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Abstract 

The present work is a first step towards a systematic constructive development of the 

theory of operator algebras over a Hilbert space H. Among the topics investigated 

in the thesis are locally convex topologies, the extension and characterisation of 

ultraweakly continuous linear functionals on B(H), and conditions that ensure the 

(constructive) existence of the adjoint of a bounded linear operator on H. We also 

study the relationship between a linear subset of B(H) and the dual of its predual, 

and the comparison of projections in a von Neumann algebra. The two appendices 

to the thesis deal, respectively, with weak continuity properties and the locatedness 

of the range of an operator. 
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Chapter 1 

Preface 

1.1 A little bit of history 

The beginning of the twentieth century was clearly marked for the mathematical 

community by the optimism expressed in projects such as Hilbert's proof theory 

(which tried to set the notion of a proof on a sound basis, thereby avoiding the 

paradoxes) and Russell and Whitehead's Principia Mathematica (in which logic 

took precedence over mathematics). When, in 1907, the Dutch mathematician 

L.E.J. Brouwer published his doctoral thesis [23] initiating the first fully developed 

alternative to what nowadays we call classical mathematics (CLASS), not many 

mathematicians greeted it enthusiastically. Brouwer's intuitionistic mathematics 

(INT) was a radically different approach to mathematics, born from the need to 

create a bridge across the ever-widening gap between what exists formally and 

what can be obtained effectively. In the years that followed, unexpected results 

like Godel's incompleteness theorem, the independence of the axiom of choice from 

Zermelo-Fraenkel set theory, and the undecidability of important formal systems 

proved that Brouwer's initiative was truly motivated. 

In Brouwer's intuitionism, logic is secondary and derives from the mental con­

structions that form the basis of mathematics. A mathematical object comes into 
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existence precisely when it is constructed. Thus the distinction in meaning that 

forms the basis of Brouwer's revolution is that between 

• idealistic existence, where we are allowed to conclude that an object exists 

by proving that its non-existence is impossible, and 

• constructive existence, where, in order to prove that an object exists, we 

must provide a method for finding it. 

In his 1908 essay "The Unreliability of the Logical Principles" [24] Brouwer 

criticised the unrestricted use of the law of excluded middle CLEM) 

PV,P 

in logic. Subsequently, he introduced into INT some principles that led to re-

sults apparently contradicting aspects of classical mathematics. However, to regard 

Brouwer's mathematics as inconsistent with its classical counterpart is a serious 

oversimplification of the situation: it would be better to regard the two types of 

mathematics as incomparable. Nevertheless, in light of the intractability of Brouwer 

and some other leading exponents of constructivism, it is not surprising that most 

mathematicians remained sceptical and that many reacted to constructive mathe­

matics with vigorous opposition. A common view was (and remains) that too much 

mathematics had to be given up in order to accommodate Brouwer's ideas. For 

example, Hilbert expressed his disagreement with Brouwer by saying that 

No-one) though he speak with the tongues of angels) will keep people from 

using the law of excluded middle. 

In 1952 Kleene wrote 

Intuitionistic mathematics employs concepts and makes distinctions not 

found in classical mathematics; and it is very. attractive on its own ac­

count. As a substitute for classical mathematics it has turned out to be 

less powerful and in many ways more complicated to develop. ([44], page 

50.) 
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Despite continuing opposition, constructive approaches to mathematics survived. 

In 1930, Brouwer's most famous pupil, Arend Heyting, published the first formalisa­

tion of intuitionistic logic, abstracted from the practice of intuitionistic mathematics. 

A completely different approach to constructive mathematics-essentially recursive 

mathematics with intuitionistic logic (RUSS)-was initiated by A.A. Markov in the 

Soviet Union in 1948-49, and has achieved a number of technical successes [47,45]. 

By the mid-1960s constructive mathematics was, when compared with its clas­

sical counterpart, virtually stagnant. The situation changed in 1967 with the publi­

cation of Errett Bishop's monograph Foundations of Constructive Mathematics [2]. 

This book represents the most far-reaching and systematic presentation of construc­

tive mathematics to date. In it, Bishop revealed, by thorough-going constructive 

means but without resorting to either Brouwer's principles or the formalism of re­

cursive function theory, a vast panorama of constructive mathematics, covering ele­

mentary analysis, metric and normed spaces, abstract measure and integration, the 

spectral theory of selfadjoint operators on a Hilbert space, Haar measure and duality 

on locally compact groups, and Banach algebras. Bishop's constructive mathemat­

ics (BISH) was founded on a primitive, unspecified notion of algorithm and the 

Peano properties of natural numbers, and kept strictly to the interpretation of "ex­

istence " as "computability". His refusal to pin down the notion of algorithm led to 

criticism, particularly from philosophers of mathematics and from those committed 

to Church's thesis. But this very imprecision enabled Bishop's work to have a va­

riety of interpretations: his results are valid in classical mathematics, intuitionism, 

and all reasonable models of computable mathematics-such as recursive function 

theory [45] or Weihrauch's Type II Effectivity theory [58, 59, 60]. 

An interesting formal system for Bishop's mathematics, an intuitionistic Zermelo­

Fraenkel set theory, was produced by Myhill [49, 50]. Other foundational systems 

for BISH are found in [31, 30, 48, 9]. 
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The modern view of constructive mathematics, as propounded by Fred Richman 

[52], is that in practice 

constructive mathematics is none other than mathematics car­

ried out with intuitionistic logic. 

From this point of view, each of CLASS, RUSS, and INT can be regarded as BISH 

plus some additional principles. 

1.2 Why use intuitionistic logic? 

The study of computability in mathematics can be carried out in two ways: 

t> Use classical logic, but pin down the notion of algorithm in order to avoid 

making decisions that a computer cannot make. 

t> Use intuitionistic logic, which automatically takes care of the types of decisions 

that are permitted, and then argue with whatever mathematical objects one 

pleases. 

But why would anyone choose the second way? Because not only, as we have 

mentioned before, does mathematics developed with intuitionistic logic have more 

models than its classical counterpart, but also a constructive proof usually provides 

more information than a classical one. 

Unlike intuitionistic logic, classical logic permits "decisions" that no computer 

(real or idealistic) can make in general. For example, if x is a nonnegative real 

number, a computer may be unable to decide between the alternatives x = 0 and 

x > 0 : the input x may be positive but so close to zero that the computer sets its 

floating-point representation equal to O. (This is the problem of underflow). Thus 

we cannot expect the statement 

Vx E R (x = 0 V x =1= 0), 



5 

to be provable with a logic that truly incorporates the principles used in computa­

tion. 

The desire for algorithmic interpretability forces us to reconsider the meaning 

of all logical connectives and quantifiers. The standard constructive/computational 

interpretations are as follows. 

• P V Q : we have either a proof of P or a proof of Q. 

• P 1\ Q : we have a proof of P and a proof of Q. 

• -,P : assuming P, we can derive a contradiction (such as 0 = 1). 

• P =* Q : we can convert any proof of P into a proof of Q. 

• :3xP(x) : there is an algorithm that computes an object x and demonstrates 

that P(x) holds. 

• Vx E AP(x) : there is an algorithm that, applied to an object x and a proof 

that x E A, demonstrates that P(x) holds. 

Note that in order to recover axioms for classical logic, one need only add the law 

of excluded middle to Heyting's intuitionistic axioms. 

From the time of Brouwer, constructive mathematicians have excluded from their 

practice a number of intuitionistically undecidable principles. Among these are 

- LPO, the limited principle of omniscience: for each binary sequence (an) 

either an = 0 for all n, or else there exists n such that an = 1. 

- LLPO, the lesser limited principle of omniscience: for each binary se­

quence (an) with at most one term equal to 1, either a2n = 0 for all n or else 

a2n+1 = 0 for all n, 

- WLPO, the weak limited principles of omniscience: for each binary 

sequence (an), either -,Vn(an = 0) or -,-Nn(an = 0). 
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- MP, Markov's principle: for each binary sequence (an) such that ,Vn(an = 

0), there exists n such that an = 1. 

Each of the first three is a special case of the law of excluded middle. It is easy 

to prove that LPO implies WLPO, and that WLPO implies LLPO. These three 

principles are false in INT and RUSS. On the other hand, Markov's principle is 

used with caution by the practitioners of RUSS, is in contradiction with some prin­

ciples in INT, and, since it represents an unbounded search, is rejected outright 

by most constructive mathematicians. There are models which show that each of 

LPO, LLPO, LEM, and MP is independent of Heyting arithmetic (that is, Peano 

arithmetic with intuitionistic logic); see under Kripke and Beth models in [29]. 

By a Brouwerian counterexample to a classical proposition P, we mean a 

(constructive) proof that P implies some essentially nonconstructive principle like 

LPO, LLPO, ... . There are Brouwerian counterexamples to many widely used 

classical propositions. Here are some examples, with the implied principle in paren­

theses: 1 

• Vx E R (x = 0 V x -I- 0) (LPO) 

• The least-upper-bound principle: Each nonempty subset S of R that is 

bounded above has a least upper bound. (LPO) 

• Every real number is either rational or irrational. (LPO) 

• Vx E; R (x ~ 0 V x ::; 0). (LLPO) 

• If x, Y E Rand xy = 0, then x = 0 or y = o. (LLPO) 

• A uniformly continuous function from [0,1] to R attains its bounds. 

(LLPO) 

lChapter 1 of [20] contains more information about Brouwerian counterexamples. 
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• The Intermediate Value Theorem: If f : [0,1] -+ R is a continuous func­

tion with f(O) < 0 < f(l), then there exists x E (0,1) such that f(x) = o. 

(LLPO) 

Since in constructive mathematics we are more interested in positive results 

than in the rejection of classical theorems, we desire constructive substitutes for 

such inadmissible propositions. Fortunately, such substitutes have been found: 

I> Although the comparison of two real numbers is a problem, it is shown ([4], 

page 26, (2.17)) that if a < b, then for all x E R either a < x or x <. b (this 

result is very often used to split a proof in two cases). 

I> If x, yare real numbers such that the assumption x > y implies 0 = 1, then 

x :::; y ([4], page 26, (2.18)). 

I> The conclusion of the least-upper-bound principle holds if we add the hy-

pothesis that for all real numbers a, b with a < b, either b is an upper bound 

of S or else there exists xES with x > a ([4], page 37, (4.3)). 

I> The conclusion of the Intermediate Value Theorem holds if we add the hy-

pothesis that f is locally nonzero, in the sense that each subinterval of 

[0,1] contains points at which the value of f is different from 0 ([4], page 63, 

Problem 15). 

1.3 An example: the infimum of two projections 

The following definition introduces one notion that plays an important role in the 

constructive theory of metric spaces. 

Definition 1.3.1 Let (X, p) be a metric space. A subset S of X is said to be 

located (in X) if we can compute the distance 

p(x, S) = inf p(x, s) 
sES 
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from S to any point x in X. 

It follows from the constructive least-upper-bound principle that S is located if 

and only if for each x E X, and all real numbers ex, f3 with 0 :'S ex < /3, 

either p(x, s) > ex for all s E S 

or else there exists s E S such that p( x, y) < f3. 

Now consider a complex Hilbert space H. We define the infimum of the pro­

jections E and F of H to be the unique projection G (if it exists) that satisfies the 

following two conditions: 

(Gl) G:'S E and G :'S F. 

(G2) If H is a projection such that H :'S E and H :'S F, then H :'S G, 

where :'S is the usual ordering of projections on H. We then denote the infimum by 

E 1\ F. Classically, E 1\ F always exists, and is the projection on the intersection of 

ranE (the range of E) and ranF ([40], page 111) .. Constructively, the projection 

on a closed linear subset M of a Hilbert space H exists if and only if M is located 

(see [4], page 366, Theorem (8.7)). Since there is no guarantee that the intersection 

of two located sets is also located, the intersection of two projections may not exist. 

It can be shown classically that the decreasing sequence ((EFErr::=l of projec-

tions converges strongly to a projection G on H, in the sense that 

Gx = lim (EFEt x 
n-+oo 

for all x E H; it then follows that G satisfies conditions (G1) and (G2), and is 

therefore the infimum of the projections E and F ([33], page 257). Thus in classical 

mathematics there is an analytic characterisation of the infimum of two projec-

tions. Can we use this to produce interesting conditions under which E 1\ F exists 

constructively? 
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A famous theorem of Specker [54] shows that the monotone convergence theorem 

in R is false in RUSS. It follows that the monotone convergence theorem for pro­

jections of a Hilbert space is also false in RUSS, and hence that Halmos's classical 

proof of the statement 

(E 1\ F) x = lim (E F Et x (x E H) 
n--+oo 

(1.1) 

fails constructively. 

Now, it is easy to adapt Halmos's argument to show constructively that if either 

lim (EFEtx 
n--+oo 

exists for all x E H or (equivalently) 

lim ((EFEt x, y) 
n--+oo 

exists for all x, y E H, then EI\F exists and satisfies (1.1). Can we prove, conversely, 

that if E 1\ F exists, then the sequence ((EFEt x)~=l converges for each x E H? 

To see that the answer is "no", consider the case where H = R2, E is the projection 

of H on the subspace R(l,O), and F is the projection on R(cost9, sin 19) , where 

-,(19 = 0). In this situation we have E 1\ F = O. Taking e = (1,0) , we also have 

(E F Et e = (cos4n 19, 0) 

for each n; but this converges to (0,0) if and only if cos 19 =f. 1 (that is, Icos 191 > 0) 

and therefore 8 =f. O. Thus if the answer to our last question were "yes", we could 

prove that 

V8 E R (-, (19 = 0) => 8 =f. 0), 

which is easily shown to be equivalent to Markov's Principle. 

As a sample of positive constructive mathematics, we have the following neces­

sary and sufficient condition for the existence of the infimum of two projections. 
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Proposition 1.3.2 Let E, F be projections of the Hilbert space H, and let S = 

ran E n ran F. Then the following two conditions are equivalent. 

(i) The infimum E 1\ F exists. 

(ii) For each z E H there exist yES and N ~ 1 such that (EFE)N z - y is 

orthogonal to S. 

Proof. Suppose that G = E 1\ F exists; then S is located, G is the projection of 

H onto S, and for each z E H, z - Gz is orthogonal to S. Since G ::; (EFEt, it 

follows that for each xES and each n we have 

((EFEtz - (EFE)nGz, x) 

(z - Gz, (EFE)nx) 

(z - Gz, x) 

O. 

Thus we may take y = Gz to complete the proof that (i) =? (ii). 

Conversely, assume (ii). Then, for each xES we have 

((EFE)N+1 Z - y, x) ((EFE)N+1 Z - (EF E)y, x) 

((EFE)((EFE)N Z - y), x) 

((EFE)N z - y,EFEx) 

((EFE)N z - y, x) 

O. 

Replacing N successively by N + 1, N + 2, ... , 2N -1 in this argument, we obtain 

((EFE)2N Z - y, x) = O. 

Thus 

((EFE)N Z - z, x) 
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(z - y, x) 
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((EF E)2N z - (EF E)N z, x) 

((EFE)2N Z - y, x) - ((EF E)N z - y, x) 

o 

((EFE)N Z - z, x) + (z - y, x) 

((EFE)N Z - y,x) 

o. 

Hence z - y is orthogonal to S. Elementary Hilbert space theory now tells us that 

p(z, S) exists and equals liz - YII. Since z E H is arbitrary, we conclude that S is 

located and hence that E /\ F exists. Q.E.D 

1.4 How the Thesis is organised 

In Chapter 2 we introduce some elementary notions in the constructive theory of 

uniform and locally convex spaces. In particular, we show that if the unit ball of a 

locally convex space X is totally bounded, then so is the intersection of that ball 

with the kernel of any uniformly continuous linear functional on X. This result is 

used later, in Chapter 4. 

Chapter 3 deals with the standard operator topologies on B(H). We show that 

the unit ball of B(H) is weak-operator totally bounded, and then use this to prove 

that the weak-operator continuity of the left multiplication mapping T I----t AT on 

B1(H) is equivalent to the existence of the adjoint of A. We also examine the 

sequential continuity of left multiplication. 

The main result of the Thesis, a Hahn-Banach type theorem for linear functionals 

on a linear subset of B(H), is presented in Chapter 4. There we also explore the 

embedding of a linear set of bounded operators on a Hilbert space as a dense subset 
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of the dual of its predual. 

