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ABSTRACT: Various simplified procedue have been developed, using case studies that liquefied or not during earthquake, to estimate 
liquefaction potential of soils. In order to address the collective knowledge built up in conventional liquefaction engineering, this paper 
proposed to use a artificial neural network, ANN as an alternative tools. ANN has the capability to train itself with available data sets and 
extrapolate outcome for unknown senerio based on the training. It is particularly helpful for large data sets when human brain is inefficient.  
Various ANN models have already been in used for liquefaction assessment. However, this paper is more objective in applying ANN in 
liquefcation prediction. First, the data bases used for training and testing are well verified and well accepted in literature. Second, the inputs 
for the model are selected on their physical meaning with respect to liquefaction. Third, the source of data sets for training and testing are 
diffrent. The ANN model achieved a comparable accuracy with other publications where large number of inputs has been used. 
 
 
1. INTRODUCTION 

The conventional method of evaluating liquefaction potential of soil 
during earthquake was pioneered by Seed and Idriss (1971).  
Although a number of improvements and variations have been 
proposed, the conventional procedure consists of two inter-related 
components.  The development of empirical expressions for cyclic 
stress ratio and cyclic resistance, the latter being indexed based on 
field testing; and ii) using these two measures to analyse historical 
experience on whether a site liquefied or not.   There are several 
methods for establishing liquefaction potential based on field 
testing. The common methods are based on standard penetration test 
(SPT), cone penetration test (CPT), Self-boring pressure meter tests, 
measurement of shear wave velocity etc. Among them, the CPT 
based method is getting popular due to its simplicity, repeatability, 
accuracy and continuous record. This capability makes CPT 
advantageous for developing liquefied resistance profile.  

 The CPT based method was also developed based on the same 
principle outlined by Seed and Idriss (1971); however various 
modifications were suggested in literature for correcting and 
normalizing cone penetration resistance, qc which is an important 
parameter for developing liquefaction assessment chart (Shibata and 
Wanchai 1988; Youd et al. 2001). Thus, the liquefaction assessment 
of a site often requires lengthy procedure and engineering 
judgement. On the other hand a common computer tools, artificial 
neural network (ANN), can be used in database based decision 
making like other liquefaction assessment chart. ANN has the 
capability to train itself with available data sets and extrapolate 
outcome for unknown scenario based on the training. Surprisingly, 
only few approaches have been found in literature for CPT based 
liquefaction assessment (Goh 1996; Juang et al. 2006) though it has 
greater potential application. These approaches often suffer from 
either using large number of input parameters or using very complex 
neural network. These networks also based on calibrated or 
corrected data as inputs (Goh 1996) and may not be directly 
applicable for different data sets. The objective of this paper is to 
identify the primary inputs parameters from conventional CPT based 
liquefaction assessment method and developed a smallest possible 
ANN network that can be used for liquefaction assessment with 
those primary input parameters.  

2. CONVENTIONAL METHODS 

Perhaps, the most commonly known CPT based liquefaction 
potential assessment procedure is outlined in Youd et al. (2001). 
This method is comprehensive and required engineering judgement 
to identify value of some parameters used in correcting and 
normalizing qc. Another simplified method was outlined by Shibata 
and Wanchai (1988). However, these methods were based on the 

same principle outlined by Seed and Idriss (1971) and require same 
primary input parameters. For simplicity,  the method outlined by 
Shibata and Wanchai (1988) is explained next sub-sections.  
 
2.1 Normalization of cone penetration resistance, qc 

The qc value is influenced by mean effective confining pressure, o 
(Seed et al. 1983). Thus, Shibata and Wanchai (1988) proposed to 
normalize the qc values by the following method: 
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The grain characteristic also play significant role in liquefaction 
potential of sand (Robertson and Campanella 1985; Seed et al. 1983; 
Youd et al. 2001).  Thus, Shibata and Wanchai (1988) suggested 
following correction 
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where C2 = 1.0 for D50  0.25mm and C2 = D50/0.25 for D50 < 
0.25mm, D50 = sand particle diameter at 50% finer. 
 
2.2 Cyclic stress ratio from an earthquake 

The cyclic stress ratio was determined from the following equation 
by Tokimatsu and Yoshimi (1983): 
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where a = peak ground acceleration, g = acceleration of gravity, o 
= total stress, z = depth of the soil (m). When M = 7.5 and rd = (1-
0.015z), this equation is comparable to Seed and Idriss’s equation 
(1971).  
 
2.3 Liquefaction characterization index 

Following the above procedure, the historical liquefaction data 
outlined in Shibata and Wanchai (1988) are plotted in /’o-qc1/C2 
space and a clear boundary line between liquefied and non-liquefied 
zones are visible as shown in Fig. 1. Shibata and Wanchai (1988) 
presented the following equation, used for MPa units, as the 
boundary separating liquefied and non-liquefied zones. 
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Similar boundary lines for CPT based methods have been found in 
many literatures (Juang et al. 2006; Moss 2003; Youd et al. 2001).  
 

