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ABSTRACT 

Land-use change has become a force of global importance and has gained status as the 

most important driver of ecosystem degradation. The resulting creation of habitat edges 

has pervasive impacts on the distribution and persistence of species in forest 

ecosystems. Responses of species to edge effects can be highly dependent on ‗response‘ 

traits, which may in turn co-vary with ‗effect‘ traits that determine rates of ecosystem 

functioning. Therefore, non-random loss of species due to traits conferring higher 

susceptibility to extinction may also result in the loss of functionally-important species 

across a habitat edge gradient. Likewise, response and effect traits may be important in 

determining reassembly of communities in regenerating habitats, which may provide 

insight into potential scenarios of functional responses to restoration efforts. To test for 

potential off-site effects of adjacent matrix habitat restoration on dung beetle 

communities, I compared dung beetle community structure and species trait 

composition across Afromontane forest edges adjacent to degraded and regenerating 

matrix habitat at Ngel Nyaki forest reserve in Nigeria. I also measured dung removal 

rates across habitat edge gradients to investigate the relative off-site impacts of matrix 

restoration on dung beetle-mediated ecosystem processes. I found significant effects of 

adjacent matrix condition on edge response functions in dung beetle abundance, species 

distributions, and trait composition. Beetle abundances were markedly higher in forests 

adjacent to regenerating matrix, whereas the largest differences in trait composition 

were found between degraded and regenerating matrix habitat, indicating the presence 

of ecological filtering processes in these areas.  Furthermore, I found that species traits 

determined community structural responses to environmental change and this had 

strong flow-on effects to rates of dung removal. Shifts in trait distributions explained 

dung removal rates above and beyond total beetle mass, suggesting that neutral 

processes alone could not explain functional efficiency. In particular, habitat 

regeneration resulted in the assembly of communities with high total beetle mass and 

on-average smaller beetles, which was optimal for functional efficiency. In conclusion, 

the restoration of adjacent matrix habitat was shown to effectively mitigate edge effects 

on dung beetle community structure resulting in the re-establishment of important 

associated ecosystem processes.  
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Chapter 1: Introduction 

Land-use change is the single largest driver of biodiversity loss worldwide (Sala et al. 

2000, Foley et al. 2005). Habitat destruction and the subsequent fragmentation and 

isolation of remaining habitat patches have led to a substantial decline in biodiversity, 

while further threats to remaining populations within these remnant habitats have been 

exacerbated by intensification of land use in the surrounding production matrix. These 

processes have varying and profound effects on species diversity, community structure, 

and resilience of these communities to further disturbances (Saunders et al. 1991, 

Turner 1996, Fahrig 2003, Strayer et al. 2003). 

Fragmentation of natural ecosystems typically results in the alteration of five 

major factors that drive community responses: a decrease in average patch size, an 

average increase in patch isolation and patch shape complexity, and an average increase 

in matrix contrast and edge influence (Ewers and Didham 2006a). These proximate 

drivers of fragmentation effects can have wide-ranging impacts on biotic and abiotic 

variables. For example, with decreasing habitat size, a decrease in species richness is 

often observed (Dennis et al. 1998, Ricklefs and Irby 1999, Flaspohler et al. 2010). 

Furthermore, a recent study by Struebig et al. (2011) found that with fragment-area 

driven declines in species richness, there is also a correlated loss in population level 

genetic diversity. However, the relationship between habitat area and species richness 

can be highly variable due to other interacting factors, such as variation in the 

surrounding matrix structure and the invasibility of the habitat patch by exotic species 

(Jablonski 1996, Davies et al. 2004). Patch isolation can be altered through various 

factors such as changes in matrix structure or the distance between habitat patches. This 

can have severe impacts on species persistence as it can reduce the probability and rate 

of dispersal between patches (Ostfeld and LoGiudice 2003, Ewers and Didham 2006a), 

potentially increasing inbreeding depression in isolated populations and increasing 

dispersal-related mortality (Kremen 2005, Baker and Barmuta 2006). Additionally, 

through the production of multiple smaller habitat patches and the alteration of patch 

shape, these processes can increase the proportion of edge habitat in remnant patches. 

As a result, edge effects are more likely to negatively affect a larger proportion of 

habitat area in a fragmented landscape (Saunders et al. 1991, Fagan et al. 1999, 

Laurance et al. 2002).  
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Particularly strong responses to habitat fragmentation have been demonstrated for 

invertebrate communities (Klein 1989, Didham et al. 1998, Laurance et al. 2002). This 

has been shown to have significant ecological, as well as economic, flow-on effects due 

to impacts on important ecosystem services provided by invertebrates, such as nutrient 

cycling and pollination (Didham et al. 1996, Kearns et al. 1998, Cane and Tepedino 

2001, Kremen et al. 2007). More recently, invertebrate communities have been used to 

demonstrate the pervasive effects of habitat edges in fragmented landscapes but these 

effects have rarely been explicitly related to impacts on ecosystem functioning across 

forest edges (Ewers and Didham 2008). Further studies on invertebrate and bird 

communities have elucidated the potential interaction between edge effects and other 

fragmentation factors, such as habitat area, providing evidence that edge effects may in 

fact be the major underlying driver of fragmentation-related ecosystem responses 

(Ewers et al. 2007, Banks-Leite et al. 2010). 

1.1 Ecosystem responses to human-induced habitat edges 

Since the early 1930‘s, it has been recognised that there are changes in ecosystem 

structure around habitat edges. Leopold (1933) noted that, at habitat edges, there appear 

to be increases in abundances of various species, and thus suggested implementing the 

production of habitat edges as a means of increasing numbers of game species. 

However, since the early views of Leopold, there has been the realisation that habitat 

edges predominantly result in the degradation of natural ecosystems (Laurance et al. 

2002, Harper et al. 2005). The creation of edges through forest fragmentation initially 

alters vegetation structure. This process results in immediate changes in microclimatic 

factors such as increases in wind disturbance, solar radiation, evapotranspiration, 

temperature stochasticity, and a decrease in soil and atmospheric moisture (Murcia 

1995, Chen et al. 1999, Laurance et al. 2011). These changes induce relatively rapid 

responses in plant communities, with an increase in pioneer species, understory density, 

and thinning of the upper canopy (Murcia 1995, Gascon et al. 2000, Laurance et al. 

2002, Harper et al. 2005). As overall vegetative structure changes, this leads to major 

shifts in associated invertebrate communities, which are also directly affected by the 

microclimatic changes near the forest edge (Didham et al. 1998). These proximate 

responses are often the most conspicuous, but there are potential indirect effects which 

may be far-reaching and especially insidious, such as the alteration of species 

interactions (Fagan et al. 1999, Ewers and Didham 2006a) and loss of ecosystem 
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function (Didham 1998, Chen et al. 1999). Changes in species interactions and 

functional provisioning can result in negative feedbacks, leading to an increased rate of 

decay of the ecological integrity of natural remnants (Jones et al. 1997, Wu et al. 2011). 

Edge effects are continuous processes that occur as gradients of change across a 

habitat boundary. Therefore, to understand the impact that edge effects have on habitat 

remnants, they must be quantified as a single continuous response function 

encompassing both sides of the habitat boundary. By measuring on continuous scales, 

this gives the ability to generate response functions that can indicate the extent to which 

these effects penetrate into habitat remnants and the magnitude of change in species 

responses (Ewers and Didham 2006b). Quantifying edge effects in a spatially explicit 

manner can provide insight into the relative impact that edge effects pose on remnant 

habitats (Ewers and Didham 2006b). It also provides a platform to test how interacting 

drivers may alter the impact of edge effects as the extent and magnitude of edge 

influence depends on edge structure, matrix structure, and adjacent land use intensity 

(Didham and Lawton 1999, Haynes and Cronin 2006, Piessens et al. 2006). 

1.2 The effects of land-use intensity on remnant ecosystems 

The effects of adjacent matrix structure on natural habitat patches are demonstrated 

clearly in studies measuring edge effects and community responses to habitat edges. 

There is already a wealth of studies that elucidate the significant influence of habitat 

edges in remnant ecosystems (Harper et al. 2005). Many of these studies clearly make 

the assumption that patterns in community structure near habitat edges are in fact a 

product of the relationship between the structure of the matrix and the remnant habitat 

(Murcia 1995, Strayer et al. 2003). However, relatively few studies have explicitly 

measured the degree of dependence of edge responses on adjacent matrix structure, 

especially within the context of varying land-use intensity in the adjacent habitat (but 

see Piessens et al. 2006, Pawson et al. 2008). 

With the rapid increase in human population, there are strong socioeconomic 

drivers for the intensification of agricultural production to cater for a growing global 

food demand (Tilman et al. 2001). This has led to a rapid increase in the intensity of 

agricultural and rangeland practices, which appear to be especially significant and 

destructive in developing regions of the world (Tinker 1997, Lambin et al. 2003). Land-
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use intensification can have widespread impacts on ecosystems through the alteration of 

biogeochemical processes and changes in plant communities (DeFries et al. 2004), 

which in turn can have profound impacts on associated invertebrate communities (Jones 

et al. 2003, Attwood et al. 2008). 

In particular, livestock grazing can significantly alter ecosystem structure through 

factors such as trampling, nutrient enrichment of soils, and selective browsing. 

Trampling by livestock causes soil compaction which can significantly alter nutrient 

levels in the soil, increase soil erosion, and alter soil microbial communities (Martinez 

and Zinck 2004, Pietola et al. 2005). Additionally, trampling from livestock can have 

severe impacts on plant biomass, resulting in the loss of above-ground carbon stocks 

and alteration of the three-dimensional structure of vegetative cover (Reid and Hochuli 

2007). In turn, this can render these communities more vulnerable to biological 

invasions by more ‗trampling-resistant‘ species of plants, which can out-compete native 

species, potentially altering the entire structure of plant communities (Hobbs and 

Huenneke 1992). Such a community-wide shift in vegetative structure, this can lead to a 

shift in associated invertebrate communities (Dennis et al. 1998, Siemann et al. 1998, 

Reid and Hochuli 2007). Furthermore, livestock grazing can drive a shift in plant 

community composition towards low-diversity assemblages, resulting in a decrease in 

habitat heterogeneity which can significantly decrease invertebrate species richness and 

alter plant-insect interactions (Kruess and Tscharntke 2002).  

Land-use intensification clearly imposes severe on-site effects (where the land use 

is occurring), which drive community responses and alter ecosystem processes. What is 

less well appreciated is that land-use intensification can also have substantial off-site 

effects (i.e. effects that spill-over into the wider landscape). A handful of studies have 

elucidated the potential impact of the surrounding land-use matrix structure on within-

fragment ecosystem dynamics (Denyer et al. 2006, Laurance et al. 2011). These studies 

suggest that in order to fully grasp the magnitude of influence that the adjacent matrix 

has on remnant ecosystems, it is imperative we take into account the structural 

characteristics and degree of degradation of the surrounding matrix. Adopting a 

perspective wherein habitat remnants and adjacent matrix are ecologically coupled 

provides a more cohesive functional framework for fragmentation studies that extend 

from within-patch dynamics to a landscape scale (Kupfer et al. 2006). Given the relative 

importance of edge effects in fragmented landscapes, along with the rapid rate of land-
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use intensification worldwide (Tilman et al. 2001), this highlights the need to better 

quantify these interacting drivers in order to understand ecological responses to 

anthropogenic land-use change. 

1.3 Do trait differences determine species’ responses and ecosystem function? 

The integration of multiple drivers of biodiversity loss in empirical research provides a 

mechanistic understanding of responses to habitat fragmentation. However, in studies 

attempting to quantify community responses to anthropogenic disturbance, another 

cause of uncertainty often stems from highly variable responses among species that can 

lead to spurious conclusions if this variability is overlooked (Ewers and Didham 2006a). 

Therefore, a fully integrative approach that identifies the variability of species responses 

to multiple interacting drivers is required to accurately predict ecosystem responses 

under various global change scenarios.       

Species responses to environmental change are highly variable due to differences 

in morphological and life-history traits conferring different levels of susceptibility to 

disturbances (Davies et al. 2004, Henle et al. 2004, Ewers and Didham 2006a). The 

main traits that determine different levels of extinction proneness in species include 

body size, dispersal ability, rarity, trophic level and niche breadth (Ewers and Didham 

2006a). All of these traits interact with each other and with various anthropogenic 

drivers differently, resulting in complex responses of communities to these drivers 

(Ewers and Didham 2006a). With an understanding of these trait-mediated responses 

and how they interact, we can gain a better mechanistic understanding of how species 

assemblages respond to global change drivers. For example, it is often assumed that 

larger-bodied organisms will be more sensitive to habitat loss and fragmentation due to 

the need for larger habitat area, larger resource requirements, and lower reproductive 

rates (Jablonski 1996, Bennett and Owens 1997). Additionally, dispersal ability is often 

positively correlated with species persistence in fragmented landscapes (Driscoll and 

Weir 2005). This is because these species are more likely to maintain inter-patch 

dispersal, thus increasing chances of resource acquisition in degraded landscapes and 

maintaining inter-population genetic exchange (Tscharntke et al. 2002, Meyer and 

Kalko 2008). However, the dispersal-sensitivity relationship may invert depending on 

the landscape context, whereby farther dispersing species become more likely to leave 
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pristine habitat and experience higher mortality rates in the hostile matrix, acting as an 

ecological sink (Ewers and Didham 2006a).  

While traits exhibited by species determine their persistence and distribution, 

these traits also determine how species perform in an ecosystem. In other words, 

variation in particular species traits might mediate ecosystem processes to differing 

degrees. These traits are known as ‗functional effect traits‘ (Lavorel and Garnier 2002, 

McGill et al. 2006, Webb et al. 2010). For example, many plant traits have been 

identified as important functional effect traits, such as specific leaf area, leaf nitrogen 

content, and relative growth rate, as these all have significant impacts on nutrient inputs 

and uptake (Garnier et al. 2004, Orwin et al. 2010). Additionally, body size of 

invertebrates is often implied to be an important functional effect trait as it scales 

closely with resource uptake (de Bello et al. 2010, Lecerf and Richardson 2011) As 

these traits affect external processes in the surrounding ecosystem, it is important that 

they are measured to understand the functional consequences of individual species 

losses (Webb et al. 2010).  

Furthermore, there may be potential correlations between ‗response traits‘ (traits 

determining species‘ sensitivity to disturbances) and ‗effect traits‘ (functional traits) 

within species (Lavorel and Garnier 2002, Larsen et al. 2005). If these traits are 

negatively correlated, this would mean that while a species may exhibit a trait that 

makes it highly sensitive to disturbance, this could be of little importance in a functional 

sense because the trait confers a lower functional significance for the process in 

question. However, in the case of a positive correlation between response and effect 

traits, this would imply that a trait conferring higher sensitivity would also impart 

greater functional importance. For example, Larsen et al. (2005) found that with 

increasing body size in bumble bees, species were both more extinction prone but also 

provided greater levels of pollination. This was due to the positive correlation between 

body size and dispersal ability which increased the bumblebees ability to pollinate over 

larger distances. If this response-effect trait relationship occurs, this results in a non-

linear rate of ecosystem function loss in response to anthropogenic disturbance. 

Potentially, there may be exponential losses of ecosystem function with species 

extinctions, resulting in the rapid degradation of natural systems and ecosystem services 

(Ostfeld and LoGiudice 2003, Kremen 2005).  This exemplifies the importance of 

identifying relationships between species responses in order to better understand 
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trajectories in the structuring of communities and resulting ecosystem processes in the 

face of global environmental change. 

1.4 Dung beetles as a focal taxon for habitat fragmentation studies 

Dung beetles (Coleoptera: Scarabaeinae) are a suitable ecological indicator for studies 

investigating responses of communities to anthropogenic land use change as they are 

highly responsive to minor environmental changes, easy to sample, highly diverse and 

abundant, and mediate important ecosystem processes (Favila and Halffter 1997, Davis 

et al. 2001, McGeoch et al. 2002, Larsen et al. 2008, Verdú et al. 2011). Additionally, 

due to their important role in dung removal and a very high level of variation in 

morphological traits, this taxonomic group is ideal for trait-based ecological research 

attempting to investigate functional effects of anthropogenic land-use change (Larsen et 

al. 2005, Larsen et al. 2008).  

Dung beetles are a cosmopolitan group of beetles found on every continent except 

Antarctica and they inhabit a vast range of ecological niches (Hanski and Cambefort 

1991). They are particularly abundant and diverse in the tropics, where they are 

responsible for a significant proportion of dung and carrion decomposition (Nichols et 

al. 2008).  As adults, Scarabaeine dung beetles utilise dung as a resource for food, but 

more importantly as a resource for rearing larvae. Adult dung beetles fly to a fresh dung 

pat and immediately excavate tunnels, either directly under or laterally away from the 

dung pat. The beetles then lay eggs in brood balls of dung which are taken into the 

tunnels where the larvae will develop and eat the dung which the parent (or parents) 

have provisioned (Hanski and Cambefort 1991).  

Due to their life-history characteristics, Scarabaeine dung beetles are important 

for nutrient cycling processes and secondary seed dispersal in tropical ecosystems. For 

example, as dung is taken apart into smaller quantities and further broken down by the 

larvae, this process increases microbial action. In turn, the rate of nitrogen 

mineralisation is increased, which reduces the loss of N through ammonia volatilisation 

(Yokoyama et al. 1991), thereby increasing levels of available labile N in the soil 

(Nichols et al. 2008). Furthermore, when dung beetles excavate tunnels for burying 

brood balls, the bioturbation of the soil increases oxygen levels throughout the upper 

soil horizon which then increases aerobic bacterial action and further enhances 
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decomposition rates (Yokoyama et al. 1991, Nichols et al. 2008). In addition to 

increasing rates of nutrient cycling, which enhances soil quality for plant growth (Wu et 

al. 2011), dung beetles also provide secondary dispersal of plant seeds (Nichols et al. 

2008). This process occurs when seeds that have been ingested and then defecated out 

by frugivores are inadvertently removed and buried as dung beetles are excavating 

tunnels for their brood balls (Vander Wall et al. 2005). As secondary seed dispersal by 

dung beetles deposits seeds just under the soil surface, this process decreases seed 

predation rates and facilitates germination and seedling establishment (Shepherd and 

Chapman 1998, Andresen 2002). Through these processes, dung beetles play a key role 

in maintaining processes which contribute to shaping the structure of ecosystems.  

Dung beetles have been used as focal taxa in many studies for the quantification 

of community responses to anthropogenic disturbances, especially habitat fragmentation 

(Nichols et al. 2007). In particular, this group has shown strong changes in diversity, 

abundance, and overall community disassembly in response to fragmentation (Klein 

1989, Larsen et al. 2008, Davis and Philips 2009, Filgueiras et al. 2011). The degree of 

such responses has also shown high interdependence with matrix structure and land-use 

intensification adjacent to the focal habitat (Davis et al. 2000, Hutton and Giller 2003, 

Díaz et al. 2010). Surprisingly, despite the vast body of literature on dung beetle 

responses to habitat fragmentation and also a number of studies that focus on their 

responses to human land-use intensification, there have been no studies to date that 

investigate the interaction between land-use intensification and edge effects on dung 

beetle communities (Nichols et al. 2007). Furthermore, while there have been a number 

of studies that have sampled at discrete edge, interior, and matrix points (Davis et al. 

2000, Spector and Ayzama 2003), almost no studies have sampled across continuous 

forest-to-edge response gradients (but see Duraes et al. 2005). While previous studies 

provide some evidence that dung beetles respond to habitat edges, there is still little 

spatially explicit knowledge of how this taxa responds and what the overarching 

consequences may be for community composition and ecosystem processes. This gap in 

knowledge requires urgent attention, given that edge effects have been implicated as 

one of the most important drivers of ecosystem degradation related to habitat 

fragmentation (Ewers et al. 2007, Banks-Leite et al. 2010, Laurance et al. 2011)    

The functional consequences of dung beetle species loss and decreases in 

abundance can be far reaching, with potentially large losses in nutrient cycling and 
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secondary seed dispersal that can have dramatic effects on entire plant communities 

(Andresen 2003, Slade et al. 2007, Slade et al. 2011, Wu et al. 2011). Furthermore, 

studies have suggested the importance of dung beetle species traits, such as body size 

and dispersal ability, in determining responses to anthropogenic disturbances (Driscoll 

and Weir 2005, Larsen et al. 2008). It has also been found that traits, such as body size, 

are strongly correlated with functional importance of dung beetle species (Klein 1989, 

Larsen et al. 2005, Nichols et al. 2008). However, until recently there has been little 

investigation into the relationship between these response and effect traits for 

invertebrates, and specifically in dung beetles, despite the potential correlations between 

such traits for these taxa (Larsen et al. 2005). 