Chapter 5 is the first step towards a constructive development of the theory 

of projections on a Hilbert space. We investigate finite and infinite projections, 

the countable additivity of equivalence; we introduce two types of equivalence for 

projections and study the relationship between them. 

There are two appendices to the thesis. The first of these introduces conditions 

that ensure weak continuity properties of mappings between metric and normed 

spaces. The second deals with the relation between the locatedness of the range of 

a positive operator T on H and the strong convergence of the sequence (TI/n)~=I' 

1. 5 Notations 

Throughout the Thesis we will be using the following notations: 

H: a complex (real) Hilbert space. 

B(H): the linear space of all bounded operators on H. 

HI: the unit ball of H. 

BI(H): the unit ball of B(H). 

Hoo: the direct sum EB~=I Hn of infinitely many copies of H. 

NIJ..: the orthogonal complement of M. 



Chapter 2 

Uniform and Locally Convex 

Spaces 

2 .1 Introduction 

Locally convex spaces are regarded by many authors as the most important class of 

topological vector spaces. Although Errett Bishop considered that "in most cases of 

interest it seems to be unnecessary to make use of any deep facts from the general 

theory of locally convex spaces", recent developments in constructive analysis (in 

particular, operator algebra theory) increasingly depend on such a theory. In turn, 

that theory draws on the general theory of uniform spaces, the beginnings of which 

were outlined in Problems 17-21 on pages 110-111 of [4]. Some basic definitions in 

the theory of locally convex spaces also appear in Chapter 8 of [34]. 

We first introduce the basic terminology and establish some fundamental facts 

about uniform spaces; in general, we do not define notions, or prove facts, that carry 

over unchanged from the classical to the constructive setting. 

Definition 2.1.1 A uniform space is a set X together with a family (Pi)iEI of 

pseudometrics on X. The equality and inequality on X are defined, respectively, 
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x = y ifandonlyif Vi E J (Pi(X,y) = 0), 

x =1= y ifandonlyif ::Ii E J (Pi(X,y) > 0). 

The corresponding uniform topology on X is the topology m which, for each 

Xo E X, the sets 

V(xo,F,c) = {x EX: ~Pi(X,XO) < c}, 
%EF 

with c > 0 and F a finitely enumerable subset of J, form a basis of neighbourhoods of 

Xo; the pseudometrics Pi are called the defining pseudometrics for this topology. 

An inequality relation =1= on a set is said to be tight if -,(x =1= y) implies that 

x = y. Note that the inequality on a uniform space is tight. Indeed, we have -,(x =1= 

Metric and uniform spaces are viewed as uniform spaces in the obvious way. 

For our purposes, a more important type of uniform space is a locally convex 

space, which consists of a linear space X over F, together with a family (Pi)iEI of 

seminorms for which the corresponding family :F of pseudometrics 

defines the topology (and, incidentally, the inequality) on X. In this case we refer to 

the seminorms Pi as defining seminorms for the locally convex topology-that 

is, the uniform topology defined by :F; and we call the set 

the unit ball of the locally convex space X. 

In the rest ofthis section, unless we specify otherwise, (X, (Pi)iEI) and (Y, (()j )jEJ) 

are uniform spaces. 
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Definition 2.1.2 A mapping f : X -+ Y is uniformly continuous on X if for 

every E > 0 and every finitely enumerable subset G of J there exist 6 > 0 and a 

finitely enumerable subset F of I such that if x, y E X and 2:iEF Pi(X, y) < 6, then 

2:jEG(Jj(j(x),f(y)) < E. 

Notice that each defining seminorm Pi on a locally convex space is uniformly 

continuous. 

Definition 2.1.3 Let (J, 2:) be a partially ordered set. We say that J is directed 

by the binary relation 2: if for each pair a, b of elements from J, there exists an 

element c in J such that c 2: a and c 2: b. 

A net in a set S is a mapping j t---+ Xj from a directed set J to S; we denote this 

net by (Xj)jEJ. 

Definition 2.1.4 A net (Xj) in the uniform space X 

• converges to an element x in X if for each neighbourhood V of x there 

exists an index jo in J such that Xj E V whenever j 2: jo . 

• is a Cauchy net if given any c > 0 and any finitely enumerable subset F of I, 

there exists an index jo in J such that 2:iEF Pi(Xj, Xk) < c whenever j, k ~ jo. 

A subset of S of an uniform space X is said to be dense in X if given any point 

x E X and a neighbourhood V of x there exists an element s E S such that s E V. 

The following result is useful in constructing uniformly continuous functions with 

values in a complete locally convex space. 

Proposition 2.1.5 Let Y be a dense subset of a locally convex space X, and f : 

Y ---+ Z a uniformly continuous function from Y to a complete locally convex 

space Z. Then there exists a uniformly continuous function 9 : X ---+ Z such that 

f(y) = g(y) for all y in Y. 
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Proof. Let (Pi)iEI and ((Jj)jEJ be the defining families of seminorms on X and 

Z, respectively. Since Y is dense, for each x in X there exists a net (Ym)mEM in 

Y converging to x. This also means that (Ym)mEM is a Cauchy net and since f is 

uniformly continuous, (f(Ym))mEM is a Cauchy net in Z; whence it converges to a 

limit z. We will show that the operation assigning to x the element z so defined 

is a function. Consider another net (yOlEL in Y converging to x, and denote by 

z' the limit of (f (yO). Suppose that z -# z'. Then there exists jo E J such that 

(Jjo(z - z') > E for some E > O. As all the seminorms (Jj are continuous, we get 

Let 6 > 0 be as in Definition 2.1.2 corresponding to E and jo. Since both (Ym) and 

(yO converge to x, for each finitely enumerable subset F of I there exist mo E .M 

and lo E L such that 

I: Pi(Ym - yf) < 6 for all m 2: mo and alll 2: lo· 
iEF 

(2.2) 

Using again the uniform continuity of f, we can find a finitely enumerable subset F 

of I such that whenever (2.2) is satisfied, we have 

(Jjo (f (Ym) - f (yf)) < E for all m 2: mo and alll 2: lo, 

which contradicts (2.1). Since the inequality on a locally convex space is tight 

and the assumption z -# z' is contradictory, it follows that z = z' and hence that 

x f--t g(x) = z is a function. Clearly, g(y) = f(y) for all Y E Y. By an argument 

similar to the one above, it easily follows that 9 is uniformly continuous on X. 

Q.E.D. 

Definition 2.1.6 A subset S of X is totally bounded with respect to the 

finitely enumerable subset F of I if for each E > 0 there exists a finitely enumer­

able subset S c of S such that for each xES there exists s ESc with LiEF Pi (x, s) < E. 
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The set Se is called a finitely enumerable c-approximation to S relative to F. 

If S is totally bounded with respect to each finitely enumerable subset of I, then we 

say that S is totally bounded. 

Many of the most important results in classical analysis depend on the existence 

of the supremum or infimum of certain sets. Since constructively the least upper 

bound principle does not hold, the following proposition and its corollary will show 

the important role played by total boundedness in this respect. 

Proposition 2.1. 7 If X is totally bounded and f : X ---+ Y is uniformly continu-

ous, then f(X) is totally bounded. 

Proof. Let x be any point of X, let c > 0, and consider a finitely enumerable 

subset G of J. Since f is uniformly continuous, there exist 0 > 0 and a finitely 

enumerable subset F of I such that 

I: Uj(f(y), f(x)) < c 
jEG 

whenever x, y E X are such that 

I: Pi(X, y) < o. 
iEF 

Since X is totally bounded, there exists a o-approximation {Xl, ... , X N} to X cor­

responding to F. Pick k such that 

Then 

I: Pi(X, Xk) < O. 
iEF 

I: Uj(f(x), f(Xk)) < C. 

jEG 

As x was chosen arbitrarily, we conclude that {f(Xl),"" f(XN)} is an c-approximation 

to the image of f with respect to G. Q.E.D. 
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Corollary 2.1.8 If f is a uniformly continuous function from a totally bounded 

uniform space X to R) then the supremum and infimum of f exist. 

Proof. Since f(X) is totally bounded, the result follows from (4.4) page 38 of [4]. 

Q.E.D. 

The following definition generalises the notion of a located set to the present 

context. 

Definition 2.1.9 A subset S of X is located if 

inf {L Pi(X, y) : YES} 
iEF 

exists for each x E X and each finitely enumerable subset F of I. 

It follows from the constructive least-upper-bound principle that S is located 

if and only if for each x E X, each finitely enumerable subset F of I, and all real 

numbers a, (3 with 0 :S 0'.<(3, 

either LiEF Pi(X, y) > a for all yES 

or else there exists yES such that LiEF Pi(X, y) < (3. 

Proposition 2.1.10 A totally bounded subset of a uniform space is located. 

Proof. Let S be a totally bounded subset of X. Let x EX, let F be a finitely 

enumerable subset of I, and let 0 :S a < (3. Writing c = ~ (a + (3) , construct a 

finitely enumerable c-approximation {Sl' ... , sn} to S relative to F. Let 

d = inf { L Pi (x, S k) : 1 :S k :S n} , 
iEF 

which exists as the infimum of a finitely enumerable subset of R. Either d > a + c 

or d < (3. In the first case, given yES and choosing k (1 :S k :S n) such that 

LiEF Pi(y, Sk) < c, we have 

iEF iEF iEF 

In the second case, there exists k (1 :S k :S n) such that LiEF Pi(X, Sk) < (3. Q.E.D. 
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Proposition 2.1.11 A located subset of a totally bounded uniform space is totally 

bounded. 

Proof. Assume that X is totally bounded, and let S be a located subset of X. 

Given c > 0 and a finitely enumerable subset F of I, choose a finitely enumerable 

~-approximation {Xl, ... , Xn} to X. Since S is located, we can write {I, ... , n} as 

a union of subsets P, Q such that 

if k E Q, then there exists s E S such that L:iEF Pi(S, Xk) < 2c/3. 

For each j E Q choose Sj E S such that L:iEF Pi(Xj, Sj) < 2c/3. Given s E S, choose 

k (1 ::; k ::; n) such that L:iEF Pi(S, Xk) < c/3. Then k E Q and so 

iEF iEF iEF 

Thus {Sk : k E Q} is a finitely enumerable c-approximation to S. Q.E.D. 

We omit the proofs of the next three results since they are simple adaptations 

of (4.7) page 30 and (4.8) page 31 of [20], and (4.9) page 98 of [4], respectively. 

Theorem 2.1.12 Let (E, p) be a totally bounded pseudometric space, Xo a point of 

E, and l' a positive number. Then there exists a closed, totally bounded subset K of 

E such that B(xo, 1') eKe B(xo, 81'). 

Corollary 2.1.13 If E is a totally bounded pseudometric space, then for each c > 0 

there exist totally bounded sets K I , ... ,Kn , each of diameter less than c, such that 

Proposition 2.1.14 Let f be an uniformly continuous mapping on a totally bounded 

subset S of a pseudometric space E. Then for all but countably many real numbers 

t> m = inf{f(x) : XES} the set 

St = {X E E : If (x) I ::; t} 
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is totally bounded; in other words, there exists a sequence (tn)~=l in the interval 

(m,oo) such that St is totally bounded whenever t > m and t #- tn for each n. 

2.2 Continuous linear functionals on locally con­

vex spaces 

One important branch of the theory of locally convex spaces is the theory of linear 

operators. Of special interest therein is the role played by linear functionals on 

those spaces. The duality theory of locally convex spaces provides a powerful tool 

to translate a problem on the space (or on linear operators between locally convex 

spaces) into one concerning linear forms. 

In the rest of this chapter, unless otherwise specified, X denotes a locally convex 

space with its topology defined by the family (Pi)iEI of seminorms. Our main result, 

Theorem 2.2.4, shows that, under suitable hypotheses, the intersection of the unit 

ball with the kernel of a linear functional on X is totally bounded. This result has 

at least one substantial application, in the theory of operator algebras acting on a 

Hilbert space which is not assumed to be separable. 

The proof of our theorem requires some preliminaries; for the first of these, we 

recall that a mapping f between linear spaces is homogeneous if f(Ax) = Af(x) 

for all scalars A and vectors x. 

Proposition 2.2.1 Let (E,p) be a seminormed space and let S be a balanced, totally 

bounded subset of E. If f : E -+ F is a homogeneous mapping, uniformly continuous 

on S, then for all t > 0 the set 

St = {x E S : If (x) I :::; t} 

is totally bounded. 
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Proof. Since S is balanced, it contains 0, and therefore inf{f(x) : XES} = O. 

Being totally bounded, S is bounded: there exists M > 0 such that p(x) ::; M for 

all xES. Let t > 0 and let 0 <E < 1. By Proposition 2.1.14 there exists tf < t 

such that 

and Stl is totally bounded. Let {Xl, ... ,xn } be an ~-approximation to St" If X ESt, 

then t x E Stl , so there exists j (1 ::; j ::; n) such that 

Then 

and so 

E. 

E 
<-4' 

Thus the set {Xl, .. " Xn} is a finitely enumerable E-approximation to St. Q.E.D. 

The following criterion for the continuity of linear functionals in terms of families 

of defining seminorms enables us to show that in a locally convex space, the sets 

St of Proposition 2.2.1 are totally bounded with respect to any finitely enumerable 

family of defining seminorms. 

Proposition 2.2.2 A linear functional f on X is uniformly continuous if and only 

if there exist a positive real number C and a finitely enumerable subset F of I such 
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that 

If(x)1 ::::; CSUPPi(X) (2.3) 
iEF 

for each x EX. 

Proof. We include the (slightly adapted) well-known argument for the sake of 

completeness. Since f is continuous and f(O) = 0, the set {x EX: If(x)1 < I} is 

open in X; so there exist 6 > 0 and a finitely enumerable subset F of I such that if 

'L,iEF Pi (x) < 6, then If (x) I < 1. It follows that for each x E X and each c > 0, 

and therefore 

Since c > 0 is arbitrary, we see that (2.3) holds. Q.E.D. 

In the presence of linearity we can improve Proposition 2.1.14 substantially. 

Proposition 2.2.3 Let f be a uniformly continuous linear functional on X, and S 

a balanced, totally bounded subset of X. Then for all t > 0 the sets 

St = {x E S : If (x) I ::::; t} 

are totally bounded. 

Proof. Choose a finitely enumerable subset F of I such that (2.3) holds for some 

C > 0 and all x E X, and let G be an arbitrary finitely enumerable subset of I. 

Since 

If(x) I ::::; C L Pi(X) (x EX), 
iEFUG 

f is uniformly continuous with respect to the seminorm 'L,iEFUG Pi on X. It follows 

from Proposition 2.2.1 that for each t > 0 the set St is totally bounded with respect 
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to F U G. Given E > 0, choose a finitely enumerable E-approximation {Xl, ... ,Xn } 

to St relative to F U G. Then for each X E St we have 

iEG iEFuG 

for some j (1 :s; j :s; n). Since E > 0 is arbitrary, we conclude that St is totally 

bounded relative to G. Q.E.D. 

Theorem 2.2.4 Let X be a locally convex space, Y a linear subset of X such that 

Yi Y n Xl is totally bounded. If f is a nonzero linear functional on X, uniformly 

continuous on Yi, then Yi n ker f is totally bounded. 

Proof. Since f is uniformly continuous on Yi, 

C = sup{lf(x)1 : X E Yi} 

exists. By definition of "supremum" , we can find X E Yi with If (x) I > ~. Then 

C 

belongs to Yi, and If(xo)1 = ~. Let E be a positive number and {PI,." ,Pm} a 

finitely enumerable set of defining seminorms on X. Let t be a positive number 

such that 
E 

0< t < 1 + 4C-l 

Since 

St = {x E Yi : If (x) I :s; t} 

is totally bounded, there exists at-approximation {8l' ... , 8 n } corresponding to the 

above finitely enumerable set of seminorms. Set 
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Then Xk E ker f. If P).. is any defining seminorm on X, then we have 

P)..(Xk) < (1 + 2C-1tt1(p)..(Sk) + 2C-1If(Sk)lp)..(xo)) 

< (1 + 2C-1t)-1(1 + 2C-1t) 

1. 

So Xk belongs to Yi n ker f. 

