
Constraint-Based Tutors: a Success Story

Antonija Mitrovic
Michael Mayo

Pramuditha Suraweera
Brent Martin

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
{ tanja,mmayo,psu16,brent}@cosc.canterbury.ac.nz

Abstract. Student modeling (SM) is recognized as one of the central problems
in the area of Intelligent Tutoring Systems. Numerous SM approaches have
been proposed and used with more or less success. Constraint-based modeling
is a new approach, which has been used successfully in three tutors developed
in our group. The approach is extremely efficient, and it overcomes many
problems that other student modelling approaches suffer from. We present the
advantages of CBM over other similar approaches, describe three constraint-
based tutors and present our future research plans.

1 Introduction

It is well known that one-on-one human tutoring is much more effective than
traditional classroom instruction, providing an increase of two standard deviations in
learning performance [4]. The goal of the research in the area of Intelligent Tutoring
Systems (ITS) is to build computer-based tutors that achieve the effects of learning
individually with a human tutor. It is a very ambitious goal, and currently available
systems are not near achieving it, although there are ITSs that provide an increase of
one standard deviation over a longer time period [3].

Student modeling is widely accepted as one of the central problems in ITSs. If a
system is to be effective, it must reason about student’s knowledge and adapt its
actions to the needs and abilities of each individual student. Many SM approaches
have been suggested over the years. Some of them are suited to a particular domain,
or a teaching strategy. The research presented here focuses on effective and
computationally tractable student modeling. We adopted Constraint-Based Modeling,
a student modeling approach recently proposed by Ohlsson [15], and have had
extremely good experiences with it. We have developed three constraint-based tutors.
Our focus is on student models; they should be precise enough to guide instruction,
and computationally tractable at the same time. In the next section we present CBM
briefly, and then turn to the three implemented systems in the following section. The
final section presents conclusions and directions for future work.



2 Constraint-Based Modeling

Student modeling can be defined as the process of gathering relevant information in
order to identify the knowledge state of a student. In an ideal case, the model of a
student should illustrate his/her knowledge, preferred learning strategies, areas of
interest besides that of instruction, preferred presentation style, and so on. Several
techniques for student modeling have been developed for particular domains, the
generality of which is yet to be determined. The survey of SM approaches is outside
the scope of such a paper and the interested reader is referred to [7].

The task of building a student model is extremely difficult and laborious, due to
huge search spaces involved. Several researchers have pointed to the inherent
intractability of the task [8, 15, 16]. Self [16, 17] recommends such design of the
interactions that information necessary for building a student model is provided by the
student, and not inferred by the system. If the goal is to model student's knowledge
completely and precisely, student modeling is bound to be intractable. However, a
student model can be useful even if it is not complete and accurate [15, 17, 18]. Even
simple and constrained modeling is sufficient for instruction purposes, and this claim
is supported by findings that human teachers also use very loose models of their
learners, and yet are highly effective in what they do [8, 17]. Anderson [2] also points
out that informative error messages are much more beneficial to students than being
told about the sources of their misconceptions

One of the SM approaches that focus on reducing the complexity of the task is
Constraint-Based Modeling (CBM) [15]. CBM is based on Ohlsson's theory of
learning from performance errors [14]. CBM focuses on faulty knowledge, realizing
that it is not sufficient to describe what the student knows correctly. The basic
assumption is that diagnostic information is not hidden in the sequence of student's
actions, but in the problem state the student arrived at. This assumption is supported
by the fact that there can be no correct solution of a problem that traverses a problem
state, which violates fundamental ideas, or concepts of the domain.

Because the space of false knowledge is vast, much more so than the space of
correct knowledge, Ohlsson suggest the use of an abstraction mechanism realized in
the form of state constraints. A state constraint is an ordered pair(Cr, Cs), whereCr is
the relevance condition andCs is the satisfaction condition.Cr is used to identify the
equivalence class, or the class of problem states in whichCr is relevant.Cs identifies
the class of relevant states in whichCs is satisfied. Each constraint specifies the
property of the domain that is shared by all correct paths. In other words, ifCr is
satisfied in a problem state, in order for that problem state to be a correct one, it must
also satisfyCs. Conditions may be any kinds of logical formulas, hence may be
constructed from various tests on the problem state in question.