1.5 Mitigating edge effects in an Afromontane forest through matrix restoration 

The overall aim of this study is to quantify the relative impact of restoring the adjacent 

matrix habitat on the intensity of edge effects at human induced forest-to-matrix edge 

gradients. Building on a vast wealth of previous empirical evidence for the proximate 

effects of habitat edges on ecosystems, I focus on community edge responses of dung 

beetles under the mediating effects of adjacent matrix restoration and the resulting rates 

of dung removal. This is represented in Figure 1.1 by the top pathway, where I also 

include hypothetical outcomes for plant and microbial communities and resulting 

feedbacks of ‗effect‘ processes on community responses. I quantify these impacts in a 

Nigerian Afromontane forest system using a response-effect trait framework, which 

provides a mechanistic elucidation of the determinants of species responses and, 

importantly, demonstrates how these drivers of environmental change can have 

cascading impacts on ecosystem processes. 
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Figure 1.1 Conceptual framework for the progression from community responses to ecosystem effects in 

plant, invertebrate, and microbial communities as a result of habitat edge formation and interaction with 

adjacent matrix degradation. ↑ and ↓ indicate an increase or decrease of a factor respectively. Arrows 

between boxes indicate the direction of influence. The Edge Formation phase refers to the process of 

habitat loss and edge creation in a previously unfragmented habitat and the resulting changes in physical 

abiotic factors. The Response phase includes biotic responses (structural, community composition, 

species interactions) to edge creation. The final Effect phase denotes potential functional effects of 

community responses to edge influence and resulting feedback effects on the respondent communities 

(1.Gehlhausen et al. 2000, 13. Laakso et al. 2000, 3. Laurance et al. 2002, 2. Harper et al. 2005, 7. 

Vasconcelos and Laurance 2005, 5. Laurance et al. 2006, 4. Piessens et al. 2006, 10. Bolger 2007, 11. 

Ewers et al. 2007, 9. Ewers and Didham 2008, 6. Malmivaara-Lämsä et al. 2008, 12. Rosenlew and 

Roslin 2008). 

The Afromontane forests of Nigeria are part of the Cameroonian Highlands 

Ecoregion, an ecologically distinct region that faces considerable conservation threats 

from intensifying fragmentation and land-use change (Olson et al. 2001b, WWF 2001). 

This ecoregion comprises a landscape mosaic of unique submontane tropical forest 

fragments embedded within native montane grasslands that are undergoing rapid land-

use conversion to widespread, intensive pastoral grazing and scattered subsistence 

farming (Hall 1971, Hurault 1998). This is coupled with human-induced fires occurring 

frequently in the production matrix to stimulate grass re-growth in the dry season, 

resulting in a highly disturbed and hostile matrix (Chapman et al. 2004). This system 

provides a unique opportunity to quantify the importance of adjacent matrix restoration 

in determining the intensity of edge responses in remnant ecosystems due to recent 

restoration efforts around the Afromontane forest study site. As dung beetles are 

abundant and widespread, both globally and throughout Afromontane regions (Hanski 

and Cambefort 1991, Davis et al. 2008), I used this group as a focal taxon to test 
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community responses to these interactive drivers. Additionally, Scarabaeine dung beetle 

communities in Afromontane regions are responsible for the vast majority of dung 

removal in these ecosystems (Udy & Nelson, unpub), making the group highly suitable 

for quantifying the functional consequences of anthropogenic drivers in this severely-

fragmented landscape (Kotze and Lawes 2007).  

This study will address three main questions that currently require further 

investigation in the literature. Firstly, in Chapter 2 I quantify dung beetle community 

responses to human-induced habitat edges and assess the efficacy of adjacent matrix 

restoration on alleviating these edge effects. In particular, I compare responses in 

abundance, species richness, and community composition in sites where external 

anthropogenic threats have been excluded from the adjacent matrix with unprotected 

degraded sites across continuous edge gradient transects. I also look at variability in 

responses of dung beetles between species to gain an understanding of how individual 

species may contribute to community-level responses.  

In Chapter 3, I use measurements of morphological traits to explain why species 

are responding differently to habitat edges and matrix restoration and I test for overall 

responses in the distribution of functional traits, both within and between species. This 

is to determine the relative importance of individual species trait variation in 

community level trait composition, which is likely to be important for explaining 

variation in ecosystem processes.   

Finally, Chapter 4 puts the findings from previous chapters into an ecosystem 

level context by applying a response-effect trait framework to determine potential 

cascading effects of environmental change (edge effects and matrix restoration) on dung 

beetle mediated nutrient cycling rates. This is achieved using hierarchical structural 

equation modelling to disentangle the relative mediating effects in dung beetle 

communities on rates of dung removal, such as species trait effects compared to neutral-

based mass effects.   

The findings generated from these works will be important for advancing current 

knowledge of how land-use change can alter the ecological integrity of natural systems 

and importantly, provide insight into the relative benefits of restoring matrix habitat 

adjacent to these systems. This will become evident through the quantification of 

community responses across continuous habitat edge gradients, an approach that has 
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never been taken in previous studies of dung beetle responses to anthropogenic land-use 

change. Furthermore, by comparing trait distributions in communities between degraded 

and regenerating sites, conclusions from this thesis can be extended to the mechanistic 

determinants of how communities reassemble during habitat restoration. By using these 

trait determinants in a framework that also incorporates their relative importance for 

mediating ecosystem processes, this thesis will ultimately provide new insight into the 

potential flow-on effects of matrix restoration to ecosystem processes via invertebrate 

community responses.  
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Chapter 2: Continuous edge responses reveal off-

site effects of matrix restoration in dung beetle 

communities 

2.1 INTRODUCTION 

Edge effects are trans-boundary phenomena that result from the abiotic and biotic 

contrast between two adjoining habitat types (Fonseca and Joner 2007). These effects 

may represent a modification or intensification of existing processes following the 

fragmentation of continuous habitat, or may even represent entirely novel and induced 

phenomena for species in habitat remnants (Murcia 1995, Didham 2010). As edge 

effects are the result of patch versus matrix contrasts, edge influence on remnant habitat 

patches cannot be quantified without considering the characteristics of the adjacent 

matrix habitat. In fact, within-patch dynamics adjacent to edges are likely to be strongly 

dependent on the context of the surrounding matrix structure (Murphy and Lovett-Doust 

2004, Kupfer et al. 2006). As a consequence, two important concepts are required for 

conducting edge effect studies with predictive and widely applicable conclusions. 

Firstly, edge studies should be two sided, whereby edge sampling regimes span from 

within the patch to the adjacent matrix. Despite the fact that edge effects are a product 

of the flow of materials, energy, and organisms between adjoining habitats, there are 

still consistently greater numbers of edge effect studies that only take into account one 

side of the edge gradient (Fonseca and Joner 2007). Secondly, due to the two-sided 

nature of edge effects, adjacent matrix structure should be taken into account to detect 

potential interactions between these two drivers of environmental change (Cook et al. 

2002, Laurance et al. 2011). 

Many studies report important effects of matrix structure on within-patch 

dynamics and structuring of communities around habitat boundaries. For example, 

matrix structure has been shown to determine the likelihood and rate of dispersal from 

habitat patches depending on the ‗resistance‘ (i.e. the level at which dispersal is 

facilitated,  determined by the degree of contrast between matrix and forest) of the 
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surrounding matrix (Ricketts 2001, Haynes and Cronin 2006, Haynes et al. 2007, 

Laurance et al. 2011). The matrix can also provide habitat for exotic species, which then 

spill over into adjacent remnant habitats (Cook et al. 2002, Rand et al. 2006). The 

structure of the surrounding matrix can also have significant impacts on abiotic factors 

such as microclimatic variables within habitat remnants. For example, Denyer et al. 

(2006) showed significant changes in photosynthetically active radiation, vapour 

moisture deficit, and air temperature between habitat edges abutting either a low-

contrast pine plantation matrix or a high-contrast pasture matrix. If the physical effects 

of habitat edges are intensified as demonstrated by Denyer et al. (2006), this is likely to 

have major impacts on various aspects of the adjacent remnant system as these abiotic 

factors are important proximate drivers of edge responses in ecological communities 

(Didham and Lawton 1999, Laurance et al. 2002, Grimbacher et al. 2006, Kappes et al. 

2009).  

Trans-boundary effects are exacerbated by external anthropogenic processes that 

impose direct and indirect effects on communities. For example, livestock 

encroachment into forest remnants and the adjacent matrix can have major impacts on 

vegetative structure, while increasing soil compaction and nutrient inputs (Smit and 

Kooijman 2001, Martinez and Zinck 2004, Van Uytvanck and Hoffmann 2009), which 

can directly alter habitat structure and associated invertebrate communities. Fires are 

another human-induced disturbance with major impacts on the vegetative structure at 

habitat edges (Didham and Lawton 1999, Laurance et al. 2011), resulting in intensified 

edge responses of associated communities. Fires also impose direct negative effects on 

resident populations, resulting in lowered abundances and species richness in affected 

areas (Prieto-Benítez and Méndez 2011). These anthropogenic disturbances can also 

lead to the introduction of further threats such as species invasions (Keeley et al. 2003), 

resulting in entirely altered matrix habitats which can alter patch-matrix contrast and 

thus exacerbate edge effects. Through the mediation or exclusion of anthropogenic 

threats in the adjacent matrix, such efforts may be effective in minimising the 

detrimental effects of habitat edges (Fonseca and Joner 2007, Laurance et al. 2011). 

Multiple threats from habitat loss, edge effects and intensification of land-use 

practices in the surrounding agricultural matrix combine, frequently synergistically, to 

exacerbate threats to biodiversity in small habitat remnants (Ewers and Didham 2006a). 

These interacting drivers of biodiversity loss are especially severe in the rapidly 
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dwindling Afromontane forests of Sub-Saharan Africa, where nature reserves suffer 

from having the least protection of African conservation areas and high rates of 

threatened endemic species (WWF 2001, Burgess et al. 2005). The encroachment of 

anthropogenic threats into natural remnant habitats is ever increasing with Africa‘s 

rapidly-growing population. Of particular concern for forest conservation in this region 

is the rapid increase in the intensification of cattle grazing (Thiollay 2006). As local 

people in Afromontane regions of Sub-Saharan Africa rely heavily on cattle for their 

livelihood, increasing human population is closely mirrored by increasing cattle grazing 

intensity, rapidly leading to the ecological degradation of these regions (Hurault 1998). 

Furthermore, fires have become more frequent as they are lit to facilitate grass 

regeneration for pastoralists (Chapman et al. 2004) and impose significant impacts on 

the landscape in conjunction with intensive cattle grazing (Kotze and Samways 2001). 

A combination of political instability, poverty, and cultural values that lack appreciation 

of biodiversity, presents major challenges to conservation. Of the rare conservation 

efforts that are carried out, these are often unsuccessful throughout this region (Hackel 

1999, Oates 1999).  

This study investigates the impacts of external anthropogenic disturbances in the 

surrounding land-use matrix on within-patch dynamics in remnant forest. I quantify 

these impacts by measuring edge responses of invertebrate communities across forest 

edges adjacent to heavily-degraded cattle pasture versus forest edges adjacent to 

protected, regenerating matrix where anthropogenic threats have been removed. To test 

for these cross-ecosystem impacts of matrix restoration, I used dung beetles 

(Coleoptera: Scarabaeinae) as a focal taxon. Dung beetles are a highly suitable taxon for 

quantifying responses to habitat fragmentation as they exhibit high sensitivity to 

disturbance (Favila and Halffter 1997, Nichols et al. 2007). While dung beetles have 

been widely studied for their response to anthropogenic land-use change and habitat 

fragmentation, this study is unique in quantifying continuous responses in dung beetle 

communities to habitat edges.  

Spector and Ayazama (2003) found marked changes in community composition 

among discrete sampling points at the forest interior, edge, and matrix habitats across a 

natural forest ecotone. These findings were similar to those of Davis et al. (2000, 2001) 

and Duraes et al. (2005) who found that dung beetle communities differed greatly 

across natural ecotone gradients. These studies provide strong evidence for the 
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importance of edge effects in determining changes in community structure of dung 

beetle fauna. However, this has yet to be tested across habitat edges at a natural-

forest/production-matrix interface. There has been a multitude of research that has 

measured dung beetle community structure at discrete sampling points at edges and 

associated habitat interior (Estrada et al. 1998, Estrada and Coates-Estrada 2002, 

Spector and Ayzama 2003, Davis and Philips 2005, Díaz et al. 2010). However, this 

sampling approach achieves descriptive evaluations of community differences between 

forest edge and interior habitats without providing a predictive function for spatially 

explicit edge responses in dung beetle communities. Despite acknowledging the 

importance of understanding the extent of edge responses by dung beetle communities 

in fragmentation and land-use-change studies (Escobar et al. 2008), there is still a lack 

of knowledge of such spatially-explicit responses for dung beetles. 

The aim of this study is to investigate the impacts of adjacent matrix degradation 

resulting from anthropogenic disturbances on the strength and form of continuous edge 

responses in dung beetle communities. By comparing replicate edge gradients at 

unprotected edges and sites where anthropogenic threats have been excluded from the 

adjacent matrix, this study provides insight into the dependence of edge responses of 

dung beetles on adjacent land-use intensity. By quantifying the influence of adjacent 

matrix degradation on edge responses, this study aims to identify the relative benefit of 

implementing buffer zones of matrix restoration adjacent to forest remnants for the 

conservation of invertebrate communities.    

2.2 METHODS 

2.2.1 Study Site 

The study was conducted at the Ngel Nyaki forest reserve, located on the Mambilla 

Plateau near the Nigerian/Cameroon border in Taraba State. The forest reserve is an 

outlying section of a West African forest network within the Cameroon Highlands 

ecoregion (Olson et al. 2001a, WWF 2001). This region comprises a network of 

Afromontane forest fragments found at elevations up to 2420 metres with distinct wet 

and dry seasons and an annual rainfall of approximately 1600 to 2000 mm. The wet 



20 

 

season lasts from April to October, during which time the plateau has an average 

temperature of 26°C ±13°C. The dry season commences in November and lasts until 

March with temperatures ranging from 16°C - 23°C (Hall 1971, Matthesius et al. 2011). 

Ngel Nyaki Forest Reserve was established in 1969 and covers an area of 

approximately 4600 hectares on the Mambilla plateau. This area comprises a mosaic of 

overgrazed montane grasslands, degraded streamside forest/shrubland strips, and 720 

hectares of dense submontane forest on the escarpment edge (Chapman and Chapman 

2001, Chapman et al. 2004, BirdLife International 2011). The forest is of an 

Afrotropical submontane forest type which has a unique floristic community 

composition with over 146 vascular plant species, many of which are endemic to 

Afromontane regions including four IUCN Red Data Listed species. There is obvious 

stratification into emergent canopy species, sub-canopy, understory, and forest floor 

species. The emergent canopy is composed of three principal species that can reach 

heights of up to 46 metres. The crowns of these trees are held well above the sub 

canopy, which is dense and continuous and ranges from about 10 to 30 metres in height. 

The forest also harbours many species of lianas and epiphytes, which are highly 

abundant throughout the understory (Chapman and Chapman 2001). Additionally, there 

are many species of large mammals including primates such as the endangered 

chimpanzee Pan troglodytes ellioti, the putty nose Cercopithecus aethiops and tantalus 

Chlorocebus tantalus monkeys. There are also baboons Papio anubis, some colobus 

monkeys Colobus guereza and ungulates including many species of duiker (subfamily: 

Cephalophinae) (Chapman and Chapman 2001, Chapman et al. 2004, Beck and 

Chapman 2008)  

Between the years 2000 to 2005, Nigeria had the 7
th

 highest net annual loss of 

forest area in the world, with a loss of approximately 410,000 ha/year (BirdLife 

International 2011). This is largely due to the rapidly increasing human population 

densities and severe lack of resources being invested into conservation of Nigeria‘s 

natural remnant ecosystems (Olson et al. 2001a). In the Nigerian highlands, cattle 

grazing by Fulani pastoralists is the predominant form of agricultural land use. The 

Fulani people originate from Cameroon and it is thought that they only moved onto the 

plateau early in the 19
th

 century, rapidly displacing the small subsistence farm-holdings 

of the local Mambilla people (Hall 1971, Hurault 1998). Therefore, it is only relatively 
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recently that the Mambilla Plateau has been subject to such strong anthropogenic 

disturbances from intensive and unsustainable cattle grazing.  

Despite the conservation status of Ngel Nyaki as a national forest reserve, 

intensive pastoral activity continues to encroach on the reserve boundaries due to a 

severe lack of local law enforcement. As the Fulani population increases, the number of 

cattle follows suit along with an increasing need for more land to be used for pasture. 

Due to this need for more grazing land, there have been constant attempts by local 

people to burn into the edges of the forest reserve (Chapman and Chapman 2001, 

Chapman et al. 2004). The introduction of cattle has facilitated the invasion of 

Sporobolus Ludetia tussock grass, significantly increased soil compaction, and caused 

major issues with soil erosion resulting in the widespread conversion of native grassland 

to a low diversity grassland matrix (Chapman et al. 2004). Furthermore, illegal 

poaching has long posed a threat to many of the plant and animal species within the 

reserve and has also greatly intensified over recent years. As a result, there has been a 

major decrease in, and in some cases local extinctions of, mammal populations in Ngel 

Nyaki Forest Reserve (Chapman and Chapman 2001, Chapman et al. 2004). 

An initiative by the Nigerian Montane Forest Project (NMFP) to protect Ngel 

Nyaki forest reserve from land clearing, burning and cattle grazing by local people was 

established by fencing off key areas adjacent to the reserve.  Fenced exclusion zones 

were established up to 200 metres outside Ngel Nyaki in the adjacent pasture. Due to 

social and financial restrictions, these fence lines were only built in a total of four sites 

(not the entire circumference of the reserve) with the longest fence line spanning just 

over 1.6 km. In addition to the fence lines, fire breaks were maintained throughout the 

dry season to prevent the encroachment of human-induced fires from the grazed pasture. 

Fire breaks were maintained by removing all vegetation down to bare soil within two 

meters adjacent to the fence. The removal of external anthropogenic threats from the 

adjacent grassland matrix in multiple locations scattered around the perimeter of the 

forest reserve presented a unique opportunity to test the influence of these combined 

threats on dung beetle biodiversity and ecosystem processes.  
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2.2.2 Study Design 

The sampling design was based on a comparison of dung beetle community responses 

across three replicate forest edge gradients that were fenced to exclude the combined 

threats of fire and livestock impacts and promote forest regeneration, versus three 

replicate forest edge gradients that were unfenced and exposed to these combined 

threats. I refer to these edge gradients as ‗regenerating‘ edges versus ‗degraded‘ edges, 

respectively. I selected regenerating sites that had been fenced by NMFP from two to 

four years prior to this study. The locations of the three regenerating edges and three 

degraded edges around the perimeter of Ngel Nyaki were interspersed to reduce 

potential spatial autocorrelation of treatment effects (Figure 2.1). Replicate edge 

gradients were at least 100 meters apart, therefore edge sites were at least twice the 

distance apart than was maintained among sampling points within sites. 

 
Figure 2.1 Spatial distribution of edge gradient transects at Ngel Nyaki forest reserve. 

At each of the three protected and three unprotected edges, sampling points were 

established at 13 distances along a forest-to-matrix gradient spanning both sides of the 

Sampling 

Gradient Protected 

Matrix Unprotected 

Matrix Forest 
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forest edge on a doubling scale: -160, -80, -40, -20, -10, -5, 0, 5, 10, 20, 40, 80 and 160 

meters, with negative values used to denote forest sites. The edge (0 meters) was 

defined as the drip line of the outermost canopy trees at the forest edge. This design 

allowed for the fine-scale detection of rapid ecological responses within close proximity 

of the forest edge, where edge effects were expected to be most intense, while still 

allowing for the detection of edge effects over a potentially large spatial extent. 

Additionally, responses in community structure around the habitat edge are often an 

asymmetrical product of effects in both the focal habitat and the matrix, therefore 

sampling was conducted on both sides of the forest edge to account for these trans-

boundary processes (Ewers and Didham 2006b, Fonseca and Joner 2007).   

