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Abstract 
 

Government statistical agencies collect data on individuals. These data can have 

personal information that will lead to individual identification. The information 

gathered is often released and used by other agencies. In order to preserve 

confidentiality (people’s privacy) the data are treated in a way that prevents 

identification. In recent years there has been a rapid increase in the research in 

the area of confidentiality and statistical disclosure techniques (SDC). We focus 

on random rounding method, one of the SDC.  

 

In this thesis we use rounded data which have been collected by Statistics NZ.  

We examine the effect of random rounding in contingency tables. We simulate 

data, based on rounded data, and actual data and use the general log-linear 

model and chi-square test for analysis.  
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Chapter 1 

Statistical Disclosure Control (SDC) 
 

1.1. Introduction 
 

In this chapter, we present an overview of the Statistical Disclosure Control (SDC) concepts, and 

the importance of data that are released to the public. We introduce several methods of releasing 

data: data can be released either as microdata or tabular data. 

 

1.1.1. Importance of SDC 
 

In recent years, the need to protect security and privacy information has arisen 

during data collection for statistical purposes, particularly if these data are to be 

disseminated. Statistical organizations need to ensure information collected from 

people or organizations is unable to be viewed by unauthorized people. SDC is a 

way to protect issues of privacy and individual information. Many countries have 

a legal framework of some form or another for dealing with protecting the privacy 

of the individuals (Willenborg and De Waal, 1996). As one example, the United 

Kingdom has a law named the Data Protection Act of 1984, which was 

established to protect the privacy of individuals. SDC also helps to protect the 

data obtained by a statistical office via a survey in case these data are lost or 

stolen. SDC also helps avoid problems of liability if a breach of confidence should 

arise. To take one example, imagine a student from Canterbury University 

gaining access to sensitive data from Statistics NZ. Statistics NZ trusts the 

University of Canterbury; they do not have the same level of confidence in the 

student. If the student then misuses the data - or gains access to data they 

should not - it is the University of Canterbury that will be held accountable. These 
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reasons explain why releasing data using SDC is a fundamental issue for a 

statistical office.  

 

The privacy of the individual is very important. For example, suppose salary data 

have been collected in a small town. Assume these salary data are divided into 

three groups. If only a few people are categorized in the high salary group, it 

would be very easy to identify the people who earn a high salary and thus 

discover the amount of their salary. 

 

Statistics Canada was the first to use a technique known as "random rounding" 

to deal with privacy issues. Random rounding was then used in the New Zealand 

Census of Population and Dwellings by the Department of Statistics in 1981 

(Ryan and Penny, 1986). We will introduce this technique in Section 1.3. 

 

1.1.2. Principles of Statistic Disclosure Control ( SDC) 

 

According to Willenborg and De Waal (1996), SDC incorporates two important 

concepts: (1) re-identification disclosure, and (2) prediction disclosure. Re-

identification disclosure is when a non-authorized individual, known as an 

attacker, manages to deduce the value of a sensitive variable for the target 

individual after this individual has been re-identified. Prediction disclosure 

happens when the attacker is able to use the data, with some degree of 

confidence, to predict the value of a sensitive variable for some target individual. 

This problem of re-identification is a major concern.  

 

SDC concerns safeguarding the confidentiality of information that has been 

collected from people or organizations. If unreleased data are published, this will 

lead to people's information being able to be indentified. For example, if the 

original data include the income levels, a user will know other peoples’ exact 

salary, who earns this salary, what their job is, etc. People often do not want this 
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information revealed to other people. Therefore, we need to release data in a 

way that protects peoples’ privacy. SDC is the way to release the data.  If income 

data have been released in SDC, an attacker will find it hard to discover another 

persons’ salary level, or who earns this salary. People are prevented from 

accessing actual data with SDC, but SDC is more about allowing access to data 

while still preserving respondent confidentiality. That means released data with 

SDC is more safety then allowing access to the actual data.  We are 

concentrating on data releases with SDC rather than data access.  

 

 SDC can be used to protect against the identification of an individual or 

organization. Information on individuals, businesses, and other organizations are 

at risk of disclosure. Cuppen (2000) gives a definition of a sensitive cell as one 

where the contribution of an individual respondent contributing to that cell can be 

disclosed. The SDC method can be used to reduce the risk of disclosure, and to 

ensure that most of the information will not be stolen and will be protected for 

longer. The SDC method is built on disclosure risk - the data utility framework 

and the need to find the balance between managing disclosure risk while 

maximizing the amount of information in order to be able to prevent minimum 

information loss to users. When the data have been released will be loss some 

information, e.g. recoding method in Section 1.2 shows several categories are 

combined into one new single category.  

 

Shlomo and Young (2006) defined disclosure risk as "identifying individuals in 

small cells in the data which then leads to attribute disclosure of other sensitive 

variables". This sort of risk usually happens when statistics are published at low 

aggregation level such as small geographies or small populations. Take the 

example of a small town, with only one doctor. If external users know the income 

group, age group, etc in this small town, and because doctors usually belong to a 

high salary group, this user will be identify this doctor's income, age, etc. The 

data breach will occur.  
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 Three main approaches are used for SDC:  

(1) legal provision, which has already been discussed;  

(2) removing the sensitive information to protect privacy, e.g. the suppression 

method of SDC, which will be discussed in more detail in Section 1.2.1.  

(3) fuzzing the information. i.e. adding noise to the original data via the rounding 

method, swapping the data, input perturbation etc.  We introduce these methods 

in Section 1.2.  

  

1.2. Data released in SDC 
 

1.2.1. SDC for microdata 
 

Microdata contain records which consist of information at the level of individual 

respondents such as a person, household or business. When the individual 

respondents are entered into a microdata set, e.g. "occupation" = "student", "sex" 

= "female", and "place of residence" = "Auckland", SDC techniques have to be 

used to protect each individual's privacy. The two main SDC techniques used 

when releasing microdata are local suppression and global recoding (Willenborg 

and De Waal, 1996). 

 

 • Local suppression: If a variable X in one or more records occurs in an unsafe 

combination, it is then replaced by a missing value. For example, take the 

combination variable “area” = ”Canterbury " and  “enterprise” = ”ice cream firm”. 

Say Canterbury has only one ice cream firm. Therefore, if we were to replace the 

variable labels, it would uniquely identify the ice cream firm. In situations such as 

this, we would use the local suppression method to replace the data. The local 

suppression method will replace “enterprise” = ”ice cream firm” with “enterprise” 

= ”missing”, removing the possibility of the firm being identified.  
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• Global recoding: Several categories are combined into one new single 

category, one of which contains the variable X. Consider an example with the 

combination of variables “enterprise I” = ”ice cream firm”, “enterprise II” = ”butter 

making firm”, “enterprise III” = ”milk firm” and “area” = "Canterbury". The ice 

cream firm, butter making firm and milk firm all belong to the dairy products 

category. The global recoding method combines these three enterprises into one 

category: dairy production. The benefit of this is that the user will find it hard to 

identify this ice cream firm even if they know only one ice cream firm operates in 

Canterbury.  

 

1.2.2. SDC for tabular data 
 

1.2.2.1. Definitions 
 
A table consists of a set of cells where each cell is characterized by a set of 

coordinates that consist of combinations of scores on different categorical 

variables (Willenborg and De Waal, 1996). A problem are often happens is that 

the variables are identifying variables. If a table aggregates individual responses, 

we must try to "disaggregate" the table values to protect the individual 

respondent's privacy and to prevent disclosure.  

 

Tabular data can be classified into two classes. If the frequency or count data 

present the number of units of analysis in a cell, they are named count data. If 

the data present the amount each respondent contributes to its tabulation cells, 

they are called magnitude data (Cox, 1981; Federal committee on statistical 

methodology, 2005). With any table, the first step is to determine the sensitive 

cells. The tables of count (or frequency) data and tables of magnitude data use 

different ways to determine sensitive cells. This thesis describes how to 

determine the sensitive cells and which methods can be used concealing the 

sensitive cells.  
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1.2.2.2. SDC for tables of count data 
 
We now discuss two classes of rules that limit disclosure of sensitive cell for 

tables of counts or frequencies as introduced in Cox (1981) and the Federal 

Committee on Statistical Methodology (2005). 

 

The first class consists of table-specific rules, in particular the "n-threshold rule". 

We give an example using Table 1.1 where salary data have been collected from 

three different areas: area I, area II and area III. The data collector has divided 

the salary data into the three groups defined as salary group I, II and III. Table 

1.1 stores the raw count data that represents the number of participants in each 

of the three salary groups based on different areas. If an agency requires 5 as 

the minimum number (threshold) of respondents for a published cell and a cell 

value is 3, then 2 (5 - 3) is the least amount of protection that must be added to 

the cell value. If an attacker knows that two people have a high salary in the 

small town, then the attacker will easily identify these two people, who are in 

"salary group III" with "area I". These two people's information will be identified. 

In a table of count data, if the number of respondents is less than some specified 

number (n-threshold rule) in one particular cell, that cell is called a sensitive cell.  

 

Table 1.1 Number of people in each salary group bas ed on different areas 

 Salary group I Salary group II Salary group III Total 

Area I 23 15 2 40 

Area II 18 3 27 48 

Area III  21 22 30 73 

Total 62 40 59 161 
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The second class of rules is special rules that are agency-specific and table-

specific. These rules are designed to protect data considered sensitive by the 

agency. For more details, see Federal Committee on Statistical Methodology 

(2005, p14). 

 

When a cell is identified as being sensitive, we must protect the sensitive cell as 

the next step. Several techniques can be used for concealing the sensitive                                                   

information and thus reducing the disclosure risks. These are table redesign, 

suppression and rounding. We shall now give a brief overview of these 

techniques with some examples. 

 

If a large numbers of sensitive cells have been found in certain categories, we 

can combine the variables, therefore reducing the detail of the table (Willenborg 

and De Waal, 1996). Note that combining columns or rows should result in larger 

cell counts. We will represent three methods using the example shown in Table 

1.1. 

 

•Table redesign: The objective of this method is to combine categories to reduce 

information displayed within Table 1.1. According to the table redesign method, 

Salary Group II and Salary Group III can be combined as one new variable to 

become Salary Group II & III, as illustrated in Table 1.2. 

 

Table 1.2 Number of people in each salary group bas ed on different areas 
(after table redesign) 

 Salary group I  Salary group II& III  

Area I 23 17 

Area II 18 30 

Area III  21 52 
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• Suppression: The technique known as primary suppression deletes the value of 

the sensitive cell and replaces it by a symbol. We use 5 as the threshold to apply 

to Table 1.1, and obtain the count cells (1,3), and (2,2) as the primary 

suppressions. The sensitive cell is suppressed and replaced by the symbol X 

(Willenborg and De Waal, 1996). Table 1.3 shows the raw data released using 

the primary suppression method.  

 

Table 1.3 Number of people in each salary group bas ed on different areas 
(after primary suppression) 

 Salary group I Salary group II Salary group III Total 

Area I 23 15 X 40 

Area II 18 X 27 48 

Area III  21 22 30 73 

Total 62 40 59 161 

 

 

If the suppressed cell can be derived by subtractions from the marginal totals, 

suppression will be applied again which is named secondary suppression. 

