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Abstract 

Uncontrolled oxygen is often administered to breathless patients regardless of whether 

hypoxaemia is present. In acute exacerbations of Chronic Obstructive Pulmonary Disease 

(AECOPD) this may result in carbon dioxide (CO2) retention and worsening respiratory 

failure in some patients. In AECOPD the main mechanism is the release of hypoxic 

pulmonary vasoconstriction and an increase in the physiological dead space to tidal 

volume ratio (VD/VT). Acute asthma and pneumonia have features in common with 

AECOPD, namely significant ventilation – perfusion mismatch; and there is the potential 

for CO2 retention to occur if uncontrolled high concentration oxygen is given. There have 

been no randomised controlled trials of oxygen therapy in pneumonia and only one in 

asthma. The potential mechanisms of any change in arterial CO2 that may occur with 

oxygen therapy in respiratory disorders other than COPD remain uncertain.  

 

This thesis presents work from three clinical studies. In two randomised controlled trials, 

high concentration oxygen was compared to titrated oxygen therapy in patients with 

either acute severe asthma and suspected community acquired pneumonia. Oxygen was 

administered for one hour in conjunction with standard medical treatment. 

Transcutaneous CO2 (PtCO2) was continuously monitored and the number of patients 

with pre-specified increases in PtCO2 were calculated. The proportion of patients with a 

rise in PtCO2 ≥4 mmHg was significantly higher in the high concentration oxygen groups 

of both studies. In the pneumonia study 36/72 (50.0%) vs 11/75 (14.7%) met this 

endpoint, with a relative risk of 3.4 (95% CI 1.9 to 6.2; P <0.001), and in the asthma 



 xvi

study 22/50 (44%) vs 10/53 (18.9%) met this endpoint, with a relative risk of 2.3 

(95% CI 1.2 to 4.3; P=0.009). Similarly, a rise in PtCO2 ≥8 mmHg was more common 

with high concentration oxygen. In the pneumonia study 11/72 (15.3%) vs 2/75 (2.7%) of 

patients met this endpoint, with a relative risk of 5.7 (95% CI 1.3 to 25.0; P=0.007), and 

10/50 (20%) vs 3/53 (5.7%) of asthma patients met this endpoint, with a relative risk of 

3.6 (95% CI 1.1 to 12.3; P=0.03). A third study measured the physiological response to 

20 minutes of 100% oxygen in chronic severe asthma, with comparison to a group of 

negative controls (normal subjects) and positive controls (COPD patients). There was a 

significant rise in PtCO2 of similar magnitude in the asthma and COPD groups compared 

with the normal controls. The mechanism of the PtCO2 rise was similar in asthma and 

COPD, with an increase in VD/VT but no change in minute ventilation.  

 

These studies demonstrate than uncontrolled high concentration oxygen has the potential 

to cause CO2 retention in respiratory diseases other than COPD, and that in asthma the 

mechanism of hypercapnia is similar to that in AECOPD. In acute asthma and 

community-acquired pneumonia oxygen should be administered only to those patients 

with evidence of arterial hypoxaemia in a dose that relieves hypoxaemia without causing 

hyperoxia, thereby achieving the benefits of oxygen therapy while reducing the potential 

for harm. 
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Chapter 1: Introduction 

1.1 The current approach to acute oxygen therapy 

Of the many drugs administered on a daily basis to acutely unwell patients around the 

world, perhaps none is as over-prescribed as oxygen. Its primary indication, the treatment 

of arterial hypoxaemia, remains important, but the use of uncontrolled high flow oxygen 

in emergency care has become almost ubiquitous. Many health care workers considered it 

to be first line treatment for a variety of conditions ranging from sepsis, shock, chest pain 

and breathlessness, to childbirth, routine surgery and anxiety. Because it is perceived to 

be beneficial and without risk, oxygen therapy is often uncontrolled; that is, delivered in 

high concentration regardless of the presence or absence of hypoxaemia.  

 

In the past, when arterial oxygenation could only be measured in the laboratory, it may 

have been reasonable to routinely administer oxygen to all breathless patients in case they 

were hypoxaemic. Now there is a reliable, accurate and non-invasive means of 

continuously assessing blood oxygenation, the pulse oximeter, which has been in use for 

decades. It should be a simple bedside process to assess the patient’s requirement for 

oxygen with oximetry, and to monitor their response so that only the amount required to 

relieve hypoxia is given.  
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During the course of my medical training I often encountered patients receiving oxygen 

for no obvious reason, and found that on removing the oxygen mask that it either was not 

required or that the flow could be significantly reduced. How did this attitude to 

uncontrolled oxygen therapy come about? In part it may stem from the wide availability 

of supplementary oxygen in acute care settings over many decades. It is so familiar, and 

used with such regularity, that it is often not considered to be a drug, with risks, benefits 

and side effects.  

 

There are also some myths associated with oxygen therapy which may have served to 

reinforce its widespread inappropriate use. First, it is widely believed to relieve 

breathlessness when the patient is not hypoxic, which is not the case (Clemens & 

Klaschik, 2007; Gallagher & Roberts, 2004; Philip et al., 2006). Second, there is a feeling 

among some emergency workers that if a patient has an acute cardiac or respiratory 

condition placing them at risk of hypoxia, that administering oxygen at high 

concentration will perhaps protect them from the effects of falling oxygenation if they 

should deteriorate. This rationale is flawed, for reasons which will be outlined Chapter 9. 

Third, there is a belief among some health care workers that even if a patient is not 

hypoxaemic, oxygen delivery to tissues may be increased by high concentration oxygen. 

This is incorrect, as can be seen by consideration of the oxy-haemoglobin dissociation 

curve in the next chapter. Finally, there may be an expectation among both the general 

public and health care workers that oxygen simply forms part of the standard treatment of 

a “sick” patient.  

 



 3

The studies in this thesis were prompted by my clinical experience, a review of the 

existing literature, and on consideration of whether this practice of routine oxygen 

administration was of benefit or harm to patients. 

1.2 Uncontrolled oxygen in non-respiratory disease 

Is there evidence that routine use of uncontrolled oxygen therapy is of benefit in the 

various situations in which it is currently used? The simple answer, for the majority of 

medical conditions, is no. On the contrary, the potential risks of uncontrolled oxygen 

have been described by a number of researchers since the mid 20
th

 century (Daly & 

Behnke, 1963; Russek, Regan, & Naegle, 1950; Thomas, Malmcrona, & Shillingford, 

1965). 

 

In the field of cardiovascular medicine, oxygen has been routinely used as a first line 

treatment in ischaemic heart disease for decades, and this approach persists today 

(Antman et al., 2004; Van de Werf et al., 2003). The rationale is that in a patient with 

cardiac  ischaemia, increasing the blood oxygen content might increase the supply of 

oxygen to hypoxic myocardium (Boland, 1940; Boothby, Mayo, & Lovelace, 1939). 

However, the administration of oxygen to non-hypoxaemic patients only increases the 

oxygen content of the blood by a small amount, and this is countered by a 20% fall in 

coronary blood flow induced by hyperoxia (Farquhar et al., 2009; McNulty et al., 2005). 

The net effect may be an overall reduction in oxygen delivery. High flow oxygen has also 

been shown to reduce cardiac output (Daly & Behnke, 1963), reduce cerebral (Kety & 
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Schmidt, 1948), retinal (Dollery, Hill, Mailer, & Ramalho, 1964) and renal blood flow 

(Aber, Harris, & Bishop, 1964) and increase peripheral vascular resistance (Kenmure, 

Murdoch, Beattie, Marshall, & Cameron, 1968).  

 

There is only one randomised controlled trial comparing uncontrolled oxygen therapy to 

air in acute myocardial infarction. In this study the group receiving oxygen showed a 

non-significant three-fold increase in mortality. The oxygen group also had a 

significantly higher average cardiac enzyme level, suggestive of greater infarct size 

(Rawles & Kenmure, 1976). This study, done in 1976, has never been repeated; yet high 

flow oxygen continues to be given as standard treatment for acute myocardial infarction 

and is recommended by a number of international guidelines (Antman et al., 2004; Van 

de Werf et al., 2003). 

 

This theme of continued oxygen use in the absence of benefit also appears in other fields 

of medicine. Recent evidence has emerged that the use of 100% oxygen in neonatal 

resuscitation results in higher mortality (Davis, Tan, O'Donnell, & Schulze, 2004), as 

well as being linked with retro-lental fibroplasia, a retinal disease of premature infants 

(Chow, Wright, & Sola, 2003). However, in contrast to the situation with myocardial 

infarction, guidelines in neonatology have been changed to reflect these recent findings 

(AHA, 2006). There are also studies which suggest that uncontrolled oxygen causes harm 

in the setting of acute stroke (Ronning & Guldvog, 1999), and in acute sepsis (Garner et 

al., 1989). 
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1.3 Uncontrolled oxygen in respiratory disease 

What is the situation with regard to acute respiratory disease? As with the conditions 

discussed above, there is little evidence to show that routine uncontrolled oxygen is 

beneficial in the absence of hypoxaemia. There is however evidence of potential for harm 

in one common condition: acute exacerbations of Chronic Obstructive Pulmonary 

Disease (AECOPD). Some patients with AECOPD develop increasing hypercapnia and 

worsening acidosis if uncontrolled oxygen therapy is administered. However, unlike 

cardiovascular disease, there is widespread awareness of this risk and it is perhaps the 

only acute medical illness where the dangers of uncontrolled oxygen are well recognised 

by most clinicians. 

 

The pathophysiology of acute severe asthma has much in common with AECOPD, 

specifically the presence of widespread airflow obstruction, lung hyperinflation and 

ventilation-perfusion mismatch. If this is the case, why is there not the same caution with 

regard to uncontrolled oxygen therapy in acute severe asthma? First, the commonly held 

view of the main mechanism of carbon dioxide retention in AECOPD is incorrect. Most 

clinicians believe that worsening hypercapnia is due to oxygen administration 

suppressing the “hypoxic drive to breathe”, that it only occurs in patients with chronic 

CO2 retention, and that it therefore does not occur in asthma. However, the main driver of 

oxygen-induced hypercapnia in AECOPD is the release of hypoxic pulmonary 

vasoconstriction and a resultant increase in physiological dead space, a mechanism that 
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could also operate in acute severe asthma. This concept will be addressed in detail in 

Chapter 3. Secondly, although CO2 retention is less common in acute asthma compared 

to AECOPD (McFadden & Lyons, 1968; Tai & Read, 1967a), when it is present it is 

often thought to be solely due to the severity of the asthma exacerbation, rather than the 

uncontrolled oxygen treatment that these patients are almost invariably receiving.  

 

These presumptions run contrary to preliminary evidence from two studies that suggest 

high concentration oxygen therapy may cause hypercapnia in acute severe asthma (Chien 

et al., 2000; G. J. Rodrigo, Rodriquez Verde, Peregalli, & Rodrigo, 2003). Similarly, 

there has been little research on oxygen therapy in community acquired pneumonia. Like 

asthma, this condition is associated with significant ventilation-perfusion mismatch and 

therefore potential harm from routine uncontrolled oxygen exists.  

 

Rather than delivering uncontrolled high concentration oxygen to all patients regardless 

of hypoxaemia, an alternative approach is to titrate or adjust the flow of oxygen 

according to need. This is easily achieved in the emergency department and the 

ambulance with the widespread availability of pulse oximetry. Indeed, it is currently the 

standard of care for AECOPD (BTS, 2004), although studies show that guidelines are 

often not followed (Durrington, Flubacher, Ramsay, Howard, & Harrison, 2005; Joosten, 

Koh, Bu, Smallwood, & Irving, 2007; Plant, Owen, & Elliott, 2000).  

 

Although there is widespread understanding of the need to control oxygen flow in 

AECOPD, the routine administration of high concentration oxygen in acute asthma and 
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pneumonia is thought to be not only safe but desirable ("British Guideline on the 

Management of Asthma," 2008; Hargreave, Dolovich, & Newhouse, 1990; Inwald, 

Roland, Kuitert, McKenzie, & Petros, 2001). There is no current evidence to support this 

approach. In fact, there is an urgent need to define the correct approach to oxygen use in 

these common and potentially life threatening disorders. 

1.4 Thesis aim 

The aim of this thesis is to investigate the physiological and clinical effects of 

uncontrolled high concentration oxygen in patients with acute severe asthma and acute 

pneumonia. Specifically it will address two questions:  

 

1. Does the administration of uncontrolled high concentration oxygen increase 

arterial CO2 tension (PaCO2) in asthma and pneumonia?  

2. What is the mechanism of the increases in PaCO2 that occur?  

 

The results will help to provide evidence based recommendations for the rational and safe 

use of oxygen therapy in these diseases. 
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1.5 Thesis outline 

The background chapters begin with a summary of the history of oxygen, and then 

present aspects of respiratory physiology relevant to the research questions and methods 

in this thesis. This will include a discussion of pulmonary ventilation, gas exchange, 

hypoxic pulmonary vasoconstriction (HPV), and the concept of physiological dead space 

to tidal volume ratio (VD/VT).  

 

Chapter 3 reviews the literature regarding the use of oxygen in AECOPD, particularly the 

mechanisms of CO2 retention when high flow oxygen is delivered. A review of the 

pathophysiology of acute asthma and pneumonia follows, with an emphasis on gas 

exchange and CO2 retention, and a comparison to the mechanisms in AECOPD. The 

chapter ends with a summary of the current evidence for oxygen use in these disorders 

and presents possible approaches to investigating the effects of oxygen therapy in asthma 

and pneumonia with a valid research methodology. 

 

Chapters 4 and 5 describe the design and methodology of two randomised controlled 

trials comparing high concentration with titrated oxygen therapy in patients with severe 

asthma and pneumonia. The methodology of a third study based in the pulmonary 

function laboratory is described in Chapter 6. This work investigates the potential 

mechanisms of CO2 retention in asthma. It compares the response to oxygen of patients 

with chronic severe asthma with a group of COPD patients (positive controls) and normal 
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subjects (negative controls). Chapter 7 describes the validation of the methods, in 

particular the use of transcutaneous carbon dioxide recordings as a measure of arterial 

carbon dioxide. 

 

The results are presented in Chapter 8 and the final chapters comprise a discussion of the 

data, the practical implications of the results for the treatment of patients with acute 

asthma and pneumonia, and conclusions including recommendations for the use of 

oxygen in acute respiratory disease. 

 

1.6 Definitions 

For the purposes of the discussion in this thesis the following phrases are used, as there 

are no widely accepted definitions in the medical literature. Hyperoxia refers to an 

elevation of the arterial oxygen tension (PaO2) to levels above the normal physiological 

range of 80 – 100 mmHg. By implication, this generally occurs when oxygen is 

administered without regard to the patient’s oxygen saturation level. The term 

“uncontrolled oxygen” in the context of this thesis refers to the administration of oxygen 

without titration, by any device, at flow rates high enough to result in hyperoxia. 

Uncontrolled oxygen is contrasted with titrated oxygen therapy; in this case the flow, and 

consequently concentration, is adjusted to relieve hypoxaemia without producing 

hyperoxia.  
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Although the terms “high flow oxygen” and “high concentration oxygen” are often 

used interchangeably, this can result in confusion. In the case of most commonly used 

oxygen delivery devices (nasal prongs, medium concentration masks, and non-

rebreathing masks) increasing the flow of oxygen in litres per minute generally results in 

higher inspired concentrations of oxygen. However, in the case of Venturi masks, high 

oxygen flows are used but are diluted with room air by the mask to deliver a fixed, and 

usually low, oxygen concentration. In this thesis the term high concentration oxygen will 

be used, and refers to flow rates of oxygen resulting in high inspired oxygen 

concentrations. It should be noted that although high concentration oxygen therapy is 

often given in an uncontrolled fashion, the terms are not necessarily equivalent. In some 

critically ill patients with severe hypoxaemia, high concentrations of oxygen may be 

required to relieve it, and in that case would be considered appropriate. 
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Chapter 2: Background history and respiratory 

physiology 

The introductory chapter presented a broad outline of the current position of oxygen use 

in acute respiratory medicine and how the potential harms of a routine and uncontrolled 

approach to oxygen administration will be addressed in this thesis. The purpose of this 

chapter is to give an overview of the history of oxygen as a medical therapy and to 

describe some aspects of respiratory physiology that pertain to the aims and methods of 

this research.  

2.1 The history of oxygen as a medical therapy 

2.1.1 Discovery 

As with many major scientific findings, the discovery of oxygen was the result of 

observations by a number of individuals over the course of more than a century. The first 

important contribution came from John Mayow, an Englishman born in the 1640s who 

studied civil law at Oxford University. Although not trained as a scientist, he undertook a 

number of scientific experiments, a practice that was not uncommon among educated 

men in the 17
th

 century. In particular he was interested in the composition of air and the 

nature of respiration which he investigated using jars inverted over water. When he 

placed both an animal and a candle under an inverted jar he noted that the candle 

extinguished first and the animal died soon after, much more quickly than if it was placed 
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under the jar by itself. In a 1668 publication he wrote “Animals and fire draw particles 

of the same kind from the air” (Sternbach & Varon, 2004, p. 235).  

 

At the time it was known that combustion required air to sustain it but Mayow’s 

observations led him to link the seemingly unrelated processes of respiration and 

combustion. He was the first to postulate that only a specific component of the air, which 

he called “nitro-aerius”, was required to sustain life. Moreover, he proposed that this 

substance was extracted from the air by the lungs and transferred to the blood, a 

significant departure from previous notions that breathing was primarily required to cool 

the heart. Mayow died in 1679 with little recognition of his theories during his lifetime 

(Sternbach & Varon, 2004). Indeed, not long after his death a new and completely 

erroneous theory was to dominate the fields of combustion and respiration for the next 

100 years. 

 

In the latter part of the 17
th

 century a German chemist, Johann Joachim Becher, proposed 

ideas that were later modified by another German, Georg Ernst Stahl, to become known 

as the “phlogiston theory” (Wilkinson, 2004). At the time it was still commonly believed 

that all matter was made up of four elements: fire, water, air and earth; a belief that had 

persisted from pre-Socratic Greek philosophy. Stahl proposed the existence of an 

additional element “phlogiston” in an attempt to explain the phenomena of burning, 

rusting and respiration. The theory stated that all flammable materials contained 

phlogiston which was released into the air during combustion, leaving the material in a 

"dephlogisticated" form. If a substance was burned in a confined space the emitted gas 
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was regarded as "phlogisticated air”, or air which had become saturated with 

phlogiston and therefore less able to support further combustion (Wilkinson, 2004).  

 

In the early 1770s Joseph Priestly, an English chemist and minister, began experiments 

into the nature of gases, eventually discovering a total of nine, including nitrous oxide, 

nitrogen dioxide and hydrogen chloride. His breakthrough came during an experiment in 

1774 heating mercuric oxide. The gas he isolated not only supported combustion to a 

much greater degree, it resulted in a confined mouse living longer. Priestly commented 

that “I have discovered an air five or six times as good as common air” (Wilkinson, 2004, 

p. 250). As a firm supporter of the phlogiston theory he reasoned that this newly 

discovered gas must have an ability to absorb extra phlogiston released from burning 

material or a breathing animal, and therefore referred to it as “de-phlogisticated air”.  

 

Priestly was probably the first human to ever inhale oxygen in concentrations higher than 

ambient air. He noted “The feeling of it to my lungs was not sensibly different from that 

of common air, but I fancied that my breast felt peculiarly light and easy for some time 

afterwards” (Grainge, 2004, p. 489). Regarding its potential as a treatment for disease he 

wrote “It may be conjectured that it might be salutary to the lungs in certain morbid 

cases” (Grainge, 2004, p. 489). However, he also gave voice to the first ever warning on 

inappropriate oxygen administration: “It might not be so proper for use in the usual 

healthy state of the body…A moralist, at least, may say that the air which nature has 

provided for us is as good as we deserve” (Grainge, 2004, p. 489). This note of 
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reservation, although perhaps based more on his religious convictions than science, 

would nevertheless be ignored for centuries to come. 

 

Although the discovery of oxygen is historically attributed to Priestly, a Swedish 

pharmacist, Carl Wilhelm Scheele, had made an identical but independent discovery 

while heating mercuric oxide in 1772. Unfortunately for Scheele his work was not 

published until years later, and consequently he has received less credit than Priestly. He 

called the gas “fire air” from its ability to augment combustion, but also recognized its 

importance to respiration (Severinghaus, 2002).  

 

Despite their experimental findings neither Priestly nor Scheele understood that the 

substance they had identified was a chemical element. In 1778 Priestly traveled to Paris 

and discussed his findings with the French chemist Antoine Lavoisier, who years earlier 

had actually received correspondence from Scheele. It was Lavoisier who recognised the 

new gas was an element, and finally discredited the century old phlogiston concept 

(Sternbach & Varon, 2005). In fact by this time the phlogiston theory had already begun 

to unravel. It had become apparent to a number of scientists that some materials, such as 

magnesium, gained weight when they burned. This was attributed to phlogiston having a 

“negative weight” in some substances.  Lavoisier considered the whole theory to be 

flawed and objected to the fact that the proponents of the phlogiston theory changed its 

properties to fit with the outcome of inconsistent experiments. Ironically, Priestly 

remained a firm supporter of the phlogiston theory until his death in 1804, by which time 
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it had been essentially discredited by the international scientific community 

(Severinghaus, 2002). 

 

Lavoisier called the new element “oxygen” from a Greek root for "acid forming", due to 

his incorrect belief that the tart taste of acidic solutions was due to oxygen. In 1790 he 

published results from a series of experiments showing that the metabolism of animals 

involved a slow form of combustion. He hypothesized that atmospheric oxygen supplied 

by breathing enabled this slow combustion to proceed and that it was the source of body 

heat. Lavoisier had a profound effect on the understanding of chemistry in the late 18
th

 

century. In addition to advancing the understanding of respiration he made significant 

contributions to other fields such as public health. Despite holding liberal political and 

social views he was beheaded during the French Revolution, probably due to his 

affluence and involvement in tax collection (Wilkinson, 2004).  

2.1.2 Early attempts at therapy 

One of the earliest recorded attempts to use the new gas as a medical therapy came in the 

1790s when Thomas Beddoes, a lecturer in chemistry at Oxford University, established 

the Pneumatic Institute. Based in Bristol, its purpose was to investigate the potential 

medical benefits of the many recently discovered gases, a practice known as “pneumatic 

medicine”. He and his colleagues felt that oxygen might be particularly beneficial in the 

treatment of “consumption” or tuberculosis, but were discouraged when repeated 

administrations failed to cure the disease (Leigh, 1973). 
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In the 19
th

 century many physiologists turned their attention to oxygen research.  A 

number of discoveries were made including the mechanisms of oxygen uptake in the 

lung, and the fact that oxygen seemed to interact in a reversible way with haemoglobin 

resulting in a change in the colour of blood. Unfortunately this progress in basic 

physiology was not replicated in the field of practical therapeutics. The clinical 

administration of oxygen in the 19th century was characterised by numerous individual 

case reports and opinion pieces published in leading medical journals, but little in the 

way of systematic study. It was also a source of significant entrepreneurial activity; astute 

businessmen advertised oxygen as a panacea for a variety of medical complaints 

(Grainge, 2004). A key limitation during this period was the lack of a reliable means to 

produce large amounts of oxygen of adequate purity.  

 

In 1886 Arthur and Leon Brin formed Brin's Oxygen Company (now BOC) and began 

the commercial manufacture of oxygen using a high temperature barium oxide process 

(Leigh, 1974). Although most of the oxygen produced at this time was used for industrial 

purposes, it was also made available for personal use. In the late 1800s many self 

proclaimed experts recommended oxygen administration by a variety of routes including 

intravenous, subcutaneous and even as an enema to cure liver disorders. 

 

The first edition of Sir William Osler’s seminal textbook “The principles and practice of 

medicine” was published in 1892. At that time Osler was considered one of the most 

influential physicians in the English speaking world, but the first edition of the text is 

notable for the absence of any significant discussion of oxygen therapy. It was not until 
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the third edition in 1898 that he made reference to the role of oxygen in the treatment 

of pneumonia:  

It is doubtful whether the inhalation of oxygen in 

pneumonia is really beneficial. Personally, when called in 

consultation to a case, if I see the oxygen cylinder at the 

bedside I feel the prognosis to be extremely grave. 

(Warren, 2005, p. 83) 

However, he did concede that  

It does sometime [sic] seem to give transitory relief and to 

diminish cyanosis. It is harmless, its exhibition is very 

simple, and the process need not be at all disturbing to the 

patient. (Warren, 2005, p. 83) 

In 1899 Lorrain Smith, a British pathologist, exposed a variety of animals to high 

concentration oxygen for prolonged periods which resulted in damage to the pulmonary 

tissues (Smith, 1899). The publication of this study was the first scientific report to warn 

of the potential harms of oxygen use. Osler was aware of Smith’s work, and in the next 

edition of his text published in 1901 stated “That it [oxygen] may under certain 

circumstances be positively harmful…oxygen can be a serious irritant, actually producing 

inflammation in the lungs” (Warren, 2005, p. 83).  

2.1.3 The modern era 

There was a rapid advancement in the understanding of oxygen physiology in the early 

years of the 20
th

 century. The most important work was done by Adolph Fick and Paul 

Bert who were the first to introduce units of partial pressure to describe oxygen tension in 

the alveoli and blood. They also demonstrated a fall in oxygen tension between arterial 

and venous blood and showed how it related to cardiac output and tissue oxygen 

consumption (Grainge, 2004).  
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It was on the background of this research that the physician and physiologist John 

Haldane published his seminal work “The therapeutic administration of oxygen” and 

ushered in the era of modern oxygen therapy (Haldane, 1917). Haldane had extensive 

experience treating World War I soldiers exposed to chemical agents, particularly 

chlorine gas, which produced widespread lung inflammation. Therapy for chlorine 

inhalation was predominantly supportive and supplementary oxygen was a crucial 

element in the treatment of the resultant hypoxaemia.  He was the first well respected 

physician to advocate the prompt treatment of hypoxaemia by the administration of 

supplementary oxygen, which was counter to both the pessimistic views of Osler a 

decade previously, and his colleagues at the time. His view, which marked a turning point 

in the general attitude to oxygen, is summarised by the following statement from his 1917 

paper: 

It may be argued that such measures as the administration 

of oxygen are at best only palliative and are of no real use, 

since they do not remove the pathological condition. As a 

physiologist, I cannot for a moment agree with this 

reasoning. The living body is no machine, but an organism 

constantly tending to maintain or revert to the normal, and 

the respite afforded by such measures as the temporary 

administration of oxygen is not wasted, but utilized for 

recuperation (Haldane, 1917, p. 182). 

