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Abstract 
A method was developed that employs thin boards (0.56 m2) comprising different paving materials 
(2 asphalt types and concrete) typically used in urban environments. Boards can be placed at various 
locations of interest within an urban catchment to investigate accumulation of contaminants over 
specified periods of time. Boards are then placed under a rainfall simulator in order to generate 
runoff under controlled conditions. We successfully applied this method to investigate contaminant 
build-up at a University carpark, showing accumulation mainly occurred within the first 6 days. 
Resulting wash-off curves were used to determine coefficients for build-up and wash-off functions 
(maximum build-up, half-saturation time and wash-off coefficient) that can be applied to model the 
fate of contaminants in stormwater models (e.g. SWMM). Results also showed that concentrations 
of total suspended solids (TSS) are linearly correlated with total metal concentrations. 
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INTRODUCTION 
Urban waterways can improve the aesthetics of cities and provide recreational functions, as well 
as the practical purpose of draining excess stormwater runoff from impervious surfaces. 
Unfortunately, pollutants accumulating on impervious surfaces in form of sediment, particulate 
and soluble heavy metals (and other contaminants) are efficiently transported to waterways 
during storm events, causing adverse environmental impacts in those receiving ecosystems. 
Stormwater contaminants of greatest concern are usually heavy metals (particularly zinc, copper 
and lead) in particulate and dissolved forms (e.g. Gobel et al. 2007, Brown and Peake 2006). 
These principal metals originate from dust in vehicle tyres and brake linings, which accumulate 
on paved surfaces and become washed off during rainfall events into nearby waterways (Davis et 
al. 2001, Zanders 2005). Copper (Cu) and zinc (Zn) in stormwater also originate from roofing 
materials (Karlen et al. 2001, 2002). In a recent study by Wicke et al. (2009), Zn and Cu 
concentrations measured in runoff from a University of Canterbury carpark since 2006 were 
shown to be consistently higher than recommended guidelines for the protection of aquatic 
species (ANZECC 2000). Furthermore, their concentrations in the “first flush” exceeded these 
guidelines 5-10 fold, jeopardizing urban waterways health. 
Although direct sampling of runoff during a given storm event effectively quantifies contaminant 
contributions from a specific area, it is expensive and time-consuming. Additionally, inherent 
variability in natural rainfall events makes it difficult to construct contaminant build-up and 
wash-off functions from natural storm events for modelling purposes. We therefore developed a 
unique experimental method for capturing contaminants on different impervious surfaces in 
order to: (i) accurately quantify contaminant sources; (ii) determine contaminant build-up and 
spatial variability within the catchment and; (iii) obtain large cost-effective data sets to develop 
build-up and wash-off functions for validating appropriate stormwater contaminant models.  
 
METHODOLOGY 
The experimental design employs constructed asphalt and concrete boards (75 cm L x 75 cm W 
x 3 cm total height) to capture contaminants accumulating over time in an urban catchment (e.g. 
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Contaminant Build-up Experiment 
Build-up of TSS, zinc, copper and lead over time and their respective wash-off were investigated 
by placing 5 boards of each of the three materials at one of the main carparks of the University of 
Canterbury, New Zealand, for 2 weeks (Figure 3). The 15 boards were placed on two adjacent 
parking spaces, and cars were prevented from parking or driving over the boards. In previous 

experiments, wind was shown to be the main 
factor in spreading contaminants across the car 
park. It was therefore assumed that any 
deposition of contaminants on the boards 
would occur from wind. A temporary roof was 
constructed comprising of a steel frame and 
plastic cover (average height 1m) to prevent 
unintended wash-off from rain events, however 
no rain occurred during the time of the 
experiment. To determine the contaminant 
build-up over time, one pair of boards (coarse 
asphalt and concrete) were collected after 2, 4, 
6, 9, and 13 days. The five smooth asphalt 
boards (replicates) were all collected after 13 
days. Each board was washed-off under the 
rainfall simulator after it was collected. Wash-

off samples over time were measured for TSS, zinc, copper and lead. 
 
Modelling of Contaminant Build-up and Wash-off functions 
For modelling stormwater runoff from urban catchments, a variety of programmes can be used 
such as the stormwater management model (SWMM 5.0) developed by the US Environmental 
Protection Agency (EPA). In such models, the behaviour of contaminants is often incorporated 
using relationships for accumulation of a particular contaminant on a surface over time (build-up 
function) as well as dislodgement characteristics of the respective contaminant during a storm 
event (wash-off function). To apply these functions in a modelling scenario, the respective 
coefficients (depending on surface and contaminant) must be provided. We determined the 
required coefficients using data obtained from the experiment described above. 
 
