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Abstract: 

Structural health monitoring (SHM) algorithms based on adaptive 
Least Mean Squares (LMS) filtering theory can directly identify 
time-varying changes in structural stiffness in real-time in a 
computationally efficient fashion. However, better metrics of 
seismic structural damage and future utility after an event are 
related to permanent and total plastic deformations. This paper 

presents a modified LMS-based SHM method and a novel two-step 
structural identification technique using a baseline nonlinear Bouc-
Wen structural model to directly identify changes in stiffness due to 
damage, as well as plastic or permanent deflections. The algorithm 
is designed to be computationally efficient; therefore it can work in 
real-time. An in silico single-degree-of-freedom (SDOF) nonlinear 
shear-type structure is used to prove the concept. The efficiency of 
the proposed SHM algorithm in identifying stiffness changes and 
plastic/permanent deflections is assessed under different ground 
motions using a suite of 20 different ground acceleration records. 
The results show that in a realistic scenario with fixed filter tuning 
parameters, the proposed LMS-based SHM algorithm identifies 

stiffness changes to within 10% of true values within 2.0 seconds. 
Permanent deflection is identified to within 14% of the actual as-
modelled value using noise-free simulation-derived structural 
responses. This latter value provides important post-event 
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information on the future serviceability, safety, and repair cost. 

  
 
 

 

Page 1 of 35

http://mc.manuscriptcentral.com/shmij

Structural Health Monitoring

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

LMS-based approach to structural health monitoring of 

nonlinear hysteretic structures  

M. Nayyerloo
1,*,†

, J. G. Chase
1
, G. A. MacRae

2
 and X.-Q. Chen

1
 

 1
Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, 

Christchurch 8140, New Zealand 
2
Department of Civil and Natural Resources Engineering, University of Canterbury, Private 

Bag 4800, Christchurch 8140, New Zealand 

 

 
SUMMARY 

Structural health monitoring (SHM) algorithms based on adaptive Least Mean Squares 

(LMS) filtering theory can directly identify time-varying changes in structural stiffness in real-

time in a computationally efficient fashion. However, better metrics of seismic structural 

damage and future utility after an event are related to permanent and total plastic deformations. 

This paper presents a modified LMS-based SHM method and a novel two-step structural 

identification technique using a baseline nonlinear Bouc-Wen structural model to directly 

identify changes in stiffness due to damage, as well as plastic or permanent deflections. The 

algorithm is designed to be computationally efficient; therefore it can work in real-time. An in 

silico single-degree-of-freedom (SDOF) nonlinear shear-type structure is used to prove the 

concept. The efficiency of the proposed SHM algorithm in identifying stiffness changes and 

plastic/permanent deflections is assessed under different ground motions using a suite of 20 

different ground acceleration records. The results show that in a realistic scenario with fixed 

filter tuning parameters, the proposed LMS-based SHM algorithm identifies stiffness changes to 

within 10% of true values within 2.0 seconds. Permanent deflection is identified to within 14% 

of the actual as-modelled value using noise-free simulation-derived structural responses. This 
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latter value provides important post-event information on the future serviceability, safety, and 

repair cost.  

 

KEY WORDS: structural health monitoring (SHM), structural identification, damage detection, 

nonlinear hysteretic structures, the Bouc-Wen model, adaptive LMS filters. 

  

1. INTRODUCTION 

  Structural health monitoring (SHM) is the process of comparing the 

current state of a structure’s condition relative to a baseline state to detect the 

existence, location, and degree of likely damage after a damaging input, such as 

an earthquake. SHM can simplify and improve typical visual or localized 

experimental approaches, as it does not require subjective visual inspection of 

the structure [1]. It can thus provide valuable data for post-event safety 

assessments to help optimize recovery planning. 

Many current vibration-based SHM methods are based on the idea that 

changes in modal parameters; frequencies, mode shapes and modal damping, are 

a result of damage or decay [2]. These methods are typically more applicable to 

steel-frame and bridge structures where vibration response is highly linear [2, 

3]. Wavelet approaches offer a similar approach, as well as determining the time 

at which damage occurred [4]. A major drawback of many approaches is their 

inability to be implemented in real-time, on a sample-to-sample basis as the 

event occurs. Hence, these methods are not suitable for real-time structural 

control for damage reduction purposes, and their results would not be 

immediately available after an event. Further, their reliance on modal properties 

has potential problems as modal properties are not robust in the presence of 

noise and do not always represent measurable damage [4].  
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Adaptive fading Kalman filters [5, 6], adaptive H∞ filter techniques [7],  

and bootstrap filtering approaches [8] can achieve real-time or near real-time 

results and provide structural parameter identification. However, they have 

significant computational cost and complexity. Simpler and more suitable 

algorithms for on-line SHM make use of Least Squares Estimation (LSE) [3, 9-

14] with different stochastic gradient estimation approaches. 