In other words, Haldane realized that the there was a role for supplementary oxygen as a 

supportive therapy, and that if patients could be prevented from dying of hypoxaemia 

then natural recovery might be possible. 
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On a practical level, he strongly advised against intermittent administration of oxygen. 

This was common practice at the time; physicians would often prescribe oxygen for five 

to ten minutes every hour. Haldane characterised the futility of this approach: 

“Intermittent oxygen therapy is like bringing a drowning man to the surface of the water 

– occasionally” (Grainge, 2004, p. 493).  

 

Importantly, he was also the first to recommend that oxygen only be given in amounts 

sufficient to relieve hypoxaemia, to both reduce the potential for harm and to preserve 

limited supplies. Haldane felt that “Existing methods of giving oxygen are nearly always 

very crude and wasteful”(Haldane, 1917, p. 183). He designed a facemask and tubing 

system to improve delivery, and used adjustable oxygen cylinders to control the flow 

(Figure 2.1). He recognized that the fractional concentration of oxygen administered was 

important, although there was no means to accurately measure this at the time. In terms 

of physiology, he noted that there were three fundamental causes of poor oxygen delivery 

to the tissues: lack of oxygen, lack of haemaglobin and lack of adequate circulation 

(Haldane, 1919). Haldane’s recommendations on oxygen therapy became widespread 

when he published them in a book “Respiration” in 1922. 
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Figure 2.1: Haldane’s oxygen apparatus (Haldane, 1917) 

 

 

Another important study was published in 1919 by William Stadie, describing his 

experience with multiple cases of severe pneumonia associated with the Spanish 

influenza epidemic (Stadie, 1919). He used the recently developed technique of radial 

artery puncture and arterial blood gas (ABG) analysis to determine the relationship of 

clinical cyanosis to the amount of de-saturated arterial blood in patients with acute 

pneumonia. At the time it was widely accepted that cyanosis was associated with a worse 

prognosis in a variety of cardiac and respiratory conditions. Despite this there was 

considerable debate as to the precise cause of cyanosis, with theories ranging from excess 

carbon dioxide to the presence of methaemaglobin. The confusion was partly due to the 

almost exclusive use of venous blood sampling to determine the saturation of blood. 

Stadie was the first to study a large number of arterial samples, and to link the presence 

of de-saturated arterial blood to the degree of cyanosis. He found the average arterial 

level of de-saturated blood to be 5% in healthy subjects, 13% in non-fatal pneumonia and 

32% in fatal pneumonia (Stadie, 1919). He was also able to correlate the depth of 
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cyanosis to the degree of de-saturation. The importance of this finding was that 

physicians had not previously been aware of the severe degree of arterial hypoxaemia 

that could be present once patients became visibly cyanosed.  

 

In 1920 Jonathan Meakins, a professor at McGill University who had worked extensively 

with Haldane, published work showing that continuous oxygen therapy could reverse the 

arterial hypoxaemia seen in severe pneumonia (J. C. Meakins, 1920). Further case reports 

of the efficacy of oxygen in pneumonia followed in the 1920s and by the end of the 

decade it was widely accepted as part of standard therapy for that disease. 

 

In 1932 Potts published his “Critical resume of oxygen therapy” in which he declared 

oxygen therapy to be 10 years old, dating its birth from the publication of Haldane’s 

“Respiration” in 1922. Despite the advances made in the previous two decades, Potts 

summarised the difficulties physicians at the time faced with regard to the assessment of 

hypoxaemia: 

Facilities for the determination of the degree of anoxaemia 

are not to be found in the ordinary clinical laboratory, but 

the time will come, I venture, when the degree of 

anoxaemia will be considered as regularly as the leucocyte 

count now is in acute appendicitis (Potts, 1932, p. 631).  

 

As antibacterial medicines became available in the middle decades of the 20
th

 century, 

pneumonia came to be seen as a less serious illness, and the emphasis on oxygen therapy 

switched to its use in another increasingly common condition: COPD. The use of oxygen 

in COPD, and indeed acute asthma, received little attention in the medical literature 
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during the first decades of the 20
th

 century. Early research reports on oxygen in chronic 

bronchitis and emphysema began to appear in the 1930s and focused predominantly on 

the growing awareness of its side effects (Barach, 1938; Barach & Richards, 1931). 

These problems, and further literature related to the causes of carbon dioxide retention in 

asthma and COPD, will be discussed in detail in chapter 3. 

2.2 Respiratory physiology 

“Respiration” refers to the transfer of oxygen from the atmosphere into the lungs, via 

haemoglobin molecules in the circulation, to metabolically active tissues where it is used 

for energy production in cellular mitochondria. The carbon dioxide produced during 

oxidative metabolism moves in the opposite direction and is excreted from the body 

through the lungs. The role of the respiratory system in this process can best be 

understood by dividing it into two main components:  

 

1. Ventilation - the movement of air between the atmosphere and alveoli 

2. Gas exchange - the exchange of oxygen and carbon dioxide molecules between 

alveoli and the blood 

 

Pulmonary disease can result in problems with one or both of these processes, and 

manifests as either hypoxaemia (due to abnormalities of ventilation or gas exchange) 

and/or hypercapnia (due to abnormalities of ventilation alone).   
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2.2.1 Pulmonary ventilation 

The tidal volume (VT) refers to the volume of air entering the lungs in a normal breath 

and in the average adult is approximately 500ml. A proportion of this inspired gas 

remains in the pharynx, trachea and bronchial passages, never reaches the alveoli, and is 

exhaled without contributing to gas exchange. This volume, known as anatomical dead 

space or VD (anat), is fixed for a given individual at around 2.2ml/Kg of body weight, or 

about one third of the tidal volume. In addition to anatomical dead space alveolar dead 

space or VD (alv), refers to alveolar units that are adequately ventilated, and therefore have 

the potential to contribute to gas exchange, but for various reasons have either absent or 

reduced blood flow. Unlike anatomical dead space, alveolar dead space is not fixed. The 

combination of alveolar and anatomical dead space is referred to as physiological dead 

space or VD (phys): 

 

  VD (phys)  = VD (anat)  + VD (alv) 

 

In healthy individuals the alveolar dead space is negligible, as most alveoli have normal 

or near normal blood flow. However, in many pulmonary diseases the alveolar dead 

space volume increases to the extent that it has significant effects on overall ventilation. 

The assessment and measurement of changes in dead space ventilation are explained in 

more detail below. 
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Using the concept of physiological dead space we can refer to the volume of 

atmospheric air that reaches functional alveoli and contributes to gas exchange. This is 

known as the alveolar tidal volume or VA, and is expressed by the following equation:  

 

VA  = VT - VD (phys)  

 

Minute ventilation (V 
•
 ) refers to the total volume of air expired from the lungs per unit 

time, and is derived from the tidal volume (VT) and the respiratory breath frequency or 

respiratory rate (f): 

 

  V 
•
  = f  x  VT   

 

Of more importance physiologically is the rate at which new atmospheric air reaches the 

alveolar spaces and is therefore available for gas exchange. Alveolar tidal volume (VA) is 

used to derive the alveolar minute ventilation (V 
•
 A): 

 

  V 
•
 A = f  x  VA  

   = f x (VT – VD) 
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2.2.2 Gas exchange 

Once the alveoli have been ventilated with fresh atmospheric air, the second function of 

the respiratory system is to exchange oxygen and carbon dioxide with blood flowing 

through the pulmonary circulation. This process is accomplished by diffusion, the 

movement of molecules from a region of high concentration to a region of low 

concentration. While breathing room air, the partial pressure of oxygen in the alveoli 

(PAO2) is approximately 100 mmHg compared with the partial pressure of oxygen in 

blood returning to the lungs from the venous circulation (PvO2) of 40 mmHg. Although 

this pressure gradient drives the transfer, oxygen is poorly soluble in solution and its 

diffusion is significantly enhanced by the physiological properties of the haemoglobin 

molecule.  

 

Each haemoglobin molecule can bind four molecules of oxygen. The binding of oxygen 

is a co-operative process; as each additional molecule is added it becomes progressively 

easier for the remaining binding sites to be filled. This is due to a conformational change 

that occurs in the structure of haemoglobin; adding oxygen molecules changes its shape 

making it more receptive to further binding. This chemical property facilitates the uptake 

of oxygen in the lungs and its release in the tissues, as well as producing the 

characteristic sigmoid shape of the oxy-haemoglobin dissociation curve (Figure 2.2).  

 

 



 26

Figure 2.2: The oxy-haemoglobin dissociation curve 

 

  

The total oxygen content of blood is determined principally by two variables: the quantity 

of haemoglobin in g/L, and the percentage of haemoglobin molecules saturated with 

oxygen. This has important implications for oxygen administration. Oxygen dissolves 

poorly in plasma; consequently once haemoglobin molecules are 100% saturated, 

increasing the PAO2 by increasing the fraction of inspired oxygen has little effect on total 

blood oxygen content.  
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A pressure gradient also exists to drive carbon dioxide diffusion in the opposite 

direction. In contrast to oxygen however, carbon dioxide readily diffuses across the 

alveolar-capillary membrane such that alveolar and arterial pressures usually equalise 

rapidly. Hence the removal of carbon dioxide from the blood is primarily dependent on 

alveolar ventilation. This relationship is important when considering mechanisms of CO2 

retention.  

 

Aside from a reduction in inspired oxygen concentration (such as that occurring at 

altitude), there are only four possible mechanisms by which arterial hypoxaemia can 

develop: 

1. A reduction in minute ventilation 

2. A shunt which delivers blood directly from the right side of the heart to the left, 

bypassing the alveoli 

3. A reduction in oxygen diffusion due to an abnormality of the alveolar-capillary 

membrane 

4. Abnormal matching of perfusion and ventilation.  

 

The fourth mechanism is the most common and because plays an important role in 

COPD, asthma and pneumonia it will be discussed in more detail below. 
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2.2.3 Ventilation-perfusion matching 

The major determinant of the efficiency of gas exchange within the lung is the degree to 

which ventilation and perfusion are matched. So called “ventilation-perfusion mismatch” 

is the most common cause of hypoxaemia in respiratory disease.  

 

Conceptually, when discussing ventilation-perfusion matching it is helpful to consider the 

lung to be comprised of a number of individual alveolar units each having a supply of 

atmospheric air, or ventilation ( V 
•
 ) and a supply of blood, or perfusion ( Q

 •
 ). The 

relationship between them is expressed as the ratio V 
•
 /Q

 •
 . 

 

In an ideal alveolar unit ventilation exactly matches perfusion giving a V 
•
 /Q

 •
  ratio of one.  

Theoretically, the V 
•
 /Q

 •
  ratio can vary between the following two extremes depending on 

the underlying conditions in a given lung unit: 

 

1. Normal ventilation with complete absence of blood flow results in a V 
•
 /Q

 •
  ratio of 

infinity. This is equivalent to alveolar dead space as described above.  

 

2. Normal perfusion with complete absence of ventilation results in a V 
•
 /Q

 •
 ratio of 

zero. This is known as a shunt, blood moves from the right to the left side of the 

heart without being exposed to oxygen-containing alveoli.  
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The theoretical extremes of V 
•
 /Q

 •
  mismatching are represented graphically in Figure 

2.3 along with the partial pressures of carbon dioxide and oxygen and that exist there. 

 

Figure 2.3: The three compartment model showing an ideal lung unit (A) where 

ventilation and perfusion are equally matched, Dead Space (I) with no perfusion, 

and Shunt (V) with no ventilation. (Roca & Wagner, 1994) 

 

 

 

In practice, abnormal gas exchange in respiratory disease tends to result from lung units 

which have partial ventilation-perfusion mismatching rather than these extremes. In lung 

units with reduced ventilation but normal perfusion, the V 
•
 /Q

 •
  ratio is less than one (but 

not zero). Although this does not represent a true shunt as defined above, it is possible to 

quantitatively calculate the total contribution of these units as the “physiological shunt”. 
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Similarly, lung units with reduced perfusion but normal ventilation have a V 
•
 /Q

 •
  ratio 

greater than one (but not infinity) and therefore ventilation to these units can be 

quantified as contributing to “physiological dead space”. 

2.2.4 Hypoxic pulmonary vasoconstriction 

When mismatches in ventilation and perfusion arise they are partially corrected by an 

auto-regulatory mechanism known as hypoxic pulmonary vasoconstriction (HPV). In 

most vascular beds in the body, tissue hypoxia provokes a strong vasodilator response in 

order to increase the delivery of oxygenated arterial blood. In contrast, pulmonary 

capillaries respond to alveolar hypoxia with vasoconstriction. This effectively diverts 

blood away from lung units with poor ventilation (low V 
•
 /Q

 •
  ratios) to lung units with 

better ventilation, thus maximising oxygen transfer. The phenomenon was first described 

in 1946, although the exact mechanism remains controversial (Von Euler & Liljestrand, 

1946). The increase in vascular pressure begins within seconds of reducing the inspired 

oxygen concentration (Hauge, 1968), reaches a peak within minutes, and can be sustained 

for long periods of time (Malik & Kidd, 1973). The threshold for the onset of HPV in the 

human pulmonary circulation is reached when the PAO2 falls to around 60 mmHg (Cutaia 

& Rounds, 1990).  

2.2.5 Carbon dioxide elimination 

The partial pressure of carbon dioxide in the blood (PaCO2) is determined by two factors: 

cellular metabolic activity (production) and pulmonary ventilation (elimination). In a 
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steady state situation the quantity of CO2 exhaled per unit time must equal the quantity 

produced in the body (V 
•
 CO2). This relationship is expressed in the following way: 

 

 

V 
•
 CO2  = CO2 elimination 

  = alveolar CO2 concentration x alveolar ventilation 

  =  PACO2 x V 
•
 A  

 

Because CO2 production (V 
•
 CO2) is essentially constant, and arterial and alveolar CO2 

levels are essentially equal due to complete and rapid diffusion in the lung, the equation 

can be rearranged to show that PaCO2 is inversely proportional to alveolar ventilation: 

 

PaCO2  = 1 / V 
•
 A    

 

Furthermore, because alveolar minute ventilation is determined by the respiratory 

frequency and the alveolar tidal volume the equation can be modified: 

 

PaCO2  = 1 / f (VT – VD)  

 

An alternative way to express the above equation is: 
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PaCO2  = 1 / V 
•
 E (1 – VD /VT)  

 

The physiological dead space to tidal volume ratio VD /VT, also known as the dead space 

fraction, and can be derived from clinical measurements. From the equation above it can 

be seen that if CO2 production is constant there are only two mechanisms by which 

PaCO2 can increase: 

 

1. A reduction in overall minute ventilation (by a reduction in respiratory rate and/or 

tidal volume)  

2. An increase in physiological dead space volume (VD) and consequently an 

increase in VD /VT 

 

2.2.6 Physiological dead space 

The Danish physiologist Christian Bohr first proposed the concept of measuring 

physiological dead space in 1891 (Bohr, 1891). His approach was to express the 

elimination of CO2 mathematically based on the following principles: 

1. The total volume of air expired in a single breath is equal to the sum of the dead 

space volume and the alveolar volume.  

2. Because CO2 in atmospheric air is essentially zero, the CO2 in the anatomical dead 

is zero.  

3. The total quantity of CO2 in a measured expired tidal volume can only come from 

ventilated alveoli, but is mixed with and diluted by air in the dead space volume.  
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He expressed the relationship as follows: 

 

 VT x FECO2 = (VD x FICO2) + (VA x FACO2) 

 

Where FECO2 represents the total fraction of mixed expired CO2 in a complete tidal 

breath, FICO2 represents the fraction of CO2 contained in the dead space volume and 

FACO2 represents the fraction of CO2 in ventilated alveoli. Because FICO2 is close to zero 

the equation becomes: 

 

 VT x FECO2 = (VA x FACO2) 

 

If VA is substituted by VT – VD (as described above) and we convert fractions of CO2 to 

partial pressures, the equation becomes: 

 

 VT x PECO2 = (VT – VD) x PACO2 

 

Solving this equation for VD: 

 

VD = (PACO2 - PECO2 / PACO2) x VT     

 

This is the original form of the Bohr equation; however physicians and researchers 

initially found it problematic to use. Although mixed expired gas could be collected to 
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derive PECO2 there was difficulty, and much controversy, in obtaining accurate 

estimates of the alveolar CO2 despite a variety of methods. In 1938 Enghoff proposed 

substituting PaCO2 for PACO2 on the basis that the rapid transfer of CO2 from blood to 

alveoli meant the two were essentially equivalent (Enghoff, 1938). Using this 

substitution, and expressing the equation as a VD /VT ratio produces: 

 

 VD /VT = (PaCO2 - PECO2 / PaCO2) 

 

This in known as the Bohr-Enghoff equation and is the form most often used in research 

and clinical practice when the physiological dead space to tidal volume ratio is measured 

(Fletcher, Jonson, Cumming, & Brew, 1981). 
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Chapter 3: Oxygen therapy in acute respiratory disease 

Following a description of some relevant aspects of general respiratory physiology in 

Chapter 2, this chapter begins by outlining the pathophysiology of acute exacerbations of 

COPD (AECOPD) and literature regarding the effects of uncontrolled oxygen 

administration in COPD, specifically oxygen induced hypercapnia. The evidence 

regarding possible mechanisms of CO2 retention in COPD is then discussed. Section 3.3 

describes similarities in the                                                                                                                        

pathophysiology of acute asthma and AECOPD, reviews the existing literature on oxygen 

use in acute asthma, and raises the potential for similar mechanisms of CO2 retention to 

operate in asthma and pneumonia. Finally, a case is made that a significant gap in 

medical knowledge exists regarding the potential for oxygen induced hypercapnia in 

acute asthma and pneumonia. 

3.1 COPD 

3.1.1 Pathophysiology of acute exacerbations of COPD 

Over time, progression in the severity of airflow obstruction in COPD is associated with 

an increased frequency of acute exacerbations (Miravitlles et al., 2000; Niewoehner et al., 

2007). For some patients they are a significant component of the overall burden of the 

illness, and may also be life threatening (Seemungal et al., 1998). Both the Australasian 
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COPD-X guideline document (Abramson, Crockett, Frith, & McDonald, 2006) and the 

British Thoracic Society guidelines (BTS, 2004) define an acute exacerbation as an event 

in the natural course of the disease characterized by a change in the patient’s baseline 

dyspnoea, cough, and/or sputum that is beyond normal day-to-day variations, is acute in 

onset, and may warrant a change in regular medication. 

 

The ventilation and gas exchange abnormalities that occur during AECOPD are primarily 

due to an acute increase in airflow obstruction which results in increased expiratory flow 

limitation (EFL). The underlying cause of EFL in stable COPD varies from patient to 

patient but usually results from a mixture of airway inflammation and mucous hyper-

secretion, and the loss of alveolar attachments due to destruction of parenchymal lung 

tissue (Figure 3.1).  

 

 

 

 

 

 

 

 

 

 

 



 37

Figure 3.1: Mechanisms of airflow limitation in COPD (Barnes, 2000) 

 

 

In the majority of patients the major cause of COPD is chronic inhalation of tobacco 

smoke, although exposure to other airborne particulate matter such as indoor biomass 

fires is important in some cases (Dennis et al., 1996; S. Liu et al., 2007; Orozco-Levi et 

al., 2006). Finally, longstanding asthma can lead to airway remodeling and chronic 

narrowing (Marsh et al., 2008).  

 

The acute deterioration in airflow obstruction that characterises AECOPD is usually the 

result of increased airway inflammation due to either viral or bacterial infection, although 

environmental pollutants and allergens may play a role in some cases (Bhowmik, 

Seemungal, Sapsford, & Wedzicha, 2000). This usually manifests as a change in sputum 

volume or colour, and an increase in wheeze and breathlessness. 
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During tidal breathing at rest the Functional Residual Capacity (FRC) represents the lung 

volume at which the elastic recoil forces of the pulmonary parenchyma and chest wall are 

equal. In normal subjects this also represents the lung volume at which the respiratory 

muscles are at their optimal functional length. Hyperinflation is defined as an increase in 

the FRC above the normal range (Roussos & Macklem, 1982). In AECOPD, the 

increased EFL means that during spontaneous breathing the time for expiration may be 

insufficient to allow
 
the lung volume to fall to its natural

 
relaxation position, resulting in 

progressive hyperinflation. This dynamic increase in FRC, and concomitant reduction in 

the Inspiratory Capacity (IC), is strongly correlated with the degree of perceived 

dyspnoea during AECOPD (Stevenson, Walker, Costello, & Calverley, 2005). The 

effects of hyperinflation in COPD during exercise are shown graphically in Figure 3.2; a 

similar process occurs during an acute exacerbation.  
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Figure 3.2: Pulmonary hyperinflation in COPD (Sutherland & Cherniack, 2004) 

 

 

As a consequence of progressive hyperinflation, the operating tidal volume of the lungs 

in patients with AECOPD moves closer to the region of total lung capacity, and away 

from the more favourable volumes for respiratory muscle function. Although 

hyperinflation has some positive physiological effects, such as a small increase in airway 

calibre and elastic recoil, these are countered by flattening of the diaphragm and 

consequent reduction in muscle function and strength (Tobin, 1988). The result is that 

higher pressure changes are required to maintain the same tidal volume, and thus more 

energy is expended.  

 

The combination of an acute increase in airflow obstruction and the changes in 

pulmonary mechanics outlined above often result in abnormalities of gas exchange. The 
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most common arterial blood gas abnormality is hypoxaemia, which can be severe, and 

there may be varying degrees of hypercapnia and respiratory acidosis. Three studies 

which documented the degree of arterial hypoxaemia in patients presenting with 

AECOPD prior to receiving any oxygen therapy are shown in Table 3.1. Although 

hypoxaemia is relatively common, the strongest predictor of mortality and the need for 

invasive ventilation is the arterial pH, which is in turn determined by the degree of acute 

hypercapnia (Ambrosino et al., 1995; Jeffrey, Warren, & Flenley, 1992; Plant et al., 

2000). 

 

Table 3.1: Three studies of room air PaO2 in patients presenting with AECOPD 

Study Patients (n) 

Mean PaO2 

(mmHg) 

Range 

(mmHg) 

(King, Ali, & Briscoe, 1973) 40 40.4 24 - 68 

(Warrell, Edwards, Godfrey, & Jones, 1970) 7 29.8 25 - 28 

(Rudolf, Banks, & Semple, 1977) 3 33.6 31 - 39 

 

    

As noted in Chapter 2, there are only four possible mechanisms of arterial hypoxaemia: 

an isolated reduction in minute ventilation, pure right to left shunt, a limitation of 

diffusion across the alveolar-capillary membrane, or mismatch of ventilation and 

perfusion. Although these can all potentially play a role in the hypoxaemia of AECOPD, 
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the importance of V 
•
 /Q

 •
  mismatch became apparent through physiological studies 

beginning in the 1970s.  

 

An important development in the field of pulmonary physiology occurred in 1974 when 

Wagner and colleagues developed the Multiple Inert Gas Elimination Technique, or 

MIGET (Wagner, Saltzman, & West, 1974). The technique is based on the intravenous 

infusion of a mixture of six inert gases with a range of solubility coefficients. By 

simultaneously measuring arterial blood, mixed venous blood and expired air, the 

retention and secretion of each gas can be plotted graphically to express the degree of 

ventilation and perfusion matching (Figures 3.3). In the graphical representation, each 

data point represents a particular amount of blood flow (●) or ventilation (о) to the 

corresponding pulmonary compartment, and is plotted against the V 
•
 /Q

 •
  ratio on a 

logarithmic scale. In a normal individual it can be seen that both curves are centered on 

an ideal V 
•
 /Q

 •
  ratio of 1 and are narrow. Note the absence of shunt and a normal 

anatomical dead space fraction of 30% (Figure 3.4) 
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Figure 3.3: The Multiple Inert Gas Elimination Technique. Six inert gases are 

infused intravenously while samples of arterial blood (a) mixed venous blood (v) and 

mixed expired gases (E) are obtained. (Roca & Wagner, 1994)   

 

 

Figure 3.4: Example of a MIGET graph from a normal individual breathing room 

air. (Roca & Wagner, 1994) 
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Barbera et al described the mechanisms of worsening gas exchange during AECOPD 

using MIGET (1997). They studied 13 hospitalised patients with AECOPD during their 

admission and then again one month after discharge. Exacerbations were characterised by 

very severe airflow obstruction (mean FEV1 0.74L), severe hypoxaemia (mean PaO2 44 

mm Hg) and hypercapnia (mean PaCO2 55 mm Hg). Inequality of V 
•
 /Q

 •
  was significantly 

abnormal (Figure 3.5), but measured shunt was negligible. During recovery, 

improvements in hypoxaemia, gas exchange and airflow obstruction followed a more or 

less parallel course.  

 

Figure 3.5: V 
•
 /Q

 •
 distribution in a patient with COPD. Note the bimodal appearance 

of ventilation compared to perfusion  due to areas of the lung with significantly 

elevated V 
•
 /Q

 •
  ratios (Agusti & Barbera, 1994). 
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In summary, during AECOPD patients develop significant abnormalities in pulmonary 

physiology, principally increased airflow limitation and hyperinflation. MIGET has 

revealed that the abnormal gas exchange and hypoxaemia associated with AECOPD can 

be almost entirely explained by severe V 
•
 /Q

 •
  mismatch, with little contribution from 

either shunt or diffusion limitation (Barbera et al., 1997; Wagner, Dantzker, Dueck, 

Clausen, & West, 1977). The next section will review the clinical effects of oxygen 

administration in AECOPD with particular reference to the mechanisms of oxygen 

induced hypercapnia.  