Now consider any element x of Yi n ker f. Since x ESt, for some k (1 :::; k ::; n) 

and each i (1 ::; i ::; m) we have Pi (x - S k) < t and therefore 

Pi(X - Xk) < Pi(X - Sk) + Pi(Sk - Xk) 

< t + 2(C + 2t)-lpi(tsk + f(Sk)XO) 

< t + 2C-1(tPi(Sk) + tPi(XO)) 

< t(l + 4C-1) 

< E. 

Thus, {Xl, ... ,Xn } is a finitely enumerable E-approximation to Y1 nker f. Q.E.D. 

The following Brouwerian example shows that we cannot expect to prove that 

Yi n ker f is totally bounded unless we know that f = 0 or f #- O. 

Let a E R, and define a linear functional f : R --+ R by f(x) = ax. Then f 

is bounded-it has norm equal to a -and the unit ball [-1, 1] of R is balanced, 

convex, and totally bounded. Suppose that 

K = [-1, 1] n ker f 

is totally bounded, so that S = sup K exists. Either S > 0 or S < 1. In the first case 

there exists x#-O in R with f(x) = 0, so a = 0; in the second we have -, (1(1) = 0), 

so -, (a = 0). Thus Theorem 2.2.4 without the hypothesis f = 0 V f #- 0 implies 

that 

'\Ix E R (x = 0 V -, (x = 0)) , 

a statement that is known to be essentially nonconstructive. 
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2.3 The Minkowski functional on a locally convex 

space 

In Bishop's constructive mathematics, the existence of certain functionals is not al­

ways a trivial consequence of the logic used, as it is in the classical setting. One such 

functional is the Minkowski functional of a convex absorbing set. In the first part of 

this section we study the existence of the Minkowski functional on a locally convex 

space; in the second part we establish some basic results about these functionals. 

Definition 2.3.1 A convex subset C of X is said to be absorbing if for each x E X 

there exists a positive number r such that x E rC. If, for such C, 

f1C(x) = inf{r > a : x E rC} (2.4) 

exists for all x E X, then equation (2.4) defines the Minkowski functional of C, 

and we say that C has a Minkowski functional. 

It is shown in [35] that the existence ofthe Minkowski functional f1c entails LPO. 

So in order to ensure constructively the existence of the Minkowski functional, we 

need additional hypotheses on the convex absorbing set. 

The following lemma of Ishihara [35] plays a crucial role in the proofs of subse­

quent results. 

Lemma 2.3.2 Let C be a convex absorbing subset of X. Then C has a Minkowski 

functional if and only if for each x E X and all positive real numbers s, t with s < t, 

either x ¢:. sC or else x E tC. 

Proposition 2.3.3 A located convex absorbing subset of X with nonempty interior 

has a Minkowski functional. 
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Proof. Let 0 be such a subset of X. Without loss of generality, we may assume 

that 0 is an interior point of O. Hence there exist i E I and a positive number c5 

such that 

Va = {x EX: Pi(X) < c5} c O. 

Let s, t be positive real numbers such that s < t, and let x E X. Since 0 is 

located, either Pi (x - sy) > 0 for all YEO, or else there exists yEO such 

that Pi (x - sy) < c5 (t - s). In the first case, x ~ sO. In the second we have 

Pi ( (t - s) -1 (x - sy)) < c5, so 

z = (t - s)-l(X - sy) 

belongs to Va and therefore to O. Hence 

and therefore x E to. Lemma 2.3.2 now shows that the Minkowski functional of 0 

exists. Q.E.D. 

We now prove a very elementary but useful lemma which, to our surprise, we 

cannot find anywhere in the literature. 

Lemma 2.3.4 Let f, 9 be two functions from R O+ into a set S with a tight inequal­

ity, such that f(t) = g(t) for all t E R+ U {O}. Then f = g. 

Proof. Let t E R O+, and suppose that f(t) =1= g(t). Then --,(t > 0), so t ::; 0 and 

therefore t = 0; but this is impossible, since f(O) = g(O). Hence --,(j(t) =1= g(t)), and 

so, as the inequality on S is tight, f(t) = g(t). Q.E.D. 

Proposition 2.3.5 Let 0 be a convex absorbing subset of X for which the Minkowski 

functional exists. Then ftc is a sub linear functional on X. If also 0 is balanced, 

then ftc is a seminorm. 
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Proof. Let X,y E X and a > O. For each r > /Lc(ax)-such r exists, since 

C is absorbing-we have x E a-IrC and so a-Ir 2::. /Le(x). Thus ap,e(x) :S rand 

therefore a/Le (x) :S /Le (ax). Conversely, if t > /Le (x), then x EtC, so ax E atC and 

therefore at 2::. /Le (ax). Hence a/Le (x) 2::. /Le (ax), and therefore a/Le (x) = /Le (ax). 

Note that this equality also holds for a = 0, since /Le(O) = 0; so, by the preceding 

lemma, it holds for all nonnegative a. 

Now choose positive numbers rl, r2 such that 

Then x + y = rlCI + r2C2 for some CI, C2 E C. Since C is convex, we have 

Therefore 

/Le(x + y) :S rl + r2 < P,e(x) + /Le(Y) + c. 

Since c is arbitrary, it follows that /Le (x + y) :S /Le (x) + P,e (y). 

Suppose now that C is also balanced, and let a be a nonzero real number. Since 

I~I = 1, we see that ax E rC is equivalent to lalx E rC-that is, p,c(ax) = 

/Le(lalx) = lal/Le(x). Q.E.D. 

Proposition 2.3.6 Let p be a seminorm on X. Then the following hold. 

(i) The set S = {x EX: p( x) < 1} is convex, balanced, absorbing, and has Minkowski 

functional p. 

(ii) If A is a convex absorbing subset of X that has a Minkowski functional, then 

the sets 

B {xEX:/LA(X)<l}, 

C {XEX:/LA(X):Sl} 

have Minkowski functionals, B cAe C, and /LA = /LB = /Le. 
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Proof. Let x, yES and let a, (3 be positive real numbers with sum 1. Since p is 

a seminorm, 

p(ax + (3y) ::; ap(x) + (3p(y) < a + (3 = 1, 

so S is convex. Let I a I ::; 1 and xES. Then 

p(ax) = lalp(x) < lal ::; 1, 

so S is balanced. In order to prove that S is absorbing, choose r such that p(x) < r; 

thenp(r-1x) < 1, which means that x E rS. We have proved so far that S is convex, 

balanced and absorbing. 

The Minkowski functional for S will exist if and only if for each x EX, and 

arbitrary positive numbers s, t with s < t, either x E tS or else x 1:- sS. There are 

two possibilities: either p(x) < t, or p(x) > s. In the first case t-1x E S, hence 

x E tS. In the second case, suppose that x E sS. Then p(x) < s, a contradiction, 

so x 1:- sS. 

We have already seen that if r > p(x) then x E rS. This shows that /-Ls(x) ::; r 

and /-Ls ::; p. Given x, suppose that /-Ls(x) < p(x) and choose t such that /-Ls(x) < 

t < p(x). Then p(rlx) > 1, and so rlx 1:- S. But /-L(x) < t, so x E tS and therefore 

t-1x E S, a contradiction. Thus, in fact, /-Ls(x) 2:: p(x) and therefore /-Ls(x) = p(x). 

The inclusions B cAe C are obvious, as is the fact that both Band C 

are convex and absorbing. If x is an arbitrary vector and 0 < s < t, then either 

/-LA (x) < t or /-LA (x) > s. In the first case, x E tB; in the second, if we assume 

that x E sB , then, as B c A, we get /-LA(X) < s, a contradiction. Thus /-LB, and 

similarly /-Le, exists. It is immediate that /-Le ::; /-LA ::; /-LB. To complete the proof, 

it suffices to show that /-LB ::; /-Le. If /-Le(a) < s < t, then s-lx E C, /-LA(s-lx) ::; 1, 

and /-LA(t-1X) ::; st-1 < 1; whence t-1x E B, and therefore /-LB(X) ::; t. Since this 

inequality holds for every t > /-Le (x), it follows that /-LB (x) ::; /-Le (x). Finally, since 

x is arbitrary, we conclude that /-LA = /-LB = /-Le. Q.E.D. 
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Thus every seminorm on a locally convex space is the Minkowski functional of 

some convex, balanced, absorbing subset. The last result ofthis section shows that a 

locally convex space has a plentiful supply of subsets with the Minkowski functional 

and that such a subset can be described analytically in terms of this functional. 

Theorem 2.3.7 Let X be a locally convex space with the topology given by the 

defining family of seminorms (Pi)iEI. Let B be the local base consisting of all neigh­

bourhoods of 0 with the form 

VF,c: = {x EX: Pi (x) < E for all i E F}, 

where E > 0, F c I, and F is finitely enumerable. Then 

(i) Each set VF,c: has a Minkowski functional, and VF,c: = {x EX: /-LF,c:(X) < I}. 

(ii) The set {/-LF,c: : VF,c: E B} is a family of continuous seminorms on X. 

Proof. Let E be a positive number, and F a finitely enumerable subset of I. It is 

immediate that VF,c: is convex and balanced. Let x be an element of X, write 

NI = sup {Pi (x) : i E F} , 

and choose t > ME-I. Then Pi (x) < tE for all i E F, and therefore VF,c: is absorbing. 

Now let 0 < s < t. Then either M < tE or else M > SE. In the first case it 

follows that x E t VF,c:' In the second case there exists io E F such that Pio (x) > SE, 

so X ~ S VF,c:; hence VF,c: has a Minkowski functional. 

If x E VF,c:, then since VF,c: is a balanced set, t-I x E VF,c: for some t E (0, 1); 

whence /-LF,c:(X) < 1. Conversely, if x is an element of X such that /-LF,c:(X) < I, then 

for some t < 1 we have Pi(X) < tE < E for all i E F. This completes the proof of (i). 

Since VF,c: is balanced, the Minkowski functional /-LF,c: is a seminorm on X. Given 

a > 0, let F be a finitely enumerable subset of I, and let x, y be points of X such 

that Pi(X - y) < aE for all i E F. Then 

/-LF,c:(X - y) = inf {r > 0 : Vi E F (Pi (E-I (x - y)) < r) } ::; a 
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and therefore 

IfLF,s(x) - fLF,s(Y) I :s; fLF,s(X - y) :s; a. 

Since a > 0 is arbitrary, fLF,s is continuous. 

Finally, if x is a nonzero element of X, then there exist io E I and c > 0 such 

that Pio(x) > c; so x ~ 1/{io},s, and therefore fLF,s(X) 2: 1. Q.E.D. 

Proposition (5.1) on page 35 of [20] shows that if the closed subset B of X is 

convex, balanced, and absorbing, and has a Minkowski functional, then fLB defines 

the unique norm on X with respect to which B is the closed unit ball. 



Chapter 3 

Operator Topologies on 8(H) 

3.1 Introduction 

Let H be a Hilbert space, J3(H) the space of bounded linear operators on H, and 

Bl(H) the unit ball of B(H). Given Hilbert spaces Hn (n 2 1), the direct sum 

EB~=l Hn consists of all sequences (Xn)n2:1 such that Xn E Hn (n 2 1) and the 

series 2::~=1 IIxnl12 converges. It is a Hilbert space with respect to the inner product 

defined by 

((Xn), (Yn)) = L(xn,Yn)' 
n2:1 

There are four important topologies on B(H) that will concern us in this and 

subsequent chapters: 

• The uniform topology, in which two operators S, T are close if S - T has 

a small positive bound. (Classically, this is just the norm topology, but we 

may not be able to prove constructively that a given element of B(H) has a 

norm. Nevertheless, we shall adopt the convention that an inequality of the 

form liS - Til < c, where S, T E B(H), means that for some a with 0 < a < c 

and for all x in the unit ball of H, we have IISx - Txll ~ a, whether or not 

the operator norm liS - Til exists as a supremum.) 
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• The strong-operator topology IS : the weakest topology on B(H) with 

respect to which the mapping T 1-+ Tx is continuous for each x E H. 

• the weak-operator topology IW : the weakest topology with respect to which 

the mapping T 1-+ (Tx, y) is continuous for all x, y E H. We denote by Px,y the 

seminorm T 1-+ 1 (Tx, y) I. The weak-operator topology is generated on B(H) 

by the seminorms Px,y as x and y range over H. 

• the ultraweak-operator topology I(]"W : the weakest topology such that the 

mapping T 1-+ 2:~=1 (Txn' Yn) is continuous on B(H) for all elements (xn)~=l 

and (Yn)~=l of the direct sum Hoo = EB~=l H of a sequence of copies of H. 

Definition 3.1.1 An orthonormal basis for a Hilbert space H is a set of pairwise 

orthogonal unit vectors that generate a dense subspace of H. 

This definition is different from, and more tractable than, the sequential one 

given by Bishop [2] in the separable case. 

We assume that H has an orthonormal basis E. Classically, an application of 

Zorn's Lemma shows that this assumption is redundant; but Zorn's Lemma has 

every appearance of being essentially nonconstructive. (Note that the axiom of 

choice, to which Zorn's Lemma is classically equivalent, entails the law of excluded 

middle [32].) 

In order to make sense of Parseval's formula and related matters associated with 

orthonormal bases, we need to clarify what we mean by a sum over an arbitrary 

index set (see also Chapter 4). If (ri)iEI is a family of nonnegative real numbers, 

then we define 2:iEI ri to be SUPF 2:iEF ri, where F ranges over the finite subsets of 

I. This agrees with the standard definition when I is the set N+ of positive integers. 

With this definition at hand, we can establish identities, such as 

IIxl1 2 
= L I(x, e)12 , (3.1) 

eEE 
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familiar from the classical theory of Hilbert spaces. 

The following result improves upon Lemma (2.5) on page 308 of [4]. 

Proposition 3.1.2 Let K be a nonempty finitely enumerable subset of H, and E > 

O. Then there exists a finite subset F of E) generating a finite-dimensional subspace 

v of H, such that p(x, V) < E for all x E K. 

Proof. Let K = {Xl, ... , x n }, and use (3.1) to construct a finite subset Fl of E, 

generating a finite-dimensional subspace Vi of H, such that P(Xl' Vi) < E. Suppose 

that, for some k < n, we have constructed finite subsets Fl C F2 C ... C Fk of 

E such that p(Xi' Vi) < E (1 :::; i :::; k) , where Vi is the finite-dimensional subspace 

of H generated by Fi . Either P(Xk+l' 11k) < E or P(Xk+l' 1Ik+1) > O. In the first case 

we take Fk+1 = F k . In the second, we choose a finite subset S of E such that the 

distance from Xk+1 to the subspace of H generated by S is less than E, and we set 

Fk+1 = Fk U S. This completes the inductive construction of F k+1' To complete the 

proof, we take F = Fn. Q.E.D. 

The following lemma shows that when dealing with the weak-operator topology 

on 8 l (H), we need only concern ourselves with the seminorms Pe,e' where e, e' E E. 

Lemma 3.1.3 The sets of the form 

U(F, E) = {T E 8 1 (H) : Ve, e' E F (Pe,e,(T) < E)}, 

with F a finite subset of E and E > 0, form a base of neighbourhoods of 0 in the 

weak-operator topology on 8 1 (H) . 

Proof. A typical basic Tw-neighbourhood of 0 in 8 l (H) has the form 

V(S, E) = {T E 8 l (H) : Vx, yES (Px,y(T) < E)}, 

where S is a finitely enumerable subset of Hand E > O. Let 

M = maxJJxJJ. 
XES 
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It will suffice to prove that there exists a finite subset F of E such that 

U(F, c) C V(S, c(M2 + 2M)) . 

To this end, choose a finite subset F of E such that Ilx - Pxll < c for each XES, 

where P is the projection on the finite-dimensional subspace of H generated by F. 

If T E U(F, c), then for all x, yES we have 

Px,y(T) I(Tx,y)1 

< I(TPx, Py)1 + I(T(I - P)x, y)1 + I (TPx, (1 - P)y)1 

< 2: (x, e) (e' , y) Pe,e,(T) + Ilx - Pxlillyll + Ilxlllly - Pyll 
e,e'EE 

< c 2: I(x, e) (e' , y)1 + 2cM 
e,e'EE 

< c (2: l(x,e)12)1/2 (2: l(e l ,Y)12)1
/
2 +2cM 

eEE e'EE 

< c Ilxllllyll + 2cM 

c(M2 +2M), 

as we require. Q.E.D. 

For the proof of the next Lemma the reader is referred to page 34 of [28]. 