Model-based methods combined with adaptive Least Mean Squares 

(LMS) filtering theory offer the opportunity of identifying stiffness changes in 

real-time in a computationally efficient and robust fashion. LMS-based SHM 

has been used for a benchmark problem [3], and also for a highly nonlinear 

rocking structure [14], to directly identify changes in structural stiffness only. 

Similar Recursive Least Squares (RLS) methods have also been applied to the 

same problem [13]. These model-based adaptive filtering methods are robust 

with fast convergence and low computational cost. However, they do not 

identify plastic and permanent deflections, and require full state structural 

response measurement. 

The article develops a modified adaptive LMS-based SHM method using 

the nonlinear Bouc-Wen structural baseline model to directly identify both 

changes in stiffness and plastic deflections in real-time. A novel 

computationally-efficient structural identification method with two steps is 

presented that assumes limited a priori knowledge of the structure’s potential 

nonlinear behaviour based on readily available design information. The effect of 

the specific external load on performance of the proposed SHM method is 

evaluated using a suite of 20 different ground motions to test robustness of the 

results. The noise effect on the results is accounted for at later stages of this 

study.
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2. DEFINITION OF THE SHM PROBLEM 

A seismically excited nonlinear structure can be modelled at each time 

step using incremental equations of motion: 

 

 
{ } { } { } g

v v v x⋅ ∆ + ⋅ ∆ + ⋅ ∆ = − ⋅ ∆TM C K (t) M&& & &&  (1) 

 

where M, C, and KT are the mass, damping, and tangent stiffness matrices of 

the model, respectively, { }v∆ , { }v&∆ , and { }v&&∆  are the changes in displacement, 

velocity, and acceleration vectors, respectively, and gx&&  is the change in the 

ground motion acceleration over the time step.  

The tangent stiffness matrix of a hysteretic structure can be represented 

using the Bouc-Wen model [15, 16]. For instance, the tangent stiffness matrix of 

a four-degree-of-freedom (4-DOF) four-storey shear-type structure, as an 

example for the tangent stiffness matrix of a hysteretic structure in multi-degree-

of-freedom (MDOF) case, can be written: 
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(2) 

where (KT)ij , i,j = 1,…,4, are components of the 4×4 tangent stiffness matrix, 

0≤αi≤1, i=1,…,4, is the i
th

 storey bi-linear factor, which determines the change 

in slope between elastic and plastic regimes of that storey (αi=0 represents a 

fully hysteretic and αi=1 a fully elastic structure.), and zi, i=1,…,4, is the 

dimensionless hysteretic component of the i
th

 storey and is governed by the 

following first order nonlinear differential equation [17, 18]: 

 

1
( ) ( ) ( ) ( ) ( ) ( )

( )

0, 0, , 0

1,...,

i in n

i i i i i i i i i

i

i

i i i i i i

Ar t r t z t z t r t z t
z t

Y

A n

i N

β γ

β β γ β

−
− −

=

> > − ≤ ≤ >

=

& & &
&

  (3) 

 

where Ai (usually 1.0), βi (0.1 to 0.9), γi (-0.9 to 0.9), and ni (1 to 3, usually 1) 

are stiffness, loop fatness, loop pinching, and abruptness parameters in the 

classical Bouc-Wen model, respectively. Further, ni, the power factor, 

determines the sharpness of the curve from elastic to plastic force-deflection 

behaviour of each storey. Finally, )(tri
&  is the velocity of storey i relative to 
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storey i-1, Yi is the yield displacement of i
th

 story, and N is the number of stories 

in a shear-type structure. The five dimensionless parameters, Ai, βi, γi, ni, and αi 

determine the hysteresis loop shape. Detailed information on the Bouc-Wen 

model can be found in an excellent review by Ismail et al. [18].   

Neither degradation nor pinching of hysteresis is accounted for by the 

classical Bouc-Wen model. Over the years, this classical model has been 

modified to a contemporary model to accommodate changes in hysteresis loops 

arising from deteriorating systems [19]. In this study, the classical Bouc-Wen 

model in conjunction with a variable structural stiffness has been used to model 

nonlinearities arising from both the hysteretic behaviour of the structure and 

degradation. However, with more a priori knowledge, the more detailed 

contemporary model could be used. 