 

3.1.2 Oxygen therapy in AECOPD 

As noted in Chapter 2, the use of oxygen therapy became widespread during the years 

1920 to 1950, particularly in the setting of pneumonia. However, oxygen was also 

frequently given to cyanotic patients with acute exacerbations of COPD. It was noted by 

clinicians at an early stage that adverse effects were associated with this approach. 

 

As early as 1905 it had been demonstrated that in humans the principle stimulus to 

breathe was the level of arterial carbon dioxide (Haldane & Priestley, 1905). 

Administering CO2 to volunteer subjects increased the depth of respiration, while 

reducing CO2 by over-ventilation resulted in hypopnoea or temporary apnoea. 

Unfortunately a number of physicians misinterpreted these findings, and by 1919 many 

had come to the erroneous conclusion that the main cause of hypoxaemia in patients with 

respiratory infection was abnormally rapid shallow respirations (Haldane, Meakins, & 
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Priestley, 1919). This led to an enthusiasm in the medical community for the 

therapeutic administration of CO2 mixed with oxygen in an effort to stimulate the 

respiratory effort of breathless patients. As late as 1932 Haldane was advocating the 

therapeutic use of CO2 and demonstrating apparatus for delivering it ("Reports of 

Societies," 1932). 

 

In 1933 the first case report describing papilloedema in an acutely breathless patient with 

emphysema was published in the British Journal of Ophthalmology, and was given little 

consideration at the time by internal medicine physicians (Cameron, 1933). Further 

reports followed, with most clinicians ascribing the papilloedema to either polycythaemia 

or raised central venous pressure as both were common findings in advanced 

emphysema.  

 

Thomas Simpson further elaborated on the phenomenon in 1948 when he documented 

three cases of papilloedema associated with acute emphysema. By documenting that none 

of his patients had raised venous pressure or polycythaemia, Simpson dismissed these as 

possible mechanisms (Thomas Simpson, 1948). He considered it more likely that gas 

exchange abnormalities were influencing the pressure of cerebrospinal fluid (CSF). In 

1925 a study had established that elevated CO2 sometimes occurred in emphysema (J. 

Meakins & Davies, 1925). Simpson linked this observation to other work involving the 

direct observation of the pial vessels of cats through a trephine hole in the skull. This 

study had found that inhalation of just 5% CO2 increased the diameter of cerebral blood 

vessels by 17% (Wolff & Lennox, 1930).  Simpson went further and documented the 
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CSF pressure by lumbar puncture in six patients who were administered 7% inhaled 

CO2 mixed with oxygen. He noted prompt rises in CSF pressure within one to two 

minutes to at least twice baseline levels in all six patients (Thomas Simpson, 1948).  

 

The following year a study linked Simpson’s observations on CSF pressure in 

emphysema with the effects of oxygen therapy by directly measuring the response of 

CSF pressure to oxygen administration at a flow rate of 6 L/min in four patients with 

severe emphysema and five subjects with no respiratory disease (Davies & Mackinnon, 

1949). All four cases in the emphysema group had higher than normal resting CSF 

pressure and demonstrated a prompt rise which resolved on cessation of oxygen 

inhalation. None of the normal subjects had a change in CSF pressure. Although they did 

not measure CO2 directly they surmised, with reference to Simpson’s work, that the 

mechanism seemed to be oxygen induced increases in CO2.  

 

In parallel with these studies on CSF pressure and papilloedema, a number of 

investigators had been reporting that oxygen administration in severe emphysema 

occasionally resulted in mental state changes, specifically varying degrees of stupor and 

coma. One of the earliest to document this effect was Alvan Barach in the 1930’s. He 

noted that “A profound disturbance of mental functioning may take place in patients 

suffering from longstanding arterial anoxaemia after inhalation of 50% oxygen…In some 

patients lassitude and mental depression take place accompanied by severe headache” 

(Barach & Richards, 1931, p. 336). Initially he attributed these symptoms to sudden 

changes in arterial oxygen tension, but in fact he was writing an accurate description of 
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CO2 narcosis. In a later paper he recognised the link between elevation of PaCO2 and 

oxygen therapy (Barach, 1938). Other reports and case series followed (Donald, 1949; 

Taquini, Fasciolo, Suarez, & Chiodi, 1948). 

 

By 1950 there was widespread acceptance that oxygen therapy could induce mental state 

changes in patients with chronic hypoxia, but debate remained as to the exact cause, and 

it had not yet been linked only to emphysema. In 1950 a paper accurately summarised the 

current state of knowledge (Comroe, Bahnson, & Coates, 1950). It presented a series of 

65 consecutive patients given oxygen therapy: 43 had emphysema and the rest comprised 

patients with asthma, bronchiectasis, pulmonary vascular disease and congenital heart 

disease. They noted the development of mental changes in eight patients; all of whom 

had emphysema as well as a PaCO2 of greater than 50 mmHg and oxygen saturations of 

less than 90% at baseline. Oxygen administration increased the PaCO2 in all patients, 

ranging from 10 to 52 mmHg. Despite their consistent finding of oxygen induced 

hypercapnia, and the previous work by Simpson, Comroe et al remained uncertain as to 

the underlying mechanism. They proposed and discussed four potential mechanisms of 

the observed mental changes: carbon dioxide narcosis, cerebral vasospasm, increased 

CSF pressure and cerebral depression by high oxygen tension. Interestingly, this lack of 

mechanistic certainty did not prevent them concluding the paper with a recommendation 

on oxygen administration that was in some respects ahead of its time. They essentially 

reinforced comments that Barach had made in his earlier work: that patients with 

emphysema rarely require 100% oxygen to relieve their hypoxaemia and that the safest 
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approach is to administer oxygen at lower concentrations initially and to increase it 

gradually should the patient tolerate it.  

 

In 1952 a study measured minute ventilation, CSF pressure and arterial blood gases 

before and after oxygen in four patients with emphysema and three normal controls 

(Mithoefer, 1952). It demonstrated a rise in PaCO2 and CSF pressure, and falls in minute 

ventilation in all emphysema patients but none of the controls. Despite these results the 

author was reluctant to be definitive about a link between oxygen, CO2 and CSF changes. 

However, the report is one of the earliest to describe the role of the hypoxic drive to 

breathe in emphysema, a concept that would become firmly entrenched over the 

following decades. In reference to the fall in ventilation after oxygen was given the paper 

states: 

It indicates that in these patients anoxia was an important 

respiratory stimulant…which had assumed much of the 

function of stimulation normally carried by carbon dioxide. 

When the anoxic stimulus was removed, respiratory 

depression ensued despite a rising arterial carbon dioxide 

tension. (Mithoefer, 1952, p. 1118) 

 

Two years later, firmer opinions began to appear in the literature. In 1954 Simpson 

published a case series of acute respiratory infections in emphysema, along with a general 

review of management. With regard to oxygen administration he states: “Mental 

symptoms or even coma may ensue when oxygen is given to these patients. Studies at 

this hospital suggest that the mental symptoms are due to CO2 narcosis” (T. Simpson, 

1954, p. 300). A similar study investigated the effect on ventilation of 100% oxygen in 35 
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emphysematous patients. In 26 patients there was a fall in ventilation accompanied by 

a mean increase in PaCO2 of 8.6 mmHg and a fall in pH (Prime & Westlake, 1954). 

Regarding the fall in ventilation the authors stated: “This appears to be the effect of the 

relief of anoxia since it occurred only in anoxic emphysematous subjects and did not 

occur in those with normal saturation or in normal controls” (Prime & Westlake, 1954, p. 

323). They also demonstrated that patients with emphysema and baseline elevations of 

PaCO2 demonstrated a reduced and blunted response to 7% inhaled CO2 suggesting 

altered sensitivity of the respiratory control centre. The authors of a review article the 

same year agreed “The decrease in ventilation results from the elimination of the hypoxic 

stimulus to the respiratory mechanism. Drowsiness, which may progress to coma if 

oxygen therapy is prolonged, is related to the increasing severity of respiratory acidosis” 

(Cohn, Carroll, & Riley, 1954, p. 449). Their recommendations on practical management 

echoed those of Comroe from four years previously, specifically, that patients be given 

oxygen only if arterial saturations were below 85% and that a low initial concentration of 

around 40% should be used. 

 

Further work in the 1950s did little to advance the overall understanding of CO2 narcosis 

but did help to clarify more precisely the relationship between the degree of acidosis,  

CO2 retention and the severity of lung disease (Bickerman & Barach, 1955; Westlake, 

Simpson, & Kaye, 1955) and the prognostic value of arterial blood gases in emphysema 

(Platts & Greaves, 1957).  
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In 1960 E.J.M. Campbell published two articles in the Lancet which made significant 

advances to the understanding of oxygen administration in emphysema. In the first, he 

studied four patients with acute exacerbations of emphysema and measured their 

response to varying concentrations of inspired oxygen. Despite the patients having 

extremely deranged gas exchange (mean PaCO2 79 mmHg and mean PaO2 23 mmHg) he 

was able to determine the precise arterial oxygen response to inspired fractions of oxygen 

ranging from 21 to 35% (E. J. Campbell, 1960b). He demonstrated that the arterial 

oxygen tension of patients with severe respiratory failure was very sensitive to even small 

degrees of oxygen enrichment. He advocated continuous rather than intermittent oxygen 

therapy (which was still considered by some clinicians to be the appropriate approach to 

minimising CO2 retention), and recommended inspired oxygen concentrations in the 

range of 24 to 35%.  

 

In his second paper he outlined the problem with existing modes of oxygen delivery, 

namely that wide patient variations in minute ventilation meant that the exact 

concentration delivered to a patient could not be determined with any degree of accuracy 

(E. J. Campbell, 1960a). He described a new oxygen delivery system comprising a mask 

connected to bottles of both compressed room air and oxygen. A baseline flow of room 

air at 40 L/min was administered and oxygen was added at a specific flow rate to produce 

a precise gas mixture which could be varied between 24 and 35% oxygen. The overall 

flow rate of the mixture was much higher than the patient’s peak inspiratory air flow, 

regardless of the level of minute ventilation, and consequently the concentration 

remained accurate. Unfortunately the fact that the compressed air bottles were exhausted 
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in one to two hours limited its practical application. Campbell experimented with a 

variety of alternative designs, including the use of large pumps which attempted to 

produce the same effect but were limited by their size. Eventually he designed a mask 

based on his knowledge of the Venturi effect, which would be his most important 

contribution to practical therapeutics, and which is still in widespread use today.  

 

The Venturi effect refers to the reduction in pressure that occurs when any gas or fluid 

flows through a constricted section of a tube. As a consequence of this drop in pressure, 

gas flowing through a narrow aperture in the base of a mask entrains air at a fixed rate 

from the surrounding environment. Campbell’s “Venturi mask” used a jet of oxygen 

fixed at a flow of 3 L/min through a small aluminium orifice into a mask with side holes. 

He calculated that this design would entrain room air at a rate of 50 L/min and produce 

an oxygen concentration of 24%. In order to achieve higher concentrations, a second 

oxygen inlet was added to the mask which was supplied by the same bottle. This setup 

proved to be somewhat complex and less accurate than initially thought, and Campbell 

had soon modified the mask design to its modern form, a single aperture with an accurate 

diameter designed to deliver a precise, but fixed, inspired oxygen concentration (E.J. 

Campbell, 1963). 

 

In his recommendations for the management of emphysema, Campbell emphasised the 

importance of early measurement of PaCO2 in all patients due to the unreliability of 

clinical features of hypercapnia. However, in the majority of his patients this was not 

done by ABG analysis, but instead using a bedside re-breathing technique which would 
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now be considered somewhat unreliable (E. J. Campbell, 1967). He considered that 

measurements of the pH and PaO2 were less important, on the basis that his oxygen 

delivery method would increase the PaO2 of most patients to above 40 mmHg, the level 

he considered safe. This opinion was based on data published the previous year showing 

that patients with emphysema arriving at hospital prior to treatment with oxygen were 

often conscious despite a PaO2 as low as 30 mmHg (Refsum, 1963). It is worth noting 

that at the time of these publications laboratory methods for determining ABG tensions 

were somewhat difficult and time consuming. In fact the assays were only available at 

large tertiary hospitals or those with a research focus, and even then often during office 

hours only (Thomas Simpson, 1964).  

 

Hutchison et al had a contrasting view, and suggested that the Campbell’s approach was 

potentially dangerous, as ABG data from their series of patients indicated that a 

significant number were under-oxygenated using his method (Hutchison, Flenley, & 

Donald, 1964). They considered measurement of the PaO2 important to ensure adequate 

oxygenation had been achieved, and that a higher level of 50 mmHg should be 

considered a safe minimum. They recommended measuring the pH routinely as it 

provided important information about the chronicity of PaCO2 changes.  

 

A number of other published series followed in the 1960s, which essentially 

demonstrated the same findings: that hypoxia could usually be relieved by relatively low 

concentration oxygen administration, and that serious hypercapnia was uncommon 

(Cherniack & Hakimpour, 1967; Eldridge & Gherman, 1968; Mithoefer, Karetzky, & 
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Mead, 1967). There was minor disagreement regarding the so-called safe level of PaO2 

with some American researchers recommending 60 mmHg as an adequate target 

(Eldridge & Gherman, 1968). In any event, it was generally accepted that uncontrolled 

high concentration oxygen therapy led to significant CO2 narcosis in a proportion of 

patients with acute exacerbations of emphysema, and therefore should be avoided. In 

terms of the mechanism, most investigators agreed that because many of these patients 

had chronic hypoxia and CO2 retention, they must rely on their hypoxic drive to breathe, 

and that oxygen therapy abolished this resulting in a decrease in minute ventilation.  

 

However, evidence began to appear which contradicted this accepted mechanism. A 

study published in 1960 reported that oxygen administered to stable emphysema patients 

increased the PaCO2 significantly, even when the baseline level was normal (Brodovsky, 

Macdonell, & Cherniack). If a reduction in the hypoxic drive to breathe was the main 

driver of oxygen induced hypercapnia, then the observed rise in PaCO2 should be related 

both to the initial level of PaO2, and to the degree of increase with oxygen therapy, 

however a case series in 1968 showed that there was no relationship (Eldridge & 

Gherman).  

 

In 1965 the first study to directly address the question of the mechanism of oxygen 

induced CO2 retention was published (Pain, Read, & Read). It was prompted by the 

authors’ clinical observation that in a number of patients there appeared to be no 

relationship between ventilation changes and the degree of CO2 elevation when oxygen 

was administered. They pointed out that “there have been very few reports of the 
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response to breathing oxygen in which sufficient data are given to allow comparison of 

the relative changes in ventilation and arterial PCO2” (Pain et al., 1965, p. 195). They 

studied 38 stable patients with chronic airflow obstruction, measuring ABGs and minute 

ventilation while breathing air and then after 10 minutes breathing 100% oxygen. In 24 

patients the PaCO2 rose by 5 to 24%. Changes in minute ventilation ranged from a rise of 

15% to a fall of 58% but there was no correlation between the changes in ventilation and 

change in PaCO2. To explain their findings the authors referred to the relationship 

between overall minute ventilation and PaCO2.  

 

As discussed in Chapter 2, if production of CO2 remains constant, then PaCO2 is solely 

determined by overall minute ventilation and the relationship is inversely proportional: 

 

PaCO2  = 1 / V 
•
 E    

 

Consequently, for PaCO2 to double overall minute ventilation must be halved. The only 

other way PaCO2 can be raised is by an increase in the physiological dead space, or 

specifically the physiological dead space to tidal volume ratio, VD /VT: 

 

PaCO2  = 1 / V 
•
 E (1 – VD /VT)  

 

From this equation it can be seen that an increase in VD /VT will increase PaCO2 even if 

V 
•
 E remains the same.  
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The authors note in their discussion: 

In the present group of experiments, the only discernable 

factor which might produce blood flow redistribution is the 

administration of oxygen. If there are regions in the 

diseased lung where vasoconstriction has produced local 

reductions of blood flow (of a “compensatory” nature), 

high alveolar oxygen tensions may reverse this 

vasoconstriction and lead to a worsening of blood flow 

distribution (in relation to ventilation), with a resulting 

increase in the VD /VT ratio. (Pain et al., 1965, p. 200) 

 

Pain and Read were the first researchers to demonstrate the effect of oxygen 

administration on pulmonary blood flow in emphysema patients, and propose that this 

might have a significant influence on gas exchange. 

 

The fact that pulmonary artery pressures were sensitive to alveolar oxygen tensions, 

referred to as hypoxic pulmonary vasoconstriction (HPV), had been demonstrated as far 

back as 1946 (Von Euler & Liljestrand). In 1959 it was shown that giving vasodilator 

drugs to patients with chronic pulmonary disease induced hypoxaemia, presumably by 

the reversal of HPV and increased blood flow to poorly ventilated lung units (Halmagyi 

& Cotes). A 1961 study confirmed this finding by administering the potent intravenous 

vasodilator priscoline to 14 patients with chronic lung disease. Not only did blood oxygen 

content fall in 13 subjects, but eight subjects showed an increase in PaCO2 (Stern & 

Braun). The fact that oxygen administration could produce similar effects to those seen 

with vasodilator drugs was demonstrated in a 1962 study which demonstrated  that 
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inhalation of 100% oxygen for 10 minutes by 11 healthy volunteers resulted in an 

almost twofold increase in the arterial-alveolar CO2 gradient (Larson & Severinghaus). 

The authors noted that this was most likely due to oxygen increasing blood flow to less 

ventilated alveoli in the lung bases, thereby increasing alveolar dead space.  

 

The 1965 work by Pain et al was extended in 1967. This study involved 58 patients with 

stable COPD breathing air and then 100% oxygen for 10 to 15 minutes. Frequent 

measurements of minute ventilation were made, and VD/VT ratios were calculated (Lee & 

Read). Although changes in PaCO2 in response to oxygen were not reported, their 

findings correlated well with earlier studies. Two-thirds of the 58 patients showed a 

significant rise in VD/VT from baseline while breathing oxygen; however the increases 

had no relationship with minute ventilation. They concluded that the increases in 

physiological dead space resulted from oxygen induced changes in blood flow 

distribution, with perfusion redirected to lung units with lower ventilation.  

 

In 1973 a large study reported the responses of 151 patients with stable emphysema to 

100% oxygen for 20 minutes (Lopez-Majano & Dutton). It found that 35 of 151 patients 

had a rise in PaCO2 greater than 10 mmHg, and that the incidence and severity of 

hypercapnia was strongly linked to a lower baseline PaO2. The authors contrasted this 

with findings from earlier studies in which the degree of baseline hypercapnia or hypoxia 

did not closely relate to the degree of PaCO2 rise breathing oxygen (Brodovsky et al., 

1960; Miller et al., 1968; Penman, 1962; Swain, Park, & Williams, 1968). In their 

discussion the authors state that the PaCO2 changes they observed were due to decreases 
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in minute ventilation, despite not measuring it, and proposed that the variable 

responses to oxygen they observed may be due to patients having greater or lesser 

degrees of emphysema or chronic bronchitis. They made no reference to the alternative 

mechanisms proposed by Lee and Read in 1967. Their discussion highlights the fact that 

by the 1970s most researchers were still of the view that oxygen induced hypercapnia 

was due to the removal of the hypoxic drive to breathe (Mithoefer, Karetzky, & Mead, 

1967; Rudolf et al., 1977). 

 

In 1980 Michel Aubier and co-workers published two important studies on the 

pathophysiology of acute respiratory failure in COPD. The first study was designed to 

determine changes in respiratory drive, minute ventilation, tidal volume, and respiratory 

frequency in response to oxygen breathing (Aubier, Murciano, Fournier et al., 1980). As 

an estimate of neuromuscular respiratory drive they recorded inspiratory mouth occlusion 

pressures. This technique was first described in 1975 (Whitelaw, Derenne, & Milic-

Emili), and measures the pressure generated against a closed airway 100 milliseconds 

after the onset of inspiration during normal tidal breathing (P0.1). Aubier et al studied 20 

severe COPD patients during an episode of acute respiratory failure with a mean PaO2 of 

37.6 mmHg and a mean PaCO2 of 61 mmHg at baseline. After recording on room air, 

subjects breathed oxygen at a flow rate of 5L/min for 30 minutes. This resulted in a mean 

increase in PaCO2 of 10 mmHg, and a final level exceeding 80 mmHg in 13 patients. In 

terms of respiratory drive, P0.1 was significantly elevated while breathing room air with a 

mean of 8.3 cmH2O compared to 1.7 cmH2O in normal controls. Although P0.1 decreased 

by 40% with oxygen breathing, confirming previous findings in stable COPD patients 
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(Bradley, Fleetham, & Anthonisen, 1979; Sorli, Grassino, Lorange, & Milic-Emili, 

1978), the final value was still significantly higher than normal controls. This decrease in 

respiratory drive translated into a small decrease in minute ventilation of 14%, comprised 

of a reduced respiratory frequency but a preserved tidal volume. The authors noted that 

not only was the overall magnitude of change in minute ventilation insufficient to 

account for the observed rise in PaCO2, but when changes in minute ventilation for each 

subject were correlated with the changes in PaCO2 no relationship was found (Figure 3.6).  

 

Figure 3.6: Data showing no relationship between changes in minute ventilation and 

PaCO2 after oxygen at 5L/min for 30 minutes (Aubier, Murciano, Fournier et al., 

1980) 
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The authors’ interpretation of these findings was to agree with Lee and Read that 

oxygen induced rises in VD/VT must have made a significant contribution to hypercapnia. 

Although the observed decrease in the drive to breathe (as estimated by the P0.1) when 

oxygen was administered suggested that hypoxia was contributing, the P0.1 remained 

significantly elevated such that minute ventilation changes were only small. 

 

A second study by the same group later that year investigated this theory and extended 

their findings (Aubier, Murciano, Milic-Emili et al., 1980). This work investigated the 

time course of changes in ventilation and gas exchange in 22 patients with AECOPD 

breathing oxygen for 15 minutes, but used a higher concentration of 100%. As in the first 

study they measured the PaCO2 response to oxygen, as well as respiratory frequency, tidal 

volume and minute ventilation. However, rather than recording P0.1 they collected mixed 

expired CO2 and were thus able to calculate VD/VT ratios. The effects of 100% oxygen on 

arterial blood gases are shown in Table 3.2.  

 

Table 3.2: Mean (± SE) arterial blood gas data before and after 15 minutes of 100% 

oxygen (Aubier, Murciano, Milic-Emili et al., 1980) 

 

PaO2 

(mmHg) 

PaCO2 

(mmHg) 

pH 

Air 38 ± 2 65 ± 3 7.34 ± 0.01 

O2 225 ± 23 88 ± 5 7.25 ± 0.02 

Air versus O2 P < 0.001 P < 0.001 P < 0.001 
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During the first three minutes oxygen administration resulted in a transient decrease in 

minute ventilation in all patients, with a mean fall of 18 ± 2%. However, for the 

remainder of the study period minute ventilation slowly increased, and by the end of the 

study was 93 ± 6% of the baseline value. Data on ventilation, breathing patterns and dead 

space to tidal volume ratios are shown in Table 3.3. In keeping with the results from the 

first study, the magnitude of the changes in minute ventilation did not adequately explain 

the rise in PaCO2 observed. However a significant rise in VD/VT ratio was noted and the 

authors considered that this was likely to be the most important mechanism. They 

considered the possibility of the Haldane effect, but previous research had found this to 

be a minor contributor to the increases in PaCO2 (Lenfant, 1966).  

 

Table 3.3: Mean (± SE) minute ventilation and VD/VT before and after 15 minutes of 

100% oxygen (Aubier, Murciano, Milic-Emili et al., 1980) 

 
V 
•
 E 

(L/min) 

f 

(b/min) 

VT 

(ml) 

VD/VT 

Air 10.2 ± 20.5 32 ± 2 341 ± 26 77 ± 2 

O2 9.5 ± 0.07 31 ± 2 323 ± 21 82 ± 2 

Air versus O2 P < 0.01 NS NS P < 0.01 
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As noted in section 3.1, the multiple inert gas elimination technique developed by 

Wagner in 1974 was critical in advancing the understanding of gas exchange 

abnormalities in COPD and other pulmonary diseases. In conjunction with the work by 

Aubier and colleagues, a number of studies began to use MIGET to confirm that the 

administration of oxygen to COPD patients, even at concentrations as low as 26%, 

caused increased mismatching of perfusion to ventilation, particularly in under-ventilated 

lung units (Castaing, Manier, & Guenard, 1985; Wagner et al., 1974).  

 

The next paper to substantially address the issue of oxygen induced hypercapnia studied 

17 patients with moderately severe but stable COPD before and after 15 minutes of 100% 

oxygen (Sassoon, Hassell, & Mahutte, 1987). The authors of this study approached the 

question of potential mechanisms in two ways. First, they noted that individual patient 

responses to oxygen administration varied considerably. They proposed that if the 

hypoxic drive theory was solely responsible, then patients who demonstrated hyperoxic 

induced hypercapnia should have a blunted hypercapnic drive, but patients who did not 

should have a normal hypercapnic drive. Second, although previous studies had assumed 

that CO2 production (V 
•
 CO2) remained constant, they elected to measure it directly, along 

with respiratory drive and other ventilation variables, so an attempt could be made to 

estimate the proportional contributions of V 
•
 CO2, minute ventilation, VD/VT and P0.1 to 

the observed changes in PaCO2. Although the mean increase in PaCO2 of 4.4 mmHg in 

their subjects was smaller than that noted in previous studies, they confirmed the results 

of both studies by Aubier et al: a significant increase in the VD/VT ratio was the dominant 
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mechanism. Small and non-significant falls in both minute ventilation and V 
•
 CO2 were 

seen, which the authors noted may have canceled each other out in terms of the effect on 

PaCO2. Hypercapnic respiratory drive was measured in all patients and found to have no 

correlation to the likelihood of a PaCO2 increase or its magnitude; further evidence that 

hyperoxic hypercapnia was not due to impaired CO2 sensitivity.  