The 13 sampling points along each edge gradient were not established in a straight 

line transect arrangement, as this would have caused potential trap interference and 

spatial autocorrelation bias (Baker and Barmuta 2006). For example, Larsen & Forsyth 

(2005) found that in order to maintain trap independence in dung beetle biodiversity 

studies, the minimum distance between sampling points should be 50 meters, as this just 

exceeds the distance over which most dung beetles are capable of detecting dung. 

Therefore, in order to maintain independence between samples, sampling points were 

staggered laterally, parallel to the forest edge, such that all sampling points were at least 

50 meters apart whilst still maintaining their respective distance from the edge (Figure 

2.2). 
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Figure 2.2 Example of a spacing design for one of the edge gradient transects. Red points indicate the 

location of sampling points with at least 50 meters distance between each point. The green denotes the 

forest habitat and the opposing white denotes the matrix habitat. 

As a further control against potential sampling bias along edge gradients, two 

‗dummy‘ edge gradients were established as control sites (Baker and Barmuta 2006), 

with one dummy gradient located in the forest interior at least 640 meters from the 

nearest grassland edge, and the other located in the grassland matrix interior at least 640 

meters from the nearest forest edge. These gradients could then be used to test for trap 

depletion effects or the effects of geographic distance which may confound the 

detection of responses across the forest edge gradient (Baker and Barmuta 2006). 

2.2.3 Construction of baited pitfall traps 

Dung beetles were sampled using dung-baited pitfall traps consisting of 500 ml plastic 

cups with a depth of 11 cm and diameter of 8 cm, buried so that the rim of the cup was 
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flush with the surface of the ground. To protect the trap from rain and falling debris, a 

wooden trap cover was held c. 20 cm above the cup using wooden stakes. From this trap 

cover, dung bait was suspended with string so that the bottom of the bait was level with 

the rim of the cup. The bait was contained within muslin mesh, which allowed the scent 

of the bait to easily permeate into the surrounding atmosphere but was fine enough to 

exclude insects from directly accessing the bait and thus altering its attractiveness. The 

cup was filled with approximately 200 ml of water and five drops of highly 

concentrated, odourless, and clear detergent, which served to break the surface tension 

of the water. Pig dung was used as bait because omnivore dung is recognised as the 

most widely attractive to dung beetles (Tsbikae et al. 2008). Domestic pigs were reared 

and fed a consistent controlled diet so that the dung used in the experiments was more 

likely to be chemically similar and thus similar in attractiveness regardless of the day it 

was collected.  

2.2.4 Sampling dung beetles 

Sampling of dung beetle communities was undertaken at the end of the rainy season at 

Ngel Nyaki Forest Reserve from October 4 to November 29, 2009. One baited pitfall 

trap was set up for two days at each of the 13 sampling points within each of the six 

edge gradient sites and two control sites (104 baited pitfall trap locations in total). For 

logistical reasons only one edge gradient could be sampled at a time, so the temporal 

sequence in which sites were sampled was randomised. At any given site, all 13 traps 

were set on the same day, no later than 3 pm, and the order in which the traps were 

baited was also fully randomised. Each trap was baited with 40 g fresh pig dung (no 

older than 12 hours) and left for approximately 24 hours. Samples were then collected 

and the traps reset with fresh bait for a further 24 hours. The second day‘s dung beetle 

collection was then pooled with the first days to obtain a single 48-hour sample per trap 

for analysis. Variation in abundance per trap is dependent on both beetle density in the 

vicinity of the trap and relative activity rates in response to the dung bait and 

environmental conditions. I refer to the number of individuals per trap as a measure of 

dung beetle ‗capture rate‘. To ensure there was no bias in dung attractiveness between 

traps across the edge gradient, all the dung used for an entire site came from a single 

homogeneous batch. Each batch consisted of dung collected periodically throughout the 
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previous 12 hours to ensure freshness and maximum attractiveness, and thoroughly 

mixed to ensure consistent moisture and chemical content across baits. 

2.2.5 Sorting and identifying dung beetles 

 All dung beetles in the subfamily Scarabaeinae were removed from the baited pitfall 

samples and preserved in 70% alcohol. Specimens were sorted to genus and assigned to 

initial ‗morphospecies‘ groupings based on consistent morphological traits such as 

exoskeletal colouration, body size, and external structures. Formal species identification 

was then undertaken by Rowan Emberson at the Lincoln University entomology 

collection and Frank Krell at the Denver Natural History Museum. Taxonomic 

knowledge of the Nigerian montane dung beetle fauna is comparatively limited and not 

all morphospecies could be assigned to known species.   

2.2.6 Statistical analysis 

2.2.6.1 Calculating sampling effort and standardised richness 

The completeness of sampling was assessed using sample-based species accumulation 

curves in EstimateS 8.2 (Colwell 2009). Mau Tao estimated species richness and the 

frequency of singletons (species represented by only one individual randomly drawn 

from a given sample) were calculated from 100 replicate random draws (without 

replacement), and accumulation curves were rescaled to the number of individuals 

captured.  

Species richness per sample often varies as an artefact of sample abundance 

(Colwell 2009), so in order to standardise for potentially spurious sampling effects I 

conducted a species rarefaction analysis using BDPro v3.2 (McAleece 1997).  

Rarefaction involved an individual-based randomisation procedure in which the number 

of species at each site was estimated after first standardising to the highest sample 

abundance common across sites.  I chose a conservative rarefaction cut-off (knot) of 

n=21, with sites having total sample abundance smaller than this cut-off being dropped 

from the analysis. Samples that were excluded were 12 (out of a total of 36) samples 

from regenerating edge sites and 21 (out of 37) from degraded edge sites. A lower cut-

off value would have included more sites, but would have rapidly weakened the value 
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of the comparison, as the low abundance of the random draw constrains the range of 

possible variation in species richness. 

2.2.6.2 Measuring responses in community composition  

To analyse differences in species composition, I calculated base 10 Modified-Gower 

dissimilarity values among all samples (Anderson et al. 2006, Anderson et al. 2011) 

using the PRIMER v6 software package  (Clarke and Gorley 2006). The Modified-

Gower distance metric considers an order-of-magnitude change in abundance (e.g., 

from 0.01 to 0.1) equal to a change in composition (i.e. from 0 to 1 species), which 

therefore accounts for the changes in relative abundance of species in addition to 

changes in the community composition per se. This approach allowed for the explicit 

specification of the importance given to changes in species relative abundance vs. 

changes in composition in the analysis (Anderson et al. 2006).  

In order to attain a preliminary indication of how species composition responds to 

varying matrix degradation, distance from edge, or their interaction, I used the 

Modified-Gower resemblance matrix to perform a permutational distance multivariate 

ANOVA in the PERMANOVA package in PRIMER V6 (Anderson et al. 2008). 

‗Distance from the forest edge‘ and ‗matrix degradation‘ were both treated as fixed 

effects, including the interaction term between the two predictors. ‗Site‘ (representative 

of each replicate edge gradient) was specified as a random factor in order to allocate the 

correct error term for the model. The PERMANOVA analysis served as a first step in 

understanding community responses but was unable to describe the functional form of 

continuous edge responses under varying adjacent matrix degradation. I used non-

metric multidimensional scaling (NMDS) to visually compare community composition 

between samples across degraded and regenerating forest-to-matrix edge gradients, 

including the forest and pasture reference sites as points of reference. The individual 

and cumulative contribution of species to overall compositional dissimilarity was 

calculated using the SIMPER function in PRIMER. From this analysis, I then selected 

the species with the highest contributions to compositional changes that had sufficient 

numbers and spatial distributions to test continuous edge response functions in 

individual capture rates.  
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2.2.6.3 Quantifying edge response functions for dung beetle communities 

Continuous edge response functions were calculated for total dung beetle capture rate, 

species richness, rarefied species richness, community similarity, and capture rates of 

each of the sufficiently abundant species that explained the most variation in 

community similarity determined by the SIMPER test. To test edge response functions 

for community composition, I calculated the average similarity of each sample to the 

forest reference site using the Modified-Gower resemblance matrix. This calculation 

provides a vector that indicates compositional dissimilarity of sampled communities 

from the forest reference communities, which can then be used as a response variable in 

univariate statistical analyses.  These functions were analyzed across patch-to-matrix 

gradients for each of the two levels of habitat edge protection, using the statistical 

approach of Ewers & Didham (2006b). Using a form of the general logistic model I 

determined the best-fit edge model out of five models of increasing complexity (Ewers 

and Didham 2006): 

(1) the null hypothesis of no discernable edge effect, calculated as the mean of the 

response variable η: 

   

where ε is an error term;  

(2) a simple linear gradient of the form: 

  DD 10  

where β0 and β1 are constants and D is the distance to edge;  

(3) a power model: 

 


D

D e 2

10  

(4) a logistic model that describes a sigmoidal change in community composition across 

an edge, with an asymptote in both the patch and matrix habitats: 
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which also includes an additional constant, β3;  

(5) a unimodal model based on the logistic model, but with one extra constant (β4) and a 

D
2
 term to describe a unimodal change in community composition at a particular 

distance from an edge: 
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I fitted these five models to forest-to-matrix edge gradients, treating the three edge 

gradients within each of the two matrix restoration treatments (degraded versus 

regenerating matrix) as replicates.  In each case, I assessed model significance and 

calculated the Akaike Information Criterion (AIC) value for each model. I selected the 

best model as the one with the lowest AIC value, or in the case of multiple models 

within two AIC units of each other, I selected the simplest model (with the fewest 

parameters).  Model fitting was conducted in R version 2.5.1 (R Development Core 

Team 2004). 

2.3 RESULTS 

A total of 4705 dung beetles comprising 35 species in 11 genera were captured across 

all sites (Table 2.1). Overall, the community was dominated by the genus Onthophagus 

with 19 species which accounted for 54% of total beetle abundance, followed by the 

next most speciose genera Catharsius and Proagoderus, each with only three species 

(Table 2.1). Species accumulation curves revealed that sampling effort was adequate to 

characterize the local dung beetle community likely to be attracted to omnivore dung 

across different surrounding land-use treatments, with estimated species richness near 

an asymptote and the number of singleton species starting to decline with increasing 

sampling effort (Figure 2.3). Over 40% of species collected were matrix specialists 

which occurred exclusively in pasture samples, while 28% of species were captured 
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exclusively in forest samples. The remaining 30% of the species collected were found to 

occur across both habitats (Table 2.1).     

Table 2.1 List of morphospecies and their occurrence across habitat (forest and pasture) and adjacent 

matrix type (R = regenerating, D = degraded) with the total number of individuals per species. 

Species Habitat Adjacent Matrix Individuals 

Caccobius  sp.1 Pasture R, D 4 

Caccobius sp.2 Pasture R 1 

Catharsius dux Pasture R, D 12 

Catharsius sp.2 Forest R, D 7 

Catharsius sp.3 Pasture D 1 

Diastellopalpus nigerimus Forest R, D 65 

Diastellopalpus tridens Forest R 3 

Latidrepanus caelatus Forest, pasture R, D 40 

Heliocopris myrmidon Pasture R, D 3 

Liatongus arrowi Forest R 1 

Neosisyphus armatus Forest, Pasture R, D 6 

Onitis sp.1 Pasture D 10 

Onitis sp.2 Pasture D 1 

Onthophagus sp.1 Forest R, D 198 

Onthophagus sp.2 Forest, pasture R, D 2131 

Onthophagus sp.3 Forest, pasture R, D 1787 

Onthophagus sp.4 Forest R, D 4 

Onthophagus sp.5 Forest, pasture R, D 27 

Onthophagus sp.6 Forest, pasture R, D 164 

Onthophagus sp.7 Forest R, D 24 

Onthophagus sp.8 Forest R, D 35 

Onthophagus juvencus Pasture R, D 7 

Onthophagus alternans Forest, pasture R, D 41 

Onthophagus sp.11 Forest D 2 

Onthophagus rufonotatus Pasture R, D 14 

Onthophagus sp.13 Forest, pasture R 31 

Onthophagus sp.14 Pasture R, D 7 

Onthophagus sp.15 Forest R, D 7 

Onthophagus longipilis Pasture R, D 9 

Onthophagus sp.18 Pasture R 1 

Onthophagus sp.19 Pasture R 2 

Onthophagus sp.21 Pasture D 1 

Proagoderus elgoni Pasture R, D 14 

Proagoderus multicornis Forest R, D 9 

Sisyphus sp.1 Pasture R 31 
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Figure 2.3 Sample-based species accumulation curves, re-scaled to number of individuals per sample, for 

(a) all 104 baited pitfall trap samples, and (b) regenerating vs. degraded edge gradients. Values are mean 

(± 95 % confidence intervals) estimated species richness from 50 random draws at any given number of 

samples. Singletons are species that were represented by only one individual across all samples. 
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2.3.1 Regeneration of adjacent matrix restores high dung beetle abundances  

Total abundances of dung beetles were found to change significantly across the forest-

to-matrix edge gradient (Figure 2.4), with strong logistic response functions evident for 

both the degraded and regenerating edge gradients (Table 2.2). For both levels of matrix 

degradation, highest abundances were found in the forest habitat, and lowest 

abundances in the matrix habitat, with a zone of rapid change found just outside the 

forest edge. More importantly however, I found a 43% increase in the magnitude of 

edge effects at regenerating edges compared to degraded edges, driven by a 20% 

increase in average beetle abundance within regenerating matrix sites, and a 53% 

average increase in dung beetle abundance in forest sites adjacent to a regenerating 

matrix (Figure 2.4).  
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Figure 2.4 Square root-transformed capture rates of dung beetles in baited pitfall traps (mean ± 1 SE) 

across regenerating (closed symbols and solid fitted line) and degraded (open symbols and dashed fitted 

line) edge gradients. Negative values on the x-axis indicate forest sites. Lines are the best-fit continuous 

edge response functions of five fitted models of increasing complexity. Overlapping data points are offset 

for clarity. 
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Table 2.2 AIC scores obtained from the edge function fitting procedure for models of increasing 

complexity (null, linear, exponential, logistic, and unimodal) for both regenerating and degraded edge 

gradients. Species in the response column refer to capture rates of each species. Bold AIC scores indicate 

the model of best fit. 

Response Null Linear Exponential Logistic Unimodal 

Regenerating Matrix 

Abundance 

 

229.629 

 

203.526 

 

NA 

 

201.38 

 

256.617 

Richness 160.874 162.778 164.779 NA NA 

Rarefied richness 67.37 69.318 NA NA NA 

Community similarity -30.83 -33.296 -31.294 -31.494 NA 

Onthophagus sp.1  123.035 101.17 NA 103.376 109.559 

Onthophagus sp.2  219.383 166.712 NA 164.855 NA 

Onthophagus sp.3 217.13 211.788 NA 204.635 NA 

Onthophagus sp.5 17.084 11.616 NA NA 4.768 

Onthophagus sp.6 -25.35 -25.915 NA NA -33.184 

Onthophagus sp. 7  33.024 23.96 NA 20.018 16.994 

Onthophagus sp. 8  -12.172 -20.904 NA NA -23.644 

Onthophagus alternans -39.532 -39.162 -37.203 NA -37.344 

Onthophagus sp.13  42.252 42.211 NA NA 31.813 

Diastellopalpus nigerimus 74.454 51.522 NA 46.848 46.685 

Latidrepanus caelatus 68.019 67.58 NA NA 58.272 

Proagoderus elgoni  -7.257 -8.339 -6.338 NA NA 

Sisyphus sp.1 71.071 67.021 68.679 68.306 66.086 

 

Degraded Matrix 

     

Abundance 214.74 197.365 NA 186.412 243.325 

Richness 170.029 162.2 NA 165.902 NA 

Rarefied richness 59.017 59.942 NA 61.939 59.498 

Community similarity -11.596 -21.434 NA -32.488 NA 

Onthophagus sp.1 74.616 67.801 NA NA 68.937 

Onthophagus sp.2  195.153 173.598 NA 173.023 NA 

Onthophagus sp.3  196.297 191.927 NA NA 168.095 

Onthophagus sp.5  -25.35 -25.915 NA NA -33.184 

Onthophagus sp.6  -4.864 -2.93 NA NA NA 

Onthophagus sp.7  -25.35 -26.605 NA NA -33.695 

Onthophagus sp.8 6.154 0.354 NA NA -3.011 

Onthophagus alternans  1.415 1.427 NA NA 3.404 

Onthophagus sp.13 -71.969 -70.057 NA NA NA 

Diastellopalpus nigerimus  7.112 -0.192 1.808 2.843 NA 

Latidrepanus caelatus -47.104 -46.042 NA NA NA 

Proagoderus sp.1  -33.585 -38 NA NA -37.948 

Sisyphus sp.1  35.162 30.748 NA NA 30.935 
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2.3.2 Weak positive effect of matrix degradation on dung beetle species richness 

The edge function fitting procedure revealed a null response in species richness across 

the edge gradient in regenerating sites. In contrast, I found a significant linear response 

across degraded edges whereby species richness decreased with increasing distance into 

the matrix habitat (Figure 2.5, Table 2.2). However, after calculating rarefied richness at 

standardized sample abundance, I found that edge responses in species richness were 

driven entirely by variation in dung beetle abundance with null responses across both 

edge types (Figure 2.5, Table 2.2).  

2.3.3 Differential responses of community composition to habitat degradation  

The multivariate PERMANOVA demonstrated that differences in community 

composition were predicted by distance from the forest edge (Pseudo-F = 4.573, P = 

0.001) and also by the exclusion of anthropogenic threats from the adjacent matrix 

(Pseudo-F = 5.644, P = 0.001). Additionally, there was a significant interaction between 

these two drivers of compositional changes (Pseudo-F = 1.264, P = 0.023). These 

differences in community composition were demonstrated in the NMDS ordination 

whereby the largest differences visible are between matrix and forest communities 

(Figure 2.6). Surprisingly, the degraded forest communities were more similar to those 

of the forest reference site than the regenerating forest samples. Similarly, the degraded 

pasture samples more closely resembled the pasture reference samples in ordination 

space. The SIMPER analysis revealed that 19 species explained >90% of variation 

between degraded versus regenerating edge gradient sites. Included within this group 

that explained the majority of variation were the 13 most abundant species that had ≥13 

individuals per site, cumulatively contributing to 81% of variation between matrix 

degradation treatments (Table 2.3). 
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Figure 2.5 Unstandardised species richness (a) and rarefied richness with standardised sample abundance 

of n ≥ 21 (b) (mean ± 1 SE) across degraded and regenerating edge gradients. Symbols and lines as in 

figure 2.4. Missing values in (b) are due to sample abundances of < 21 being dropped from the rarefaction 

analyses. Overlapping points are offset for clarity.  
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Table 2.3 Output from the SIMPER analysis in PRIMER V6 indicating the amount of community 

dissimilarity explained by individual species between degraded and regenerating edge gradient sites. 

Mean dissimilarity is from a Bray-Curtis resemblance matrix with standard deviation and the percent 

contribution of each species to the overall site dissimilarity. † denotes species with ≥13 individuals. 

Species 
Mean 

dissimilarity 
Dissimilarity 

SD 
Contribution 

% 
Cumulative 

contribution % 

Onthophagus sp. 1
†
 9.41 1.01 16.20 16.20 

Onthophagus sp. 6
†
 8.63 0.59 14.86 31.06 

Onthophagus sp. 3
†
 8.35 0.90 14.37 45.43 

Onthophagus sp. 1
†
 3.01 0.80 5.18 50.62 

Latidrepanus caelatus
†
 2.84 0.59 4.89 55.50 

Diastellopalpus nigerimus
†
 2.39 0.81 4.11 59.61 

Sisyphus sp. 1
†
 2.38 0.35 4.09 63.71 

Onthophagus sp. 5
†
 2.33 0.52 4.01 67.72 

Onthophagus sp. 13
†
 2.30 0.62 3.96 71.67 

Onthophagus alternans
†
 1.72 0.48 2.96 74.63 

Onthophagus sp. 7
†
 1.68 0.71 2.89 77.52 

Onthophagus sp. 16 1.21 0.43 2.08 79.61 

Proagoderus elgoni
†
 1.21 0.39 2.08 81.69 

Onthophagus sp. 8
†
 0.95 0.56 1.63 83.32 

Onthophagus sp. 14 0.85 0.35 1.47 84.79 

Onitis sp. 1 0.83 0.27 1.43 86.22 

Proagoderus multicornis 0.82 0.55 1.41 87.63 

Onthophagus juvencus 0.75 0.36 1.28 88.92 

Catharsius dux 0.73 0.28 1.26 90.17 
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Figure 2.6 Non-metric multidimensional scaling ordination plot comparing dung beetle species 

composition between protected and unprotected forest edges, using a modified-Gower dissimilarity 

metric. Each point represents a baited pitfall trap sample taken from a given distance from the edge. Open 

symbols represent degraded sites and closed symbols represent regenerating sites. Forest and pasture 

reference sites are located at least 640 meters from the forest edge 

The shape of edge response functions in dung beetle community composition 

varied significantly with matrix restoration (Figure 2.7, Table 2.2). As might be 

expected, dissimilarity increased across forest-to-matrix edge gradients. However, 

matrix restoration did not appear to lead to a significant decrease in dissimilarity values 

for either matrix or forest assemblages. Instead, communities at regenerating edge 

gradients were found to gradually converge in compositional similarity with reference 

communities, similar to that seen in the degraded sites, which showed a rapid turning 

point in compositional change at 20m into the forest. Therefore, these sites actually 

showed greater similarity to the forest reference than the regenerating edge gradient 

communities further into the forest. 
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Figure 2.7 Dissimilarity of community composition (mean ± 1 SE) at edge gradient sampling points to 

forest interior communities across degraded versus regenerating edge gradients. Negative values on the x-

axis indicate forest sites. Symbols and lines as in Figure 2. Overlapping data points are offset for clarity. 

