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Abstract

Air traffic flow management seeks to extenuate delay created by congestion in the air

traffic control system while ensuring equitable access to air transportation system re-

sources. Mathematical programming formulations of the air traffic flow management

problem typically minimize delay costs, ignoring evidence that equity is a critical

concern in practice. Recently, authors have adjusted classical formulations, adding

terms to the objective function to penalize various results deemed unfair. This work

reformulates the air traffic flow management problem as a formal multiobjective

optimization problem. We are able to find all Pareto-optimal solutions trading off

efficiency and equity, without having to select and parameterize a model of the costs

of inequity.

Key words: air traffic flow management, multiobjective optimization, equity, air

traffic control.

1 Introduction

There often arise situations where the numbers of aircraft that are scheduled to use

certain airports or fly through certain sections of airspace over five to fifteen minute

periods of time cannot be safely and efficiently accommodated. The numbers of

aircraft that can safely land and take off at airports are largely determined by

visibility, wind, and weather conditions that can change relatively rapidly. It is

worth noting that in the United States air carriers often set schedules based on

assumed optimal weather conditions. In certain busy sections of airspace, local

demand for air traffic control services can threaten to outstrip the safe and efficient



operating capacity of the system. As past researchers have noted, this happens in

western Europe “on an almost routine basis” (Lulli and Odoni 2007). Air traffic

flow management (ATFM) involves strategically altering flight schedules to avoid

and mitigate local system capacity deficits.

Ground delay programs (GDPs) are commonly used tools of air traffic flow man-

agement. During GDPs, flights destined for capacity constrained airports are delayed

on the ground at their origin airports prior to take off. The costs, per unit time,

of delaying a flight on the ground are significantly lower than the costs of delay-

ing that same flight once airborne (Bertsimas and Patterson 1998). Airspace-flow

programs (AFPs) control the rate at which aircraft arrive in capacity constrained

sections of airspace. Setting appropriate GDPs and AFPs to avoid multiple poten-

tial local air traffic control demand-capacity imbalances across a network is clearly

a challenging task. ATFM decision making today follows heuristic procedures, but

past researchers have noted that “computer-based decision support systems might

improve ATFM performance significantly” (Lulli and Odoni 2007).

There have been significant research efforts formulating and solving various math-

ematical programming formulations of ATFM problems. Much of the available re-

search focuses on managing air traffic arriving at a single airport. Considering ca-

pacity constraints associated with multiple airports and sections of airspace, while

allowing for en-route speed adjustments complicates the problem. The most com-

monly cited formulation of “the air traffic flow management problem” (Bertsimas

and Patterson 1998) considers such a problem. Stochastic formulations have ad-

dressed the issue of uncertainty in airspace and airport capacities. Researchers have

extended formulations to capture the dependence between the arrival and depar-

ture capacities of airports, as well as to consider the possibility of rerouting aircraft.

Many researchers have investigated the computational performance of various for-

mulations and solution strategies for ATFM problems (Bertsimas and Patterson

1998; Hoffman and Ball 2000).

The “fundamental principle” of air traffic flow management in the United States

today is Ration by Schedule (RBS) (Gupta and Bertsimas 2010). According to RBS,

aircraft are assigned slots at a capacity constrained airport according to a schedule

that preserves the order with which the aircraft were originally scheduled to land.

The Collaborative Decision-Making (CDM) paradigm, also in widespread use today,

holds that ATFM decisions are made with significant authority and responsibility

given to individual air carriers.

Practical air traffic flow management has been noted to require “a careful bal-

ance between equity and efficiency” (Fearing et al. 2009). Equity in this case refers

to ensuring that the costs incurred as a result of ATFM activities do not dispropor-

tionally fall on certain airlines or flights. It is worth noting that the twin goals of

ATFM are not typically complimentary; there is a “fundamental conflict that may

arise between the objectives of efficiency and equity” (Lulli and Odoni 2007). There

is a significant gap in the research literature, particularly in the area of network-level

air traffic flow management, regarding the lack of consideration of equity as a goal of

ATFM activities. It has been suggested that this gap is a key reason past research

has not been fully adopted in practice (Gupta and Bertsimas 2010).