However, it is noted that the expression for calculating cyclic 
stress ratio and cyclic resistance (or its index based on field testing) 
has to be compatible as discussed in Juang et al (2006).  Indeed if a 
friction cone with an independent sleeve design was used, one may 
rightly argue for the use of qT rather than qc to correct for the water 
pressure acting on recess behind the cone (Lunne, Robertson, and 
Powell 1997).  These factors, among others, indicate certain extent 
of compensating errors in these empirical expressions.  An 
alternative approach is to identify the parameters governing 
liquefaction and use them in an artificial neural network (ANN) for 
predicting liquefaction. 
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Figure 1: Correlation between cyclic stress ratio and normalized 

cone resistance for liquefied and non-liquefied site 
 

2.4 Primary parameters 

The primary input parameters can be identified from the theories/ 
equations of conventional liquefaction assessment methods. For 
example, three parameters are used in normalizing the CPT data to 
obtain a CPT-based index for cyclic resistance; qc, o, D50 and five 
parameters are used for cyclic stress ratio calculation; M, a/g, z, unit 
weight of soil, ground water table. Thus eight parameters are used in 
conventional method out lined by Shibata and Wanchai (1988). 
However, the last three parameters can be reduced to o, o. Thus, a 
total of six parameters can be considered as primary input 
parameters: qc, o, o, D50, M, a/g for the ANN.  
 
 Further, the relation of these parameters with the observed 
behaviour can be identified with a statistical means such as 
correlation coefficient. The coefficient of correlation of these input 
parameters with observation (liquefied/non-liquefied) can be 
presented as 
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where x is input parameter and o is the observed behaviour. The 
observed behaviours, liquefied or not-liquefied, can be presented as 
1 or 0 respectively. It is a common practice for pattern recognition 
in neural network. The correlation coefficient of the data set 
collected from Shibata and Wanchai (1988) was calculated with 
these numbers and presented in Fig. 2. It shows that M, qc and D50 
are the most influential parameters for the observed behaviours. The 

positive number indicates, the parameter contributed to liquefaction 
and negative number indicates, the parameter contributed to 
liquefaction resistance. 
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Figure 2: The correlation coefficient of input parameter with the 

observed behaviour. 
 
 
3. THE NEURAL NETWORK 

The method of neural network essentially involve the mapping of a 
complex input pattern with another complex output pattern using 
data processing paradigms made up of extensively interconnected 
neurons. The architecture of a typical artificial neural network is 
presented in Fig. 3. 

 
3.1 Connection between neurons 

Within the neural network system three layers of units (neurons) are 
used: input layer (indicated by index i) which receive data from 
outside the neural network, output layers (indicated by index o) 
which send data out of the neural network, and hidden layers 
(indicated by index h) whose input and output signal remain within 
the neural network. The units of input layer are interconnected to 
units of hidden layer and the units of the hidden units inter 
connected to units of output layer. Thus, the network is information 
processing system which follows a forward flow rule from input to 
output layer.  

 

Input layer, i Hidden layer, h Output layer, oInput layer, i Hidden layer, h Output layer, o  
Figure 3: The architecture of a multilayer neural network 

 

 The units in the input layer send signals to the interconnected 
unit in next layer. In the connection between units, the signals are 
processed with numerical weights. These weights determine the 
properties and strength of the influence between interconnected 
units. The total input in the hidden h-th unit is simply the weighted 
sum of the separate outputs from each connected units plus an offset 
threshold: 
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where, wih is the weight on the connection for the i-th unit in input 
layer and h-th unit in hidden layer, h is the offset. The output of the 
h-th unit in the hidden layer is defined through an activation 
function as  

 hh sfy       (7) 

Generally, a some sort of threshold function, a hard limit threshold 
function (a sng function) or a linear or semi-linear function or a 
smoothly limiting threshold, is used as activation function. The 
activation function used in this study is a sigmoid function defined 
as  
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2.5 Training of the network: 

In first step, for a set of inputs random numbers are assumed as 
weight for each connection to obtain an output in the output layer. 
All most all cases the computed output is not the same as desired 
output. The difference of these two can be defined by an error 
function. Thus, in second step the weights are updated in such a way 
that the computed output move toward to the desired output. In back 
propagation technique, the change in weights of the network is 
based on it localized portion of the input signal, xi and its localized 
portion of the error, o. The change is a proportional (scaled) of the 
product of these two quantities i.e. oxi. To increase the 
convergence some time a momentum term,  which specify how 
much a previous weight change Δwih, should influence to the 
current weight change. Thus, the weight in a current step can be 
defined as 

)1()()1(      tihiotihtih wxww    (9) 

where, wih(t+1) and wih(t) are the weight for i-th input unit and h-th 
hidden unit at (t+1)-th and t-th time steps respectively, Δwih(t-1) is 
the change in weight in (t-1) time step, o is the difference between 
the computed output and desired output, xi is the i-th input,  is 
learning rate,  is the moment parameter. 
 