2.3.4 Adjacent matrix degradation alters within-species response magnitude  

Overall, 65% of the 35 species collected had higher total capture rates in regenerating 

compared to degraded edge gradient sites. Out of the total 35 species, 13 had sufficient 

numbers of individuals and distributions across samples to test species responses to 

edge effects along degraded and regenerating edge gradients, 11 of which had higher 

total capture rates across regenerating sites. Fully 12 out of the 13 species tested 

responded significantly to edges (Table 2.2) and 10 of these species had significantly 

different response magnitudes between the degraded and regenerating edge gradients. 

For example, Onthophagus sp.2 displayed sigmoidal responses across both regenerating 

and degraded edges, with capture rates declining dramatically from forest to matrix 

habitat, but there was a 79% decrease in edge magnitude in the degraded edge response 

function when compared to that of the regenerating edge response function (Figure 2.8). 

In contrast, 8 out of the 13 species tested for continuous responses fit different response 

functions depending on edge protection. For example, Diastellopalpus nigerrimus 
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displayed a sigmoidal response in relative capture rate across regenerating edges 

compared to a linear response at degraded edges (Figure 2.8). 
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Figure 2.8 Square root-transformed capture rate of dung beetles (mean ± 1 SE) for the eight species of 

dung beetles that explained the most variation in community compositional changes between regenerating 

and degraded edge gradients. Species are (a) Onthophagus sp.2, (b) Diastellopalpus nigerimus, (c) 

Onthophagus sp.1, (d) Onthophagus sp.3, (e) Onthophagus sp.6, (f) Onthophagus sp.5, (g) Latidrepanus 

caelatus and (h) Onthophagus sp.13. Symbols and lines as in figure 2.4. Overlapping data points are 

offset for clarity. 

2.4 DISCUSSION 

In highly degraded and fragmented landscapes, edge effects are a dominant driver of 

biodiversity loss in natural forest remnants (Ewers et al. 2007, Banks-Leite et al. 2010) 

and without measures to mitigate such effects, remnant populations face gradual decline 

toward extinction (Laurance et al. 2011). In remnant Afromontane forests in Nigeria, I 
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found dramatic evidence of the negative impacts of human encroachment, livestock 

overgrazing and uncontrolled burning in the adjacent matrix on dung beetle community 

responses at remnant forest edges. Over 90% of species responded strongly to edge 

effects, with up to an order of magnitude decline in dung beetle abundance from the 

forest to matrix habitats. These results support previous findings that dung beetle 

communities are highly sensitive to anthropogenic disturbances (Nichols et al. 2007) 

and provide sobering evidence that external anthropogenic threats can have strong 

impacts on within-patch community dynamics. Attempts to mitigate these threats 

through the exclusion of cattle grazing and fires at the Ngel Nyaki forest reserve were 

shown to have equally dramatic positive effects on dung beetle communities. Less than 

three years after fencing off relatively small areas of matrix habitat to remove 

threatening processes, dung beetle communities in adjacent forest edges showed an 

overall 53% increase in total abundances within these restoration zones. Furthermore, 

this restoration effort has even led to the re-establishment of certain matrix specialist 

species that were otherwise absent in the unprotected degraded matrix. These findings 

suggest that through the mitigation of external anthropogenic threats adjacent to nature 

reserves, dung beetle communities are likely to respond strongly to such efforts. 

2.4.1 Cross-ecosystem impacts are driven by adjacent matrix condition  

Species composition underwent rapid turnover at the habitat edge regardless of matrix 

type. However, changes in community composition across edges differed markedly 

between the degraded and regenerating edge gradients. This is likely to be explained by 

differences in vegetative structure and anthropogenic disturbances across the two types 

of adjacent matrix. The degraded matrix had very low vegetative biomass, diversity, and 

stratification compared to the regenerating matrix (Campbell 2010). As a result, only 

certain species of dung beetles would be capable of persisting in the resulting higher 

temperatures and lower moisture levels of the degraded pasture. The absence of 

vegetative stratification would also prevent the local persistence of dung beetle species 

that use a ―perch-and-wait‖ foraging strategy (Hanski and Cambefort 1991, Howden et 

al. 1991). Furthermore, disturbance frequency (i.e. grass fires and cattle trampling) 

would limit degraded pasture communities to species that are highly mobile and can re-

colonize these areas quickly. Resource availability is also likely to differ largely 

between the two matrix types due to the exclusion of cattle grazing and thus cattle dung 
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deposited in the regenerating areas. Therefore, it is likely that species with large 

resource requirements would be unable to survive in the regenerating grasslands. 

Additionally, the unprotected pasture matrix is constantly subjected to trampling by 

grazing cattle which has been shown to significantly increase soil compaction (Martinez 

and Zinck 2004). This can have significantly detrimental impacts on dung beetle 

communities as only particular species can deal with higher levels of soil compactness 

when excavating nests (Navarrete and Halffter 2008).  

Perhaps the most striking result of this study is the disparity in capture rates and 

species composition of forest samples taken between regenerating and degraded edge 

gradients. With a 53% overall decrease in dung beetle capture rates in degraded forest 

samples, these findings suggest that anthropogenic disturbances occurring in the matrix 

are imposing offsite impacts on these forest communities. The increased abruptness and 

openness of the patch-matrix interface (Campbell 2010) is likely to be responsible for 

such offsite effects that would increase the severity of abiotic edge effect parameters 

such as wind disturbance, temperature stochasticity, and aridity (Didham and Lawton 

1999, Laurance et al. 2002). However, this leads to the question of why there is such a 

difference in community composition (i.e. relative abundances of species) as opposed to 

equal changes in abundance across species? In order to better understand such disparity 

between these species assemblages, it is necessary to disentangle the variable species 

responses within the community. 

2.4.2 Seven out of ten species are affected by adjacent matrix degradation 

Almost all continuous response functions tested for individual species were found to 

differ considerably between protected and unprotected edge gradients. These differences 

in species responses underscore the surprising differences in community wide response 

functions between the two types of edge gradients used in this study. This is 

demonstrated by the 13 species that explained >81% of overall community dissimilarity 

between levels of edge protection, where 10 of these 13 species displayed striking 

differences in edge responses between protected and unprotected habitat edges.  

For example, Onthophagus sp.2, Onthophagus sp.1, and Diastellopalpus 

nigerrimus all responded with a higher magnitude of edge response in the regenerating 

edge gradients due to much higher abundances within the regenerating forest zones. 
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These differences in response functions could be explained by these species‘ variable 

tolerances or habitat preferences. For example, particular microhabitat requirements 

vary between species such as the need for a dense understory for perch-and-wait 

foraging strategies often used by smaller dung beetles (Hanski and Cambefort 1991). 

Another possibility is that because desiccation resistance for invertebrates can be highly 

variable across species due to various morphological characteristics, differences 

between these protected and unprotected forest edges in temperature and humidity may 

place physiological constraints on particular species with lower resistance (Chown et al. 

2002). The microclimatic conditions within the degraded habitats are likely to be more 

severe (Denyer et al. 2006) and therefore these physiological constraints lower the 

survival of specific sensitive species in these areas, resulting in lower capture rates of 

these species. This exemplifies the fact that until variability in species specific 

responses are taken into account, patterns in community structure cannot be well 

understood. 

2.4.3 Adjacent matrix restoration presents additional off-site ecosystem benefits 

This study has provided evidence that the elimination of anthropogenic threats such as 

human encroachment, cattle grazing and frequent fires from the adjacent matrix can 

greatly determine the form and strength of edge responses of invertebrate communities. 

These results demonstrate that there is a strong influence of anthropogenic disturbances, 

such as cattle grazing and frequent fires, on the intensity of edge responses in dung 

beetle communities. In some cases, my results have even shown that pastoral species 

present in the regenerating matrix can be completely lost from degraded matrix habitats 

and many species that are almost extinct in degraded areas are persisting within areas of 

matrix restoration. Many studies have contributed to the convincing evidence for 

pervasive cross-ecosystem impacts that can penetrate far into natural habitat remnants 

(Didham et al. 1998, Laurance et al. 2002, Ewers and Didham 2008). Therefore, it has 

been suggested that these effects significantly decrease the effective reserve size 

(Laurance et al. 2011) supporting the argument that to mitigate these impacts, reserves 

need to be large and measures should be taken to reduce the effects of habitat edges by 

establishing regenerating buffers around forest reserves (Laurance 1991, Gascon et al. 

2000). 
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This study shows that through a simple concerted restoration effort where zones 

of adjacent matrix habitat are protected from intensive cattle grazing and fires, this can 

lead to rapid and dramatic responses in invertebrate communities. Severe anthropogenic 

threats from intense land-use practices are highly common throughout Africa and much 

of the developing world where these processes often go unchecked and occur in close 

proximity to natural forest remnants (Hurault 1998, Oates 1999, Kotze and Samways 

2001). With the backdrop of severe human land-use impacts in Afromontane forest 

systems, matrix habitat restoration adjacent to forest reserves presents great optimism 

for the conservation of dung beetle communities. 
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Chapter 3: Trait determinants of dung beetle 

species responses to land-use change 

3.1 INTRODUCTION 

Land-use change is the most important driver of population decline and loss of species 

worldwide (Tilman et al. 1994, Harrison and Bruna 1999, Sala et al. 2000, Foley et al. 

2005). The resulting patterns (and processes) of biodiversity loss and community 

change are patently non-random, with some species clearly more affected than others 

(Henle et al. 2004, Ewers and Didham 2006a). This raises the question of whether the 

large variability observed in species responses to land-use change is simply 

unpredictable, or whether there might be certain species traits that can explain 

generalised patterns of species responses to global environmental change. In an attempt 

to move beyond this apparent idiosyncrasy of species responses and develop a more 

predictive understanding of which species are at greatest risk and why, research has 

more recently been targeted at the trait determinants of species sensitivity to 

environmental change.  

Specific traits that have been identified as the most important determinants of 

species‘ sensitivity to environmental change include body size, dispersal ability, niche 

breadth, trophic level, and rarity (Henle et al. 2004, Ewers and Didham 2006a). For 

example, body size and fecundity were found to explain the large variation in extinction 

proneness across different avian families (Bennett and Owens 1997), whereas a study 

by Foufopoulos and Ives (1999) found habitat specialisation to be the strongest 

determinant of reptile extinctions under environmental change in the Mediterranean. 

However, Davies et al. (2000) found that rarity and trophic level explained extinction 

proneness better when looking at beetle species‘ responses to habitat fragmentation, and 

another study also found a strong effect of dispersal ability on beetle persistence in 

degraded landscapes (Driscoll and Weir 2005). These examples demonstrate that traits 

can be effective predictors of species responses to environmental change, but that the 

most important explanatory variables differ markedly in different contexts.  

Implicit in these arguments for specific trait-determinants of species responses to 

disturbance is the concept that removal of these threatening processes through 
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conservation management and habitat restoration will lead to the re-establishment of 

those species that were initially most affected. More precisely, the inference is that the 

trait determinants of community disassembly should be the same determinants of 

species recovery following the exclusion of threatening processes. However, to my 

knowledge this inference has never been tested. 

A growing focus in restoration ecology has been to identify trait determinants of 

community reassembly to better understand the potential trajectories of restoration 

efforts (Funk et al. 2008). For example, Kirkman et al. (2004) found that dispersal 

limitation in ground-cover flora was a strong determinant of species recolonisation. 

Additionally, a study by Summerville et al. (2006) demonstrated that Lepidopteran 

flight behaviour and feeding preference predicted the propensity for species to 

recolonise disturbed prairie lands. These examples support the possibility of utilising 

trait-based theory to predict potential restoration outcomes for community composition. 

However, most studies attempting to quantify trait-determinants of community 

responses to environmental change tend to assume a fixed-trait perspective. That is, 

overall trait values are calculated from a subsample of individuals and extrapolated to 

the entire species across all geographical contexts and are then used to explain 

variability in species‘ responses to environmental change (e.g. Gibb et al. 2006, Lebrija-

Trejos et al. 2010, Williams et al. 2010, Diamond et al. 2011, Pakeman 2011). As a 

result, there has been high variability across studies in identifying which traits are 

important determinants of species responses to anthropogenic disturbances.  

The large amount of variability in the apparent significance of certain traits as 

determinants of species responses may be attributed to phenotypic variability within 

species and individual level trait plasticity. Phenotypic variation within species has been 

shown to increase more dramatically in response to ―anthropogenic‖ selection pressures 

with the potential for large and rapid shifts in trait expression within species in an 

ecological timescale (Carroll et al. 2007, Hendry et al. 2008). Such significant 

phenotypic variability within species in anthropogenic landscapes has almost certainly 

led to contradictory findings and may continue to prevent the development of a common 

predictive framework for trait determinants of community assembly (Webb et al. 2010). 

Therefore, for the advancement of trait-based research in community responses to 

global environmental change, studies should take into account trait measurements at the 
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individual level across populations in order to accurately quantify trait distributions at a 

community scale (Messier et al. 2010, Webb et al. 2010).  

Invertebrate populations arguably present some of the most striking examples of 

trait variation and phenotypic plasticity of any taxa (Nylin and Gotthard 1998, Carroll 

2007, Chown and Gaston 2010). This is exemplified in many examples such as the 

extremely rapid response of insect pest populations to insecticide in agroecosystems. 

Studies looking at pest resistance to agrochemicals have demonstrated significant 

variation in morphological and life-history traits, such as longevity and wing 

morphology, as a result of both evolutionary and plastic responses (McKenzie and 

Batterham 1994, Hoffmann et al. 2002). Other anthropogenic processes are also likely 

to drive shifts in insect species traits. For example Scharf et al. (2009) demonstrated that 

the degree of plasticity of Neuropteran morphology differed between wing loading and 

body size but both measures were found to respond strongly to climatic changes. 

Additionally, Parker et al. (2010) demonstrated remarkable evolutionary responses over 

ecological time scales in honey bees to climate variation as a result of human facilitated 

global introductions. Equally striking phenotypic variation has also been documented in 

insect populations in response to anthropogenic habitat degradation. For example, 

butterflies have been found to vary markedly in life-history traits (Karlsson and Van 

Dyck 2005) and dispersal power (Norberg and Leimar 2002) as forest fragmentation 

acts as a strong ecological filter by selecting for specific traits (Webb et al. 2010).  

Despite the overwhelming evidence for high phenotypic variability and plasticity 

in invertebrate species, there is little knowledge of whether this within-species 

variability might mask (or perhaps even drive) variation in species-level responses to 

global environmental change. The aim of this study is to identify key morphological 

trait ‗mediators‘ of community structural responses to edge effects and adjacent matrix 

restoration. To test these questions, I used dung beetle communities in a severely 

degraded Nigerian Afromontane landscape as a focal system. Dung beetles are an ideal 

invertebrate group for studying trait-dependent community responses to anthropogenic 

land-use change due to their high abundance, diversity, and variance in traits (Nichols et 

al. 2007, Larsen et al. 2008). Additionally, dung beetles are especially sensitive to 

anthropogenic disturbances and respond very rapidly to environmental changes, thus 

increasing the likelihood of detecting clear responses to environmental change (Klein 

1989, Davis et al. 2001, Nichols et al. 2007). Therefore, this taxonomic group is ideal 
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for identifying the role of individual trait plasticity in shaping species-level responses in 

trait composition to anthropogenic threats. 

3.2 METHODS 

3.2.1 Study design 

The study was conducted in Afromontane forest at Ngel Nyaki forest reserve, located 

on the Mambilla Plateau near the south-eastern border of Nigeria (for a detailed 

description of the study site see Chapter 2). To quantify trait-dependence in dung beetle 

species responses to matrix restoration, I measured variation in the capture rates of dung 

beetle species along three replicate edge gradients in both degraded sites and 

regenerating sites (six sites in total), and tested the degree of association between 

species responses and species traits. Degraded sites were located in areas that were fully 

exposed to anthropogenic threats (such as intensive cattle grazing and fires), compared 

to the regenerating sites that were located in areas where these threats were entirely 

excluded for two to three years. Each replicate edge gradient consisted of 13 sampling 

points at fixed distances from the edge on a doubling scale from the forest to grassland 

matrix habitat (-160, -80, -40, -20, -10, -5, 0, 5, 10, 20, 40, 80, and 160 meters from the 

edge, where negative values represent forest samples) (see Chapter 2 for full 

experimental design). Traps were placed no closer than 50 meters apart in order to 

maintain independence between traps, as this distance is just beyond that over which 

dung beetles can detect dung (Larsen and Forsyth 2005). This method of trap placement 

therefore controlled for potential sampling bias from trap interference and spatial 

autocorrelation (Baker and Barmuta 2006).  

3.2.2 Sampling, sorting, and identification of dung beetles 

All sampling of dung beetle communities was conducted at Ngel Nyaki forest during 

the late rainy season from October 4
th

 to November 29
th

 2009. I used pig dung-baited 

pitfall traps (see Chapter 2 for trap design) placed at each distance across the edge 

gradient for two consecutive 24 hour periods (i.e. two samples pooled into one 48 hour 

sample). All dung beetles in the subfamily Scarabaeinae were sorted to genus and 
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assigned to initial ‗morphospecies‘ groupings based on consistent morphological traits. 

Formal species identification was then undertaken by Rowan Emberson at the Lincoln 

University entomology collection and Frank Krell at the Denver Natural History 

Museum. For detailed sampling methods see chapter 2. 

3.2.3 Measurement of individual specimen traits 

To quantify variation in functional-trait dispersion and trait means between 

communities along regenerating and degraded edge gradients, five morphological traits 

were measured for individual dung beetle specimens within each species: body mass, 

body size, body condition index, wing area and wing loading, as described in detail 

below.  

In order to facilitate trait measurements, individuals from each species in each 

pitfall sample were pinned using standard stainless steel (#2) entomological pins. All 

pins were individually pre-weighed for each beetle specimen to the nearest 0.001 mg 

using a Mettler Toledo UMX2 ultrafine microbalance. The absolute range of variation 

in pin mass was 4.029 mg (45.970 – 49.999 mg), which far exceeded the mass of the 

smallest beetle specimen (0.227 mg). For any given trap sample, all individuals were 

pinned for species that were represented by less than 20 individuals (in that sample), but 

for logistical reasons this was not possible for very abundant species that had more than 

20 individuals (in that sample). For these abundant species, a random subsampling 

procedure was employed to reduce the number of individuals pinned. I placed all 

individuals of the abundant species into a Petri dish marked with eight equal radiating 

segments, and spread them approximately evenly across the dish. Each segment was 

assigned a number from one to eight and a random number generator was used to pick a 

segment from which to subsample beetles. All individuals in that segment were pinned 

and measured. If the total number of beetles from the first randomly-drawn segment 

was less than 20, all beetles in the next segment in a clockwise direction were also 

pinned and measured, and so on until more than 20 individuals were obtained. The 

nature of the subsampling procedure meant that often substantially more than 20 beetles 

were pinned from some very abundant species in some trap samples. 
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3.2.3.1 Component traits: wing area, pronotum width, and body mass 

Immediately after pinning, when specimens were still moist and flexible, the left hind 

wing of each specimen was removed for morphometric analysis using fine forceps. The 

wing was then mounted and spread open on a microscope slide using glycerine jelly 

with 2 % phenol as a preserving agent. This mounting agent solidifies at room 

temperature, therefore the slide was kept warm on a heating element while the wing was 

being mounted, and was then cooled immediately after a coverslip had been placed over 

the wing. Subsequently, a digital image was taken of each wing using a Nikon D40 SLR 

camera with a macro lens, mounted at a fixed height directly above the slide. A 1 cm 

scale bar was placed next to the slide-mounted beetle wing in order to calibrate wing 

measurements.  