Two functions included in SWMM were selected to model contaminant build-up and wash-off. To 
model contaminant build-up, a saturation function (equation 1) was chosen: 
 

(1) 
 
 

B - Build-up [mg/m2], Bmax - maximum build-up [mg/m2], A – half saturation time [d],    
t – number of antecedent dry days. 
 

A first order decay relationship was employed to represent wash-off characteristics (equation 2): 
 

(2) 
 

W  - wash-off load [mg/h], q - runoff rate [mm/h], B - remaining amount of pollutant 
[mg], C1 - wash-off coefficient. 
 

The parameters A, Bmax, and C1 were determined by minimizing the sum of the squared 
differences between modelled and experimental results using EXCEL solver. 
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Figure 3: Location of boards in carpark . 



RESULTS AND DISCUSSION 
 
General water quality parameters 
Key water quality parameters measured in runoff from smooth asphalt and concrete boards are 
exemplarily shown in Figure 4. 
 
The pH essentially influences metal speciation (i.e. dissolved or particulate fraction) with a pH 
of ≤6 affording greater potential for particulate metal fractions to dissolve, and thus become 
more bioavailable (Cambell and Tessier, 1991; Pitt, 1995). The pH in runoff samples showed a 
distinct difference between both surface types. The pH in runoff from concrete during the first 
few minutes was much higher at 7.7 compared to asphalt at 4.2, considering that the simulated 
rainfall had a constant pH of 6 (Figure 4a). The pH in runoff from concrete rose to 9 after 40 
minutes, an increase which we think originates from hydroxide residues that are produced during 
the cement binding process. It is remarkable, however, that this effect is still observed 9 months 
after production of the boards and several wash-offs. The lower asphalt runoff pH of 4.2 rose to 
6 after 60 minutes of runoff time, equal to the feed water pH. Further analysis is warranted to 
study the impact of the material and depositions on pH and the impact of pH on contaminant 
speciation. However, the extremely low pH in runoff from asphalt during the first 10-20 minutes 
is supposed to play an important role in metal mobilization processes. 
 
Colour is indicative of dissolved organic carbon (DOC) concentrations (especially humic acids 
and humin). Since vegetation is almost exclusively organic and predominantly carbonaceous, a 
relationship between colour and decomposed soluble vegetative material can be inferred. Higher 

Figure 4: pH, colour, turbidity and TSS concentrations in runoff from smooth (2mm aggregate) asphalt 
(average, n=5) and concrete boards (n=1) after being exposed for 13 days at a carpark. 
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initial colour concentrations (averaging 400 Pt.Co) in runoff from asphalt boards (both roughness 
types) compared to concrete boards (at <50 Pt.Co; effectively colourless) could be due to 
vegetative material that became trapped in the microcavities of the asphalt surface structure (e.g. 
seeds from trees), which were actually visible before wash-off applications (Fig. 4b). The sharp 
exponential decline in colour concentration reflects the initial wash-off pattern seen for other 
water quality parameters (Figure 4). 
 
Turbidity (instantaneous measurement) can be correlated to total suspended solid (TSS) 
concentrations (laboratory measured), which can be a useful surrogate parameter of suspended 
solids in stormwater applications (Thomson et al., 1997). The turbidity and TSS relationship 
derived during this study is approximately TSS [mg/L] = 2  · Turbidity [NTU] (Figure 4). Higher 
concentrations of suspended particles washed off from concrete surfaces, especially at the 
beginning of the experiment, were observed from exponential declining concentrations of both 
TSS (Figure 4a) and turbidity (Figure 4b). Differences in surface roughness between the paving 
materials is considered to influence particle removal from the surfaces, as particles deposited on 
the smooth concrete surface can be more easily dislodged compared to asphalt (Figure 1). 
 
Heavy Metals and TSS 
Results for TSS (Figure 4a) and heavy metal (Figure 4b-d) concentrations in runoff samples 
from boards exposed for 2, 4, 6, 9, or 13 days are exemplarily shown for the coarse asphalt 
surface. Concentrations for all contaminants quickly dropped during the first 20 minutes of the 
wash-off constituting the “first flush” phenomenon (Lee et al. 2002, Sansalone and Buchberger 
1997). Maximum TSS concentrations were 64 mg/L in runoff from concrete boards and 37 mg/L 
in asphalt runoff (Figure 4a; Table 1). Maximum heavy metal concentrations from all surface 

Figure 5: TSS, Zn, Cu and Pb concentrations in runoff from coarse (14 mm aggregate) asphalt boards 
using a rainfall simulator at a rain intensity of 22 mm/h after exposure at a carpark for 2 – 13 days. 