There have been recent efforts to bridge the gap between research and practice



identified above. One group of researchers has developed a ‘fairness metric’ to es-

timate the difference between a given schedule and the first-scheduled, first-served

alternative schedule (Fearing et al. 2009). The authors have gone on to incorporate

their fairness metric in a mathematical programming formulation of the air traf-

fic flow management problem. Terms penalizing unfair outcomes are weighted and

added to the traditional delay cost objective function of air traffic flow management

problems. A related research effort proposes an alternate fairness metric, and ex-

tends the analysis by allowing airlines to swap landing slots if desired (Gupta and

Bertsimas 2010). Again, the work focuses on bringing consideration of equity into

a classical air traffic flow management problem formulation. Again a term is added

to the delay cost minimizing objective function, weighted to reflect the importance

of equity in relation to delay costs.

In this work we reformulate the air traffic flow management problem as a formal

biobjective optimization problem. There has not been a formal multiobjective for-

mulation of an air traffic management problem before, to the best of our knowledge,

although previous authors have used the language of multiobjective optimization.

One paper notes “since there will typically be a trade-off between aggregate system

delay and any flight-based fairness criterion, [a new] formulation should essentially

consider a bi-criterion approach, enabling the efficient study of the trade-off curve

between the two” (Fearing et al. 2009). Another paper notes that in the United

States “a primary objective of the [Federal Aviation Administration’s Air Traffic

Management] functions is provide fair and equitable access” (Vossen et al. 2010).

There are several reasons why a formal bicriteria approach that treats equity

and efficiency objectives separately may be preferable to recently introduced formu-

lations based on objective functions that minimize a weighted summation of different

objective functions.

Inefficiency and inequity metrics are fundamentally incompatible, and it’s not

clear what a weighted summation of such terms represents. Decision makers must

select and then parameterize a model combining various incompatible terms when

using a weighted-summation approach. The selection of the ‘optimal’ solution

will be very sensitive to the weights used when combining the different objectives,

yet decision makers will typically have little confidence in a given set of weights

(Ehrgott 2005). Arguably the biggest problem associated with weighted-summation

approaches is that such approaches are only able to generate a certain class of ‘op-

timal’ solutions: those that are found on the boundary of the convex hull of the

feasible region of solutions in the multi-dimensional space of the various objective

functions (Ehrgott 2005). There exists no intuitive reason for decision makers to

restrict themselves to consideration of such solutions. Researchers investigating de-

cision making in complex situations often look for Pareto-optimal policies (Ehrgott

2005). In the context of the air traffic flow management problem, a policy is Pareto

optimal if no distinct policy exists that performs better with regards to either equity

or efficiency and at least as well with regards to the other objective. The approach

introduced in this paper, unlike prior work, is able to identify all Pareto-optimal

solutions to the air traffic flow management problem.



2 Mathematical formulations

2.1 Delay cost minimization

The approach introduced in this paper builds off prior work, particularly the for-

mulation of “the air traffic flow management problem” of (Bertsimas and Patterson

1998). That formulation is introduced here, modified somewhat where helpful. In

this formulation, a set of flights F is to be scheduled so as to avoid local system

capcity deficits. Each flight f in F has a flight plan consisting of Nf ordered el-

ements including an origin airport, sections of airspace sectors, and a destination

airport. The flight plans are referenced two separate ways. The unordered set ρf
includes the Nf elements in flight f ’s flight plan, while the function P is used to

keep track of the trajectory of the aircraft. For any flight f , P (f, 1) evaluates to

the flight’s origin airport, P (f,Nf ) the destination airport, and P (f, n) terms (for

values of n which are integers between 1 and Nf ) the airspace sectors the flight will

travel through arranged in the order with which the sections will be flown through.

Capacities are described here by first discretizing time and then noting the num-

bers of aircraft that can land at and take off from each airport, as well as fly through

each airspace sector, in discrete time slices. Note that the formulation is ideal for

considering problems like fog reducing airport throughput at San Francisco Inter-

national Airport during certain (somewhat predictable) hours of the morning. Let

T be the set of all time slices considered, A the set of all airport considered, and S
the set of all sectors considered. For any airport k in A and time slice t in T , Dk,t

and Ak,t are defined as the airport departure and arrival capacities. Similarly Sk,t is

the capacity of sector k (k ∈ S) during time t (t ∈ T ). Let Tf,k be the set of times

when flight f may be scheduled to depart from, fly through, or land at k when k

is flight f ’s origin airport, a sector within f ’s flight plan, or f ’s destination airport,

respecitvely.

The formulation of (Bertsimas and Patterson 1998) is innovative in its definition

of decision variables. xf,k,t terms are binary decision variables that are to take on

a value of 1 if and only if flight f in F has departed from/flown through/arrived

at origin airport/airspace sector/destination airport k before the end of time slice t.