Lemma 3.1.4 The weak-operator topology Tw and the ultraweak-operator topology 

TO"w are equivalent on 131 (H). 

Define a linear mapping T M T of 13(H) into 13(Hoo) as follows: 

for each T in 13(H) and each x = (Xn)~=1 in Hoo. This mapping is isometric: 

IITII = IITII for all T E 13(H). 
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Lemma 3.1.5 Let n be a linear subset of B(H), and let 

If the unit ball n 1 = n n Bl (H) is T(]"w-totally bounded, then the unit ball n 1 = 

n n Bl(Hoo) is Tw-totally bounded. 

Proof. Let F be a finitely enumerable subset of Hoo and let c be a positive number. 

For x = (xn)~=I' y = (Yn)~=1 in F, since the series L~=1 IlxnllllYnl1 converges, we 

can choose N such that 
00 

x,yEFn=N+l 

Let {T1, ... , Tm} be a finitely enumerable c-approximation to Rl relative to the 

seminorm T f---7 Lx,YEF L;;=1 1 (Txn' Yn) I. Given T E Rl, choose k such that 

N 

L L I((T - Tk) Xn, Yn)1 < C. 
x,yEFn=1 

Then 

L 1 ( (T - Tk) x, y) 1 

x,yEF 

N 00 

< L L((T-Tk)Xn,Yn) + L L ((T-Tk)xn,Yn) 
x,yEF n=1 x,yEF n=N+l 

00 

< c+2 L L IlxnllllYnl1 
x,yEFn=N+l 

< 3c. 

Hence {Tl' ... ,Tm} is a finitely enumerable 3c-approximation to Rl relative to the 

seminorm T f---7 Lx,YEF 1 (Tx, y) I· Since F and c are arbitrary, this concludes the 

proof. Q.E.D. 

Recall that an element T of B(H) is positive if (Tx, x) ~ 0 for all x E X; in 

that case, T is selfadjoint. We denote by B(H)+ (respectively, Bl (H)+) the set of 

positive elements of B(H) (respectively, Bl (H)). 
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Lemma 3.1.6 The identity mapping of (B1(H), IW) into (Bl(H), IS) is uniformly 

continuous on the set of positive elements of Bl (H). 

Proof. For each T E Bl(H)+ and each x E H we have IIT1/2X112 = (Tx, x), where 

the square root of T is obtained by the functional calculus (see Chapter 7 of [4]).It 

follows that the mapping T 1-+ T 1/ 2 of (Bl(H)+, IW) into (Bl(H)+, IS) is uniformly 

continuous. Since multiplication, and hence squaring, is strong-operator continuous 

on bounded sets of operators ([40], (2.5.10)), we obtain the desired conclusion. 

Q.E.D. 

3.2 A monotone convergence theorem for opera-

tor nets 

We define the partial ordering::; on B(H) in the usual way: S ::; T if and only 

if T - S ~ O. A well-known classical theorem states that, relative to this partial 

ordering, an increasing net of selfadjoint operators in Bl (H) converges in the strong­

operator topology to a selfadjoint operator which is the least-upper-bound of the 

net [40]. It is an almost trivial consequence of the failure of the classical least upper 

bound principle in constructive analysis that we cannot prove that theorem about 

nets of operators constructively. However, we can prove the following results. 

Proposition 3.2.1 Let (Tj)jEJ be a net of operators of Bl(H) where the index set 

J is directed by the partial order~. Then the following statements are equivalent. 

(ii) (Tj) is Iw-convergent 

Proof. The proof is a direct consequence of Lemma 3.1.6. Q.E.D. 
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Theorem 3.2.2 Let (Tj)jEJ be an increasing net of positive selfadjoint operators of 

Bl(H). If it is Tw-totally bounded, then it is Ts-convergent in Bl(H). 

Proof. If (Tj)jEJ is Tw-totally bounded, then for each vector x of H the set 

{(Tjx, x) : j E J} is a totally bounded subset of R. Fix x E H; for simplicity, for 

each j E J write tj = (Tjx, x). We show that (tj ) is a Cauchy net in R. By total 

boundedness, for each c > 0 there exists a finitely enumerable subset I of J such 

that (ti)iEI is an c-approximation to {tj : j E J}. Since J is directed, we can pick 

jo E J such that jo ;::: i for all i E I. Let j be an element of J such that j ;::: jo, and 

choose i E I such that Itj - ti I < c. Then as our net is increasing, 

0< t· - t· < t· - t· < c. - J JO - J 2 

It follows that if j ;::: k ;::: jo,then 

o < t· - tk < t· - t· < c. - J - J JO 

Hence ((Tjx, x) )jEJ is a Cauchy net for each x E H. 

We now show that (Tj) is a Tw-Cauchy net. To this end, let c > 0 and let F be 

a finite subset of H. For each x E F compute jx E J such that 

Since {jx : x E F} is finitely enumerable, there exists jF E J such that jF ;::: jx for 

all x E F. It then follows that 

Hence (Tj) is a Tw-Cauchy net in Bl(H)+. By Lemma 3.1.6, it is a strong-operator 

Cauchy net in Bl(H)+. Since B1(H), and therefore Bl(H)+, is strong-operator 

complete ([40], (2.5.11)), we conclude that the net (Tj) converges strongly to an 

element T of Bl(H)+. Q.E.D. 
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The last result is the best that we can hope for, in the sense that its converse 

does not hold constructively. For, although classically it is trivial that any subset of 

a totally bounded subset of a uniform space is totally bounded, if every increasing 

Cauchy net in [0,1] is totally bounded, then LPO holds. To see this, consider any 

nonnegative real number a, and let 

with the ordering induced by the standard ordering on R. Suppose that the net 

(j)jEJ is totally bounded and therefore located. Compute the distance 

Either d < 1/4 or else d > O. In the first case there exists j E J such that I ~ - j I < %; 

whence j E Ra n [%, ~] and therefore a > O. In the second case the equation ax = ~ 

has no solution in R, which implies that a = O. 

Note that for sequences of operators we can prove the following result. 

Theorem 3.2.3 Let (Tn) be a sequence of operators on H such that 0 < Tn < 

Tn+! ::; I for each n. Then the following conditions are equivalent. 

(i) sUPn~l (Tnx, x) exists for each x E H. 

(ii) (Tn) is weak-operator totally bounded. 

(iii) (Tn) is weak-operator convergent to an element of B(H). 

Proof. Suppose that (i) holds. Let c be a positive number, F a finite subset 

of H, and x any element of F. Since ((Tnx, x) ):=1 is an increasing sequence of real 

numbers whose supremum exists, it converges to that supremum and is therefore a 

Cauchy sequence. Thus there exists Nx such that 
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Setting N = maxxEF N x , we see that for each x E F, 

Hence (Tn)~=1 is a weak-operator Cauchy, and therefore Tw-totally bounded, se-

quence. 

The implication (ii) =?- (iii) is a direct application of Theorem 3.2.2. 

Now assume that the sequence (Tn)~=1 is weak-operator convergent to an ele­

ment T of B(H). Then for each x E H, the sequence ((Tnx, xI )~=1 converges to a 

limit in R. This limit is its supremum. Q.E.D. 

3.3 The total boundedness of B1(H) 

Classically, Bl(H) is Tw-compact. Constructively, Bridges [6] showed that when H 

is separable, B1(H) is Tw-totally bounded, but the Tw-completeness of Bl(l2) implies 

LPO. We now establish the Tw-total boundedness of Bl (H) in the general case. 

Theorem 3.3.1 Let H be a Hilbert space. Then Bl (H) is weak-operator totally 

bounded. 

Proof. Let Xl, ... , Xn be unit vectors in H, and let E > O. Then, by Lemma 2.5 on 

page 308 of [4], there exists a finite dimensional subspace Ho of H such that 

Let P be the projection of H onto Ho. Then 

Since Ho is finite dimensional, the operator norm of each element of B(Ho) is com­

putable, and B(Ho) is a finite-dimensional Banach space under this norm; therefore 

its unit ball B1(Ho) is totally bounded in the operator norm. 
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Let {TP, ... , TrO} be an c-approximation to Bl (Ho), and let T E Bl(H). Then 

(PT)o, the restriction of PT to Ho, belongs to Bl (Ho), and hence there exists 

m (1 ::; m ::; r) such that 

It follows that 

sup {llpTx - T~xll : x E Ho, Ilxll ::; 1} < ~. 

On the other hand, since P is the projection on Ho, and Tl maps Ho to Ho, we have 

PTl = Tl for each j, and therefore 

I ((T - T~P)Xi' Xj)1 < I ((T - T~P)Xi' PXj) 1+ I((T - T~)Xi' Xj - PXj) I 
I((PT - T~P)Xi' Xj)1 + 211xillllxj - PXjl1 

< I((PT - T~P)PXi' Xj)1 + I(PT - T~P)(Xi - PXi), Xj)1 + 2; 
< II(PT)o - T~II + 211xi - PXillllxjl1 + 25

c 

< c. 

It follows now that {TP P, ... , T~ P} is a weak-operator c-approximation to the unit 

ball Bl(H). Hence Bl(H) is weak-operator totally bounded. Q.E.D. 

3.4 Weak-operator continuity and the existence 

of adjoints 

Consider the following classical proposition ([40], pages 304-306). 

Proposition 3.4.1 For each A E B(H) the mappings T I---t T A and T I---t AT of 

(B(H), Tw) into (B(H), Tw) are continuous. 

The proof of the continuity of the mapping T I---t T A on Bl (H) is relatively trivial, 

both classically and constructively. Classically, it is an immediate consequence of 
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the compactness of Bl (H) that T f--+ TA is uniformly continuous as a mapping of 

(Bl (H) , T w) into (B (H) , T w) . Constructively, we must do a little more work, since 

we cannot prove the uniform continuity theorem (see [20], Chapter 6), and even if 

we could, we know only that Bl (H) is totally bounded. Using an argument similar 

to that in the proof of Proposition 2.2.2, we first show that the mapping T f--+ T A is 

uniformly continuous on Bl (H) if and only if for each pair of vectors x, y E H there 

exist M > 0 and a finitely enumerable subset F of H such that 

I(TAx,y)1 < M sup I(Te,!)I. 
e,jEF 

Since the mapping T f--+ I(T(Ax),y)1 is Tw-uniformly continuous on Bl(H), we can 

now apply Proposition 2.2.2 to complete the required proof. 

The classical proof of the continuity of left multiplication with respect to the 

weak-operator topology is a trivial consequence of the identity 

(ATx, y) = (Tx, A*y) (x, y E H) 

and the uniform continuity of the mapping T f--+ (Tx, z) on Bl (H) for all x, z in H. 

Constructively, this proof is fine when A * exists, but will not work in general since, 

as will be shown overleaf, the statement "Every element of B(H) has an adjoint" 

implies LPO. 

At this point one might ask, "What is the problem, constructively, with the 

classical method of obtaining A*y for any A E B(H) and y E H: namely, apply the 

Riesz Representation Theorem to the bounded linear functional x f--+ (Ax, Y)?". In 

order to apply the Riesz Representation Theorem constructively to a linear func-

tional f on H, we need to know that f is not just bounded but has a norm, in the 

sense that 

sup {If(x)1 : x E H, Ilxll ::; I} 

exists ([4], page 419, (2.3)); since the classical least upper bound principle does 

not hold constructively , we may not be able to find the supremum in question. 
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However, the classical proof of the existence of A*y will work for us if we know that 

sup{I(Ax,y)l: x E H, Ilxll ~ I} 

exists for each y E H. 

Definition 3.4.2 A mapping f : X -+ Y between uniform spaces (X, (Pi)iEI) and 

(Y, (OJ)jEJ) is sequentially continuous at x E X if for each sequence (xn) 

converging to x in X, the sequence (j(xn)) converges to f(x) in Y 

Some general results on sequential continuity in constructive analysis are proved 

in Appendix A. We now show, by a Brouwerian example, that we cannot hope to 

prove constructively even the sequential continuity of the mapping T f---7 AT at 0 

with respect to the weak-operator topology. Let (en) be the usual orthonormal 

basis of unit vectors in the Hilbert space [2, and for each positive integer n define 

Tn E Bl (H) such that 

Then Tn has an adjoint, and the sequence (Tn) is weak-operator convergent to o. 

Now let (an) be a binary sequence with at most one term equal to 1, and define 

Ax = (~an (x, en)) el. 

Suppose that the mapping T f---7 AT of (Bl(H), Tw) into (B(H), Tw) is sequentially 

continuous at 0 -that is, maps sequences converging to 0 to sequences converging 

to 0. Then there exists N such that 

and therefore an = 0, for all n 2:: N. By testing aI, ... ,aN-I, we can therefore prove 

that 

Vn (an = 0) V 3n (an = 1) . 
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Hence the proposition 

For each A E B(H) the mapping T I-t AT of (B1(H), Tw) into (B(H), Tw) 

is sequentially continuous at O. 

implies LPO. It follows that if A* exists for each A E B(H), then LPO holds. 1 

This example raises the (classically vacuous) question: 

Ii for a given element A of B(H), the mapping T I-t AT of (B1(H), Tw) 

into (B(H), Tw) is continuous-or) in this case equivalently) uniformly 

continuous-does A* exist? 

We show in the next theorem that for A * to exist it suffices that the mapping 

T I-t AT preserve total boundedness. 

Theorem 3.4.3 Let H be a Hilbert space) let A E B(H), and let fA be the linear 

mapping T I-t AT of (B1(H), Tw) into (B(H), Tw). Then the following are equivalent 

conditions. 

(i) fA is continuous at O. 

(ii) fA is Tw-uniformly continuous on Bl(H). 

(iii) fA maps totally bounded subsets of (Bl(H),Tw) to totally bounded subsets of 

(B(H), Tw) . 

(iv) A has an adjoint. 

Proof. It is routine to show that (i) =? (ii); the implication (ii) =? (iii) is a special 

case of the general result that uniform continuity preserves total boundedness. ([4], 

(4.2) page 94). 

lThis is shown directly in [21]. 



44 

Assuming (iii), fix y and a unit vector e in H. For each x in the unit ball HI of 

H define Tx E Bl(H) such that Txe = x, and Txz = 0 for all z ..l e. Since Te E HI 

for each T E Bl (H), we see that 

and therefore 

{(Ax,y) : x E HI} = {(ATe, y) : T E Bl(H)}. 

So, in order to apply the Riesz Representation Theorem to construct A *y, it suffices 

to show that the set 

c = {1(ATe,y)1 : T E B1(H)} 

has a supremum in R. As Bl (H) is weak-operator totally bounded, we see from 

( c) that {AT : T E Bl (H)} is also weak-operator totally bounded. The uniform 

continuity of the mapping S /-----t (Se, y) on norm-bounded subsets of B(H) now 

ensures that the set C is totally bounded, and therefore has a supremum, in R. 

Since we have already noted that (iv) =} (i), our proof is complete. Q.E.D. 

We now investigate the weak-operator sequential continuity of the mapping T /-----t 

AT for a fixed A E B(H). Our final aim in the chapter is to prove the following 

result. 

Proposition 3.4.4 Let H be a separable Hilbert space, A an element of B(H), 

and fA the restriction to B1(H) of the mapping T /-----t AT. Suppose that fA maps 

Tw-Cauchy sequences to Tw-Cauchy sequences. Then fA is (Tw) Tw)-sequentially con­

tinuous at O. 

The proof of requires a couple of preliminaries. For the first of these we note that, 

as Richman [51] has recently shown, the adjoint of A E B(H) exists if and only if 

A(H1) is located. 
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Lemma 3.4.5 LPO implies that if H is a separable Hilbert space, then every ele-

ment of B(H) has an adjoint. 

Proof. Let H be a separable Hilbert space, HI its (separable) unit ball, and A 

an element of B(H). Then A(Hl) is separable. If LPO holds, then every separable 

subset of a metric space is located: this is easily shown using the constructive least-

upper-bound principle ([4], page 37, Proposition (4.3)). In that case, A(Hl) is 

located, and therefore A has an adjoint. Q.E.D. 

Definition 3.4.6 A mapping f : X ---t Y between uniform spaces (X, (Pi)iEI) and 

(Y, (OJ)jEJ) is sequentially nondiscontinuous at x E X if, wheneverc E Rand 

(xn ) is a sequence converging to x in X such that If(xn ) - f(x) I 2: c for all n, we 

have c < O. 