Consider the following calculation: the cell count (2,2) can be written as cell (4,2) 

- cell (3,2) - cell (1,2) = 40 - 22 - 15 = 3. If given a huge table that selection of 

cells for secondary suppression is a complicated process. Table 1.4 presents the 

secondary suppressions, where, out of a total of 9 cells, only 5 cells are 

published. This leads to the biggest problem with suppression: when a sensitive 

cell has been suppressed in a table, it leads to a considerable amount of data 

loss. Note that suppression is not a common method to use for count data. This 

is because after primary suppression and secondary suppression, getting 

information from the table will become a complex task  because information has 

been lost.  
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Table 1.4 Number of people in each salary group bas ed on different areas 
(after secondary suppression) 

 Salary group I Salary group II Salary group III Total 

Area I 23 X X 40 

Area II 18 X X 48 

Area III  21 22 30 73 

Total 62 40 59 161 

 

• Rounding: The suppression method leads to data loss. Thus the rounding 

method has been developed. Tabular data is rounded by the base value multiple 

of an integer. According to Willenborg and De Waal (1996), tabular data can be 

rounded by several methods. The first one is conventional rounding, where the 

original cells are rounded to the nearest multiple of a fixed rounding base. For 

example, using a rounding base of 5, if the original cells end in 3 or 4, these cells 

are rounded up and replaced by values ending in 5. If original cells ending in 1 or 

2, these cells are rounded down and replaced by values ending in 0.  

 

Conventional rounding is easy to use but it has its limitations. For example, if two 

cells have a value of 2, the marginal total is 4. When conventional rounding with 

rounding base 5 is applied to this table, each of these two cells will round to 0, 

but the marginal total will round to 5. Another method called random rounding 

has been developed. In Table 1.5, we used random rounding to base 5 for the 

original data of Table 1.1. Table 1.5 illustrates the problems with random 

rounding: the table after random rounding could lead to loss of confidence in the 

numbers.  
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Table 1.5 Number of people in each salary group bas ed on different areas 
(after random rounding to base 5) 

 Salary group I Salary group II Salary group III Total 

Area I 25 15 5 40 

Area II 20 5 30 48 

Area III  20 25 30 73 

Total 62 40 59 161 

 Note: because of rounding, the numbers may not add up to 100% 

 

 

The Federal Committee on Statistical Methodology (2005) introduced controlled 

rounding. This procedure has been developed to solve the additive problem. It is 

a special case of rounding, where the sum of the cells after rounding is equal to 

the appropriate published marginal totals. Table 1.6 displays the results of 

applying the controlled rounding procedure to Table 1.1. 

 

Table 1.6 Number of people in each salary group bas ed on different areas 
(after controlled rounding to base 5) 

 Salary group I Salary group II Salary group III Total 

Area I 25 15 0 40 

Area II 20 0 30 50 

Area III  20 25 30 75 

Total 65 40 60 165 

 

Cox (1981) introduced a new disclosure control method, controlled tabular 

adjustment (CTA). This new approach is similar to controlled rounding. We need 

replace sensitive cells by safe values, a safe value being one that is a “sufficient 
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distance” away from the original cell value. Then we use linear programming to 

rebalance tabulations, i.e. we add a value of “sufficient distance” to the cell total. 

Note that this method is most valuable for releasing tables of magnitude data.  

 

Adding random noise, input perturbation or data swapping is another disclosure 

protection method. Using these methods prior to releasing microdata ensures 

that any tables generated from the released microdata are fully protected. The 

random noise method of disguising sensitive variables, such as income, is to add 

or multiply by random numbers (Federal committee on statistical methodology, 

2005).  

 

Data swapping is a method that swaps the values of variables for records that 

match on a representative key (Federal committee on statistical methodology, 

2005). Table 1.7 illustrates the data released after data swapping. In this 

example, the second area and the fourth area are swapped.  

 

 

Table 1.7 Table released by data swapping 

 Salary group 

Area I 14 

Area IV  22 

Area III 

Area II 

25 

21 

 

1.2.2.3. SDC for Table of magnitude data 
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The first way suggested to determine the sensitive cells is to use the (n,k)-

dominance rule. In recent years, the dominance rule, using two parameters n and 

k has been most commonly used. A cell is called sensitive if the sum of the 

largest n contributions account for more than k% of the total cell value 

(Willenborg and De Waal, 1996). The second way is using the (p,q) prior-

posterior rule that also has two parameters p and q with p>q. It is assumed that 

each respondent can estimate the contribution of each other respondent to within 

less than q%. A cell is considered sensitive if it is possible for someone to 

estimate the contribution of an individual respondent to within less than p% 

(Willenborg and De Waal, 1996). For more information on this rule, the reader is 

referred to (Cox, 1987).  

 

1.3. SDC with random rounding (controlled rounding)  
 

1.3.1. SDC with random rounding  
 

Random rounding is a technique that protects the confidential information with 

minimum loss of information. In random rounding, statistical agencies modify the 

original data by rounding up or rounding down by a base multiplier, e.g. Table1.8.  

 

For rounding, base 3 or 5 are the most common choices. Statistics NZ chose 

base 3 for releasing the data from the 1981 Census (Ryan, 1981). Random 

rounding is more flexible to deal with than table redesign or suppression.  

 

This report focuses on random rounding of two- and three-dimensional tables. 

According to the Bureau of Census, 90% of tables that have been disclosed are 

two-dimensional. Three-dimensional tables are the majority of higher dimensional 

tables. Controlled random rounding in three-dimensional tables is more difficult 

than in two-dimensional tables (Kelly et al, 1990).  
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1.3.2. Effect of random rounding  
 

In random rounding, the original data are rounded by a multiple of a common 

base in order to protect the data. Table 1.8 demonstrates random rounding to 

base 3 and base 5. 

 

 

Table 1.8 Random rounding to base 3 and base 5. 

Original data 

Base 3 Base 5 

Rounded down 
(with 

probability) 

Rounded up     
(with 

probability) 

Rounded down 
(with 

probability) 

Rounded up     
(with 

probability) 

0 0 (null) 0 (null) 0 (null) 0 (null) 

1 0 (2/3) 3 (1/3) 0 (4/5) 5 (1/5) 

2 0 (1/3) 3 (2/3) 0 (3/5) 5 (2/5) 

3 3 (null) 3 (null) 0 (2/5) 5 (3/5) 

4 3 (2/3) 6 (1/3) 0 (1/5) 5 (4/5) 

5 3 (1/3) 6 (2/3) 5 (null) 5 (null) 

6 6 (null) 6 (null) 5 (4/5) 10 (1/5) 

7 6 (2/3) 9 (1/3) 5 (3/5) 10 (2/5) 

8 6 (1/3) 9 (2/3) 5 (2/5) 10 (3/5) 

Note: base 3: 8 (original data) =6*1/3 + 9*2/3; base 5: 8 (original data) = 5*2/5+10*3/5. 
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The formula for finding the interval of possible data is 2 * (base - 1) +1. In other 

words, when rounding to base 3, the width of possible cells is 5. Put simply, 

using base 3 random rounding, a value that appears in a cell could be rounded 

from five original values (Ryan, 1981):                                                                                                                                  

 ● rounded data - 2 

 ● rounded data - 1 

 ● rounded data 

 ● rounded data + 1 

  ● rounded data + 2           

 

Using 5 as the rounding base, the figure published in a cell could be derived from 

any one of (2*(5-1)+1) nine parent (original) cells: 

 ● rounded data - 4 

 ● rounded data - 3 

 ● rounded data - 2 

 ● rounded data - 1 

 ● rounded data  

 ● rounded data + 4 

 ● rounded data + 3 

 ● rounded data + 2 

 ● rounded data + 1 

Note that this formula does not apply if the true value of cell is equal to zero. If 

the value of cell is equal to zero, the width of possible parent cells is equal to the 
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base number, e.g. if the cell value is 0, using base 3, possible parent cells are 

0,1 and 2.  

 

The discrepancy between the original data and its random rounded value is the 

value of "noise". The expected value of discrepancy is zero. For example, using 

data rounded to base 3 we assume that case 1 is x = 0 (mode 3), case 2 is x = 1 

(mod 3), and case 3 is x = 2 (mod 3). For case 1: 0=d  with probability 1=p , the 

expected value discrepancy is 0. For case 2: 1=d  with probability
3
2=p , and 

2−=d  with
3
1=p , so the expected value discrepancy is ( ) ( ) 02

3
1

1
3
2 =−×+× . For 

case 3: 2=d with probability
3
1=p , and 1−=d with 

3
2=p , so the expected value 

discrepancy is ( ) ( ) 01
3
2

2
3
1 =−×+×  (Ryan and Penny, 1986). 

 

 According to Ryan (1981), the effect of random rounding can be obtained by the 

chi-square test. The examples below illustrates this process. 

 Cochran (1952) introduced the expression for computing the statistic 2x , namely 

: 

 
frequencyExpected

frequencyExpectedfrequencyObserved
x

2
2 )( −
∑=  (1.1)  

 

where expected frequency is,  

 
N

nn
E ji

ij
..=  (1.2)                                    

If the given table is a 22×  table, e.g. Table 1.9, we can reduce the formula (1.1) 

to the following simplified form: 
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))()()((

)( 2
2

dbcadcba
bcabN

x
++++

−=  (1.3) 

                            

Table 1.9. General 2 x 2 contingency table 

  A  

  Type I  Type II  Total 

B 
Type I A b a + b 

Type II  C d c + d 

 Total a + c b + d N = a + b + c + d 

 

                               

Let us consider the case of the original data presented in Table 1.10. 

Table 1.10 Original table in a 2x2 contingency tabl e 

5                 7 

11              12 

12 

23 

16              19 35 

 

Eight possible tables can be obtained by rounding to base 3. Next, let us 

calculate the chi-square test for each possible rounded table. The bias happened 

when the expected value of ( )22ˆ xx −  is not equal to zero. Note x̂ is calculate by 

Equation (1.1) for each possible rounded table. The x is the expected value of all 

possible rounded tables’ x̂ .  

 

This explanation shows us how to measure the bias when original table is known. 

Another way is to measure the effect of random rounding by using chi-square 

when the rounded table is given (Table 1.11). 
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Table 1.11 2x2 contingency table randomly rounded u sing base 3 

3                 6 

9                12 

9 

21 

12             18 30 

 

Using base 3 rounding, Table1.11 could be derived from one of 625 (54) parent 

tables. Ryan (1981) shows the three steps to measure the effect of random 

rounding by chi-square: 

 

(1) A cell’s prior distribution of the parent table: base 3 has been assumed: 

P (rounded data - 2) = 1/9, P (rounded data - 1) = 2/9, P (rounded data) = 

3/9, P (rounded data + 1) = 2/9, P (rounded data + 2) = 1/9;      

(2) Suppose these prior distributions are independent. 

(3) Find the posterior distribution for each cell value, according to the random 

rounding method.     

 

As discussed above, we present different types of data with different SDC 

methods. In this thesis, we focus on count data with random rounding. We want 

to show the effect of random rounding in two ways, one is to show the effect of 

random rounding using the chi-square test. The other one is to reflect the effect 

of random rounding on the log-linear model.  

 

We consider two important issues with random rounding to show the bias effect 

of random rounding. Suppose we have 100 sample rounded tables. Next, we 

calculate the chi-square value of these 100 rounded tables, denoted as 
2
100

2
1 ,...,xx . The expected value of ( 2

100
2
1 ,...,xx ) is equal to the chi-square value of 
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the original table, according to expected value of discrepancy is zero (more detail 

in P20). This raises another important question regarding privacy and 

confidentiality. If Statistics NZ only published one random rounded table with the 

original table's chi-square value given to the nth decimal place, is this safe to 

published while maintaining confidentiality? Chapter 3 will focus on this problem.  

 

 Another aspect of SDC relates to estimates in the log-linear model. Do 

estimated based on the rounded table change the hypothesis decision compared 

with estimates based on the actual table? Chapter 4 and 5 present this analysis 

for different contingency tables.  
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 Chapter 2 

Log-linear models 
 

This chapter discusses the use of log-linear models for two-, three- and higher-dimensional 

contingency tables. We first give an overview of the generalized linear models (GLM) in which the  

response variable is from some member of the exponential family of distribution. We then 

introduce the concept of log-linear models and show ways to determine a minimal adequate 

model in R.  

 

2.1. Generalized linear model (GLM) 

 

2.1.1. The exponential family  

 

The exponential family of distribution is a one-parameter distribution. A 

probability distribution f(y) is said to be a member of the exponential family if it 

can be written as follows:  

                              )()()()();( θθθ byaetysyf =  (2.1) 

where: 

y : vector of measurements,  

θ : parameter of the family, 

sba ,,  and t  are known functions.  