Since the Bouc-Wen model captures dominant energy dissipation due to 

nonlinear behaviour, structural damage may be assessed by its impact on 

stiffness and plastic deformations over time. The potentially time-varing 

equations of motion for a damaged structure can be defined: 

 

{ } { } { }( )T TM C K (t) K (t) M gv v v x⋅ ∆ + ⋅ ∆ + + ∆ ⋅ ∆ = − ⋅ ∆&& & &&
  

 (4) 

 

where { }v∆&& , { }v&∆ , and { }v∆  are the measured changes in responses of the 

damaged structure, TK , is the tangent stiffness matrix of the damaged structure 

from Equation (2) using damaged structural responses, and TK (t)∆  contains 

changes in the tangent stiffness of the structure due to damage and can be a 

function of time. Using the Bouc-Wen model of Equation (2), TK∆  can be 

written: 

Page 7 of 35

http://mc.manuscriptcentral.com/shmij

Structural Health Monitoring

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1
11 1 1 1 0 1 2 0 2

1

2
12 2 2 2 0 2

2

21 2 0 2

2
22 2 2 2 0 2 3 0 3

2

3
23 3 3 3 0 3

3

32 3 0 3

33 3

( ) [ (1 ) ]( ) ( )

( ) [ (1 ) ]( )

( ) ( )

( ) [ (1 ) ]( ) ( )

( ) [ (1 ) ]( )

( ) ( )

( ) [ (1

z
Y k k

v

z
Y k

v

k

z
Y k k

v

z
Y k

v

k

α α α

α α

α

α α α

α α

α

α

∆
∆ = + − ∆ + ∆

∆

∆
∆ = − + − ∆

∆

∆ = − ∆

∆
∆ = + − ∆ + ∆

∆

∆
∆ = − + − ∆

∆

∆ = − ∆

∆ = +

T

T

T

T

T

T

T

K

K

K

K

K

K

K 3
3 3 0 3 4 0 4

3

4
34 4 4 4 0 4

4

43 4 0 4

4
44 4 4 4 0 4

4

13 14 24 31 41 42

) ]( ) ( )

( ) [ (1 ) ]( )

( ) ( )

( ) [ (1 ) ]( )

( ) ( ) ( ) ( ) ( ) ( ) 0

z
Y k k

v

z
Y k

v

k

z
Y k

v

α α

α α

α

α α

∆
− ∆ + ∆

∆

∆
∆ = − + − ∆

∆

∆ = − ∆

∆
∆ = + − ∆

∆

∆ = ∆ = ∆ = ∆ = ∆ = ∆ =

T

T

T

T T T T T T

K

K

K

K K K K K K

 

(5) 

Identifying the TK∆  term enables the structure’s condition including any 

plastic/permanent deformation to be directly monitored.  

To determine TK∆  using adaptive LMS methods, a new form of TK∆  is 

defined with time-varying scalar parameters iα̂ , to be identified using the LMS 

filter based on [3, 13, 14]. For a 4-DOF four-story example shear building TK∆  

can be sub-divided into four matrices to allow independent identification of 

changes in the linear elastic stiffness component of each story i.e. (∆k0)1, (∆k0)2, 

(∆k0)3, and (∆k0)4: 

 

4321T KKKKK 4321
ˆˆˆˆ αααα +++=∆     (6) 

 

where,  
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and 

 

404303202101 )(ˆ,)(ˆ,)(ˆ,)(ˆ kkkk ∆=∆=∆=∆= αααα   (11) 

 

Hence, Equations (6)-(11) can be summarised: 

 

1

ˆ
n

i

i

α
=

∆ = ∑T iK K      (12) 
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where n is the number of degrees of freedom of the model, and Ki is the 

corresponding time-varying matrix to i
th

 DOF in Equations (6)-(10). Rewriting 

Equation (4) using Equations (6)-(12) yields: 

 

{ } { } { } { }
1

ˆ
n

i g

i

v x v v vα
=

⋅ ∆ = − ⋅ ∆ − ⋅ ∆ − ⋅ ∆ − ⋅ ∆∑ i TK M M C K&& &&&    (13) 

 

where { }v&&∆ , { }v&∆ , and { }v∆  are measured, and TK  at each time step is 

calculated using Equations (2) and (3). To this end, the ii zY ∆  term in TK  and 

the Ki matrices can be re-defined by introducing a hysteretic displacement, hi, 

for each storey defined: 

 

NizYh iii ,...,1, ==      (14) 

 

where Yi and zi are the yield displacement and the hysteretic component of the i
th

 

storey, respectively. Therefore, Equation (3) can be rewritten: 
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which is equivalent to: 
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 (16) 

 

where: 
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Using Equation (18) and assuming constant 
ih&  over the small interval (∆t) for 

each time step, the changes in hysteretic displacement of storey i over each time 

step, iii zYh ∆=∆ ,  are defined: 
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Therefore, iii zYh ∆=∆ , changes in damaged hysteretic displacement of i
th

 storey 

over each time step, can be determined from Equation (19) using measured or 

estimated damaged structural responses, { }v∆&& , { }v&∆ , and { }v∆ . 