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

m
g/
L

Wash off time (min)

TSS ‐ coarse asphalt

2 days

4 days

6 days

9 days

13 days

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

μg
/L

wash-off time

Total Zinc - coarse asphalt

2 days

4 days

6 days

9 days

13 days

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

μg
/L

wash-off time

Total Copper - coarse asphalt 

2 days

4 days

6 days

9 days

13 days

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

μg
/L

wash-off time

Total Lead - coarse asphalt

2 days
4 days
6 days
9 days
13 days



types at t=0 were 1194 µg/L for total zinc, 85.3 µg/L for total copper (both coarse and asphalt) 
and 15.4 µg/L for total lead (concrete), showing that contaminant concentrations from carpark 
runoff exceeded relevant guideline values (ANZECC 2000) several-fold (80-fold for first flush 
zinc concentrations). Although these initial high concentrations quickly drop, their exceedance 
magnitudes inevitably impose adverse effects on the receiving ecosystems (O'Halloran and 
Harding, 2008; Beasley and Kneale, 2002). Furthermore, particulate contaminants deposited in 
stream beds of receiving waterways can act as a long term source of heavy metals. 
 
Contaminant yields (mg/m2) were calculated using runoff concentrations from boards (shown for 
2, 6 and 13 days exposure in Table 1). By 13 antecedent dry days, 76-144 mg/m2 TSS, 0.8-3.5 
mg/m2 total Zn, 0.1-0.2 mg/m2 total Cu and 0.02-0.04 mg/m2 total Pb accumulated on the 
different surfaces (Table 1). Contaminant build-up occurred until day 6, after which contaminant 
yields remained relatively constant for copper and lead or increased only slightly for TSS and 
zinc.  
 
 Table 1: Contaminant yields over time, shown for 2, 6 and 13 antecedent dry days [mg/m2]. 

    
      days 

Concrete  Coarse Asphalt 

2 6 13  2 6 13 

TSS 48 131 144  35 64 76 

Total zinc 0.39 0.65 0.77  1.7 2.5 3.5 

Total copper 0.12 0.19 0.20  0.07 0.13 0.13 

Total lead 0.021 0.040 0.036  0.006 0.014 0.015 
  
TSS-metal correlations 
Simplicity of the water quality sampling and in-situ measurements associated with this 
experimental set-up helped develop correlations between key stormwater quality parameters. 
Since heavy metals in urban stormwater typically originate from particulate materials (e.g. 
copper and lead in brake linings; zinc in tyre wear and roofing), total heavy metal and TSS 
concentrations were correlated. Correlations for all three surface types were derived by plotting 
TSS and total metal concentrations of the same sample, showing a linear relationship (Figure 6). 
Correlation coefficients (R2) were strong in all instances (mostly around 0.9 and always ≥0.75) 

Figure 6: Correlations between TSS vs. zinc and copper concentrations in runoff from 
concrete and asphalt boards after exposure up to 13 days. 
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as shown in Table 2. Overall, steeper gradients were obtained for all three metals from both 
asphalt types compared to concrete runoff, with greatest difference for zinc. A possible 
explanation for this is that although metals appear to be attached more strongly in asphalt 
cavities compared with concrete, a lower pH from asphalt during wash-off (see Figure 4) 
effectively dissolves these metals so particulate fractions would be consequently lower. This 
effect would be even stronger for the coarse (14 mm) asphalt with its deeper cavities (see Figure 
1) enhancing particle entrapment, resulting in steeper correlation gradients compared with 
smoother asphalt material (as seen in Figure 6). 
 
Table 2: Coefficients (Slope and R2) for the correlation of total heavy metal and TSS 
concentrations of the general form: metal [µg/L] = Slope · TSS [mg/L] 

 Concrete  Smooth Asphalt  Coarse Asphalt 

 Slope R2  Slope R2  Slope R2 

TSS vs. zinc 4.0 0.75  25.8 0.92  31.0 0.88 

TSS vs. copper 0.74 0.81  1.83 0.89  2.32 0.93 

TSS vs. lead 0.2 0.90  0.41 0.90  0.27 0.92 
 
A distinct advantage of employing surrogate measurements in stormwater applications is the 
immediacy and cost-efficiency of obtaining large data sets, especially for modelling purposes. 
This can be achieved by continuously logging measurements such as turbidity, pH and 
conductivity, and colour as an indicator of total suspended solids, metal concentrations and 
potential DOC concentrations, respectively, once robust (albeit site-specific) relationships 
between these parameters have been established. 
 
