with time. Clearly

showing the post-contact oscillations and the pre-release deformation reduction.

Figure 5.6 is a magnification of Figure 5.5 illustrating these two behaviours.
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Figure 5.6. Reference simulation diffractive efficiency details

The reference ribbon unit configuration is the standard from which each fam-

ily of simulations varies a single parameter and catalogues the changes in the

operation of the ribbon unit. In the subsequent parameter variations the hys-

teresis results are compared to the reference configuration, plotted using a dashed

line with “x” markers. The reference configuration voltages are tabulated with

the results of each family of simulations.
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5.2. Slew rate

Varying the time in which the voltage ramp is applied to the structure allows

changes in device response to be observed, for different operating profiles. The

static limit test applies the voltage ramp slowly (in 25µs). However the slew rate

tests aim to test the dynamics of the structure beyond what is currently possible

with existing Kodak models, highlighting the ability of this finite element ap-

proach to capture the dynamics of the device where current, quasi-static, models

fail.

The specification for the slew rate tests requires a modified voltage profile of,

0 → 24V in the specified slewing time. The voltage is then held for a period of

2 µs and then ramped back to zero in the specified slewing time. This approach

differs from the static limit test where the voltage is ramped to 25V in 25µs and

then back to 0V in a further 25µs. The waiting period is to allow an observation

of any transient dynamics present in the ribbon unit’s response.

The five slewing times simulated are: 300ns, 200ns, 100ns, 50ns and 20ns.

Figure 5.7(a) compares the length of the 300ns slew rate simulation to the static

limit test, showing that the slew rate simulations are significantly shorter in du-

ration, and are therefore expected to run in significantly reduced time. These

reduced slewing times were chosen in consultation with Eastman Kodak. Fig-

ure 5.7(b) outlines the profiles of the different slew rate simulations.

0 10 20 30 40 50
0

5

10

15

20

25

Static Limit
300ns

PSfrag replacements

V
ol

ta
ge

[V
]

Time [µs]

(a) 300ns & Static Limit

0 0.5 1 1.5 2 2.5
0

5

10

15

20

20ns
50ns
100ns
200ns
300ns

25

PSfrag replacements

V
ol

ta
ge

[V
]

Time [µs]

(b)
300ns, 200ns, 100ns, 50ns
and 20ns

Figure 5.7. Slew rate simulation voltage profiles

Figure 5.8 shows the hysteresis profiles for the slew rate simulations, including
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the hysteresis loop of the reference configuration (dashed) for comparison. As the

switching speed increases, the slewing time is reduced and the structure has less

time to respond. The electro-mechanical hysteresis loop becomes less well formed

and the sharp distinction at the bifurcation points is lost. Removing the voltage
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Figure 5.8. Hysteresis curves for slew rate simulations

ramp quickly, removes the ability to control the post release oscillations of the

GEMS ribbon unit. Figure 5.8 shows that the unit oscillates in lightly damped

free vibration. This result contrasts the results of the static limit simulation

where the voltage reduction was managed, allowing maximum control over the

magnitude of the post release oscillations. A quasi-static approach to modelling,

where the dynamics of the structure are ignored, is unable to capture any such

behaviours.

When the voltage reaches zero the ribbon is observed to oscillate in damped

free vibration until it comes to rest. In Figure 5.8 this oscillation occurs at 0V

and is obscured by the vertical axis. Clearly, the higher the slew rate the greater

the initial displacement, and the more time required for the oscillations to damp
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Figure 5.9. Slew rate simulation time deflection profiles (Legend as in Figure 5.8)

out. Figure 5.9 illustrates the time deflection behaviour of the center of the GEMS ribbon unit with time, removing the coupling

between applied voltage and time. Figure 5.9(a) illustrates the time dependance of ribbon unit pull down and Figure 5.9(b)

illustrates the decay in the post release oscillations as the slew rate is reduced. Figure 5.8 indicates that reducing the slewing time

results in increases in the magnitude of the post release oscillations. This observation is reasonable as reducing the slewing time

increases the rate at which the applied voltage is removed, diminishing any controling influence experienced by the GEMS ribbon

unit.

All simulations utilize a damping model in which 5% of critical damping has been placed in modes one and ten. This is

consistent with the exponential decay envelope observed in the post release oscillations in Figure 5.9(b).
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As the slew rate is increased, and the switching time reduced, the magnitude

of the post release oscillations increase. This result follows as the voltage ramp

returning to zero has a lessened effect, as it is removed more quickly. Hence,

greater peak amplitude in the oscillations and reduced control.

From Figure 5.8 the critical operating voltages of the structure can be deter-

mined and Table 5.4 lists these values. Table 5.4 shows that as the slew rate is

Table 5.4. Critical voltages for slew rate simulations

Case VPD VRL ∆V

[V] [V] [V]

Reference 22.28 18.67 3.61
300ns 24 18.27 5.72
200ns 24 18.24 5.76
100ns 24 17.35 6.64
50ns 24 15.01 8.99
20ns 24 12.61 11.39

increased, the GEMS ribbon unit is unable able to respond in sufficient time and

the ∆V increases.

Figure 5.10 presents the number of nodes in contact during each time step.

In contrast to Figure 5.4 the “zipping” oscillations are more pronounced and the

gradual reduction in contact as the ribbon releases is not as pronounced as in

Figure 5.4.

1000 2000 3000 4000 5000 6000
0

5

10

1000 2000 3000 4000 5000 6000
0

2

x 10
−9

(a) 300ns



Slew rate 67

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

5

10

15

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

1

2

x 10
−9

(b) 200ns

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

x 10
−9

(c) 100ns

1000 2000 3000 4000 5000 6000
0

5

10

1000 2000 3000 4000 5000 6000
0

1

2

x 10
−9

(d) 50ns

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

x 10
−9

(e) 20ns

Figure 5.10. Slew rate simulation runtime profiles

As the slewing time is reduced release occurs more quickly as observed in the

steepening gradient of the release steps and the sharp rise in the time step size.

During the slew rate simulations no contact with the substrate occurs, how-

ever as Table 5.5 illustrates, decreasing the slewing time decreases the minimum

separation between the bottom of the ribbon and the top of the oxide layer.
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Table 5.5. Minimum electrode separations for slew rate simulations

Case Separation Time Voltage x y

[µm] [s] [V] [µm] [µm]

Reference 0.040 2.23 × 10−5 22.28 12.79 0
300ns 0.035 3.34 × 10−7 24 12.79 0
200ns 0.033 2.38 × 10−7 24 12.79 0
100ns 0.032 1.41 × 10−7 24 12.79 0
50ns 0.031 9.74 × 10−8 24 12.79 0
20ns 0.027 7.56 × 10−8 24 13.24 0

As expected, Table 5.5 shows that decreasing the slewing time reduces the time

taken for the ribbon unit to achieve minimum separation. However, as the slew

rate test structures respond in a less timely manner than the reference structure

the voltage at which minimum separation occurs is always the peak voltage in

the test. Removing the slewing time from the time taken to achieve minimum

separation reveals that as the slewing time is reduced the time taken to achieve

minimum separation while at peak voltage increases, emphasizing more static

behaviour.

