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Abstract—This paper studies the analytical relationship be-
tween the average transmitted and received energies under several
adaptive transmitter power control methods, including water fill-
ing, truncated power inversion, and downlink beamforming. The
study is applicable to many fading channel scenarios, including
frequency-nonselective, frequency-selective, and multiple-input—
multiple-output (MIMO) channels. Both the average transmitted
and received energies are commonly used in performance compar-
isons, and the selection depends on what one wants to investigate.
The transmitted energy is known to be the basic system resource.
In the case of adaptive transmission, the average transmitted
energy should, in general, be used instead of the average received
energy. The use of transmitted energy leads to the normalization
problem of the channel. The ratio of received energy to transmit-
ted energy is the energy gain of the channel. All physical systems
follow an energy-conservation law, which implies that the energy
gain of the channel is less than or equal to 1. The major approaches
for normalization include the setting of either the average energy
gain or the peak energy gain to unity. In the normalization, the av-
erage energy gain is defined for a signal whose energy is uniformly
distributed across the frequency and spatial dimensions. The peak
energy gain of many mathematical fading models is not bounded,
and those models cannot be normalized by the peak energy gain.
We show that the proper normalization of the mathematical
model and the selection of the correct performance measure are
of critical importance in comparative performance analysis of
adaptive transmission systems.

Index Terms—Energy-conservation law, multiantenna systems,
multipath fading, multiple-input-multiple-output (MIMO) sys-
tems, transmitter power control.

1. INTRODUCTION

NERGY is a basic resource in digital transmission links,

and systems should be analyzed on the basis of how
efficiently it is used [1]. We divide systems into energy limited
and power limited. In power-limited systems, such as a base
station connected to the electrical network, the available power
is limited, but energy is essentially unbounded. In energy-
limited systems, such as a mobile terminal using a battery, the
available energy is limited. In practice, to make the problem
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analytically tractable, systems are usually optimized as if they
were power limited, but performance is often measured as if
they were energy limited by using the energy-to-noise power
spectral density ratio.

There appear to be two alternative modes of performance
measurement in terms of energy. Either the average transmitted
or received energy per symbol is used, and both are usually
normalized by the receiver noise spectral density. This leads to
the average transmitted SNR per symbol [2, pp. 40-127], [3]-
[6] and average received SNR per symbol [7], [8], respectively.
The use of average transmitted and received SNRs was briefly
discussed in [9, p. 2628], but no recommendation was made
concerning their preferred usage.

It is known that system performance depends in part on
the average received SNR. If we compare different receivers
for the same transmitted signal and for the same channel, we
can measure how well the receiver is matched to the channel.
However, we do not necessarily know how well the transmitted
signal is matched to the channel. In energy-limited systems, the
transmitted energy is the basic system resource since it is the
transmitted energy rather than the received energy that is taken
from the battery and is necessarily limited. The actual received
energy is typically a small fraction of the transmitted energy due
to the finite effective aperture of the antennas. The authors of [7]
and [8] optimize the use of the transmitted energy in adaptive
transmission in a fading channel, but their numerical results
show how efficiently the received energy is used. The reader is
led to believe that the system is almost as good as if there were
no fading at all, although significant improvement is actually
possible. The use of the received SNR was emphasized in [10],
but when the transmitter was optimized [10, p. 572], the trans-
mitted power was fixed, following the theory presented in [2].

Since the average energy gain of the channel is a function
of the transmitted signal, particularly in adaptive transmission
systems, it is crucial to use the transmitted SNR rather than the
received SNR for performance measurements. However, it is
still possible to use the average transmitted SNR referred to
the receiver, which is to be defined in Section III-E, provided
that the channels are properly normalized. The average received
SNR can be used if the channels are correctly normalized and
the transmitters exploit no form of channel selectivity.

The major approaches for normalization of the channel in-
clude normalization of the average energy gain or the peak
energy gain to unity [11]. For brevity, we call them average
and peak normalization, respectively. In the normalization, the
average energy gain is defined for a signal whose energy is uni-
formly distributed across the frequency and spatial dimensions.
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We will refer to this specific average energy gain as the repre-
sentative energy gain. Energy conservation is known to hold for
all physical systems. Therefore, the output energy of a passive
system cannot be larger than the input energy, and the peak
energy gain should be less than or equal to 1 because a major
part of the energy is lost in the channel from the receiver point
of view. In most of the literature on fading channels, average
normalization is used. However, as is shown in [11] and in the
present paper, this approach must be reconsidered when either
the transmitted signal or the channel exhibits selectivity in time,
frequency, or space. The authors of [11] noticed that the peak
energy gain of a linear time-invariant frequency-selective filter
can be larger than unity if average normalization is used.