Certain dummy variables are helpful when setting up the problem. For all flights f

in F and for all k in ρf , xf,k,t terms are set to 0 for all t ≤ minTf,k − 1 and set to 1

for all t ≥ maxTf,k. Given these definitions, the expression xf,k,t−xf,k,t−1 is 1 if and

only if flight f has departed from / flown through / arrived at k during time slice

t. Similarly, the expression xf,P (f,n),t− xf,P (f,n+1),t is 1 if and only if flight f is in/at

P (f, n) during time slice t. Furthermore, the expression
∑

t∈Tf,k

t(xf,k,t − xf,k,t−1) will

yield the time slice when flight f has departed from / flown through / arrived at k.

Let cgf be the cost of delaying flight f on the ground (before the flight takes off)

per discrete unit of time. Let caf be the unit cost of delaying flight f once it is in

the air. Assume the scheduled (and earliest possible) departure and arrival times

of flight f are given as df and af . Then the total cost incurred holding aircraft at

origin airports is
∑
f∈F

cgf

[ ∑
t∈Tf,P (f,1)

t(xf,P (f,1),t − xf,P (f,1),t−1)− df
]
. It is a bit trickier

to determine the airborne delay cost since it is essential not to (re)count ground de-



lays. The total airborne delay cost is
∑
f∈F

caf

[ ∑
t∈Tf,P (f,Nf )

t(xf,P (f,Nf ),t−xf,P (f,Nf ),t−1)−∑
t∈Tf,P (f,1)

t(xf,P (f,1),t − xf,P (f,1),t−1) − (af − df )
]
. The objective function of the air

traffic flow management problem, as defined in (Bertsimas and Patterson 1998),

minimizes the sum of delay costs, as in expression (1) below.

min
∑
f∈F

[
caf

( ∑
t∈Tf,P (f,Nf )

t[xf,P (f,Nf ),t − xf,P (f,Nf ),t−1]− af
)

+

(cgf − caf )
( ∑
t∈Tf,P (f,1)

t[xf,P (f,1),t − xf,P (f,1),t−1]− df
)]

(1)

It is worth noting that the above expression references a number of model param-

eters and dummy variables. Taking out such references actually yields a simpler,

and in some ways more intuitive, objective function. The refined objective function,

which to this author’s knowledge has not appeared in the research literature to date,

is shown as expression (2) below.

min
∑
f∈F

[
(−caf )

∑
t∈Tf,P (f,Nf )

xf,P (f,Nf ),t + (caf − c
g
f )

∑
t∈Tf,P (f,1)

xf,P (f,1),t

]
(2)

Given an initial solution, setting one additional xf,P (f,Nf ),t decision variable to 1

implies reducing f ’s flight time one time unit and thus reduces delay costs by caf .

Setting one additional xf,P (f,1),t term to 1 implies scheduling flight f to take off from

its origin airport one time unit earlier. If the arrival time remains unchanged, the

flight incurs one less unit of time ground delay but one more unit of time airborne

delay and total costs go up by (caf − c
g
f ).

Airport and sector capacity constraints, modified to match this paper’s termi-

nology, are presented in expressions (3), (4), and (5) below.∑
f :P (f,1)=k

(xf,k,t − xf,k,t−1) ≤ Dk,t ∀k ∈ A, t ∈ T (3)∑
f :P (f,Nf )=k

(xf,k,t − xf,k,t−1) ≤ Ak,t ∀k ∈ A, t ∈ T (4)∑
f :P (f,i)=k,i<Nf

(xf,k,t − xf,P (f,i+1),t) ≤ Sk,t ∀k ∈ S, t ∈ T (5)

In order for the decision variables to be consistent, connectivity constraints are

required. For example, if an xf,k,t−1 term is set to 1, then xf,k,t must also be set to

1. This is known as connectivity in time as is captured by expression (6) below.

xf,k,t − xf,k,t−1 ≥ 0 ∀f ∈ F, k ∈ ρf , t ∈ Tf,k (6)

Similarly, the variables must be consistent in terms of individual aircraft trajec-

tories. Let βf,k be the minimum number of time units it takes flight f to pass

through k. Expression (7) below captures connectivity between sectors.



xf,P (f,i),t − xf,P (f,i−1),t−βf,P (f,i−1)
≤ 0 ∀f ∈ F, 2 ≤ i ≤ Nf , t ∈ Tf,P (f,i) (7)