 

We can rewrite Equation 2.1 in the following form:  

 )]()()()(exp[);( ydcbyayf ++= θθθ  (2.2) 

where: 

)(exp)( ydys = ,  
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and )(exp)( θθ ct = .  

If yya =)( , the distribution is called canonical (Dobson, 2001). 

 

As an example, the binomial random variable { }ny ...,3,2,1,0∈ , with parameter π  

is shown below: 
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This can be rewritten as Equation 2.2 with yya =)( , ( ) )
1

log(
π

πθ
−

=b , 

( ) )1log( πθ −= nc , and )log()( n
yyd = .  

 

The Normal or Gaussian, Poisson, gamma, inverse Gaussian, geometric and 

negative binomial distributions can all be written in the form of Equation 2.2; 

therefore, they all belong to the exponential family. 

 

2.1.2. Introduction to the generalized linear model  (GLM) 
 

Llinear regression has two kinds of variables in a contingency table, i.e. the 

explanatory variable and the response variable. Explanatory variables are also 

known as independent variables or predictors, while the response variables are 

called dependent variables. For example, we want to see how different factors 

affect the overall body health score of an individual. We look at three variables:  
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amount of exercise per week, smoking or not smoking, and age group. These are 

the explanatory variables. The response variable is then the body health score.  

 

The GLM is defined in terms of a set of independent random variables nyy ,...,1 , 

where all independent random variables iy have the same distribution, which 

belongs to the exponential family. GLM was first defined by Nelder and 

Wedderburn in 1972 (Dobson, 2001; McCullagh and Nelder, 1989). 

 

Dobson (2001) suggests that we consider a smaller set of parameters 

pββ ,...,1 (p<N) in GLM, because the parameter θ  is usually not of direct interest. 

We allow the relationship between the response and explanatory variables of a 

GLM to be a function of the linear combination of explanatory variables, that is, 

for ni ,...,1= , we have Equation 2.3.  

 ηβµ == T
ii xg )(  (2.3) 

where: 

g is the link function,  

ix  is the explanatory variable, such as: 
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and β  is the parameters, such as: 
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The function ( )⋅g  is assumed to be is monotone and differentiable. This function is 

known as the link function. The distribution of the response variables depends on 

the form of the link function.  

 
Essentially a GLM consists of three elements (Dobson, 2001):  

● iy , which has a distribution function f, which is a member of the exponential 

family; thus, )]()()(exp[);( iiiiiiiii ydcbyyf ++= θθθ  (note: each iy has the 

canonical form);  

● a linear predictor βη T
ix= , where ix  is the explanatory variables and β  is the 

parameters; and,  

● a link function g such that βµ T
ii xg =)(  where )( ii yE=µ .  

 

The GLM includes linear regression models, analysis of variance models, logit 

models, probit models, log-linear models and multinomial response models. A 

table of the link functions and their inverses, which is used for several 

exponential families of distributions for errors, is presented in Table 2.1 

(McCullagh and Nelder, 1989). In this project, we focus on categorical data in the 

log-linear model, which will be discussed in Section 2.2.  
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Table 2.1 The link functions of common distribution s. 

Distribution  Name Link Function  Link inverse 

Normal  Identity µη =  ηµ =  

Exponential  

Inverse  1−= µη  1−= ηµ  

Gamma  

Inverse  
Gaussian  

Inverse 
squared 

2−= µη  2/1−= ηµ  

Poisson  Log  )ln(µη =  )exp(ηµ =  

Binomial  

Logit  )
1

ln(
µ

µη
−

=  
)exp(1

1
)exp(1

)exp(
ηη

ηµ
−+

=
+

=  

Multinomial  

 

 2.1.3. Estimation 

 

Two steps are used for model estimation:  

 (1) Define a measure of goodness of fit between the data and a corresponding 

set of fitted values generated by the model.  

 (2) Choose the parameter estimates as those that minimize the chosen 

goodness of fit criterion. We use the maximum likelihood method to obtain the 

estimates of the parameters given the data (McCullagh and Nelder, 1989). 

 
To get the maximum likelihood estimate, we will need the likelihood function, 

which is the joint density. We then take the log of the likelihood function, called 

the log-likelihood function. The log-likelihood functions are the basis for deriving 
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estimators for parameters given an observed sample data. The shape of the log-

likelihood function has the maximum point at the value p , which is defined as the 

Maximum Likelihood Estimate (MLE), which we will denote using the symbol
∧
p . 

 
The log-likelihood function for the exponential family of distribution is obtained by 

taking logs on both sides of Equation 2.2, which results in 

)()()()();( ydcbyayl ++= θθθ . For example, consider the Poisson distribution 

( )λ;,..., 21 nxxx . The Poisson mass function is:  
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The joint distribution is:  
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where ( )L λ is the likelihood function.  

We take logs of both sides to obtain the log-likelihood function: 

               ∑ ∏
=

−+−= )ln()ln()(ln
1

n

i
ii xxnL λλλ  (2.6)  

The MLE of parameter the λ  is obtained by maximizing λ . To find the maximum 

value of λ , we take the first derivation of the log-likelihood function and equate it 

to zero, i.e.: 

               ∑ =+−=
n

iXn
dp

d

1

0
1)ln(
λ

λ
 (2.7)  

The maximum likelihood estimator, λ
)

, is given by: 

n

x
n

i
i∑

== 1λ
)
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2.2. The log-linear model 

 

2.2.1. Introduction to the log-linear model 

 
 
The log-linear model is a linear model which describes the variations in the 

expectation of the logarithmic form of the response variable. We will focus on the 

analysis of categorical data in contingency tables by using log-linear models. 

 

 We know that with the joint Poisson distribution, the expected frequencies of the 

Poisson distribution are iiYE λ=)( . When we have high-dimensional tables, the 

expected cell frequencies are given by the marginal probabilities multiplied by the 

fixed marginal total frequencies hence complicating the calculations. Thus we 

use the logarithm of GLM, which is a natural link function between )( iYE and a 

linear combination of parameters, i.e.:  

βη T
iii xYE == )(log            Ni ,...,1=  

This is the log-linear model (Dobson, 2001).  

 

Conditions are needed to use the log-linear model. The response variable is a 

continuous variable which cannot be separated into a discrete contingency table 

(Jeansonne, 2002). If both the explanatory and response variables are 

categorical data, the log-linear model should be used. We focus on categorical 

data and log-linear models in this study, and any continuous data will be grouped 

into categorical data.  
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2.2.2. Contingency tables 

 

2.2.2.1. Two-dimensional tables 

 
A contingency table is a table of counts that usually shows relationship between 

two or more variables. In addition, most variables are categorical variables 

(Everitt, 1992).  

 
First, we introduce two-dimensional tables in which a sample of N observations 

are classified into two categorical variables, one of which has r categories and 

the other one having c categories. If r and c both are equal to 2, we have the 

simplest form of contingency table, known as the 2 x 2 contingency tables. 

Otherwise, if either r or c is greater than 2, we then have an r x c contingency 

table (Everitt, 1992). 

 

For example, in an investigation of the relationship between education and salary 

of sample size n = 50, the variable "education" could have two categories: no 

qualification and bachelor graduate; the variable "salary" has two categories: 

over or below $40,000 per annum. A table such as Table 2.2 is known as a 2 x 2 

contingency table. A chi-square test can be used for a 2 x 2 contingency table. 

The null hypothesis states that knowing the level of the variable "salary" does not 

help you predict the level of the variable "education", i.e. the variables are 

independent. The alternative hypothesis is that knowing the level of the variable 

"salary" can help you predict the level of the variable "education".  

 

The chi-square formula is given in chapter 1. Applying the chi-square formula to 

the data in Table 2.2 gives: 16
80708070

)25255545(150 2
2 =

×××
×−××=x with 1 degree of 

freedom. We then use the chi-square table to find 0001.0)16( 2
1 =>xp . Since the 

p-value (0.0001) is less than the significance level (0.05), we can reject the null 
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hypothesis. Thus, we conclude that there is a relationship between salary and 

education.  

 

Table 2.2 2x2 contingency table. 

Education  
Salary 

Below $40,000 p.a.  Over $40,000p.a.  Total  

No qualification 45 25 70 

Bachelor graduate  25 55 80 

Total 70 80 150 

 

Table 2.3 shows an r x c contingency table with r = c = 3. The variable "salary" is 

classified to three categories: “below $40,000”, “$40,000−$60,000”, and “over 

$60,000”. The variable "education" is classified to three categories: “no 

qualification”, ” bachelor graduate” and “post-graduate”.  

 

Table 2.3 3x3 contingency table. 

Education 
Salary 

Below $40,000 p.a.  $40,000−$60,000 p.a. Over $60,000 p.a.  Total  

No qualification 45 25 6 76 

Bachelor graduate  25 55 16 96 

Post graduate 5 30 55 90 

Total 75 110 77 262 

 

 

We can use the chi-square test for an r x c contingency table to indicate the 

existence of a relationship between two variables. The null hypothesis, 0H  , is 

that salary and education are independent. The alternative hypothesis, aH , is 
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that salary and education are not independent. Firstly, we calculate the expected 

cell value of Table 2.3, according to the chi-square formula. Table 2.4 shows the 

expected frequency for the data of Table 2.3. Then, using the same method as 

we did for the 2 x 2 contingency table and by applying the chi-square formula, we 

obtain the chi-square value: 

28.98
45.26

)45.2655(
...

91.31
)91.3125(

76.21
)76.2145( 222

2 =−++−+−=x . Since the p-value 

(<0.01) is less than the significance level (0.05), we can reject the null 

hypothesis. Thus, we conclude that a relationship exists between salary and 

education (Everitt, 1992, p39). As the categorical order increases, the calculation 

becomes more complicated. Therefore we would like to apply the log-linear 

model to simplify calculations.  

 

Table 2.4 Expected frequencies for the data of Tabl e 2.3 

Education 
Salary 

Below $40,000 p.a.  $40,000−$60,000 p.a. Over $60,000 p.a.  Total  

No qualification 21.76 31.91 22.34 76 

Bachelor graduate  27.48 40.31 28.21 96 

Post graduate 25.76 37.79 26.45 90 

Total 75 110 77 262 

  

The Christensen (1990) introduces the balanced analysis of variance (ANOVA) 

model:   

ijkijjiijk ey ++++= γβαµ  

We can rewrite this expression as:  

ijkijjiijk eaaaay ++++= )(12)(2)(1 .        

Where: 
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i=1,…,I; 

j=1,…J, and 

k=1,…,K. 

We assume that ijke is independent of ),0( 2δN . 

 

We use the ANOVA model to test the relationship between the two factors in the 

log-linear model by testing whether their interaction term is zero. When the 

interaction term is not equal to zero, we write the two-dimension table as the full 

model )(12)(2)(1 ijjiij aaaam +++=  (2.8).  

If the interaction term is equal to zero, then we have the sub-model of this full 

model:  

                                                )(2)(1 jiij aaam ++=                                         (2.9) 

For instance, let us examine a contingency table that has the properties  

ijij mnE =)(  and ijij pnm ..= . We are interested in the structure of ijm  to test the 

interaction term and whether it is equal to zero in the log-linear model.  

                                      )(12)(2)(1)log( ijjiij uuuum +++=                                  (2.10) 

                                             )(2)(1)log( jiij uuum ++=                                      (2.11) 

We know ijij pnm ..=  if the rows and columns of the table are independent, and  

...... jiijij ppnpnm ==  and (2.12) hold. 

                          )log()log()log()log()log( ........ jijiij ppnppnm ++==               (2.12) 

 

The model shown in (2.12) is same as the model in (2.11). Therefore, the model 

in (2.12) holds and, the main effects are independent. Otherwise, the rows and 
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columns of the table have the interaction term, ...... jiijij ppnpnm ≠= . We write ijm  

in a log-linear model as shown in (2.10).  