The damaged structure stiffness, or effective stiffness changes due to 

nonlinear behaviour, can then be determined by identifying the 
i

α̂  in Equation 

(13) at every time step [3]: 

 

1

ˆ{ } { } ( ) { } { } { }i TK M M C K
n

k i k g k k k k

i

y v x v v vα
=

= ⋅ ∆ = − ⋅ ∆ − ⋅ ∆ − ⋅ ∆ − ⋅ ∆∑ && &&&  (20) 
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where kgx )( &&∆  is the change in the input ground acceleration over a given time 

step of k, and kv}{ &&∆ , { }kv∆ & , and { }
k

v∆ are the measured changes in the 

acceleration, velocity, and displacement vectors of the damaged structure over 

the same time step, respectively. Matrices TK  and Ki are calculated sample-to-

sample using Equations (2) and (7)-(10) with the measured damaged structural 

responses. The elements of the vector signal {y}k can be readily modelled in 

real-time using adaptive LMS filters to identify the coefficients iα̂  reflecting 

changes in linear stiffness of each storey [3]. 

Plastic displacements can also be calculated using the Bouc-Wen model. 

As Figure 1 illustrates, the plastic displacement range of storey i relative to 

storey i-1 during a stable hysteresis loop, ∆(rp)i(t), can be written [20]: 

0

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) , 1,...,

( )

r i
p i i e i i

i

F t
r t r t r t r t i N

k

∆
∆ = ∆ − ∆ = ∆ − =   (21) 

 

 

Figure 1. Stable force-displacement hysteresis loop 

 

where, ∆ri(t) and ∆(re)i(t) are the total and elastic displacement ranges of storey i 

relative to storey i-1 during the same hysteresis loop, respectively. Moreover, 
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∆(Fr)i(t) is the restoring force range of the loop, (k0)i is the linear elastic stiffness 

of i
th

 storey, and N is the degrees of freedom of the structure. ∆(Fr)i(t) in 

Equation (21) can be written using the Bouc-Wen model [17, 18, 21]: 

 

 0

( )
( ) ( ) ( ) (1 )( ) ( ), 1,...,

y i

r i i i i i i

i

F
F t r t k h t i N

Y
α α∆ = ∆ + − ∆ =   (22) 

 

where (Fy)i, Yi, and αi are the yield force, the yield displacement, and the bi-

linear factor of storey i, respectively, and ∆hi(t) is the hysteretic displacement 

change during the loop. Substituting ∆(Fr)i(t) in Equation (21) with its 

equivalent from Equation (22) yields: 

( ) ( )
( ) ( ) , 1,...,

1
1

i i
p i

i

i

r t h t
r t i N

α
α

∆ − ∆
∆ = =

 
+  − 

   (23) 

 

For structures with symmetric hysteresis loops with respect to tension and 

compression, this equation can be written using half of the ranges or amplitudes: 

   
( ) ( )

( ) ( ) , 1,...,

1
1

i i
p i

i

i

r t h t
r t i N

α
α

−
= =

 
+  − 

   (24) 

 

Therefore, (xp)i(t), the absolute plastic displacement of storey i can be calculated 

as  sum of the relative plastic displacements of the first i stories: 

 

1

( ) ( ) ( ) ( ), 1,...,
i

p i p i

i

x t r t i N
=

= =∑    (25) 
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(xp)i(t) is the deflection of the structure if the elastic component of displacement 

were removed. It is a function of time, and is zero for an elastically responding 

structure. Importantly, permanent deflection is typically defined as the final 

plastic deflection. Plastic displacements over time along with material specific 

fatigue life curves thus provide greater information and a potential new 

approach to assessing damage, or basis for remaining structure life. 
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3. ADAPTIVE LMS FILTERING 

Adaptive filters are digital filters with coefficients that can change over 

time. The general idea is to update filter coefficients and assess how well the 

existing coefficients are performing in modelling a noisy signal, and then adapt 

the coefficient values to improve performance. The least mean squares 

algorithm is a widely used adaptive filtering technique and approximates the 

Steepest Descent Method using an estimator of the gradient (stochastic-gradient) 

instead of its actual value, considerably simplifying the calculations for real-

time applications. In this case, the goal is to identify the individual scalar iα̂
 

elements by modelling the signal {y}k of Equation (20) using the adaptive LMS 

filter. 

In adaptive LMS filtering, the coefficients are adjusted from sample-to-

sample to minimize the Mean Square Error (MSE), between a measured scalar 

signal and its modelled value from the filter. 