In such a way, CBM represents domain knowledge as a set of state constraints.
Constraints define sets of equivalent problem states. An equivalence class triggers the
same instructional action; hence the states in an equivalence class are pedagogically
equivalent. All correct problem solutions do not violate any of the constraints. A
violated constraint signals the error, caused by incomplete and incorrect knowledge.

CBM does not require a runnable expert module, as many other SM approaches
do. This is a very important advantage of CBM, because in many domains it can be
very difficult to build the problem solver. CBM-based computerized tutors are able to
generate instructional actions even without being able to solve problems on their own,



by focusing on violated constraints. Of course, CBM does not prevent an ITS from
having a domain module. On the contrary, the existence of a domain module can be
very beneficial to the student, as it can provide the answer to student's questions such
as ``What do I do next?''. However, the constraint set, if appropriately represented,
might also form the knowledge base of a runnable domain module, because it
contains rich information about the domain. We have developed a constraint
representation for this purpose, and are currently evaluating its potential [9].

Another advantage of CBM is its computational simplicity. Instead of using
complex reasoning required by other diagnostic approaches, CBM reduces student
modeling to pattern matching. Conditions are combinations of patterns, and can
therefore be represented in compiled forms, su as RETE networks [6]. In the first step
all relevance patterns are matched against the problem state. In the second step, the
satisfaction components of relevant constraints are matched. If a satisfaction pattern
matches the state, then the constraint is satisfied. In the opposite case, the constraint is
violated. The student model consists of all violated constraints. This technique can be
used for both on- and off-line student modeling.

Furthermore, CBM does not require extensive studies of student bugs as in
enumerative modeling [1]. Another deficiency of many SM approaches that CBM is
not sensitive to is theradical strategy variability phenomenon. Namely, some
approaches assume that a student systematically uses a single procedure for the task at
hand. However, Ohlsson shows [15] that each student knows several procedures at the
same time and that he or she can switch between them on different problems. CBM
allows students to be inconsistent; it ignores the particular strategy the student
applied, since different strategies may result in the same constraint broken.

3 SQL-Tutor

SQL-Tutor is an intelligent educational system, which helps university-level students
to learn SQL. The architecture of the stand-alone version of the system is illustrated in
Figure 1. For a detailed discussion of the system, see [10, 11, 12, 13]; here we present
only some of its features. SQL-Tutor consists of an interface, a pedagogical module,
which determines the timing and content of pedagogical actions, and a student

modeller (CBM), which
analyzes student answers.
The system contains
definitions of several
databases, and a set of
problems and the ideal
solutions to them. SQL-
Tutor contains no domain
module. In order to check
the correctness of the
student’s solution, SQL-
Tutor compares it to the
correct solution, using
domain knowledge
represented in the form of
more than 500
constraints.

Fig. 1. Architecture of SQL-Tutor



At the beginning of a session, SQL-Tutor selects a problem for the student to work
on. When the student submits a solution, the pedagogical module sends it to the
student modeller, which analyzes the solution, identifies mistakes (if there are any)
and updates the student model appropriately. On the basis of the student model, the
pedagogical module generates an appropriate pedagogical action (i.e. feedback).
When the current problem is solved, or the student requires a new problem to work
on, the pedagogical module selects an appropriate problem on the basis of the student
model.

The interface of the Web-enabled version of SQLT-Tutor [11], illustrated in
Figure 2, has been designed to be robust, flexible, and easy to use. It reduces the
memory load by displaying the database schema and the text of a problem, by
providing the basic structure of the query, and also by providing explanations of the
elements of SQL. The main page is divided into three areas. The upper part displays
the text of the problem being solved and students can remind themselves easily of the
elements requested in queries. The middle part contains the clauses of the SQL
SELECT statement, thus visualizing the goal structure. Students need not remember
the exact keywords used and the relative order of clauses. The lowest part displays the
schema of the currently chosen database. Schema visualization is very important; all
database users are painfully aware of the constant need to remember table and
attribute names and the corresponding semantics as well. Students can get the
descriptions of databases, tables or attributes, as well as the descriptions of SQL
constructs. The motivation here is to remove from the student some of the cognitive

Fig. 2. Interface of the Web-enabled version of SQL-Tutor



load required for checking the low-level syntax, and to enable the student to focus on
higher-level, query definition problems. We have also implemented an animated
pedagogical agent, which had a very positive motivational effect on the students [13].