Indivual aircraft will actually fly multiple flights over the course of a day. Delays

propogate as the day goes on. It is important to capture this effect to describe a

realistic instance of an air traffic flow management problem. Let C be the set of

all pairs of flights (f1, f2) where an individual aircraft flies flight f2 immediately

following flight f1. χf2 is the (given) minimum time it takes to turnaround the air-

craft prior to flight f2. Then the so-called airport connectivity constraints can be

represented as in expression (8).

xf2,P (f2,1),t − xf1,P (f1,Nf1
),t−χf2

≤ 0 ∀(f1, f2) ∈ C, t ∈ Tf2,P (f2,1) (8)

The final constraint that our decision variables be binary is respresented by ex-

pression (9).

xf,k,t ∈ {0, 1} ∀f ∈ F, k ∈ ρf , t ∈ Tf,k (9)

Objective function (2) together with constraint sets (3) through (9) defines the

base air traffic flow management problem, as proposed and studied previously (Bert-

simas and Patterson 1998).

2.2 Inequity minimization

The formulation of the air traffic flow management problem proposed above is here

modified to consider a second objective of minimizing inequity. Ration by Schedule

is, at least in the United States, “the industry accepted notion of fairness, endorsed

by the primary stakeholders, i.e., the [Federal Aviation Administration] and the

airlines” (Fearing et al. 2009). Thus, here different schedules are evaluated in terms

of how much they deviate from an RBS ideal.

Let’s begin by focusing on a situation where arrival throughput at airports is

the major concern, as is common in the United States. Let R be the set of all or-

dered pairs of flights (f1, f2) where f1 and f2 are destined for the same airport with

f1 initially scheduled to arrive before f2. rf1,f2 terms are binary decision variables

which are to be set to 1 if and only if f2 arrives before f1 in the schedule obtained

when solving the air traffic flow management problem (the schedule implied by xf,k,t
terms). In other words, rf1,f2 capture reversals in the schedule. Such variables were

previously proposed (Gupta and Bertsimas 2010), but here such variables are incor-

porated into separate objective functions for the first time. One example objective

function minimizing inequity is shown in expression (10).

min
∑

(f1,f2)∈R
rf1,f2 (10)

Note that we are counting the number of reversals in order to measure the deviance

from an ideal RBS option.

In order to ensure the new decision variables take on values consistent with their

desired interpretation, it is necessary to add a constraint set of the formulation. For

any pair of flights (f1, f2) in R, if f2 lands before f1 then rf1,f2 must be 1. This



yields expression (11), which was previously proposed (Gupta and Bertsimas 2010).

xf2,P (f2,Nf2
),t − xf1,P (f1,Nf1

),t − rf1,f2 ≤ 0 ∀(f1, f2) ∈ R, t ∈ Tf2,P (f2,Nf2
) (11)

If there are important constraints on capacity within airspace sectors, it makes

some sense to generalize the definition of a reversal. Such a generlization is easily

accomplished. Let R′ be the set of triples (f1, f2, k) where flights f1 and f2 are to fly

through k (an airport or airspace sector) with f1 initially scheduled to arrive before

f2. r′f1,f2,k terms generalize the previously introduced rf1,f2 terms. The objective

function minimizing inequity and the constraint keeping decision variables consis-

tent are formulated as in expressions (12) and (13).

min
∑

(f1,f2,k)∈R′
r′f1,f2,k (12)

xf2,k,t − xf1,k,t − r′f1,f2,k ≤ 0 ∀(f1, f2, k) ∈ R′, t ∈ Tf2,k (13)

Previous authors have noted that applying RBS concurrently for multiple air

transportation system resources can yield inefficient results (Fearing et al. 2009).

For instance, consider an example where a sizable portion of the flights passing

through one airspace sector are destined for a severly capacity constrained destina-

tion airport. Forcing all aircraft to go through the sector in the originally scheduled

order ensures the sector throughput is reduced to reflect constraints at the trou-

blesome airport. Using a biobjective approach to the air traffic flow management

problem allows decision makers to gain greater insight into the trade-offs between

efficiency and fairness (in the RBS sense) for particular problem instances.

The metrics described here (from Gupta and Bertsimas, 2010) are not perfect.

They count the number of reversals in a schedule but do not take into account the

magnitudes of the delays being assigned. Note that a reversal at a busy airport may

result in an aircraft being delayed as little as two or three minutes, while another

reversal in an infrequently used section of airspace may result is hours of delay. In

addition, no accounting is made of the distribution of reversals / delay across the

sets of flights and air carriers being managed. Our motivation for considering equity

noted the importance of ensuing costs are spread relatively evenly amongst flights

and air carriers. An entropy-based objective function could make sense here.