The slew rate simulations have shown that activation switching speeds place

no limit on the voltage at which the ribbon unit bifurcates to the second stable

structural state, as the required load is defined by the structural characteristics

of the ribbon unit. The slew rate simulations have also shown that there exists an

inherent limit in how fast the structure can respond to the applied load. Attempt-

ing to activate the ribbon unit more quickly does not result in any performance

gain, and in fact VPD increases to an almost constant 24V, a behaviour that can

be characterised as static. In contrast, reducing the time taken to remove the

voltage results in diminished control over the ribbon units behaviour at release

when the ribbon unit oscillates in undamped free vibration. The magnitude and

duration of these oscillations have been shown to be a function of the voltage

removal rate, because a higher post release voltage more successfully inhibits the

post release oscillations.
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5.3. Initial material stress

The initial material stress (σ0) in the Silicon Nitride layer exerts significant influ-

ence over the dynamic frequencies of the GEMS ribbon unit and can be controlled

by adjusting the stoichiometry in the silicon nitride layer, as suggested by Sol-

gaard [1992]. The presence of the initial material stress is a side-effect of the

chosen deposition process and its specific parameters [Madou, 1997]. Adjusting

the stoichiometry of the Silicon Nitride layer enables large changes in the nat-

ural frequencies of the ribbon unit for little change in structural mass. Thus,

tuning the response of the ribbon unit by altering the initial material stress is

an appealing approach to changing the performance of the device. It is also an

avenue where variations in fabrication can cause undesired variations in dynamic

performance.

For the reference GEMS ribbon unit the relationship between the funda-

mental natural frequency of the structure (ω1) and the initial material stress is

illustrated in Figure 5.11, where the upper triangular markers represent the re-

sults of modal analysis results and the solid line the fitted curve. Figure 5.11
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Figure 5.11. Fundamental frequency variation with initial material stress

indicates that assuming a linear variation in fundamental frequency in the region

surrounding the Kodak quoted initial material stress value (1100MPa) is ade-
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quate for design purposes. However, such an assumption breaks down at lower

initial material stresses such as those used for the Grating Light Valve [Bloom

et al., 1994].

The negative initial material stress values in Figure 5.11 suggest that a small

compressive load (> 16MPa) would cause the GEMS ribbon unit to buckle. A

likely cause of such compressive loading is thermal expansion due to heating of the

ribbon materials. Thus, investigation of operating temperatures of the device is

suggested in order to eliminate this possible failure mechanism. In GEMS devices

the compressive thermal stress must first overcome the initial tensile material

stress to cause buckling. Therefore, the problems caused by induced compressive

loads are most likely in devices with low tensile initial material stresses.

While the effect of the initial material stress on device frequencies is well

understood the interaction with VPD and VRL is not intuitive. Figure 5.12 displays

the static limit hysteresis curves for GEMS ribbon units with initial material

stresses in the Silicon Nitride layer of 1100MPa, 962MPa (87.5%), 825MPa (75%),

550MPa (50%) and 0MPa. The variation in fundamental frequency of the ribbon
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Figure 5.12. Hysteresis curves for initial material stress simulations
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unit is apparent in Figure 5.12. As the initial material stress is reduced, the

fundamental frequency drops and the frequency of oscillation on release decreases.

In Figure 5.12 this result manifests as a frequency decrease in the post release

oscillations.

The change in magnitude of the post release oscillations, expected as VRL

reduces, is offset by the reduction in stiffness contributed by the initial material

stress. Resulting in no changes in the height of the peak post release oscillations

in Figure 5.12.

Removing the initial material stress (σ0 = 0MPa) the ribbon unit retains the

electro-mechanical hysteresis and bifurcating behaviours. However, the resulting

drop in fundamental frequency causes the unit to oscillate in damped free vibra-

tion beyond the conclusion of the static limit test. The tan line (upper triangular

markers) in Figure 5.12 illustrates the hysteresis of the ribbon unit without initial

material stress. The reduction in stiffness also significantly advances the location

of both the bifurcation points. Therefore, variation across an array will lead to

variable dynamic behaviour which can be undesirable if switching occurs over a

limited (∆V) voltage range, as illustrated in Figure 1.1.

The variations in location of the bifurcation points with initial material stress

are listed in Table 5.6. The voltages listed in Table 5.6, indicate that reducing

Table 5.6. Critical voltages for initial material stress simulations

Case ω1 VPD VRL ∆V

[MHz] [V] [V] [V]

Reference 8.56 22.28 18.67 3.61
962 8.03 20.92 17.38 3.54
825 7.47 19.47 16.16 3.31
550 6.17 16.10 13.22 2.88
0 1.13 3.31 1.95 1.36

the initial material stress in the Silicon Nitride layer reduces the operating ∆V of

the ribbon unit in addition to advancing the bifurcating points. This reduction

results from the effect of initial material stress on the stiffness of the device, where

a reduction in stiffness causes earlier bifurcation and retards release due to the

reduction in the mechanical restoring ability of the ribbon.

The runtime profiles for the initial material stress simulations are presented

in Figure 5.13. The significant stepped increase in the number of nodes in contact

as the voltage on the unit is reduced is observed in all simulations, but is most
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significant in the simulations with the greater initial material stress. This result is

due to the change in ribbon curvature as the number of nodes in contact reduces.
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Figure 5.13. Initial material stress simulation runtime profiles
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Figure 5.13 also highlights the increase in computational requirements as the

stiffness of the ribbon unit is reduced. As the stiffness is reduced the number

of computational blocks boundaries denoted by vertical dashed lines increases.

Thus, the simulations require more computational time to run and occupy more

storage space when completed. Table C.1 in Appendix C lists the computational

requirements of all completed simulations.

Table 5.7 lists the minimum separation between the lower surface of the rib-

bon and the oxide layer. As the initial material stress is reduced the minimum

separation increases, indicating a possible whip mechanism where the initial ma-

terial stress causes the ribbon to deform closer to the oxide layer. However as

the initial material stress continues to fall the reduced stiffness allows increased

deformation and the minimum separation decreases.

Table 5.7. Minimum electrode separations for initial stress simulations

Case Separation Time Voltage x y

[µm] [s] [V] [µm] [µm]

Reference 0.03967 2.23 × 10−5 22.28 12.79 0
962 MPa 0.04136 2.09 × 10−5 20.93 12.79 0
825 MPa 0.04221 1.95 × 10−5 19.47 12.79 0
550 MPa 0.03898 2.30 × 10−5 23.00 8.82 0
0 MPa 0.03861 2.50 × 10−5 25.00 12.79 0

Altering the initial material stress in the Silicon Nitride provides the ability

to alter the stiffness of the GEMS ribbon unit without significantly changing the

mass. Traditional methods for altering stiffness, require the addition or removal

of material, causing large changes in the operating frequencies of the structure.