 

In 1991 a study based in an intensive care unit administered 100% oxygen to 13 intubated 

patients and analysed changes in VD/VT and the “CO2 recruitment threshold” (PCO2RT) 

(Dunn, Nelson, & Hubmayr). PCO2RT measures the response of a mechanically 

unloaded respiratory system to graduated increases in inspired CO2, and is a surrogate 

measurement of respiratory drive. Although the authors found a significant increase in 

VD/VT with oxygen, the PCO2RT also increased, which was interpreted as being 

consistent with a suppression of the hypoxic drive to breathe. However, there are a 

number of problems with their interpretation. First, all patients had been ventilator 

dependent for at least a week, and six had been ventilated for a month. The majority had 

had recent major surgical procedures, and significant co-morbidities were common 

including congestive heart failure, sepsis and renal failure. The patients were classified as 

having airflow obstruction based on ventilator-derived passive expiratory flow recordings 

rather than spirometry and clinical history. Finally, the measurement of PCO2RT as an 

estimate of the degree of hypoxic drive to breathe had not been validated in other groups 

of patients. 
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Another study based in an intensive care unit measured the ventilatory CO2 response 

using the re-breathing technique as an estimate of the CO2 drive to breathe (Tardif et al., 

1993). Patients were studied on the fifth day of admission with the ventilator set to 

maintain ABGs at a near normal range. During the experiment patients were 

disconnected from the ventilator and allowed to breathe 100% oxygen from a closed 

eight litre Douglas bag. In addition to the minute ventilation response to increasing 

inspired CO2, inspiratory occlusion pressures (P0.1) were measured as marker of 

neuromuscular respiratory drive. They compared 25 well defined and selected severe 

COPD patients with 26 controls and found that although the ventilatory response to 

increasing inspiratory CO2 was lower in COPD patients, the slope was sufficiently steep 

to indicate that CO2 drive still accounted for a significant proportion of their minute 

ventilation. Likewise, the occlusion pressure recordings indicated that the neural drive to 

breathe was well above normal.  

 

A 1997 study examined respiratory control during oxygen induced hypercapnia by 

comparing observed changes in minute ventilation, arterial oxygen saturation and PaCO2 

with the ventilation change predicted by the baseline ventilatory drive of each patient 

(Dick, Liu, Sassoon, Berry, & Mahutte). They measured both the hypercapnic and 

hypoxic respiratory drive in 11 stable hypoxic COPD patients and then administered 

100% oxygen for 15 minutes. The mean PaCO2 increased by 6.6 ± 3.3 mmHg after 

oxygen, but no significant change in minute ventilation occurred. They calculated that the 

predicted fall in minute ventilation due to the loss of hypoxic drive was balanced by the 

predicted increase due to the stimulatory affects of hypercapnia. They concluded that 
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there was no evidence of failure of respiratory control mechanisms in the maintenance 

of PaCO2 homeostasis. 

 

The most recent study of the respective roles of hypoventilation and V 
•
 /Q

 •
  mismatch in 

AECOPD investigated the response to oxygen of 22 COPD patients studied within 72 

hours of hospital admission (Robinson, Freiberg, Regnis, & Young, 2000). This study 

used MIGET to assess ventilation perfusion relationships and VD/VT, and documented 

minute ventilation at baseline and after oxygen. After breathing room air for at least 20 

minutes to ensure a steady state, 100% oxygen was administered for 20 minutes. For the 

purposes of analysis the subjects were divided into two groups: 10 “non-retainers” who 

showed no increase in PaCO2, and 12 “retainers” defined as subjects whose PaCO2 

increased by >3 mmHg from baseline.  

 

At baseline breathing room air the retainers were significantly more hypoxic (mean PaO2 

54.5 mmHg compared to 62.7 mmHg) and more hypercapnic (mean PaCO2 56.3 mmHg 

compared to 49.7 mmHg) than the non-retainers. The mean increase in PaCO2 in the 

retainer group was 8.8 ± 5.6 mmHg. All subjects demonstrated significant V 
•
 /Q

 •
  

inequality breathing room air and in both retainers and non-retainers it worsened 

significantly after 20 minutes of oxygen, with no difference between the groups. Detailed 

analysis of the V 
•
 /Q

 •
  distribution patterns indicated that the main change in both groups 

was an increase in blood flow to lung units with low V 
•
 /Q

 •
  ratios, consistent with the 

release of hypoxic pulmonary vasoconstriction. There was a small increase in the VD/VT 
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in the retainer group but not in the non-retainers. There was a significant decrease in 

minute ventilation in the retainer group (from 9.0 ± 2.0 L/min to 7.2 ± 1.6L/min) and not 

in the non-retainers; however comparison of the change in ventilation between the groups 

was non-significant. The authors interpreted their data as demonstrating that the major 

mechanism differentiating CO2 retainers from non-retainers was a fall in minute 

ventilation rather than increasing VD/VT, because oxygen induced changes in V 
•
 /Q

 •
  

mismatch occurred equally in both groups. 

 

Although this study seems to contradict earlier work, there are a number of 

methodological problems with respect to their data. First, their definition of CO2 retainers 

as patients with a PaCO2 increase of more than 3 mmHg seems arbitrary and perhaps 

lacks clinical significance as a means of discriminating the two groups. In fact, of the 12 

retainers, one third had rises in PaCO2 of only 3 to 4 mmHg. Secondly, although the 

retainer group was more hypoxic than the non-retainer group, neither group was 

particularly hypoxic in comparison with the data from Aubier et al (Table 3.2). Because 

HPV is not thought to be active until the PAO2 falls to 55-60 mmHg (Cutaia & Rounds, 

1990), it could be argued that there was little opportunity for reversal of HPV in the non-

retainer group whose mean baseline PaO2 was 62.7 mmHg.  

 

In summary it can be seen that there is considerable heterogeneity in the data from a 

number of COPD studies over several decades. This is likely to be due to variability in 

methodology, physiological endpoints and the severity and acuity of patients studied. 
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Despite this, the available evidence points towards a mechanism of oxygen induced 

carbon dioxide retention that is dominated largely by changes in pulmonary blood flow 

and VD/VT ratio, rather than suppression of the hypoxic drive to breathe. The 

popularisation of the concept of the hypoxic drive to breathe and its role in oxygen 

induced hypercapnia is frequently attributed to an influential and often cited article by 

Campbell (1967). In the paper he does refer to the hypoxic drive to breathe, but he also 

later states that changes in V 
•
 /Q

 •
  matching could also contribute to hypercapnia. For 

whatever reason, the latter theory has received less attention.  

3.2 Asthma 

This section outlines the pathophysiology of acute exacerbations of asthma and reviews 

the literature on the effects of oxygen treatment. The similarities between AECOPD and 

asthma exacerbations are described, emphasising the potential for a similar mechanism of 

CO2 retention to occur. 

3.2.1 Pathophysiology of acute severe asthma 

Asthma is generally defined as a disease of the airways in which inflammation of the 

bronchial mucosa leads to variable degrees of airway hyper-responsiveness and airflow 

limitation (Gustavo J. Rodrigo, Rodrigo, & Hall, 2004). The mechanism, severity and 

duration of inflammation varies from patient to patient, as does the degree of airflow 

obstruction, resulting in a number of different clinical phenotypes (Wenzel, 2006).  
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Like COPD, asthma is primarily a disease of the airways and thus can broadly be 

classified as an obstructive lung disease. However there are a number of important 

differences between the two conditions. First, asthma is typically intermittent and many 

patients demonstrate little in the way of symptoms or lung function abnormalities 

between exacerbations. In a minority of patients however, chronic poorly controlled 

bronchial inflammation can lead to airway remodeling, and in some, fixed airflow 

obstruction develops similar to that seen in COPD. Second, many COPD patients have 

disease of the pulmonary parenchyma in addition to the airways. This destruction of 

alveolar attachments and connective tissue (Figure 3.1) does not occur in asthma. Third, 

in advanced stages COPD results in more severe airflow obstruction than in asthma. 

Despite these differences, the changes in pulmonary physiology and gas exchange that 

occur during severe acute asthma and AECOPD are similar. 

 

Acute exacerbations of asthma (also referred to as asthma attacks or acute asthma) are 

characterised by a progressive deterioration in symptoms over hours or days, although a 

small number of patients have a rapid deterioration over the course of a few minutes 

(Gustavo J. Rodrigo & Rodrigo, 2000). The characteristic symptoms of cough, wheeze 

and shortness of breath result from an increase in bronchial inflammation, and airflow 

obstruction. There are a variety of triggers for the increased inflammatory response in the 

airways (Singh & Busse, 2006). The increase in airflow obstruction results from a 

combination of bronchial wall oedema, increased secretions and constriction of bronchial 

smooth muscle (McFadden, 2003). Fatal or near fatal exacerbations are characterised by 
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extensive plugging of the small airways with impacted mucus, epithelial cells and 

inflammatory cells (Dunnill, 1960; Hogg, 1987). 

 

If the airflow obstruction and expiratory flow limitation is not relieved by therapy with 

bronchodilator and anti-inflammatory drugs, a series of abnormalities in lung mechanics 

and gas exchange occurs, similar to that observed in AECOPD. The increase in airway 

resistance leads to a reduced expiratory flow rate, premature airway closure and 

progressive hyperinflation (McFadden, 2003). As with AECOPD, the perceived degree of 

breathlessness in patients with acute asthma is closely linked to hyperinflation with a 

direct correlation to changes in end-expiratory volumes, specifically an increasing FRC 

(Lougheed, Lam, Forkert, Webb, & O'Donnell, 1993). The extent of hyperinflation and 

gas-trapping in acute asthma can be significant, and in some individuals residual volume 

approaches 400% of normal and FRC can be twice predicted values (McFadden, Kiser, & 

DeGroot, 1973). Like AECOPD, these changes in lung volumes result in flattening of the 

diaphragm and progressive worsening of the length-tension relationship of respiratory 

muscles. 

 

3.2.2 Oxygen therapy in acute severe asthma 

As noted earlier in this chapter, case reports of COPD patients developing delirium, 

confusion and coma in response to high concentration oxygen therapy began to appear in 

the literature as early as the 1930s. By contrast, administration of uncontrolled oxygen to 

patients with acute asthma was felt to be relatively safe.  



 69

 

In 1951 the first report on oxygen induced hypercapnia in a patient with acute asthma 

was published in the New England Journal of Medicine (Beale, Schiller, Halperin, 

Franklin, & Lowell). It describes a 53 year old man with recent onset asthma who was 

admitted with acute dyspnoea and wheeze. Due to the presence of cyanosis he was given 

oxygen at 6L/min; however over the following hours he was noted to become 

increasingly drowsy and then unresponsive. An ABG showed that his PaCO2 had 

increased from 83 mmHg on room air to 142 mmHg breathing oxygen with a 

concomitant fall in pH from 7.22 to 7.11. When oxygen was withdrawn his mental state 

and hypercapnia improved. Although it is possible that the man had underlying 

emphysema in addition to asthma, as his smoking status is not mentioned, he eventually 

fully recovered from the episode and attained relatively normal lung function. Despite 

this case report appearing in a widely read international journal there was nothing else of 

note published on the issue of oxygen therapy in asthma for another decade. 

 

By the 1960s most investigators agreed that the hypoxia associated with acute asthma 

was predominantly the result of V 
•
 /Q

 •
  mismatch (Field, 1967; Rees, Borthwick, Millar, & 

Donald, 1967; Rees, Millar, & Donald, 1967). Moreover, a number of reports began to 

appear in which the administration of vasodilator agents, such as acetyl-choline and 

isoprenaline, worsened arterial oxygen saturation and increased V 
•
 /Q

 •
  mismatch (Irnell & 

Nordgren, 1966; Knudson & Constantine, 1967; Palmer & Diament, 1967; Tai & Read, 
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1967b). This was thought to be due to the vasodilator effect of the drugs increasing 

blood flow to lung units with low ventilation, thus reversing the compensatory effects of 

HPV. 

 

In 1967 the first study looking specifically at the effects of oxygen on V 
•
 /Q

 •
  relationships 

in asthma was published (Field). It involved 26 asthmatic hospital in-patients who were 

administered 100% oxygen for 20 minutes. Changes in minute ventilation, VD/VT and 

PaCO2 were measured. It found a statistically significant increase in PaCO2 of 3.0 mmHg 

which was associated with a small but statistically significant increase minute ventilation 

of 0.84L/min, but no change in tidal volume. The VD/VT increased significantly by 8.7%. 

The authors interpretation was that oxygen inhalation attenuated HPV and resulted in 

redistribution in pulmonary blood flow. The increase in blood flow to poorly ventilated 

lung units diverts blood away from well ventilated areas, resulting in a net increase in 

alveolar dead space and thus increased VD/VT.  

 

There are a number of methodological issues with Field’s study. First, although subjects 

had airflow obstruction at the time of the study, there was no record of smoking history, 

no requirement for a previous formal diagnosis of asthma, and the group included a 

number of elderly patients. Hence it is possible that COPD may not have been adequately 

excluded. Second, there was no control group, and the study incorporated a number of 

other elements, such as changes in posture from lying to sitting and the administration of 
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isoproterenol and atropine, which may have influenced the effects of oxygen on the 

physiological variables measured. 

 

The following year another small uncontrolled study of 12 in-patients with asthma used a 

similar methodology to assess the effects of 100% oxygen administered for 20 minutes 

(Valabhji, 1968). In this sample there was a similar rise in the VD/VT of 8.8%, but no 

significant change in PaCO2 was observed.  

 

In addition to physiological studies, 1967 saw the publication of the first large systematic 

case series of ABG abnormalities in 76 patients with acute asthma. The patients were 

divided into two groups; 12 with life threatening asthma and 64 with less severe asthma 

(Tai & Read, 1967a). Data for the 12 severe asthma patients are shown in Table 3.4. 

 

It can be seen that all seven of the subjects receiving high flow oxygen were hypercapnic 

compared with only one of  five receiving room air, although this may be related to 

disease severity as data on FEV1 were not provided for these patients. Five of the seven 

subjects receiving oxygen had a PaO2 greater than 80 mmHg, and three were significantly 

hyperoxic with a PaO2 of 150, 200, and 265mmHg respectively. Among the 64 patients 

with less severe asthma, significant abnormalities in ABG results were less common; 

only nine (14%) had a PaCO2 greater than 45 mmHg and only four (6%) had a PaO2 less 

than 60 mmHg.  
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Table 3.4: ABG results from 12 patients with life threatening asthma (Tai & 

Read, 1967a) 

Subject PaCO2 (mmHg) PaO2 (mmHg) pH 

1 200* 200 6.81 

2 138* 150 7.00 

3 79* 71 7.25 

4 74 39 7.31 

5 66* 59 7.29 

6 65* 265 7.24 

7 57* 88 7.27 

8 55* 88 7.24 

9 41 60 N/A 

10 40 59 7.32 

11 39 60 7.38 

12 34 62 N/A 

 

* Subjects receiving high concentration oxygen at the time of ABG 

 

 

The alveolar gas equation describes the relationship between alveolar oxygen and arterial 

carbon dioxide. In its simplified form, for a patient breathing room air at sea level with a 

respiratory quotient of 0.8, it is represented as: 
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PAO2  = 147 – (PaCO2 / 0.8) 

 

It follows from this equation that the highest PaCO2 possible while breathing room air is 

around 80 mmHg. Levels above this would result in alveolar and arterial oxygen tensions 

that are theoretically incompatible with life. Therefore a PaCO2 higher than 80 mmHg, as 

in the Tai study and other case series of acute severe asthma (Molfino, Nannini, Martelli, 

& Slutsky, 1991; Mountain & Sahn, 1988; Wasserfallen, Schaller, Feihl, & Perret, 1990), 

must be partly attributable to the administration of oxygen. In these reports the degree of 

hypercapnia in some patients with life-threatening asthma is often noted, but is usually 

ascribed to the severity of airflow obstruction. Little mention is made of the potential 

contribution of the high concentration oxygen the patients are almost invariably receiving 

at the time. 

 

The following year a large study presented ABG and FEV1 data for a group of 101 acute 

asthmatics (McFadden & Lyons, 1968). In this series all ABG samples were taken on 

room air and the most common gas exchange abnormality was mild to moderate 

hypoxaemia associated with hypocapnia. Hypercapnia occurred in 11 subjects and was 

associated with increasing airflow obstruction, with the majority of hypercapnic patients 

having an FEV1 less than 15% predicted. 

 

Rees, Millar and Donald (1968) studied 25 episodes of acute severe asthma, but unlike 

previous work they took ABG samples on room air, and again after delivering controlled 
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oxygen therapy at concentrations of 28 to 35% to assess the response. Moderate to 

severe hypoxaemia was present at baseline with a mean PaO2 of 53 mmHg, and the 

administration of low concentration oxygen increased this to a mean of 73mmHg without 

any significant rise in PaCO2. This study was the first to demonstrate that low 

concentration oxygen therapy was usually sufficient to relieve hypoxaemia in the 

majority of patients with acute severe asthma. 

 

A case series of ABG abnormalities in acute childhood asthma reported baseline data on 

24 exacerbations in 21 children aged between two and 12 years, and described the 

response to the administration of oxygen at a flow rate of 4 – 10L/min for three hours (H. 

Simpson, Forfar, & Grubb, 1968). On admission, hypoxaemia was common with a PaO2 

less than 75 mmHg in all cases and less than 50 mmHg in four. Hypercapnia, defined as 

PaCO2 greater than 50 mmHg, was present at baseline in eight cases. In response to 

oxygen therapy, respiratory failure worsened in seven of these eight cases (Figure 3.7). 
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Figure 3.7: Change in gas exchange after three hours of oxygen administration in 

eight presentations of acute severe childhood asthma (H. Simpson et al., 1968). 

 

 

In 1976 an editorial in the British Medical Journal directly addressed the question of 

appropriate oxygen therapy in acute severe asthma ("Editorial: Oxygen in bronchial 

asthma," 1976). With reference to the report by Shiller in 1951, and the pediatric series 

from Simpson et al in 1968, it emphasized the risks of oxygen induced hypercapnia and 

gave the following opinion, in contradiction to current practice at the time: 
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It seems prudent, then, in the severe asthmatic first to give controlled 

oxygen therapy (24% through a Venturi-type mask). If this 

fails to maintain an arterial oxygen saturation of 80-90%, 

then 28% or even35% oxygen should be given. The effect 

of oxygen in the individual asthmatic can be judged 

properly only by careful clinical assessment and frequent 

measurements of arterial blood gas tensions. ("Editorial: 

Oxygen in bronchial asthma," 1976, p. 609) 

 

Another case series on oxygen therapy in acute asthma aimed to document the baseline 

status of 14 consecutive patients before any oxygen was delivered, and then the response 

to a relatively low flow oxygen regime (Rudolf, Riordan, Grant, Maberly, & Saunders, 

1980). Moderate to severe hypoxaemia was present on arrival with a PaO2 range of 43 – 

71 mmHg and a mean of 56 mmHg.  Hypercapnia (defined as PaCO2 > 45 mmHg) was 

present in five of the 14 subjects. After one hour of oxygen at 4L/min, all patients had 

relief of hypoxia with a minimum PaO2 of 74 mmHg. Of the five hypercapnic patients, 

only two still had elevated PaCO2 after one hour, and in both cases it returned to normal 

with a decrease in oxygen concentration to 24%. 

 

In the 1980s the use of MIGET enabled investigators to further clarify the ventilation 

perfusion relationships in asthma and the response to oxygen. Corte and Young 

demonstrated a significant worsening of V 
•
 /Q

 •
  mismatch in 10 subjects with chronic 

asthma (FEV1 < 60% predicted) after breathing 100% oxygen for 20 minutes (1985). 

There was a spectrum of baseline V 
•
 /Q

 •
 abnormalities ranging from mild changes in six 

subjects to moderately severe in four. Although all subjects had airflow obstruction, there 

was poor correlation between FEV1 and V 
•
 /Q

 •
 mismatch. The six subjects with only 
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mildly abnormal V 
•
 /Q

 •
 changes showed the largest increase in mismatch in response to 

oxygen. Changes were also seen in the remaining four, but were of a smaller magnitude. 

The V 
•
 /Q

 •
 distributions before and after 100% oxygen for two representative subjects are 

shown in Figure 3.8.  

 

Figure 3.8: V 
•
 /Q

 •
 distributions before and after 100% oxygen in two subjects with 

mild (top) and severe (bottom) baseline V 
•
 /Q

 •
  abnormalities (Corte & Young, 1985). 
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The authors considered that the wide variation in V 
•
 /Q

 •
 ratios at baseline reflected 

different degrees of HPV, and that those with less V 
•
 /Q

 •
 mismatch had compensated for 

areas of poor ventilation more completely. Previous work in normal subjects has 

demonstrated that there is significant inter-individual variability in the response of local 

HPV to alveolar hypoxia (Fowler & Read, 1963). Consequently, if the subjects with mild 

V 
•
 /Q

 •
  abnormalities at baseline had more active HPV as a compensatory mechanism, then 

the change seen in response to 100% oxygen might be expected to be larger. 

 

Later studies using MIGET confirmed Corte and Young’s findings that the dominant 

mechanism for hypoxaemia is V 
•
 /Q

 •
  mismatch, with little contribution from either shunt 

or alveolar-capillary diffusion limitation (Ballester et al., 1989; Ferrer, Roca, Wagner, 

Lopez, & Rodriguez-Roisin, 1993; Roca et al., 1988; Rodriguez-Roisin, Ballester, Roca, 

Torres, & Wagner, 1989). Moreover, as with AECOPD, V 
•
 /Q

 •
  mismatch substantially 

worsened when patients were administered 100% oxygen in both acute severe asthma 

(Ballester et al., 1989; Rodriguez-Roisin, Ballester, Roca, Torres, & Wagner, 1989) and 

chronic severe asthma (Ballester, Roca, Ramis, Wagner, & Rodriguez-Roisin, 1990) as a 

consequence of a reduction in HPV.  

 

An uncontrolled prospective interventional study of oxygen treatment in acute asthma 

assessed the effect of fixed dose low concentration oxygen via a 35% Venturi mask 

during pre-hospital treatment (Ford & Rothwell, 1989). The 45 episodes of acute asthma 
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were associated with significant airflow obstruction with a mean Peak Expiratory Flow 

Rate (PEFR) of 28% predicted. An arterial blood gas (ABG) was taken a mean of 20 

minutes following the commencement of oxygen, and found that all patients had 

adequate relief of hypoxaemia with a PaO2 range of 66 to 160 mmHg. One quarter of 

patients had a PaCO2 greater than 45 mmHg with an upper range of 58mmHg. 

Unfortunately there was no control group in this study, baseline ABG results breathing 

room air were not available and the subjects were not  followed longitudinally in a 

systematic way following the first ABG. However, it provided further evidence of the 

ability of relatively low concentrations of oxygen to relieve the hypoxaemia in most 

patients with acute severe asthma. 

 

A similar prospective interventional trial studied 37 subjects presenting with severe 

asthma and a mean FEV1 of 49% predicted (Chien et al., 2000). A baseline ABG was 

taken on room air and repeated after 20 minutes of 100% oxygen, with no other asthma 

treatment administered during the study period. As expected, mean PaO2 increased 

substantially from 70.2 mmHg to 303.5 mmHg. The PaCO2 remained stable in five 

subjects, fell in seven and increased in 25. There was a small but statistically significant 

increase in mean PaCO2 of 2.3 mmHg. Of the 25 subjects who had an increase in PaCO2, 

hypercapnia developed in seven subjects who had previously normal CO2, and worsened 

in six patients who had hypercapnia at baseline (Figure 3.9). 
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Figure 3.9: Changes in gas exchange before and during 100% oxygen therapy in 

asthmatics with hypercapnia at baseline (Chien et al., 2000). 

 

The authors considered that the changes were likely due to oxygen therapy, given that 

they occurred without any significant change in respiratory rate or FEV1. However, a 

major weakness of the study was the lack of a control group, and the fact that no other 

asthma medications were given concurrently with oxygen. 
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The first, and currently only, randomised controlled trial of oxygen therapy in acute 

severe asthma was published in 2003 (G. J. Rodrigo et al.). In this study subjects were 

randomised to receive either 28% or 100% oxygen for 20 minutes, and as with the study 

by Chien et al, other asthma treatments were withheld for the duration of the study. The 

74 patients had severe airflow obstruction (mean PEFR 41%), moderate hypoxaemia 

(mean PaO2 77.8 mmHg) and hypocapnia (mean PaCO2 36.4 mmHg) at baseline. There 

was a statistically significant increase in mean PaCO2 of 2.7 mmHg in the 100% oxygen 

group compared to the 28% group. The authors considered a PaCO2 increase of more than 

2 mmHg to be greater than that expected by the Haldane effect and therefore 

physiologically significant. In the 100% oxygen group, 16/38 (42%) subjects had an 

increase in PaCO2 > 2 mmHg, averaging 5 mmHg (range 2.4 to 14.3 mmHg) compared to 

only 6/36 (16%) of subjects in the 28% oxygen group. Figure 3.10 shows the relationship 

between PaCO2 before and after 20 minutes of oxygen in the two groups. Patients 

receiving 100% oxygen had a tendency to increase their PaCO2 in contrast to the 28% 

group where it tended to fall. PaCO2 had a significant inverse relationship to PEFR in the 

100% group but not in the 28% group (Figure 3.11). 
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Figure 3.10: PaCO2 before and after 20 minutes of oxygen therapy in the 28% and 

100% oxygen groups (G. J. Rodrigo et al., 2003). 

 

 

 

Figure 3.11: Relationship between initial PEFR and PaCO2 in the 100% group (G. J. 

Rodrigo et al., 2003) 

 

28% O2 100% O2 
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Although this study has the strength of a randomised controlled design, as with the 

study by Chien et al there are a number of methodological issues. First, although 100% 

oxygen via a non-rebreather mask is occasionally administered to asthmatics, the 

commonest delivery device is a medium concentration mask with flow rates of 6-8 

L/minute, similar to that used for the delivery of nebulised bronchodilators. Second, the 

duration of oxygen delivery was shorter than in general clinical practice, and no other 

asthma medications were administered during the study. Finally, two subjects were 

excluded after randomisation and enrollment, due to being unable to maintain oxygen 

saturations above 90%. It is likely that these patients had severe airflow obstruction and 

therefore may have had a higher risk of an increase in PaCO2 during the period of oxygen 

treatment.  