Our major contribution is to extend the results of [11]
to a general class of linear vector channels. A linear vector
model can represent a wide range of physical channels. These
vector channels can be time variant or time invariant, fre-
quency selective or frequency nonselective, and may have many
inputs or outputs corresponding to, for example, multiple anten-
nas. These systems are usually called multiple-input—multiple-
output (MIMO) systems. Finally, the transmitter may use an
arbitrary power control scheme. We show the analytical rela-
tionship between the average transmitted and received SNRs
by using the covariance between the transmitted energy and the
energy gain of the channel. The covariance specifies how well
the transmitted signal is statistically matched to the channel. We
also show that the conclusions from performance comparisons
depend on whether the transmitted or the received SNR is used
in the comparisons. In general, the transmitted SNR should
be used, and the proper normalization method is shown to be
peak normalization. We present novel bounds on the average
received SNR that can be achieved with an adaptive power-
control scheme and generalize previous analysis [11] to include
time, frequency, and spatial domains.

Parts of this paper were presented in our earlier conference
papers [12]-[14]. In the present combined paper, we have
extended these results and have unified and elaborated the
explanations and examples. We have made a clear distinction
between power- and energy-limited systems. We have also
derived analytical expressions for the distributions of the SNRs
and shown the deviations if the channel is not peak normalized.

The remainder of this paper is organized as follows: In
Section II, we introduce models of a linear vector channel
and an adaptive transmitter. The basic concepts related to the
transmission of energy through linear vector channels are cov-
ered in Section III. Section IV contains analysis for frequency-
selective and frequency-nonselective fading channels with
multiple antennas. Numerical results are presented in Section V
and conclusions in Section VI.

Notation: Boldface lowercase letters a denote column vec-
tors; A = [a;;];";) denotes an m x n matrix whose (i, j)th
entry is a;;; (-)* denotes the conjugate transpose of a matrix;
tr() is the trace of a matrix; rank(-) is the rank of a matrix;
diag(dy1,...,dg) is a k x k diagonal matrix with entries d;;,
1<i<k; I, is the m x m identity matrix; {a;}¥_; denotes
an ordered set of u elements, a; < a; < a,; Pr[] denotes
probability; E[X] and X denote expectation of a random vari-
able X; E[X|Y] denotes conditional expectation of a random
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variable X given a random variable Y'; Var[-] denotes variance
of a random variable; Cov]|-,-] denotes the covariance of two
random variables; f(z)" = max[0, f(x)]; and C and R denote
the fields of complex and real numbers, respectively.

II. SYSTEM MODEL
A. Channel Model

We consider a discrete-time linear vector channel with n
inputs and m outputs, where n < m for reliable detection. Let
y € C" denote a vector of complex input symbols, n € C™
denote a vector of complex noise samples, and » € C™ be a
vector of complex output symbols. The output = and input y
symbols are related by the matrix equation [15]-[18]

r=Hytn=z+n M

where z = Hy denotes the signal component of the received
signal. The complex channel coefficients between the jth input
and the 7th output, which is denoted by h;;, are assembled
into a channel matrix H = [h;;];";,. We assume that the
entries of n are complex zero-mean Gaussian random variables
with variance 0'721 = Ny/Ts, where Ny denotes the noise power
spectral density, and 7T is the sampling interval. Furthermore,
we assume that the noise samples are uncorrelated, that is,
Elnn'] = 021,,.

The vector channel defined in (1) models a wide range of
physical channels.

1) Frequency-nonselective fading channel with a single
antenna—H is a random scalar.

2) Frequency-selective time-invariant channel with a single
antenna—H 1is an arbitrary Toeplitz matrix that is fixed
for the whole transmission duration.

3) Frequency-nonselective fading channel with multiple
antennas—H is an arbitrary matrix that randomly
changes from one channel use to another.

4) Frequency-selective block-fading channel with a single
antenna—H is an arbitrary Toeplitz matrix that randomly
changes from one transmission block to another.

5) Frequency-selective block-fading channel with multiple
antennas—H is a block-Toeplitz matrix that randomly
changes from one transmission block to another.

Frequency-selective fading can be modeled by (1), provided
that the channel memory is assumed to be finite. The channel
matrix H is then, as will be shown later, a convolution matrix
with a Toeplitz or a block-Toeplitz structure.

The performance analysis is simplified if the channel model
described by the matrix H is transformed into a virtual set of
parallel orthogonal subchannels [15]-[18]. The transformation
of the channel into its virtual structure is achieved with singular
value decomposition. Let {\;}¥_; be the nonzero eigenvalues
of the matrix A = H" H. Then, we may write [19, p. 193]

H=UDV* 2)

where U € C™*™ and V' € C™*" are unitary, and the m x n
diagonal matrix D has v/); in the (4,) position (1 < i < u)
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Fig. 1. Block diagram of the system.

and zeros elsewhere. The matrix equation (1) can then be
rewritten as

r=UDV'y +n. 3)

Finally, the vector channel model is transformed into a set of
orthogonal subchannels when the input and output vectors y
and 7 are left multiplied by matrices V* and U™, respectively.
Thus, we obtain

F=U'r=DV'y+U'n=Dy+n “4)

where y = V*'y,and n = U'n.

The channel model described by H and its virtual represen-
tation as specified by the unitary matrices U and V and the
diagonal matrix D are equivalent in the sense that the total
input and output energies remain the same, i.e., 2"z = 2*%,
n*n = n'n, and y*y = ¢*y. This is due to the fact that the
inner product is invariant to unitary similarity transformations
[19, p. 283].