Students have several ways of selecting problems in SQL-Tutor. They may work
their way through a series of problems for each database, ordered by their complexity,
by clicking on the Next Problembutton. The other option is a system-selected
problem (theSystem’s choicebutton), when the system selects an appropriate problem
for the student on the basis of his/her student model. We have also implemented a
problem-selection strategy based on Bayesian networks [10].

SQL-Tutor was evaluated in four evaluation studies during 1998-2000, which
proved that students who learnt with the system achieved significantly higher results
than those who did not use the system. An improvement of nearly one standard
deviation was achieved after a single, two-hour long session [12]. All the studies
showed that CBM has sound psychological foundations and that students acquire
constraints at a high rate [12].

4 CAPIT: a Punctuation Tutor

CAPIT (Capitalisation And Punctuation Intelligent Tutor) is a constraint-based
tutor designed for, and evaluated with, school children in the 10-11 year old age
group. The system teaches a subset of the basic rules of English capitalisation and
punctuation, and currently contains 46 problems and 25 constraints. The problems are
relevant to the constraints in roughly equal proportions, although a small number of
constraints (such as capitalisation of sentences) are relevant to all the problems. The
constraints cover the following parts of the domain: capitalisation of sentences and
the names of both people and places, ending sentences with periods, contractingis
andnot using apostrophes, denoting ownership using apostrophes, separating clauses
using commas, separating list items using commas, denoting direct speech with
quotation marks and the correct punctuation of the possessive pronounits.

In CAPIT the student must punctuate and capitalise a fully lowercase,
unpunctuated piece of text. If the child makes a mistake, an error message is
displayed. For example, Figure 3(a) depicts one of the shorter problems in the ITS.
Figure 3(b) shows an incorrect solution submitted by a student, with two errors: the
direct speech does not start with a capital letter, and the period is outside the quotation
marks. The system displays only one error message at a time, and the student is
expected to correct the error and resubmit the problem before any more feedback is
displayed. A feedback message would be displayed if the student submitted this
solution. Error messages are typically short and relate to only a single mistake, but
more detailed information is available on request.

(a) the teacher said open your books

(b) The teacher said, “open your books”.
(c) The teacher said, “Open your books.”

Fig. 3(a). A problem, (b). a student’s incorrect solution, and (c). the correct solution.

The user interface was designed with the target age group of 10-11 year olds in
mind. Before starting the exercises, a short tutorial is given to all new users of the
system. A child can review the tutorial at any time by clicking the help button. The



main interface is then displayed, as depicted in Figure 4. Brief instructions relevant to
the current problem are clearly displayed at the top of the main interface. This reduces
the cognitive load by enabling the child to focus on the current goals without needing
to remember them. Immediately below the instructions is the current problem. In this
area, the child interacts with the system by moving the cursor, capitalising letters, and
inserting punctuation marks.

Motivation is provided in two forms. Firstly, children accrue points every time
they submit a correct solution. Secondly, when a correct solution is submitted, a
simple animation is displayed as a reward. We have found this to be adequate
motivation for 10-11 year olds.

The architecture of CAPIT comprises databases of constraints, problems and
student models, the user interface, the student modeller, and the pedagogical module.
When the student submits a solution, it is passed to the student modeller. The student
modeller determines firstly which constraints are relevant to the current solution, and
secondly, which constraints are satisfied. The violated constraints are then passed to
the pedagogical module so that an error message can be selected.

The pedagogical module solves two key decision tasks: it selects the next problem
when the child clicksPick Another Problem, and it selects a single error message for
display when the child submits an incorrect solution. A probabilistic student model is
used for these decisions. Initially, a student model is set to a population student
model, which is later individualized after each student’s action. The system uses
Bayesian networks and decision theory to decide what problem or feedback to give to
the student.

Fig. 4. The tutor’s main user interface



CAPIT was evaluated with three classes of 9-10 year olds at an elementary school
in Christchurch, New Zealand, over four-weeks. The first class (Group A) did not use
CAPIT. The second class (Group B) used the version of the tutor with randomised
problem and error message selection, and the third class (Group C) used the full
version of the tutor with the adaptive Bayesian student model. Groups B and C had
one 45-minute session per week. Every student attempt and tutor decision was logged.
All groups were administered the same pre- and post-tests. No statistically significant
differences were found between the results of the pre-test for the three groups,
indicating that the groups were all of comparable ability to start with.