 

In summary, although the studies by Chien et al and Rodrigo et al provide the best 

available evidence to date on the effect of high concentration oxygen in acute severe 

asthma, their methodological weaknesses and poor generalisability to routine clinical 

practice limit their interpretation. 

3.3 Pneumonia 

Community-acquired pneumonia is a common respiratory condition associated with 

significant morbidity and mortality ("BTS Guidelines for the Management of Community 

Acquired Pneumonia in Adults," 2001). It is caused by the accumulation of inflammatory 

cells and exudate in alveolar spaces, giving rise to consolidation (Wunderink & Waterer, 
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2004). In terms of the pathophysiology of gas exchange, pulmonary infection can 

result in both V/Q mismatch or shunt, depending on the degree of ventilation to the lung 

units affected by consolidation (Light, 1999). 

 

As outlined in Chapter 2, the early history of oxygen administration saw a great deal of 

interest in its use for the treatment of cyanosis and hypoxaemia associated with severe 

pneumonia. Unfortunately, in the 100 years since it was first used there have been no 

randomised controlled trials on oxygen therapy in pneumonia. Despite this, routine use of 

oxygen is recommended in international guidelines ("BTS Guidelines for the 

Management of Community Acquired Pneumonia in Adults," 2001). Although there is a 

paucity of clinical research on the effects of oxygen treatment in acute pneumonia, 

physiological studies have demonstrated the gas exchange abnormalities that exist in 

moderate and severe pneumonia, as well as changes that occur when oxygen is 

administered.  

 

Early work on the gas exchange abnormalities during experimental pneumonia in 

anaesthetised dogs found significant abnormalities including both V/Q mismatch and 

shunt (Wagner, Laravuso, Goldzimmer, Naumann, & West, 1975), findings that were 

later advanced with studies using MIGET. These found that while shunt was a common 

finding in mechanically ventilated patients with pneumonia, in spontaneously breathing 

subjects, V/Q mismatch was the dominant cause of hypoxaemia (Gea et al., 1991; 

Lampron et al., 1985; Walmrath et al., 1995). A typical V/Q dispersion graph from a 

patient mechanically ventilated with life threatening pneumonia is shown in Figure 3.10. 
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Note the presence of a significant shunt fraction and the bimodal perfusion pattern 

indicating increased blood flow to regions with low V/Q ratio. In general, increasing 

pneumonia severity results in worsening of both the shunt fraction and the degree of V/Q 

mismatch (Gea et al., 1991). 

 

Figure 3.12: V/Q distribution of a mechanically ventilated pneumonia patient (Gea 

et al., 1991). 

 

 

Among mechanically ventilated patients, the administration of 100% oxygen does not 

significantly increase the degree of shunt. However, V/Q mismatch is markedly worsened 

by oxygen administration in both ventilated and spontaneously breathing patients, 
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suggesting the release of hypoxic pulmonary vasoconstriction (Lampron et al., 1985; 

Lemaire, Matamis, Lampron, Teisseire, & Harf, 1985).  

 

These studies show that the pathophysiology of gas exchange in pneumonia is similar 

acute asthma and AECOPD, in that all patients demonstrate a significant degree of V/Q 

mismatch. Moreover, the administration of oxygen worsens V/Q dispersion in 

pneumonia. Consequently there is the potential for a significant increase in VD/VT and 

thus oxygen induced hypercapnia, although no studies to date have assessed the effect of 

oxygen on PaCO2 in acute pneumonia. 

3.4 Summary 

The aim of this chapter was to outline the pathophysiology of AECOPD, acute severe 

asthma and pneumonia, and to draw parallels between the mechanisms of abnormal gas 

exchange in the three conditions. Previous studies in acute asthma and pneumonia 

suggest that high concentration oxygen can worsen gas exchange, and that the most likely 

mechanism, as with AECOPD, is the reversal of HPV and in increase in VD/VT. This 

provides a physiological basis for a potential risk of carbon dioxide retention in 

respiratory conditions other than AECOPD. In addition there is preliminary evidence 

from a small number of clinical studies that high concentration oxygen may cause 

significant hypercapnia in acute asthma. 
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Previous studies on the physiological response to oxygen in asthma and pneumonia 

have been limited by small size, poorly defined enrollment and selection criteria, and the 

lack of control groups. In addition they have often included interventions other than 

oxygen, such as the administration of vasodilator or bronchodilator drugs. Some have 

measured the change in V 
•
 /Q

 •
  mismatch or the change in PaCO2 but not both 

simultaneously. Finally, few studies have recorded minute ventilation in conjunction with 

V 
•
 /Q

 •
  data, to assess its contribution as an alternative mechanism of carbon dioxide 

retention. Importantly, there is no clinical data from large randomised controlled trials in 

either asthma or pneumonia which adequately assesses the effect of uncontrolled high 

concentration oxygen on PaCO2 in a routine clinical setting. 

 

To address these questions, chapters 4 and 5 outline the methodology of two randomised 

controlled trials on the effect of high concentration oxygen therapy in patients with acute 

asthma and pneumonia. Chapter 6 describes a physiological study, with both positive and 

negative control groups, to assess the response of PaCO2, VD/VT and minute ventilation to 

100% oxygen in chronic severe asthma.  
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Chapter 4: A randomised controlled trial of high 

concentration versus titrated oxygen in acute asthma-

methods 

4.1 Outline of the study 

As discussed in chapter 3, there is currently little evidence to guide the appropriate use of 

oxygen in acute severe exacerbations of asthma. The studies that have been conducted are 

limited by the lack of a control group (Chien et al., 2000), a short duration of oxygen 

therapy (Chien et al., 2000; G. J. Rodrigo et al., 2003), and the exclusion of some patients 

with more severe disease (G. J. Rodrigo et al., 2003). In addition, no concurrent asthma 

therapy was given during the time of oxygen administration, making them less applicable 

to routine clinical practice.  

 

This study protocol was designed to extend earlier work and provide evidence on which 

to base rational guidelines for oxygen therapy in acute asthma by comparing continuous 

high concentration administration with titrated oxygen flow. 

 

The study was designed as an open, randomised, controlled, parallel group trial. It was 

not possible to blind the participants or the investigators due to the requirement for 

patients in the titrated oxygen group to change delivery devices according to the flow of 

oxygen required (see the titration protocol below). Although blinding is desirable when 
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possible, it is less important in studies such as this which assess objective 

physiological endpoints. 

 

Compared to earlier studies, there are design differences in this study which aim to more 

closely replicate clinical practice in the emergency department. These are: 

 

1. The duration of oxygen administration was increased from 20 to 60 minutes 

2. Standard therapy for acute asthma, including bronchodilators and corticosteroids, 

was given concurrently with oxygen  

3. The oxygen flow rate was set at 8 L/min via a medium concentration mask in the 

high concentration group, rather than attempting to deliver 100% oxygen. 8 L/min 

is the flow rate recommended to drive nebulised medications ("Current best 

practice for nebuliser treatment, British Thoracic Society," 1997). 

 

4.2 Study objective and hypothesis 

The objective of the study was to investigate the effects of high concentration oxygen on 

PaCO2 in patients with acute severe asthma in the emergency department. The hypothesis 

was that administration of high flow oxygen in acute severe asthma may result in worse 

outcomes when compared to titrated oxygen, as defined by an increase in PaCO2.  
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4.3 Study participants 

Subjects were recruited between July 2007 and September 2009. The study was 

conducted in the emergency departments of three metropolitan hospitals in Wellington, 

New Zealand: Wellington Hospital (tertiary public, catchment 250,000), Hutt Hospital 

(secondary public, catchment 140,000) and Kenepuru Hospital (secondary public, 

catchment 100,000).  

 

Patients arriving at the emergency department either by ambulance or self presentation 

were approached by the investigator to assess potential eligibility. Patients aged between 

18 and 65 years were eligible for inclusion if they met the following criteria: 

 

• A previous doctor diagnosis of asthma 

• A history consistent with a current acute exacerbation of asthma 

• An FEV1 ≤ 50% predicted at the time of first assessment by the investigator. 

 

Patients were excluded if they met any of the following criteria: 

 

• A history of COPD 

• A history of more than 20 pack years of tobacco smoking 

• Patient unconscious, unable to speak or unable to perform spirometry  

• Requirement for mechanical ventilation 
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• Presence of other risk factors for hypercapnic respiratory failure: Significant 

neuromuscular disease, severe chest wall restriction, or morbid obesity. 

4.4 Randomisation 

A computer generated randomised allocation schedule was provided by a biostatistician. 

To ensure allocation concealment, the schedule was imbedded into a specially designed 

enrolment database (Microsoft Access) by a third party. This was done without the 

involvement of the clinical investigators responsible for enrolment and was therefore 

concealed from them. This database was then accessed by a secure password. Once an 

eligible patient had provided written informed consent the investigator entered their 

details into the database. A field then appeared prompting the entry of the next available 

subject number. After clicking a button marked “randomise” the database would then 

reveal the allocation for that patient (either “high flow” or “titrated”) based on the 

imbedded randomisation schedule.  

4.5 Interventions 

Subjects who met the enrolment criteria and gave written informed consent were 

randomly assigned to one of two oxygen regimes for a total of 60 minutes: 
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4. Oxygen delivered at 8 litres per minute via a medium concentration mask 

(Hudson RCI, Durham NC, USA) 

 

5. Oxygen delivered at a flow rate titrated to achieve transcutaneous oxygen 

saturations between 93 and 95%.  

 

The oxygen adjustment protocol for patients in the titrated oxygen group is shown in 

Table 4.1. Oxygen flow rates up to 4L/min were delivered via nasal prongs (Hudson RCI, 

Durham NC, USA). Flow rates higher then 4L/min were delivered by medium 

concentration mask. 

 

Table 4.1: Oxygen titration protocol 

Oxygen Saturation Flow Adjustment L/min Next Saturation Check 

> 98% Reduce by 2 L/min In 5 minutes 

96% - 98% Reduce by 1L/min In 5 minutes 

93% - 95% No change In 5 minutes 

91% - 92% Increase by 1L/min In 5 minutes 

89% - 90% Increase by 2L/min In 5 minutes 

< 88% Increase by 4L/min In 5 minutes 

 

In both groups, if an oxygen flow rate of 8L/min was insufficient to maintain the oxygen 

saturation above 90% the patient was withdrawn from the study.  
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4.6 Clinical measurements 

4.6.1 Transcutaneous partial pressure of carbon dioxide (PtCO2) 

The transcutaneous measurement of PaCO2 functions on the principle that carbon dioxide 

diffuses extremely well through tissues. A probe is attached to the earlobe and warms to 

42°C which dilates and “arterialises” the underlying capillaries. The CO2 diffusing 

through the skin changes the pH of an electrolyte membrane in the probe and the 

resulting signal is converted to an estimate of the PaCO2. The device used in this study 

(TOSCA 500; Linde Medical Sensors AG, Basel, Switzerland) has a Stow-Severinghaus 

electrode. The probe membrane was replaced every 14 days as per manufacturer 

guidelines.  The device automatically calibrates every four hours using an internal 

canister containing 7% carbon dioxide. 

4.6.2 Heart rate and oxygen saturation 

The TOSCA 500 incorporates both pulse oximetry and PtCO2 measurement in the same 

probe, so the monitor was used to record heart rate and oxygen saturation. 
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4.6.3 Spirometry 

All spirometry was performed using a handheld spirometer (Micro Spirometer, Micro 

Medical Ltd, Rochester, U.K.) which was regularly calibrated, and standard reference 

tables for predicted values were used.  

 

4.7 Study protocol 

Potential participants were screened by the investigator with baseline spirometry. If the 

FEV1 was less than or equal to 50% predicted and the inclusion/exclusion criteria were 

met, the patient was asked to provide written informed consent and then randomised. The 

patient’s earlobe was cleaned with an alcohol swab and allowed to dry.  The PtCO2 probe 

was attached using the provided attachment clips and contact gel.  If the oxygen 

saturations were less than 92%, oxygen was given to achieve a saturation of 93-95% 

(Table 4.1). A minimum of 10 minutes was allowed for arterialisation to occur and PtCO2 

readings to stabilise, at which point (Time = 0) baseline data were recorded and the 

oxygen protocol started.  The FEV1, PtCO2, respiratory rate, heart rate and oxygen 

saturations were recorded at baseline and then at 20 minute intervals for the duration of 

the study. The timing of the study procedures is summarised in Table 4.2. 
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Table 4.2: Summary of asthma study procedures 

Procedure T = - 10 T = 0 T = 20 T = 40 T = 60 

Consent X     

Randomise X     

Attach ear probe X     

Spirometry X  X X X 

Start oxygen regime  X    

PtCO2  X X X X 

Heart rate  X X X X 

Respiratory Rate  X X X X 

Pulse oximetry X X X X X 

 

4.8 Asthma treatment protocol 

All patients received salbutamol 2.5mg and ipratropium bromide 0.5mg via air driven 

nebuliser (Portaneb, Respironics, Murrysville PA, USA) on arrival. Patients with severe 

asthma (FEV1 30 to 50% predicted) received salbutamol 2.5mg via a nebuliser every 20 

minutes and prednisone 40mg orally. Those with very severe asthma (FEV1 < 30% 

predicted) received salbutamol 2.5mg via nebuliser every 15 minutes, hydrocortisone 

200mg intravenously and magnesium sulphate 2g in 100ml normal saline intravenously 

over 20 minutes. Additional doses of salbutamol were given if the investigator felt they 
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were warranted for reasons of clinical severity. The need for ABG testing and chest 

radiology was at the discretion of the investigator. Patients randomised to the titrated 

oxygen group had all nebulised medications administered via an air driven nebuliser 

while continuing with titrated oxygen via nasal prongs if required. Patients in the high 

flow oxygen group had all nebulised medications driven by 8L/min of oxygen. 

4.9 Outcome measures and statistical analysis 

The primary outcome variable was the proportion of patients with a PtCO2 rise of ≥4 

mmHg.  Secondary outcome variables included the proportion of patients with a PtCO2 

rise of ≥8 mmHg, the proportion with both a rise in PtCO2 ≥4 mmHg and a PtCO2 ≥38 

mmHg at 60 minutes, and the mean change from baseline PtCO2.  The rate of change of 

PtCO2 was determined using a mixed linear model with random intercept and slope 

terms. Continuous outcome variables were analysed as change from baseline using 

independent sample t-tests. Variables for which normality assumptions were not met 

were analysed by a Mann-Whitney test.  Analysis was by intention to treat.  SAS version 

9.1 and Minitab version 14 were used. 

4.10 Sample size 

Using data from a previous study (G. J. Rodrigo et al., 2003), 75 participants were 

required in each group to detect a difference in the main outcome variable (the proportion 
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of patients with a rise in PtCO2 of ≥ 4 mmHg) of 20% in the high concentration 

oxygen group and 5% in the titrated group with power of 80% and a type 1 error rate of 

5%. 

4.11 Ethical approval and trial registration 

The main ethical issue that arose during the planning phase of the study was the 

acknowledgement that the protocol would involve approaching patients in the emergency 

department with an acute medical illness, some of whom would be distressed and/or 

significantly breathless.  

 

Clinical research is governed by the ethical and quality standards of Good Clinical 

Practice (GCP), which are in turn based on the Declaration of Helsinki (Williams, 2008). 

One of the clear obligations of the researcher is to provide comprehensive information 

about the clinical study to all potential participants. However, previous research has 

demonstrated that patients enrolled into clinical trials of acute medical interventions have 

limited capacity to retain and remember important aspects of the study at a later date 

(Chenaud, Merlani, Luyasu, & Ricou, 2006; Gammelgaard, Mortensen, & Rossel, 2004). 

Despite this, there is an ethical imperative to study patients with acute medical illness so 

that future therapies can be improved or made safer.  

 

For the studies in this thesis the full information sheet submitted to the ethics committee 

for approval was four  pages long, and the full consent form (to be signed after reading 
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the information sheet) was two pages long with 16 individual statements to tick (See 

appendices). The disclosure of this much information is appropriate and desirable when 

subjects are considering enrolment into a study on an outpatient or ambulatory basis. 

However, in this case it was felt to potentially be a barrier not only to participation in the 

study, but also to the prompt institution of appropriate medical treatment. 

 

I met personally with the Central Regional Ethics Committee to discuss possible 

solutions. My proposal was to prepare a separate single page document with a short 

statement describing the key features of the study, including the fact that participation 

was voluntary and the subject could withdraw at any time, followed by a space for 

written consent (see appendices). The intention was that this “short information and 

consent form” would be supplemented by a clear verbal explanation and the offer to 

answer any questions. The ethics committee agreed that this was a reasonable approach to 

take on the basis that the study was conceptually easy to describe and involved no 

invasive monitoring. We also agreed that there would be a requirement for the patient to 

read the full information sheet and sign the full consent form at an appropriate time 

during the study, and that they could withdraw their consent at that point if they wished.  

 

The study was approved by the Central Regional Ethics Committee, Wellington, New 

Zealand (CEN 06/11/101) on 18
th

 January 2007 and prospectively registered on the 

Australian New Zealand Clinical Trials Registry (ACTRN 12607000131459). The study 

was approved by Capital and Coast District Health Board and Hutt Valley District Health 

Board. 
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4.12 Study organisation 

All investigators involved in the study were qualified medical practitioners with at least 

three years post-graduate clinical experience. I was responsible for the training and 

supervision of all participating research staff. Staff levels permitting, an investigator was 

usually onsite and available to recruit patients at the emergency departments of the 

participating hospitals from 0800 to 2200 Monday to Friday. 

4.13 Data management 

Each patient’s results were recorded on a study worksheet which was stored in a secure 

locked location near the emergency department. Collected data sheets were then 

transferred to the offices of the Medical Research Institute of New Zealand for data entry 

and secure storage. The data was entered into the study database (Microsoft Access) and 

stored on a secure server. 
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Chapter 5: A randomised controlled trial of high 

concentration versus titrated oxygen in pneumonia-methods 

5.1 Outline of the study 

Although international guidelines recommend the use of supplementary oxygen in 

pneumonia ("BTS Guidelines for the Management of Community Acquired Pneumonia 

in Adults," 2001), there have been no randomised controlled trials investigating the role 

of oxygen therapy in this condition. As with acute asthma, uncontrolled oxygen use is 

considered by most clinicians to be safe and without risk. However, as outlined in 

Chapter 3, there are a number of potential complications of high flow oxygen therapy in 

acute pneumonia. The presence of significant ventilation perfusion mismatch in most 

patients indicates that the same mechanisms of carbon dioxide retention that occur in 

acute COPD and asthma could occur also in pneumonia (Gea et al., 1991; Lampron et al., 

1985; Lemaire et al., 1985). 

5.2 Study objective and hypothesis 

The objective of the study was to investigate the effects of high concentration oxygen on 

PaCO2 in patients with suspected community acquired pneumonia in the emergency 

department. The hypothesis was that administration of high flow oxygen in acute 
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community acquired pneumonia may result in worse outcomes, when compared to 

titrated oxygen, as defined by an increase in PaCO2. 

5.3 Study participants 

Subjects were recruited between July 2007 and April 2009. The study was conducted in 

the emergency departments of three metropolitan hospitals in Wellington, New Zealand: 

Wellington Hospital (tertiary public, catchment 250,000), Hutt Hospital (secondary 

public, catchment 140,000) and Kenepuru Hospital (secondary public, catchment 

100,000).  

 

Patients arriving at the emergency department either by ambulance or self presentation 

were approached by the investigator to assess potential eligibility. Patients aged between 

18 and 75 years were eligible for inclusion if they reported the recent onset of all the 

following symptoms 

1. Cough 

2. At least one systemic feature: sweating, rigors or fever > 37.8° 

3. Dyspnoea (respiratory rate > 18 breaths per minute). 

 

Patients were excluded if they met any of the following criteria: 

• History of chronic obstructive pulmonary disease 

• History of greater than 20 pack years of tobacco smoking 
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• Requirement for mechanical ventilation 

• Presence of other risk factors for hypercapnic respiratory failure: Significant 

neuromuscular disease, severe chest wall restriction, or morbid obesity 

• Suspected neutropenic sepsis. 

5.4 Randomisation 

A computer generated randomised allocation schedule was provided by a biostatistician. 

To ensure allocation concealment, the schedule was imbedded into a specially designed 

enrolment database (Microsoft Access) by a third party. This was done without the 

involvement of the clinical investigator responsible for enrolment and was therefore 

concealed from them. This database was then accessed by a secure password. Once an 

eligible patient had provided written informed consent the investigator entered their 

details into the database. A field then appeared prompting them to enter the next available 

subject number. After clicking a button marked “randomise” the database would then 

reveal the allocation for that patient (either “high flow” or “titrated”) based on the 

imbedded randomisation schedule.  

5.5 Interventions 

Subjects who met the enrolment criteria and gave written informed consent were 

randomly assigned to one of two oxygen regimes for a total of 60 minutes: 
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1. Oxygen delivered at 8 L/min via a medium concentration mask (Hudson RCI, 

Durham NC, USA)  

 

2. Oxygen delivered at a flow rate titrated to achieve transcutaneous oxygen 

saturations between 93 and 95 percent.  

 

The oxygen adjustment protocol for patients in the titrated group is shown in Table 5.1. 

Oxygen flow rates up to 4L/min were delivered via nasal prongs (Hudson RCI, Durham 

NC, USA). Flow rates higher then 4L/min were delivered by medium concentration 

mask. 

 

Table 5.1: Oxygen titration protocol 

Oxygen Saturation Flow Adjustment L/min Next Saturation Check 

> 98% Reduce by 2 L/min In 5 minutes 

96% - 98% Reduce by 1L/min In 5 minutes 

93% - 95% No change In 5 minutes 

91% - 92% Increase by 1L/min In 5 minutes 

89% - 90% Increase by 2L/min In 5 minutes 

< 88% Increase by 4L/min In 5 minutes 
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In both groups, if an oxygen flow rate of 8L/min was insufficient to maintain the 

oxygen saturation above 90% the patient was withdrawn from the study.  

5.6 Clinical measurements 

5.6.1 Transcutaneous partial pressure of carbon dioxide (PtCO2) 

See section 4.6.1. 

5.6.2 Heart rate and oxygen saturation 

The TOSCA 500 incorporates both pulse oximetry and PtCO2 measurement in the same 

probe, so the monitor was used to record heart rate and oxygen saturation. 

5.6.3 CRB-65 score  

The CRB-65 score was calculated for all subjects at baseline and again at the end of the 

study period. The score is recommended by international guidelines for the assessment of 

severity in pneumonia ("BTS Guidelines for the Management of Community Acquired 

Pneumonia in Adults," 2001) and an increasing CRB-65 score indicates an increasing risk 

of mortality (Lim et al., 2003). One point is scored for each of the following: 

 

1. New onset confusion (defined as an Acute Mental Test score ≤ 8/10) 

2. Respiratory rate ≥ 30 breaths per minute 

3. Blood pressure < 90 mmHg systolic or < 60 mmHg diastolic 
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4. Age ≥ 65 years.  

5.6.4 Chest x-ray 

All chest films were formally reported by a consultant radiologist blinded to the treatment 

allocation. The presence or absence of an infiltrate consistent with pneumonia was 

recorded. 

5.7 Study protocol 

Potential participants identified by the investigator were asked to provide written 

informed consent and randomised. The patient’s earlobe was cleaned with an alcohol 

swab and allowed to dry.  The PtCO2 probe was attached using the provided attachment 

clips and contact gel.  If the oxygen saturations were less than 92%, oxygen was given to 

achieve a saturation of 93-95% (see Table 5.1). A minimum of 10 minutes was allowed 

for arterialisation to occur and PtCO2 readings to stabilize, at which point (Time = 0) 

baseline data were recorded and the oxygen protocol started.  The PtCO2, respiratory rate, 

heart rate and oxygen saturations were recorded at baseline and then at 20 minute 

intervals for the duration of the study. The timing of the study procedures is summarised 

in Table 5.2. 
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Table 5.2: Summary of study procedures 

Procedure T = - 10 T = 0 T = 20 T = 40 T = 60 

Consent X     

Randomise X     

Attach ear probe X     

Start oxygen regime  X    

PtCO2  X X X X 

Heart rate  X X X X 

Respiratory Rate  X X X X 

Pulse oximetry X X X X X 

 

5.8 Pneumonia treatment protocol 

A full history and physical examination was undertaken on each patient.  Empirical 

antibiotics were administered in accordance with published guidelines ("BTS Guidelines 

for the Management of Community Acquired Pneumonia in Adults," 2001). Other 

treatments such as analgesia and intravenous fluids were administered at the discretion of 

the investigator.  All patients underwent a chest radiograph and routine blood tests 

including a full blood count, creatinine and electrolytes. 
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5.9 Outcome measures and statistical analysis 

The primary outcome variable was the proportion of patients with a PtCO2 rise of ≥4 

mmHg.  Secondary outcome measures included the proportion of patients with a PtCO2 

rise of ≥8 mmHg, the proportion with both a rise in PtCO2 ≥4 mmHg and a PtCO2 ≥38 

mmHg at 60 minutes, and the mean change from baseline PtCO2.  The rate of change of 

PtCO2 was determined using a mixed linear model with random intercept and slope 

terms. Whether the risk of a PtCO2 rise was influenced by the presence or absence of a 

pulmonary infiltrate on the chest radiograph consistent with pneumonia, was tested by an 

interaction term in a logistic regression model. Continuous outcome variables were 

analysed as a change from baseline using independent sample t-tests. Variables for which 

normality assumptions were not met were analysed by a Mann-Whitney test.  Analysis 

was by intention to treat.  SAS version 9.1 and Minitab version 14 were used. 