B. Transmitter Model

Typically, a transmitter includes some form of transmitter
power control, which can be represented by the matrix equa-
tion [20]

y=Qux ®)

which is equivalent to y = VQx, where Q is the power
control matrix, and x is a vector of complex source symbols
(see Fig. 1). The linear precoder formed by V' Q [20], [21]
introduces correlation between the symbols. We assume that
Q € R™™ and x € C™ with its last n — w entries equal to
zero, where w = rank(Q) < rank(A) is the number of symbols
actually transmitted within n symbol intervals. Furthermore, we
let the entries of o be independent and identically distributed
(i.i.d.) random variables with unit variance. This does not
restrict our transmitter model in any way because the required
transmission energy is achieved by properly scaling the entries
of Q. Any channel coding, including space-time coding, is
excluded from our system model.

In general, the power control matrix @ may be nondiagonal.
If the entries of « are normal and our aim is to maximize chan-
nel capacity, the matrix @ is diagonal [22]. In addition, in some
simple suboptimal schemes for discrete signal constellations,
the matrix @ is diagonal [23]. Here, @ is assumed to be a
diagonal matrix whose entries are some function f : R — R
of the energy gains \; of the orthogonal subchannels, i.e.,
qii = f(>\17 o ~7>\n)7 1 S ) S n.

A number of adaptive power control rules, together with
corresponding mappings f, can be used in practical commu-
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nication systems. For example, with the water-filling power
control rule, the transmitted signal is controlled according to
[9, p. 2827], [24]

_ 1\t
(/’('w% - /\z 1) ?
On the other hand, with truncated power inversion, the trans-
mitted signal is controlled according to [9, p. 2629]

Qii{”ﬂ/)\i’
0,

qii = 1<i<n. (6)

)‘i > [ci (7)
)\i S Mtci.

Furthermore, with a simple power control method, sometimes

referred to as downlink beamforming [25], only the uth sub-

channel (that having the largest energy gain) is used for trans-
1=

mission, i.e.,
q %,
i = .
0, i#u.

The scalars § and ¢ and the cutoff values or transmission

thresholds iy and pge; are chosen such that the long-term

average energy or power constraint is fulfilled [20, p. 2279].

In general, the average power constraint takes a simpler form

because the average transmitted power per symbol P, is
ElEw] E[g'y] Elz*Q'Qx]

Pav = nT - nTy - nT, ©)

®)

where T is the sampling interval. On the other hand, the
average transmitted energy per symbol E,, is

s[5 o] o[22

w w

(10)

because energy expenditure takes place only when it is used for
transmission. The number w of symbols actually transmitted
can be a fixed number or a random variable. If the channel is
time invariant or the power-control rule is such that the rank of
@ remains constant, then there is a simple relationship between
the average transmitted power and energy. On the other hand, w
is likely to be a random variable when a power-control scheme
with a transmission threshold g is used. Hence, the exact
relationship between average transmitted power and energy
is difficult to establish. For those reasons, unless otherwise
specified, in the remainder of this paper, we will consider
only power-limited systems due to their analytical tractabil-
ity. For a random w, the probability of outage or no trans-
mission is

Pyyy = Pr(w = 0). (11)

III. BASIC CONCEPTS

A. Energy Gain of the Channel

The energy gain of the channel is the ratio of the signal
component of the received energy F, to the transmitted energy
Ly and is given by
Ex z'z y"H'Hy
Ew  yy Yy

G= (12)
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when Ei > 0. On the other hand, when F;, = 0, no transmis-
sion takes place, and the energy gain of the channel is defined
to be zero.

The energy gain G is in fact a Rayleigh quotient forann x n
Hermitian matrix A = H*H [19, p. 282]. The form of the
Rayleigh quotient is simplified if we use the virtual channel
model [15]-[18] and take advantage of the invariance property
of the Rayleigh quotient under unitary similarity transforma-
tions to obtain

z*z %2  §'D'Dy A2
G = T e Y = Y = Z’L;{l 7/ly22| (13)
vy Uy Uy > iz 1Tl
where ¥; is the ith element of vector y. Let
~ 12
€= |9 i=1,2,...,n (14)

> |9

denote the fraction of the total transmitted energy allocated to
the sth subchannel. Then, (13) can be rewritten as

i=1

which shows that the energy gain GG depends on the distribution
of the available energy among subchannels rather than its total
amount. Furthermore, by the properties of a Rayleigh quotient
[19, p. 285], the energy gain of the channel G is bounded as

15)

NG <Ay (16)

where \; and \, are the minimal and the maximal eigenvalues
of A, respectively.