 

The Christensen (1990, p48) discussed several reasons for writing ANOVA type 

models for )log( ijm  instead of for ijm . "The first reason is that the large sample 

theory can be worked out. The second reason is that log-linear models arise in a 

natural fashion from the mathematics of Poisson sampling".  

 

2.2.2.2. Three-dimensional and higher dimensional t ables 

 
Previously, we discussed two categorical variables in a contingency table. Now 

we will analysis three or more categorical variables in a contingency table. For 

example, Table 2.5 shows three variables being investigated. The first variable is 

"salary", the second variable is "education", and the third variable is "age", say 

“20−30”, or ”30−50”. The first two variables are as described for Table 2.2.  

 

Table 2.5 Three-dimensional contingency table of sa lary level. 

 
Salary 

Below $40,000 p.a.  $40,000−$60,000 p.a. 
Totals  

 Age 20−30 30−50 20−30 30−50 

Education  

No qualification 35 25 15 30 105 

Bachelor graduate  20 5 25 45 95 

Totals 55 30 40 75 200 

 

We can apply the chi-square test to check if variables are independent or not. 

However, the calculations are more complicated for multi-dimensional 
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contingency tables. Therefore we apply the log-linear model to test relationship 

between the factors.  

 

Let ijp  represent the probability in the ith row variable, and the jth column variable. 

We have seen previously the ijij mnE =)(  where ijn  is the observed cell value in 

the ith row and jth column, and ijm  is the expected counts in the table. If the null 

hypothesis indicates mutual independence of the variables, the expected values 

may be obtained using the formula: ijij pnm ..=  where ..n  is the sample size 

(Christensen, 1990).  

 

We propose the null hypothesis, H0, that salary, education and age are 

independent, and the corresponding alternative hypothesis may now be 

formulated as follows:  

kjiiijk pppnmH ........:0 =  

 :Ha  correlation between variables.   (2.13)  

For the counts of Table 2.5, we take the log of the equation (2.13), giving: 

 )log()log()log()log()log( ....... kjiiijk pppnm +++=   (2.14)                      

The sub-models of model (2.14) are: 

 )log()log()log()log( ..... jiiijk ppnm ++=   (2.15)                      

 )log()log()log( .... iiijk pnm +=   (2.16)                                                    

We use the models (2.14), (2.15) and (2.16) to test whether the variables 

independent or not.  
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2.2.3. Model selection in R  

 

We now want to test the relationship of the factors given a log-linear model. 

Christensen (1990) introduced a log-linear model for a three-dimensional table 

with the full model given as:  

)()()()()()()()log( 123231312321 ijkajkaikaijakajaiaamijk +++++++= .  

The corresponding ten sub-models are as shown below:  

 (i) )()log( 1 iaamijk +=                                                                                            

 (ii) )()()log( 21 jaiaamijk ++=                                                                                

 (iii) )()()()log( 321 kajaiaamijk +++=                                                                      

(iv) )()()()()log( 12321 ijakajaiaamijk ++++=                                                       

 (v) )()()()()log( 13321 ikakajaiaamijk ++++=                                                        

(vi) )()()()()log( 23321 jkakajaiaamijk ++++=                                                        

(vii) )()()()()()log( 1312321 ikaijakajaiaamijk +++++=       

(viii) )()()()()()log( 2313321 jkaikakajaiaamijk +++++=   

(ix) )()()()()()log( 2312321 jkaijakajaiaamijk +++++=   

(x) )()()()()()()log( 231312321 jkaikaijakajaiaamijk ++++++=       

 

We compare the models (i) and (ii) to determined whether the variable 2a  is zero, 

according to the generalized ANOVA model. If the factor 2a  is not zero, we 

should prefer model (ii) over model (i). Following the same idea, we compare 

model (ii) and model (iii) to determine whether the factor 3a  is zero. If the factor 

3a  is not zero, we should prefer the model (iii) over model (ii). It is also means 

that the three variables are not independent. We then go to next step to test 
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whether the interaction terms are zero. An interaction term is basically the 

product of two predictor variables of interest, such as 12a  in our example.  

 

We now compare models (iii) and (iv) to determine whether the 12a  effect is zero, 

according to general ANOVA model. If the effect of 12a  effect is not zero, we 

should prefer model (iv) over model (iii). Following the same idea, we compare 

models (iii) and model (v) to determine whether the effect of 13a  is zero. Model 

(viii) holds if only if the effect of 123a  can be dropped from the full model.  

 

Three model selection methods are commonly used: the forward selection 

method, the backward selection method and the stepwise selection method 

(McCullagh and Nelder, 1989).  

● Forward selection:  

1. Compare models (iii) and (iv) to determined whether the effect of 12a  is zero, 

according to the generalized ANOVA model. If the effect of 12a  is not zero, we 

should prefer the model (iii) over model (iv). By the same idea, we also can start 

by comparing model (iii) comparison with model (v) to determine whether the 

effect of 13a  is zero, or we could compare models (iii) and (vi) to determine 

whether the effect of 23a  is zero.  

2. We assume the effect of 12a is not zero. Now, we must compare models (iii) 

and model (v) to determine whether the effect of 13a  is zero. If the effect of 13a  is 

not zero, we must compare the models (vii) and (x) to determine whether the 

effect of 23a  is zero.  

● Backward selection:  
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1. Start from the full model (x)  and compare it with models (vii) (viii) and (ix) to 

determine whether the effects of 23a , 12a , and/or 13a  are equal to zero. If any 

effect is equal to zero, the full model will be reduced.  

● Stepwise selection:  

The stepwise procedure makes the decisions using the Akaike Information 

Criteria (AIC) in R. The AIC value is a measure of the goodness of fit of an 

estimated statistical model, the model have the smallest AIC value being the 

best. R provides a command "step" to choose the model with the best fit.  

 

2.3. Summary 

 

This chapter discusses the GLM to model non-normal data (Dobson, 2001), and 

the basic concepts of GLM. The contingency tables can be modelled using a 

GLM technique called the log-linear model. We present a method of testing 

relationships between each main effect. Two methods can be used to test a 

relationship between the effects: the first one uses the chi-square test ; the 

second one uses the log-linear model. When the categorical order increases, we 

would like to apply the log-linear model to simplify calculations.  

 

Model selection is another main objective in this chapter. This chapter presents 

three model selection methods: the forward selection method, the backward 

selection method and the stepwise method. These three standard model 

selection techniques can be used to choose the best model and to identify the 

relationship among explanatory variables.    
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Chapter 3 

Effect of random rounding and chi-square analysis 
 

In this chapter, we analyze the difference between a rounded contingency table and the possible 

real tables it could be derived from. The rounded table and its possible real tables have been 

tested by the chi-square test.  

 

3.1. Introduction 

 

In the previous chapters, we introduced the idea that statistical organizations 

normally use random rounding to base 3 and 5 when publishing census data. 

This is to ensure some confidentiality for the data with random rounding. A user 

of a published table does not have the exact original cell counts. For example, if 

the published cell count is 6 then the user can only infer that the possible 

unrounded cell is one of 4, 5, 6, 7, or 8.  

 

In this chapter, we illustrate the effect of random rounding on the analysis of a 

contingency table using the chi-square test. We start with a randomly rounded 

table and compared the chi-square tests of all possible unrounded tables (parent 

tables). Each rounded table has, N possible parent tables. We calculate the chi-

square of the given rounded table, named as 2
pX  . We then calculate the 

individual parent tables' chi-squares, designated ),...,1(2 NnX n = . Then we 

compare the randomly rounded and parent tables' chi-square values, and identify 

how many decimal places would need to be reported to be able to reconstruct 

the exact original table from the rounded table. This value is the threshold of 

maintaining confidentiality.  
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We report the rounded table's 2
pX  to the nth decimal place, and report all parent 

tables' chi-squares to nth decimal place. If at least two parent tables' chi-squares 

are equal to the rounded table's chi-square to the nth decimal place (except for 

the parent table which is exactly same as the rounded table), the user has a high 

probability of inferring the original table. For example, if the rounded table's chi-

square matches two parent tables' chi-square to four decimal places, then the 

user has a 50% chance of identifying the original table. If the rounded table's chi-

square matches only one chi-square from the all possible parent tables (except 

for the parent table which is exactly same as the rounded table) at ( )1+n th 

decimal places, the rounded table's 2
pX  cannot preserve confidentiality at the 

( )1+n th decimal place. We will call the ( )1+n th decimal place DP. If the rounded 

table's published chi-square is reported with DP decimal places then a user will 

be able to reconstruct the original table.  

 

In this chapter, we analyze the relationship between the DP and the variance of a 

rounded table when rounded using base 3 and base 5. We use a range of 

rounded tables and summarize the results in the Section 3.2.2.  

 

3.2. Two-dimensional tables 

 

3.2.1. r x c contingency tables  
 

We would like to start with a 2X2 example. The two examples below illustrate a 

rounded table that is a two-way contingency table with 3 and 5 as the rounding 

bases. Each table rounded to base 3 has 625 possible original; each table 

rounded to base 5 has 6561 unrounded tables. However, the possible real 

unrounded tables are not all the tables that are possible, for example, Table 3.1 

shows cell(1,1) is 9, the cell(2,1) is 12, and the marginal total cell(3,1) is 21. If 
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unrounded cells are 7 of cell(1,1), and 10 of cell(2,1), So the marginal total of 

cell(3,1) is 17 (10+7), It is outside the range of published marginal cell (21).This 

is because we should delete the possible tables which have marginal totals that 

are outside the range of the published rounded table's marginal totals. These 

examples show how to find DP and to delete unacceptable unrounded tables.  

 

Table 3.1 is a 2X2 contingency table rounded to base 3 that has two variables 

grade and type. The variable grade has two categories, pass and fail. The 

variable type has been classified as type I or type II.  

 

Table3.1. Exam grade 

 
Grade 

Pass  Fail  Total  

Type 

Type I 9 6 15 

Type II  12 9 21 

Total 21 15 36 

 

Firstly, we calculate the expected frequencies for each cell, using Formula (1.2). 

These are shown in Table 3.2.  

 

Table 3.2. Expected frequencies for Table 3.1. 

 
Grade 

Pass Fail Total 

Type 

Type I 8.75 6.25 15 

Type II  12.25 8.75 21 

Total 21 15 36 
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In Table 3.2 the first cell, named 11E , is obtained by:  

( )
75.8

36
2115

11 =×=E  

The other cells follow a similar calculation.  

Using Formula (1.1) we obtain the chi-square value:  

( ) ( )

0294.0

0071.0...01.00071.0

75.8
)75.89(

...
25.6
25.66

75.8
75.89 222

2

=

+++=

−++−+−=pX

 

 

Currently, we have the rounded parent table’s chi-square ( 2
pX ). We will present 

two steps for obtaining the DP. First, we obtain the all possible real unrounded 

tables. In totals, 625 possible unrounded tables can be obtained from a two-way 

contingency table rounded using base 3. We then delete the unacceptable 

unrounded tables. After deletion we have 247 possible tables left.  

 

The second step is to find the DP. We write the program in R to compute the chi-

square for 247 unrounded tables )247,...,1(2 =nX n , and then obtain the DP.  

2dp: = 0.03    { 103.

)(124.

Notable

ignoreNotable

→
→  

3dp:= 0.029   { )(124. ignoreNotable →  

Using the example above, the rounded table has two unrounded tables that 

match its chi-square to two decimal places. Note that we always ignore one 

unrounded table's chi-square, because one possible unrounded table (No.124) 

which is the same as the rounded table will always exist. The user reconstruct 

the original table is 








812

68
(No.103) and 03.02 =X in two decimal place. 

Therefore, the user can easily reconstruct the original table when the rounded 



 44

table’s published chi-square is reported to 2 decimal places (i.e. the DP = 2). The 

rounded table is not safe to publish with the chi-square give to 2 decimal places.  