The pre- and post-tests were comparable and consisted of eight exercises similar to
those presented by CAPIT. The mean scores and standard deviations are shown in
Table 1. Group A, the class that did not use the tutor, regressed. Groups B and C
improved significantly (one-tailed paired difference for group B,α = 0.05, t = 1.86;
for group C,α = 0.01, t = 3.4). The improvement is thus much more significant for
Group C, which used the full version of the tutor.

Figure 5 shows how the students learned the constraints. We looked at the
proportion of violated constraints following thenth attempt, averaged across all
students and all constraints. Just over half of the students were still using the tutor by
the 55th attempt, so the data analysis was concluded at this point. Very similar
behaviour was observed in SQL-Tutor [12]. Such a smooth learning curve is a proof
of psychologically good foundations of CBM.

y = 0.3737x-0.1673

R2 = 0.687

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 5 10 15 20 25 30 35 40 45 50 55

N

P
ro

po
rt

io
n

of
V

io
la

tio
ns

Fig. 5. Mean proportion of constraints that were violated onnth attempt.

Group Pre-test (%) Post-test (%)
A 54.5 47.8
B 58.1 62.7
C 51.0 61.3

Table 1. Mean pre- and post-test scores.



5 KERMIT: an ITS for Database Design

Database (DB) modelling is a complicated task, which requires significant amounts of
practice to achieve expertise. DB modelling is traditionally taught in a classroom
environment where concepts and solutions to typical databases are explained. Our
experiences point to the need of providing students with individualized feedback, as
students’ solutions differ enormously between each other. We have developed
KERMIT, an ITS for ER modelling, a popular high-level conceptual data model.

KERMIT is implemented in Microsoft Visual Basic, and supports the entity

Fig. 6: User interface of KERMIT



relationship data model as defined in [5]. The workspace of KERMIT is implemented
using Microsoft Visio. KERMIT consists of a user interface, a student modeller and a
pedagogical module. The interface of KERMIT, illustrated in Figure 6, consists of
three separate windows. The top window is used to display the problem to the student.
It also has a drop down list for students to choose their desired level of feedback. The
middle window is the workspace, containing a stencil developed for ER modelling,.
Students can drag and drop constructs onto their workspace to construct their ER
model. The feedback window displays textual pedagogical messages, whereas the
animated agent communicates them verbally.

When the student has composed their solution to the given problem, the student
modeller evaluates it, and after that the PM would generate appropriate feedback
depending on the errors. When the current problem is solved the PM selects the next
problem that best suits the student model.

The feedback is grouped into six levels in an increasing amount of information:
“Correct”, “Error flag”, “Hint”, “Detailed hint”, “All errors” and “Solution”. The first
level of feedback simply indicates whether the submitted solution is correct or not.
The “Error flag” indicates the type of construct (e.g. entity, relationship, etc.) that is
incorrect. “Hint” and “detailed hint” offer instructions on the most important error.
“Hint” is a general message, whereas “detailed hint” provides a more specific
message. Feedback on all violated constraints is displayed at the “all errors” level.
The complete solution is presented as an image in the final level.

At the current stage, KERMIT’s constraint base consists of 90 constraints. These
deal with both syntactic and semantic errors. The syntactic constraints vary from
simple constraints such as “an entity name should be in upper case”, to more complex
constraints such as “the weak entity participating in an identifying relationship should
have a total participation”. The syntactic constraints only concentrate on the student’s
solution and are independent of the ideal solution. The semantic constraints compare
the student’s solution to the system’s solution. “The student’s solution should consist
of all the entities present in the ideal solution” is an example of a semantic constraint.
The evaluation of KERMIT is planned for early 2001.

6 Conclusions

This paper presented three intelligent tutoring systems that implement Constraint–
based Modeling. CBM is a promising new student modeling approach that resolves
many of the difficulties present in other diagnostic approaches. It does not require a
runnable expert module, which may be difficult or even impossible to develop for
some domains. Furthermore, CBM does not require extensive studies of typical errors
made by students (i.e. bug libraries), and it does not require complex reasoning about
possible origins of student errors. CBM is also advantageous over probabilistic
methods, such as Bayes networks, which require estimates of prior probabilities. All
that CBM requires is a description of the basic principles and concepts in a domain.
From our experiences, CBM is extremely effective and efficient. It may be used in
various kinds of domain, such as highly structured procedural tasks and open-ended
tasks. CBM does not dictate any pedagogical approach, it equally well supports online
and off-line learning, immediate and delayed feedback.