B. Average Energy Gain of the Channel
In general, the average energy gain of the channel is

G =E[G] = E[E/Ei] (17)

which is equal to E[E,«]/E[E4] if and only if Ei, and G are
uncorrelated, for example, if Fyy is fixed. By substituting (15)
into (17), we obtain

G =) E[\&] =G +0.

i=1

(18)

The parameter

G=> ENE[] (19)
i=1

describes the average energy gain as if there was no correlation
between the energy ¢; allocated to the ith subchannel and the
subchannel energy gain ;. On the other hand, the term

0=> Covl\,ei] (20)

i=1

in (18) describes how G changes when there is correlation
between ¢; and ;.
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C. Representative Energy Gain of the Channel

Our aim now is to find a representative energy gain of
the channel that does not depend on the transmitted signal
as do the energy gain in (13) and the average energy gain
in (18). The average energy gain of (18) is independent of
the transmitted signal if and only if the transmitted energy is
uniformly distributed over all orthogonal subchannels associ-
ated with eigenvalues of the channel matrix, that is, €; = 1/n
for all ¢. Thus, the representative energy gain is uniquely de-
fined to be

Go=1E 1)
n

Z)\i] = %E tr(A)].

The representative energy gain describes the average attenua-
tion of the channel for a special transmitted signal. The defi-
nition in (21) is consistent with and is in fact a generalization
of the one used, for example, in [11] in a frequency-selective
channel. In fact, the representative energy gain is the energy of
the impulse response of the channel [11]. In frequency-selective
time-invariant or frequency-selective block-fading channels,
distinct frequencies create orthogonal subchannels. In multiple-
antenna channels, orthogonal subchannels are created by beam-
forming matrices. Thus, a uniform energy distribution over the
orthogonal subchannels implies a uniform energy distribution
across both the frequency and spatial dimensions.

D. Average Transmitted and Received Energies

The average transmitted energy is

E[En]=E | |@i|2] (22)
i=1
whereas the average received energy is
n
E[Exw] =E [Z Ailﬂﬁ] : (23)
i=1

When water filling, truncated channel inversion, or downlink
beamforming are used, the power control matrix @ is diagonal.
Then, the average transmitted and received energies, respec-
tively, become

E[Es] =E (24)

Zq121|$z|2 =E [Z %21]
=1 i=1
i Xigglzi?| =E lz“: Aiqi] . (2%
i=1 i=1

To obtain the simplified forms of (24) and (25), we take advan-
tage of the assumption that the entries of « are i.i.d. random
variables with unit variance.

In the most general case, g2 follows a mapping ¢ : R" —
R, and the evaluation of (24) and (25) requires averaging over
the joint probability density function (pdf) p(\q, ..., A,,) of the
eigenvalues of A. However, in the special case where the ith

E[Ew] =E
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diagonal entry ¢;; is a function only of \;, i.e., g : [0,00) — R,
we have

E[Etx} =E

igm] —u [grvar 2o

Li=1

E[E] =E im(m] :u/Ag(A)h()\) ax  (27)

where h () is the pdf of a single eigenvalue [26]. It can easily be
verified that, under the long-term average energy or power con-
straint [20, p. 2279], the scalars (3, 9, pwe, and pugc; depend on
the specific joint distribution of eigenvalues (\q, . .., A,) rather
than their instantaneous values. Consequently, water filling and
the truncated channel inversion and downlink beamforming
power-control schemes fall under this special case because, in
all of them, g;;, as (6)—(8) suggest, depends on only a single
eigenvalue \;.

E. Average Transmitted and Received SNRs

The average transmitted and received energies are usually
normalized by the receiver noise spectral density Ny, leading
to the average transmitted SNR per symbol

_1E[B] _ 1E[F'g]
Tex n No n N()

(28)

and the average received SNR per symbol

1E[Ew] 1E[En-G] 1E[z*2
_ _1EBJ _1ER. G 1EEE o
n NQ n NQ n NO

The average transmitted SNR per symbol referred to the re-
ceiver is defined as

1 E[E] - Go

Vo = — e
Yt n No Yxbo

(30)

where G is given by (21). The averages in (28)—(30) include
outages. In [6, eq. (13)], the SNR corresponding to (30) was
called the average transmitted energy-to-noise ratio. To avoid
confusion, we have reserved the term average transmitted SNR
per symbol for (28) because of the scaling by Gy in (30).
The scaling is used for convenience to take into account the
average attenuation of the channel for a signal having a uniform
distribution in frequency and spatial dimensions.

The relationship between the average transmitted SNR per
symbol 7., the average transmitted SNR per symbol referred
to the receiver i, and the average received SNR per symbol
7.« can be established through the covariance of the transmitted
energy Ei and channel energy gain G. In particular

9 _ ﬁtx 9

Yex = VexB[G] + Ny FOE[G} + Ny (31
where

9 = Cov|Bix, G] = E[Ew - G] — E[Ew] - E[G].  (32)
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Mathematically, the covariance 1) can be bounded as
—+/Var[Eix]Var[G] < ¢ < /Var|E|Var|G]. (33)

However, in the present system model, there is an alternative
lower bound on the covariance. It is obtained by imposing the
physical constraint on the received energy that it cannot be
negative so that E[Fiy - G| > 0. After some algebra in (32),
we obtain ¢ > —E[E}y] - E[G]. Finally, the lower bound for the
covariance is given by