 

1

( )
m

T

k k k k k k k i

i o

e y W X y w i x
−

−
=

= − = − ∑    (26) 

 

where Wk is the adjustable filter coefficient vector or weight vector at time k, yk 

is the measured scalar signal at time k, to be modelled or approximated, Xk is the 

input vector to the filter, model of current and previous filter inputs, ikx − , so 

T

k kW X  is the vector dot product output from the filter at time k to model a scalar 

signal yk, and m is the number of prior time steps or taps considered. The 

Widrow–Hopf LMS algorithm for updating the weights to minimize the error, 

ek, is defined [22]:  
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1 2
k k k k

W W e Xµ+ = +      (27) 

 

where µ is a user-selected positive scalar, called step size, that controls the 

stability and rate of convergence. Several similar stochastic-gradient methods 

can be used to improve stability and convergence at different computational 

costs [23]. 

To identify TK∆  at time k, using LMS adaptive filters, the One-Step 

method [3] and Equation (26) in matrix form can be used. Substituting T

k kW X  

with its equivalent from Equation (20), yields: 

 

1

0 1

ˆ{ } { } .{ }iK
m n

ijk k k
j i

e y vα
−

= =

= − ∆∑ ∑    (28)  

 

Minimizing the MSE with respect to ˆ
ij

α  using Equation (27) yields the 

following weight update formula for each coefficient in the weight matrix of the 

SHM problem: 

 

1 2 { } .{ }iKT
k k k k jw w e vµ+ −= + ∆     (29) 

 

Summing ijα̂  over j filter taps, yields the ˆ
i

α  change in stiffness of each story in 

Equation (20). The subscript k-j in Equation (29) represents the contribution of 

prior time step inputs in updating filter weights. 
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4. IDENTIFICATION OF THE BOUC-WEN PARAMETERS  

To identify the Bouc-Wen parameters for any given structure, a two-step 

procedure is proposed. First, based on limited a priori knowledge of the 

structure, such as mass, estimated linear damping ratio, and ni, the power factor 

of each storey, push-over finite element analysis (FEA) is done to obtain 

estimates of αi, Yi, and Fy, the bi-linear factor, the yield displacement, and the 

yield force of stories, respectively. The second step, which can be done off-line 

or on-line as an event occurs, yields the basic Bouc-Wen hysteresis loop 

parameters (Ai, βi, and γi). 

To identify the basic loop parameters, Equation (19) can be written: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) , 1,...,

( )

i in n

i i i i
i i i i i

i i i

h t h t h t t h t
sign r t h t A i N

Y r t t Y
β γ

− −
− + ∆

+ − = =
∆

&
&

 (30) 

 

Therefore, 

 

( ) ( )

( ) ( )

( ) ( )

i i i

i i

i i i

AQ t P t

AQ t P t

AQ t P t

γ β

γ

γ β

+ + =


+ =
 − + =

 

0)()(

0)()(

0)()(

<

=

>

thtr

thtr

thtr

ii

ii

ii

&

&

&

 

(31) 

 

where, 

 

in

i

i

i

ii

Y

th

ttr

tthth
tP

−

∆
∆+−

=
)(

)(

)()(
)(

&
 

(32) 

( )
( )

in

i

i

h t
Q t

Y

−

= −  (33) 
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In Equations (31)-(33), )(tri
& , relative velocity between stories i and i-1, is 

calculated using measured velocities of the stories, Yi is known from the FEA, 

and the hysteretic displacement, hi(t), is then calculated from Equation (34) 

assuming zero initial values for the hysteretic displacements [24]: 

 

( )

( ) ( )

1 1 1
1 1 1

1 1 1

( ) (1 ) 1 1 (1 ) ( )

( , , ) ( ) ( ) (1 ) ( )

1,...,

i i i i i
i i i in i g

i i i i i

y i
i i i i i i i i i y ii

i

q q m q m
r t x t

m m m m m

F
q r r h c r t r t F h t

Y

i N

δ δ δ δ

α α

− + +

− − +

    
− − + + − − − = −   

   



= + + −

 =



&& &&

& &

 

(34) 

 

where qi is the nonlinear hysteretic restoring force, mi is mass, ci is the 

equivalent viscous damping, (Fy)i is the yield force, Yi is the yield displacement, 

and αi is the bi-linear factor, all for storey i. Finally, ri(t), ( )ir t& , and ( )ir t&&
 
are 

relative displacement, velocity, and acceleration between storeys i and i-1, 

respectively, )(txg
&&

 
is the ground acceleration, and δij is the Kronecker delta: 

 





≠

=
=

ji

ji
ij

,0

,1
δ

 

(35) 

 

In Equation (34), all of the terms are either known or measured. Hence, 

it yields a set of independent equations for each storey. These equations can be 

solved for hi(t) sample-by-sample in real-time.  
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For the simpler case of a SDOF shear-type nonlinear hysteretic structure, 

the equation of motion is written: 

( ) ( ) ( ) (1 ) ( )
y

y g

F
mv t cv t v t F h t mx

Y
α α+ + + − = −&& & &&  (36) 