Lemma 3.4.7 Under the hypotheses of Proposition 2.5.1, fA is sequentially nondis-

continuous at O. 

Proof. Let (Tn)~=1 be a sequence in B1(H) that is Tw-convergent to 0, let ~ E H, 

and let c be a real number such that I (ATn~' ~) I > c for each n. Suppose that c > O. 

Given a binary sequence (an)~=I' construct an increasing binary sequence (An)~=1 

such that 

An 0 ~ Vk :::; n (ak = 0) , 

An 1 ~ :3k :::; n (ak = 1) . 

Without loss of generality, we may assume that Al = O. If An = 0, set Sn = 0; if 

An = 1 - An-I, set Sk = Tn for all k 2: n. Then (Sn)~=1 is a Tw-Cauchy sequence 

in Bl(H); so, by our hypotheses on fA, ((ASn~'~))~1 is a Cauchy sequence in C. 

Choose N such that 
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Either )w = 1 and there exists n ::::; N such that an = 1, or else AN = o. In the 

latter case, if n > N and An = 1 - An-I, then 

a contradiction; so An = 0 for all n > N and therefore for all n; whence ak = ° for 

all k. Thus LPO holds, and therefore, by Lemma 3.4.5, A has an adjoint. It follows 

that fA is (Tw, Tw)-continuous, which is impossible in view of our choice of c. We 

conclude that c ::::; O. Q.E.D. 

Ishihara [36] has proved a nondiscontinuity result related to the preceding one. 

However, his theorem requires the completeness of the domain of the function, 

which we cannot guarantee for fA. We trade completeness for the Cauchy-sequence-

preserving property. 

We now give the 

Proof of Proposition 3.4.4. To establish the sequential continuity of fA at 0, 

it suffices to prove that for each ~ E H the mapping T f--* (AT~,~) on B1(H) is 

Tw-sequentially continuous at o. Accordingly, let (Tn)~=l be a sequence in B1(H) 

converging to 0 in the topology Tw; then for each k, ((ATn~,~) )~=k is a Cauchy, and 

therefore totally bounded, sequence in C; so 

3k = sup I (ATn~'~) I 
n?k 

exists. Given c > 0, we need only find k such that 3k < 2c; clearly, we may assume 

that 31 > c. Taking no = 0, construct an increasing binary sequence (An) , and an 

increasing sequence (ni)~l of positive integers, such that 

• if Ai = 1, then ni = ni-l and 3 ni < 2c. 
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If .\ = 0, set Si = 0; if Ai = 1 - Ai-I, set Sk = Tni_1 for all k > n. Then (Sk)'r:=1 is 

a Tw-Cauchy sequence in BI(H); so ((ASk~,~))'r:=1 is a Cauchy sequence in C, and 

therefore 

exists. Either s > 0 or s < c. In the latter case, if there exists i such that Ai = 

1 - Ai-I, then 

a contradiction; whence Ai = 0, and therefore I\ATni~' ~)I > c, for all i. This is 

absurd, in view of Lemma 3.4.7. Thus the case s < c is ruled out, and so s > O. 

Hence there exists i such that I\ASi~' ~)I > 0; then Ai = 1 and therefore Sni < 2c. 

This completes the proof. Q.E.D. 



Chapter 4 

Ultraweakly Continuous Linear 

Functionals 

4.1 An extension theorem 

Let n be a linear subset of the space B(H) of all bounded linear operators on H. In 

this section we consider the extension and characterisation of those linear functionals 

on n that are continuous with respect to the weak-operator topology 7 w and the 

ultraweak-operator topology 7crw . 

Definition 4.1.1 A von Neumann algebra over H is a subalgebra R of B(H) 

with the following properties: 

(i) If TEn and T* exists, then T* E n. 

(ii) The unit ball Rl = n n Bl (H) of R is closed and totally bounded with respect 

to the weak-operator topology. 

Classically, if f is a 7crw-continuous linear functional on R, then we can extend it 

by continuity to the von Neumann algebra A generated by n. It follows classically 

from (7.4.5) on page 483 of [41] that f is 7crw-continuous on A. The Hahn-Banach 
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Theorem then enables us to extend f to a TlTw-continuous linear functional on f3(H). 

In turn, a beautiful argument ([28] ,) using the Hahn-Banach Theorem and the Riesz 

Representation Theorem shows that the extended functional has the form 

00 

T r--t L (Txn' Yn) , (4.1) 
n=l 

where (xn)~=l and (Yn)~=l are elements of Hoo. (It is easy to show, conversely, that 

any linear functional on f3(H) of this form is TlTw-continuous.) This conclusion can 

also be established, not just for TlTw-continuous linear functionals on f3(H) but also 

for those on a general von Neumann algebra, by deeper results in von Neumann 

algebra theory; see pages 481-483 of [41]. 

What can we say constructively about this situation? It is shown in [22] that 

f has the form (4.1) in the case n = f3(H). This is not enough to deal with 

the general case, in which the extension of f to f3(H) cannot be accomplished by a 

simple application of the Hahn-Banach Theorem, since the constructive form of that 

theorem requires stronger hypotheses than those of its classical counterpart; nor is 

the constructive theory of von Neumann algebras sufficiently developed-indeed, 

the work presented below is one of the first steps towards such a development-to 

accommodate the more advanced classical method of characterising TlTw-continuous 

linear functionals. Nevertheless, as we show in this section, we can extend f to 

f3(H) constructively under the assumption (which holds in classical mathematics) 

that n1 is Tw-totally bounded; the extension is accomplished by an iterative use of 

our main lemma, and ultimately incorporates a new demonstration that f has the 

form (4.1). 

Note that 

• we cannot prove constructively that every bounded linear mapping u between 
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normed spaces has a norm (in Bishop' phrase, is normable) 1 

I/ull = sup{llu(x)11 : Ilxll :::; I}; 

• a nonzero bounded linear functional f is normable if and only if its kernel is 

located ([4], page 303, Proposition (1.10)). 

As before, we denote by Px,y the seminorm T M I(Tx, y)1 on B(H). We already 

know that when dealing with the weak-operator topology, which is the topology 

generated on B(H) by Px,y as x and y range over H, we need only concern ourselves 

with the seminorms Pe,e' where e, e' E E (3.1.3). 

To each element T of B(H) there corresponds an element 'i of B(Hoo) defined 

for each x = (Xn)~=l in Hoo by 

Lemma 4.1.2 Let R be a linear subset of B(H), and let 

If f is a 7(Yw-continuous linear functional on R, then /('i) = f(T) defines a 7w-

continuous linear functional on R. If also Rl is 7w-totally bounded, then both f 

and f have norms, and these norms are equal. 

Proof. By Proposition 2.2.2 of Chapter 2, there exist a positive constant C and 

a finitely enumerable set F C Hoo such that for each T E R, 

00 I/('i) I = If(T)1 :::; C sup L (Txn, Yn) = C sup I ('ix, y)l· 
x,yEF n=l x,yEF 

1 Nevertheless, we write Ilull ::; c when Ilu(x)1I ::; c Ilxll for all x, even if we do not know that u 

has a norm. Other such inequalities involving classical norms that may not exist constructively 

will be interpreted in the obvious, analogous manner. 



51 

Hence 1 is Tw-(uniformly) continuous on R. If also Rl is Tw-totally bounded, then 

it is Tuw-totally bounded; so, by 3.1.5, the unit ball Rl of R is Tw -totally bounded. 

In view of Corollary 2.1.8, both f and f have norms. Finally, 

11111 = sup {I!(T)I : T E R 1 } = sup {If(T)1 : T E R 1 } = Ilfll. Q.E.D. 

Our aim in the remainder of this section is to prove the following extension-

characterisation theorem for Tuw-continuous linear functionals. 

Theorem 4.1.3 Let H be a Hilbert space with an orthonormal basis E) and let n 
be a linear subset of 8(H) whose unit ball is Tw-totally bounded. Then each Tuw -

continuous linear functional f on n extends to a Tuw-continuous linear functional 

on 8(H) and has the form 

00 

f(T) = L (Txn' Yn) (4.2) 
n=l 

with (xn) ,(Yn) elements of the direct sum Hoo = E8~=1 H. 

To this end, we now establish a number of technical results. The proofs of the 

first two of these, which are fundamental results iIi the duality theory of normed 

spaces, are found on page 341 of [4]. 

Proposition 4.1.4 Let Xo be an element of a separable normed space X, and S a 

bounded) balanced) convex subset of X. Suppose that {xo - x : XES} is located and 

that 

o < d = inf {llx - xoll : XES}. 

Then for each c > 0 there exists a linear functional u on X such that Ilull = 1 and 

u(xo) > lu(x)1 +d-c (x E S). 

Proposition 4.1.5 Let Xo be an element of a nontrivial separable normed space X, 

and c a positive number. Then there exists a linear functional u on X such that 

Ilull = 1 and u(xo) > Ilxoll - c. 
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Proposition 4.1.6 Let n be a linear subset of B(H)} and let f be a Tw-continuous 

linear functional on n. For each E > 0 there exist 0 > 0 and a finite subset F of 

E with the following property: if T E n l , if {el' ... ,en} is a finite subset of E 

containing F, and if 
n 

L (TXk' ek) < 0 
k=l 

for all Xl,··., xn in the unit ball of span{el, ... , en}, then If(T)1 < E. 

Proof. Given E > 0, use the uniform continuity of f on n l to find 0 > 0 and 

a finite subset F of E such that If (T) I < E whenever T E n l and Pe,e' (T) < 0 for 

all e, e' E F. Let {el,"" en} be a finite subset of E containing F, and let T be an 

element of n l such that lL:k=l (TXk' ek)1 < 0 for all vectors Xl, ... , xn in the unit 

ball of span{el, ... , en}. Given i,j with 1 :::; i,j :::; n, take 

ej if k = i 

o if k =1= i, 

to obtain Pej,ei(T) = I(Tej, ei)1 < O. In particular, Pe,e,(T) < 0 for all e, e' E F, so 

If(T)1 < E. Q.E.D. 

The proofs of the next lemma and our main theorem are modelled on Bishop's 

proof of the characterisation of linear functionals on the dual of a normed space ([4], 

pages 354-357). 

Lemma 4.1.7 Let nand f be as in Theorem 4.1.3} and let E > O. There exists 

a finite subset F of E with the following property: if {el' ... ,en} is a finite subset 

of E containing F, then there exist Xl, ... ,Xn and Yl, ... ,Yn in the linear span of 

511fll, 

-1 n , 
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and 
n 

f(T) - L (TXk' Yk) < c (T E R l ) . 

k=l 

Proof. We may assume that there exists To E Rl such that f(To) = 1. Given c 

such that 0 < c < 1/4, set 

0: = 511fll(1 + Ilfll), 

Using Lemma 4.1.6, find c5 > 0 and a finite subset F of E such that if T E R l , if 

S = {el' ... ,en} is a finite subset of E containing F, and if 

I~ (TXk' ek) I < c5 

for all Xl, ... ,Xn in the unit ball of H o, the linear span of {el' ... ,en}, then If(T) I < 

0:/2. For such S let 

Yk = n-3
/
2 ek (1:::; k :::; n) ; 

then (I:~=l IIYkI1 2) 1/2 = n-l. For all x = (Xl, ... , Xn) in the direct sum H'O 

EB~=l H o, since the unit kernel 

of f is Tw-totally bounded, by Lemma 2.2.4, and since the mappings T H I (TXk' Yk) I 

(1 :::; k :::; n) are uniformly continuous on Nl, the real number 

exists. Note that 11·110 is a seminorm on H'O. Since, for each T E 8(H), 

we see that 

Ilxllo:S; Ilxll = (~llx'112) 1/2; 

whence the mapping x H Ilxllo is uniformly continuous. As H'O is finite-dimensional, 

it follows that 

;J = inf{llxll o : x E H~, Ilxll = I} 
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exists. We show that f3 < a. 

Since either f3 > 0 or f3 < a, we may assume that f3 > O. It follows from the 

definition of f3 that f3llxll ::; IIxlio for each x E H~; whence 11·110 is a norm on H~, 

and (H~, 11·110) is a finite-dimensional Banach space. Define the norm on the dual 

space (H~) * in the usual way: 

lIulio = sup {lIu(x) II : x E H~, IIxll ::; 1} ; 

and define a mapping F : NI ~ (H~) * by 

n 

F(T)(x) = I: (TXk' Yk) (T E NI , x E H~) . 
k=1 

For each x E H~ the mapping T H- F(T)(x) is Tw-uniformly continuous on NI ; 

so, as Ho is finite-dimensional, F is Tw-uniformly continuous on NI. Therefore, NI 

being Tw-totally bounded, the range ran F of F is totally bounded and therefore 

located in (H~)*. We show that ranF is dense in the unit ball (S~, 11.11 0) of (H~)*. 

To this end, fix u in S~ and suppose that 

o <, = Po(u, ran F) = inf {liu - F(T) II : T E NI }. 

Since ran F is bounded, balanced, and convex, we see from Proposition 4.1.4 that 

there exists a normable linear functional <I> on ((H~)* , 11'11 0) such that 

<I>(u) > I<I>(F(T)) I + ,/2 (T E NI)' 

Because (H~)* is a finite-dimensional Banach space, the topology induced on it by 

the norm 11.11 0 is equivalent to the weak* topology; so, by Corollary (6.9) on page 

357 of [4], there exists ~ E Ho such that <I>(v) = v(~) for each v E (H~)*. Therefore 

u(~) > sup{IF(T)(~)I: T E NI } 

sup { 'f (T~k' Yk)1 : T E NI} = 1I~lIo' 
which is absurd as u belongs to S~. We conclude that, = 0, and hence that ran F 

is dense in S~. 
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Now let x be any element of the unit ball of (H~, 11·110)' Since 

n 

L ((3Toxk' Yk) ~ (3llxll ~ Ilxllo , 
k=1 

the linear functional x I-t Lk=1 ((3Toxk' Yk) belongs to So. As ran F is dense in So, 
there exists an element T of Nl such that 

n 

L (((3To - T) Xk, Yk) < 2n-1
c5 

k=1 

and therefore 

E (~((3To - T) Xk, Yk)1 < () 

for each x in the unit ball of H~. Now, (3 ~ 1 and both T and To belong to n1, so 

~ ((3To - T) E n1; hence 

and therefore 

(3 = (3f(To) - f(T) = 2f(~ ((3To - T)) < a, 

which embodies the inequality that we wanted to establish. 

N ow choose z in the unit ball of H~ such that 

For each T E n 1 , since 

(1 + Ilfll)-1 (T - f(T)To) E N1, 

we have 

(1 + Ilfll)-1 E ((T - f(T)To) Zk, Yk) 1 < a. 

On the other hand, by Proposition 4.1.5, there exists v E So such that v(z) = 1/2. 

Since ran F is dense in So, there exists Tl E Nl such that 

n 1 
v(x) - L (TIXk' Yk) <"4 (x E Ho, Ilxllo ~ 1) . 

k=1 



In particular, 

Since 

it follows that 

Hence 

Writing 

1 

2 
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n 1 n 

'L(T1zk, Yk) < "2 - 'L(T1zk, Yk) 
k=l k=l 

n n 

< 'L ((T1 - !(T1)To) Zk, Yk) + 'L (f (T1)TOZk , Yk) 
k=l k=l 

n 

< (1 + II!II) a + II!II 'L (TOZk' Yk) . 
k=l 

~ -1 (1 ) 1 -1 
LJ (TOZk' Yk) 2: II!II 4: - (1 + II!II) a > 511!11 . 
k=l 

x = (~ (Tozk, Yk)) -1 z, 

we have Ilxll S; 511!11. Also, for each T E n1 , 

~ (TXk, Yk) - f(T)1 ~ (TOZk' Yk) -11~ ((T - f(T)To) Zk, Yk)1 

< 511!11 (1 + II!II) a 

c. 

This completes the proof. Q.E.D. 

We are now in a position to prove the main result of this chapter. 