 

We do a similar analysis for a two-way contingency table rounded using base 5. 

Firstly, we must compute the given table’s chi-square, and then obtain all the 

possible unrounded tables. We obtain 587 out of 6561 possible tables. In the 

third step, we compute the chi-square for all the real unrounded tables and obtain 

the DP.  

 

3.2.2. Data analysis and results  
 

We randomly generated 100 two-way tables randomly rounded using base 3 as 

our possible rounded tables (see Section 1.3.2). We compute the DP of the 100 

rounded tables and the variance, average and CV (variance/average) of each 

rounded table.  

 

Figure 3.1 present three plots, showing average vs DP, variance vs DP, and  CV 

vs DP for all tables. We can not see any trend between DP and average. The 

second plot shows a trend between DP and variance, suggesting that as 

variance increases, the DP becomes smaller. That means that as variance 

increases, the table becomes less confidential. The last plot shows a similar 

pattern to the second plot. Figure 3.2 clearly presents the relationship between 

DP and variance.  
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Figure 3.1. Three plots for two-way tables rounding  using base 3 (RR3) 

 

We randomly generated 400 two-way tables rounded using base 3 as our 

"published" tables (rounded tables). We want to see the relationship between the 

average or variance of table and decimal place of chi-squire. These were divided 

into four categories: high average with high variance (hahv), high average with 

low variance (halv), low average with high variance (lahv), and low average with 

low variance (lalv). We calculated the percentage of tables match in the rounded 

table to the nth decimal place.  For example, when the chi-square value is given 
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to 1dp, we find 245 unrounded tables for which the chi-square value is the same 

as that of the rounded table. The percentage in this case is 0.99 (245/247). When 

the chi-square value is given to 2dp, we get 150 unrounded tables where the chi-

square value is the same as that of rounded table; here the percentage is 0.61 

(150/247), etc. A bigger percentage means the published table is more 

confidential, because more possible unrounded tables have been found, and 

therefore, it is harder to identify which is the actual original table.  

 

Figure 3.2 presents the percentage of the four groups of tables hahv, halv, lahv, 

and lalv. The high average plot has a higher percentage of matches than the low 

average plot based on same variance level (low or high). The low variance plot 

has a higher percentage of matches than the high variance plot based on same 

average level (low or high). The low variance plot has a higher percentage of 

matches than the high variance plot. The high percentage means it is harder to 

reconstruct the original table. Therefore, the rounded table with low variance is 

safer and more confidential than a rounded table with higher variance. The plot of  

the table with high average and low variance (halv) has the highest percentage of 

matches of the four categories, which suggests that a rounded table with low 

variance and high average gives more confidentiality than others.   

 

The four plots in Figure 3.2 present the decreasing trend between percentage 

and chi-square value given to the nth decimal place. More matched tables are 

found when the chi-square value is given to 1dp. Therefore, a rounded table 

where the chi-square is given to fewer decimal places will be more confidentiality.   
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Figure 3.2. Percentage of matches vs. decimal place  for four types of two-
way contingency table  randomly rounded using base 3 

 

We repeat the study design for a two-way table rounded using base 5. Figure 3.3 

shows the trends with the rounded table's variance and average are the same as 
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when base 3 is used. Next we compare the DP and variance plot between 

rounded tables using base 3 and 5.  

 

 

Figure 3.3 Percentage of matches vs. decimal place for four types of two-
way contingency table randomly rounded using base 5  

 

Figure 3.4 plots the variance and DP for tables randomly rounded using base 3 

and 5 alongside each other, using different plot symbols to represent the two 

types of table. This graph reveals a decreasing trend. When the rounded table's 

published chi-square is given to DP decimal places, a user will be able to identify 
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the original table. The plot with base 5 appears to have a higher DP than the plot 

of base 3. When the DP is equal to 2, the plot points from the base 3 dataset 

appear more than the plot points from the base 5 dataset. When a table rounded 

using base 3 is published with the chi-square given to 2 decimal places, a user 

will more easily reconstruct the original table than she/he would with the table 

rounded to base 5 with the chi-square given to 2 decimal places.  

 

As DP increases, we can see more plot points from the base 5 dataset appearing 

rather than the plot points of the base 3 dataset. Therefore, a table rounded 

using base 5 is more confidential than a table rounded using base 3, because in 

base 5 more decimal places need to be reported to be able to reconstruct the 

original table. 

 

A smaller DP means that fewer decimal places need to be reported to be able to 

reconstruct the original table. Therefore, the user will easily be able to identify the 

original table. Decreasing the DP will reduce the confidentiality. This graph also 

presents the decreasing trend between the DP and the variance of a table. When 

variance increases, the DP decreases. Therefore, a table with low variance 

encourages confidentiality compared to a high variance table because more 

decimal places need to be reported to be able to reconstruct the original table.  

 

Therefore, rounding a table using base 5 increases confidentiality compared with 

rounding using base 3 based on the chi-square having the same number of 

decimal places. A rounded table with low variance is safer and more confidential 

than a rounded table with high variance.  
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Figure 3.4. The variance and DP at base 3 and base 5 

 

3.3. Multi-dimensional tables 

 

3.3.1. r x c x n contingency tables  

 

 We now extend our analysis to a 222 ×× contingency table. We have used 

three-way 222 ×× contingency tables randomly rounded using base 3 and 5 as 

our "published" tables. We follow three steps similar to those used for two-way 
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tables. Firstly, we calculate the 2
pX  for the published tables. Secondly, all 

possible unrounded tables (parent tables) are constructed. A 222 ××  

contingency table rounded using base 3 could be derived from 59691 possible 

parent tables, while a 222 ××  contingency table randomly rounded using base 5 

could be derived form 274393 possible parent tables. Thirdly, we calculate the 

chi-square for all possible parent tables, and obtain DP.  

 

Table 3.3. is known as a 222 ××  contingency table which has been randomly 

rounded using base 3, and which has three variables: "sex" , "grade" and "type" . 

The variable "grade" has two categories, "pass" and "fail". The variable "type" 

also has two categories: "type I" and "type II". "Sex" is, of course, divided into 

"male" and "female". 

 

Table 3.3. A 2 x 2 x 2 contingency table correlatin g exam grade, sex and 
type 

 
Grade 

Pass Fail 
Total 

Sex Male  Female Male  Female 

Type 

Type I 3 6 9 9 27 

Type II  9 12 3 6 30 

Total 12 18 12 15 57 

 

Firstly, we calculate the expected frequencies for each cell. Here, we need to 

introduce a formula to calculate the expected value. The Everit (1992) introduced 

an expectancy formula as follows: 

 
2

......

N

nnn
E kji

ijk =  (3.1)  
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For example, for the data shown in Table 3.4 we have:  
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In Table 3.4 the first cell is named E111. We calculate the expected values using 

formula (3.1) and get the following result: 

9834.5
5757

302427
111 =

×
××=E  

Table 3.4 shows the full set of expected frequencies.  
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Table 3.4. Expected frequencies for Table 3.3. 

 
Grade 

Pass Fail 
Total  

Sex Male Female Male Female  

Type 

Type I 5.9834 8.2271 5.3850 7.4044 27 

Type II  6.6482 9.1413 5.9834 8.2271 30 

Total 12 18 12 15 57 

 

We compute the chi-square (Everitt, 1992):  

 ∑∑∑
= = =

−
=

r

i

c

j

l

k ijk

ijkijk

E

En
x

1 1 1

2  (3.2)  

We compute the given example's chi-square value using formula (3.2) as follows:  

6774.8
2271.8

)2271.86(
...

6482.6
)6482.69(

983.5
)983.53( 22

2 =−++−+−=x  

Now we have the rounded table’s 2
pX (8.6774). We write the program in R to 

compute the chi-square for all possible parent tables. Then we can obtain DP.  

3dp: = 8.677    { 11356.

)(29846.

Notable

ignoreNotable

→
→  

4dp:= 8.6774   { )(29846. ignoreNotable →  

In this example, the rounded table has two parent tables that match its chi-

square to 3 decimal places. Note that we always ignore one unrounded table's 

chi-square, because there is always one possible unrounded table (No.29846) 

which is the same as the rounded table. Therefore, the user can easily 

reconstruct the original table when rounded tables published chi-square is 

reported to 3 decimal places, i.e. DP is 3. The rounded table can be safely 

published with the chi-square value given to less than 3 decimal places.  
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3.2.2. Data analysis and results  

 

We repeat the study design with a three-way table. Figure 3.5 shows the trends 

with a three-way table rounded using base 3; variance and average are the same 

as for the two-way table. In Figure 3.5, the halv plot is very close to the lalv plot. 

This shows that the average is not a main reason for the percentage changing 

when tables have a low level of variance. The hahv plot clearly has a higher 

percentage of matches than the lahv plot, which shows that a high average leads 

to a percentage increase when a table has a high level of variance. The hahv 

and lahv plots in Figure 3.5 are well below the other plots, because the three-way 

table's sample size (three-way tables have more possible tables) is bigger than a 

two-way table's. The CI plot for three-way tables will be narrower than the CI plot 

for two-way tables. These four plots follow the same order as two-way tables: 

halv, lalv, hahv, and lahv (highest to lowest).   
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Figure 3.5 The variance and decimal place for a thr ee-way table randomly 
rounded using base 3 

 

Each three-way table randomly rounded using base 5 can produce a number of 

different possible actual tables. We can not produce all possible actual tables to 

analyse, because there are too many. We therefore produce a subset of all 

possible actual tables. Figure 3.6 presents the trends with the three-way table 

with rounding base 5 variance and average are the same as for the two-way 

table. These four plots follow the same order as two-way tables and three-way 
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tables with rounded using base 3, i.e. halv, lalv, hahv, and lahv (highest to 

lowest).  

 

 

Figure 3.6 The variance and decimal place in three- way table with RR5 

 



 57

 

 

Figure 3.7. The variance and DP in two-, and three- way tables rounding 
using base 3 and base 5 

 

Figure 3.7 plots the variance and DP in of two-way tables rounded using base 3 

and 5 alongside those of a three-way contingency table rounded using base 3. 

Figure 3.7 shows a decreasing trend between a table's variance and the 

associated DP in the two-way tables rounded using base 3 and 5, and the three-

way contingency table rounded using base 3. Data from the three datasets (each 

containing figures for 100 rounded tables) are represented by a different plot 

symbols. The plot showing the DP for the three-way contingency table appears to 
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be higher than the DP from the two-way contingency table. Therefore, the three-

way contingency table has more confidential than the two-way contingency table, 

because in a three-way contingency table, more decimal places need to be 

reported to be able to reconstruct the original table. The three-way contingency 

table with rounded using base 3 is more confidential than the two-way 

contingency table rounded using base5.  

 

This graph also presents the decreasing trend between a table's DP and its 

variance. As variance increases, the DP decreases. A table with high variance, 

will have less confidentiality compared with a table with low variance, because 

fewer decimal places need to be reported to be able to reconstruct the original 

parent table.  

 

The most frequent DP appearing for the two-way contingency table rounded 

using base 3 is 2 or 3. The most frequent DP appearing for the two-way 

contingency with base 5 rouging is 3 or 4, while for the three-way table, the most 

frequent DP is 4 or 5.  

 

3.4. Summary 
 

This chapter suggests that a table with a high average is more confidential than 

another table with the same variance level. A table with low variance is more 

confidentiality than one with high variance, i.e. these four plots always follow the 

same order from highest to lowest: halv, lalv, hahv, and lahv.   

 

The two-way contingency table with rounded using base 5 is more confidential 

than the two-way contingency table rounded using base3. The three-way 

contingency table is more confidential than the two-way contingency table, 
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because in three-way contingency tables more decimal places need to be 

reported to be able to reconstruct the original table.  
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Chapter 4 

Effect of random rounding in log-linear models 
 

This chapter gives the results of a study on census data analyzed with log-linear models. This 

chapter presents two related analyses on the effect of random rounding with log-linear models. 