5.10 Sample size 

Using data from a previous study (G. J. Rodrigo et al., 2003), 75 participants were 

required in each group to detect a difference in the main outcome variable (the proportion 

of patients with a rise in PtCO2 of ≥ 4 mmHg) of 20% in the high concentration oxygen 

group and 5% in the titrated group with power of 80% and a type 1 error rate of 5%. 
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5.11 Ethical approval and trial registration 

As with the acute asthma study, subjects initially signed a short information and consent 

form supplemented by a clear verbal explanation and the offer to answer any questions. 

All subjects subsequently read the information sheet and signed the full consent form 

during the study. 

 

The study was approved by the Central Regional Ethics Committee, Wellington, New 

Zealand (CEN 06/11/101) on 18
th

 January 2007 and prospectively registered on the 

Australian New Zealand Clinical Trials Registry (ACTRN 012607000196448). The study 

was approved by Capital and Coast District Health Board and Hutt Valley District Health 

Board. 

5.12 Study organisation 

All investigators involved in the study were qualified medical practitioners with at least 

three years post-graduate clinical experience. I was responsible for training and 

supervision of all participating research staff. Staff levels permitting, an investigator was 

usually onsite and available to recruit patients at the emergency departments of the 

participating hospitals from 0800 to 2200 Monday to Friday. 
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5.13 Data management 

Each patient’s results were recorded on a study worksheet and stored in a secure locked 

location near the emergency department. Collected data sheets were then transferred to 

the offices of the Medical Research Institute of New Zealand for data entry and secure 

storage. The data was entered into the study database (Microsoft Access) and stored on a 

secure server. 
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Chapter 6: A study of the physiological response to 

oxygen in chronic asthma - methods 

6.1 Outline of the study 

As noted in Chapter 3 there is little existing literature regarding the mechanisms of 

oxygen induced hypercapnia in asthma. In contrast, a number studies in COPD have 

attempted to examine the different contributions of changes in minute ventilation and the 

role of reversal of HPV on ventilation-perfusion matching. On balance the main factor 

involved in oxygen induced hypercapnia appears to be an increase in the physiological 

dead space to tidal volume ratio.  

 

The hypothesis of this study is that because V 
•
 /Q

 •
  mismatching is a predominant 

physiological feature of both asthma and COPD, the mechanism of any increase in PaCO2 

seen with high concentration oxygen is likely to be similar in these two disorders. The 

original design elements of this study are the inclusion of both positive (COPD subjects) 

and negative (normal subjects) control groups, the continuous measurement of PtCO2 and 

the simultaneous measurement of both minute ventilation and dead space to tidal volume 

ratio. 
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The aim was to investigate the physiological changes that occur when patients with 

asthma and severe airflow obstruction are administered 100% oxygen. While some of the 

methods used in this study, such as measurement of minute ventilation, could be applied 

to asthma patients with an acute exacerbation, it is logistically difficult to adequately 

control all potential variables in the emergency department setting including the effects of 

concomitant bronchodilator therapy. Additionally, previous studies on responses to 

oxygen in COPD have proved to be valid when conducted on patients in the stable state 

as well as during an exacerbation (Aubier, Murciano, Fournier et al., 1980; Dick et al., 

1997; Sassoon et al., 1987).  

 

6.2 Aims and objectives 

The objective of the study was to investigate the physiological effect of high 

concentration oxygen in patients with chronic asthma and severe airflow obstruction, 

compared to subjects with COPD and a group of normal controls.  

 

The hypothesis was that administration of 100% oxygen in chronic asthma with airflow 

obstruction would result in similar physiological changes to patients with COPD, 

specifically:  

• An increase in PaCO2 

• An increase in VD/VT 
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• Minimal change in minute ventilation. 

6.3 Study participants 

Subjects were recruited between December 2008 and September 2009. The study was 

conducted at the MRINZ pulmonary function laboratory based at Bowen Hospital, 

Crofton Downs, Wellington. Potentially eligible subjects were identified through existing 

study databases and referral by local respiratory physicians. 

 

Asthma patients aged between 18 and 65 years were eligible for inclusion if they met the 

following criteria: 

 

• Diagnosis of asthma ("British Guideline on the Management of Asthma," 2008) 

• Pre-bronchodilator FEV1 ≤ 60% predicted 

• No history of COPD 

• No history of cigarette smoking greater than 5 pack years 

• Absence of other risk factors for hypercapnic respiratory failure: Significant 

neuromuscular disease, severe chest wall restriction, or morbid obesity. 

 

COPD patients aged over 18 years were eligible for inclusion if they met the following 

criteria: 

• Diagnosis of COPD ("BTS guidelines: Diagnosing COPD," 2004) 
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• Pre-bronchodilator FEV1 ≤ 50% predicted 

• Absence of other risk factors for hypercapnic respiratory failure: Significant 

neuromuscular disease, severe chest wall restriction, or morbid obesity. 

 

Normal subjects aged over 18 years were eligible for inclusion if they met the following 

criteria: 

• No history of COPD, asthma or other cardio-respiratory disease 

• No history of cigarette smoking 

• No current symptoms of dyspnoea, cough or wheeze 

• Absence of other risk factors for hypercapnic respiratory failure: Significant 

neuromuscular disease, severe chest wall restriction, or morbid obesity 

• FEV1/FVC ratio ≥ 0.7 and FEV1 percent predicted ≥ 80%. 

 

6.4 Study protocol 

All subjects read the information sheet and signed written informed consent (see 

appendices). Asthma and COPD patients were instructed to withhold short and long 

acting bronchodilator medication on the morning of the study, and withhold long acting 

bronchodilator medication on the evening prior to the study. All subjects were studied 

seated at 90° upright in a chair and all recordings were made between 9am and 12pm.   
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A transcutaneous carbon dioxide sensor was attached to an earlobe for continuous 

monitoring of both PtCO2 and arterial oxygen saturation. An appropriate sized nose and 

mouth Continuous Positive Airway Pressure (CPAP) mask (FlexiFit 431, Fisher and 

Paykel Healthcare, Auckland, New Zealand) was fitted with head straps to ensure a 

satisfactory seal on the face with no mask leak. A combined pneumotachygraph and 

infrared CO2 gas analyser (COSMO Respiratory Profile Monitor, Respironics, 

Murrysville, PA USA) was fitted to the outflow port of the CPAP mask. Signals from 

both the pneumotachygraph flow meter and the infrared gas analyser were displayed on 

the COSMO Respiratory Profile Monitor.  

 

To administer 100% oxygen a 200L Douglas bag was filled from an oxygen cylinder at 

least two hours before the subject was studied to allow the oxygen in the bag to come to 

room temperature. The connection valve from the Douglas bag incorporated a three way 

tap so that flow through the tubing to the mask could be switched between room air and 

oxygen from the bag. The Douglas bag was connected by flexible tubing to the inflow 

port of a T-piece incorporating a one way valve. The second arm of the T-piece connector 

was attached to the pneumotachygraph and the mask. The third arm of the T-piece 

connector incorporated a one way valve and acted as the expiratory port. The valves in 

both the inflow and outflow ports of the T-piece ensured that expiratory gases vented out 

of the circuit after passing the pneumotachygraph. 

 

After fitting the mask and transcutaneous carbon dioxide sensor subjects were instructed 

to breathe normally through the mask, with the three way tap on the Douglas bag open to 
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room air. A minimum of 15 minutes was allowed to give the subject sufficient time to 

accommodate to the circuit and to confirm reliable and steady signals from the 

transcutaneous CO2 sensor, flow monitor and gas analyser. The resistance of the mask, 

valve and tubing was not directly measured as it did not change between air and oxygen 

breathing, and the outcome variables of interest were all measured as a change from 

baseline. During the study subjects were not permitted to talk or interact with family 

members. Although the investigator was present throughout, there was no feedback or 

interaction given to subjects. All monitor displays were hidden from the subject’s view.  

 

During the final minute of room air breathing the following data were recorded  

• PtCO2 (mmHg) 

• Minute ventilation (L/min) 

• VD/VT  

• Heart rate (beats/min) and respiratory rate (breaths/min). 

 

The PtCO2 and a simultaneously recorded mixed expired carbon dioxide (PECO2) 

measurement were used to calculate the VD/VT according to the Bohr-Enghoff equation: 

 

VD /VT = (PaCO2 - PECO2 / PaCO2)  

 

After recording baseline measurements on room air the three-way tap was connected to 

the Douglas bag and the subjects breathed 100% oxygen for 20 minutes. During the final 

minute of oxygen breathing the same data was recorded. The mask and recording 
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equipment was then removed and a final FEV1 was recorded. The timing of the study 

procedures is summarised in Table 6.1. 

 

Table 6.1: Summary of study procedures 

Procedure T = -15 T = -1 T = 0 T = 10 T = 20 

Consent X     

Spirometry X    X 

Start breathing 

through mask 

X   

  

Start 100% oxygen   X   

PtCO2  X  X X 

Heart rate  X  X X 

Respiratory Rate  X  X X 

VD/VT  X  X X 

Minute ventilation  X  X X 

 

6.5 Study procedures 

6.5.1 Transcutaneous partial pressure of carbon dioxide (PtCO2) 

See section 4.6.1. 
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6.5.2 Heart rate and oxygen saturation 

The TOSCA 500 incorporates both pulse oximetry and PtCO2 measurement in the same 

probe, so the monitor was used to record heart rate and oxygen saturation. 

6.5.3 Spirometry 

All spirometry was performed using a handheld spirometer (Micro Spirometer, Micro 

Medical Ltd, Rochester, U.K.) which was regularly calibrated and standard reference 

tables for predicted values were used. 

6.5.4 Mixed expired CO2 

The real time infra-red gas analyser of the COSMO Respiratory Profile Monitor 

continuously measures the partial pressure of expired CO2 and combines this with flow 

recordings to express the data in the form of volumetric capnography. The volume 

weighted three minute average expired CO2 is updated every 15 seconds and mixed 

expired CO2 is calculated by dividing the volume of CO2 for a one minute interval by the 

total expired volume for the same interval.  

6.5.5 Minute ventilation and respiratory rate  

The pneumotachygraph of the COSMO Respiratory Profile Monitor continuously 

measures flow and pressure across the expiratory port of the mask mouth piece. Minute 

ventilation is calculated by the rolling average tidal volume divided by respiratory rate 

over two minutes. Respiratory rate is measured by the flow meter and computed as an 

eight breath moving average updated breath to breath.     
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6.6 Outcome measures 

The primary outcome variable was the change in PtCO2 from baseline.  Secondary 

outcome variables included change in minute ventilation, change in dead space to tidal 

volume ratio and change in FEV1.  

6.7 Sample size  

In a previous randomised study 17 patients with stable but severe COPD were compared 

breathing 94% oxygen or room air (Sassoon et al., 1987). It detected a significant 

difference of 4.4 mmHg in the transcutaneous PCO2 between the two treatments.  With a 

standard deviation of the change in PaCO2 breathing oxygen in COPD of 5.6 (Robinson et 

al., 2000), a sample size of 18 has 80% power to detect a difference between air and 

oxygen breathing greater than 4 mmHg with a type I error rate of 5%. 

6.8 Ethical approval and trial registration 

The study was approved by the Central Regional Ethics Committee, Wellington, New 

Zealand (Ethics reference: CEN/08/04/013) on 20
th

 May 2008 and prospectively 

registered on the Australian New Zealand Clinical Trials Registry 

(ACTRN12608000549325) on 30/10/08.  
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6.9 Data management 

Each patient’s results were recorded on a study worksheet and stored in a secure locked 

location. Collected data sheets were then transferred to the offices of the Medical 

Research Institute of New Zealand for data entry and secure storage. The data was 

entered into the main study database (Microsoft Excel) and stored on a secure server. 
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Chapter 7: Validation of methods 

 

This chapter presents data demonstrating the accuracy and repeatability of the clinical 

measurements used in this thesis and the equipment used to obtain them. Non-invasive 

methods of measurement should be reliable and repeatable. Repeatability concerns the 

extent to which a measurement yields the same result on repeated testing by the same 

operator. A measurement is valid only if it measures what it is intended to measure. 

While repeatability focuses on consistency across repeated measurements, validity 

concerns the relationship between the measurement itself and the variable it is meant to 

be measuring. 

 

The following analyses were undertaken: 

 

1. The validity and precision of the TOSCA 500 monitor in the estimation of PaCO2 

2. The repeatability of the TOSCA 500 monitor in the measurement of PtCO2  

3. The repeatability of the COSMO Respiratory Profile Monitor in the measurement 

of VD/VT  

4. The repeatability of the COSMO Respiratory Profile Monitor in the measurement 

of minute ventilation 

5. The repeatability of spirometry in the measurement of FEV1. 



 121

7.1 A validation study on the accuracy of transcutaneous carbon dioxide 

recordings 

7.1.1 Introduction 

Portable devices to measure the transcutaneous partial pressure of carbon dioxide 

(PtCO2) are a non-invasive alternative to an ABG in the assessment and monitoring of 

PaCO2.  They function on the principle that CO2 diffuses extremely well through tissues. 

A probe is attached to an area of skin (usually the earlobe) and warms to 42°C which 

“arterializes” the underlying capillaries. The CO2 diffusing through the skin changes the 

pH of an electrolyte membrane in the probe and the resulting signal is converted to an 

estimate of the PaCO2. Although end-tidal carbon dioxide monitors are an alternative 

method of non-invasive PaCO2 monitoring, their major limitation is that they become 

inaccurate in the setting of changing alveolar dead space (Liu, Lee, & Bongard, 1992; 

Sanders et al., 1994; Stock, 1988). 

 

Transcutaneous CO2 devices have been studied in a variety of clinical settings including 

invasive and non-invasive ventilation in intensive care units and overnight studies of 

sleep disordered breathing (Bendjelid et al., 2005; Cox et al., 2005; Cuvelier, Grigoriu, 

Molan, & Muir, 2005; Janssens, Howarth-Frey, Chevrolet, Abajo, & Rochat, 1998; Senn, 

Clarenbach, Kaplan, Maggiorini, & Bloch, 2005). When compared to ABG, studies have 

shown variable accuracy depending on the device used and the clinical setting.  
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The aim of this study was to assess the accuracy of a PtCO2 device in the assessment 

of PaCO2 by comparing it to the gold standard of ABG analysis. 

 

7.1.2 Method 

This study formed part of the two randomised controlled trials of high concentration 

versus titrated oxygen therapy in acute severe asthma and community-acquired 

pneumonia. The aim was to collect 25 paired PaCO2 and PtCO2 recordings in patients 

attending the ED and enrolled into either of the two studies.  

 

A detailed description of the two study protocols has already been given, but in brief, 

patients were assessed by the study investigators on arrival and if the enrolment criteria 

were met, written informed consent was obtained. An earlobe was cleaned with an 

alcohol swab and allowed to dry.  The PtCO2 probe was attached to the earlobe using an 

attachment clip and contact gel.  A minimum of 10 minutes was allowed for 

arterialisation to occur and PtCO2 readings to stabilise, at which stage the randomised 

oxygen treatment regime was started. The PtCO2 was monitored continuously as part of 

the study protocol and subjects had an ABG taken during the course of their routine 

assessment and treatment if the investigator felt it was clinically indicated, hence the data 

obtained represents a convenience sample.   

 

The ABG samples were obtained by radial artery puncture with a 22 gauge needle and 

blood was collected into a heparinised syringe.  Samples were analyzed immediately with 
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an arterial blood gas analyser (Radiometer ABL800 FLEX, Copenhagen, Denmark) 

and a simultaneous PtCO2 reading was recorded with the transcutaneous CO2 monitor 

(TOSCA 500; Radiometer Basel AG; Switzerland).   

 

Data were analysed using the Bland-Altman method of PaCO2 – PtCO2 versus the mean 

of PaCO2 and PtCO2, along with limits of agreement representing plus or minus two 

standard deviations of the difference. 

7.1.3 Results 

There were 25 pairs of data in total but one patient was excluded because of difficulty 

attaching the probe to the earlobe. This resulted in a lack of signal from the ear probe and 

therefore unstable PtCO2 readings. This left 24 paired samples for analysis. No patients 

were in shock or hypothermic and none required vasopressor or inotropic support. The 24 

patients (10 men and 14 women) had a mean age of 44 years and included 12 with 

asthma and 12 with pneumonia. The mean FEV1 % predicted in the asthma patients was 

25.5%. The mean respiratory rate for the whole group was 27 breaths per minute. The 

PaCO2 range for the group was 19 to 64 mmHg with a mean of 34.9 mmHg. The mean 

time ABG samples were taken was 39.5 minutes after starting the randomized oxygen 

treatment regime. The mean (SD) PaCO2 – PtCO2 difference was -0.13 (1.9) mmHg with 

limits of agreement of plus or minus 3.8 mmHg (-3.9 to +3.7). Complete data for both 

recording methods is shown in Table 7.1 and the Bland-Altman plot is shown in Figure 

7.1.  
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Table 7.1: Summary of data comparing paired PaCO2 and PtCO2 measurements 

Variable Mean (SD) 

Median  

(Inter-quartile range) 

Range 

(mmHg) 

 

PaCO2 

 

36.2 (9.3) 

 

36.5 (32.0 to 41.5) 

 

19 to 64 

PtCO2 36.3 (8.7) 36 (33 to 40.5) 20 to 63 

Difference 

(PaCO2 – PtCO2) 

Average 

(PaCO2 and PtCO2) 

-0.13 (1.9) 

 

36.2 (8.9) 

0 (-1 to 1) 

 

36 (32.5 to 41.5) 

-4 to 5 

 

19.5 to 63.5 
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Figure 7.1 A Bland-Altman plot of the difference between the PaCO2 and PtCO2, 

against the average of PaCO2 and PtCO2 (mmHg). Horizontal lines indicate plus or 

minus 2 standard deviations of the differences.  
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7.1.4 Conclusion 

The data demonstrate that when compared to the gold standard of an ABG, 

transcutaneous carbon dioxide measurements demonstrate minimal bias and acceptable 

limits of agreement.  

 

7.2 A repeatability study of the measurement of PtCO2, minute ventilation, VD /VT 

and FEV1 

7.2.1 Method 

For the full study protocol refer to the study procedures section of chapter 6. All 18 

normal subjects returned to the pulmonary function laboratory for a repeat study. The 

second set of data was recorded using an identical study protocol and the same 

equipment. The subjects were studied between three and seven days from their initial 

visit, and within one hour of the time of the original study. I undertook all testing on both 

visits. Normal subjects were used for test repeatability analysis, as they were unlikely to 

have significant changes in the study parameters over time, unlike subjects with asthma 

and COPD.  

7.2.2 Statistical analysis 

Mixed linear models were used to estimate the intra-class correlation coefficients (ICC) 

for the variables measured twice in the normal group (PtCO2, MV, VD /VT and FEV1) 
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supplemented by Bland-Altman calculation of their limits of agreement. SAS 9.1 was 

used. 

 

7.2.3 Results 

For transcutaneous carbon dioxide the mean (SD) difference between visit one and two 

was 0.10 (1.37) mmHg with limits of agreement of plus or minus 2.74 mmHg (-2.64 to 

+2.8). A Bland-Altman plot of limits of agreement for PtCO2 results of the two visits is 

shown in Figure 7.2. The ICC was 0.89. 
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Figure 7.2: Bland-Altman plot of the difference between PtCO2 (mmHg) at visits 

one and two against the mean value of the two visits. Horizontal lines indicate plus 

or minus 2 standard deviations of the differences. 
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For the measurement of minute ventilation the mean (SD) difference between visit 

one and two was 0.006 (0.35) L/min with limits of agreement of plus or minus 0.7 L/min 

(Figure 7.3). The ICC was 0.94. 

 

Figure 7.3: Bland-Altman plot of the difference between MV (L/min) at visits one 

and two against the mean value of the visits. Horizontal lines indicate plus or minus 

2 standard deviations of the differences 
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For the measurement of FEV1 the mean (SD) difference between visit one and two 

was 0.006 (0.06) L with limits of agreement of plus or minus 0.12 L (Figure 7.4). The 

ICC was 0.99. 

 

Figure 7.4: Bland-Altman plot of the difference between FEV1 (L) at visits one and 

two against the mean value of the visits. Horizontal lines indicate plus or minus 2 

standard deviations of the differences 
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For the measurement of VD /VT the mean (SD) difference between visit one and two 

was 0.012 (0.047) with limits of agreement of plus or minus 2.74 (Figure 7.5). The ICC 

was 0.59. 

 

Figure 7.5: Bland-Altman plot of the difference between VD /VT at visits one and two 

against the mean value of the visits. Horizontal lines indicate plus or minus 2 

standard deviations of the differences 
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7.2.4 Conclusion 

Bland-Altman analysis of the data demonstrates that all four measurements had minimal 

bias and acceptable limits of agreement between the two visits. ICC analysis indicates 

high reliability between recordings for visits one and two for FEV1, PtCO2 and minute 

ventilation. The measurement of VD /VT was moderately reliable. 
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Chapter 8: Results 

8.1 High concentration versus titrated oxygen in acute severe asthma 

8.1.1 Subjects 

Eligible patients were recruited from July 2007 to December 2009. A total of 106 patients 

were randomised, 53 to the titrated group and 53 to the high flow group.  Three patients 

were withdrawn from the high concentration oxygen group: two were enrolled and 

randomised but met exclusion criteria (one patient with COPD and one with obesity 

hypoventilation syndrome), and in one patient a PtCO2 signal could not be obtained. This 

left 50 patients in the high concentration group and 53 in the titrated group for final 

analysis.  Figure 8.1 shows the flow of the patients through the study.   

 

The two groups were well matched with respect to age, sex, respiratory rate, oxygen 

saturation, and mean PtCO2 at baseline as outlined in Table 8.1, although there was a 

lower mean FEV1 in the high flow group of 1.15L compared to 1.29L in the titrated 

group.  
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Figure 8.1: Flow of asthma patients through the study. 
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Table 8.1: Baseline characteristics of asthma patients.  

  

High flow O2 

n=50 

Titrated O2                      

n=53 

All 

n=103 

Sex, male N (%) 27 (54) 18 (34) 45 (43.7) 

Age, yr  35.0 (14.4) 32.6 (11.1) 33.8 (12.8) 

Respiratory rate, breaths/min 23.4 (6.6) 22.7 (5.7) 23.0 (6.1) 

Heart Rate, beats/min 97.7 (23.4) 100.7 (18.8) 99.2 (21.1) 

SpO2, % 95.1 (3.2) 96.4 (2.7) 95.8 (3.0) 

PtCO2, mmHg 36 (7.1) 34.1 (5.7) 35 (6.4) 

PtCO2 ≥38 mmHg 20 (40.0) 15 (28.3) 35 (34.0) 

FEV1, L 1.15 (0.43) 1.29 (0.44) 1.22 (0.44) 

FEV1 % predicted 32.1 (9.9) 36.9 (9.7) 34.6 (10.1) 

Values for age, respiratory rate, heart rate, SpO2, PtCO2 FEV1 and FEV1 % predicted are 

mean (SD). Values for sex and PtCO2 ≥38 mmHg are number of participants 

(percentage).  
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PtCO2 levels at baseline ranged from 14 to 50 mmHg (Figure 8.2).  The majority of 

patients were hypocapnic at baseline with only 35/103 (34%) having a PtCO2 ≥ 38 

mmHg.  Mild to moderate hypoxia was common, and only eight patients had oxygen 

saturations < 93% at baseline. In the titrated oxygen group 48/53 (90%) patients did not 

require oxygen therapy throughout the 60 minute treatment period, four patients required 

1-3L/min and one required more than 3L/min.  In the high concentration oxygen group 

the oxygen saturation at 60 minutes was ≥ 99% in 39/50 (78%) of patients and was ≥ 

95% in the remaining 11 patients.  

 

8.1.2 Changes in PtCO2 

Results for the main primary and secondary outcome variables are shown in Table 8.2. 

The proportion of patients with an increase in PtCO2 of ≥4 mmHg at 60 minutes was 

significantly greater in the high concentration group, compared with the titrated oxygen 

group, 22/50 (44%) vs 10/53 (18.9%) with a relative risk of 2.3 (95% CI 1.2 to 4.3; 

P=0.009). The proportion of patients with a rise in PtCO2 ≥8 mmHg was significantly 

greater in the high concentration, 10/50 (20%), compared with the titrated group, 3/53 

(5.7%), with a relative risk of 3.6 (95% CI 1.1 to 12.3, P=0.03).  The proportion of 

patients with both a rise in PtCO2 ≥4 mmHg and a PtCO2 ≥38 mmHg at 60 minutes was 

16/50 (32%) and 4/53 (7.6%), in the high concentration and titrated oxygen groups 

respectively, with a relative risk of 4.3 (95% CI 1.6 to 12.0, P=0.001). 
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Figure 8.2: PtCO2 levels in asthma patients at baseline and after 60 minutes in 

the high concentration (o) and titrated (●) oxygen groups.  
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Table 8.2: The proportion of asthma patients with a predetermined rise in 

PtCO2 from baseline at 60 minutes. 

 High flow O2 

n (%) 

Titrated O2 

n (%) 

Relative risk 

(95% CI) 

 

P value 

 

Change in PtCO2  

≥4 mmHg 

 

22 (44%) 

 

10 (18.9%) 

 

2.3 (1.2 to 4.3) 

 

P=0.009 

 

Change in PtCO2  

≥4 mmHg and  

PtCO2 ≥38 mmHg 

 

16 (32%) 

 

4 (7.6%) 

 

4.3 (1.6 to 12.0) 

 

P=0001 

 

Change in PtCO2  

≥8 mmHg 

 

 

10 (20%) 

 

3 (5.7%) 

 

3.6 (1.1 to 12.3) 

 

P= 0.003 
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The proportion of patients with a rise in PtCO2 ≥4 mmHg was also greater in the high 

concentration group at the 20 and 40 minute time points (Table 8.3).   

 

 

Table.8.3: Time course of change in PtCO2: proportion of asthma patients with a 

rise of ≥≥≥≥4 mmHg at three time points. 