(4.3) 

Proof of Theorem 4.1.3 We first consider the case where! is a Tw-continuous 

linear functional on n. We may assume that II!II < 1. Setting n1 = 1 and X1,1 = 

Y1,1 = 0, we construct a strictly increasing sequence (nj )~1 of positive integers, and 
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for each j elements Xj,l, ... ,Xj,nj and Yj,!, ... ,Yj,nj of H, such that 

< 5.2-j
, 

and 
j ni 

f(T) - :E :E (TXi,k, Yi,k) < 2-j (T E R I ) . (4.4) 
i=l k=l 

To do so, we use induction on j. Supposing that nj and the corresponding elements 

Xj,k and Yj,k (1 ~ k ~ nj) of H have been constructed, we have either Ilfll < 2-j
-

1 

or Ilfll > O. In the first case we set nj+1 = nj + 1 and Xj+1,nj+l = Yj+1,nj+l = O. In 

the second, applying Lemma 4.1.7 to the Tuw-continuous linear functional 

j ni 

T H- f(T) - :E :E (TXi,k, Yi,k) 
i=l k=l 

on R, we obtain a positive integer nj+1 > nj, and elements Xj+1,k, Yj+l,k (1 ~ k ~ nj+1) 

of H, such that 

< 5.2-j - l , 

and 
j+l ni 

f(T) - :E :E (TXi,k, Yi,k) < 2-j
-

1 (T E R I ) . 

i=l k=l 

This completes the induction. 

Now define sequences x, y of elements of H as follows: 

x = (XI,I, ... , xI,nl' X2,1, ... , x2,n2' X3,1, ... , X3,na, .. .) 

and 

Y = (YI,I, ... ,YI,nll Y2,1, ... ,Y2,n2' Y3,1, ... ,Y3,na, ... ) . 
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The series L:k=11IxkI12 and L:~l IIYkl1 2 
converge, by comparison with 5 L:~12-2j+2 

and L:~l nj2, respectively; so x, y E Hoo , and the series L:~=l (Txn' Yn) converges 

absolutely for each T E B(H). It follows from (4.4) that (4.3) holds, and hence that 

f extends to a Tuw-continuous linear functional on B(H). 

It remains to consider the case where f is Tuw-continuous. Define nand f 

as in Lemma 4.1.2. Since n 1 is weak-operator totally bounded and f is weak­

operator continuous on n, using Lemma 3.1.5 we obtain sequences (~k)~=l , ('flk)~=l 

of elements of Hoo such that 

00 00 00 

ieT) = L \T~k' 'flk) = L L (T~k,i' 'flk,i) (T En), 
k=l k=l i=l 

where ~k = (~k,i):l and 'flk = ('flk,i):l' Let ¢ be a one-one mapping of N+ 

onto N+ X N+, and set Xn = ~¢;(n), Yn = 'fl¢;(n). By Fubini's Theorem, the se­

ries L:k,'i=l II~k,iI12 , L:k,'i=l II'flk,iI1 2 , and L:k,i I (T~k,i' 'flk,i) I converge. Hence the series 

L:k,'i=l II~k,iI12 , L:k,'i=l II'flk,iI1 2 , and L:k,'i=l (T~k,i' 'flk,i) converge, in each case to a sum 

that does not depend on the ordering ofthe terms ofthe series. Writing x = (Xn)~=l 

and y = (Yn)~=l' we now see that x and y belong to H oo , and that 

00 00 

f(T) = L (T~k,i' 'flk,i) = L (Txn' Yn) 
k,i=l n=l 

for all TEn. Q.E.D. 

4.2 The predual 

In classical mathematics, every von Neumann algebra has a weak-operator compact 

unit ball. In view of the Alaoglu-Bourbaki Theorem, we therefore see that a von 

Neumann algebra exhibits one of the key features of the dual of a Banach space. 

Constructively, we cannot expect a von Neumann algebra n to have this property, 

since for the case n = B(H) the most we can say, in general, is that its unit ball is 

Tw-totally bounded. 
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Let R be a linear subset of B(H), let RI = R n BI(H) be its unit ball, and 

let R~ denote the linear space of all linear functionals on R that are ultraweakly 

continuous, and hence Tw-continuous on R I. If RI is Tw-totally bounded, then 

Ilfll = sup {If(T)1 : T E R I } 

defines a norm on R~; taken with this norm, R~ is called the predual of R. 

For convenience, we denote by fx,y the ultraweakly continuous functional T H­

(Tx, y) on B(H). 

Theorem 4.2.1 Let R be a linear subset of B(H) such that RI is totally bounded 

in the weak-operator topology Tw , and define a mapping ¢ of R into the dual space 

Rt ofR~ by 

¢(T)(J) = f(T) (T E R). 

Then ¢ is one-one and linear) and is uniformly continuous on R I. Moreover) ¢(RI) 

is weak*-dense in the unit ball ofRt, and the restriction of ¢-I to ¢(RI) is uniformly 

continuous with respect to the weak*-topology on R~ and the weak-operator topology 

on R I . 

Proof. Since ¢ is clearly linear, to prove that it is one-one we need only show 

that its kernel is {O} . But if ¢(T) = 0, then we have 

(Tx, y) = ¢(T) (Jx,y) = 0 

for all x, y E H; whence T = O. 

For each f E R~ the mapping T H- ¢(T) (J) equals f and so is uniformly con­

tinuous on R I . It follows immediately that ¢ is uniformly continuous as a mapping 

of (RI' Tw) into Rt (with the weak*-topology). Hence K = ¢(Rd is weak *-totally 

bounded, and therefore located, in Rt [13, 14]. Let u be an element of the unit 

ball of Rt, let {h, ... ,fN} be a finitely enumerable subset of R~, and let c be a 
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positive number. To prove that ¢(n1 ) is weak*-dense in the unit ball (n~h of n~, 

it is enough to show that K intersects the neighbourhood 

v = {v E (nn 1 : I (u - v) (lk) I < 3c (1 :s; k :s; N) } 

of u in (n~h- To this end, choose a finite-dimensional subspace 9 of n~ such that 

inf {II fk - gil : 9 E g} < c (1:S; k :s; N) 

([4], page 308, Lemma (2.5)); for each k (1 :s; k :s; N) , then choose gk E 9 such that 

Ilfk - gkll < 1. The dual space g* of 9 is a finite-dimensional Banach space with 

respect to the usual norm defined by 

Ilull' = sup {lu(g)1 : 9 E g, Ilgll :s; 1}. 

Since K C (n~h, and (n~h is a subset of the unit ball of (9*)1' we can regard u 

and, for each T E n1 , the functional ¢(T) as elements of (9*)1 . Now suppose that 

inf {Ilu - ¢(T)II' : T E nl} > O. (4.5) 

By Proposition 3.1.3, there exists a linear functional 'l/J, with norm 1, on g* such 

that 

I'l/J(u) I > sup {I'l/J(v) I : v E K}. 

Since 9 is finite-dimensional, 'l/J is weak*-uniformly continuous on (9*)1; so, by 

Corollary (6. g) on page 357 of [4], there exists 9 E 9 such that 'l/J ( v) = v (g) for all 

v E g*. In particular, 

lu(g)1 > sup{lv(g)l:vEK} 

sup {1¢(T)(g)1 : T E n 1 } 

sup {g(T) : T E n1 } 

Ilgll, 
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which is absurd since u E (R~h- We conclude that (4.4) is false, and hence that 

Ilu - ¢(To)II' < M ~ 1 

for some To E R I , where 

For each k (1 ~ k ~ N) we now have 

I(u - ¢(To)) (lk)1 < I(u - ¢(To)) Uk - gk)1 + I(u - ¢(To)) (gk)1 

< 211fk - gkll + Ilu - ¢(To)II'llgkll 
c 

< 2c+ M +1M 

< 3c; 

in other words, ¢(To) E V Since ¢(To) E K, this completes the proof that ¢(RI ) is 

dense in (Rni. 

Finally, the uniform continuity of the inverse mapping on K follows from the 

identity 

I (Tx, y)1 = I¢(T) Ux,y)) I (x, y E H; T E R I ) , 

with reference to the definitions of the weak*- and weak-operator topologies, and 

to Proposition 1.2.8 on page 19 of [40]. Q.E.D. 

Classically, any von Neumann algebra can be identified, via the mapping ¢, with 

the dual of its predual R~ ([41], page 482). If this were provable constructively, then 

we could use Theorem 4.2.1 to prove that BI(H) is Tw-complete, which we cannot 

do. Thus Theorem 4.2.1 appears to be the best general constructive result of its 

type. 

4.3 An application to trace class operators 

Let H be a complex Hilbert space that has an orthonormal basis. An element A of 

B(H) 
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• has an absolute value if there exists a (necessarily unique, positive, selfad-

joint, and bounded) operator IAI on H such that 

(IAlx, IAIY) = (Ax, Ay) 

for all x, y E H. If A has an adjoint, then IAI2 = A* A, and this equation may 

be used to define IAI. An operator need not have an absolute value, even if 

its range is I-dimensional; 

• is a trace class operator if it has an absolute value and 

IIAlll = 2:(IAle,e) 
eEE 

exists for some orthonormal basis E of H. 

In the second case, the trace class norm of A is 

IIAlll = 2: IIIAI1/2e I1
2

. 
eEE 

For every trace class operator A, the family ((Ae, e) )eEE is summable. We define 

the trace of A to be the sum 

Tr(A) = 2: (Ae, e) .. 
eEE 

Note that IIAlll =Tr(IAI). We denote the set oftrace class operators on H by T(H). 

As we proved in Section 4.1 (see also [22]), under the hypotheses of Theorem 

4.2.1, the ultraweakly continuous linear functionals on a linear subset n of B(H) 

whose unit ball is weak-operator totally bounded extend to ultraweakly continuous 

linear functionals on B(H) and are precisely those functionals fA mapping T to 

Tr(TA) , with A a trace-class operator on H. The norm of fA on n is 

IlfAlln = sup {ITr(TA) I : T E n 1}, 

which in the case n = B(H) equals the trace-class norm 

IIAlll = Tr (A) 

of A (see [7]). Taken with Theorem 4.2.1, these observations lead to 
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Theorem 4.3.1 Let R be a linear subset of B(H) such that Rl is totally bounded 

in the weak-operator topology Tw. Let T(H) denote the set of trace-class operators 

on H, taken with the norm 

IIAlln = sup {ITr(T A) I : T E R l } . 

Then 

<Q(T)(A) = Tr(TA) (T E R, A E T(H)) 

defines a one-one linear mapping <Q of R into the dual space T(H)* with the fol­

lowing properties. 

(i) <Q(Rl ) is dense in the unit ball T(H)i ofT(H)*. 

(ii) <Q is uniformly continuous on R l . 

(iii) the restriction of <Q-l to <Q(Rl ) is uniformly continuous relative to the weak*­

topology on <Q(Rl ) and the weak-operator topology on R l . 

Corollary 4.3.2 Under the hypotheses of Theorem 4.3.1) the following conditions 

are equivalent. 

(i) Rl is weak-operator complete. 

(ii) ¢ maps Rl onto the unit ball of R~. 

(iii) <Q maps Rl onto the unit ball of T(H)* relative to the norm 11·lln' 

Proof. This is a special case of the following general lemma about metric spaces, 

whose straightforward proof we omit. Q.E.D. 

Lemma 4.3.3 Let X be a metric space) Y a complete metric space, and ¢ a one­

one uniformly continuous mapping of X onto a dense subset of Y such that ¢-l is 

uniformly continuous on ¢(X). Then X is complete if and only if ¢(X) = Y. 



Chapter 5 

The Geometry of Projections 

5.1 A first constructive look at the comparison of 

projections 

Throughout this section, n will be a von Neumann algebra over H (that is, a 

*-subalgebra of B(H) whose unit ball n 1 = n n Bl(H) is Tw-closed and totally 

bounded). We investigate the constructive comparison theory for projections in n 
of B(H), beginning with some definitions and facts from [21]. 

Two operators T, R are said to be isometric if (Tx, Ty) = (Rx, Ry) for all x, y. 

In that case 

• if either R or T has an absolute value, then so does the other and the absolute 

values are equal; 

• if either R or T is bounded, then so is the other; and 

• if either R or T has a norm, then so does the other. 

As a converse of the first of these observations, two operators with absolute values 

are isometric if their absolute values are equal. 
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If T and R are isometric, then there is an isometry U from ranR to ranT such 

that T = UR. This is a kind of polar decomposition of T. (Classically, the domain 

of U can be extended to the whole of H by first extending U (uniquely) to the 

closure of ranR and then defining U to be 0 on the orthogonal complement of ranR. 

Constructively, this procedure will not work unless ranR is located.) 

Let P be a projection, and U a bounded operator, on H. Then the following 

conditions are equivalent: 

• I UI exists and equals P; 

• U is an isometry on the range of P and is 0 on the kernel of P. 

If these hold for some projection P, we say that U is a partial isometry with 

initial projection P and initial space P(H). The following facts about partial 

isometries are well known or easily established (see [21], and [41], Chapter 6). 

- If U is a partial isometry, then U lUI = u. 

- If U is a partial isometry with initial projection P, then (Ux, Uy) = (x, y) for 

all x, y E E(H), and U maps any orthonormal sequence in its initial space to 

an orthonormal sequence. 

- The adjoint (if it exists) of a partial isometry is a partial isometry. 

- An operator U with an adjoint is a partial isometry if and only if U*U is a 

projection, in which case U*U is the initial projection of U. UU* is also a 

projection, called the final projection of U, and its range is called the final 

space of U. 

Definition 5.1.1 We say that two projections E, F E B(H) are strongly equiv­

alent relative to R) and we write 

E~nF, 
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if there exists a partial isometry U E R such that U*U = E and UU* = F. 

Definition 5.1.2 We say that E is weaker than F, and that F is stronger than 

E, relative to R} and we write 

E~nF, 

if E ';::::jn F' for some subprojection F' of F. 

We write ';::::j, ~ instead of ';::::jn, ~n when it is clear which von Neumann algebra 

R is under consideration. 

Note that, as classically, if E ';::::jn F, then both E and F belong to R, since U 

and U* are in the subalgebra R, ([41], foot of page 402). Also, ';::::jn is an equivalence 

relation ([41], 6.1.5), and ~n is transitive ( [41], 6.2.5). 

Relative to the von Neumann algebra B(H) we have the following properties. 

Lemma 5.1.3 If E is a finite-dimensional projection and E ';::::j F} then F is finite­

dimensional} with the same dimension as that of E. 

Proof. The partial isometry implementing the equivalence between E and F 

maps an orthonormal basis of E(H) to an orthonormal basis of F(H). Q.E.D. 

Proposition 5.1.4 If H is separable} then any two infinite-dimensional projections 

on H are strongly equivalent. 

Proof. Let E and F be infinite-dimensional projections on H. Let (en) be an 

orthonormal basis of E(H), and Un) an orthonormal basis of F(H). Since E is a 

projection, its range is located; so we can define a linear mapping U as follows: 

U en fn for all n, 

U x 0 for all x E E(H).L. 
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Then for all x E H we have 

Ux UEx + U(I - E)x 

UEx 

U (~ (Ex, en)en) 

00 

n=l 
00 

the fourth equality following because the convergence of 

00 00 

n=l n=l 

ensures that of ~~=1 1 (x, en) 12. Note that ran U C F(H). We easily show that the 

adjoint of U exists and maps each in to the corresponding en. Also, for all x E H 

we have 

Similarly, UU*y = Fy for all y E H. Hence U is a partial isometry with initial 

projection E and final projection F. Q.E.D. 

Proposition 5.1.5 Let E, F be projections in such that 

E r:::::8(H) F < E. 

Then E is infinite-dimensional. 

Proof. Let U be a partial isometry such that U* U = E and UU* = F. Let 

K be a finite-dimensional subspace of E(H) with dimension n. Then U(K) is an 

n-dimensional subspace of F. Since F < E, there exists a unit vector e E E(H) n 

F(H).1.. The partial isometry U* maps U(K) onto an n-dimensional subspace of 

E(H), and maps e to a unit vector orthogonal to U(K). Hence U(K) and e span 
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an (n + I)-dimensional subspace L of E(H). Since K is n-dimensional, there exists 

x E K - L. Hence E(H) is infinite-dimensional. Q.E.D. 

Classically, the ordering ::S is total on 13(H). To see that this is not the case 

constructively, let (an) be a binary sequence containing at most one term equal 

to 1. Let (en) be an orthonormal basis of unit vectors in an infinite-dimensional 

Hilbert space H, and define projections E, F on H as follows. 

° if either an = 0, or an = 1 and n is odd 

1 if an = 1 and n is even, 

° if either an = 0, or an = 1 and n is even 

1 if an = 1 and n is odd. 