 The learning rate, momentum parameter and error function 
control the update of the weights, i.e. the rate of merging in an 
optimum weights system. Usually in a neural network the learning 
rate and the momentum defined by the users. Normally little 
variation of these parameter resulted in the variation of training 
time. 

3.2 Neural networks 

Three different neural networks were used in this study. The first 
network was M-I which contained all six primary parameters as 
inputs. The second network is M-II was built by neglecting a/g from 
the inputs as it has very small correlation coefficient compared to 
others. This was done to study the effect of a/g on the network 
prediction. The third network was M-III which contained all 
parameters except D50 though it maybe an important parameter as 
outline by coefficient correlation. This was done partly because we 
also tested the performance of the network against a different data 
base extracted from Juang et al. (2006) and this data source does not 
contain D50. 
  

The number of hidden layers plays a significant role in prediction 
performance and its inherent complexity.  The simplest possible 
network is a single layer (hidden) network but its application is 
limited to linear classifier. For liquefaction prediction a multilayer 
network is recommended. A simplest possible multilayer networks 
with two hidden layers were used in this study. 

 
4. DATA BASES 

Two different data bases have been used in this study. The first data 
base was extracted from  Shibata and Wanchai (1988).  This 
database was collected from sites from four different countries 
which suffer from five major earthquake earthquakes. The data sets 
contained 107 well varied cases. 72 cases were used in networks 
training and 35 cases were used for verification.  
 
 The second data base was extracted from Juang et al. (2006). 
This data base was use to verify M-III trained using Shibata and 
Wang’s data base. Each case in this database was re-verified with 
their case history. The data are classified as A, B, C according to 
their quality as specified in Moss (2003). Only high quality data A 
and B are used in the network and this gives a total of 96 
independent data points for verification. 
 
5. RESULTS AND DISCUSSION 

Table 1 summarizes the performance of the three different neural 
networks.  For M-I, the network was able to predict 33 real 
observations out of 35 cases i.e. 2 false alarm. This outcome is 
comparable with Shibata and Wanchai (1988) conventional method 
and with Goh’s (1996) neural networks where 3 to 5 hidden layers 
and calibrated data were used.  M-II achieved similar performance 
with 5 input parameters i.e. without a/g. This is interesting because 
a/g is an important parameter in Eqn. (3) to obtain cyclic stress ratio, 
/o for a given earthquake. However, this is consistent with 
correlation coefficient of input parameters with observed 
behaviours. It should be noted that M-I and M-II network can not be 
evaluate with second data sets as the data sets do not contain D50 
information.  
 
  

Table 1 Different ANN model and their performance 

Model Input 
variables 

Hidden 
layers 

Error in  
ANN prediction 

Test data 
1 

Test data 
2 

M-I M, o, o, qc,  
a/g, D50 

2 2/35 ---- 

M-II M, o, o, qc,  
D50 

2 2/35 --- 

M-III M, o, o, qc, 
a/g 2 4/35 14/96 

 
Notes:    Test data 1 = 35 cases from Shibata and Wanchai (1988) 
 Test data 2 = 96 cases from Juang et al (2006) 
 
M-III was built without using D50 as input, and therefore both data 
bases were tested.  For the first set of test data (35 cases from 
Shibata and Wanchai 1988), this network failed to predict 4 out of 
35 cases.  The higher unsuccessful predictions compared to M-II  
indicates that D50 is more influential than a/g, noting the effect of 
a/g is already embodied, indirectly, in M   For the second set of test 
data which consist of all 96 cases from Juang et al (2006), the 
number of unsuccessful prediction was 14, (ie 15% unsuccessful 
rate).  If the overall performance of M-III was considered, then the 
unsuccessful rate became 18/131, which is 14%.  This significantly 
higher unsuccessful rate cannot be fully explained by the missing of 
an important parameter D50.  One important factor is that the 
network was trained with data from a different data base.  Usually in 
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a neural network, majority of data are used to train the network and 
rest of the data is used to validate the network.  Furthercome, the 
number of cases used for training was 72 but 96 independent cases 
were tested.   
 
 
6. CONCLUSION 

Neural networks have been used to successfully capture the complex 
relationship between soil parameter and liquefaction potential due to 
earthquake. The input of the neural network was selected based on 
the theoretical basis from conventional methods. This gives smallest 
possible network with two hidden layers. The major outcomes of 
this study are given below. 

 The correlation coefficients of input parameters with 
observe behaviours may be a good indication of relative 
importance of the parameters for an ANN network and can 
be used in selecting input parameters. 

 The networks M-I and M-II were as good as conventional 
method as out lined by Shibata and Wanchai (1988).  

Although the fundamental linkage between inputs and outputs of a 
neural network is not clear from a mechanistic point of view, the 
results indicates that the ANN have a strong potential to use as quick 
tool to interpolate/extrapolate liquefaction potential of a site from 
simple input parameters. 
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