 

where )(tv&& , ( )v t& , and ( )v t  are acceleration, velocity, and displacement of the 

structure, respectively, m is mass, and c is the equivalent viscous damping of the 

structure. Fy, Y, and α are again the yield force, the yield displacement, and the 

bi-linear factor of the structure. Using Equation (36), h(t) for a SDOF structure 

can be written: 

 

( )( ) ( ) ( )
( )

( 1) 1

g

y

m x v t cv t v t
h t

F Y

α
α α

+ +
= +

− −

&& && &

 (37) 

 

Therefore, Equations (31)-(33), using Equations (34) and (35), or in a 

SDOF case using (36) and (37), provide three independent equations that yield 

Ai, βi and γi in less than one hysteresis loop time. This time period is illustrated 

in Figure 2 for a SDOF hysteretic structure oscillating at 0.5 Hz (Tn=2.0 

seconds) with unit amplitude. In this figure, points where the sign of ( ) ( )i ir t h t&  

changes are shown with black dots.  As the figure shows, in one quarter of a 

loop period (0.5 seconds), the first three points provide enough independent 

equations to obtain the three unknown parameters. 
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(b) 

Figure 2. a) Hysteresis loop for one period of oscillation of a harmonic oscillator at 0.5 Hz 

(Tn=2.0 s) with unit amplitude, and b) velocity times hysteretic displacement for the same 

oscillator over the same period. 

 

In this paper, the proposed two-step structural identification method is 

presented as an on-line technique to first identify the Bouc-Wen model 

parameters over the first hysteresis loop time assuming no damage to the 

structure over this short period. The identified hysteretic parameters are then 

used for structural damage detection. One may also use this method as an off-

line structural identification technique to obtain the Bouc-Wen parameters using 

available earthquake records prior to the damage detection, but off-line 

identified models are not necessarily exact for excitations apart from the 
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identification excitation. This choice would impose an added error on the 

damage detection results when subsequently employed. 

The proposed identification method is based on a priori knowledge from 

the structure, therefore, limitations on the availability of the design data limits 

the use of the method. In such cases, there are number of more computationally-

intensive off-line and on-line identification techniques that can be used. 

Examples of such methods are least squares [12], Kalman filtering [25], genetic 

algorithm [21], and bootstrap filtering technique [8]. 

 

5. INPUTS TO THE SHM PROBLEM 

Inputs to this SHM problem are measured structural responses: 

acceleration, velocity, and displacement. Acceleration can be easily measured 

with low cost accelerometers at high sampling rates. Due to practical 

constraints, direct, especially high rate measurement of displacement and 

velocity is not typically possible. Estimation by integrated measured 

accelerations is subject to correctable drift and error [26, 27], and other 

estimations are available. Emerging high speed displacement sensors allow 

more precise estimation of the velocity at minimal added computational cost and 

enable this approach [28]. 

 

6. SIMULATED PROOF-OF-CONCEPT STRUCTURE 

The simulated proof-of-concept structure is a SDOF moment-resisting 

frame model of a five-story concrete building, chosen for both realism and 

simplicity. The plan view of a typical floor of the building is shown in Figure 3. 

The floor system consists of 200 series precast hollow-core floor units having a 

65 mm topping spanning on long direction of each floor. The seismic weight per 
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floor is 1692 kN for roof level and 2067 kN for other levels. Each storey has 

3.8m height, and the frame system is designed according to the New Zealand 

Concrete Structures Standard [29] using the displacement-based design 

approach to sustain a target drift level of 2% under a 500-year return period 

earthquake. 

 

 

(a) 

 

(b) 

Figure 3. The simulated 5-storey shear-type concrete building, (a) front view and (b) plan view. 

 

The proposed two-step structural identification method is implemented 

to identify the Bouc-Wen hysteretic model parameters. To simulate structural 

responses to be used for the identification, A=1 and β=γ=0.5 are used, and the 

structure is subjected to the El Centro earthquake. Nonlinear dynamic analysis is 

performed in MATLAB
®
 using the identified parameters to represent the 

nonlinear hysteretic behaviour of the structure. The simulated structural 

responses from MATLAB
®

 are used to provide proof of concept and quantify 
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the accuracy of the identified parameters, changes in linear elastic stiffness of 

each storey, plastic and permanent displacements. In simulating the structural 

responses, 5% constant viscous damping is considered, and the building was 

given an abruptness or power factor of n=2 to provide realistic nonlinear 

structural behaviour.  

The developed SHM algorithm is implemented in MATLAB
® 

for the 

stiffness identification process. Identified values were used to recalculate 

structural responses using the Newmark-β integration method to assess 

accuracy. The simulated structure was subjected to the Cape Mendocino record 

with peak ground acceleration (PGA) of 0.23 g, with a 10% reduction in pre-

yield stiffness applied to the structure at the 10 second mark to simulate sudden 

damage, and simulation-derived data is recorded at 500 Hz. 