9 > — min {E[EtX]E[G], \/Var[Etx]Var[G}} TN
By substituting (18) into (31), we obtain
_ v Yix o, x 0,
’er*Vtx(G+9)+nN0*GO(G—‘FG)—’_nNO (35)

To summarize, we have defined three different averages of
the energy gain G The statistical average (17) is denoted by G.
If = 0in (18), we obtain G = G. If, in addition, ¥ = 0in (35),
we obtain G = Gy. The covariance ¥ specifies how well the
transmitted energy is statistically matched to the energy gain
of the channel. The covariance 6 specifies how well the energy
allocations ¢; are statistically matched to the energy gains \; of
the orthogonal subchannels. The covariances ¢ and 6 describe
the change of 7,, due to power control in the transmitter.
Since they can take negative and positive values, 7., could be
smaller or greater than éﬁtx. The upper and lower bounds on
covariance 1}, which lead to the respective bounds on 7,, with
respect to ﬁtx(é + 0), can be used in link budget calculations
for adaptive links.

We want to emphasize that it would be misleading to refer
to (30) as the average received SNR per symbol because the
covariances ¢ and ¢ in (35) are, in general, nonzero and depend
on the transmitted signal. Furthermore, if we want to know
how efficiently the basic resource, i.e., transmitted energy, is
used, we should not use (29) instead of (30) in performance
comparisons.

So far, all the SNRs are presented as if the system were power
limited. In energy-limited systems, we use the expurgated SNRs

(o) _ 1E[Ew|Ex > 0] - Go B

'th - n No - 1— Pout (36)

0 _1EEx GlEx G>0] | T gy
X n NO 1_ Pout

where the probability of outage P, is defined in (11). In a
similar way, the transmitted SNR in (28) can be expurgated.
A summary of the various SNRs is given in Table I. We
have borrowed the term “expurgation” from the channel-coding
literature [27]. The purpose of this expurgation process is
to remove the effect of outage from the calculation of the
average SNR values of (36) and (37). That is, we remove the
effect of not transmitting during outage from the average SNR
calculation.
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TABLE 1
SUMMARY OF THE DIFFERENT SNR CONCEPTS USED IN THIS PAPER

Name Nonexpurgated Expurgated
Average transmitted SNR Vix = %% 752) = %7]E[Etx1|\%x>o]
Average received SNR Vex = %7E[E]§E'G] 75 = %E—[Etxc}\%x-c>o]
Average transmitted SNR referred to the receiver Fix = %% '“yt(i) = %W

IV. EXAMPLES
A. Frequency-Nonselective Fading Channel

We consider a frequency-nonselective fading channel with
t transmitter and r receiver antennas. The number of channel
inputs n is equal to ¢, and the number of channel outputs
m is equal to r. Furthermore, we assume that the entries of
the channel matrix H are i.i.d. circularly symmetric com-
plex Gaussian random variables with zero mean and variance
o2. Consequently, the n x n matrix A = H*H is a complex
Wishart matrix, and the pdf of a single unordered eigenvalue of
A is [28, eq. (15)]

eMTEN K AN [ (A\]?
o Svar ()[4 (3)] o

where u = min(m,n), v =max(m,n), a«=v—u, and

h()\) =

Lff) () is the associated Laguerre polynomial of order «. The
cumulative distribution function (cdf) of the largest eigenvalue
Fy(z)is [29, p. 421]

Iy (u) ( x

B@) = o ) i (v o -5 L) (69

o2

where T',(-) is the complex multivariate Gamma function
[30, eq. (83)], and ,F,(+;+;-) is the complex hypergeometric
function of a matrix argument [30, eq. (87)]. These functions
can efficiently be evaluated using algorithms developed in [31].
The representative energy gain of the channel is given by
1 1 9 9
Go = —E|[tr(A)] = —mno” = mo=. (40)
n n
A frequency-nonselective fading channel with a single trans-
mitter and single receiver antennas is a special case of a
frequency-nonselective fading channel where the channel ma-
trix H is a random scalar. The entry hy; simply describes the
channel response at a given time instant, and A\ =a11 =|h11 \2.
In our simulations, we use a channel whose fading gain is
represented by the sum [32]-[34]

1 N-1
hin= 5 D exp (V=1v) (41)
n=0

where N is the number of complex equal-amplitude subpaths,
and ), is the phase of the nth subpath. If the phases are all
equal, the sum (41) is a coherent sum whose magnitude is
equal to unity. Thus, peak normalization is used in (41). The

amplitudes of the subpaths in (41) are identical, which is only a
convenient selection for our numerical results [32].

If the phases v, in (41) are random, independent, and
uniformly distributed, (41) corresponds to a noncoherent sum.
The pdf of the magnitude of (41) can be derived from the results
presented in [34] for the values N =2 and 3. For large NV,
it can be approximated with a truncated Rayleigh distribution.
The pdf of the squared magnitude of (41) can be derived from
the work of [32]. For large NN, it can be approximated with a
truncated exponential distribution. Its peak value is unity, and
the average value is 1/N. We can alternatively use average
normalization. In that case, we replace 1/N in (41) by 1/v/N.