Firstly the model using the random rounded table (model RR) is compared with the model using 

the actual data (model AC) to see whether or not they contain the same factors. Secondly, we 

compare the estimates from the RR and AC models and assess whether or not the hypothesis 

decisions change. We use these two methods to determine the effect of random rounding on 

model selection and interpretation.  

  

4.1. Introduction 

 

We obtained figures for age and sex for 1996, 2001 and 2006 censuses from the 

Statistic NZ table builder (http://wdmzpub01.stats.govt.nz/wds/TableViewer/table 

View.aspx). We will discuss the effect of random rounding by comparing two 

different tables derived from the census data: the actual data and the rounded 

data. We assess two main performance measures to see if they are substantially 

affected by random rounding.  

 

We present the effect of random rounding in three steps. In the first step, we use 

model selection to obtain a simplified model, and then check whether the 

simplified RR model and simplified AC model have the same factors or not. We 

then compare estimates in the RR model with those of the AC model to 

determine whether the hypothesis decision changes between models.  

 

4.2. Data Analysis 
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4.2.1. Age by sex numerical table 

 

We have four explanatory variables − year, age, sex, and region − in the given 

census table. The dependent variable is the count of people in each cell of the 

table. We denote the variables in this 172213 ×××  table as Y for year, A for age, 

S for sex, and R for region. This published census table (which was rounded 

using base 3) can be produced from a number of possible actual tables. We can 

not produce all possible actual tables to analyze, because there are too many. As 

an alternative we produce a sample subset of all the possible actual tables. We 

used the upper limit tables (the worst tables), because rounded data in these are 

very different from the actual data. For example, the published cell count is 6 with 

rounding base three that the possible unrounded cell is 4, 5, 6, 7, or 8. So the 

unrounded cells 4 and 8 have the biggest discrepancy from the published cell. 

We called unrounded cell 4 and 8 are the worst possible parent cell to the 

published cell. 

 

We have two ways of obtaining the upper limit tables. In the first method we 

choose the two worst possible parent tables. The worst dataset (WRa) was 

produced by adding 2 to the first row, subtracting 2 from the second row, and so 

on.  The second worst dataset (WRb) was produced by adding 2 to the first 

column, subtracting 2 from the second column, and so on. Once we have 

obtained them, WRa and WRb will have rounded data that very different from the 

actual data.  

 

In the second method, we randomly generate another 100 of the worst datasets 

(WR). The 100 worst datasets were produced by adding 2 or subtracting 2 

randomly from each cell.  
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4.2.2. Model selection 
 

In Chapter 2, we introduced our method of model selection. We want to obtain 

the minimally adequate model (the simplified model). We introduced four general 

models. The independent model is denote by (Y, A, S, R) with no interaction 

term. This first model has no relationship between variables. However, if an 

interaction term between each pair of variables appears, we symbolize this two-

way interaction model by (YA, YS, YR, AS, AR, SR). If all interactions prove to be 

significant, then we will denoted the three-way interaction model by (YAS, YSR, 

YAR, ASR) and the four-way interaction model by (YASR) (Crawley, 2005). 

 

General log-linear model with independent variable (Y, A, S, R): 

 R
l
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Y
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The second log-linear model has all four pairs of factors with conditional 

associations (YA, YS,YR,AS,AR,SR):  
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The third log-linear model has four triples of factors with conditional associations 

(YAS, YSR, YAR, ASR): 
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 (4.3) 

The fourth log-linear model is the most complex with all two-, three-, and four-

way interactions (YASR):  
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 (4.4)  

 

We use a model selection process to find the minimally adequate model that 

describes the rounded table. We use the 'stepwise' procedure in R to determine 
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the model with best fit. We start with the maximum model, shown in Table 4.1. 

The output shows the steps that R goes through to determine the best fitted 

model. Note that the decisions are made using the AIC.  

Table 4.1 Step output to determine the best model: 

 

 

Table 4.1 shows that the best fitted model (YAS, YAR, ASR) is: 
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Table 4.2 shows the summarized output of the (YAS, YAR, ASR) model. The null 

deviance is 7108517.1 × , and the residual deviance is 210078.7 × . We will use 

the (YAS,YAR,ASR) model as the best model for all further analysis. 
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Table 4.2 Output of model ( YAS, YAR, ASR ) 

Table displays selected output only 
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We repeat the modelling process and use the 'stepwise' procedure of model 

selection for the worst two possible parent datasets. A comparison of the 

rounded table model with the models from the worst two datasets (WRa and 

WRb) shows that the same effects are seen in all three minimally adequate 

models. Table 4.3 shows the AIC, residual deviance and degrees of freedom (df) 

of the three different models and datasets. We see the AIC and residual 

deviances are very similar, with same degrees of freedom appearing for all three 

datasets.  
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In the next section, we will look at whether estimates produced by the three 

models lead to a change in hypothesis decision. 

 

Table 4.3 Comparison of the factors in all three ca ses: WRa and WRb and 
RR 

 

 

Best Model 

(YAS, YAR, ASR)  

RD 
RR 780.78 

WRa 764.06 
WRb 769.11 

 
DF 

 

RR 672 
WRa 672 
WRb 672 

 
AIC 

RR 22887 
WRa 22994 
WRb 23018 

P> chi-square  <0.01 
Note: 

RD: residual deviance 

DF: degrees of freedom of residual deviance 

RR: given rounded table 

WRa: worst possible parent data for the given rounded table 

WRb: second worst possible parent data for the given rounded table 

 

4.2.3. Effect of random rounding 

 

Currently, we have three datasets: the rounded table, the worst possible parent 

table (WRa), and the second worst possible parent table (WRb). This section 

compares the estimates from the three datasets which produced changes in the 

hypothesis decisions. We are interested in knowing whether estimates using the 

worst datasets can change hypothesis decisions compared to the RR model.  
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The best fitting model (YAS, YAR, ASR) produced 1470 estimates for each 

dataset. Table 4.4 shows the number of significant and non-significant estimates 

in all three datasets. The three datasets yielded different numbers of estimates 

that were significant at the 5% level.  

 

Table 4.4 Number of estimates to be significant or not among the three 
datasets. 

  (YAS, YAR, ASR) 

Rounded table 
(RRT) 

No. of significant 147 

No. of not significant  1323 

Total 
1470 

1st worse case 
(WRa) 

No. of significant 228 

No. of not significant  1242 

Total 
1470 

2nd worse case  
(WRb) 

No. of significant 159 

No. of not significant  1311 

Total 
1470 

 

Further investigation showed that the number of estimates that changed the 

hypothesis decision is in fact a lot higher than suggested in this table. Table 4.5 

shows the number of estimates that produced a change in hypothesis decision 

between the rounded table and two worst datasets. The ideal case would be no 

change in the hypothesis decisions occurred after random rounding. If a high 

frequency of change is seen, then the error from random rounding will be of 

considerable concern, because it may lead to incorrect interpretations.  
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Table 4.5 Estimates in WRa and WRb that change the hypothesis decision 

 WRa WRb 

Total  
 

No. of estimates 
producing 

change in the 
h0 decision 

No. of estimates 
producing no 

change in the h0 
decision 

No. of estimates 
producing 

change in the 
h0 decision 

No. of estimates 
producing no 

change in the h0 
decision 

(YAS, 
YAR, 
ASR) 

91 1379 62 1408 1470 

 

Table 4.5 shows 6.1% (91/1470) of the estimates cause a change in the 

hypothesis decision between the rounded table (RR) and WRa, and 4.2% 

(62/1470) of the estimates change the hypothesis decision between the rounded 

table and WRb.  

 

Table 4.6 compares WRa and WRb against the rounded table, where each 

dataset produced 1470 estimates. The resulting estimates are compared for 

change in significance. The number of estimates that are significant in WRa and 

WRb, but not in RR is always greater than the number of estimates that are 

significant in RR, but not in WRa and/or WRb. In other words, this simulation 

describes more estimates move from non-significant to significant compared to 

the other way round, when the worst possible parent tables have been 

constructed from the randomly rounded table. This addition of significant 

estimates is a concern for random rounding because of the effect of this on 

interpretation.  
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Table 4.6 Number of estimates changing the hypothes is decision (2) 

 
WRa  

p>0.05 p<0.05 Total  

RR p>0.05 1237 86 1323 
p<0.05 5 142 147 

 Total 1242 228 1470 

 
WRb  

p>0.05 p<0.05 Total  

RR p>0.05 1286 37 1323 
p<0.05 25 122 147 

 Total 1311 159 1470 

 

This analysis has used the worst two datasets. The pattern used to generate 

these two datasets was to add 2 to the first row or column, subtracting from the 

second, and so on.  Next, we generate another 100 worst cases that have been 

produced by adding or subtracting 2 randomly (WR1 to WR100). Note that the 

worst cases have been produced by adding or subtracting 2, because with base 

3 rounding, the rounded cell is from an interval that has a width of 5.The WR 

cells are either the upper limit of the interval (RR + 2) or the lower limit of the 

interval(RR - 2). After constructing the 100 worst datasets in this way, we use the 

same study design as for the WRa and WRb datasets.  

 

We calculate the number of significant and non-significant estimates for each of 

the WR datasets. The 100 WR models each contain 1470 estimates. For each,  

we calculate the percentage of estimates that are significant out of the total 

number of estimates (1470) for each WR dataset, named per_wr.  Figure 4.7 

shows 100 per_wr for the 100 WR datasets. The straight line is the percentage of 

the number of estimates that are significant in the RR model (147/1470). The 

per_wr points are consistently above that straight line. This means the WR 

datasets always have more significant estimates than the rounded table. This 

error could make a difference for the user who uses a randomly rounded table 
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instead of original parent table. For example, if estimates change the hypothesis 

decision (e.g. estimates are non-significant in the RR model but significant in the 

possible parent table) then some estimates could be removed from the model 

constructed from the RR table. If the real unrounded data were used, these 

estimates would have been included in the model.   

 

Next, we will compare the datasets WR1-WR100 to the RR dataset and see how 

many estimates are significant in the WR datasets compared to the RR dataset.  

 

 

Figure 4.7 Percentage of estimates that are signifi cant within WR datasets. 
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Table 4.8 shows the number of estimates that changed the hypothesis decisions 

in each WR dataset compared to the RR dataset. The first column shows the 

number of the WR dataset (e.g. WR1). The second column shows the number of 

estimates that are significant in that WR dataset, but not in the RR dataset.  The 

third column shows the number of estimates that are not significant in the WR 

dataset, but are significant in the RR dataset.  The fourth column shows the 

number of estimates that are significant in both the WR dataset and the RR 

dataset.  The fifth column shows the number of estimates that are not significant 

in neither the WR dataset and nor the RR dataset.  

 

Table 4.8 Number of estimates changing the hypothes is decision. 