 

Time 

High concentration 

n (%) 

Titrated 

n (%) 

Relative risk 

(95% CI) 

 

P value 

 

20 minutes 

 

15 (30%) 

 

7 (13.2%) 

 

2.3 (1.0 to 5.1) 

 

P=0.038 

 

40 minutes 

 

 

20 (40.8%) 

 

8 (15.1%) 

 

2.7 (1.3 to 5.6) 

 

P=0.004 

60 minutes 21 (42.9%) 10 (18.9%) 2.3 (1.2 to 4.3) P=0.001 

 

 

The mean change in PtCO2 from baseline (Table 8.4) was significantly greater in the high 

concentration group compared with the titrated group, with a mean difference at 60 

minutes of 2.6 mmHg (95% CI 0.9 to 4.3; P<0.003). The rate of increase in the high 

concentration group was 0.054 mmHg/min (95% CI 0.035 to 0.074) and the titrated 

group was 0.012 mmHg/min (95% CI -0.0065 to 0.031).  The difference in the rate of 

change was 0.042 mmHg/min (95% CI 0.069 to 0.15, P=0.003). 
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Table.8.4: Time course of mean change in PtCO2 in asthma patients. 

 

Time 

High concentration 

mean (SD) 

Titrated 

mean (SD) 

Difference 

(95% CI) 

 

P value 

 

20 minutes 

 

2.8 (4.1) 

 

0.3 (3.6) 

 

2.5 (1.0 to 4.0) 

 

P=0.001 

 

40 minutes 

 

 

3.0 (4.7) 

 

0.4 (3.8) 

 

2.6 (0.9 to 4.3) 

 

P=0.002 

60 minutes 

 

3.4 (4.5) 0.8 (4.1) 2.6 (0.9 to 4.3) P=0.003 

 

 

8.1.3 Clinical variables 

The high flow oxygen group had a higher rate of hospital admission with 26/50 (52%) 

admitted compared to 17/53 (32%) in the titrated group, a relative risk of 1.6 (95% CI 1.0 

to 2.6, P=0.04). 

 

There was no difference between the treatment groups in the mean change from baseline 

to 60 minutes of the three main clinical variables. The mean changes in respiratory rate, 

pulse rate, and FEV1 are shown in Table 8.5.   
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Table 8.5: Mean change from baseline to 60 minutes of clinical variables in 

asthma patients. 

 

Variable 

High concentration 

mean (SD) 

Titrated 

mean (SD) 

Difference 

(95% CI) 

 

P value 

 

Resp. rate, breaths/min  

 

-3.1 (4.5) 

 

-3.1 (4.3) 

 

0.0 (-1.7 to 1.7) 

 

P=0.97 

 

Heart rate, beats/min 

 

 

0.04 (11.7) 

 

3.4 (9.4) 

 

-3.3 (-7.0 to 0.3) 

 

P=0.08 

FEV1, L/min 0.36 (0.38) 0.35 (0.38) 0.0 (-0.14 to 0.15) P=0.93 

 

 

8.2 High concentration versus titrated oxygen in acute pneumonia 

8.2.1 Subjects 

Eligible patients were recruited from July 2007 to April 2009.  Figure 8.3 shows the flow 

of the 150 patients through the study, with 75 randomised to high concentration oxygen 

and 75 randomised to titrated oxygen.   
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Figure 8.3: Flow of pneumonia patients through the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three patients were withdrawn from the high concentration oxygen group prior to the 

administration of oxygen. In one patient this was due to the inability to obtain stable and 

reliable PtCO2 recordings, and two patients (one with COPD and one with obesity 

159 patients presenting to ED with 

suspected CAP 
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part in study n = 9 

75 patients randomised to 
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75 patients randomised to 
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Withdrawals (see text) 
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analysis 

72 patients included in 

analysis 
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hypoventilation syndrome) were inadvertently enrolled but subsequently found to 

meet exclusion criteria.  As a result there were 72 and 75 patients included in the high 

concentration and titrated oxygen groups respectively.   

 

The two groups were well matched with respect to age, sex, respiratory rate, oxygen 

saturation, PtCO2, and CRB-65 score at baseline, and also well matched for the 

radiological confirmation of pneumonia (Table 8.6).   

 

The 74/146 (50.7%) patients in which there was radiological confirmation of pneumonia 

had lower oxygen saturations than those without radiological confrimation: mean (SD) 

95.7% (3.7) vs 96.8% (2.8) and a higher proportion had a CRB-65 score ≥2: 12/74 

(16.2%) vs 2/73 (2.7%). 

 

There was a wide range of PtCO2 levels at baseline ranging from 17 to 49 mmHg (Figure 

8.4).  In 29/147 (19.7%) patients the baseline PtCO2 at presentation was ≥38 mmHg.  

Most (134/147) (91.2%) presented with an oxygen saturation >92% at baseline.  In the 

titrated oxygen group 68/75 (90.7%) patients did not require oxygen therapy throughout 

the 60 minute treatment period as their oxygen saturations remained >92%.  In the 

titrated oxygen group 6/72 (8.3%) patients required oxygen between one to four litres per 

minute via nasal prongs and 1/72 (1.4%) patient required >4 litres per minute via medium 

concentration mask to achieve oxygen saturations ≥93%.  In the high concentration 
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oxygen group the oxygen saturation at 60 minutes was ≥99% in 65/72 (90.3%) of 

patients and was between 93 and 98% in the remaining 7/72 (9.7%) patients.  

 

Table 8.6: Baseline characteristics of pneumonia patients. 

  

High flow O2 

n=72 

Titrated O2                      

n=75 

All 

n=147 

Sex, male 32 28 60 

Age, yr 45.2 (16.3) 46.4 (16.3) 45.8 (16.2) 

Respiratory rate, breaths/min 24.2 (6.0) 24.6 (6.6) 24.4 (6.3) 

Heart Rate, beats/min 90.5 (16.8) 88.1 (18.2) 89.3 (17.5) 

SpO2, % 96.3 (3.4) 96.2 (3.2) 96.2 (3.3) 

PtCO2, mmHg 32.7 (4.6) 33.6 (5.9) 33.1 (5.3) 

PtCO2 ≥38 mmHg 11 (15.3) 18 (24.0) 29 (19.7) 

CRB-65 Score ≥2 

 

7 (9.7) 7 (9.3) 14 (9.3) 

 

Confirmed pneumonia  

 

35/72 (48.6) 

 

39/75 (52.0) 

 

74/147 (50.3) 

 

(Values are mean (SD) for age, respiratory rate, heart rate, SpO2 and PtCO2, number of 

participants (percentage) for sex, confirmed pneumonia, PtCO2 ≥38 mmHg and CRB-65 

score ≥2). 
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Figure 8.4: PtCO2 levels in pneumonia patients at baseline and after 60 minutes 

in the high concentration (o) and titrated (●) oxygen groups. 

 

8.2.2 Changes in PtCO2 

The proportion of patients with an increase in PtCO2 of ≥4 mmHg at 60 minutes was 

significantly greater in the high concentration group, compared with the titrated oxygen 

group, 36/72 (50.0%) vs 11/75 (14.7%) with a relative risk of 3.4 (95% CI 1.9 to 6.2; 
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P<0.001). The proportion of patients with a rise in PtCO2 ≥8 mmHg was significantly 

greater in the high concentration, 11/72 (15.3%), compared with the titrated group 2/75 

(2.7%), with a relative risk of 5.7 (95% CI 1.3 to 25.0, P=0.007).  The proportion of 

patients with both a rise in PtCO2 ≥4 mmHg and a PtCO2 ≥38 mmHg at 60 minutes was 

19/72 (26.4%) and 5/75 (6.7%), in the high concentration and titrated oxygen groups 

respectively, with a relative risk of 2.7 (95% CI 1.2 to 6.0, P=0.001) (Table 8.7).   

  

The proportion of patients with a rise in PtCO2 ≥4 mmHg was also greater in the high 

concentration group at the 20 and 40 minute time points (Table 8.8).   

 

The mean change in PtCO2 from baseline (Table 8.9) was significantly greater in the high 

concentration oxygen group compared with the titrated oxygen group, with a mean 

difference of 2.7 mmHg (95% CI 1.5 to 3.9; P<0.001). The rate of increase in the high 

concentration group was 0.058 mmHg/min (95% CI 0.044 to 0.072) compared to 0.017 

mmHg/min (95% CI 0.0031 to 0.031) in the titrated group.  The difference in the rate of 

change was 0.041 mmHg/min (95% CI 0.022 to 0.06, P<0.001). 
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Table 8.7: The proportion of pneumonia patients with a predetermined rise in 

PtCO2 from baseline at 60 minutes. 

 High flow O2 

n (%) 

Titrated O2 

n (%) 

Relative risk 

(95% CI) 

 

P value 

 

Change in PtCO2  

≥4 mmHg 

 

36 (50%) 

 

11 (14.7%) 

 

3.4 (1.9 to 6.2) 

 

P<0.001 

 

Change in PtCO2  

≥4 mmHg and  

PtCO2 ≥38 mmHg 

 

19 (26.4%) 

 

5 (6.7%) 

 

2.7 (1.2 to 6.0) 

 

P=0.01 

 

Change in PtCO2  

≥8 mmHg 

 

 

11 (15.3%) 

 

2 (2.7%) 

 

5.7 (1.3 to 25.0) 

 

P= 0.007 
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Table 8.8: Time course of change in PtCO2: proportion of pneumonia patients 

with a rise of ≥≥≥≥4 mmHg at three time points. 

 

Time 

High concentration 

n (%) 

Titrated 

n (%) 

Relative risk 

(95% CI) 

 

P value 

 

20 minutes 

 

19 (26.4%) 

 

4 (5.3%) 

 

5.0 (1.8 to 13.8) 

 

P<0.001 

 

40 minutes 

 

 

27 (37.5%) 

 

8 (10.7%) 

 

3.5 (1.7 to 7.2) 

 

P<0.001 

60 minutes 36 (50.0%) 11 (14.7%) 3.4 (1.9 to 6.2) P<0.001 

 

 

Table 8.9: Time course of mean change in PtCO2 in pneumonia patients. 

 

Time 

High concentration 

mean (SD) 

Titrated 

mean (SD) 

Difference 

(95% CI) 

 

P value 

 

20 minutes 

 

1.9 (3.4) 

 

-0.2 (2.7) 

 

2.1 (1.1 to 3.1) 

 

P<0.001 

 

40 minutes 

 

 

2.9 (3.7) 

 

0.5 (3.6) 

 

2.4 (1.2 to 3.6) 

 

P<0.001 

60 minutes 3.6 (3.9) 0.9 (3.7) 2.7 (1.5 to 3.9) P<0.001 
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In patients with radiological confirmation of pneumonia, 20/35 (57.1%) of the high 

concentration oxygen group had a rise in PtCO2 ≥4 mmHg compared with 5/39 (12.8%) 

in the titrated group, relative risk 4.5. In those without consolidation 16/37 (43.2%) of the 

high concentration oxygen group had a rise in PtCO2 ≥4 mmHg compared with 6/36 

(16.7%) in the titrated group, relative risk 2.6. However this interaction was not 

statistically significant (P=0.28). 

 

8.2.3 Clinical variables 

There were similar rates of hospital admissions between the two treatment groups with 

36/72 (50%) admitted in the high concentration group compared with 37/75 (49.3%) in 

the titrated group, relative risk 1.01 (95% CI 0.74 to 1.39, P=0.94). 

 

There was no significant difference in the change in respiratory rate between the 

treatment groups (-2.9 vs -2.5 breaths per minute, high concentration vs titrated oxygen 

groups respectively, P=0.63).  The reduction in heart rate was greater in the high 

concentration compared to the titrated oxygen group (-6.8 vs -2.6 beats per minute, mean 

difference -4.2, 95%CI -7.3 to -1.2, P=0.007). There was no significant difference in the 

change in CRB-65 score between the two groups after 60 minutes (P=0.99). 
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8.3 The physiological response to oxygen in chronic asthma 

8.3.1 Subjects 

Subjects were recruited between December 2008 and December 2009. The baseline 

characteristics of the three groups are summarised in Table 8.10.  

Table 8.10 The baseline characteristics of asthma, COPD and normal subjects.  

 

Normal 

 n=18 

Asthma                      

n=18 

COPD 

n=18 

Sex, male N (%) 9 (50) 8 (44) 11 (61) 

Age (yr)  33.4 (10.4) 36.4 (9.4) 73.9 (7.1) 

Respiratory rate (breaths/min) 12 (2.2) 13.4 (2.5) 14.3 (3.3) 

BMI (kg/m2) 25.9 (2.2) 28.1 (30.1) 22.7 (2.6) 

SpO2 % 97.9 (1.1) 97.1 (1.4) 95.8 (2.2) 

FEV1 (L) 3.50 (0.58) 1.52 (0.39) 0.98 (0.22) 

FEV1 % predicted 99.1 (2.9) 46.7 (6.0) 38.8 (6.8) 

PtCO2 (mmHg) 37.1 (2.8) 37.6 (3.0) 39.9 (4.9) 

MV (L/min) 8.0 (1.1) 8.9 (1.6) 10.8 (1.9) 

VD/VT 0.37 (0.06) 0.47 (0.1) 0.59 (0.07) 

Values for age, respiratory rate, BMI, SpO2, PtCO2 FEV1 and FEV1% predicted are 

mean (SD). Values for sex are number of participants (percentage). 
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Compared to asthmatics and normal controls, patients with COPD were older and had 

a lower mean BMI. The asthma and COPD groups had severe airflow obstruction, 

compared with the normal controls in which the mean FEV1 was 99% of predicted 

normal values. Compared to the normal controls the asthma group had a higher VD/VT 

ratio and MV, and the COPD group had a higher VD/VT ratio and MV than the asthma 

group. 

 

8.3.2 Changes in PtCO2 

After 20 minutes of 100% oxygen there was a significant increase in PtCO2 from baseline 

in both the asthma and COPD groups with a mean rise of 3.8 and 4.4 mmHg respectively. 

No significant rise in PtCO2 was observed in the normal group, with a change from 

baseline of 0.7 mmHg. 

 

When compared to the normal controls, the change in PtCO2 in both the asthma and 

COPD groups was significantly different when adjusted for baseline, with an asthma 

minus normal difference of 3.1 mmHg (95% CI 1.3 to 4.8, P<0.001) and a COPD minus 

normal difference of 3.7 mmHg (95% CI 1.9 to 5.5, P<0.001) at 20 minutes (Table 8.11). 

The time course of the changes in PtCO2 is shown in Figure 8.5. 
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Figure 8.5:  PtCO2 versus time in patients with asthma (short dash line), COPD 

(long dash line) and normal controls (solid line). Data points are mean plus or minus 

one standard deviation. 
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8.3.3 Changes in MV, VD/VT, FEV1 and respiratory rate  

There was no significant change in minute ventilation from baseline in the asthmatics, 

COPD patients or normal controls with a mean (SD) difference of -0.06 (0.5), -0.3 (1.0) 

and 0.06 (0.4) respectively (Table 8.11). There was no evidence of a change in 

respiratory rate or FEV1 at 20 minutes after adjusting for baseline, in the three patient 

groups. 
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Table 8.11: Changes in physiological variables at 20 minutes after adjusting for 

baseline. 

  

Asthma minus  

normal (95% CI) 

 

COPD minus 

normal (95% CI) 

 

P value 

 

PtCO2 (mmHg) 

 

3.1 (1.3 to 4.8) 

 

3.7 (1.9 to 5.5) 

 

< 0.001 

 

Minute ventilation 

(L/min) 

 

0.0 (-0.5 to 0.4) 

 

-0.1 (-0.7 to 0.4) 

 

0.87 

 

VD/VT 

 

0.03 (-0.005 to 

0.065) 

 

0.07 (0.02 to 0.12) 

 

0.03 

 

Respiratory rate 

(breaths per min) 

 

0.4 (-0.7 to 1.5) 

 

-0.04 (-1.2 to 1.1) 

 

0.63 

 

 

The VD/VT increased more in the COPD and asthma groups than in the normal controls, 

with a mean (SD) rise after 20 minutes of  0.10 (0.05), 0.07 (0.06), and 0.04 (0.02) 

respectively. After adjusting for baseline, the change was significantly higher in the 

COPD group compared to normal controls. Although the point estimate of the difference 
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between the asthma group and normal controls was 0.3, the 95% confidence interval 

crossed zero (Table 8.11).  
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Chapter 9: Discussion 

9.1 Introduction 

This chapter discusses the key findings of the studies in this thesis, their clinical 

significance, their strengths and limitations, and compares the results to previous work. 

Given their similar methodology and results, the studies on acute asthma and pneumonia 

will be considered together followed by the physiological study of oxygen in chronic 

asthma and COPD. 

9.2 Randomised controlled trials of high concentration versus titrated oxygen in 

acute asthma and pneumonia 

9.2.1 Key findings 

These studies show that high concentration oxygen therapy results in a significant 

increase in PtCO2 compared to titrated oxygen when administered to patients presenting 

to the emergency department with suspected community-acquired pneumonia or acute 

severe asthma.  The relative risk of an increase in PtCO2 of more than 4 mmHg with high 

concentration oxygen therapy was 2.3 in asthma and 3.4 in pneumonia. Similarly, a rise 

in PtCO2 of at least 8 mmHg was three-fold more likely in asthma and five-fold more 
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likely in pneumonia with high concentration oxygen therapy, compared with the 

titrated oxygen regime. 

 

These results are physiologically and clinically significant as indicated by the magnitude 

and frequency of the PtCO2 changes in the groups receiving high concentration oxygen. 

Although no subjects experienced symptomatic hypercapnia, there was a clear signal that 

uncontrolled oxygen administration resulted in an increased risk of carbon dioxide 

retention. 

 

It is likely that the increase in PtCO2 seen with high concentration oxygen in these studies 

underestimates the magnitude of the effect seen in standard clinical practice. The mean 

change in PtCO2, and the proportion of patients with a rise above the 4 mmHg and 8 

mmHg thresholds, continued to increase in both high concentration groups throughout the 

60 minute study period. In clinical practice, patients with severe asthma or suspected 

pneumonia often receive uncontrolled oxygen therapy in the ED for much longer than 60 

minutes; hence it is possible that some patients would have continued to progressively 

retain CO2 had the high concentration oxygen regime continued.  

 

As noted above, in order to maintain the internal validity of the study it was necessary to 

exclude subjects with the potential to develop oxygen-induced hypercapnia, in particular 

COPD and obesity hypoventilation syndrome. In clinical practice however, high 

concentration oxygen is routinely given to such patients if they present in a non-specific 
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fashion with symptoms of wheeze, cough and breathlessness. As a result, in an 

unselected group the likelihood of significant hypercapnia may be increased further. 

 

Finally, although an attempt was made to include all potential subjects with severe or life 

threatening asthma, there are difficulties in performing clinical studies in subjects with 

critical illness. Asthma patients who were moribund, unable to speak, unable to perform 

spirometry, or so distressed that they could not consent, were not approached. 

Consequently, those with the most severe airflow obstruction, and hence the highest risk 

of hypercapnia, were not able to be studied. Similarly, pneumonia patients with more 

severe disease who were too unwell to provide consent were not included, and they are 

likewise at higher risk of oxygen induced CO2 retention due to higher degrees of 

V 
•
 /Q

 •
 mismatch. The danger for such patients is compounded by the fact that a more 

severe illness makes it more likely they will be given high concentrations of oxygen, and 

for longer periods of time.  

 

There was a significant difference in admission rates in the asthma study with 26/50 

(52%) admitted in the high flow group compared to 17/53 (32%) in the titrated group, a 

relative risk of 1.6 (95% CI 1.0 to 2.6, P=0.04). This may be the result of apparent 

differences in the baseline severity of patients in the two groups, with a lower FEV1 and 

higher initial PtCO2 in the high concentration group. Although a genuine effect of oxygen 

treatment on asthma admission rates cannot be ruled out, the baseline differences 
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between the groups and lack of a similar finding in the pneumonia study makes it less 

likely. 

 

As well as the risk of worsening hypercapnia, uncontrolled oxygen therapy poses another 

potential risk to patients with acute respiratory disease: masking the ability to detect a 

clinical deterioration (Beasley, Aldington, & Robinson, 2007; Downs & Smith, 1999). If 

a patient with acute asthma or pneumonia is prescribed oxygen in excess of their 

requirements and becomes hyperoxic, a clinical decline is less likely to be detected at the 

bedside by the use of routine pulse oximetry. Conversely, if oxygen is titrated to maintain 

oxygen saturations in the normal range (93-96%) a clinical deterioration will become 

apparent earlier as the oxygen saturations fall, enabling more rapid medical re-assessment 

and intervention.  

 

This concept is supported by the oxygen saturation data from these trials. In the 

pneumonia study, the oxygen saturations were ≥99% in 90% of subjects in the high 

concentration oxygen group. Because they were likely to be significantly hyperoxic, a 

progressive clinical deterioration in these patients may result in little or no change in 

oxygen saturation until a potentially life-threatening situation had developed.  In contrast, 

90% of patients in the titrated oxygen group required no supplementary oxygen at all, as 

their oxygen saturations remained >92%.  A clinical deterioration in this titrated group is 

likely to be recognised sooner through the detection of falling oxygen saturations, giving 

the option of increasing oxygen concentration as supportive care while more definitive 

intervention is undertaken.   



 159

 

The only clinical variable which was significantly altered was heart rate which 

demonstrated a greater reduction in the high concentration arm of the pneumonia study, a 

change that might be interpreted as a beneficial effect of oxygen therapy. However, a 

number of studies have demonstrated significant cardiovascular effects from hyperoxia, 

including a reduction in cardiac output and stroke volume, and increases in mean arterial 

pressure and mean systemic vascular resistance (Kenmure et al., 1968; Loeb et al., 1971; 

Mackenzie et al., 1964; Shillingford & Thomas, 1967; Sukumalchantra et al., 1969; 

Thomas et al., 1965). It is possible that the independent cardiovascular effects of 

hyperoxia were responsible for this finding. 

 

9.2.2 Comparison with previous studies 

There are no previous trials comparing high concentration with titrated oxygen in 

pneumonia; consequently the findings of this study are novel and represent the first 

evidence of the potential for hypercapnic respiratory failure with the use of high 

concentration oxygen in this group of patients.  

 

There has been only one previous randomised controlled trial comparing high and low 

concentration oxygen in acute severe asthma (G. J. Rodrigo et al., 2003). This study 

randomised 74 acute asthma patients to 100% or 28% oxygen for 20 minutes on arrival to 

the emergency department and prior to receiving any treatment for asthma. Their study 

endpoints were different, making it difficult to directly compare their results to this study. 
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However, the mean rise in PaCO2 of 2.7 mmHg in the Rodrigo paper is similar to the 

2.6 mmHg rise found in this study.  

 

The weaknesses of the Rodrigo study include a short duration of oxygen administration 

of 20 minutes, the absence of any concurrent asthma therapy, and the use of 100% 

oxygen. The data in this thesis confirm the Rodrigo findings of a physiologically 

significant increase in carbon dioxide, but because this study protocol mimics clinical 

practice more closely, it extends their results in a number of ways.  

 

First, most patients with acute severe asthma are administered bronchodilators 

concurrently with oxygen therapy from the time of arrival at hospital. My study protocol 

included routine asthma treatment according to international guidelines from the time of 

arrival, in conjunction with oxygen. Second, inspired oxygen concentrations of 100%, 

delivered using a non-rebreather mask in the Rodrigo study, are not routinely used in 

acute asthma. A flow of 8L/min, the recommended rate for the administration of 

bronchodilator drugs ("Current best practice for nebuliser treatment, British Thoracic 

Society," 1997), is a better reflection of clinical practice and delivers concentrations of 

inspired oxygen between 50 and 60% (Milross, Young, & Donnelly, 1989).  Third, 

patients with acute severe asthma are often in the Emergency department for a few hours, 

and if they receive uncontrolled oxygen therapy it may be given for significantly longer 

than 20 minutes.  
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With regard to the duration of oxygen treatment, of particular note is the finding that 

the proportion of subjects in the high concentration group with a significant rise in PtCO2 

of ≥4 mmHg increased progressively at 20, 40 and 60 minutes in both the asthma and the 

pneumonia studies. It is possible that further progressive increases in carbon dioxide may 

occur if high concentration oxygen is given for longer than an hour, particularly among 

asthma patients whose airflow obstruction and clinical status is not improving with 

pharmacotherapy. 

 

9.2.3  Methodological issues 

9.2.3.1 Study participants 

An important methodological issue in both studies was the need to exclude subjects that 

may have had alternative reasons for a rise in PtCO2 aside from either asthma or 

pneumonia. A particular effort was made to exclude COPD patients on the basis of either 

a clinical history or doctor’s diagnosis, or clinical suspicion of the investigator. In 

addition, access to hospital records which document previous admissions, out-patient 

consultations and spirometry where available, allowed further opportunities to exclude 

those with COPD. For the asthma study, a decision was made to exclude subjects over 65 

years on the basis that a number of older patients who self report a diagnosis of asthma 

actually have COPD.  

 

Because we did not perform spirometry on enrolment or prior to discharge in the 

pneumonia group, it is possible that some patients with COPD may have been included in 
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the study. However, in clinical practice when patients present with acute 

breathlessness and features consistent with pneumonia, spirometry is rarely done at the 

first point of oxygen therapy which is usually in the ambulance or Emergency 

Department, hence this study replicates what happens in clinical practice. It is likely that 

greater increases in PtCO2 may occur in an unselected population of patients with acute 

respiratory infection or wheeze, as such a group would include those with concomitant 

unrecognised COPD, or other disorders associated with chronic respiratory failure.  

 

Patients with other risk factors for oxygen induced carbon dioxide retention, including 

significant obesity, musculoskeletal disease and thoracic wall restriction, were also 

excluded, hence these disorders are unlikely to have contributed to the changes in PtCO2 

seen in the studies (Ellis, Grunstein, Chan, Bye, & Sullivan, 1988; Gay & Edmonds, 

1995; Milross et al., 1989; Nowbar et al., 2004; Quint, Ward, & Davison, 2007). 

  

In the pneumonia study, clinical rather than radiological inclusion criteria were used to 

select subjects. This was done to ensure that participants were enrolled before having 

received oxygen and antibiotics from clinical staff. In the ED there is often a delay after 

initial clinical assessment before an x-ray is performed in patients with suspected 

pneumonia, and oxygen therapy is usually administered to breathless patients on arrival 

rather than waiting for the results of chest radiography.   