Digital images were processed using Adobe Photoshop CS2 in order to obtain a 

measure of wing area. This was achieved by digitally clipping out the wing from the 

image background and then digitally filling in the wing area with black on a white 

background. In order to standardise the point at which each wing was cut at the base, all 

images were clipped in a plane bisecting homologous vein junctions, as shown in Figure 

3.1. The image file was then saved as a bitmap and imported into Image J software to 

calculate total image area from the scale bar, and proportion of total area represented by 

black pixels. This gave wing area in mm
2
 for one wing which was then multiplied by 

two for an approximation of absolute wing area per beetle.  

 
Figure 3.1 Example of the left hind wing of an individual male Onthophagus sp.1. Red arrows mark the 

two vein juncture landmarks used to orient a planar cut off point (black dashed line) for standardisation of 

area measurements. 
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Body size was measured using the width of the pronotum as a simple linear 

surrogate of overall size. This measure was the most suitable because other measures 

such as body length can vary idiosyncratically in beetles due to the expansion or 

contraction of the soft tissues at arthrodial joints. Furthermore, pronotum width in dung 

beetles has been found to be positively correlated with female reproductive output and 

mating success in males (McLain 1991, Hunt and Simmons 2001, Kotiaho et al. 2003) 

and is therefore a useful indirect measure of beetle fitness.   

Once individuals were pinned, and the left wing was removed, they were stored in 

a cool, dark room for a minimum of four months to air-dry. Specimens smaller than 300 

mg were put in a drying oven at 60 °C for two hours to achieve complete drying and 

immediately weighed to the nearest 0.001 mg as described above. The required drying 

time was established by repeatedly re-weighing a test set of beetles in the drying oven 

until the specimens reached a constant mass. For all specimens larger than 300 mg, 

individual drying times were continued beyond two hours at 60° C, until each specimen 

reached a constant mass. The mass of each beetle was then calculated by subtracting the 

pre-recorded mass of that individual pin from the total mass of the beetle plus pin after 

drying. For trap samples in which some individuals of abundant species were not pinned 

(i.e. were not in the subsample selected for pinning), the total mass per abundant species 

was calculated from the mean measured mass of individuals of that species in that 

particular sample and multiplied by the total number of individuals of that species found 

in that sample. Across species, these estimates were then used to calculate total dung 

beetle mass per trap sample.  

3.2.3.2 Aggregate traits: body condition index and wing loading   

A body condition score was calculated as body mass divided by body size which can be 

used as a surrogate for individual fitness. Kotiaho et al. (2001) broadly referred to 

condition as the pool of internal resources available for utilisation. In this study I use 

this definition as a body condition index whereby condition = body mass 

(mg)/pronotum width (mm), giving a more comprehensive and direct measure of 

available resources (i.e. fat stores, food, eggs, etc.) between beetles than pronotum 

width alone. 

Wing loading was calculated as absolute wing area divided by body mass (Dudley 

2000). While absolute wing area explains some dispersal characteristics in insects, wing 
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loading provides a more comprehensive measure as it incorporates effects of variation 

in muscle mass and load, which also determine flight capacity (Dudley 2000, Berwaerts 

et al. 2002). As removal of one wing of each specimen to measure wing area inherently 

reduces measured total body mass, my wing loading calculation will be a slight 

underestimate in all cases. However, I assume that the degree of underestimation will be 

randomly distributed and consistent across treatments.  

3.2.4 Statistical Analysis 

3.2.4.1 Species responses to degraded and regenerating forest edges 

Continuous edge response functions were quantified for the relative capture rates of 

individual dung beetle species across patch-to-matrix gradients for each of the two 

levels of habitat edge condition (degraded and regenerating), using the statistical 

approach of Ewers & Didham (2006b). Using a form of the general logistic model, I 

determined the best-fit edge model out of five models of increasing complexity (Ewers 

and Didham 2006). For specific model fitting methods see chapter 2. Edge response 

functions were only determined for species that had more than n ≥ 13 individuals 

captured in total (i.e. species sufficiently abundant to have the potential to be distributed 

across all 13 distances from edge). 

3.2.4.2 Trait determinants of species responses 

First, I tested for the potential trait determinants of species‘ responses to edge effects at 

degraded forest edges. To do so, I conducted multiple regression models with species‘ 

trait means as predictors and species‘ sensitivity to edge effects as response variables. I 

used edge magnitude (the disparity in relative capture rates between matrix and forest 

habitat) and edge extent (the spatial distance over which edge responses can be 

detected).  Edge extent was approximated by the number of sampling distances (out of 

39) that species were absent across all degraded edge gradient sites (Larsen et al. 2008) 

and analysed using a logistic generalised linear model with quasi-likelihood distribution 

(to account for overdispersion). Analysis of the trait determinants of species responses 

was only conducted for species that were sufficiently abundant (n ≥ 13).  

Second, in order to test the potential trait determinants of species responses to 

matrix restoration, I ran a multiple regression with trait means for each species as 
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predictors and species‘ sensitivity to matrix restoration as the response. This was done 

by developing two measures that reflected differential responses of species between 

edge gradient treatments (i.e. degraded and regenerating sites). Firstly, I measured the 

difference between degraded and regenerating sites in proportion of all samples in 

which species were present (i.e. species distribution). This measure gives an 

approximation of the difference in the extent of edge effects between the two land-use 

treatments. Secondly, I quantified the difference in the magnitude of edge response 

between degraded and regenerating edge response functions of individual species. In 

contrast to the first measure, change in edge magnitude gives a measure of the disparity 

in relative capture rates of species along the edge gradient (Ewers and Didham 2006b). 

These values were then used as response vectors in multiple regression models in the R 

environment. To determine the trait means that best predicted variation in species 

responses to matrix regeneration, I used AIC (Akaike information criterion) scores for 

maximum likelihood model selection to determine the model of best fit.  

3.2.4.3 Testing for a community-wide shift in trait means and functional trait dispersion 

In order to determine if trait-mediated effects on species‘ distributional responses were 

strong enough to drive a shift in community trait means, I quantified continuous edge 

response functions for trait means of each community between degraded and 

regenerating matrix edge gradients. Furthermore to test if habitat degradation or 

regeneration near forest edges resulted in a community-wide shift in functional trait 

dispersion, I calculated a distance-based metric of trait dispersion ‗FDis‘ (Functional 

Dispersion) using the ―FD‖ package in the R language environment (Laliberte and 

Legendre 2010). The FDis metric takes into account multiple trait characteristics of 

organisms within a community and measures the distance of each species to the trait-

mean centroid of the whole community. It is a multivariate adaptation of weighted mean 

absolute deviation, where the weighting is given by the relative abundance of species 

(Laliberte and Legendre 2010), and is thus a weighted measure of trait variation or 

complementarity among species in a given community. To calculate FDis, I first 

compiled a trait matrix with mean trait values for each species, then calculated Gower 

dissimilarity coefficients among species trait complexes using the ―gowdis‖ function. 

This was used to determine multivariate dispersion of assemblages based on the Gower 

dissimilarity coefficients weighted by species‘ relative abundances. I tested whether 

functional dispersion varied significantly over patch-to-matrix edge gradients in 
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degraded versus regenerating sites using the statistical approach to fitting continuous 

edge response functions described above.  

3.2.4.4 Trait-plasticity in response to edge effects and matrix restoration 

To determine levels of species‘ trait plasticity, continuous edge response functions were 

used to quantify variability in the distribution of traits within species. Forest-to-matrix 

edge response functions were compared between degraded and regenerating sites. This 

analysis was carried out on the 13 most abundant species of which there were ≥13 

individuals, using the statistical approach described above for fitting continuous edge 

response functions. 

3.3 RESULTS 

3.3.1 Dung beetle responses to forest regeneration are highly variable among 

species 

A total of 4705 dung beetles comprising 35 species in 11 genera were captured across 

all sites. In total, 3045 individuals were subsampled for the measurement of 

morphological traits (Table 3.1). A high level of variation was found in trait values 

among species with greater than three orders of magnitude change in mean body mass 

across species.  

Species-level analyses of relative capture rates revealed that, across the 13 species 

that provided sufficient numbers for testing edge response functions, 12 out of the 13 

species responded significantly to edges. Among these 12 species, clearly defined 

habitat preferences were revealed (i.e. forest, edge, or matrix habitat preference) with 

high variability in edge response functions (Figure 3.2). Of particular interest were the 

differences between regenerating and degraded edge responses among species (Figure 

3.2) where 83% of the 12 species that responded significantly to edge effects had 

significantly different response magnitudes between the degraded and regenerating edge 

gradients. 
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Table 3.1 Dung beetle species collected with their respective trait values and number of individuals 

captured. Trait values are the arithmetic mean for each species calculated from all measured individuals 

and extrapolated to the total collection (all but two singleton species that were damaged). BCI (body 

condition index) = body mass / pronotum width. Wing loading = body mass / wing area. Values under 

‗Individuals measured‘ are given as number of subsampled specimens out of the total number of 

individuals in parentheses.  

Species 
Body mass 

(mg) 

Pronotum 

width (mm) 

Wing 

loading 
BCI 

Individuals 

measured 

Caccobius sp.1 

 

1.197 

 

2.053 

 

0.083 

 

0.579 

 

4 (4) 

Caccobius sp.2 1.159 2.031 0.122 0.571 1 (1) 

Catharsius dux 702.938 18.940 0.708 37.040 4 (5) 

Catharsius sp.2 78.211 9.566 0.257 8.175 3 (3) 

Catharsius sesostris 136.363 12.274 0.291 11.110 1 (1) 

Diastellopalpus 

nigerimus 
226.960 12.089 0.987 18.627 64 (64) 

Latidrepanus caelatus 2.786 2.528 0.192 1.098 40 (40) 

Heliocopris myrmidon 1543.067 25.725 0.850 59.868 3 (3) 

Liatongus arrowi 15.674 4.503 0.376 3.481 1 (1) 

Neosisyphus armatus 19.178 4.636 0.459 4.095 4 (4) 

Onitis sp.1 214.119 12.786 0.844 16.680 10 (10) 

Onitis sp.2 133.414 10.596 0.838 12.591 1 (1) 

Onthophagus sp.1 29.861 6.022 0.342 4.920 181 (181) 

Onthophagus sp.2 7.737 3.615 0.237 2.122 1176 (2013) 

Onthophagus sp.3 2.910 2.757 0.161 1.058 1006 (1787) 

Onthophagus sp.4 3.018 2.715 0.107 1.111 4 (4) 

Onthophagus sp.5 2.597 2.529 0.192 1.005 22 (22) 

Onthophagus sp.6 2.172 2.468 0.145 0.871 118 (161) 

Onthophagus sp.7 5.187 3.048 0.161 1.666 23 (23) 

Onthophagus sp.8 10.681 3.885 0.293 2.706 18 (18) 

Onthophagus juvencus 7.928 3.656 0.222 2.167 5 (5) 

Onthophagus alternans 3.866 3.204 0.190 1.206 14 (14) 

Onthophagus sp.11 0.447 2.958 0.026 0.176 2 (2) 

Onthophagus rufonotatus 21.990 4.989 0.552 4.385 4 (4) 

Onthophagus sp.13 3.850 2.905 0.196 1.318 30 (30) 

Onthophagus sp.14 3.087 2.723 0.202 1.132 6 (6) 

Onthophagus sp.15 11.207 4.478 0.169 2.508 7 (7) 

Onthophagus sp.16 11.220 3.777 0.390 2.949 9 (9) 

Onthophagus sp.18 2.089 2.561 0.147 0.816 1 (1) 

Onthophagus sp.19 1.453 2.693 0.087 0.541 2 (2) 

Onthophagus sp.21 3.660 4.062 0.086 0.901 1 (1) 

Proagoderus elgoni 53.673 7.702 0.627 6.829 13 (13) 

Proagoderus multicornis 60.012 7.895 0.564 7.512 9 (9) 

Sisyphus sp.1 2.740 2.720 0.167 1.000 30 (30) 
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Figure 3.2 Spatial distribution of dung beetle occurrences at degraded (brown) versus regenerating 

(green) edges, for the 13 most abundant species (N ≥ 13). Thick coloured bars indicate the interquartile 

range of species‘ abundances, and thin horizontal lines indicate distributional range in relation to distance 

from forest edge. Negative values on the x-axis indicate forest sites. Thumbnail graphs to the right display 

statistically fitted edge response functions for capture rates of each species at degraded and regenerating 

edges. NA indicates no species occurrence. 
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3.3.2 Variability in species responses are partially explained by species trait means 

Regression analyses revealed that the relative distributions of species (proportion of 

samples that a given species was absent from) across degraded edge gradient were not 

explained by species traits (n = 13, P > 0.05 for all trait predictors). Likewise, species 

traits were not found to significantly determine magnitude of edge responses of species 

in degraded habitats (n = 13, P > 0.05 for all trait predictors).     

Analysis of trait determinants of species responses to habitat regeneration found 

that the difference in magnitude of edge response functions between degraded and 

regenerating edge gradients were not explained by variation within species‘ traits (n = 

13, P > 0.05). However, species‘ trait means were found to determine differences in 

edge extent (the distribution of species across edge sampling distances) between 

degraded and regenerating edge gradients. In particular, wing loading had a negative 

effect on distributional differences in species between levels of matrix condition, 

whereby species with lower wing loading were found more frequently in regenerating 

sites (F2, 10 = 17.88, P < 0.01). In contrast, I found a positive effect of body condition 

index (BCI) on the difference in species distributions (F2, 10 = 16.51, P < 0.01) whereby 

beetles with a low BCI were found to be more evenly distributed across all habitats 

compared to beetles with high BCI.   

3.3.3 Habitat regeneration drives a community-wide shift in traits across edges 

Despite only limited evidence of species-level trait determinants of variation in the edge 

response functions of individual species across degraded and regenerating edges, there 

were highly-significant shifts in community-level weighted trait mean values across 

edges for all dung beetle traits measured (Table 3.2). Perhaps the most striking response 

was the large difference in edge response functions in community-weight trait values 

between the degraded and regenerating habitat edge gradients. Community weighted 

trait means varied in opposite directions across the forest-to-matrix habitats depending 

on adjacent matrix restoration (Figure 3.3). Community means for body mass, pronotum 

width, wing loading, and body condition index all significantly decreased from forest to 

regenerating matrix habitat, compared to degraded edge communities which displayed 

substantially higher community-weighted trait mean values in the matrix (Figure 3.3).
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Table 3.2 AIC scores obtained from the edge function fitting procedure for models of increasing complexity (null, linear, exponential, logistic, and unimodal) for both 

degraded and regenerating edge gradients. Response codes stand for functional dispersion (FDis), body mass (BM), pronotum width (PW), wing loading (WL), and body 

condition index (BCI). AIC scores in bold indicate model of best fit for a given response.    

 Degraded  Regenerating 

 Null Linear Exponential Logistic Unimodal  Null Linear Exponential Logistic Unimodal 

Community            

BM 1326.96 1328.096 NA 1171.268 1161.62  2816.973 2342.004 NA NA 2306.426 

PW 5672.508 5641.298 NA 5377.515 5505.456  11287.06 11089.97 NA 11052.37 11052.85 

WL -1941.59 -1956.63 NA -2111.8 -2054.17  -3844.75 -3952.66 NA NA NA 

BCI 7463.268 7418.689 NA 7220.919 NA  15176.13 15089.51 NA 15064.11 15081.93 

FDis -92.724 -93.43 NA NA -98.333  -144.615 -143.342 NA NA NA 

Onthophagus sp.1            

BM -43.546 -45.904 NA NA NA  -166.664 -166.628 NA -166.389 NA 

PW 60.425 58.697 NA NA 58.992  201.119 195.631 197.642 198.488 NA 

WL -74.248 -73.581 NA NA NA  -286.841 -284.875 NA NA NA 

BCI 170.605 168.953 NA 171.114 NA  421.699 422.848 NA NA 424.75 

Onthophagus sp.2            

BM -993.966 -1015.88 NA -1057.04 -1056.22  -1802.28 -1802.4 NA NA NA 

PW -129.978 -127.981 NA NA -126.018  276.643 276.864 NA NA NA 

WL -1817.73 -1838.67 NA NA NA  -3828.51 -3837.5 NA NA -3840.29 

BCI 955.973 929.653 NA 886.293 888.951  2183.082 2183.582 NA NA 2180.021 

Onthophagus sp.3            

BM -1486.62 -1490.23 NA NA NA  -2613.76 -2616.03 NA NA NA 

PW -397.617 -397.397 NA NA NA  394.417 393.768 395.768 NA NA 

WL -2677.4 -2677.4 NA NA NA  316.968 318.917 317.696 NA NA 

BCI -220.971 -223.177 NA NA NA  -4592.34 -4601.22 NA NA NA 

Onthophagus sp.5            

BM 0.762 NA NA NA NA  -0.69 -0.137 1.803 3.803 1.816 
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PW 5.233 7.11 8.637 NA NA  5.626 4.546 6.55 8.053 6.075 

WL -13.666 -11.666 NA NA NA  -31.891 -31.094 -29.233 NA -29.257 

BCI 8.216 10.212 NA 13.72 NA  20.234 20.404 NA 24.354 22.357 

Onthophagus sp.6            

BM -10.423 -9.132 -7.132 NA NA  -233.128 -231.213 NA NA -229.809 

PW -7.161 -9.208 -7.969 NA NA  -66.563 -64.763 NA NA NA 

WL -26.508 -29.452 NA NA NA  -515.103 -513.107 NA NA NA 

BCI 5.857 6.69 8.691 NA NA  40.898 42.759 NA NA 43.72 

Onthophagus sp. 7            

BM NA NA NA NA NA  2.935 4.67 5.884 NA 6.362 

PW NA NA NA NA NA  8.692 10.428 12.428 NA 12.283 

WL NA NA NA NA NA  -36.687 -34.73 -33.037 NA -32.865 

BCI NA NA NA NA NA  42.032 43.894 45.301 NA 45.579 

Onthophagus sp. 8             

BM -4.018 -2.037 NA NA -0.647  -26.508 -29.452 NA NA NA 

PW 14.547 16.207 17.355 NA 18.021  10.267 11.652 NA NA 11.567 

WL -21.867 -19.87 -19.846 NA -18.529  -24.746 -24.133 NA NA NA 

BCI 24.506 26.288 25.571 NA 27.425  14.559 16.342 NA NA NA 

Onthophagus sp. 10             

BM -12.326 -18.875 NA NA NA  NA NA NA NA NA 

PW -8.48 -6.652 NA NA NA  NA NA NA NA NA 

WL -31.75 -37.639 NA NA NA  NA NA NA NA NA 

BCI 1.188 -7.305 NA NA NA  NA NA NA NA NA 

Onthophagus sp.13             

BM NA NA NA NA NA  -55.8 -54.406 -52.406 NA -52.812 

PW NA NA NA NA NA  -12.353 -10.643 NA -6.743 NA 

WL NA NA NA NA NA  -108.017 -109.211 -107.211 NA NA 

BCI NA NA NA NA NA  -9.511 -9.391 -7.389 NA NA 

Diastellopalpus nigerimus            

BM -22.814 -22.452 NA -21.273 -23.141  -83.482 -84.057 NA -82.436 -84.023 

PW 36.17 38.168 NA NA 36.864  141.204 140.562 NA 144.328 NA 
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WL -13.112 -12.267 NA -9.871 -12.187  -43.723 -42.026 NA NA -42.854 

BCI 66.077 64.656 NA 65.615 NA  266.667 266.978 269.009 267.966 NA 

Drepanocerus sp.1             

BM NA NA NA NA NA  -23.914 -21.975 NA NA -20.091 

PW NA NA NA NA NA  -16.551 -15.502 NA NA -14.854 

WL NA NA NA NA NA  -115.824 -114.478 NA -110.677 -112.676 

BCI NA NA NA NA NA  9.791 11.625 NA NA NA 

Proagoderus elgoni            

BM NA NA NA NA NA  -3.184 -2.641 NA NA NA 

PW NA NA NA NA NA  19.442 19.394 NA NA NA 

WL NA NA NA NA NA  -7.822 -6.267 NA NA NA 

BCI NA NA NA NA NA  23.302 24.207 26.208 NA NA 

Sisyphus sp.1            

BM NA NA NA NA NA  -6.509 -4.647 -2.665 NA -2.81 

PW NA NA NA NA NA  -7.253 -7.755 -7.358 NA -7.491 

WL NA NA NA NA NA  -71.285 -69.309 -67.836 NA NA 

BCI NA NA NA NA NA  31.645 33.642 35.642 NA NA 
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Figure 3.3 Variation in community-weighted mean (± 1 SE) trait values for all dung beetle species 

(combined), across degraded (open symbols and dashed fitted lines) versus regenerating (closed symbols 

and solid fitted lines) edge gradients. Negative values on the x-axis indicate forest sites. Lines are the 

best-fit continuous edge response functions of five fitted models of increasing complexity. Overlapping 

data points are offset for clarity. 