B. Frequency-Selective Block-Fading Channel

We next consider a frequency-selective fading channel with
t transmitter and r receiver antennas. We assume that the
matrix-valued channel impulse response is finite and spans
L + 1 < oo symbol intervals. Furthermore, we assume that
the channel is quasi-static' for K > L + 1 symbol intervals.
Finally, we assume that symbols are transmitted in blocks of
K symbols and that there is no interblock interference.

Let y;, € C' and z; € C" denote the transmitted and re-
ceived vectors, respectively, at time instant k. The vector of
received symbols at the kth time instant is then given as

L
zv =Y Hy, (42)
=0

where H is a matrix-valued channel model corresponding to
the /th tap. We assume that the matrices H; are independently
distributed complex Gaussian matrices with variance o7. By
stacking the vectors y; and zj, we obtain (43), shown at
the bottom of the next page, where H € CKX™X? is a block-
Toeplitz convolution matrix.

Block-Toeplitz matrices are asymptotically equivalent to
block-circulant matrices, which implies that the eigenvalues
of a block-Toeplitz matrix and a properly constructed block-
circulant matrix asymptotically converge [35]. Since a block-
circulant matrix can be block diagonalized by a block-Fourier
matrix, the eigenvalues of the block-Toeplitz matrix can easily
be approximated [35]. More precisely, for a sufficiently large
ratio K/L > 1, we obtain

H=~ (Fx®I,)"D(Fg ® I) (44)

IThat is, it remains constant for /& symbol intervals and randomly changes
from block to block.
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where ® denotes the Kronecker product, F'x is the K x K
Fourier matrix

1
Fr=——

[wu—l)(j—l)}K’K
VK

1,j=1

(45)

with w = e 2™V"1/K and D € CE™XK? j5 a block-diagonal
matrix D = diag(Dg, D1,...,Dg 1) with Dj e Cr*?
given as

L
D, = Zw’”Hl. (46)

=0

The entries of Dy, are zero-mean complex Gaussian random
variables as are the entries of H;. The variance of the entries
of Dy, is the sum of variances of respective entries of Hy, i.e.,
_NL 2
=212007-

The joint pdf of the unordered eigenvalues of A =
diag(Ao, ..., Ax_1), where Ay = Dj;Dj is a complex
Wishart matrix, is unknown [36]. This precludes the derivation
of the cdf of the largest eigenvalue. However, the average
received energy can still be found approximately as

Ku % 0
/ /A P(ALy - Akw) dA1 - dA Ky
=17 0
=K / //\Zg PO, - A) dA; - dy
=17 0
— Ku / AR dA 47)
0

where v = min(r,t), v = max(r,t), and h(\) is given by (38).
The average transmitted energy can be obtained in a similar
way. The representative energy gain of the channel is then

K-1 L
> tr(Ak)] =r> of. (48
k=0 =0

A frequency-selective block-fading channel with a single
transmitter and single receiver antennas is a special case of a
frequency-selective fading channel where ¢ = r = 1. Conse-
quently, H € CX*K is a Toeplitz matrix with the entry h;;
being the jth sample of the channel impulse response at the
tth time instant.

Eftr(4)] 1
Kt

~
~

Go
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Fig. 2. Upper and lower bounds on the covariance value in a single-antenna
channel with Rayleigh fading and 0 =

V. NUMERICAL RESULTS
A. Covariance

The covariances in (35) are a measure of how well the trans-
mitted signal is matched in a statistical sense to the channel:
The larger the covariances 6 and ¥, the larger the ratio 7, /7;y-
In Fig. 2, we show a comparison of water filling and truncated
channel inversion in a single-antenna channel with Rayleigh
fading and o2 = 1. Since, in any single-antenna channel 6 =
0, the power control methods are compared according to the
achievable covariance value ¢. The upper bound (33) and the
lower bound (34) of the covariance are plotted for comparison.

The numerical results suggest that, in a single-antenna
Rayleigh fading channel with low-power transmission, one
approaches the covariance upper limit with water filling. On
the other hand, with truncated channel inversion, one operates
close to the covariance lower limit. In other words, water filling
gives almost the highest possible average received SNR 7.,
whereas truncated channel inversion gives almost the lowest
possible average received SNR 7., provided that 7,, and Gg
are kept constant in comparisons. Truncated channel inversion
remains useful because performance is improved by keeping
the received SNR constant during transmission.

We plot the ratio 7, /¥t that can be achieved in a frequency-
nonselective or a frequency-selective MIMO channel with wa-
ter filling and truncated channel inversion in Figs. 3 and 4,
respectively. The numerical results show that 7, is larger than
Jtx When water filling is used. On the other hand, if truncated

Yo

ZO “ e O .« ..
z1 | = 0 H, H, H, 0 - Y (43)
29 0 H;, --- H, Hy O Yo

—— ——

ZG(CKT HeC}(ert yECKt
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Fig. 3. Relationship between the average received SNR 7., and the average
transmitted SNR referred to the receiver Go7y, in a multiantenna channel with
water filling and 02 = 1.