Next, to assess the robustness of the proposed method over different 

ground motions, the simulated structure was subjected to a suite of 20 different 

ground motions shown in Table 1. The same identified hysteretic parameters 

were used for all of the records, and a 5% reduction in pre-yield stiffness was 

applied to the structure at the 10 second mark. This small amount of damage is 

chosen to show the capability of the proposed algorithm in capturing small 

levels of damage. The adaptive identification process was performed with a 

fixed filter tuning parameter or step size (µ) for all of the records in Table 1. 

This factor determines the speed of convergence. Simulation-derived data again 

is recorded at 500 Hz. 

More details about the selected records can be found in [30]. This suite 

has been selected since it has been widely used for structural dynamic analyses 

in different studies and is a very popular suite among earthquake engineers. 
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7. RESULTS 

7.1.  Hysteretic model parameters identification results 

Figure 4 shows the push-over analysis results for the proof-of-concept 

structure from Ruaumoko [31]. It shows total yield force (1269.45 kN), bi-linear 

factor (0.065), and yield displacement (46.5 mm). These parameters are used for 

the second step of the identification process to obtain A, β, and γ, the basic 

hysteresis loop parameters of the proof-of-concept structure. Figure 5 shows that 

the hysteretic parameters (A, β, and γ) can be identified in less than a quarter of 

the natural period of the structure (0.3 seconds in this case). 

Push-over Analysis Result
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Figure 4. Push-over analysis results of the simulated building using the Ruaumoko finite 

element code [31]. 
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Figure 5. Identified hysteretic parameters for the simulated case-study structure subjected to the 

El Centro earthquake. 

 

7.2.  Damage identification results 

Figure 6 shows the response of the SDOF model with a 10% reduction in 

the linear elastic stiffness at 10 seconds for the Cape Mendocino earthquake. As 

shown in Figure 7, in a worst-case sudden failure situation, ∆k0, the changes in 

pre-yield linear elastic stiffness of the structure, converge to within 10% of the 

actual change in value in less than 2 seconds using 10 filter taps at a 500 Hz 

sampling rate. Figure 8 shows that filter approaches faster and smoother to the 

final values of the pre-yield stiffness changes after damage when higher 

sampling rates or a greater number of taps (or prior time steps) are used. 
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Figure 6. Responses of the simulated structure subject to the Cape Mendocino earthquake and 

10% sudden failure at the 10 second mark. 
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Figure 7. Identified changes in pre-yield stiffness of the simulated structure with 10% sudden 

failure using adaptive LMS algorithm. 
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(b) 

Figure 8. Identified changes in pre-yield stiffness of the simulated structure with 10% sudden 

failure using adaptive LMS algorithm, (a) at different sampling rates and (b) with different tap 

numbers. 
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Figure 9 shows the nonlinear structure re-simulation results using 

Equation (20) and Newmark-β with the identified values for the hysteretic 

parameters and changes in stiffness (∆k0). This figure clearly shows that as 

sudden change occurs, plastic deflection begins in this case. The model then 

tracks the initial sampled behaviour accurately. For the entire record, the ratio 

between the norm of the error signal in estimating the plastic deflections and the 

norm of the actual plastic deflection signal is less than 2.5%, and error in 

identifying permanent deflection is less than 0.5% of the actual value. 
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(b) 

Figure 9. Identified plastic displacements of the simulated structure with 10% sudden failure at 

the time of 10 second mark using the estimated changes in pre-yield stiffness. The box in panel 

(a) shows the area highlighted in panel (b). 
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7.3.  External load effect on damage identification results 

Figure 10 shows, in a worst-case sudden failure situation, ∆k0 converges 

to within 10% of the actual value in less than 2 seconds using a fixed step size 

and 10 taps at a 500 Hz sampling rate under all 20 different excitations in Table 

1. Once more, re-simulating the structure with the identified values shows that 

as the filter converges, the plastic deflection approaches its actual value and the 

errors between the actual and estimated values for plastic deflections become 

smaller. For the suite used in this study, Figures 11-12 show the ratio between 

norms of the error signal in estimating the plastic deflections and the actual 

plastic deflection signal is less than 12%, and the error in identifying permanent 

deflection is less than 15% of the actual value over the entire records. Records 

that caused permanent deflections less than 0.1% of the height of the case study 

structure were excluded from the error summary and set to zero due to their very 

small size and insignificance.   