Community-wide functional trait dispersion also differed significantly between 

degraded and regenerating edge gradients. Degraded habitat edges were found to have 

significantly higher community-wide trait dispersion in degraded matrix sites, whereas 

the functional dispersion of dung beetle communities did not differ significantly 

between forest and regenerating matrix sites following matrix restoration (Figure 3.4). 
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Figure 3.4 Variation in community-weighted mean (± 1 SE) functional dispersion (FDis) of dung beetle 

communities across degraded and regenerating edge gradients. Symbols and lines as in Figure 2. 

Overlapping points are offset for clarity. 

3.3.4 Environmental change drives within-species trait plasticity 

Of the 13 species that were selected for analyses (species with ≥13 individuals), nine 

displayed significant within-species variation in trait values across patch-to-matrix edge 

gradients for at least one or more of the four morphological traits measured. 

Distributions of body mass, pronotum width, wing loading, and body condition index 

values within species showed significant responses to edges depending on the species 

measured. For example, in 5 of the 13 species there was significant variability across 

habitat edges in body mass and BCI, and in 4 out of the 13 species there was significant 

variation in pronotum width and wing loading.  

Moreover, there were large differences in within-species trait values between 

degraded and regenerating edge gradients (Table 3.2). Seven out of the 13 most 
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abundant species had a sufficient number of individuals across both matrix treatments 

so that degraded vs. regenerating habitat comparisons could be made for within-species 

trait differentiation. Six of these seven species exhibited significant differences in 

within-species trait distributions at degraded versus regenerating edges (Table 3.2). This 

is clearly demonstrated by the most abundant species, Onthophagus sp.2, in which 

response functions fitted for trait distributions differed significantly between levels of 

matrix degradation (Figure 3.5).  
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3.4 DISCUSSION 

Due to the high variability in species responses to environmental change, a better 

understanding of traits that potentially mediate these responses is central to developing 

a predictive framework for measuring and monitoring the impacts of global change 

drivers on community structure (Henle et al. 2004, Webb et al. 2010). My results show 

that dung beetle species exhibit large differences in their responses to edge effects and 

the condition of the adjacent matrix. In particular, I found that morphological traits were 

able to explain variation in the responses of species to the off-site effects of restoration 

of the adjacent matrix habitat, even though these same species-level traits were weak 

predictors of species responses to edge effects at degraded sites. This brings to light an 

important issue whereby trait means provide weak explanations of species distributions, 

despite the very strong ecological filtering of community-weighted trait distributions, 

resulting in a shift in functional-trait dispersion. This indicates that—as demonstrated 

by the within-species trait plasticity responses found in this study—species exhibit high 

trait variability between individuals. Therefore, through the dismissal of this variability, 

predictive power and accuracy in trait-based research can be lost.  

3.4.1 Morphological traits predict responses in species distributions 

Continuous edge response functions measured for individual species‘ relative capture 

rates show that there are remarkable differences in the way species respond to edge 

effects. These effects were also highly dependent on the restoration of the adjacent 

matrix habitat. This is a clear indication that specific differences in species‘ 

characteristics determine their relative sensitivity to the off-site impacts of adjacent 

matrix condition. Results from the regression analyses on species occurrences showed 

that species‘ trait means do not appear to explain the spatial distributions of species in 

the degraded habitats. However, morphological traits were good predictors of species 

responses to the regeneration of degraded adjacent matrix habitat.  

In particular, species with lower wing loading were found to have larger 

differences in distributional range between degraded and regenerating edge gradient 

sites than species with higher wing loading. Increased wing loading is positively 

correlated with thoracic muscle mass per unit wing area and therefore often translates to 

increased flight and dispersal power in insects (Dudley 2000, Berwaerts et al. 2002). 
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Therefore, as 12 out of the 13 species tested showed broader spatial distributions and 

greater abundance in regenerating habitat, these results suggest that species with lower 

dispersal power (low wing loading) have higher persistence across regenerating than 

degraded habitats. On the other hand, beetles with high dispersal abilities are more 

likely to persist in degraded habitat where there are greater distances between suitable 

refuges within the matrix.  

The positive effect of body condition index on the difference in distributions from 

degraded to regenerating habitat edge gradients indicates that high body condition of 

dung beetles appears to confer higher sensitivity to the restoration of the adjacent matrix 

habitat. Body condition index is potentially highly correlated with fitness measures such 

as muscle mass per unit area or fecundity (Kotiaho et al. 2001) but—as this trait has 

been used as an overall species measure to compare between species—in this case it can 

be interpreted as a consistent species morphological trait. While the use of overall 

species trait values in these regression analyses gives a clear indication of the presence 

of trait-mediated community assembly in dung beetles, these results do not express the 

exact nature of ecological trait filtering. In other words, to better understand the 

importance of traits for structuring communities, it is necessary to determine where 

certain traits are more or less common. 

3.4.2 Edge effects drive responses in community-weighted trait distributions  

In order to develop an explicit understanding of the role that species traits play in 

determining community responses to environmental change, trait variation needs to be 

measured at multiple levels of a stressor as this can explain how ecological filters are 

acting on specific traits and thus determining the structure of communities (Webb et al. 

2010). In this study, the quantification of trait means from all individuals in each 

community revealed strong filtering effects of habitat edges on dung beetle trait 

composition. An especially striking result was the increase in magnitude change and 

difference in shape of edge functions in community trait means between degraded and 

regenerating habitat edge gradients. These results explicitly demonstrate that species 

traits are important determinants of the continuous responses of species to 

environmental change.  
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Across regenerating edge gradients I found a significant decrease in body mass, 

pronotum width, wing loading, and body condition index with increasing distance into 

the matrix. In contrast, while trait distributions responded similarly at degraded sites 

from the forest interior up to the edge, there was a significant increase in all four trait 

means within the degraded matrix habitat. Although the reasons remain speculative, 

these responses in trait composition are most likely explained by a combination of 

vegetative structure, resource availability, and climatic conditions. For example, larger 

dung beetles with higher wing loading are known to predominantly use a cruising flight 

foraging strategy whereby they remain airborne for longer periods of time until a dung 

pat is located, compared to perch-and-wait behaviour of smaller dung beetles in which 

they may wait in plant foliage until they detect dung nearby (Hanski and Cambefort 

1991, Davis 1999). With this in mind, in areas of regenerating matrix habitat, where 

there are dense shrubs and grasses with much more complex habitat stratification, 

smaller dung beetles would be expected to persist compared to degraded matrix, which 

lacks complex vegetation. Lack of vegetation would prevent smaller beetles with lower 

wing loading from using perch-and-wait foraging strategies, thus selecting for beetles 

that use the cruising flight strategy. Additionally, microclimatic conditions in the 

degraded matrix would also present higher temperature extremes and lower humidity 

that smaller-bodied exothermic organisms would be less tolerant (Chown et al. 2002). 

Lower body mass and wing loading might be selected for at habitat edges where 

vegetative density is very high, whereas larger bodied species are likely to prefer deeper 

forest habitat as it is more open, allowing for a cruising flight strategy. On the other 

hand, the avoidance of regenerating matrix habitat by larger dung beetles might be 

explained by a lack of dung resources in the regenerating matrix habitats. Cattle 

exclusion was maintained in these habitats as a restoration effort and therefore these 

areas had much lower levels of dung deposition. Therefore, these regenerating habitats 

were unlikely to support the especially large dung beetle species found in the degraded 

matrix habitat.  

Edge effects and the restoration of the adjacent matrix not only drove a 

community-wide shift in trait composition but also resulted in a shift in functional trait 

dispersion i.e. the divergence of traits within a community. Interestingly, functional 

dispersion was higher for communities in the degraded matrix habitat than those 

measured in both degraded and regenerating forest habitats. This response was most 
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likely driven by the somewhat haphazard occurrence of very large bodied dung beetle 

species with high wing loading in the degraded matrix. As these beetles were rarely 

found anywhere else, their presence would have greatly increased the relative functional 

dispersion for a given community.  

3.4.3 Within-species trait distributions scale up to community-level responses 

Community-weighted trait means provide a valuable indication of distributional 

responses of traits to anthropogenic drivers of change as they take into account both 

among and within-species trait variation. However, to better understand the processes 

that drive patterns in trait distributions observed at the community level, we need to take 

into account selective mechanisms acting at different scales (Messier et al. 2010). This 

study has shown that dung beetle communities are subject to strong trait filtering 

mechanisms across continuous ecological gradients from the population to community 

level. Also, the strong responses in trait distributions within species indicate that these 

dung beetle species are subject to selective processes across relatively small spatial 

scales. Interestingly, body size in dung beetles is mostly determined by parental 

resource provisioning during larval development, as opposed to genetic inheritance 

(Hunt and Simmons 2002). This suggests that, in habitats where species exhibited a 

reduction in body size, these responses are most likely a result of constraints on 

resource acquisition by adult beetles from previous generations. This would in turn 

affect other morphological traits, such as wing loading, as thoracic muscle development 

would be largely determined by early development of body size through resource 

provisioning and could therefore have larger-scale impacts on species dispersal 

throughout communities. 

In many cases, within-species trait distributions were found to differ considerably 

from community level trait distributions. This suggests that mechanisms driving trait 

selection at the population level differ from those acting at the community level. Within 

species, such mechanisms might be ontogenetic determinants of traits such as parental 

resource acquisition across different habitat quality determining body size in offspring. 

In contrast, at the community scale, random factors and interspecific species 

interactions may play a more important role in driving trait distributions across varying 

habitat quality. For example, fire disturbances in adjacent degraded matrix would most 
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likely drive local extinctions of resident dung beetle populations in these areas. 

Therefore community assembly in these degraded habitats is likely to be driven by 

species with higher dispersal power that can quickly recolonise these disturbed habitats, 

thus selecting for beetles with higher wing loading. Additionally, recolonisation may 

simply occur via random processes such as the incidental close proximity of certain 

beetles at a given time. These processes are likely to explain the large degree of 

variability in community level trait distributions in the highly disturbed matrix in 

degraded habitats, compared with the relatively consistent variation observed in species 

level trait distributions.        

3.4.4 Conclusions 

This study shows that, not only do communities respond strongly to habitat degradation 

through changes in relative abundances and capture rates of species, but also in the trait 

structure of community composition. From these results, there is strong evidence for the 

trait-mediated reassembly of dung beetle communities across habitat edges that are 

adjacent to regenerating matrix. Therefore, these results demonstrate the efficacy of a 

trait-based approach for understanding the possible trajectories of community 

reassembly in restoration efforts. 

Moreover, this study has also shown that through the restoration of adjacent 

matrix habitat, there are not only shifts in the taxonomic composition of dung beetle 

communities but also significant responses in the distribution of functional traits. As 

these traits determine the way in which beetles can utilise resources in their 

environment (de Bello et al. 2010), such a community-wide shift in functional traits has 

important implications for ecosystem functioning in degraded habitats.   
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Chapter 4: The importance of ‗response‘ and 

‗effect‘ trait covariance in ecosystem responses to 

environmental change 

4.1 INTRODUCTION 

Of the many detrimental anthropogenic processes, land-use change is the greatest threat 

to global biodiversity (Sala et al. 2000, Foley et al. 2005) and therefore is likely to 

impose severe impacts on the structure and resilience of communities. As a result, 

numerous studies have investigated the impacts of different aspects of land-use change 

on biodiversity loss and compositional responses (Fleischner 1994, Turner 1996, 

Hansen et al. 2005). However, not all species exhibit the same responses to 

environmental stressors, and these responses can be strikingly context dependent, 

resulting in seemingly unpredictable changes in community structure following 

disturbances (Ewers and Didham 2006a). In an attempt to move beyond the apparent 

idiosyncrasies in community responses to land-use change, many studies have adopted a 

trait-based approach in order to better explain the variability observed in these 

community responses.  

Many traits have been identified as important determinants of how specific 

species respond to environmental stressors, including morphological, behavioural, and 

life-history traits (Henle et al. 2004). Five species traits, in particular, have been 

suggested as the most important determinants of species response dynamics: trophic 

level, dispersal ability, body size, niche breadth, and rarity (Ewers and Didham 2006a). 

At the community level, the result is an ‗ecological filtering‘ process, whereby the non-

random loss of species that are particularly sensitive to disturbance alters the trait 

composition of communities (Webb et al. 2010). For example, Driscoll & Weir (2005) 

found that flightless beetle species (conferring poorer dispersal ability) were more 

susceptible to habitat fragmentation, resulting in proportionately higher numbers of 

winged beetles in agricultural habitats. Another study by Larsen et al. (2008) found that, 

following the fragmentation of continuous rainforest in Venezuela, large-bodied species 

that also had high dispersal ability were able to persist in the landscape, but only in low 

numbers among smaller fragments due to the large habitat area requirements associated 
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with a large body size. If the trait composition of ecological communities is likely to 

change following anthropogenic land-use change, this change is also likely to have 

impacts on ecosystem functioning mediated by these communities.  

Growing concern over adverse ecosystem responses to global environmental 

change has provoked extensive effort toward understanding the mechanistic 

determinants of the loss of associated ecosystem processes (Naeem and Wright 2003). 

From this work, significant advances have been made in understanding the causal and 

correlational links between biodiversity and ecosystem functioning (Huston 1997, van 

der Heijden et al. 1998, Loreau et al. 2001). Even though there has been considerable 

debate over the relative importance of qualitative (i.e. species identity) versus 

quantitative (i.e. species richness or absolute abundance) drivers of ecosystem function, 

species‘ traits have been identified as an undeniably important determinant of 

ecosystem processes (Chapin III et al. 2000, Larsen et al. 2005, Hillebrand and 

Matthiessen 2009, de Bello et al. 2010). Many studies have shown that knowledge of 

community structure and associated trait composition can accurately explain rates of 

ecosystem processes (Didham et al. 1996, Savage et al. 2007, de Bello et al. 2010). 

These findings point to the importance of measuring species‘ traits in studies attempting 

to quantify functional consequences of global environmental change.  

A species‘ traits can have varying degrees of influence on the impact which that 

species has on its surrounding ecosystem. The vast body of literature supporting the 

relative effects of species traits on ecosystem functioning has predominantly focused on 

vascular plants (> 55%) and terrestrial invertebrates (> 20%), with an especially large 

focus on nutrient cycling processes (de Bello et al. 2010). For example, Garnier et al. 

(2004) demonstrated that a suite of plant leaf traits (specific leaf area, leaf dry matter 

content, and nitrogen concentration) determined variability in a number of ecosystem 

processes including primary productivity, decomposition rates, and levels of soil carbon 

and nitrogen. Furthermore, Orwin et al. (2010) found that relative growth rate of plants 

was an accurate predictor of leaf and litter quality, which in turn significantly affected 

microbial community composition and resulted in alteration of nutrient cycling rates. 

Other functional traits such as body size are also important determinants of ecosystem 

processes. For example, a study on aquatic invertebrate communities revealed a positive 

effect of detritivore body size on processing rates of leaf litter, whereas large-bodied 

invertebrate predators had a larger negative impact on the detritivores, thus negatively 
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affecting leaf litter decomposition (Lecerf and Richardson 2011). Likewise, life-history 

traits are also important mediators of ecosystem processes, as demonstrated in a study 

by Norling et al. (2007), where bioturbation caused by burrowing benthic 

macroinvertebrate fauna influenced rates of organic matter mineralisation and oxygen 

uptake. 

Several studies have been quick to point out that it may not only be variation in 

absolute trait means within a community that is important in ecosystem functioning, but 

also the degree of complementarity in traits across species (Loreau et al. 2001, 

Schumacher and Roscher 2009). Niche complementarity, or the asynchrony of species 

resource or habitat use due to trait variation among species (Hooper et al. 2005), can 

greatly increase rates of ecosystem processes as more species can exploit spatially or 

temporally heterogeneous resources. In other words, if a given resource is 

heterogeneous, specific traits may make some species better able than others to obtain 

the resource in different contexts, and an increase in trait variability across multiple 

species can lead to a community more fully exploiting that resource. For example, 

Striebel et al. (2009) found that light resources were finely partitioned between algal 

species that utilised different wavelengths of light, concluding that algal communities 

with higher species richness could more fully exploit available light resources, which 

resulted in higher biomass production and respiration. A similar pattern was found in a 

tropical plantation crop system whereby a greater diversity of pollinator body sizes 

increased the percentage of flowers that were pollinated due to varying dispersal 

abilities of insect pollinators (Klein et al. 2008). Niche complementarity can also be 

driven by the variation in behaviour between species. For example, Hoehn et al. (2008) 

demonstrated that when the vertical position of flowers were altered in pumpkin crops, 

a greater diversity of pollinator functional guilds provided higher rates of pollination 

due to an increased range of flying heights between different pollinators and behaviour 

within the flowers.  

By measuring the trait composition of a community, there is a greater likelihood 

of detecting directional community responses to land-use change and, importantly, 

determining what these responses will entail for the functioning of ecosystems. This 

approach integrates the use of traits that determine variability in species responses to 

environmental change, and traits that explain variability in ecosystem process rates 

carried out by species, by identifying potential covariance between these ‗response‘ and 
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‗effect‘ traits. The incorporation of this so-called ‗response-effect trait framework‘ 

(Lavorel and Garnier 2002) into ecological and conservation research has provided 

important insight into the impact of global environmental change on ecosystem 

functioning (Lavorel and Garnier 2002, Suding and Goldstein 2008). There are various 

possible scenarios of response and effect trait relationships, from negative covariance, 

to no relationship, or positive covariance between response and effect traits (Larsen et 

al. 2005). In a worst case scenario, positive covariance between response and effect 

traits may greatly exacerbate disturbance effects on ecosystem functioning, because 

traits that confer greater susceptibility to environmental change are also especially 

important for mediating rates of ecosystem processes (Larsen et al. 2005). In this case, 

species that are lost first following a disturbance are also the most functionally 

important, resulting in the rapid decay of ecosystem function. 

 Despite the importance of response-effect trait relationships, there has been little 

attention paid to their role in understanding trajectories of community reassembly in the 

restoration of degraded ecosystems. While it may be assumed that the same response 

traits that determine species loss from degraded habitats might also determine which 

species will become re-established in restored habitat, this may not always be the case. 

For example, species with low dispersal ability are more likely to be lost first as a result 

of habitat fragmentation (Larsen et al. 2008). However, species with higher dispersal 

power are more likely to naturally recolonise regenerating habitat from the surrounding 

landscape, which can result in a lag period before poorer dispersers recolonise these 

areas (Moir et al. 2005, Pywell et al. 2011). The way in which these structured 

responses will impact on ecosystem responses will depend on the covariance in 

response and effect traits of recolonising species.  

In this study, I test the trait determinants of dung beetle community responses to 

edge effects in a heavily-degraded Nigerian montane forest and determine the shift in 

species and trait composition in response to habitat restoration in the surrounding land-

use matrix. I then test the degree of covariance between response and effect traits, 

relating changes in trait distributions to variation in rates of dung removal following the 

removal of external anthropogenic threats. Although invertebrates are the second most 

represented taxa in studies investigating trait-mediated ecosystem processes, the trait 

determinants for this taxonomically diverse group are still poorly understood (de Bello 

et al. 2010). In particular, there are few studies that take into account multiple effect 
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traits and measures of trait divergence that might explain complementarity effects (de 

Bello et al. 2010), despite the vast importance of invertebrates for ecosystem processes 

(Samways 1993). To identify the determinants of rates of beetle-mediated dung 

removal, I test the relative importance of three hypotheses for explaining variation in 

dung removal rates: neutral effects, trait-mean effects, and niche complementarity 

effects. First, in the ‗neutral effect‘, I pose the hypothesis that species are functionally 

equal and that ecosystem processes (in this case dung removal rate) can be explained as 

a purely mass-dependent process (in this case variation in total dung beetle mass) within 

a given trophic level (Hubbell 2005). Second, in the ‗trait-mean effect‘, I pose the 

hypothesis that over and above mass-dependent effects, trait-mean composition has a 

significant effect on relative rates of ecosystem function (de Bello et al. 2010). Third, in 

the ‗complementarity effect‘ I pose the hypothesis that over and above mass-dependent 

effects, trait dispersion (or divergence in trait values within a community) has a 

significant effect on relative rates of ecosystem function, independent of variation in 

trait-mean composition across sites. By addressing these questions within the context of 

matrix restoration adjacent to forest edges, I aim to quantify the success of these 

restoration areas in conserving invertebrate communities and restoring crucial 

ecosystem processes. 