——SISO 1x1 [ ::::
—6—SIMO 1x2 |
2 H —%—MISO 2x1 B S S TR
—»—MIMO 2x2|:

-10
103

1072 107 10°
Threshold level py;

Fig. 4. Relationship between the average received SNR 7, and the average
transmitted SNR referred to the receiver Go7,, in a multiantenna channel with
truncated channel inversion and 02 = 1.

channel inversion is used, 7,, could be larger or smaller than
Jtx, depending on the threshold pi1.;. The relationship between
Yox and i does not depend on the average transmitted SNR
per symbol 7, when truncated channel inversion is used be-
cause ( cancels when dividing (27) by (26).

In a multiple-input-single-output (MISO) system with a
two-transmitter/one-receiver antenna (2 x 1) and a single-
input-multiple-output (SIMO) system with one-transmitter/
two-receiver antennas (1 x 2), the average received SNR 7,
is actually the same. It is because there is only one orthogonal
subchannel, which implies that 6 = 0, and the distribution of
the corresponding positive eigenvalue is the same in both cases.
The difference in 7,, /%x shown in Figs. 3 and 4 comes from
the fact that the representative energy gain differs. Specifically,
in a MISO 2 x 1 system, Gy = 1, whereas in a SIMO 1 x 2
system, Gy = 2. Since 7,,, is equal to i if # = 0 and ¥ = 0,
i.e., when there is no power control at the transmitter, the results
in Figs. 3 and 4 demonstrate how beneficial power control is at
the transmitter in a MISO system.
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——8ISO 1x1,6° =
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——MIMO 2x2, 6 = 1/2|: | © :

F(x)

eigenvalue

10°
X

Fig. 5. Cdf of the largest eigenvalue A, in a frequency-nonselective multi-
antenna channel.

The peak energy gain of the channel is bounded by the largest
eigenvalue \, of the matrix A. The cdf of A\, in a number
of frequency-nonselective multiantenna channels is shown in
Fig. 5. For MISO and MIMO channels, we also plot the results
in the case when average normalization is used, i.e., when
Go=1.

In general, the peak energy gain should be less than or equal
to 1 to satisfy the energy-conservation law. The problem of
the proper normalization of the peak energy gain does not
normally arise if one includes path loss in the model, which
scales down the maximum eigenvalue, and uses the average
transmitted SNR 7,, to compare different systems. However,
a common practice is to use the average transmitted SNR
referred to the receiver iy or the average received SNR 7,
and compare different systems against each other or against a
unit-gain additive white Gaussian noise (AWGN) channel.

The results in Fig. 5 suggest that, in all the considered
channel models, there is a nonnegligible probability, even if
the channels are normalized according to the representative
energy gain, the peak energy gain exceeds 1. Consequently, a
comparison of the performance attained by an adaptive system
in the presented channel models and in a unit-gain AWGN can
lead to erroneous conclusions. This effect could be particularly
visible in adaptive systems that are able to take advantage of
Ay > 1.

A solution to the problem is to normalize the channel with re-
spect to the peak energy gain. Unfortunately, this is not always
possible because the peak energy gain could be unbounded
as in the Rayleigh fading model. In this case, we propose to
normalize the channel in a statistical sense, i.e., to normalize it
such that the peak energy gain exceeds 1 only with some small
probability (. For instance, the actual value of { can be adopted
from a “six sigma” rule in production quality assessment, where
¢=34-10"9[37].

B. SNR Distributions

We assume that both the receiver and the transmitter know
the channel. The modulation method in the examples is binary
antipodal. One sample is taken per symbol. We present the



MAMMELA et al.: AVERAGE TRANSMITTED AND RECEIVED ENERGIES IN ADAPTIVE TRANSMISSION

T T
——analytical | ©::i
1H - *-simulated |

0.8—~-;

0.4}

10 10° 10 107 10° 10
Energy gain of the channel
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Fig. 7. Cdf of the transmitted SNR in water filling and truncated channel
inversion.

analytical pdf’s by assuming that the energy gain is exponen-
tially distributed. We also present the simulated histograms by
using the noncoherent sum of complex exponentials in (41) to
represent a frequency-nonselective channel model. In the pdf’s
of the SNRs, there is an impulse at the origin corresponding to
an outage with no transmission. When we include the impulse,
the area under the pdf’s is unity. We use the cdf’s to illustrate
the distributions.

In Fig. 6, we show the cdf of the energy gain of the channel
when E\y is always positive. The cdf of the exponential distri-
bution has the form

F(A\) =1—exp(—)\/o?) (49)

for A >0, where A\ = |hy1|?. We can compare the cdf of
(41) with peak normalization and (49) by setting 02 = 1/N.
If N > 1, the cdf’s are almost identical, except for A > 1 [32].
If the transmission threshold is 1, the probability of outage (11)

for the exponential distribution is
Pou = Pr(X < pi) = 1 — exp(—p/0?). (50)

In Figs. 7 and 8, we present the cdf’s for the transmitted
and received SNRs for water filling and truncated channel
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inversion.