The ability to alter the bifurcation points with less impact on the frequency of

the GEMS ribbon unit needs to be assessed.

Reducing the initial material stress results in a decrease in ∆V, as both

bifurcation voltages are observed to decrease. However, VPD reduces more rapidly

than VRL resulting in the overall decrease. Removing the initial material stress

from the GEMS the ribbon unit, with a reference standoff pattern, does not

advance the onset of contact with the oxide layer. However, such a significant

reduction in unit stiffness advances pull down and release, while decreasing the

frequency of oscillation on release, which may be desirable.
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5.4. Ribbon thickness

Section 5.3 addresses the variation of initial material stress on the performance

of the GEMS ribbon unit and examines the results of varying a single parameter.

Varying the thickness of the Silicon Nitride layer (tSi3N4) of the GEMS ribbon unit

has three effects on the structure due to the coupling of the bounding parameters.

The complex changes that occur in the ribbon unit as a result of variations in

the thickness of the Silicon Nitride layer include:

• Modification of the cross-sectional area of the structure that is subject to

the initial material stress, thus reducing the effect of the initial material

stress on the bending stiffness of the device

• Altering the “natural” stiffness of the ribbon unit as bending stiffness is

dependent on the thickness of the layers

• Changing the initial electrode separation. Because the GEMS device is

fabricated in layers changing the thickness of an intermediate layer effects

the position of all layers above.

Such variations in thickness can arise due to variation in the thickness across a

deposited layer or changes in unit cross section due to variation in the effectiveness

of the etchant fabrication steps.

The effect Silicon Nitride layer thickness (tSi3N4) on the fundamental fre-

quency (ω1) of the GEMS ribbon unit is illustrated in Figure 5.14. As the GEMS

ribbon is a composite structure formed from two layers, gaining significant char-

acteristics from the Silicon Nitride layer, it is inconceivable that this layer be

removed entirely from the design. Thus, the minimum modelled value of 5nm

was adopted.

Figure 5.15 depicts the variation in static limit test hysteresis that occurs

as the thickness of the Silicon Nitride layer is altered. As the thickness of the

Silicon Nitride layer is reduced, the ribbon unit becomes more flexible, resulting

in a decrease in VRL and an increase in the peak magnitude of the post release

oscillations.

From Figure 5.15 50nm thickness for the Silicon Nitride represents an edge

of the design space as the ribbon unit does not release in the expected manner

due to the significant portions of the ribbon unit in contact with the oxide layer.

The resulting inverted “u” profile acts to increase the effective width of the point

source formed by the activated GEMS ribbon unit.
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Figure 5.14. Fundamental frequency variation with silicon nitride thickness

The disfigurement of the electro-mechanical hysteresis loop that occurs when

the ribbon thickness is reduced significantly is visible in the hysteresis loop for

the 50nm case. When reduced to 50nm the thickness of the Silicon Nitride layer

is the same as that of the Aluminium layer. Between 50 and 70nm the flexibility

of the ribbon in the y direction is such that contact occurs between the outer

edges of the ribbon and the underlying oxide layer. Figures 5.16 (a)–(f) illustrate

the position of the ribbon at key points through out the 50nm simulation. During

the 50nm simulation the ribbon unit makes contact with the standoffs (a) like

all previous simulations, then, due to the reduced lateral stiffness, continues to

deform in the least stiff direction, across the ribbon (b). The ribbon continues to

deform across the width until contact occurs with the oxide layer (c) at the free

extremities. Peak voltage is achieved, and as the voltage subsides the regions

of the ribbon furthest from the substrate experience the greatest decrease in

applied load (d). The ribbon regions over the standoffs release (e), causing the

minor release oscillations seen in the green line (upside down triangular markers)

in Figure 5.15 at 16V. The applied voltage is reduced below the release voltage

and the ribbon releases (e).

The critical voltages for the thickness simulations are listed in Table 5.8. As
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Figure 5.15. Hysteresis curves for thickness simulations

Table 5.8. Critical voltages for thickness simulations

Case ω1 VPD VRL ∆V

[MHz] [V] [V] [V]

Reference 8.56 22.28 18.67 3.61
90nm 8.40 20.90 17.26 3.64
80nm 8.21 19.49 15.97 3.51
70nm 7.99 18.03 14.65 3.37
50nm 7.41 14.91 9.47 5.44
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Figure 5.16. 50nm Silicon Nitride thickness simulation ribbon unit positions showing sub-
strate contact
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the thickness of the Silicon Nitride layer decreases the ∆V varies slightly, until

the ribbon unit makes contact with the oxide layer and the hysteresis behaviour

changes, causing an increase in ∆V. The increase in ∆V arises as significant

portions of the ribbon unit become positioned below the top of the standoffs.

Electrode separation is diminished for the regions below the level of the standoffs

and the electrostatic force on these regions of the ribbon is higher, resulting in

delayed release, delaying global release of the ribbon unit and reducing VRL.

The simulation runtime profiles show much the same behaviour as that ob-

served in the initial material stress simulations (Figure 5.13). However, the 50nm

case, Figure 5.17 (c), exhibits a large increase in the number of nodes in contact

near step 13000. This large increase is attributable to the nodes that make con-

tact with the oxide layer at the ribbon extremities (y = 0µm and y = 8µm). The

dashed line in Figure 5.17(d) illustrates the number of nodes in contact with the

oxide layer during the tSi3N4 = 50nm simulation.
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Figure 5.17. Silicon nitride thickness runtime profiles

The ribbon configuration from the tSi3N4 = 50nm simulation, step 40000, is

illustrated in Figure 5.18. Contact between the ribbon and the oxide layer is

visible as flat segments along the free edges of the ribbon. As the thickness of

the ribbon unit is reduced the ribbon becomes more flexible, resulting in contact

with the oxide layer at the extremities and draping between the standoffs.

As the thickness of the Silicon Nitride layer is reduced the stiffness of the

ribbon unit decreases as does the minimum separation between the ribbon and

the oxide layer, as illustrated in Table 5.9. The bold row in Table 5.9 highlights

the fact that for the tSi3N4 = 50nm simulation case the ribbon makes contact

with the oxide layer.