If an = 1 for an even value of n, then E is the projection on Cen and F = 0, so 

F ::S E and F < E; if an = 1 for an odd value of n, then E = ° and F is the 

projection on Cen , so E ::S F and E < F. It follows that if E ::S F, then an = ° for 

all even n; and if F ::S E, then an = ° for all odd n. 

5.2 Countable additivity of equivalence 

Classically, equivalence is countably additive: 

If (En), (Fn) are pairwise orthogonal families of projections in R such 

that En ~n Fn for each n, then 2:.':;:=1 En ~n 2:.':=lFn ([41], 6.2.2). 

There are two constructive problems with this statement as it stands. First, there 

is no guarantee that 2:.':=1 En and 2:.':=1 Fn converge (strongly); and secondly, even 

if the sum U = 2:.':=1 Un of the partial isometries implementing the equivalences 

between the En and the Fn converges, we cannot be certain that U will have an 

adjoint. 
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We prove the following constructive version of the countable additivity of equiv-

alence. 

Proposition 5.2.1 Let (En) and (Fn) be orthogonal families of projections in R. 

Let (Un) be a family of partial isometries in R, each with an adjoint, such that 

En = U~Un and Fn = UnU~ for each n. Then the following conditions are equivalent. 

(i) L~=l En and L~=l Fn converge strongly in R. 

(ii) L~=l Un converges strongly to an operator in n with an adjoint. 

(iii) L~=l U~ converges strongly to an operator in n with an adjoint. 

(iv) L~=l Un and L~=l U~ converge in n in the weak-operator topology. 

We need two simple lemmas for the proof. 

Lemma 5.2.2 Let (xn) be an orthogonal sequence of elements of H. Then L~=l Xn 

converges in H if and only if L~=l IIxnl12 converges. 

Proof. For all k > j we have 

2 

n=j n=j 

Thus the partial sums of L~=l Xn form a Cauchy sequence in H if and only if the 

partial sums of L~=11IxnI12 form a Cauchy sequence in R. Q.E.D. 

Lemma 5.2.3 Let (Un) be a sequence of linear mappings of H into H such that 

• (Umx, Unx) = 0 whenever m =I n, and 

• for each x E H, L~=l Unx converges weakly to an element U x of H. 
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Then U is a linear mapping of H into H, and for each x E H, L~=l Unx converges 

strongly to Ux. Moreover) if each Un belongs to n, then so does U. 

Proof. As the ranges of the operators Un are pairwise orthogonal, whenever 

NI2: N we have 

Letting M ~ 00, we obtain 

Now letting N ~ 00, we see that L~=11IUnxI12 converges to (Ux, Ux) = IIUxI1 2
. It 

follows from Lemma 5.2.2 that L~=l Unx converges in H. Since L~=l Unx converges 

weakly to Ux, we conclude that Ux = L~=l Unx. It is routine to show that U is 

a linear mapping. The final conclusion follows because a von Neumann algebra is 

strong-operator closed. Q.E.D. 

We now have the Proof of Proposition 5.2.1. To begin with, we assume (i), 

letting 
00 00 

E = 'l:. En, F = 'l:. Fn· 
n=l n=l 

For each x E H we have 

00 00 00 00 

'l:.llunx l1
2 = 'l:. (U~Unx, x) = 'l:. (Enx, x) = 'l:.II Enx I1

2 
, 

n=l n=l n=l n=l 

so L~=l Unx converges to a limit Ux E H, by Lemma 5.2.2. Thus L~=l Un converges 

in the strong-operator topology to a limit U E n. Similarly, L~=l U~ converges in 

n in the strong-operator topology. For all x, y E H we have 

so L~=l U~ is strong-operator convergent to U*. 
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Next, assume (ii), and let U = I:~1 U~. For all x, y E H we have 

(x, U'y) ~ (U x, y) ~ (J;, U"x, y ) ~ J;, (x, U,:y) , 

so I:~=1 U~y converges weakly to U*y. It follows from Lemma 5.2.2 that (iii) holds. 

Interchanging the roles of U and U*, we see that (ii) and (iii) are equivalent condi-

tions. 

Finally, assume (iv). Since the Un are orthogonal partial isometries, so are their 

adjoints. Hence, by Lemma 5.2.3, both I:~=1 Un and I:~=1 U~ are strong-operator 

convergent in R. Moreover, 

00 00 00 00 

(U*x, U*x) = L IIU~xI12 = L (UkU~X, x) = L (FkX, x) = L II Fk X I12 . 
k=l k=l k=l k=l 

Lemma 5.2.2 now shows that I:~1 Fk converges strongly to an operator FER, 

which must be a projection as the Fk are pairwise orthogonal projections. Using 

the orthogonality of the Fn , we find that 

Interchanging the roles of U and U*, we see that I:~=1 En converges strongly to a 

projection E E R, that E = U*U, and hence that E is equivalent to F relative to 

R. In particular, (iv) implies (i). Q.E.D. 

To see that the foregoing proposition is the best possible constructive result 

about countable additivity, let (an) be a binary sequence with at most one term 

equal to 1, and define 
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Then (En) is an orthogonal sequence of projections, Un is an isometry on the range of 

En, Un has adjoint y H- an (y, el) en, and Un is 0 on the kernel of En. Let Fn = UnU~, 

Then Fn is a projection equivalent to En relative to B(H), and Fm is orthogonal to 

Fn when m =I- n. The series 2:~=1 Unx converges for each x : for, given c > 0 and 

choosing N such that 1 (x, en) 12 < c for all n 2: N, we see that 2:!;:!tr IIUn xl1 2 < c for 

each k 2: 1. Thus 

is a well-defined operator on H with bound 1. But, as is shown in Chapter 3, if U 

has an adjoint, then either an = 0 for all n or else there exists n with an = 1. 

Next, suppose that 2:~1 Fn converges strongly to a projection F. Then 

00 

Fx = L an (x, el) el, 
n=l 

so Fel = 2:~=1 anel· Either Fel =I- 0 or IIFell1 < 1. In the first case, there exists n 

such that an = 1; in the second, an = 0 for all n. 

5.3 Finite and infinite projections 

We call a projection E 

• finite (relative to R) if E Rjn F :s; E implies that F = E; 

• infinite (relative to R)l if, for any finite orthogonal family (En);;=l of finite 

subprojections of E, there exists a projection F such that 

( E -~ En) FOR F < (E -~ En) . 
lOur definition of "infinite" is not the same as, but is classically equivalent to, the standard 

classical definition; see [41], 6.3.1, p. 411. We have chosen this definition to facilitate the proofs 

of Propositions 5.3.3 and 5.3.4. 
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While it is clear that if E is infinite, then it is not finite, we cannot prove 

constructively that if E is not finite, then it is infinite. Let (an) be an increasing 

binary sequence such that al = 0 and ,'lin (an = 0). Let (en) be an orthonormal 

basis of unit vectors in an infinite-dimensional separable Hilbert space, and define 

a projection E by 
00 

Ex = L an (x, en) en· 
n=l 

Suppose that E is finite relative to the von Neumann algebra B(H). If there exists 

n such that an = 1 - an-I, then E is infinite, being the projection on the span 

of {en+1' en+2, ... }; hence an = 0 for all n, a contradiction. Thus E is not finite. 

However, if E is infinite, then there exists a subprojection F such that E ~ F < E; 

in particular, E =1= 0, so we can find n such that an = Een =I- O. Hence the proposition 

"not-finite implies infinite" for projections on B(H) entails Markov's Principle. 

Note that if E ~ F :::; E entails F = E, then we need not have E finite­

dimensional. Let a E R, and take H = Ra x R. Let E be the projection on Ra x {O} , 

and suppose that E ~ F :::; E. Given x E E(H), suppose that Fx =1= x. Then a =1= 0, 

so E(H) = R x {O} is I-dimensional, and therefore F = E, a contradiction. Hence 

Fx = x for all x E E(H), so F = E. Thus E is finite; but if it has finite-dimensional 

range, then we can decide whether a = 0 or a =1= O. 

Note that this Brouwerian example has the apparently stronger property that 

F < UU* for each F < E and each partial isometry U with initial projection E and 

final projection:::; E. 

Here are some useful elementary results about finite and infinite projections. 

Proposition 5.3.1 Let E be a finite projection in the von Neumann algebra n. 
Then each subprojection of E in n is finite, and if E ~n F, then F is finite. 

Proof. See [41], 6.3.2, page 411. Q.E.D. 



74 

Proposition 5.3.2 If E is an infinite projection in the von Neumann algebra R) 

and E ~n F, then F is infinite. If F1 < F and F1 is infinite) then F is infinite. 

Proof. 

Q.E.D. 

With the help of the preceding proposition, this is a simple exercise. 

Proposition 5.3.3 If E is an infinite projection in R, and n, ... ,Pv are orthog­

onal finite projections) then E - I:~=1 Pn is infinite. 

Proof. Let Q1, ... ,Qm be orthogonal finite projections in R such that I:~=1 Qn ::; 

E - I:~=1 Pn· Then P1, ... ,Pv, Q1, ... ,Qm are orthogonal finite projections in R, 

so, as E is infinite, there exists a projection F in R such that 

Hence E - I:~=1 Pn is infinite. Q.E.D. 

Proposition 5.3.4 Let Eo be a finite subprojection of an infinite projection E in a 

von Neumann algebra R. Then E - Eo =1= o. 

Proof. We easily reduce to the case where Eo ::; E. Then, by our definition 

of "infinite", there exists a projection F such that E - Eo ~ F < E - Eo. Hence 

E - Eo =1= O. Q.E.D. 

5.4 The weak and strong equivalence of two pro­

jections 

Classically, the ordering ~ is antisymmetric: if E ~n F and F ~n E, then E ~n F. 

The proofs in [41] (6.2.4, pages 406-407) and [56] (page 41-42) are both nonconstruc­

tive: the first proof fails constructively when the infimum of a descending sequence 

of projections is used, since there is no guarantee that such an infimum exists; the 
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second proof fails when a certain fixed-point theorem on a partially ordered set is 

applied. 

An analysis of the classical proof of antisymmetry of ~n from a constructive 

point of view led us to the idea of considering another type of equivalence. 

Definition 5.4.1 We say that projections E and F in B(H) are weakly equiva­

lent relative to the von Neumann algebra n if E ~n F and F ~n E. 

It is straightforward that strong equivalence implies weak equivalence. We 

shall prove that for a certain class of von Neumann algebras, ~n is (strongly) 

antisymmetric-that is, weak and strong equivalence coincide. 

Theorem 5.4.2 Let n be a von Neumann algebra with the following properties: 

- Each projection in n can be written as the sum of a sequence of orthogonal 

finite (possibly 0) subprojections in n. 

- Any two infinite projections in n are equivalent. 

If E, FEn and E ~n F ~n E, then E r:::::,n F. 

Proof. Let U, V be partial isometries in n such that 

U*U = E, UU* = Fl ::; F, 

V*V = F, VV* = El ::; E. 

Then V Fl is a partial isometry in n implementing an equivalence between Hand 

a subprojection E2 of E; and V(F - F1) is a partial isometry in n implementing an 

equivalence between F - Fl and El - E2 . Choose an orthogonal sequence (Pn)~=l 

of finite projections in n such that E = I:~=l Pn. Let (gn) be an orthonormal basis 

of (F - F1) (H), and construct an increasing binary sequence (An) such that 

An = 0 =? Vk::; n (gk = 0) , 

An = 1 =? :3k::; n (gk -I 0) . 
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If An = 0, define W Pnx = U x for all x E H. If \.1 = 1 - Av-l, then 

so E =I E2, E2 < E, and therefore, as E Rjn E2, E is infinite. It follows from Propo­

sition 5.3.2 that F I , and therefore F, is infinite. Also, the orthogonal projections 

W PI, ... , W Pv - I are finite subprojections of Fin R, by Proposition 5.3.1; so, as F 

is infinite, F -l:~:i W Pn is infinite, by Proposition 5.3.3. Likewise, E - l:~:i Pn 

is infinite; so v-I v-I 
E - 2: Pn Rjn F - 2: W Pn-

n=l n=1 

By Proposition 5.2.1, we have 

v-I ( V-I) v-I (V-I) 
E = Z; Pn + E - Z; Pn Rjn Z; W Pn + F - Z; W Pn = F. Q.E.D. 

Classically, the hypotheses of Theorem 5.4.2 are satisfied in a separable Hilbert 

space by any Type I von Neumann algebra, and any factor in which each projection 

can be written as the sum of a pairwise orthogonal sequence of finite subprojections 

(see [41], 6.3.5). This has not been proved constructively, but it is clear that, when H 

is separable, Theorem 5.4.2 applies in the case R = B(H), the sort of von Neumann 

algebra to which a Type I von Neumann algebra is classically *-isomorphic ([41], 

6.6.1). 

In the last part of this chapter we study conditions under which two weakly 

equivalent projections are strongly equivalent. 

Let U, V be partial isometries in R such that UU* ::; V*V and VV* ::; U*U. 

Write 

U*U = Eo, V*V = Fa, 

UU* = FI , VV* = E I . 

Setting Uo = U and Va = V, we construct, inductively, sequences (Un), (Vn) of partial 

isometries, and sequences 
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of projections, such that for each n, 

and 

Routine computations show that 

Also, for n 2: 1, 

and 

E2n 

E2n+1 

F2n 

F2n+1 

(VUr ((VU)*r , 

(VUr EI ((VU)*t , 

(UVr ((UV)*t, and 

(UVr EI ((UV)*t· 

U2n- 1 (UVr ((UV)*t- 1 V*, 

U2n (UVr FI ((UV)*t- 1 V* 

V2n-1 (VUr ((VU)*t-1 U*, 

V2n (VUr EI ((VU)*t- 1 U*. 

We will refer to sequences (En) and (Fn) as the associated descending chains 

for Eo and Fo, respectively. 

Proposition 5.4.3 The following statements are equivalent. 

(i) (En)'::o is weak-operator convergent. 

(ii) L:~=o (En - En+1) is strong-operator convergent. 

(iii) L:~=o U (En - En+l ) is strong-operator convergent. 
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Proof. Indeed, if (i) holds, then (En) is strong-operator convergent in R, and it 

is easy to see that its strong-operator limit is 

the infimum of the sequence (En) of projections. Moreover, since 

N 

L (En - En+1) = E - EN+1, 
n=O 

the series in (ii) converges strongly to E - Eoo. It is clear that (ii) implies (iii). If 

(iii) holds, then 
00 00 

L (Fn - Fn+1) = L U (En - En+1) 
n=l n=O 

converges strongly, as therefore does 

00 00 

n=O n=l 

Hence (E - En), and therefore (En), converges strongly. Thus (iii) implies (i). Q.E.D. 

Proposition 5.4.4 If E and F are weakly equivalent projections relative to R, and 

the associated descending chain (En) satisfies one of the equivalent conditions (i)­

(iii) of Proposition 5.4.3, then E and F are strongly equivalent. 

Proof. If any, and therefore each, of the equivalent conditions (i)-(iii) holds, then 

we can prove that E rv F as follows. The identity 

N N 

E = L (E2n - E2n+1) + L (E2n+1 - E2n+2) + E2N+2 
n=O n=O 

and the strong-operator convergence of E2N+2 to Eoo as N -----+ CXJ show that 

For all x E H, since ((E2n+1 - E2n+2) x, x) 2: 0, we have 
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Hence the series 2:~=o ((E2n - E2n+1) X, x) of nonnegative terms converges in R. 

Thus 2:~=o (E2n - E2n+1) converges weakly and therefore, being a series of orthog­

onal projections, strongly. Likewise, the series 2:~=o (E2n+1 - E2n+2), 2:~o (F2n -

F2n+1) , and 2:~=o (F2n+1 - F2n+2) all converge strongly. So we can now apply 

Proposition 5.2.1 to complete the proof of the equivalence of E and F. Q.E.D. 

Proposition 5.4.5 Let U, V be partial isometries on H such that UU* :::; V*V 

and VV* :::; U*U. If ((VU)*n)~=o is strong-operator convergent in B1(H) then the 

associated descending chain (En) is a strong-operator Cauchy sequence. 

Proof. For m > n we have 

((E2n - E2m ) x, x) 

(E2nX, x) - (E2mx, x) 

11((VU)*t xl1
2 

-11((VU)*)m x11
2

. 