9.5 10 10.5 11 11.5 12 12.5

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

time (s)

S
ti
ff

n
e
s
s
 c

h
a

n
g

e
s
 (

k
N

/m
)

 

 

Actual stiffness changes

Mean of results for 20 records

Identified stiffness changes

 

Figure 10. Identified changes in linear elastic stiffness of the simulated structure  
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(10 taps with µ=25000). 
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Figure 11. Changes in ratio of norms of the error in identifying plastic deflections and plastic 

deflection signal for 20 different records in Table 1 (Mean=7.31%, Median=7.1%, and 

IQR=5.93%).  
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Figure 12. Identified permanent deflection and permanent deflection identification error for the 

20 different records in Table 1 (Mean error=8.54%, Median error=7.46% , and IQR = 9.3%). 

 

Page 31 of 35

http://mc.manuscriptcentral.com/shmij

Structural Health Monitoring

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figures 10-12 show that performance of the proposed SHM algorithm in 

identifying changes in stiffness and plastic or permanent deflections changes for 

different ground excitations. Thus, for fixed filter tuning parameters, some cases 

result in fairly large errors as high as 14% in identified permanent deflection. 

This problem can be solved to some extent by implementing a variable step-size 

or self-tuning LMS-based filtering algorithm initially tuned based on past 

earthquake records and capable of self-tuning to external load changes for the 

best identification results. Different methods with variable step-size can be 

found in the adaptive filtering literature to improve the identification results 

[23]. However, most of the results here are less than 5%, and even the largest 

errors are broadly acceptable. 

 It is worth mentioning that the accuracy of any model-based SHM 

algorithm relies directly on the correctness and thoroughness of its baseline 

model, which is the Bouc-Wen model in this case. Therefore, using a more 

comprehensive baseline model and having more precise estimation of the 

baseline model parameters would yield more accurate results. These analyses 

were not included in this first presentation of the algorithm, but present a future 

avenue of research.   

 

8. CONCLUSIONS 

This research developed a LMS-based SHM method with a baseline 

nonlinear Bouc-Wen structural model that can directly identify changes in 

stiffness and plastic deflections in real-time. Proof-of-concept simulation results 

show that for simulated SDOF structure and suite of records considered, the 

algorithm identifies stiffness changes to within 10% of true values in less than 

2.0 seconds, and permanent deflection is identified to within 14% of actual 
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values using noise-free structural responses. The algorithm is thus robust to 

ground motion excitation and these results could be readily improved with a 

more optimized adaptive filter. This proof-of-concept analysis and research thus 

show that: 

• Computationally simple adaptive filtering method can be readily 

extended to accurately identify plastic and permanent deflections in 

real-time. 

• The two-step method presented thus offers significant potential 

benefit in assessing structural damage, serviceability, and safety after 

a major event that was not previously possible. 

Overall, these methods remain to be experimentally proven and further 

tested, but are both a first step forward and can be readily generalized to other 

similar nonlinear models. 
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Table 1. Selected ground motions 

EQ Event Year Station 
R-Distance 

(km) 
Soil Type 

Duration 

(s) 

Scaling 

Factor 

PGA 

(g) 

EQ1 Fortuna - Fortuna Blvd. 23.6 B 44.0 3.8 0.116 

EQ2 
Cape Mendocino 1992 

Rio Dell Overpass - FF 18.5 B 36.0 1.2 0.385 

EQ3 Desert Hot Springs 23.2 B 50.0 2.7 0.171 

EQ4 
Landers 1992 

Yermo Fire Station 24.9 C 44.0 2.2 0.245 

EQ5 Capitola 14.5 C 40.0 0.9 0.48 

EQ6 Gilroy Array #3 14.4 C 39.0 0.7 0.367 

EQ7 Gilroy Array #4 16.1 C 40.0 1.3 0.417 

EQ8 Gilroy Array #7 24.2 C 40.0 2.0 0.323 

EQ9 Hollister Diff. Array 25.8 - 39.6 1.3 0.269 

EQ10 

Loma Prieta 1989 

Anderson Dam  21.4 B 40.0 1.4 0.244 

EQ11 Beverly Hills 14145 Mulhol 20.8 B 30.0 0.9 0.617 

EQ12 Canoga Park - Topanga Can 15.8 C 25.0 1.2 0.42 

EQ13 Glendale - Las Palmas 25.4 C 30.0 1.1 0.357 

EQ14 LA - Hollywood Stor FF 25.5 C 40.0 1.9 0.358 

EQ15 LA - N Faring Rd 23.9 C 30.0 2.2 0.242 

EQ16 N. Hollywood - Coldwater  14.6 B 21.9 1.7 0.298 

EQ17 

Northridge 1994 

Sunland - Mt Gleason Ave. 17.7 B 30.0 2.2 0.157 

EQ18 Brawley 18.2 C 22.0 2.7 0.116 

EQ19 El Centro Imp. Co. Cent. 13.9 C 40.0 1.9 0.358 

EQ20 

Superstition Hills 1987 

Plaster City. 21.0 C 22.2 2.2 0.186 
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