Build-up and Wash-off functions 
Contaminant yields calculated in Table 1 were used to plot contaminant build-up over time. It 
was assumed that build-up can only occur for a certain period of time and will eventually reach a 
saturation maximum. The experiment described here was designed to verify this assumption and 
also to determine the time it takes to reach this saturation maximum. 
Contaminant yields as a function of the number of antecedent dry days is shown in Figure 7a for total 
lead on an asphalt surface. Clearly, Pb yields increased steadily until day 6, after which time the 
contaminant build-up curve flattens and even tapers off so that yields from 13 days exposure are 
similar to that at 6 days. Similar patterns were observed for the other surface types and contaminants 
indicating that it took more than 6 days for contaminant saturation maximum to be reached.  

Figure 7: Experimental and modelling results of build-up (left: 7a) and wash-off (right: 7b) relationships 
of total lead deposited on coarse asphalt during 13 day exposure on a carpark. 
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Build-up characteristics were modelled applying equation 1 (described earlier) to derive 
coefficients for maximum build-up (Bmax) and the half saturation time A (time it takes to reach 
half of the maximum concentration) as presented in Table 3Table 3. Maximum build-up amounts 
were up to 2 kg/ha TSS, 52 g/ha zinc, 2.5 g/ha copper and 0.4 g/ha lead for an antecedent dry 
period of > 2 weeks that would be washed off in a 20 mm storm event. It is likely that 
contaminant build-up depends on several other factors (beside surface type and structure) such as 
wind speed and directions and traffic volumes (e.g. Moores and Pattinson 2008). 
Comparison of experimental and modelled wash-off rates are also shown for total lead in Figure 
7b. Equation 2 was used to derive one wash-off coefficient per contaminant and surface that 
mathematically describes all 5 wash-off curves (day 2-13). Modelled curves well reproduced 
experimental values (Figure 7b) highlighting the validity of our model. Resulting coefficients are 
listed in Table 3. Differences of build-up and wash-off coefficients between concrete and coarse 
asphalt surfaces are likely to reflect the different wash-off dynamics due to distinct differences in 
materials surface roughness. The most significant differences observed between surface types 
were for maximum build-up of TSS and zinc, whereas wash-off coefficients varied only slightly 
between contaminants. Half saturation time (A) for all contaminants was between 2 and 5 days. 
 

Table 3: Coefficients for build-up and wash-off functions for concrete 
and coarse asphalt surfaces 

 Concrete  Asphalt 

 Build-up Wash-
off  Build-up Wash-

off 

 Bmax 
mg/m2 

A 
[d] 

C1 
  Bmax 

mg/m2 
A 
[d] 

C1 
 

TSS 353 5.4 0.24  165 3.9 0.27 

Total zinc 1.0 5.4 0.32  5.2 4.8 0.32 

Total copper 0.25 3.2 0.20  0.27 2.4 0.34 

Total lead 0.04 1.7 0.29  0.04 3.6 0.33 
 
Coefficients for both build-up and wash-off can be used in widely accepted models such as 
SWMM to better predict contaminant behaviour in urban stormwater. These relationships more 
accurately represent the fate of urban stormwater pollutants compared to employing event mean 
concentrations, which are often applied instead of wash-off functions. 
 
 
CONCLUSIONS 
The innovative method for spatial quantification of contaminant build-up and wash-off from 
impermeable urban surfaces described in this study was successfully applied to investigate 
accumulation potential of the three main heavy metals zinc, copper and lead as well as total 
suspended solids (TSS). Pollution build-up and wash-off coefficients were determined that can be 
used to model the accumulation and runoff of these contaminants in SWMM or similar stormwater 
programmes. Wash-off from constructed boards (filled with concrete and two different asphalt 
grades) using a rainfall simulator under controlled conditions enabled us to study water quality 
parameters in greater detail. For example, it was shown that asphalt and concrete produced runoff 
with very different pH values; asphalt runoff had a pH as low as 4.2, whereas runoff pH from 
concrete was up to 9, thus considerably affecting dissolved metal concentrations and 
bioavailability. Metal concentrations and yields also differed between both surface types, 
especially for zinc from asphalt material showing 2-5 times higher first flush concentrations.  
This methodology has enabled urban contaminant build-up and wash-off functions to be developed 
that are required for modelling scenarios. Results of these models will help decision makers 



ascertain best structural and other management practices to reduce contaminant loading to urban 
waterways. Continued research is refining contaminant-surface relationships while also 
investigating the influence of surface type and runoff management practices on water quality 
entering urban waterways. Further studies will help refine our understanding of contaminant-
surface relationships applicable in developing more accurate models for estimating (and hence 
mitigating) stormwater related contamination in receiving ecosystems. 
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