Changed 

h0 decisions 

Unchanged 

h0 decisions  

Changed 

h0 decisions 

Unchanged 

h0 decisions 

WR 

WR 
(p≤0.05) 

& 
RR 

(p>0.05) 

WR 
(p>0.05) 

& 
RR 

(p≤0.05) 

WR 
(p≤0.05) 

& 
RR 

(p≤0.05) 

WR 
(p>0.05) 

& 
RR 

(p>0.05) 

WR 

WR 
(p≤0.05) 

& 
RR 

(p>0.05) 

WR 
(p>0.05) 

& 
RR 

(p≤0.05) 

WR 
(p≤0.05) 

& 
RR 

(p≤0.05) 

WR 
(p>0.05) 

& 
RR 

(p>0.05) 
1 65 30 117 1258 51 121 20 127 1202 
2 101 16 131 1222 52 76 11 136 1247 
3 88 17 130 1235 53 128 26 121 1195 
4 81 15 132 1242 54 123 23 124 1200 
5 124 23 124 1199 55 94 17 130 1229 
6 82 18 129 1241 56 66 23 124 1257 
7 54 13 134 1269 57 66 22 125 1257 
8 75 23 124 1248 58 118 24 123 1205 
9 74 31 116 1249 59 117 22 125 1206 
10 78 33 114 1245 60 112 37 110 1211 
11 96 22 125 1227 61 108 27 120 1215 
12 95 20 127 1228 62 90 24 123 1233 
13 102 19 128 1221 63 98 13 134 1225 
14 91 21 126 1232 64 84 18 129 1239 
15 98 43 104 1225 65 89 15 132 1234 
16 74 21 126 1249 66 81 23 124 1242 
17 92 16 131 1231 67 92 36 111 1231 
18 85 19 128 1238 68 64 20 127 1259 
19 51 32 115 1272 69 105 5 142 1218 
20 109 23 124 1214 70 93 13 134 1230 
21 95 27 120 1228 71 98 14 133 1225 
22 101 30 117 1222 72 83 15 132 1240 
23 85 23 124 1238 73 78 20 127 1245 
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24 74 13 134 1249 74 84 15 132 1239 
25 107 18 129 1216 75 82 33 114 1241 
26 75 23 124 1248 76 93 14 133 1230 
27 71 8 139 1252 77 65 15 132 1258 
28 98 17 130 1225 78 57 13 134 1266 
29 110 16 131 1213 79 88 18 129 1235 
30 79 24 123 1244 80 84 39 108 1239 
31 73 21 126 1250 81 88 16 131 1235 
32 65 29 118 1258 82 73 28 119 1250 
33 150 29 118 1173 83 96 12 135 1227 
34 81 15 132 1242 84 94 36 111 1229 
35 102 7 140 1221 85 140 13 134 1183 
36 78 16 131 1245 86 115 30 117 1208 
37 66 18 129 1257 87 76 15 132 1247 
38 79 14 133 1244 88 115 9 138 1208 
39 69 13 134 1254 89 46 26 121 1277 
40 81 12 135 1242 90 81 21 126 1242 
41 126 11 136 1197 91 97 33 114 1226 
42 99 17 130 1224 92 81 18 129 1242 
43 59 24 123 1264 93 110 11 136 1213 
44 73 49 98 1250 94 117 23 124 1206 
45 83 9 138 1240 95 75 26 121 1248 
46 73 18 129 1250 96 69 35 112 1254 
47 93 8 139 1230 97 81 22 125 1242 
48 94 31 116 1229 98 95 16 131 1228 
49 110 33 114 1213 99 97 27 120 1226 
50 79 34 113 1244 100 80 15 132 1243 

 

Table 4.8 shows that the number of estimates that are significant in the WR 

dataset, but not in the RR dataset is always greater than the number of estimates 

that are significant in the RR dataset, but not in the WR datasets. This is the 

same result that was obtained by comparing the RR dataset compared to the 

WRa and WRb datasets.  
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Figure 4.9 Percentage of estimate that do not chang e the hypothesis 
decision. 

 

Figure 4.9 shows the percentage of the estimates (out of the total number of 

estimates, e.g. (117+1258)/1470) that do not change the hypothesis decision 

between each WR dataset and the RR dataset. The percentage confidence 

interval at the 5% level is [0.8974, 0.9527]. Therefore, almost over 90% 

estimates in each WR dataset do not change the hypothesis decision, as 

compared to the RR dataset.  
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4.3. Summary 
 

We have presented two analyses to see the effect of random rounding with the 

log-linear model in a four-way contingency table. The rounded table and the 

worst possible parent tables have the same effects in all three minimally 

adequate models. The AIC and residual deviance are very similar, with the same 

degrees of freedoms being found in the rounded and the WR datasets. Random 

error is not a concern at this stage. In the second analysis, we looked at whether 

estimates in the WR datasets changed the hypothesis decision compared to the 

rounded dataset. In this stage, we found the number of estimates that change the 

hypothesis in each WR datasets compared to the RR dataset. The WR datasets 

always have more estimates that are significant than the rounded. This error 

could make a difference for the user who uses the RR table instead of the 

original table. This error is trivial in the four-way table because over 90% 

estimates in each WR dataset do not change the hypothesis decisions compared 

to the RR dataset.  

 

 We will repeat a similar study design with two- and three-way contingency tables 

in Chapter 5.  
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Chapter 5 

Simulation for two- and three-way contingency table s 
 

Chapter 4 presented the effect of random rounding for four-way contingency tables. We repeat a 

similar study design with two- and three-way contingency tables in chapter 5. This chapter gives 

the results of this study for two types of census data analysed with log-linear models. These two 

types of census data include a three-way contingency table and a two-way contingency table, 

which were obtained from the Statistic NZ table builder. The three-way contingency table 

correlates sex, region and qualification level.  

(http://wdmzpub01.stats.govt.nz/wds/TableViewer/tableView.aspx). The two-way contingency 

table correlates income source and income level 

 (http://wdmzpub01.stats.govt.nz/wds/TableViewer/tableView.aspx). 

 

5.1. Three-way contingency table 
 

5.1.1. Tables 
 

We have three explanatory variables: qualification, sex and region in the given 

census table. We denote these variables in this 17213 ×× table as Q for 

qualification, S for sex, and R for region. This published census table is rounded 

using base 3 and is denoted as RR'. This table can be produced from a huge 

number of possible actual (parent) tables. These worst two datasets were 

generated using by the pattern described in chapter 4; these are called WRa' and 

WRb'. We also generated the 100 worst datasets randomly, denoted 

WR1'−WR100'. We present the effect of random rounding in this numerical table.   

 

5.1.2. Model selection 
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We use the backward and ‘stepwise’ procedures in R to determine the best fitting 

model of RR'. The best fitting model is:  

QSR
ijk

SR
jk

QR
ik

QS
ij

R
k

S
j

Q
iijk λλλλλλλλµ +++++++=log  

This model will be called (QSR). We repeat the modelling process and use the 

'stepwise' procure in model selection to find best fitting models for WRa’ and 

WRb’. A comparison of the RR' model with the WRa' model and the WRb' model, 

shows that the same effects are seen in all three minimally adequate models.   

 

Table 5.1 shows the AIC and residual deviance (RD) are very similar with the 

same degrees of freedoms (DF) appearing in all three datasets in the best fitting 

model. In the next section, we will look at whether the number of estimates that 

produce a change in hypothesis decisions in the models.  

 

Table 5.1  Comparison of the factors in three cases : WRa', WRb' and RR'. 

 

 

Best Fitting  Model  

(QSR) 

RD 
RR' 4.815x10^-10 

WRa' -7.241x10^-12 
WRb' -3.376x10^-11 

 
DF 

 

RR' 0 
WRa' 0 
WRb' 0 

 
AIC 

RR' 5015.3 
WRa' 5022.1 
WRb' 5028.4 

P> chi-square  <0.01 

 

 

5.1.3. Effect of random rounding 
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Currently, we have 103 datasets: the rounded table, the worst two possible 

parent tables generated by rounding according to a pattern (WRa' and WRb') and 

the 100 worst possible parent tables generated by random rounding 

(WR1'−WR100'). This section compares the number of estimates that produce a 

change in hypothesis decision in each of the 103 datasets. We are interested in 

knowing whether estimates in the worst datasets change hypothesis decisions, 

compared to the RR'.  

 

We calculate the number of estimates that are significant, or not, for each of the 

worst datasets. The 102 worst (WR') models each contained 442 estimates. For 

each, we calculate the percentage of estimates that are significant out of the total 

number of estimates (442) for each WR' dataset, named per_wr'. Figure 5.1 

shows the per_wr' for each of the 102 WR' datasets. The straight line is the 

number of estimates that are significant from the rounded table (67/442). The 

per_wr' points are consistently above that straight line. This means that the WR' 

datasets always have more estimates that are significant than the rounded 

tables. This result is same as was seen with the four-way contingency tables in 

Chapter 4.  

 

Next, we will compare each of the WR' datasets with the RR' datasets and see 

how many estimates do not produce a change in hypothesis decision in the WR' 

datasets, compared with the RR' dataset.  
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Figure 5.1  Percentage of significant estimates in each WR' dataset. 

 

Table 5.2 shows the number of estimates that changed the hypothesis decision 

in each WR' dataset compared to the RR' dataset. The first column shows the 

number of the WR' dataset. The second column shows the number of estimates 

that were significant in the WR' dataset, but not in the RR' dataset. The third 

column shows the number of estimates that were not significant in the WR' 

dataset, but were significant in the RR' dataset.  The fourth column shows the 

number of estimates that are significant in the both the WR' dataset and the RR' 

dataset. The fifth column shows the number of estimates that were not significant 

in neither the WR' dataset and nor the RR' dataset.  
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Table 5.2  Number of estimates producing a change h ypothesis decision. 

Changed 

h0 decisions 

Unchanged 

h0 decisions  

Changed 

h0 decisions 

Unchanged 

h0 decisions 

WR' 

WR' 
(p≤0.05) 

& 
RR' 

(p>0.05) 

WR' 
(p>0.05) 

& 
RR' 

(p≤0.05) 

WR' 
(p≤0.05) 

& 
RR' 

(p≤0.05) 

WR' 
(p>0.05) 

& 
RR' 

(p>0.05) 

WR' 

WR' 
(p≤0.05) 

& 
RR' 

(p>0.05) 

WR' 
(p>0.05) 

& 
RR' 

(p≤0.05) 

WR' 
(p≤0.05) 

& 
RR' 

(p≤0.05) 

WR' 
(p>0.05) 

& 
RR' 

(p>0.05) 
1 84 1 66 291 52 50 4 63 325 
2 30 8 59 345 53 43 7 60 332 
3 67 15 52 308 54 20 16 51 355 
4 18 17 50 357 55 29 14 53 346 
5 54 7 60 321 56 34 8 59 341 
6 26 18 49 349 57 25 8 59 350 
7 80 9 58 295 58 47 7 60 328 
8 77 5 62 298 59 63 5 62 312 
9 74 6 61 301 60 70 2 65 305 
10 27 16 51 348 61 64 4 63 311 
11 40 9 58 335 62 72 0 67 303 
12 55 14 53 320 63 21 13 54 354 
13 46 4 63 329 64 32 14 53 343 
14 59 3 64 316 65 73 11 56 302 
15 88 0 67 287 66 42 4 63 333 
16 31 9 58 344 67 41 15 52 334 
17 55 12 55 320 68 49 6 61 326 
18 68 16 51 307 69 68 4 63 307 
19 26 17 50 349 70 31 13 54 344 
20 33 17 50 342 71 33 12 55 342 
21 67 0 67 308 72 60 7 60 315 
22 27 9 58 348 73 68 14 53 307 
23 33 11 56 342 74 26 17 50 349 
24 27 12 55 348 75 41 13 54 334 
25 58 16 51 317 76 64 3 64 311 
26 80 0 67 295 77 21 20 47 354 
27 21 16 51 354 78 45 10 57 330 
28 79 2 65 296 79 76 3 64 299 
29 67 18 49 308 80 58 17 50 317 
30 53 6 61 322 81 55 7 60 320 
31 49 8 59 326 82 58 3 64 317 
32 60 14 53 315 83 50 3 64 325 
33 58 3 64 317 84 53 14 53 322 
34 52 20 47 323 85 94 0 67 281 
35 37 5 62 338 86 63 18 49 312 
36 46 6 61 329 87 25 9 58 350 
37 22 16 51 353 88 68 4 63 307 
38 63 4 63 312 89 41 13 54 334 
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39 64 13 54 311 90 44 18 49 331 
40 51 7 60 324 91 75 1 66 300 
41 48 7 60 327 92 31 10 57 344 
42 67 11 56 308 93 44 15 52 331 
43 71 14 53 304 94 34 11 56 341 
44 29 19 48 346 95 80 1 66 295 
45 18 18 49 357 96 73 13 54 302 
46 59 6 61 316 97 27 7 60 348 
47 78 9 58 297 98 48 6 61 327 
48 65 4 63 310 99 70 0 67 305 
49 65 14 53 310 100 60 8 59 315 
50 39 9 58 336 WRa' 23 7 60 352 
51 21 17 50 354 WRb' 27 8 59 348 

 

 

Table 5.2 shows that the number of estimates that are significant in the WR' 

datasets, but not significant in the RR' dataset is always greater than the number 

of estimates that are significant in the RR' dataset but not in the WR' datasets. 