Further research to develop alternate equity maximizing objective functions for

the air traffic flow management problem is warranted. More generally, multi-objective

optimization could prove quite useful for considering factors rarely mentioned in the

current air traffic flow management literature. In particular, it would be possible

to develop metrics specifically focused on noise or pollutant emissions and minimize

these without having to reduce everything to monetary costs using questionable

models or conversion factors.

3 Solving the biobjective problem

The ε-constraint method is arguably the best-known approach for solving multi-

objective problems (Ehrgott 2005) and is used here. The approach was originally



introduced by (Haimes, Ladson, and Wismer 1971). Here an objective functions

minimizing inequity, expression (12) above, is converted to yield a constraint, ex-

pression (14) below.∑
(f1,f2,k)∈R′

r′f1,f2,k ≤ ε (14)

Objective function (2) with constraints identified by expressions (3) through (9),

(13), and (14) constitutes a typical (single-objective) air traffic flow management

problem which can be solved in a reasonable amount of time for realistic problem

instances. Varing ε in expression (14) allows us to find all Pareto-optimal solutions

for the biobjective air traffic flow management problem (Ehrgott 2005).

For this particular problem, the inequity measure is a count of the number of

reversals. For Pareto-optimal solutions, this metric must take on integer values

between 0 and the number of reversals generated by maximizing efficiency and ig-

noring inequity. Note that each reversal necessarily involves delaying the aircraft

originally scheduled to access the shared resource first. Thus, there is some reason

to be optimistic that there will not be an unreasonably large number of reversals

in an efficiency-maximizing schedule. We start by finding the efficiency-maximizing

schedule. We then take the number of reversals in this schedule, subtract one, and

set ε equal to this value in expression (14). We maximize efficiency alone, with the

addition of constraint (14). The result is another Pareto-optimal schedule. We then

repeat the process, counting the number of reversals in the latest schedule, sub-

tracting one, setting ε equal to this value, and resolving. We stop when the problem

becomes infeasible or we reach a situation where a schedule involving no reversals

is generated. Along the way, we have found all the Pareto-optimal solutions to the

biobjective air traffic flow management problem.

In order to test the defined algorithm, we have run computational studies with

randomly generated biobjective air traffic flow management problems. In the gen-

erated problems, there were 20 airports, 200 airspace sectors, 168 discrete periods

of time, and each flight was assumed to fly through 5 airspace sectors between its

origin and destination airport with flight delays of between 0 and 6 time periods

considered feasible. The chosen parameter values were taken from (Bertsimas and

Patterson 1998), which describes the values as typical for realistic-sized problem

instances. 2,000 flight paths were randomly generated, along with changing airport

and airspace sector capacity constraints.

Figure 1 gives an example of obtained results, focusing on the trade-off between

the efficiency and equity objectives. The x-axis shows the number of reversals in

obtained solutions, while the y-axis shows the value of the delay minimization ob-

jective function. It is worth noting that the reformulation of the objective function

used here, expression (2) introduced above, yields negative delay costs. Obtained

values can be interpretted as the difference in delay costs between a given solution

and a worst-case / maximum delay solution.
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Figure 1: The trade-off between efficiency and equity.

Figure 1 makes clear that there is a choice to be made between efficiency and

equity when scheduling flights. The general shape of the relationship shown is con-

vex, indicating that focusing on only one of the objectives may yield very poor

performance with regards to the other objective. Although the general shape of the

relationship is convex, there are some points that would not be on the boundary

of the convex hull of feasible points. In other words, some Pareto-optimal sched-

ules were found that would not have been found using an approach minimizing a

weighted summation of delay and inequity costs.

4 Conclusion

The air traffic flow management problem was here extended to a multi-objective

optimization problem minimizing inefficiency and inequity. This is an important

contribution given that past researchers have identified the failure of past formula-

tions to consider equity concerns as the primary reason prior resarch results have not

been adopted in practice in air traffic control. Computational studies show realistic

sized biobjective air traffic flow management problems can be solved in reasonable

amounts of time, and yield Pareto-optimal solutions not found using distinct ap-

proaches based on minimizing a weighted summation of delay and inequity costs.

Further work is warranted to define additional objective functions for air traffic flow

management problems, and to devise strategies for efficiently solving such problems.

In particular, environmental concerns would be worth investigating. It would also

be interesting to consider stochastic formulations to address the issue of uncertainty

in airspace and airport capacity estimates, or to consider formulations that allow for

dynamic rerouting of aircraft.
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