The difference in voltage at which minimum separation occurs for the 70nm

and 50nm case suggest that the ribbon behaves in a static manner before contact

with the substrate occurs. This last result illustrates the importance of the

structural properties of the Silicon Nitride.
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Figure 5.18. tSi3N4
= 50nm ribbon unit showing oxide contact

Table 5.9. Minimum electrode separations for thickness simulations

Case Separation Time Voltage x y

[µm] [s] [V] [µm] [µm]

Reference 0.03967 2.23 × 10−5 22.28 12.79 0
90nm 0.03896 2.09 × 10−5 20.91 12.79 0
80nm 0.03624 2.50 × 10−5 25.00 13.24 0
70nm 0.02503 2.50 × 10−5 25.00 13.24 0
50nm 0 1.80 × 10−5 17.96 13.24 0
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5.5. Standoff design

The design intent of the standoff structures is to prevent the ribbon from making

contact with the oxide layer. While contact is to be avoided, it is undesirable to

introduce excessive space between the conductors as it reduces the rate at which

the electrostatic force will induce pull down.

The size and pattern of the underlying structural elements does not alter the

fundamental characteristics of the GEMS ribbon unit, thus the natural frequen-

cies of the device remain unaltered. However, varying the distribution and height

of the underlying structural elements controls the quality of the reflector formed

by the upper ribbon surface, and also defines the maximum permissible ribbon

unit deflection. VPD and VRL also change as the standoff distribution alters VPD

by dictating where across the width of the ribbon unit contact first occurs, and

VRL changes as the proportion of the ribbon below the standoffs, experiencing

higher forces, is controlled by the location of the standoffs. The parameters in

standoff design geometry for which simulations were conducted are; standoff layer

thickness (tStandoff ), standoff spacing along (x) the ribbon (sx) and the standoff

spacing across (y) the ribbon (sy). These parameters are illustrated in Figure 5.1.

5.5.1. Standoff layout

The distribution of standoffs beneath the ribbon controls the quality of the planar

reflective surface formed by the ribbon unit, and stipulates the minimum sepa-

ration between electrodes. The minimum electrode separation is therefore also

a function of ribbon unit stiffness and the thickness of the intermediate layers.

Intuition suggests that the ribbon unit is most flexible along it center lines, both

of which have been used as planes of symmetry, thus, all standoff designs posses

a row of standoffs at the lines of symmetry. Varying the inter-standoff spacing in

the x (sx) and y (sy) directions is anticipated to cause differing contact scenarios

as the initial material stress, the key contributor to device stiffness, acts only in

the x coordinate direction.

5.5.1.1. Variation across the ribbon width (sy)

The reference ribbon unit configuration (Table 5.1) has three rows of underlying

standoffs. As was observed in the thickness simulations the GEMS ribbon unit

is most flexible in the direction perpendicular to the initial material stress. Thus
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varying the standoff spacing in the y coordinate direction will cause contact with

the oxide layer where the outer extremities of the ribbon (y = 0µm and y = 8µm)

curve downwards and touch the oxide layer.

Some practical limits are implied for the variation in standoff spacing across

the ribbon. Firstly Kodak indicate that the standoffs must be concealed be-

neath the ribbon structure [Kowarz, 2001] preventing degradation of reflected

light intensity. Thus, sy cannot exceed 3.5µm if slx = sly = 1µm. Decreasing sy

below 1µm results in a single row of standoffs, which is not anticipated to prevent

contact between the ribbon and the oxide layer from occurring.

Figure 5.19 illustrates the effect on the deformed ribbon cross section of vary-

ing sy. For clarity, only the positions of the center (x = 15µm) row of nodes have

been plotted. As sy is increased the profile transitions, first, from a convex re-

flector (sy < 2µm) to a flat reflector (sy = 2.5µm) with feathered edges, and then

to a concave reflector. Clearly, as the reflective surface formed becomes more

convex reflected light becomes more diffuse and difficult to control. Marginally

0 1 2 3 4 5 6 7 8
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

y

z

0µm
1.5µm

2.5µm
2µm

3.5µm

0µm

Standoff 
Legend

1.5µm

2µm

2.5µm

3.5µm

Lines
Legend

Figure 5.19. Ribbon profiles (x = 15µm) for sy simulations

(−0.5µm) decreasing sy below the reference value of 2.5µm results in the ribbon

making contact with the oxide layer at the outer extremities. The results in Fig-

ure 5.19 are unobtainable using a string representation for the GEMS ribbon unit

and highlight the necessity of a distributed solution to the structural problem.
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Particularly in the case of the GEMS ribbon where optical performance is the

desired end result.

Figure 5.20 illustrates the electro-mechanical hysteresis of the center of the

ribbon unit. Altering the standoff spacing does not change the ribbon character-
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Figure 5.20. Hysteresis curves for sy simulations

istics, as Figure 5.20 highlights the pull down bifurcation for all sy simulations

occurs at approximately 22.28V. The small variation in VPD is due to the move-

ment of the standoffs with which the ribbon first makes contact. In all simulations

the outer standoffs are contacted first, due to the effects of Poisson’s ratio on the

cross-section of the ribbon unit, thus moving the outer standoffs marginally alters

the voltage at which contact first occurs.

In Figure 5.20 for voltages between VPD and VRL, and sy less than 2.5µm the

center point of the ribbon unit does not remain in contact with the center standoff.

This result is attributable to the outer extremities of the ribbon making contact

with the oxide layer and the center point breaking contact with the center node.

The final position of the center point is then controlled by the ribbon stiffness.
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The same effect is evident in Figure 5.19, where the ribbon center point is not in

contact with the center standoff when the applied voltage is 25V.

Table 5.10 lists the critical voltages for the sy simulations. The effect of al-

Table 5.10. Critical voltages for sy simulations

Case VPD VRL ∆V

[V] [V] [V]

0µm, > 4.5µm 22.27 14.86 7.41
1.5µm 22.29 15.88 6.40
2µm 22.29 17.23 5.05
2.5µm (Reference) 22.28 18.67 3.61
3.5µm 22.28 18.43 3.86

tering the location of the standoffs only significantly effects the voltage at which

the ribbon releases (VRL) as the standoff distribution controls the minimum sep-

aration between the movable and stationary electrodes. The more the ribbon is

allowed to deform below the standoffs, the more VRL decreases. As VRL decreases

the amplitude of the post-release oscillations is observed to increase, as the ribbon

unit is subject to lower voltages post-release.

Figure 5.21 illustrates the simulation runtime profiles for the sy simulations.
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Figure 5.21. Standoff layout (sy) simulation runtime profiles

The large number of contacted nodes observed in Figure 5.21(a) are the direct

result of contact between the ribbon and the oxide layer. The lower dashed (black)

line, plotted on the left hand axis in Figure 5.21(a)-(c) indicates the number

of nodes in contact with the oxide layer in each time step. As Figure 5.21(a)

indicates, most of the contacted nodes in the sy = 0µm simulation come into

contact with the oxide layer as the structure drapes over the standoffs. Figure 5.22

depicts the sy = 0µm simulation case at step 15000. The standoffs (shaded, raised

regions) only contact a small number of nodes. The bulk of the contacted nodes

meet the oxide surface. This figure also highlights the capability of the analysis

method developed to capture complex structural interaction dynamics.