4.2 METHODS 

4.2.1 Study design 

The study was conducted in Afromontane forest at the Ngel Nyaki forest reserve, 

located on the Mambilla Plateau near the south-eastern border of Nigeria (for a detailed 

description of the study site see Chapter 2). To quantify the impact of edge effects and 

matrix restoration on dung beetle community structure and associated beetle-mediated 

nutrient cycling processes, I sampled dung beetle communities and dung removal rates 

along three replicate forest-to-matrix edge gradients in both degraded and regenerating 

sites. Degraded sites were located in areas that were fully exposed to multiple 

anthropogenic threats (such as intensive cattle grazing and fires), compared to the 

regenerating sites that were located in areas where these threats were entirely excluded 

by fencing and restoration of the matrix surrounding forest edges. One additional 
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‗dummy edge gradient‘ was placed in each of the deep forest and deep matrix habitats, 

at least 640 meters from the forest edge, to test for potential spatial autocorrelation in 

trap capture rates due to variation in trap spacing (Baker and Barmuta 2006). Each 

replicate edge gradient consisted of 13 sampling points at fixed distances from the edge 

on a doubling scale (-160, -80, -40, -20, -10, -5, 0, 5, 10, 20, 40, 80, and 160 meters 

from the edge, where negative values represent forest samples) (see Chapter 2 for full 

experimental design). Traps were laterally offset from one another, so that no two traps 

were closer than 50 meters apart in order to maintain independence between traps, as 

this distance is just beyond that which dung beetles can detect dung (Larsen and Forsyth 

2005). This method of trap placement therefore controlled for potential sampling bias 

from trap interference and spatial autocorrelation (Baker and Barmuta 2006).  

4.2.2 Sampling, sorting, and identification of dung beetles 

All sampling of dung beetle communities was conducted at Ngel Nyaki forest during 

the late rainy season from October 4
th

 to November 29
th

 2009. I used pig dung-baited 

pitfall traps (see Chapter 2 for trap design) placed at each distance across the edge 

gradient for two consecutive 24 hour periods (pooled 48 hour samples for each edge 

gradient transect) to ensure adequate sampling of the entire local community. All dung 

beetles in the subfamily Scarabaeinae were sorted to genus and assigned to initial 

‗morphospecies‘ groupings based on consistent morphological traits. Formal species 

identification was then undertaken by Rowan Emberson at the Lincoln University 

entomology collection and Frank Krell at the Denver Natural History Museum. For 

detailed sampling methods see Chapter 2. 

4.2.3 Measurement of functional traits and dung beetle biomass 

To quantify variation in functional trait composition between communities at 

regenerating and degraded edge gradients, five morphological traits were measured for 

individual dung beetle specimens within each species: body mass, body size, body 

condition index, wing area and wing loading. Body mass was calculated as the dry 

weight (mg) of each beetle, whereas body size was estimated from the width (mm) of 

the pronotum. From these measures, I calculated the ratio of body mass to body size 

which was used as a body condition index. Wing area was calculated as the total area of 
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the left hind wing (mm
2
), multiplied by two for total wing area, which was then used to 

calculate wing loading as the ratio of body mass to total wing area. To take into account 

within-species trait variation, I measured multiple individuals within each species for all 

samples collected. However, for species that were highly abundant, I used a randomised 

subsampling procedure so that at least 20 individuals were measured per sample for 

each abundant species. For a detailed description of functional trait measurement and 

the random subsampling technique, see Chapter 3.  

For trap samples in which some individuals of abundant species were not 

sampled, I randomised the measured trait values from a given species in a given sample 

and then allocated these randomly-selected measurements to the remaining unmeasured 

beetles of that species. This assignment of randomly-selected measurements to 

remaining non-sampled specimens (rather than simply allocating a trait-mean to non-

sampled specimens) maintained realistic levels of variability among individuals and 

allowed for accurate extrapolation of trait variability to the community level. In doing 

so, this method allowed for the scaling up of functional trait variation from the 

individual to community level, which can provide strong inference about response-

effect trait relationships (Suding et al. 2008). In order to estimate the total biomass of 

dung beetles for each sample, I added the subsampled and estimated mass 

measurements from all specimens in a given sample. 

4.2.4 Quantification of dung removal rates 

To quantify the impact of edge effects and matrix restoration on dung removal rates, I 

placed experimental dung piles at all 101 sampling points and measured removal over a 

24 hour period. Dung removal experiments were undertaken 1 – 2 days prior to baited 

pitfall trapping of dung beetles at each site, in order to avoid potential trap depletion 

effects on beetle communities that might otherwise have confounded dung removal 

rates. At each sampling point (as described above for pitfall trapping) a dung placement 

location was identified, avoiding visible large rock or logs that might bias burial 

behaviour by dung beetles (but always within 1 meter of where the pitfall trap was 

going to be located). Any debris such as dead wood or leaves within a 15 cm radius of 

dung placement was removed down to the topsoil and 40 g of fresh pig dung was placed 

directly on top of the bare soil.  
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All dung used for an entire site came from a single homogeneous batch of freshly-

mixed dung (less than 12 hours old). In order to accurately determine the mass of dung 

removed by dung beetles, it was essential to know the initial and final moisture contents 

of the dung (which might vary between batches and also with environmental conditions 

in the field). Therefore, the 40 g samples of dung were weighed out from that day‘s 

homogeneous batch and wrapped individually in plastic bags in order to prevent 

desiccation of the dung (as well as inadvertent colonisation by insects) before placing in 

the field. At the same time, another fresh 40 g subsample from the same batch was also 

weighed out and placed directly in a drying oven at approximately 80 °C for at least 48 

hours until constant dry mass was achieved, and this value used to determined batch 

moisture content. The experimental dung samples were left on the surface of the soil for 

24 hours and then any remaining dung re-collected, being careful to avoid collecting 

any debris. In the laboratory, any invertebrates found in the remaining dung were 

carefully removed to avoid bias in dung mass loss estimates. The dung samples were 

then put into the drying oven in paper envelopes at approximately 80 °C for a minimum 

of 48 hours until a constant dry mass was achieved. To calculate the proportion dry 

mass of dung removed during the 24 hour period I used the formula: 

 

Mass loss = (initial wet mass * (1 – initial batch moisture content)) – final dry mass 

4.2.5 Statistical Analysis  

4.2.5.1 Using continuous response functions to quantify functional effects of matrix 

restoration 

Variation in the total capture rates of dung beetles and rates of dung removal were 

analyzed across forest-to-matrix gradients for each of the two levels of matrix 

restoration (degraded versus regenerating), using the statistical approach of Ewers & 

Didham (2006b). Using a form of the general logistic model, I determined the best-fit 

edge model out of five models of increasing complexity (Ewers and Didham 2006b). 

For specific methods on the model fitting procedure, see Chapter 2. 
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4.2.5.2 A multilevel path model to disentangle causal pathways of functional responses 

To determine whether a correlation between beetle activity and dung removal was 

driven by purely neutral, mass-dependent, processes (i.e. total beetle mass irrespective 

of species identity) or by variation in the abundances of species with differing traits, I 

used a hierarchical SEM (structural equation modelling) approach in the R language 

environment. To test trait versus neutral effects in dung beetle-mediated nutrient cycling 

processes, I partitioned potential explanatory pathways into three main hypotheses 

(Figure 4.1). Firstly, rates of dung removal are entirely dependent on total dung beetle 

biomass. Secondly, dung removal rates are dependent on average trait values expressed 

in a given community and thirdly, there is a niche complementarity effect whereby 

community functional trait dispersion determines dung removal efficiency of dung 

beetle communities.  

 
Figure 4.1 Hypothetical causal pathways of the effects of environmental change on insect mediated 

ecosystem processes. Shaded boxes indicate the causal hypotheses (neutral effect, trait-mean effect, or 

complementarity effect). 

As a measure of functional trait complementarity, I calculated a distance-based 

metric of trait functional dispersion (FDis) using the ―FD‖ package in the R language 

environment (Laliberte and Legendre 2010). The FDis metric takes into account 

multiple trait characteristics of organisms within a community and measures the 

Neutral Trait    effectComplementarity effect

Environmental change

Trait dispersion Community trait means Total beetle mass

Ecosystem processes
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distance of each species to the trait-mean centroid of the whole community. It is a 

multivariate adaptation of weighted mean absolute deviation from the trait centroid, 

where the weighting is given by the relative abundance of species (Laliberte and 

Legendre 2010). It is thus a weighted measure of trait variation or complementarity 

among species in a given community. To calculate FDis, I first compiled a trait matrix 

with mean trait values for each species, then calculated Gower dissimilarity coefficients 

among species trait complexes using the ―gowdis‖ function. This was used to determine 

multivariate dispersion of assemblages based on the Gower dissimilarity coefficients 

weighted by species‘ relative abundances. 

Due to the hierarchical nature of the data, I used generalised multilevel path 

models, which are also highly flexible in dealing with non-linear data and interactions 

(Shipley 2009). To test the validity of a multilevel causal path model, several steps must 

be taken. Firstly, I identified the 'basis set' BU of independence claims that are implied 

in a directed acyclic causal diagram (i.e. a unidirectional box-and-arrow diagram). BU 

expresses the full set of independence claims (i.e. pairs of variables in the acyclic model 

with no arrow between them) and dependence claims (pairs of variables in the model 

with a causal arrow joining them). Secondly, I determined the probabilities pi for each 

of the k independence claims in BU using linear mixed effects models for normally-

distributed response variables and generalised mixed effects models for binomially-

distributed response variables. The combined pi of the full model was calculated as 

             
 
   , and the C statistic was then compared to a chi-square (χ

2
) 

distribution with 2k degrees of freedom (Shipley 2009). This gives the probability P that 

the model does not depart significantly from what would be expected under such a 

causal model (Shipley 2009). A model can be rejected if the P-value derived from the C 

statistic is smaller than the specified α-level (in this case α = 0.05). Therefore, if P > 

0.05 the causal model is not rejected and provides a good fit to the data. 

Linear mixed effects models were fitted using the ‗nlme‘ package and generalised 

mixed effects models were fitted using the ‗lme4‘ package in R, with ‗transect‘ (i.e. the 

three replicates of forest-to-matrix edge gradients in degraded versus regenerating 

matrix sites) specified as a random factor for all tests. Overdispersion in the generalised 

mixed effects models was taken into account using a poisson log-normal distribution 

whereby an observation-level vector is included as a random factor (Elston et al. 2001, 

Bolker et al. 2009). Assumptions of normality were tested for linear models by 
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inspecting the variance structure of each model. For linear mixed effects models, 

distance from edge and mean dung beetle body mass were log-transformed to linearise 

relationships. All predictors in the model were mean-centred by subtracting the mean of 

a given variable from each value of that variable.  

To fit the individual path coefficients that led to endogenous variables (measured 

variables within the model that have arrows leading to them) I used restricted maximum 

likelihood (REML) estimation and tested for their significance. As all predictors in the 

model were mean-centred, unstandardised path coefficients could be interpreted as the 

degree of change in the response variable for a given unit change in the predictor. 

However, interaction terms are interpreted differently whereby the coefficient indicates 

the amount of change in the slope of the regression of the response variable against a 

predictor following a unit change in the other interacting predictor variable (Aiken and 

West 1991). 

I assessed model fit for all endogenous variables using an approximation to a R
2 

statistic, calculated using a procedure developed for linear mixed effects models. The 

use of R
2 

statistics in mixed effects models is under debate and the method used here 

assumes maximum likelihood (ML) estimation as opposed to REML, therefore the 

interpretation of my R
2 

approximation should be judged with caution. Nevertheless, I 

believe that the statistical approximation provides a useful relative measure of fit of the 

model for the data used in the linear mixed effects models. For the binomial generalised 

mixed models, there is no appropriate approximation to R
2
 statistics and the use of such 

a measure can be misleading. Therefore, as a pragmatic approach to provide a nominal 

estimate of the R
2
 value for binomial models, I reanalysed using an arcsine square-root 

transformation of the response variable and carried out a linear mixed effects model 

followed by the R
2 

method of approximation described above as a guide to assess the 

model fit (note that this approach was only applied to calculate an approximate R
2
 value 

and was not used for calculating unstandardised path coefficients or other aspects of 

model fit). 

Standardised path coefficients were calculated to assess relative predictive 

strength of each predictor on endogenous variables. This was done by taking the mean-

centred values of each predictor and dividing each value by the standard deviation of 

the respective predictor. After rerunning the model with standardised variables, 
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standardised path coefficients were interpreted in a similar way to the unstandardised 

coefficients, except that units of change are expressed in units of standard deviation. 

Therefore, standardised path coefficients can be directly compared between effects and 

thus indicate the relative importance of each path. However, this method of 

standardisation could not be used for binomial models (as the response is a column-

bound ratio of proportions) and so the standardised path coefficients of binomial models 

were approximated using linear mixed effects models with an arcsine square-root 

transformation of proportion data.  

4.3 RESULTS 

4.3.1 Matrix regeneration alters beetle activity and associated ecosystem function 

A total of 4705 dung beetles were captured across the entire sampling effort, comprising 

36 species in 12 genera. Of these, 28% of species were captured exclusively in forest 

habitat and 42% were restricted to matrix habitats. There was a significant negative 

effect of distance from edge on the relative capture rates of dung beetles across forest-

to-matrix gradients (Figure 4.2, Table 4.1). However, edge responses differed markedly 

between degraded and regenerating sites, with overall capture rates being significantly 

higher in regenerating sites (for samples collected on both sides of the forest edge) 

(Figure 4.2, Table 4.1). Although edge effect magnitude (or the range between forest 

and matrix asymptotes in total capture rates) was similar between degraded and 

regenerating edge gradients, there was greater spillover of beetles from the forest into 

the matrix at edges adjacent to regenerating matrix habitat (Figure 4.2).    

Dung removal rates also varied dramatically across habitat edge gradients, 

ranging from an average of >75% dung removal over a 24 hour period in the forest 

interior to ~0% removal in the matrix habitat (Figure 4.2). The patterns of response in 

dung removal rates across edges and between degraded and regenerating matrix sites 

closely matched the patterns of variation observed for dung beetle capture rates (Figure 

4.2). There was a large increase in rates of dung removal at forest sites adjacent to 

regenerating matrix with up to a 6 fold increase in dung removal compared to degraded 

forest sites (Figure 4.2).   Of particular interest was the apparent off-site effects of 
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adjacent matrix regeneration, as there were only significant increases in dung removal 

rates within the forest and not in the regenerating matrix itself (Table 4.2).   
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Table 4.1 AIC scores obtained from the edge function fitting procedure for models of increasing 

complexity (null, linear, exponential, logistic, and unimodal) for both regenerating and degraded edge 

gradients. AIC scores in bold indicate model of best fit for a given response. 

Response Null Linear Exponential Logistic Unimodal 

Degraded matrix 
     

Capture rate 214.74 197.365 NA 186.412 243.325 

Dung removal -21.364 -26.628 NA -26.09 -30.489 

Regenerating 

matrix 

     

Capture rate 229.629 203.526 NA 201.38 256.617 

Dung removal 35.256 14.7 NA 17.428 15.195 
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Figure 4.2 Variation in square root-transformed dung beetle capture rates (number of beetles captured per 

48 hour trapping event) and proportion of dung removed (mean ± 1 SE) across degraded (open symbols 

and dashed fitted lines) versus regenerating (closed symbols and solid fitted lines) edge gradients. 

Negative values on the x-axis indicate forest sites. Lines are the best-fit continuous edge response 

functions of five fitted models of increasing complexity. Overlapping data points are offset for clarity. 
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4.3.2 Discriminating potential trait determinants of beetle mediated ecosystem 

processes 

Results from the multilevel path analysis revealed that the strong correlation between 

beetle activity and dung removal rates could be attributed almost equally to both mass- 

dependent and trait-dependent effects. Total biomass of dung beetles decreased 

significantly from the forest to matrix habitat and was significantly higher in 

regenerating habitats. Interestingly, there was also a positive effect of mean body mass 

of dung beetle species on total beetle mass per sample (Figure 4.3). Trait composition 

also responded significantly to both habitat edges and matrix regeneration with an 

increase in mean body mass of individual species from the forest to matrix habitat 

(Figure 4.3). However, this positive effect interacted negatively with matrix restoration, 

thus reducing the intensity of edge responses in community-weighted trait distributions 

for both mean body mass and wing loading. Any potential effects of distance to edge 

and adjacent matrix restoration on the distribution of community-weighted BCI were 

fully explained by variation in mean body mass and so there was no direct effect of the 

main drivers on composition of community BCI. Likewise, there was no significant 

direct effect of matrix restoration or distance to edge on functional trait dispersion after 

controlling for community weighted body mass and wing loading.  
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Figure 4.3 Directed acyclic diagram of 

generalised multilevel path analysis on 

causal pathways of functional responses 

to edge effects and adjacent matrix 

restoration using the best fit model (χ
2
 = 

19.981, df = 22, P = 0.584). Boxes 

depict predictor and response variables 

and arrows indicate significant positive 

(blue) and negative (red) effects. The 

circular node between ‗matrix 

restoration‘ and ‗edge effects‘ 

represents an interaction term and 

dashed arrows indicate collinear 

predictors. R
2 

values in the endogenous 

variables are linear mixed model 

approximations to an R
2 

statistic 

indicating the strength of fit for the 

model. Values adjacent to the lines are 

the unstandardised path coefficients 

with level of significance (*p < 0.05, ** 

p < 0.01, *** p < 0.001). Line 

weightings indicate the relative strength 

of effects, as derived from the 

standardised path coefficients. 
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There appeared to be no effect of community trait dispersion on rates of dung 

removal, despite the strong association of trait composition with dispersion. However, 

the path analysis revealed that community trait composition significantly affected dung 

removal rates. In particular, there was a significant negative effect of community 

weighted body mass on dung removal rates. This trait effect was evident even after 

controlling for total dung beetle biomass which was found to drive a positive response 

in rate of dung removal (Figure 4.3).     

4.4 DISCUSSION 

In landscapes under severe threat from anthropogenic land-use change, positive 

covariance of response and effect traits in invertebrate communities can potentially 

drive a rapid decline in ecosystem function in response to these threats. Results from 

this study demonstrate that dung beetle-mediated nutrient cycling rates respond strongly 

to edge effects as a result of a non-random shift in community trait composition and loss 

of total beetle mass. Moreover, there was a significant indirect effect of habitat edges on 

functional trait dispersion, mediated by the changes in community trait composition, 

although this appeared to have no effect on dung removal rates after taking into account 

community trait composition and total beetle mass. Interestingly, the restoration of the 

adjacent matrix habitat counteracted the strong effects of habitat edges in all cases, 

suggesting that simple restoration efforts may be highly effective in mitigating the 

detrimental effects of external anthropogenic threats on invertebrate communities and 

associated ecosystem processes. 

4.4.1 Matrix restoration drives responses in total beetle mass and trait composition  

Both total capture rates and total dung beetle mass decreased significantly with 

increasing distance from forest habitats into the adjacent matrix habitat, but this effect 

was ameliorated considerably in regenerating sites following matrix restoration. 

Interestingly, there was a positive effect of distance from the edge into the matrix on 

community-weighted mean body mass of dung beetles but this effect was reduced by 

matrix restoration. This means that, on average, there were larger beetles in the 

degraded matrix habitat. Curiously, there was a positive effect of community-weighted 
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mean body mass on total beetle mass which is most likely a result of the strong effect 

that rare large beetles would have on small communities, especially in the matrix 

habitats. This result demonstrates the importance of large bodied invertebrates in 

heavily degraded ecosystems as they may partially compensate for biomass loss due to a 

decrease in overall abundances. 