Cdf of the received SNR in water filling and truncated channel

inversion when the average transmitted SNR is 20 dB, that
is, 10 log;o 7¢x = 20 dB, and we assume that the noise power
spectral density is unity. The transmission thresholds are se-
lected for water filling and truncated channel inversion by
using [38, eqs. (8) and (47)], respectively. When the average
transmitted SNR is 20 dB, the parameters are iy = 0.0074,
tei = 0.0271, and B = 9.871. The theoretical probability of
outage for the exponential distribution is with these parameters
Pout = 0.0853 for water filling and P, = 0.2780 for trun-
cated channel inversion. Our aim is not to minimize the bit
error probability but to demonstrate how the different power
control rules behave. Corresponding analytical results for the
SNR distributions are obtained from the results presented in
[39, pp. 90-104] by using (6), (7), and (49). These results are
summarized in the following sections.

1) Transmitted SNR: The cdf of the transmitted SNR is
shown in Fig. 7. In water filling, the cdf has the form

Pout7 for Ttx = 0
w -1
Fulyo) = { F (7222 )0 for0 <yt 1)
1, for Y > it

where F(-) is the cdf of the channel energy gain. In truncated
channel inversion, the cdf is

Pout; for Ttx = 0
Ftci('ytx) = Pout+1_F(6/7tx)a for 0 < Ytx < B/MtCi
1, for vix > B/ thei-

(52)

2) Received SNR: In Fig. 8, we show the cdf of the received
SNR for water filling. The analytical cdf is
Fyt(vx) = F [pwt (Yex + 1) /T (53)

where 7, > 0. For truncated channel inversion, the cdf of the
received SNR is

Py, ;
Ftci("}/rx) = { 1 ‘

for v < 3

for v, > 3. (54)
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Fig. 9. Expurgated BER as a function of expurgated average received SNR
per bit (truncated channel inversion).
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Fig. 10. Expurgated BER as a function of expurgated average transmitted
SNR per bit referred to the receiver (truncated channel inversion).

C. BER With Power Control

In our simulated system, the bit rate is constant above the
threshold pi4c; in (7). We want to demonstrate how the bit-
error-rate (BER) performance should be presented in an energy-
limited system after we have analyzed the system as if it were
power limited. The power-limited model has been used for
mathematical tractability. We measure the BER only when we
actually transmit energy in (7). Consequently, the average of the
different SNRs is also measured under the condition that there
is transmission. This implies that we use the expurgated SNRs
defined in (36) and (37). Now, we are using the average energy
actually transmitted per bit, but due to the outages, the average
bit rates of different systems may be different, even in the same
channel.

The BER performance for truncated channel inversion is
presented in Figs. 9 and 10 by using either the expurgated
average received SNR or the transmitted SNR referred to the
receiver, respectively. We have used both peak and average
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normalization. In Fig. 9, the normalization method does not
have any effect on the performance. One could conclude that no
performance gain can be obtained, but Fig. 10 shows that signif-
icant gain is possible, for example, by using diversity. Since the
channel is assumed to be known, there is no performance loss in
Fig. 9 compared with the AWGN channel. The BER curve with
peak normalization in Fig. 10 does not go below the AWGN
curve, although when using average normalization, it may
happen. Thus, to avoid confusion in energy-limited adaptive
transmission systems, we must use peak normalization of the
channel, the expurgated average transmitted SNR referred to
the receiver, and the expurgated BER.

VI. CONCLUSION

Reliable and fair comparison of the performance of different
systems that operate with different antenna configurations can
be problematic. Both the average transmitted and received en-
ergies are used in performance comparisons, and the selection
depends on what one wants to investigate. The transmitted
energy is known to be the basic system resource. To avoid con-
fusion in performance comparisons in energy-limited adaptive
transmission systems, we must use peak normalization of the
channel, the expurgated average transmitted SNR referred to
the receiver, and the expurgated BER.

The whole idea of this paper is a generalization of the fact
that, for correlated random variables X and Y and for Z =
XY, we have the property E[Z] =E[XY]|=E[X|E[Y]+
Cov[X,Y]. In our system model, X corresponds to the trans-
mitted energy, Y corresponds to the energy gain of the channel,
and Z corresponds to the received energy. The random variables
X and Y are correlated because of adaptive transmission,
for example, when using transmitter power control. Therefore,
the channel not only scales the transmitted energy, but the
covariance Cov[X,Y] also plays a crucial role. The covari-
ance describes how well the transmitted energy is statistically
matched to the channel. If there are several orthogonal sub-
channels, a second covariance is needed to show how well the
transmitted energy is statistically matched to the energy gains of
the subchannels. In addition, the expression E[X]E[Y] should
not be referred to as the average received energy because the
latter has the form E[XY].

The systems under study should also be properly normalized.
For example, it is reasonable to assume that a receiver equipped
with two receiver antennas is able to receive twice as much
energy as one with only one receiver antenna. The peak energy
gains of the respective channel models should be scaled accord-
ingly. Furthermore, the peak energy gain of the better channel
should not exceed unity, or at the very least, the probability that
the peak energy gain exceeds a respective limit should be the
same for both channels.
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