Table 5.11 lists the minimum separation between the lower ribbon surface

and the oxide layer. The 0µm, 1.5µm and 2µm cases make contact with the

substrate, indicating that any small decrease from the stated reference standoff

configuration will cause contact to occur with the oxide layer. Therefore, the

reference standoff configuration is pretty close to optimal for variation in sy.

Decreasing sy from the reference value of 2.5µm results in a decrease in ∆V

as the minimum separation between the ribbon unit extremities and the oxide
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Figure 5.22. sy = 0µm ribbon unit showing oxide contact

Table 5.11. Minimum electrode separations for sy simulations

Case Separation Time Voltage x y

[µm] [s] [V] [µm] [µm]

0µm 0 2.23 × 10−5 22.28 15 0
1.5µm 0 2.23 × 10−5 22.29 15 0
2µm 0 2.23 × 10−5 22.30 14.56 0
Reference (2.5µm) 0.03967 2.23 × 10−5 22.28 12.79 0
3.5µm 0.04322 2.23 × 10−5 22.29 12.79 0
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layer reduces. A reduction in minimum separation results in higher forces on the

ribbon unit, hence the delay in release.

The deformed cross-sectional profile of the GEMS ribbon unit controls whether

it reflects light as a diffuse or concentrating reflector. The results obtained for the

sy simulations indicate that for values of sy below 2.5µm the ribbon unit acts a

diffuse reflector, increasing the width of the “point source” created by the ribbon.

Altering sy allows control over the shape of the reflector formed, thus increasing

sy to the maximum permissible value of 3.5µm is recommended as this prevents

the ribbon unit from acting as a diffuse reflector.

5.5.1.2. Variation along the ribbon length (sx)

This section examines increasing the inter standoff spacing along the length of

the ribbon (sx), parallel to the initial material stress, until contact with the

oxide layer occurs. The type of contact anticipated is unique to this family of

simulations in that as the length of ribbon between the standoffs increases, the

regions between standoffs are expected to behave like short span replicas of the

ribbon unit and make contact half way between adjacent standoffs. Decreasing

sx was not considered as the ribbon is fixed perpendicular to the x axis and it is

not possible for the ribbon to sag at the fixed ends.

As the standoff spacing in the x direction is increased, the ribbon droops

between adjacent standoffs, coming closer to the oxide layer, as illustrated in

Figure 5.23. In Figure 5.23 the solid line at z = 0.125µm indicates the upper

surface of the oxide layer and the dashed line segments with upper surfaces at

z = 0.175µm indicate location of the standoffs. As sx is increased the flexural

deformation at the ribbon extremities is observed to increase, as depicted in

Figure 5.23 by the increase in number of nodes visible.

Figure 5.24 displays the electro-mechanical hysteresis behaviours of the rib-

bon units when sx = 4µm, 6µm and 8µm. As the standoff spacing (sx) is increased

the electrode separation in the activated state is reduced. Thus, the release volt-

age (VRL) is reduced. The changes in operating voltages for the sx simulations

are listed in Table 5.12.

In contrast to the sy simulation VPD does not change, as a result of the center

row of standoffs remaining unmoved throughout the family of simulations. The

runtime profiles in Figure 5.25 for the sx simulations show the substrate contact

that occurs during each simulation. When sx = 8µm the majority of nodes make
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Figure 5.23. Ribbon profiles (y = 4µm) for sx simulations

Table 5.12. Critical voltages for sx simulations

Case VPD VRL ∆V

[V] [V] [V]

4µm (Reference) 22.28 18.67 3.61
6µm 22.28 18.53 3.75
8µm 22.28 16.36 5.92
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contact with the oxide layer.
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Figure 5.25. Standoff layout (sx) simulation runtime profiles

Finally, Figure 5.26 illustrates the contact scenario that arises when sx is too

large. The regions of the ribbon unit suspended between the standoffs become

short span replicas of the ribbon unit and sag contacting the oxide layer.

As the spacing between standoffs increases the minimum separation between

the ribbon unit and the oxide layer decreases until contact occurs. Table 5.13

lists the minimum separation values modelled.

Table 5.13. Minimum electrode separations for sx simulations

Case Separation Time Voltage x y

[µm] [s] [V] [µm] [µm]

Reference 0.03967 2.23 × 10−5 22.28 12.79 0
6µm 0.02118 2.50 × 10−5 24.99 11.91 0
8µm 0 2.23 × 10−5 22.31 11.47 0

As sx is increased from the reference value of 4µm the sagging between neigh-

bouring standoffs increases, resulting in a drop in the minimum separation be-

tween ribbon unit and oxide layer. The increase in sx results in no change in VPD,
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Figure 5.26. sx = 8µm deformed ribbon unit showing oxide layer contact, simulation step
32000

as the center row of standoffs is not moved, but a drop in VRL and subsequent

rise in ∆V are observed, as more of the ribbon deforms below the level of the

standoffs. The decrease in VRL also results in larger peak magnitudes of the post

release oscillations. The results obtained suggest that sx not be increased above

6µm to prevent contact with the oxide layer.

The analysis presented emphasises that the location of the standoffs beneath

the ribbon unit be accurate and uniform, as small deviations in location can

promote the onset of contact with the oxide layer.

5.5.2. Standoff height

Varying the thickness of the standoff layer (tStandoffs) alters height of the standoffs

and the initial electrode separation. Decreases in initial electrode separation

result in greater forces on the ribbon unit, advancing the pull down bifurcation.

However, the resulting decreased separation in the contacted state delays the

release bifurcation, increasing ∆V . The second effect of reducing the height of

the standoff layer is the increased potential for substrate contact, as less “sagging”

between standoffs is tolerated before contact with the oxide layer occurs.

Figure 5.27 illustrates the electro-mechanical hysteresis behaviour of the rib-

bon unit with variations in standoff height. The peak deflection for all simulated

cases is identical as the initial air gap (tA0) between the top of the standoffs

and the lower surface of the ribbon remains unchanged. However, as the initial
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separation of the electrodes reduces with the thickness of the standoff layer, the

pull down bifurcation is occurs at a reduced voltage. The reduced electrode sep-
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Figure 5.27. Hysteresis curves for standoff height simulations

aration in the contacted configuration delays release as the forces on the ribbon

unit remain higher until lower voltages. The release at lower voltages is also

manifest in the amplitude of the post release oscillations, which increase as the

standoff height is reduced due to the smaller applied voltage post-release. From

Figure 5.27 the location of the pull down and release bifurcation points can be

established and Table 5.14 lists these values, which illustrate the increase in ∆V

with the decrease in standoff height as well as the decrease in VPD and VRL.

Figure 5.28 illustrates the runtime profiles for the standoff height simulations.