We presented three constraint-based tutors: a system that teaches the SQL database
language, a system that teaches punctuation and capitalization rules, and a system for



database design. The domains for which these systems are developed are very
different, and range from a fairly small set of punctuation rules, which are almost
always deterministic, to an open task such as database modeling. SQL-Tutor and
CAPIT were evaluated in real classrooms, and the results show students learn better
with these systems. Furthermore, the analysis of how constraints are learned shows
that CBM has a sound psychological foundation.

Current work at ICTG includes enhancements of the presented systems and the
development of new constraint-based tutors. We have started developing a generic
language tutor. Language learning is a task of very different nature to those we have
developed tutors for so far. We have also started work on an authoring system based
on CBM, which will make the development of new tutors much easier.

Acknowledgements

The work presented here was supported by the University of Canterbury research grants U6242
and U6430.

References

1. Anderson, J.R., Jeffries, R.: Novice LISP Errors: Undetected Losses of Information from
Working Memory.Human--Computer Interaction. 22, 403-423, 1985.

2. Anderson, J.R.:Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum Associates, 1993.
3. Anderson, J.R, Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive Tutors: Lessons

Learned.The Journal of the Learning Sciences, 4(2), 167-207, 1995.
4. Bloom, B.: The 2 sigma problem: The search for methods of group instruction as effective

as one-to-one tutoring.Educational Researcher, 13, 3-16, 1984.
5. Elmasri, R., Navathe, S.:Fundamentals of Database Systems. Addison Wesley, 1994.
6. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern match problem.

Artificial Intelligence, 19, 17-37, 1982.
7. Greer, J.E., McCalla, G.I. (eds.):Student Modeling: the Key to Individualized Knowledge--

based Instruction. Berlin: Springer-Verlag, NATO ASI Series, 1994.
8. Holt, P., Dubs, S., Jones, M., Greer, J.E.: 1994, `The State of Student Modelling. In: J.E.

Greer and G.I. McCalla (eds.):Student Modeling: the Key to Individualized Knowledge--
based Instruction. Berlin: Springer-Verlag, NATO ASI Series, 3-35, 1994.

9. Martin, B., Mitrovic, A. Tailoring Feedback by Correcting Student Answers. Proc.
ITS’2000, G. Gauthier, C. Frasson and K. VanLehn (eds), Springer, pp. 383-392, 2000.

10. Mayo, M., Mitrovic, A.: Using a Probabilistic Student Model to Control Problem Difficulty.
In: Gauthier G., Frasson C., and VanLehn K. (eds):Proc. 5th Int. Conf. ITS’2000, Springer-
Verlag, 524-533, 2000.

11. Mitrovic, A., Hausler, K.: Porting SQL-Tutor to the Web. Proc. ITS’2000 workshop on
Adaptive and Intelligent Web-based Education Systems, 37-44, 2000.

12. Mitrovic, A., Ohlsson, S.: Evaluation of a Constraint-based Tutor for a Database Language.
Int. J. on Artificial Intelligence in Education, 10(3-4), 238-256, 1999.

13. Mitrovic, A., Suraweera, P.: An Animated Pedagogical Agent. In: Gauthier G., Frasson C.,
and VanLehn K. (eds):Proc. 5th Int. Conf. ITS’2000, Springer-Verlag, (2000) 73-82.

14. Ohlsson, S: Learning from Performance Errors.Psychological Review. 103 (2), 241—262,
1996.

15. Ohlsson, S.: Constraint-based student modeling. In: Greer, J.E., McCalla, G (eds):Student
modeling: the key to individualized knowledge-based instruction, 167-189, 1994.

16. Self, J. A.: Bypassing the intractable problem of student modeling. In: C. Frasson and G.
Gauthier (eds.), Intelligent Tutoring Systems: at the Crossroads of Artificial Intelligence and
Education. Norwood: Ablex, 107-123, 1990.