 

About half of the patients in the pneumonia study had radiological confirmation of 

consolidation. However, studies using high resolution computed tomography suggest that 
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plain chest radiography commonly misses consolidation, particularly bilateral 

changes and upper lobe disease (Syrjala, Broas, Suramo, Ojala, & Lahde, 1998). 

Consequently the true rate of pneumonia in the group as a whole may have been up to a 

third higher. This may explain why the presence or absence of radiologically confirmed 

pneumonia made no difference to the risk of raised PtCO2 with high concentration 

oxygen therapy. 

 

Finally, the enrolment target in the asthma trial was not met, despite opening the study to 

recruitment in a second hospital and extending the study duration by six months. Data 

from the Wellington Hospital Emergency Department indicate that there was an 

approximately 20% drop in asthma presentations over the period of the study, for reasons 

that are unclear. The proportion of subjects with a significant increase in PtCO2 in the 

asthma study (44% in the high concentration group versus 19% in the titrated group)  

exceeded the estimates based on the randomised controlled trial used for the power 

calculation (G. J. Rodrigo et al., 2003). The magnitude of the effect found meant the 

result was still highly significant despite the reduction in numbers. 

 

Despite these aspects of subject recruitment, the enrolment criteria in both the asthma and 

pneumonia groups were broad, and hence both studies can be considered to have good 

external validity and generalisability. 
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9.2.3.2 Clinical measurements 

 

Early drafts of the study protocol for both the asthma and pneumonia trials specified an 

ABG at baseline and again at 60 minutes. However, during a short pilot of this protocol 

the first three potentially eligible asthma patients all refused a second ABG. In addition to 

what appeared to be a significant barrier to adequate recruitment, I considered that there 

were significant ethical issues in subjecting a large group of patients to an uncomfortable 

and potentially risky clinical procedure purely for research purposes. Although some 

Emergency Departments use venous blood gas assessments for estimation of PaCO2, this 

method still requires two separate venepunctures which would not be otherwise required 

in a large proportion of the potential subjects.  

 

There are two methods to non-invasively estimate PaCO2. End-tidal carbon dioxide 

monitors are available in many emergency departments and are primarily used to detect 

the accurate placement of endotracheal tubes. However, in terms of their use in 

estimating PaCO2, the major limitation with capnography is that it becomes inaccurate in 

the setting of many pulmonary diseases, particularly when there is changing ventilation 

perfusion mismatch (S. Y. Liu, Lee, & Bongard, 1992; Sanders et al., 1994; Stock, 1988). 

By contrast, transcutaneous carbon dioxide monitor technology has advanced to the 

extent that its accuracy has been demonstrated in a variety of settings including healthy 

subjects (Eberhard, Gisiger, Gardaz, & Spahn, 2002; Fuke et al., 2009), AECOPD (Cox 

et al., 2005; Storre, Steurer, Kabitz, Dreher, & Windisch, 2007), sleep disorders 

(Maniscalco, Zedda, Faraone, Carratu, & Sofia, 2008; Rosner, Hannhart, Chabot, & Polu, 
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1999) and critical illness (Bendjelid et al., 2005; Rodriguez, Lellouche, Aboab, 

Buisson, & Brochard, 2006; Senn, Clarenbach, Kaplan, Maggiorini, & Bloch, 2005). 

There has also been a recent study demonstrating the accuracy of a transcutaneous device 

in a mixed group of 51 patients presenting to an ED (McVicar & Eager, 2009).  

 

The decision was made to use transcutaneous monitoring to assess the main outcome 

measure in these studies, as it allowed continuous CO2 monitoring without the discomfort 

of repeated arterial puncture or the risk of hand ischemia associated with an indwelling 

radial artery cannula. The TOSCA 500 device (Linde Medical Sensors AG, Basel, 

Switzerland), was selected because of its compact design, portability and ease of use, 

(Figure 9.1).  

 

Figure 9.1: The display of a TOSCA 500 transcutaneous carbon dioxide monitor. 
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However, there are a number of factors that can impact on the accuracy of transcutaneous 

carbon dioxide monitoring (Kagawa & Severinghaus, 2005). First, correct placement of 

the probe is important. The skin of the earlobe must be cleaned with an alcohol swab and 

allowed to dry, then the probe is attached using attachment clips and contact gel supplied 

with the device. The entire probe must have contact with the gel because the presence of 

air between the probe and the skin significantly decreases the quality of the signal. 

Second, reliable recordings depend on adequate arterialisation of the capillaries 

underlying the probe. This is achieved by setting the probe to heat to 45°C initially before 

dropping to a temperature of 42°C to maintain a constant signal. Using this method the 

time taken for adequate arterialisation, and consequently a reliable and accurate 

percutaneous carbon dioxide signal, is stated by the manufacturers to be approximately 

five minutes. In these studies a longer warm up period of 10 minutes was allowed, and all 

tracings were deemed to be satisfactory and stable at T=0 when the oxygen regimen was 

started. In vitro response times for this device are typically less than 50 seconds and in 

vitro drift is less than 0.5% per hour (Bendjelid et al., 2005; Cox et al., 2005; Eberhard et 

al., 2002). 

 

To ensure the accuracy of the device it regularly cleaned and checking, and the probe 

membrane was replaced every 14 days as per the manufacturer’s guidelines. All research 

fellows involved in the recruitment of patients into the study were fully trained in the 

correct use of the device. As noted in chapter 7, the accuracy of the TOSCA 500 was 

validated in a sample of acute asthma and pneumonia subjects, and a Bland Altman 



 167

analysis indicated minimal bias and acceptable limits of agreement which exceed 

those of recent similar studies (Cox et al., 2005; Maniscalco et al., 2008; McVicar & 

Eager, 2009).  

 

 

9.2.3.3 Potential sources of error and bias 

 

Any measurements in a clinical study can introduce error unless the methods used are 

both valid and reliable. Validity refers to the accuracy with which a tool measures the 

“true” value of a clinical variable. In these studies, it is represented by how closely the 

PtCO2 monitor is able to assess the true arterial partial pressure of carbon dioxide. As 

reported in Chapter 7, a validation study of the TOSCA 500 monitor indicated minimal 

bias and satisfactory validity. Reliability refers to the degree of agreement between 

different measurements on the same patient at different times using the same tool. In this 

case the reliability of the TOSCA 500 was assessed using two consecutive measurements 

by the same investigator on the same subject at different times, and analysis showed 

excellent agreement with an intra-class correlation coefficient of 0.89.  

 

Bias can be introduced at any stage during the process of enrolment, randomisation and 

allocation of study subjects to a treatment group. The low likelihood of enrolment bias in 

these studies is demonstrated by the subject flow diagrams in Chapter 8; low numbers of 

patients either refused to take part or did not meet inclusion criteria, and in the asthma 



 168

study exclusion was only due to insufficient airflow obstruction. Additionally there 

were low numbers of subject withdrawals in both studies.  

 

Another source of enrolment bias can occur if the investigator is aware of, or can predict, 

what the next treatment allocation will be, as it may influence their decision on whether 

to enrol the next potential participant. Allocation concealment, a critical part of the 

randomisation process, helps to avoid this. Randomisation in these studies was by way of 

a computer generated schedule supplied by a statistician. The schedule was sent to a third 

party, who had no involvement in the conduct of the study, and embedded into a 

Microsoft Access database purpose designed so that the schedule was concealed from 

those participating in the conduct and analysis of the studies. The investigators accessed 

the database via a secure login code, and the allocation of a participant to a treatment 

group was only revealed after the decision to enrol and informed consent was completed 

and the patient details entered.  

 

Finally, the issue of blinding is important in randomised controlled trials, particularly if 

subjective observations are used as outcome measurements, as it significantly reduces the 

likelihood of observer or subject bias. By necessity, the studies in this thesis were not 

blinded. Not only was there a clinical and ethical requirement for the investigator to have 

knowledge of the oxygen saturations in order to adjust oxygen therapy in the titrated 

group, but the fact that titrated oxygen is given using a variety of delivery devices means 

that it could not be concealed from the patient.  However, the primary outcome variable 

in these studies, PtCO2 displayed on a monitor, was sufficiently objective to make 
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significant observation bias unlikely. Subject bias was possible in these studies as 

participants were informed of the purpose of the study at enrolment and may have had an 

understanding of how to voluntarily influence their own PtCO2. However, this seems 

unlikely; the monitor display was positioned out of view of the subjects and they were 

given no explanation of the potential reasons for carbon dioxide changes. 

 

9.2.4 Interpretation and mechanisms 

There are four potential physiological explanations for the oxygen induced increases in 

PtCO2 shown in these studies:  

1. The Haldane effect 

2. Decreased minute ventilation 

3. Increased shunt fraction 

4. Increased VD/VT as a result of the release of HPV 

 

The Haldane effect is due to a physiological property of haemoglobin molecules. A 

conformational change occurs when they become oxygenated in the pulmonary 

circulation which results in a release of carbon dioxide, facilitating gas exchange 

(Christiansen, Douglas, & Haldane, 1914; Tyuma, 1984). Because the administration of 

oxygen increases the amount of fully saturated haemoglobin, this could result in an 

increase in the release of transported carbon dioxide from those molecules, and hence 

theoretically the Haldane effect could be responsible for some of the effects induced by 

oxygen. A number of investigators have attempted to quantify the contribution of the 
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Haldane effect to arterial and venous partial pressures of carbon dioxide, with limited 

success. However, clinical studies and computer models have estimated that the effect is 

small, in the order of 1-2 mmHg increases in PaCO2 following oxygen administration  

(Lee & Read, 1967; Lenfant, 1966).  

 

Minute ventilation was not formally measured in the ED based studies; hence it is 

possible that the increases in PtCO2 were a result of oxygen administration suppressing 

the hypoxic drive to breathe. However, previous studies in acute and chronic asthma have 

failed to demonstrate any significant decline in minute ventilation when high 

concentration oxygen is delivered (Ballester et al., 1989; Corte & Young, 1985; 

Rodriguez-Roisin et al., 1989). Additionally, the majority of subjects in both the titrated 

and high concentration groups of both studies were hypocapnic at baseline and only 

mildly hypoxic, hence it is unlikely that subjects in either group were dependant on a 

hypoxic drive to breathe. 

 

The presence of right to left shunt can result in increased alveolar dead space and 

therefore increased VD/VT (Mecikalski, Cutillo, & Renzetti, 1984). However, previous 

studies have demonstrated that there is minimal change in shunt when patients breathe 

100% oxygen in COPD, asthma and pneumonia (Ballester et al., 1990; Corte & Young, 

1985; Gea et al., 1991; Roca et al., 1988; Wagner et al., 1977)(Corte 1985, Roca 1988, 

Ballester 1990, Gea 1991). Consequently it is unlikely that increasing shunt is responsible 

for the results observed in these studies. 
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It is possible that the increases in PtCO2 seen in the high concentration groups simply 

reflect a more rapid clinical resolution of their underlying condition and a consequent 

shift of their baseline hypocapnia towards the normal range as they recover. However, 

because the patients were randomised, this mechanism implies that there must be a 

specific beneficial therapeutic effect of high concentration oxygen on the underlying 

disease. This is not likely in the case of patients with suspected pneumonia, and has not 

been demonstrated previously in acute asthma. Moreover, oxygen has not been 

demonstrated to relieve breathlessness in non-hypoxaemic patients (Clemens & Klaschik, 

2007; Gallagher & Roberts, 2004; Philip et al., 2006). This explanation is also 

contradicted by the fact that there were no significant changes in other clinical variables 

between the two oxygen groups over the course of oxygen treatment, aside from a lower 

heart rate in the pneumonia study. If high concentration oxygen were to hasten the 

clinical improvement in asthma one would expect to see differences between the groups 

in FEV1 or respiratory rate. However, results show that in the case of the asthma study 

there was no significant difference in the change in FEV1 during the study between the 

treatment groups.  

 

The possibility of asthma therapy, specifically bronchodilator treatment, contributing to 

changes in gas exchange must also be considered. Bronchodilator administration is 

known to adversely affect V 
•
 /Q

 •
  mismatch when given either intravenously or by 

nebuliser (Ballester et al., 1989; Field, 1967; Harris, 1972; Palmer & Diament, 1969). 

However, the randomisation of subjects and the standardisation of asthma treatment 
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across all participants mean that any effect of bronchodilators should have occurred 

equally in both groups. 

 

Consequently the main underlying mechanism for the PtCO2 elevation demonstrated in 

these studies is likely to be worsening V 
•
 /Q

 •
 mismatching as a result of the release of 

hypoxic vasoconstriction and a consequent increase in physiological dead space. These 

physiological considerations are discussed further in section 9.3. 

9.3 A study of the physiological response to oxygen in chronic asthma 

9.3.1 Key findings 

This study has demonstrated that breathing 100% oxygen results in an increase in PtCO2 

in subjects with chronic asthma. There was little difference in the magnitude of the 

increase or the mechanism when compared to subjects with COPD, and this is in contrast 

to the lack of change in normal controls. The increase in PtCO2 seems likely to be related 

to a change in VD/VT which increased in both asthma and COPD patients but not in the 

normal controls. By contrast there was minimal change in minute ventilation in any of the 

three groups. This indicates that the most likely mechanism of an oxygen induced 

increase in PaCO2 in asthma is worsening of ventilation-perfusion mismatching due to the 

release of hypoxic pulmonary vasoconstriction. 
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9.3.2 Comparison with previous studies 

This is the first controlled trial to measure the simultaneous response of carbon dioxide, 

minute ventilation and VD/VT to 100% oxygen in a well defined group of asthma patients, 

in the absence of confounding factors such as changes in posture and administration of 

vasodilator or bronchodilator drugs. The findings of this study are in line with previous 

work on the effects of oxygen on gas exchange in patients with asthma (Ballester et al., 

1989; Ballester et al., 1990; Corte & Young, 1985; Field, 1967; Rodriguez-Roisin et al., 

1989). It confirms that an increase in PaCO2 occurs, and establishes that the main 

mechanism is an increase in physiological dead space and not a decrease in minute 

ventilation.  

 

9.3.3 Methodological issues 

9.3.3.1 Study participants 

The participants were selected in an attempt to ensure that no subjects in the asthma 

group had COPD, as that might have confounded any responses to oxygen seen. For this 

reason smokers were excluded, and an upper age limit of 65 years was used, given that 

patients over this age who self report a diagnosis of asthma have a higher likelihood of 

having COPD.  

 

In order to replicate the effect of oxygen on patients with acute asthma, the chronic stable 

asthma patients needed to have at least moderately severe airflow obstruction, and for this 
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reason there was a requirement to have a pre-bronchodilator FEV1 of less than 60% 

predicted. 

 

The other consideration in studying chronic asthma patients to replicate responses of 

those with acute exacerbations is whether the underlying gas exchange abnormalities are 

sufficiently similar to make them a valid study group. Previous work using MIGET has 

confirmed that although the V 
•
 /Q

 •
 dispersion patterns in patients with chronic asthma are 

narrower than in those with acute exacerbations, reflecting better compensation by HPV, 

the V 
•
 /Q

 •
  changes that occur when oxygen is administered are the same (Ballester et al., 

1990; Rodriguez-Roisin & Roca, 1994). 

 

9.3.3.2 Clinical measurement 

 

PaCO2 was estimated using a TOSCA transcutaneous CO2 monitor, and PtCO2 was used 

to calculate the VD/VT according to the Bohr-Enghoff equation.  This device allows 

continuous PtCO2 monitoring without the discomfort of repeated arterial blood gas 

sampling. The issues regarding its accuracy and repeatability are discussed above. 

 

The other variable required to calculate the VD/VT is the mixed expired carbon dioxide 

partial pressure. The COSMO Respiratory Profile Monitor uses a real time infra-red gas 

analyser which continuously measures the partial pressure of expired CO2 and combines 

this with flow recordings to express the data in the form of volumetric capnography. The 
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volume weighted three minute average expired CO2 is updated every 15 seconds and 

mixed expired CO2 is calculated by dividing the volume of CO2 for a one minute interval 

by the total expired volume for the same interval. This technique is accepted as the 

standard approach to the assessment of expired CO2 for the purposes of dead space 

calculations, and has been shown to be equivalent to older methods such as Douglas Bag 

collection of expired gases (Lum, Saville, & Venkataraman, 1998; Mackinnon, Houston, 

& McGuire, 1997).   

 

Minute ventilation is calculated by a flow sensor in the pneumotachygraph of the 

COSMO Respiratory Profile Monitor plus. It continuously measures flow and pressure 

across the inspiratory/expiratory port of the mask mouth piece. Minute ventilation is 

calculated by the rolling average tidal volume divided by respiratory rate over two 

minutes. Respiratory rate is measured by the flow meter and computed as an eight breath 

moving average updated breath to breath. These devices have established accuracy in 

clinical and research settings (Castle, Dunne, Mok, Wade, & Stocks, 2002). 

 

Both the infra-red gas analyser and the flow meter were regularly calibrated as part of 

routine maintenance of the device. 

 

The multiple inert gas elimination technique (MIGET) is considered the gold standard for 

measuring ventilation and perfusion matching, however it has the drawback of being 

highly invasive, requiring both arterial and central venous vascular access. Although 

MIGET can measure precise ventilation perfusion ratios, it is better suited to studies 
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where there is uncertainty about the types of V 
•
 /Q

 •
  changes that will be found, for 

example it is able to measure the presence of a shunt fraction. However, previous work 

has shown shunt to be negligible in both asthma and COPD and that changing VD/VT is 

the dominant gas exchange abnormality (Ballester et al., 1989; Ballester et al., 1990; 

Barbera et al., 1997; Roca et al., 1988). Consequently a non-invasive method was used to 

determine the direction and magnitude of VD/VT ratios as a marker of changes in V 
•
 /Q

 •
 .  

 

Although in clinical practice it would be uncommon to administer 100% oxygen to 

patients with asthma, this oxygen regime was used to ensure hyperoxia was achieved and 

to maximize the potential to determine an effect during the 20 minutes of administration.  

It is possible that the magnitude of the increase in PtCO2 observed may have been less 

with lower oxygen concentrations.   
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Chapter 10: Summary and conclusions 

 

The studies in this thesis show that uncontrolled high concentration oxygen causes an 

increase in PaCO2 in a significant proportion of patients presenting to the Emergency 

Department with severe asthma and suspected pneumonia. Additionally, a controlled trial 

of oxygen in chronic asthma shows that the main mechanism of carbon dioxide retention 

is similar to that observed in COPD; namely an increase in physiological dead space 

rather than a change in minute ventilation. In terms of potential harms to the patient, in 

addition to the hyperoxia induced gas exchange abnormalities demonstrated in these 

studies there is also the potential for hyperoxia to mask the ability to detect a clinical 

decline with pulse oximetry. 

 

These findings extend the existing literature showing potential harm in the routine use of 

high concentration oxygen in a number of respiratory conditions for which it was 

previously considered safe and even desirable. There is now data to suggest that 

inappropriate high concentration oxygen therapy may have adverse effects on gas 

exchange across a wide range of respiratory conditions including stable COPD (Dick et 

al., 1997; Sassoon et al., 1987), exacerbations of COPD (Aubier, Murciano, Milic-Emili 

et al., 1980; Donald, 1949; Robinson et al., 2000; Westlake et al., 1955), asthma (Chien et 

al., 2000; Field, 1967; G. J. Rodrigo et al., 2003), obesity hypoventilation syndrome 
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(Barrera, Hillyer, Ascanio, & Bechtel, 1973; Said & Banerjee, 1963), and diffuse 

pulmonary fibrosis or infiltration (Said & Banerjee, 1963).  

 

In October 2008 the British Thoracic Society (BTS) published the first ever 

comprehensive guidelines on the use of oxygen therapy for acute conditions in adult 

patients (O'Driscoll, Howard, & Davison, 2008). After an extensive review of the 

literature, and the production of a document running to around 60 pages, the vast majority 

of their recommendations had to be based on weak evidence, often at the level of expert 

opinion. As the authors’ state in the executive summary “For most of the topics covered 

by the guideline there were either no randomised trials or just a handful of observational 

studies”. Despite this, the guideline writing group took the perspective that a lack of 

evidence for any beneficial effects of routine high concentration oxygen should move 

practice towards a more cautious approach, and away from current opinion which 

assumes safety and benefit with oxygen therapy. Consequently, the general theme of the 

guideline can be summarised briefly: oxygen should only be given to patients with 

evidence of hypoxaemia and should be administered and monitored so that oxygen 

saturation stays within the normal range but no higher.  

 

For most acutely ill patients with cardio-respiratory disease the BTS guidelines 

recommend a target oxygen saturation range of 94-98%. For those at risk of hypercapnic 

respiratory failure (such as patients with COPD, morbid obesity or chest wall restriction) 

a lower target range of 88-92% was recommended. However, for patients with critical or 

life threatening illness such as cardiac arrest, shock, sepsis or major trauma, the guideline 
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authors were more conservative and advised the routine use of high concentration 

oxygen through a reservoir mask at 15L/min. Again, the evidence grade for this 

recommendation was weak with few studies demonstrating a benefit of routine high flow 

oxygen in critical illness. In fact there is evidence to suggest that the presence of 

hyperoxia in the post-cardiac arrest setting is associated with a worse outcome. A recent 

multi-centre cohort study pooled data from over 6000 post-cardiac arrest patients. They 

demonstrated that hyperoxia (defined as a PaO2 of > 300 mmHg) was associated with a 

higher mortality rate compared to both normoxic and hypoxic patients, with an odds ratio 

for death of 1.8 (CI, 1.5 – 2.2) after adjustment for pre-specified confounders (Kilgannon 

et al., 2010). In addition, data from animal models supports the notion that hyperoxia 

during and after cardiac arrest is detrimental, with studies demonstrating a decrease in 

brain function and less neurological recovery (Y. Liu et al., 1998; Richards, Fiskum, 

Rosenthal, Hopkins, & McKenna, 2007; Vereczki et al., 2006). As in the case with 

coronary blood flow, these adverse effects may represent vasoactive changes associated 

with hyperoxia, but there is also concern that reperfusion injury and an increase in 

oxygen free radicals may play a role.  

 

The BTS guidelines have prompted a change in the recommendations contained in some 

disease-specific guidelines. For example, the BTS guidelines for pneumonia published in 

2001 recommended continuous oxygen therapy for all patients with hypoxaemia, 

hypotension, metabolic acidosis, or a respiratory rate of >24 breaths/min ("BTS 

Guidelines for the Management of Community Acquired Pneumonia in Adults," 2001). 

This was modified in 2009 to state that “patients should receive oxygen therapy with 
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monitoring of oxygen saturations and inspired oxygen concentration with the aim to 

maintain arterial oxygen saturation 94–98%.” (Lim et al., 2009) 

 

In summary then, the BTS guideline for emergency oxygen use in adults is a significant 

advance, in that it clearly documents the currently available evidence, or lack of it, and 

moves clinical practice closer to what could be considered a safe approach. However 

there is also a clear need for further research to make these recommendations more 

robust, and until that occurs it is likely that widespread adoption of the guideline 

principles will be slow.  

 

The studies in this thesis provide strong evidence that hyperoxia in patients with 

suspected pneumonia or severe asthma provides no clinical benefit and in fact is 

potentially harmful. What other areas require further research? Studies assessing the role 

of oxygen in acute cardiovascular disease are a priority, particularly its use in acute 

coronary syndromes and myocardial infarction. As noted in chapter one, there are a 

number of physiological studies which show the potent vasoactive properties of 

hyperoxia, most notably that it causes a significant decrease in coronary blood flow 

(Farquhar et al., 2009). The only randomised controlled trial of oxygen use in myocardial 

infarction showed a non-significant three-fold  increase in mortality with routine high 

flow oxygen, and elevated cardiac enzymes suggesting larger infarct size (Wijesinghe et 

al., 2009). Another randomised controlled trial of high flow versus titrated oxygen in 

myocardial infarction is urgently needed. This would require a multicentre approach, as 

large numbers of subjects would be needed to detect changes in important outcomes such 
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as mortality. It is critical that the cardiology community collaborate on this as a 

research priority. In terms of acute respiratory disease, studies of high concentration 

oxygen use in AECOPD are required, particularly during the pre-hospital and ED stages 

of care. There are data from retrospective reviews and audits that suggest worse outcomes 

with over-oxygenation but there is a lack of high quality prospective data (Denniston, 

O'Brien, & Stableforth, 2002; Durrington, Flubacher, Ramsay, Howard, & Harrison, 

2005; Joosten, Koh, Bu, Smallwood, & Irving, 2007; Wijesinghe et al., 2010). There also 

need to be further studies investigating the best approach to oxygen use in other acute 

respiratory diseases such as pulmonary embolism. Finally, the BTS recommendation that 

oxygen at 15L/min should be administered in cardiac arrest, severe sepsis and life 

threatening illness needs to be addressed. Although it can be problematic to undertake 

research in patients who are critically ill, the logistical concerns is this case are 

outweighed by the clinical and ethical imperative to accurately define the role of oxygen 

in these situations.  

 

Oxygen therapy has evolved significantly over the 100 years since it was first introduced 

into routine clinical practice. Although initially there was a degree of scepticism about its 

value, there quickly developed an acknowledgement of its beneficial effect in 

hypoxaemic patients. Unfortunately, for a variety of reasons, the role of oxygen in the 

management of acute disease became ever broader and its use progressively moved away 

from an established evidence base. However, in recent years there has been a shift in 

clinical opinion, reinforced by the BTS guideline publication, towards a more cautious 

approach. Although further research is required, we can now state with some confidence 
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that there is likely to be little role for the routine use of high concentration oxygen in 

the vast majority of acute medical illnesses. The wide availability of pulse oximetry in 

pre-hospital and hospital settings means there is no reason why oxygen delivery cannot 

be titrated to target saturation levels. This approach increases the likelihood of patients 

receiving the benefits of oxygen therapy while reducing the potential for harm (Thomson, 

Webb, & Maxwell, 2002). 
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