Figure 5.28(c) illustrates the runtime profile for a simulation in which the ribbon

makes contact with the substrate. The lower dashed line in Figure 5.28(c) is the

number of nodes in contact with the oxide layer during the simulation.
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Table 5.14. Critical voltages for standoff height simulations

Case VPD VRL ∆V

[V] [V] [V]

Reference 22.28 18.67 3.61
0.04µm (80%) 20.83 16.54 4.28
0.03µm (60%) 19.42 14.50 4.92
0.02µm (40%) 18.04 12.46 5.58
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Figure 5.28. Standoff height simulation runtime profiles
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Figure 5.29 illustrates the deformed ribbon unit state at step 44000, where the

edges of the ribbon unit between the standoffs have drooped and made contact

with the oxide layer. As expected, reducing the height of the standoff layer
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Figure 5.29. tStandoffs = 0.02µm(40%) deformed ribbon showing oxide layer contact, simu-
lation step 44000

affords the ribbon unit less “sagging” before contact with the oxide layer occurs.

Table 5.15 lists the minimum separation characteristics of the standoff thickness

simulations.

Table 5.15. Minimum electrode separations for standoff height simulations

Case Separation Time Voltage x y

[µm] [s] [V] [µm] [µm]

Reference 0.03967 2.23 × 10−5 22.28 12.79 0
0.04µm (80%) 0.02719 2.08 × 10−5 20.83 12.79 0
0.03µm (60%) 0.00878 2.30 × 10−5 23.01 8.82 0
0.02µm (40%) 0 1.80 × 10−5 18.04 12.79 0

Reducing the thickness of the standoff layer alters the initial electrode sep-

aration advancing VPD, without altering the stiffness of the GEMS ribbon unit.

A reduction in the thickness of the standoff layer also reduces the height of the

standoffs, reducing the devices tolerance to “sagging” before contact occurs.

The simulations conducted have shown that minimum electrode separation

occurs during the“zipping” of the GEMS ribbon unit, indicating that the dynam-

ics of the device exert more influence than the peak voltage applied. Therefore,
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it is suggested that the standoff height simulations be run under dynamic condi-

tions, such as those used in Section 5.2. Allowing an assessment of the minimum

dynamic separation, ensuring that reducing the thickness of the standoff layer

does not cause contact during dynamic operation.





Chapter 6

Conclusions

In the course of this research program, a robust numerical solution framework

for the dynamic analysis of thin film MEMS devices has been developed, imple-

mented, tested and utilized to examine the design space for Eastman Kodak’s

GEMS device. The framework is generalizable to the dynamics of all structures,

but the salient phenomena included apply specifically to electrostatically actuated

thin film bifurcating structures.

The adopted implementation utilizes a mixture of hybrid stress and displace-

ment finite elements in a iterative numerical marching procdure. Electrostatic

equlibrium is attained by enforcing a tolerance on the difference between the L2

norm of the deformed structural configuration and the configuration used to cal-

culate applied electrostatic forces. Structural contact is modelled by enforcing

zero additional deflection on model node known to be in contact with adjacent

structural elements.

The current implementation provides a platform for the simulation of varia-

tions in key device parameters, enabling the diagnosis of fabrication problems, the

delaying of prototype fabrication until the characterisation of the device design

space is complete, and an understanding of the effects of fabrication variability on

device dynamics. It also provides a platform for the future addition of additional

physical phenomena, allowing more complex models to be created from the vali-

dated code base. Such additions could include the modelling of fluid movement

surrounding devices, interfacial delaination and interactions between devices in

an array.

The results generated highlight the complexity of the dynamic analysis of

MEMS structures, revealing that accurately capturing the transverse deforma-

tion, across the width, of such structures is pivotal to correctly understanding

their operation. For the GEMS structure transverse deformation is the most

common cause of contact with the oxide layer, and the single largest contributor

to the quality of the reflector formed by the deformed ribbon unit. This discovery
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invalidates modelling such structures using solutions based on beam theory and

string models, as the omission of Poissions ratio results in uniform deformation

across the structures width.

The differences between the dynamic and quasi-static modelling of such struc-

tures has been illustrated and shown to be significant, particularly when attempt-

ing to assess the minimum separation between movable and stationary structural

elements. It has been shown that the dynamics of MEMS structures and not the

peak applied voltage are often the cause this minimum separation. Quasi-static

models fail to capture dynamic behaviours in the response of MEMS structures.

The oscillations observed in the post release behaviour of the GEMS device are

an excellent example that impacts on the devices optical performance. The omis-

sion of such significant phenomena can confuse MEMS product designers when

trying to understand the results of prototype experiments.

Simulating the changes in response of the GEMS device to perturbations in

key parameters clearly illustrates that the design space surrounding the structure

is complex, with coupling present between a number of parameters. A conse-

quence of this result is that perturbations were limited to a single parameter per

family of simulations. Results from these simulations suggest that the reference

configuration of the GEMS ribbon unit is close to the edges of the design space,

particularly those relating to standoff distribution and shape. Other results show

the current solution in a far more stable region of the design space.

Varying the rate at which the voltage on the structure is altered suggests

that the GEMS device is capable of bifurcating to the activated configuration

very quickly (< 20 ns). However, to effectively control the duration of the post

release oscillations the gradient of the release ramp must occur in more than 300ns

but less than the 25µs of the static limit test. It is currently not known what the

gradient of the release voltage ramp is for experimental devices. It may also be

possible to further control release oscillations using an active control technique

to modulate the applied voltage post realease.

This research reiterates the dominance of the initial material stress on the

fundamental dynamic characteristics of the GEMS device. However, it also shows

that in the absence of the initial material stress the GEMS device is still observed

to bifurcate at two distinct points. However, the resulting oscillation at the fun-

damental natural frequency of the structure makes the post release oscillations

impossible to control in a timely manner, resulting in a device with excellent pull

down characteristics (low VPD, ∆V < 5V) but excessive post release oscillations.
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Results obtained also suggest that under a small compressive load the GEMS rib-

bon unit buckles, suggesting that an investigation of the operating temperatures

of the device is required to negate this possible failure mode.

Thinning the Silicon Nitride layer of the GEMS device results in a disfig-

urement of the hysteresis behaviour of the structure. As the natural and initial

material stress contributions to the stiffness of the device decrease, the structural

flexibility in the transverse direction increases rapidly due to the remaining initial

material stress contributions along the device. Contact between the ribbon unit

edges and the oxide layer occur if the thickness is reduced below 70nm. Due to

the high forces experienced by these contacted regions, the center of the ribbon

unit releases at 16V but the extremities remain in contact until 9.5V. Captur-

ing this partial release phenomena highlights the power of the chosen modelling

techniques.