Community-weighted mean body mass was generally lower in regenerating 

matrix habitats. Many examples of animal responses to environmental stressors indicate 

that large bodied species tend to be more prone to extinction (Bennett and Owens 1997, 

Henle et al. 2004, Larsen et al. 2005) due to greater resource requirements, longer life-

spans, and lower reproductive output. However, invertebrate body size is often 

positively correlated with physiological tolerances (Chown et al. 2002). Therefore, as 

this study sampled across continuous edge gradients which are analogous to gradients of 

environmental stress (Chen et al. 1999), greater physiological tolerances to factors such 

as temperature and humidity would likely be favoured in the degraded matrix habitat. 

Relative dispersal ability of species also responded strongly to environmental change, 

but it appears that the potential effects of habitat edges on community-weighted mean 

wing loading were very strongly counteracted by the restoration of the adjacent matrix 

habitat. As shown in other studies, dispersal ability is often stronger in species or 

individuals that are found in matrix habitats as they are better able to survive crossing 

hostile environments (Larsen et al. 2008, Meyer and Kalko 2008). Therefore, my results 

show that within landscapes subject to severe anthropogenic threats, dung beetles with 

low dispersal ability are more likely to persist in restoration areas undergoing 

regeneration. However, it is likely that the re-establishment of these smaller beetles may 

undergo a longer lag period as they are also less likely to recolonise restored habitat 

compared to highly mobile species (Moir et al. 2005, Tscharntke et al. 2005).  

4.4.2 Neutral versus trait determinants of ecosystem process rates 

Trait determinants of community responses to environmental change were also found to 

have a significant influence on rates of insect-mediated nutrient cycling. While I found 

no niche complementarity effect driven by variation in functional trait dispersion, there 

was a strong effect of community-weighted mean trait composition on dung removal 

rates, over and above neutral mass-dependent effects. These findings demonstrate that 
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functional processes driven by dung beetles cannot be explained entirely by neutral 

effects that assume complete functional equivalence of species (Hubbell 2005). It is 

plausible that, irrespective of species diversity or the identity of individual species, a 

hypothetical community with only one species that is equal in total biomass to another 

community with multiple species, may potentially perform equal rates of ecosystem 

processes (Zhou and Zhang 2008). Results from this study show that, although purely 

mass-dependent effects accounted for 40% of the variation in dung removal rates, 34% 

of variation was explained by community-weighted trait mean composition, supporting 

the claim that neutral theory alone may not be able to fully explain functional processes 

(Chisholm and Pacala 2010). 

Surprisingly, the strong mediating effect of community-weighted mean body mass 

on nutrient cycling was negative. This suggests that, in samples with a smaller weighted 

average body mass of dung beetle species, the removal rate of dung was proportionately 

greater per unit mass of beetles. Many previous studies have pointed to the importance 

of large dung beetles in nutrient cycling rates, whereby body size is assumed to be 

positively correlated with amount of dung sequestered (Klein 1989, Larsen et al. 2005, 

Nichols et al. 2008). However, previous studies have not quantified ‗gram for gram‘ 

beetle-to-dung weight ratios of removal efficiency. As a result, my findings indicate that 

if total community biomass is held constant, communities composed of on-average 

smaller dung beetles are more likely to perform higher rates of dung removal. However, 

from these results one must bear in mind that community-weighted trait-mean body 

mass was also associated with an increase in overall total beetle mass and therefore still 

conferred an indirect positive effect on removal rates. This indicates the importance of 

large beetles in communities with low total beetle mass, where the presence of only one 

or two relatively large beetles may be integral to maintaining nutrient cycling when 

overall abundances of dung beetles are low in a given locale. 

4.4.3 Functional trait dispersion reveals the strength of ecological filters 

While there was no direct effect detected for matrix restoration and distance from forest 

edge on community trait dispersion, there were significant indirect effects of these 

drivers on functional trait dispersion via changes in community-weighted trait means. In 

particular, there was a highly-significant and powerful effect of community-weighted 
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mean body mass on functional trait dispersion. This is most likely due to the rarity of 

larger-bodied beetles; 92% of captured dung beetles had a body mass of <10 mg, even 

though the total range of body mass across all beetles collected was from 0.45 to 

1543.07 mg. Therefore, as communities appeared to consist of generally small-bodied 

beetles, the stochastic occurrence of a very large beetle could greatly increase the trait 

dispersion at that site. By contrast, there was a significant negative effect of community-

weighted wing loading on functional dispersion (i.e. communities with low functional 

trait dispersion consisted of beetles with on-average higher community-weighted wing 

loading). A possible explanation is that communities that undergo strong ecological 

filtering processes (in this case edge effects and adjacent matrix condition) would be 

more likely to have beetles with higher dispersal ability, because poorer dispersers 

would be less likely to persist in these communities. This would have a very strong 

directional structuring effect, resulting in narrow and strongly-defined trait composition 

and therefore functional trait dispersion would be low.   

These results have important implications for the need to quantify multiple traits, 

as measurement of single traits may fail to detect a response or could also give only a 

partial indication of responses in community trait composition. Additionally, by 

quantifying measures of trait range or divergence, in this case functional trait 

dispersion, it is possible to gain a clearer perspective of community filtering processes. 

4.4.4 A response-effect trait approach explains functional outcomes of matrix 

restoration 

Results from this experiment have shown that in forest surrounded by heavily degraded 

and disturbed matrix, the protection of the adjacent matrix can drive large increases in 

abundances of organisms and associated ecosystem processes, even after a very short 

period of time. Moreover, I found that the enhancement of dung removal rates is not just 

a function of beetle abundance or biomass. The ecological filtering of small-bodied 

dung beetles out of the dung beetle communities in open degraded habitats has led to 

assemblages with low total abundance and biomass of beetles, characterised by a few 

rare larger-bodied species, with low overall dung removal efficiency. As a result, 

degraded habitats are likely to undergo cascading changes in associated ecosystem 

functions including nutrient cycling rates and secondary seed dispersal that can have 
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strong deterministic impacts on plant communities (Andresen 2003, Wu et al. 2011). 

The incorporation of a response-effect trait framework in this study provided useful 

insight into the mechanistic determinants of community reassembly and the following 

re-establishment of beetle-mediated ecosystem processes. In particular, this was 

demonstrated by a community shift to high total beetle mass composed of many smaller 

beetles, resulting in significantly higher rates of dung removal compared to degraded 

sites, a clear example of the effects of response-effect trait positive covariance (Larsen 

et al. 2005, Suding et al. 2008).  

In conclusion, while there was a significant shift in species trait distributions and 

resulting beetle-mediated dung removal rates in response to edge effects, this was 

counteracted by the restoration of matrix habitat adjacent to habitat edges. As such, I 

propose that further research into community reassembly in restored habitats should test 

for potential cascading effects on ecosystem processes via community traits. By doing 

so, the qualitative versus quantitative drivers of ecosystem processes can be placed into 

context in systems recovering from anthropogenic land-use change. This study 

illustrates how an understanding of the direct and indirect effects of global change 

drivers on communities can shed light on the relative ecosystem benefits of habitat 

restoration efforts. This also presents great promise for simple restoration measures 

such as the exclusion of livestock and frequent fire disturbance in re-establishing 

invertebrate mediated ecosystem functioning in forest remnants. 
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Chapter 5: Discussion 

5.1 Overview 

There is virtually no ecosystem which remains unaltered by human impacts (Vitousek et 

al. 1997). Land-use change has been identified as the most important driver of 

biodiversity loss (Sala et al. 2000, Foley et al. 2005), and leads to the introduction and 

intensification of edge effects, which are potentially the greatest driver of ecosystem 

change resulting from habitat fragmentation (Ewers et al. 2007, Banks-Leite et al. 

2010). Even in very large natural remnants, the spillover of anthropogenic edge effects 

can be pervasive and alter the structure and function of communities (Ewers and 

Didham 2008). These effects are trans-boundary phenomena being the product of the 

contrast between patch and matrix habitats (Fonseca and Joner 2007). Therefore, the 

structure of the matrix adjacent to a habitat patch is likely to be a strong determinant of 

the extent and magnitude of these effects. While the off-site impacts of matrix structure 

on within-patch dynamics have been addressed in the literature, almost no attention has 

been paid to the influence of anthropogenic land-use intensity in the adjacent matrix on 

the strength of edge effects (but see Piessens et al. 2006, Pawson et al. 2008). Moreover, 

there have been no studies that have quantified the relative off-site impacts of habitat 

restoration in the adjacent matrix on the reassembly of associated communities. In this 

study I tested for the influence of external anthropogenic threats in the adjacent matrix 

on within-patch ecosystem dynamics across habitat edge gradients. I quantified 

responses in dung beetle community structure by comparing abundances, species 

richness, and community composition to determine overall community patterns and also 

identify potential variation between species in their responses.    

Species responses to anthropogenic drivers of change such as edge effects are 

often highly variable and can seem unpredictable. However, this variability is inherently 

non-random as species responses are strongly dependent on their morphological, life-

history, and behavioural traits (Ewers and Didham 2006a). Certain traits confer different 

levels of susceptibility to environmental change, and can be used to predict species 

responses to environmental change (Henle et al. 2004). This provides great promise for 

understanding how communities will respond following a disturbance. However, few 

studies take into account phenotypic variation within species, which can mask trait 
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effects or result in unexplained variability of trait-determined responses (Webb et al. 

2010). In an attempt to provide insight into the importance of individual trait variability, 

I demonstrated how species exhibit variability across edge gradients between 

individuals and also among species by quantifying individual trait measures for entire 

communities across ecological gradients. 

Species traits confer varying levels of susceptibility to disturbances but can also 

be responsible for determining the degree of influence that an organism has on its 

surrounding habitat (de Bello et al. 2010). These traits are important for understanding 

the proportional influence of particular organisms in mediating ecosystem processes and 

therefore can explain variation in functional efficiency between communities. In many 

cases, there can be overlap of response and effect traits (Suding and Goldstein 2008), 

where a trait that confers the level of susceptibility of a species to environmental change 

also determines the functional efficiency of that species. Such overlap can have serious 

implications for the functional resilience of communities, resulting in unexpected 

alteration of ecosystem function following environmental change (Larsen et al. 2005). 

By quantifying the effects of multiple drivers on community structure and relative 

changes in trait composition, I tested for potential covariance in response and effect 

traits to look for potential cascading impacts of edge effects and matrix restoration on 

dung beetle-mediated ecosystem processes.  

5.2 Matrix restoration mitigates edge effects in dung beetle communities 

Results from this study have shown that dung beetle communities responded 

dramatically to edge effects with a very large change in total abundances and marked 

differences in community composition across the habitat edge. Almost all species tested 

individually responded negatively to edge effects, although a few species were found to 

be edge specialists with especially high abundance around the edge habitat. This is 

arguably the strongest evidence found for dung beetle responses to edge effects. The 

clarity and predictive nature of these results were achieved by using continuous edge 

response functions across adjoining forest-to-matrix habitats and also by comparing 

edge effect strengths in a heavily degraded anthropogenic landscape. In contrast, 

previous studies on dung beetle responses to edges have either used categorical (habitat, 

edge, and matrix) sampling techniques (Spector and Ayzama 2003), not sampled into 
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the adjacent matrix (Davis et al. 2001), and/or have only sampled across natural 

ecotones (Duraes et al. 2005). Therefore, bearing in mind the results of this study, it is 

imperative that research into community responses of dung beetles to habitat 

fragmentation incorporates more predictive methods for detecting edge effects in dung 

beetle communities.         

While some studies have proclaimed the importance of the matrix habitat 

structure on within-patch community dynamics (Kupfer et al. 2006), almost no studies 

have explicitly tested the influence of adjacent land-use intensity in the matrix on edge 

effects (but see Piessens et al. 2006, Pawson et al. 2008). My research has shown that 

by comparing edge responses in dung beetle communities in forest habitat adjacent to 

heavily-degraded matrix and regenerating matrix habitat, edge responses can change 

dramatically as a result of matrix restoration. For example, between habitats adjacent to 

degraded and regenerating matrix, I found large increases in overall abundances and 

significant changes in community composition across forest-to-matrix edge gradients. 

Such a disparity in edge responses between degraded and regenerating habitats indicates 

the importance of taking into account the impacts of external anthropogenic threats 

when quantifying within-patch dynamics.  

Among many factors, habitat size and landscape structure are often identified as 

important for maintaining the ecological integrity of ecological reserves (Collinge and 

Palmer 2002, Lindenmayer et al. 2006). In particular, habitat size effects may be due to 

the intercorrelated effects of habitat edges, which penetrate further in smaller habitat 

fragments, reducing their effective ‗core‘ habitat (Laurance and Yensen 1991, Ewers et 

al. 2007). My findings suggest that another important consideration should be the 

influence of adjacent matrix habitat on the strength of edge effects. As adjacent matrix 

degradation can have such a strong mediating influence on the pervasiveness of edge 

effects, this is clear evidence that ecological reserves should take into account the 

potential interactions between these drivers of change. Ecological assessments of the 

effectiveness of conservation reserves should also quantify the impacts of the landscape 

context to gain more accurate estimations of minimum reserve size requirements. 

The implications of my research can also be examined in another light, where 

adjacent matrix restoration can have significant conservation benefits for communities 

within habitat remnants. The implementation of restoration buffer zones of regenerating 
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matrix habitat adjacent to forest systems has been suggested as an effective strategy for 

minimising external anthropogenic threats to remnant ecosystems (Gascon et al. 2000). 

While buffer zones of regenerating vegetation around forest edges have been shown to 

reduce the effects of adjacent matrix structure on within-patch dynamics (Denyer et al. 

2006), no explicit evidence exists for its effectiveness as a means of alleviating edge 

effects. The large disparity in dung beetle community responses between forest-to-

degraded matrix and forest-to-regenerating matrix across continuous edge gradients 

found in my study exemplifies the importance of protecting and restoring zones of 

matrix habitat surrounding ecological reserves. 

5.3 Ecological filtering and the trait determinants of species responses 

Significant changes in community composition indicated that there were large changes 

in the relative abundances of species and thus, species must be responding differentially 

to edge effects. By teasing apart individual species responses, I was able to reveal 

striking variability in the response functions and sensitivity of different species to edge 

effects and external anthropogenic threats. This leads to an important conclusion: all 

species are not equal in their sensitivity to environmental change, thus inferring that 

there must be mechanisms mediating these differences in species responses and overall 

community structure. 

Much of the variability in species responses to environmental change stems from 

variation in morphological, behavioural, and life-history traits (Ewers and Didham 

2006a). As a result, there has been considerable research invested into identifying 

functional traits that mediate the relative extinction proneness of different species under 

varying global change scenarios (Henle et al. 2004). Most studies have adopted a fixed-

trait perspective whereby overall species trait values are used to predict the distribution 

or degree of a species‘ response (Driscoll and Weir 2005, Gibb et al. 2006, Lebrija-

Trejos et al. 2010, Williams et al. 2010). However, this perspective fails to take into 

account the importance of individual-level phenotypic variation within species. This is 

despite potentially high phenotypic variability, trait plasticity, and even rapid 

evolutionary change in some populations subjected to intense anthropogenic stressors 

(Carroll et al. 2007, Hendry et al. 2008). 
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Findings from my research showed that certain species did respond differently to 

environmental changes, and that these responses were dependent on specific functional 

traits. This conclusion was reached by using the absolute mean of each measured 

morphological trait for a given species to predict the relative distribution between 

degraded and regenerating habitat edge gradients. Interestingly, these results showed 

that wing loading and body condition could explain species‘ sensitivities to heavily 

degraded habitat edges. However, to gain a more realistic understanding of how 

functional traits determined species distributions, I took into account all individuals and 

plotted total community trait means across degraded and regenerating edge gradients. 

This provided remarkable insight into habitat edge-associated gradients of ecological 

filtering processes, wherein there were significant changes in the distributions of all 

morphological traits across habitat edge gradients and between degraded and 

regenerating sites. 

To determine the factors contributing to this non-random trait variability, I also 

demonstrated that individuals within species undergo ecological filtering, resulting in 

often non-random variability within species across environmental gradients. For 

example, 69% of species in this study were found to exhibit non-random trait variation 

across habitat edge gradients. As such, these findings suggest that due to within-species 

phenotypic variation across environmental gradients and changes in the relative 

abundances of species, community trait composition may vary quite differently than 

expected. Studies that do not adopt an approach that incorporates phenotypic variability 

into community-wide inferences are therefore likely to make inaccurate conclusions on 

the trait determinants of community structuring. For the future development of trait-

based ecology, there needs to be a stronger focus on trait variability across individuals, 

not just across species (Webb et al. 2010). Additionally, trait plasticity may be highly 

important for masking or intensifying trait-determined community responses, indicating 

the need to better understand what role plastic responses of individuals play in 

community responses to global environmental change (Callaway et al. 2003).  

In most cases, restoration efforts are aimed at re-establishing species assemblages 

that resemble those that would have been lost from the historical pristine habitat (Hobbs 

and Norton 1996). This study demonstrates that the presence of particular species may 

not necessarily confer a particular expected trait value for a species due to potential 

shifts in within-species phenotypic variability in response to varying levels of 
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environmental stressors. Therefore, there may be significant disparity in trait 

composition between communities undergoing different environmental stressors, even if 

species composition is the same. In light of these findings, restoration efforts should 

consider the re-establishment of not only species assemblages, but also trait 

composition in regenerating communities. This lends further support to the idea that, 

even if the species components are reintroduced into a degraded ecosystem, this does 

not necessarily mean that the restoration attempt has been fully successful (Hobbs and 

Norton 1996). To better understand the restoration success of an ecosystem, it is 

important to also take into account the functional performance of re-established species 

assemblages (Benayas et al. 2009). 

5.4 Community reassembly and the restoration of ecosystem functioning 

Ecological filters, such as edge effects, have widespread impacts on the distribution of 

species traits by removing species with response traits that confer higher levels of 

susceptibility to environmental change. In the wake of this non-random species loss, the 

processes that are mediated by particularly sensitive species are also lost (Larsen et al. 

2005). Therefore, the application of a response-effect trait framework is required to 

better understand the functional consequences of  anthropogenically driven 

environmental change (Lavorel and Garnier 2002). 

By testing the causal pathways through which edge effects and matrix restoration 

alter insect-mediated ecosystem processes, I was able to discriminate the mechanisms 

that mediated functional responses in dung beetle communities. I found that total beetle 

mass and community trait composition significantly responded to edge effects but these 

effects were counteracted by the restoration of the adjacent matrix. Despite the expected 

positive effect of total beetle mass on dung removal rates, there was a surprising 

negative effect of community-weighted mean body mass on rates of dung removal. This 

seemingly counterintuitive finding highlights the relative importance of disentangling 

determinants of ecosystem processes. Previous findings have always pointed to the 

functional importance of large dung beetles for dung removal (Klein 1989, Larsen et al. 

2005, Nichols et al. 2008), however, my findings suggest that large assemblages of on-

average smaller beetles may in fact be more important for maintaining high rates of 

beetle-mediated nutrient cycling. Bearing this in mind for studies quantifying the 
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determinants of functional responses to environmental change, future research will 

benefit from using methods that can rigorously partition the relative importance of 

mediating factors. In doing so, more accurate and predictive inferences can be made for 

discriminating deterministic processes of ecological change under various global change 

scenarios. 

Additionally, to my knowledge there are no studies that have investigated the off-

site impacts of matrix restoration adjacent to remnant habitats on response and effect 

trait covariance and the importance for ecosystem function. Non-random community 

reassembly, as demonstrated here in dung beetle communities, appears to result in large 

increases in dung removal rates as these communities are re-colonised by small, highly 

abundant beetles. These results demonstrate that simple measures taken to restore 

adjacent areas of matrix habitat around forest reserves may be successful in rapidly re-

establishing high rates of insect-mediated ecosystem function. 

5.5 General conclusions  

The investigation of dung beetle community responses to edge effects and matrix 

restoration has provided new insight into the potential off-site impacts that matrix 

degradation can have on within-patch ecosystem dynamics. Beyond quantifying the 

impact of these trans-boundary effects on dung beetle species assemblages and total 

abundances, I was able to identify the trait-based mechanisms driving these responses. 

However, a somewhat unexpected finding was the very high and non-random individual 

trait variation, leading to greater complexity than perhaps originally anticipated. These 

complex differences in individual traits were found to scale up to strong overall 

community responses in trait distributions which in turn had important flow-on effects 

to ecosystem processes. Perhaps the most striking conclusion from this research is that 

simple exclusion of anthropogenic threats from small areas of adjacent matrix can lead 

to a rapid and large response in community structure of dung beetles, resulting in the 

successful re-establishment of ecosystem processes. Therefore, this study has positive 

and important implications for future attempts to protect and restore ecological reserves 

using simple and affordable measures. 
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