So if (11(VU)*nll):=o is a Ts-Cauchy sequence, then so is (E2n x)C:=o' Likewise, if 

m > n, then 

Since (En) is a Cauchy sequence if and only if both (E2n ) and (E2n+1) are Cauchy 

sequences, the desired conclusion follows from the foregoing equalities. Q.E.D. 

In conclusion, we have this result. 

Proposition 5.4.6 Let E and F be projections in a von Neumann algebra n on a 

Hilbert space H. The following statements are equivalent. 

(i) E ~R F. 

(ii) There exist partial isometries U and V such that E = U*U) F = V*V) UU* :::; 

F, VV*:::; E and the sequence (((vu)*)n)~=o is strong-operator convergent 

in Bl(H). 
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Proof. Suppose that E ';::jn F, and let U be a partial isometry implementing the 

strong equivalence. Then (ii) holds true for V = U*, and the sequence (( (vu)*)n)~=o 

is constant (all terms equal E) and therefore convergent. Conversely, according to 

Proposition 5.4.4, the associated descending chain (En) is a strong-operator Cauchy, 

and hence convergent, sequence. A straightforward application of Proposition 5.4.3 

completes the proof that (ii) implies (i). Q.E.D. 



Appendix A 

Weak Continuity Properties in 

Constructive Analysis 

In this appendix we prove some results on continuity related to those in [36] and 

[18]. 

Let f : (X, p) ----+ (Y, p) be a mapping between metric spaces. We say that f is 

strongly extensional if 

f(x) =I- f(X') =* x =I- x', 

where!, for example, x =I- x' means that p(x, x') > O. 

A sequence (xn) in a metric space X is said to be weakly discriminating if 

for all positive numbers a, {3 with a < (3, either p(xn' Xl) < (3 for all n > 1 or else 

p(xn' Xl) > a for some n > 1. The constructive least-upper-bound principle shows 

that a bounded sequence (xn) is weakly discriminating if and only if sUPn2':2 p(xn' xd 

exists. It follows from Corollary (4.4) on page 38 of [4] that every totally bounded 

sequence is weakly discriminating; in particular, every Cauchy sequence is weakly 

1 Recall that the statement 

is equivalent to Markov's Principle 
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discriminating. 

We begin with an improvement upon Ishihara's result that a sequentially con­

tinuous mapping on a complete metric space is strongly extensional ([36], Theorem 

1). 

Proposition A.O.l Let X, Y be metric spaces, and f : X --+ Y a function that 

maps Cauchy sequences to weakly discriminating sequences. Then f is strongly 

extensional. 

Proof. Let x, x' be points of X with f(x) =I f(x' ). Construct an increasing binary 

sequence (An) such that 

An = 0 =? p(x, X') < lin, 

An = 1 =? X =I x'. 

Note that if An = 0 for all n, then X = x' and so f(x) = f(x' ), which is absurd. We 

show2 that An = 1 for some n; we may assume that A1 = O. If An = 0, set ~n = x; if 

An = 1- An-1' set ~k = x' for all k 2: n. Then (~n)is a Cauchy sequence in X; so 

(j (~n)) is a weakly discriminating sequence in Y. Hence either 

p(j(~n)' f(x)) = p(j(~n), f(6)) < p(j(X'), f(x)) 

for all n > 1, or else there exists n > 1 such that p(j(~n)' f(x)) > ~p(j(X'), f(x)). 

In the first case we must have An = 0 for all n, which is absurd. So the second case 

obtains, and there exists n such that p(j(~n)' f(x)) > O. Then An must equal 1. 

Q.E.D. 

Proposition A.O.2 Let X, Y be metric spaces, and f : X --+ Y a function that 

maps convergent sequences to Cauchy sequences. Then f is sequentially continuous. 

2It is clear that ,'in (An = 0); but without Markov's Principle we cannot immediately deduce 

from this that ::In (an = 1) . 
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The following result must be well-known classically, but we cannot find any 

reference to it in the literature. 

Proposition A.O.3 Let X, Y be metric spaces) and f : X -+ Y a function that 

maps convergent sequences to Cauchy sequences. Then f is sequentially continuous. 

Proof. Let (xn ) be a sequence converging to x EX. Then the sequence 

converges to x, so 

(J(Xl), f(x), f(X2), f(x), f(X3), f(x), ... ) 

is a Cauchy sequence. Since it contains a (constant) subsequence that converges 

to f(x), the Cauchy sequence itself converges to f(x), and hence f(x n ) -+ f(x) as 

n -+ 00. Q.E.D. 

A sequence (xn ) in a metric space X is called a3 LEM-Cauchy sequence if 

,,((xn ) is a Cauchy sequence). 

Clearly, a Cauchy sequence is a LEM-Cauchy sequence. 

If we assume that X is complete, then we can weaken the hypothesis of Propo­

sition A.O.2. 

Proposition A.O.4 Let X be a complete metric space) and Y a metric space. Then 

the following conditions are equivalent on a mapping f : X -+ y 

(i) f maps convergent sequences to weakly discriminating LEM -Cauchy sequences. 

(ii) f is sequentially continuous. 

3LEM stands for the law of excluded middle: P V ,P. 
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Proof. Assuming (i), let (xn) be a sequence in X converging to x E X. In view 

of Proposition A.0.2, in order to prove that f is sequentially continuous at x, it is 

enough to prove that for each c > 0 there exists v such that P(J(xm), f(xn)) < 4c 

for all ffi, n 2: v. To this end, first note that for each positive integer N the sequence 

(xn)n>N converges to x; so, by hypothesis (i), the sequence (J(xn))n>N is weakly 

discriminating. Using this observation and setting nl = 1, construct an increasing 

binary sequence (Ak) , and an increasing sequence (nk) of positive integers, such that 

• if Ak = 0, then P (J(Xnk+1) , f(xnk )) > c and nk+1 > nk; 

• if Ak = 1, then p(J(xn), f(xnk )) < 2c for all n 2: nk, and nj = nk for all j > k. 

It suffices to find /'i, such that A", = 1 : for then there exists k :s; /'i, such that 

p(xn' xnk ) < 2c for all n 2: nk; whence p(xm' xn) < 4c for all ffi, n 2: nk. Thus we 

may assume that Al = A2 = O. If Ak = 0, set ~k = 'r/k = xnk . If Ak = 1 - Ak-l' 

set ~j = xnk and 'r/j = Xnk_1 for all j 2: k. Then (~k)~1 and ('r/k)~1 are Cauchy 

sequences in X, and therefore converge, respectively, to limits ~ and 'r/ in X. Either 

f(~) =1= f('r/) or else P (J(~), f('r/)) < c. In the latter case, if Ak = 1 - Ak-l for some 

k, then 

a contradiction; so Ak = 0, and therefore p(J(Xnk+1) , f(xnk )) > c, for all k. This is 

impossible, as (J(xnJ)~1 is a LEM-Cauchy sequence. We conclude that f(~) =1= 

f('r/) and hence, by Proposition A.O.l, that ~ =1= 'r/. Choosing /'i, such that ~'" =1= 'r/"" 

we must have A", = 1. This completes the proof that (i) implies (ii); the converse is 

trivial. Q.E.D. 

For another characterisation of sequential continuity, see Theorem 1 of [36]. 

We next consider some criteria for the sequential continuity of functions on 

subsets of a normed space. For these, recall that a subset B of a normed space over 

F (that is, R or C) is balanced if ax E B whenever x E B, a E F, and lal :s; 1. 
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Proposition A.D.5 Let X be a normed space over F, B a balanced subset of X, 

and f : B -+ F a function with the following properties. 

(i) If (xn) is a sequence converging to 0 in X, then 

(ii) f(ax) = af(x) whenever x E B, a E F, and 1001 = 1. 

Then f is sequentially nondiscontinuous at O. 

Proof. Note first that 

f(O) = f (-1(0)) = - f(O), 

so f(O) = O. Let (~n) be a sequence in B converging to 0, and E a real number such 

that If(~n)1 ;:::: E/2 for each n. Suppose that E > O. Then we can find an E F such 

that lanl = 1 and 

for all n. Since this contradicts our hypotheses on f, we must have E ::::; O. Q.E.D. 

Corollary A.D.l Let X be a normed space over F, B a balanced subset of X, and 

f : B -+ F a function that maps convergent sequences to LEM-Cauchy sequences, 

such that f(ax) = af(x) whenever x E B, a E F, and 1001 = 1. The f is sequentially 

nondiscontinuous at O. 

There are situations in constructive analysis-such as Banach's Inverse Mapping 

Theorem [38]-in which a linear mapping between Banach spaces can be shown to 
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be sequentially continuous but we cannot be sure that it is bounded.4 Thus it is 

potentially useful to have conditions that enable us to pass from sequential continuity 

to boundedness for linear mappings. Such conditions were given in Proposition 2 

of [10]. Our final result substantially improves that proposition by removing the 

hypothesis that the domain of the linear mapping be complete. 

The complement of a set S in a metric space X is the set 

rv S = {x EX: x of s for all s E S} . 

Proposition A.O.6 Let T be a sequentially continuous linear mapping of a normed 

space X into a normed space Y, and let B be the unit ball of the range of T. Then 

the following conditions are equivalent. 

(i) T is bounded. 

(ii) rvT-1(B) is bounded away from O. 

(iii) For each c > 0 either there exists x E rv T-1(B) such that Ilxll < c, or else 

rvT-1(B) is bounded away from O. 

Proof. It is straightforward to prove that (i) implies (ii); clearly (ii) implies (iii). 

Assuming (iii), construct an increasing binary sequence (An) such that 

• if An = 0, then there exists Xn E rvT-1(B) such that Ilxnll < lin; 

• if An = 1, then rvT-1(B) is bounded away from O. 

In order to prove (ii), we may assume that Al = O. If An = 0, set ~n = 0; if 

An = 1 - An-I, set ~k = X n-l for all k 2: n. Then (~n) is a Cauchy sequence in X. 

Since sequentially continuous linear maps preserve the Cauchy property [18], (T~n) 

4For strong indications that even for complete metric spaces there is a genuine gap, in construc­

tive analysis, between sequential continuity and continuity, see Theorem 3 of [37] and Theorem 5 

of [17]. 
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is a Cauchy sequence in Y. So (1IT~nll) is a Cauchy sequence in R; let s be its limit. 

Either s > 0 or s < 1. In the latter case, if An = 1-An-l, then 6 = Xn-l E rvT-1(B) 

for all k 2:: n, so s = IITxn-lll 2:: I, a contradiction. Hence An = 0 for all n, and 

we have a sequence (xn) such that Ilxnll < lin and IITxnl1 2:: 1 for all n. Since 

this contradicts the sequential continuity of T, we conclude that s > O. Hence there 

exists N such that T~N =I- O. By Proposition A.O.1 above (recall again that, for linear 

mappings, sequential continuity preserves Cauchyness [18]), ~N =I- 0 and therefore 

AN = 1. Thus (iii) implies (ii). 

It remains to prove that (ii) implies (i). Assuming (ii), choose c > 0 such that 

Ilxll 2:: c for all x E rv T-l(B). Consider x E X such that Ilxll < c, and suppose 

that IITxl1 > 1. If x' E T-1(B), then Tx =I- TX'; since T preserves Cauchyness, it 

is strongly extensional, by Proposition A.O.1, and therefore x =I- x'. Hence x E rv 

T-1(B), and so Ilxll 2:: c-a contradiction. It follows that we must have IITxl1 ::; 1 

whenever Ilxll < c; whence T is bounded. Q.E.D. 



Appendix B 

Locating the range of an operator 

A classical application of the monotone convergence theorem for operators shows 

that if 0 ::; T ::; I, then the sequence (Tl/n)~=l is strong-operator convergent to the 

projection P on the closure of ran T, the range of T. In constructive mathematics, 

not only is there no guarantee that the monotone sequence (Tl/n) is strong-operator 

convergent, but also we cannot be sure that the projection P exists; in fact, P exists 

if and only if ran T is located. Not surprisingly, what we can say is this. 

Theorem B.O.1 Let T be an element of B(H) such that 0::; T ::; I. Then ranT is 

located if and only if the sequence (Tl/n) ~=l is strong-operator convergent. In that 

case, the strong-operator limit of (Tl/n) ~=l is the projection of H onto the closure 

of ranT. 

Note the obvious attempt at a Brouwerian counterexample to Theorem B.0.1: 

namely, the operator T : C -+ C defined by Tx = ax, where 0 ::; a ::; 1. But if 

(Tl/n) is strong-operator convergent, then there exists a such that a1/nx -+ ax for 

all x E C. Taking x = 1, we get a1
/

n -+ a. Either a > 0, in which case a > 0, or 

else a < 1 and therefore a = O. This example shows that Theorem B.0.1 is the best 

we can hope for constructively. 
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For our proof of Theorem B.0.1 we need some information about the functional 

calculus for a selfadjoint operator T (see Chapter 7 of [4]). This is a pair consisting 

of a positive measure f-L on R, and a bound-preserving homomorphism f !-----t f(T) 

of L= (f-L) into a commutative algebra of operators that are "functions of T", such 

that 

• if b is a bound for T, then f-L is supported by the compact interval [-b, b]; 

• if fn --7 f in measure, then fn(T) --7 f(T) strongly. 

If T is a positive operator with a bound b, then f-L is supported by [0, b]. Moreover, 

ran T is located if and only if {O} is f-L-measurable, in which case the projection of 

H on the closure of ran T is X-{O} (T), where X-{O} is the characteristic function of 

the complemented set1 ({ O} , {x E R : x =I=- O} ); if also (r n) is a sequence of positive 

numbers decreasing to 0 such that the complemented set 

is f-L-integrable for each n, then 

f-L ({O}) = lim f-L ([If I ::; rn]) 
n-t= 

([8], Thm (4.6)). 

Proof of Theorem B.O.1. Let (f-L, f !-----t f (T)) be the functional calculus for T. 

Suppose that ranT is located, and let P be the projection on its closure; then {O} is 

f-L-integrable, and X-{o}(T) = P. For each positive integer n define fn : R-{O} --7 R 

by 

t 1/ n if t > 0 

o ift < Onort = O. 

1 For more on complemented sets and their role in the constructive theory of integration see 

Chapter 6 of [4]. 
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Then fn(t) = t1/n on a ,u-full set, so fn(T) = Tl/n. It is routine to show that (in) 

converges to X-{O} ,u-almost everywhere. Hence Tl/n = fn(T) -t P strongly. 

Suppose, conversely, that (Tl/n) converges strongly. The classical argument in 

[40] (5.1.5) shows that its strong limit P is a projection, and that kerT = ker P. 

Using an argument similar to that of [4] (Chapter 4, (5.9)), construct, for each n, 

a sequence (Pn,k(T)) of strict polynomials (ones without constant term) in T such 

that Pn,k(T) -t T1/n uniformly as k -t 00. Then for each x E H we have 

Px = lim Tl/nx = lim Pn k(T)x E ran T. 
n-+oo n,k-+oo' 

Since ran P + ker P is dense in H, it follows that ran T + ker T is dense in H; whence, 

by [8] (Lemma 1), ranT is located. Q.E.D. 

We end with an interesting, although longer, proof that if (Tl/n) converges 

strongly, then ran T is located. For this proof we require the following special case 

of a result from [19]: 

Let T be a selfadjoint operator on H such that ker T is located; and let P 

be the projection of H onto (ker T)l... Suppose that for any bounded se­

quence (xn) in H, if (Txn) converges weakly to 0, then (Pxn) converges 

weakly to 0. Then ran T is located. 

First construct the strict polynomials Pn,k(T) as before, noting that they can be 

chosen to have real coefficients and therefore be selfadjoint. Let (xn) be a sequence 

in the unit ball of H such that (Txn) converges weakly to 0, and consider any 

y E H. Given c > 0, choose N such that Ilpy - T 1/N yll < c. Then choose k such 

that IlpN,k(T) - Tl/NII < c. Since PN,k(T) is a strict polynomial, we see that 

Hence 
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< I (Xn' PN,k(T)y) I + I (Xn' (PN,k(T) - Tl/N) y) I 

+ I(Xn' (Tl/N - p) y)1 
< I (Xn,PN,k(T)y) I +clIYII + IITl/Ny_pyll 

< I (PN,k(T)xn, y) Ie + c Ilyll + c 

< (2 + Ilyll) c 

for all sufficiently large n. Hence (Pxn ) converges weakly to 0, and therefore ran T 

is located in H. 
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