Reducing the spacing between the standoffs in the transverse (y) direction by

0.5µm causes the ribbon unit to make contact with the substrate at its extreme

(y = 0µm & y = 8µm) edges. A change in standoff spacing may arise from the re-

moval of sacrificial material as the ribbon unit is released, when excessive etchant

application results in the removal of standoff material, resulting in tapered in-

stead of cuboid standoffs. The ribbon unit is less sensitive to variations in the

standoff spacing in the x direction, where the inter-standoff spacing has to be

increased by more than 2µm before contact with the oxide layer occurs. Reduc-

ing the standoff spacing in the x direction increases the number of standoffs with

which the ribbon unit makes contact, increasing the likelyhood of a frictional

failure. Reducing the thickness of the standoff layer, hence the standoffs, causes

the ribbon to pull down at earlier, as the initial electrode separation is reduced,

but increases the operating ∆V of the device as the ribbon unit remains in the

deformed configuration until significant voltage reduction occurs.

6.1. Future work

Given additional resources it is the opinion of the author that future research

conducted should investigate:

1. Simulate tSi344 = 60nm to confirm the trend observed in the thickness sim-

ulation results.
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2. Determine maximum release slew rate for effective post release oscillation

control.

3. Determine the critical temperature change required to induce sufficient com-

pressive stress in the ribbon to cause buckling due to self weight. It is an-

ticipated to be large as the initial material stress in the Silicon Nitride is

significant.

4. Assess the performance of the chosen materials once detailed compositions

are known. Evaluate the susceptibility of the chosen Aluminium alloy sys-

tem to strain hardening and other materials related failure mechanisms.

5. Tune the voltage model and assess in detail the validity of the parallel

plate capacitor approximation. More specifically experimental data and

3D numerical techniques are required, as the current assumptions are based

only on 2D models. Reassess the validity of assuming the upper conductor

is located at the neutral axis of the structure.

6. Refactor code to not include membrane degrees of freedom when initial

stress force effects ({q}) are disabled, saving computational time, and stor-

age space. Or move the history arrays to sparce matrices allowing the

Matlab pack command to remove unused space.

7. Model the interactions of a dual layer device, doubling the number of finite

elements in the system. It is recommended that this task is done after

refactoring. This model would provide the ability to model delamination

and crack propagation at the Aluminium-Silicon Nitride interface.

8. Generalize the damping model by incorporating fluidic effects and remove

the 5% damping assumption.

9. Model the fluidic pressure effects on neighbouring GEMS ribbons in the

arrayed configuration to quantify the fluidic cross-talk.

10. Implement more efficient timestep reduction techniques, allowing for earlier

sustained growth. Add Bisection or Newton Rhapson control to step size

algorithm.

11. Investigate the sensitivity of solution runtime to variations in control pa-

rameters.
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Appendix A

ANSYS validation code

The appendix lists the ANSYS scripts used to run the modal and dynamic anal-

ysis verification tests.

A.1. Modeshapes and frequencies

!* ANSYS Modal analysis script

!* ANSYS V7.0

!* author : mark carey

!* date : 09/07/2003

!*

!* Preprocessor

/PREP7

!*

ET,1,shell181

!*

!*

R,1,0.11852357593195,0.11852357593195,0.11852357593195,0.11852357593195, , ,

RMORE, , , ,

RMORE

RMORE, ,

!*

!*

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,EX,1,,250000

MPDATA,PRXY,1,,0.33

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,DENS,1,,3.826242976843501E-15

BLC4,0,0,30,6
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!* Specify the mesh density

!* 16 elements on the short edges of the model

LESIZE, 4, , ,16, , , , ,1

LESIZE, 2, , ,16, , , , ,1

!*

!* 64 elements on the long edges of the model

LESIZE, 1, , ,64, , , , ,1

LESIZE, 3, , ,64, , , , ,1

MSHAPE,0,2D

MSHKEY,0

AMESH, ALL

/UI,MESH,OFF

FINISH

/SOLU

!*

!* Constrain the ends of the model

!* select lines 2 and 4

LSEL,S,LINE,,2

LSEL,A,LINE,,4

!* select the nodes attached to the

!* selected lines

NSLL,S,1

!* fix the nodes we have selected

D,ALL,ALL,0

NSEL,ALL

!* apply the initial stress

PSTRESS,ON

ISTRESS,928.0853968087873,0,0,0,0,0,1

EMATWRITE,YES ! add this too

SOLVE

FINISH

!* this next part is straight out of the manual section

!* 3.12. Prestressed Modal Analysis of a Large Deflection Solution

/SOLU

ANTYPE,MODAL !* Modal analysis

UPCOORD,1.0,ON !* Display mode shapes relative to deformed geometry

!* in the postprocessor.

PSTRES,ON !* Prestress effects ON

MODOPT,LANB,10 !* Select eigensolver
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MXPAND,10 !* Specify the number of modes to expand, if desired.

PSOLVE, TRIANG !* Necessary for creating a proper .FULL file. See note

!* below.

PSOLVE,EIGLANB !* Calculate the eigenvalues and eigenvectors.

!* Use EIGLANB, EIGFULL, EIGUNSYM, or EIGDAMP to

!* match MODOPT command.

FINISH

/SOLU !Additional solution step for expansion.

EXPASS,ON

PSOLVE,EIGEXP ! Expand the eigenvector solution. (Required if you

! want to review mode shapes in the postprocessor.)

FINISH

A.2. Dynamics

!* ANSYS Dynamic analysis script

!* ANSYS V7.0

!* author : mark carey

!* date : 09/07/2003

!*

!* Preprocessor

/CONFIG,NRES,2500

/PREP7

!*

ET,1,shell181 !* specify element type, SHELL181

!*

!* specify the nodal thicknesses for the SHELL181 element

R,1,0.11852357593195,0.11852357593195,0.11852357593195,0.11852357593195, , ,

RMORE, , , ,

RMORE

RMORE, ,

!*

!* specify the material properties, youngs modulus E, poisisons ratio nu and

!* density

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,EX,1,,250000

MPDATA,PRXY,1,,0.33

MPTEMP,,,,,,,,
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MPTEMP,1,0

MPDATA,DENS,1,,3.826242976843501E-15

!*

!*

!* Draw a rectangular area representing the ribbon

BLC4,0,0,15,3 !* quarter model

!*

!* Specify the mesh density

!* 16 elements on the short edges of the model

LESIZE, 4, , , 8, , , , ,1

LESIZE, 2, , , 8, , , , ,1

!*

!* 64 elements on the long edges of the model

LESIZE, 1, , ,32, , , , ,1

LESIZE, 3, , ,32, , , , ,1

!*

!* Mesh the area

MSHAPE,0,2D

MSHKEY,0

AMESH, ALL

/UI,MESH,OFF

FINISH

!*

/SOLU !* enter the solution step

!*

!* Constrain the ends of the model

LSEL,S,LINE,,4

NSLL,S,1

D,ALL,ALL,0

!* Apply symmetry constraints

LSEL,S,LINE,,3

NSLL,S,1

D,ALL,UY,0

D,ALL,ROTX,0

!* Mid point

LSEL,S,LINE,,2

NSLL,S,1

D,ALL,UX,0

D,ALL,ROTY,0



Dynamics 109

!* select all nodes

NSEL,ALL

!*

/SOLUTION

ANTYPE,4

!*

!* Full Transient Analysis

TRNOPT,FULL

!* No Mass lumping

LUMPM,0

!*

DELTIM,2.8E-9,0,0 !* Initial timestep

OUTRES,ALL,ALL

AUTOTS,0 !* Disable auto timestepping

!*

!* rayleigh damping parameters

ALPHAD,4.333175700254638E6 !* alpha

BETAD,3.637686431429612E-10 !* beta

!*

TIMINT,OFF !* time integration off

TIME,0 !* start the solution

LSWRITE !* write step one

!*

!*

TIMINT,ON !* Enable time integration

KBC,0 !* Interpolated loads (Ramp)