This result is same as the result obtained for the four-way contingency table.  

 

Figure 5.2 shows the percentage of the estimates (out of the total number of 

estimates, e.g. (66+291)/442) that do not change the hypothesis decision 

between each WR' dataset and the RR' table. The percentage confidence 

interval at the 5% level is [0.79, 0.94]. Therefore, around 87% estimates do not 

change the hypothesis decisions in each of the WR' datasets, compared with the 

RR' dataset. This result is very close to the result which was obtained for the 

four-way contingency table (Chapter 4).  
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Figure 5.2 Percentage of estimates that do not chan ge the hypothesis 
decision. 

 

5.2. Two-way contingency tables 
 

5.2.1. Tables 
 

We have two explanatory variables − source and income − in the given census 

table. We denote these variables in this 15 x 14 table as S for source, and I for 

income. This published census table rounded using base 3, denoted as RR'', can 
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be produced from a huge number of possible actual (parent) tables. We generate 

the worst two datasets using the pattern described in chapter 4 these were 

denoted as WRa'' and WRb''. We also generated the worst 100 datasets 

randomly, denoted as WR1''−WR100''. We present the effect of random rounding 

in this numerical table.   

 

5.2.2. Model selection 
 

We used the backward and 'stepwise' procedure in R to determine the best fitting 

model of RR''. The best fitted model is SI
ij

I
j

S
iij λλλλµ +++=log , denoted as (SI). 

Note that most estimates are highly significant in this two-way contingency table. 

We repeat the modelling process and use the 'stepwise' procure in model 

selection to find the best fitting models for WRa’' and WRb’'. A comparison of the 

RR'' model with the WRa'' model and the WRb'' model shows that the same 

effects are seen in all three minimally adequate models.   

 

Table 5.3 shows the AIC, residual deviance and degrees of freedom of the three 

models and datasets. We see that AIC and residual deviance are very similar 

with the same degrees of freedom being seen in all three datasets in the best 

fitting model. In the next section, we will look at whether different estimates 

change the hypothesis decisions for all three datasets.  
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Table 5.3  Comparison of the factors in three cases : WRa'' and WRb'' and 
RR''. 

 

 

Best Fitted  Model 

(SI) 

RD 
RR'' 4.6802x10^-11 

WRa'' -5.0825x10^-11 
WRb'' -8.5050x10^-12 

 
DF 

 

RR'' 0 
WRa'' 0 
WRb'' 0 

 
AIC 

RR'' 2357.4 
WRa'' 2357.1 
WRb'' 2397.5 

P> chi-square  <0.01 
 

 

5.2.3. Effect of random rounding 
 

Currently, we have 103 datasets: the rounded table, the worst two possible 

parent tables generated using a pattern (WRa'' and WRb'') and the worst 100 

possible parent tables generated by random rounding (WR1''−WR100''). This 

section compares the number of estimates that change the in hypothesis 

decisions in all 103 datasets. We are interested in knowing whether estimates in 

the worst (WR'') datasets change the hypothesis decisions, compared to the RR'' 

dataset.  

 

We calculate the number of estimates that are significant, or not, for each WR'' 

dataset. The 102 WR'' models each contained 210 estimates. For each, we 

calculate the percentage of estimates that are significant out of the total number 

of estimates (210) for each WR'' dataset, named per_wr''. Figure 5.3 plots the 

per_wr'' of the 102 WR'' datasets. The straight line is the percentage of the 
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number of significant estimates from the rounded table (180/210). The points of 

per_wr'' are mostly above that straight line. This means the WR'' datasets tend to 

have more estimates that are significant than the rounded table. This result is 

similar to the results for estimates produced by the four-way contingency table in 

Chapter 4, and for the three-way tables in this chapter. What differs is that, for  

occasionally per_wr'' was lower than the straight line. For this two-way table, for 

some WR'' datasets, the percentage of estimates that are significant increases 

when a random rounded table is constructed. For the three- and four- way tables, 

this never occurred and the percentage of estimates that were significant always  

decreased with the model from the random produced by the randomly rounded 

table.  

 

Next, we will compare each WR'' dataset with the RR'' dataset and see how 

many estimates do not change the hypothesis decision in the WR'' datasets, as 

compared with the RR'' dataset.  
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Figure 5.3  Percentage of estimates that are signif icant for each WR'' 
dataset. 

 

Table 5.4 shows the number of estimates that changed the hypothesis decision 

in each WR'' dataset compared to the RR'' dataset. The first column shows the 

number of the WR'' dataset. The second column shows the number of estimates 

that are significant in WR'' dataset but not in the RR'' dataset. The third column 

shows the number of estimates are not significant in WR'' dataset but are 

significant in the RR'' dataset. The fourth column shows the number of estimates 

that are significant in both the WR'' dataset and the RR'' dataset. The fifth column 

shows the number of estimates are not significant in neither the WR'' dataset nor 

the RR'' dataset.  



 87

 

Table 5.4  Number of estimates that change the hypo thesis decisions. 

Changed Unchanged 
 

Changed Unchanged 
 h0 decisions h0 decisions h0 decisions h0 decisions  

WR''  

WR'' WR'' WR'' WR'' 

WR'' 

WR'' WR'' WR'' WR'' 
(p≤0.05) (p>0.05) (p≤0.05) (p>0.05) (p≤0.05) (p>0.05) (p≤0.05) (p>0.05) 

& & & & & & & & 
RR'' RR'' RR'' RR'' RR'' RR'' RR'' RR'' 

(p>0.05) (p≤0.05) (p≤0.05) (p>0.05) (p>0.05) (p≤0.05) (p≤0.05) (p>0.05) 
1 29 28 152 1 52 28 28 152 2 
2 28 27 153 2 53 28 28 152 2 
3 28 28 152 2 54 28 28 152 2 
4 28 28 152 2 55 28 27 153 2 
5 27 27 153 3 56 28 27 153 2 
6 28 26 154 2 57 28 27 153 2 
7 27 26 154 3 58 28 27 153 2 
8 28 27 153 2 59 29 28 152 1 
9 28 27 153 2 60 27 26 154 3 
10 27 27 153 3 61 28 26 154 2 
11 28 28 152 2 62 28 26 154 2 
12 28 28 152 2 63 27 28 152 3 
13 28 28 152 2 64 27 28 152 3 
14 28 27 153 2 65 29 26 154 1 
15 27 28 152 3 66 28 27 153 2 
16 28 27 153 2 67 27 27 153 3 
17 27 28 152 3 68 28 27 153 2 
18 27 27 153 3 69 28 28 152 2 
19 28 26 154 2 70 27 28 152 3 
20 28 28 152 2 71 27 27 153 3 
21 27 27 153 3 72 28 28 152 2 
22 28 27 153 2 73 28 28 152 2 
23 28 28 152 2 74 28 27 153 2 
24 28 28 152 2 75 28 26 154 2 
25 28 27 153 2 76 27 27 153 3 
26 29 26 154 1 77 28 27 153 2 
27 27 27 153 3 78 28 27 153 2 
28 29 27 153 1 79 27 27 153 3 
29 28 28 152 2 80 28 28 152 2 
30 28 28 152 2 81 27 26 154 3 
31 28 27 153 2 82 29 27 153 1 
32 29 27 153 1 83 29 28 152 1 
33 28 28 152 2 84 27 27 153 3 
34 28 27 153 2 85 29 27 153 1 
35 28 27 153 2 86 28 28 152 2 
36 28 26 154 2 87 29 26 154 1 
37 28 28 152 2 88 27 27 153 3 
38 28 27 153 2 89 27 26 154 3 
39 28 28 152 2 90 28 27 153 2 
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40 28 26 154 2 91 29 27 153 1 
41 28 28 152 2 92 28 28 152 2 
42 28 26 154 2 93 27 26 154 3 
43 28 27 153 2 94 29 28 152 1 
44 28 28 152 2 95 28 27 153 2 
45 28 26 154 2 96 28 27 153 2 
46 28 27 153 2 97 27 26 154 3 
47 28 26 154 2 98 28 28 152 2 
48 28 26 154 2 99 28 28 152 2 
49 28 27 153 2 100 29 28 152 1 
50 28 26 154 2 WRa'' 28 27 152 3 
51 28 28 152 2 WRb'' 28 28 152 2 

 

Table 5.4 shows that when the estimates are compared for significance, the 

number of estimates that are significant in WR'' but not in the RR'' dataset is 

slightly greater than the number of estimates are significant in the RR'' dataset 

but not in the WR'' datasets.   
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Figure 5.4 Percentage of estimate that do not chang e the hypothesis 
decision. 

 

Figure 5.4 shows the percentage of estimates (out of the total number of 

estimates, e.g. (152+1)/210) that do not change the hypothesis decisions 

between each WR'' dataset and RR'' table. The percentage confidence interval at 

the 5% level is [0.73, 0.75]. Therefore, around 74% estimates do not change the 

hypothesis decision in each WR'' dataset, compared with the RR'' dataset. This 

result is very close to the result which was obtained for the four-way contingency 

table (Chapter 4).  
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5.3. Summary 
 

The two-, three- and four-way contingency tables show similar results produced 

by the effect of random rounding. All minimally adequate models constructed 

from the random rounded table and from a range of possible original actual 

(parent) datasets had the same effects. However, what is a concern is that the 

model from the rounded dataset almost always had fewer estimates that are 

significant, compared with the actual datasets. With the three-, and four-way 

tables, all actual datasets, had more significant estimates than the rounded 

tables.  
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Appendix - Important R code  

 

1. R code for 2x2 contingency table with rounding b ase 3: 

 a) R function "rounbase3" obtain the possible unro unded tables 
for 2x2 contingency table with rounding base 3.  
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b) R function "chisq" to calculate the chi-square v alue of 2x2 
contingency table.  
 

 

Note: R code chisq.test(table, correct=F) can get the same result as above chisq 

function. Crawley (2005) introduces (correct=F) means switch the correction off, 

the result will be same to the value we calculated by hand.  

 

c) R function " chi_2way_b3" to calculate the chi-s quare value of 
247 possible unrounded table together.  
 

 

 

d) R function" percent_base3" to compute percentage  that is  
no. of matched tables out of total no. of possible tables in n th  

decimal place. 
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2. R code for 2x2 contingency table with rounding b ase 5: 

 

 a) R function "rounbase5" obtain the possible unro unded tables 
for 2x2 contingency table with rounding base 5.  
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b) R function " chi_2way_b5" to calculate the chi-s quare value of 
2501 possible unrounded table together.  
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c) R function" percent_base3" to compute percentage  that is  
no. of matched tables out of total no. of possible table in n th 
decimal place. 
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3. R code  to calculate the DP.  

 

Below codes obtain the DP for 2x2 contingency table with rounding base 3. And 

the two-way table with rounding base 5, three-way table with rounding base 3 

and 5, are following the similar idea.  
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4. R code  to calculate the number of estimates are  not 
significant.  

 

Below codes obtain the number of estimates are not significant for original 

rounded age by sex table. Other tables obtain the number of estimates that are 

not significant are following similar idea.  
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5. R code  to calculate the number of estimates tha t have a 
change in hypothesis decision between the rounded t able and 
worst tables.  

 

Below codes obtain the number of estimates that have a change in the 

hypothesis decision for age by sex table. Other tables obtain the number of 

estimates that have a change in hypothesis decision, are following similar idea.  
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