TINTP,’’,0.25,0.5 !* Newmark control parameters, constant average acceleration

!*

!* Apply loads, to the centerline nodes

NSEL,S,LOC,X,15,15 !* select nodes at the structure centerline

NSEL,R,LOC,Y,0,2.99 !* exclude the y center line node

F,ALL,FZ,-0.00275

NSEL,S,LOC,X,15,15

NSEL,R,LOC,Y,2.99,3

F,ALL,FZ,-0.001375

NSEL,ALL

!*

TIME,2.8E-6 !* 1000 time steps after the start of the simulation

LSWRITE !* write step 2
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!*

NSEL,S,LOC,X,15,15 !* select nodes at the structure centerline (x = 15)

F,ALL,FZ,0 !* set applied force to zero removing the applied load

NSEL,ALL

TIME,2.8028E-6

LSWRITE !* write step 3

!*

TIME, 5.6028E-6

LSWRITE !* write step 4

!* Solve transient analyis from load step files

LSSOLVE,1,4,1,
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Simulation Process

B.1. Simulation process

B.1.1. Running a simulation

Running a simulation requires a setup (setup sim base.m) file describing the

simulation in terms of the internal data structures for the analysis code. A

simulation file is then required (base sim.m) which uses the data structures and

starts the numerical marching procedure.

Figure B.1. Simulation control dialog

A small simulation control dialog will appear (Figure B.1), depressing the

pause button, pauses the simulation and allows the computer to be used for

another task, releasing the pause button and typing ‘‘return’’ in the matlab

command window resumes the simulation. The dialog is designed to function

in an X11 environment, where a single x-server displays output from multiple

x-clients, thus the titlebar of the dialog displays the hostname of the x-client on

which the simulation is running, “peclet” in Figure B.1. If matlab has to be

closed, pausing the simulation will enable the exit button allowing matlab to be

shutdown. The simulation can be resumed at a later date using the iterate.m
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function.

If a simulation should ever fail to attain electrostatic equilibrium, the single

most probable cause is the base time step is too great. Reducing the base time

step size (struct step.root size) and restarting the analysis should allow the

solution to complete.

B.2. Analysing results

Using the results files from completed simulations to produce usable output

B.2.1. Information

To extract the bifurcation voltages, times and step information from a simulation

the function mbw vpd and vrl.m is used. mbw find substrate contact.m calcu-

lates the number of nodes that come into contact with the oxide layer during a

given simulation, the output from this function can be used to gather the data

required for plotting the number of oxide layer contacted nodes, i.e. the black

dashed line in Figure 5.28(c).

B.2.2. Plots

Plotting the electromechanical hysteresis behaviour of the GEMS ribbon unit

(Figures 5.3, 5.8, 5.12, 5.15, 5.20, 5.24 and 5.27) is achieved using the function

mbw hysteresis.m, where the names and paths of a number of simulation block

files are supplied with a point of interest.

Plotting the mesh configuration (Figures 5.2, 5.16, 5.18 and 5.22) is achieved

using the form of plot ribbon and standoffs.m in which a deformed mesh con-

figuration is supplied. plot node numbering.m can be used to append node

numbering information to a plot of the deformed ribbon unit as in Figure 5.2.

B.2.3. Movies

Movies are created using mbw animate ribbon.m which produces a directory

(ppmmovie) full of portable pixmap files (.ppm) files. Using the unix utility

mpeg encode the .ppm files can be converted to an MPEG format movie. Com-

pression of the movie is achieved using mencoder, part of the mplayer family of

tools.
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Simulation runtimes

The simulations in Chapter 5 were run on intel hardware running a variety of oper-

ating systems in various versions of Matlab. Operating systems used GNU/Linux

- RedHat 8.0 & 7.1, Microsoft Windows - 2000 & XP.

All machines contained a minimum of 512MB of physical memory (RAM),

and excessive amounts of free disk space. This memory limit restricted the max-

imum number of steps that could be stored in a block without the running out

of system memory, in the simulations where more than 4000 steps per block were

used the machine had more physical memory available. Note that the simulation

process in not memory intensive, the function simulate.m only requires infor-

mation about the current and previous step in order to operate. A block size of

two steps is possible, but suboptimal.

Table C.1 lists the computational requirements of all simulations successfully

completed. The total size of the data set is 105GB and required 76 days of

computer time to produce.
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Table C.1. Simulation computational requirements

Case Mesh
Number
of Blocks

Disk
(GB)

Time
(HH:MM)

Reference
16x68 8 2.53 49:12
08x34 1 0.07 00:41

Slew Rate
300ns 16x68 2 0.49 08:08
200ns 16x68 3 0.8 18:43
100ns 16x68 3 0.79 12:56
50ns 16x68 2 0.48 19:57
20ns 16x68 3 0.78 12:50

Initial Material Stress (σ0)
962 (87.5%) 16x68 18 5.05 79:00
825 (75%) 16x68 20 5.84 93:20
550 (50%) 16x68 21 5.93 163:06
0 (0%) 16x68 50 14.39 243:07

Thickness (tSi3N4)
0.90µm (90%) 16x68 17 4.88 123:55
0.80µm (80%) 16x68 19 5.26 85:36
0.70µm (70%) 16x68 21 5.94 98:19
0.50µm (50%) 16x68 24 6.67 123:21

Standoff Layout (sy)
0µm or > 4.5µm 16x68 9 3.04 58:14
1.5µm 16x68 16 4.6 56:43
2µm 16x68 15 4.22 51:57
3.5µm 16x68 14 3.99 56:40

Standoff Layout (sx)
6µm 16x68 10 2.81 40:01
8µm 16x68 20 5.76 95:50

Standoff Height (tStandoff)
0.04µm (80%) 16x68 14 4.75 116:08
0.03µm (60%) 16x68 25 6.98 111:12
0.02µm (40%) 16x68 28 8.09 105:56

Totals 104.15 1824:53
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