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Abstract—In real wireless communication environments, it is
highly likely that different channels associated with a relay
network could experience different fading phenomena. In this
paper, we investigate the end-to-end performance of a dual-
hop fixed gain relaying system when the source-relay and
the relay-destination channels experience Rayleigh/Rician and
Rician/Rayleigh fading scenarios respectively. Analytical expres-
sions for the cumulative distribution function of the end-to-end
signal-to-noise ratio are derived and used to evaluate the outage
probability and the average bit error probability of M -QAM
modulations. Numerical and simulation results are presented
to illustrate the impact of the Rician factor on the end-to-
end performance. Furthermore, these results confirm that the
system exhibits an improved performance in a Rician/Rayleigh
(source-relay link/relay-destination link) environment compared
to a Rayleigh/Rician environment.

Index Terms—Wireless relays, amplify-and-forward, Rayleigh
fading, Rician Fading, outage probability, average bit error
probability.

I. INTRODUCTION

RECENTLY, wireless relaying techniques have become
a major topic in the wireless research community due

to their possible application in cellular, ad-hoc networks
and military communications [1]. Amplify-and-Forward (AF)
relaying is a popular method for implementing relay systems.
Compared to Decode-and-Forward (DF) which employs full
decoding and re-encoding at the relay, AF requires less
processing power at the relay [2]. An AF relay amplifies the
received signal from the source and then retransmits towards
the destination [3]. Therefore, at the relay no decoding is per-
formed. AF relays can be broadly categorized as: 1) channel
state information (CSI) assisted relays, and 2) fixed gain or
“blind” relays [4]. Fixed gain relays use power amplifiers
with a constant gain to amplify the signals and exhibit a
performance close to that of the systems with (CSI)-assisted
relays [3].

Several works have analysed the performance of AF relay
networks (operating under different fading conditions) using
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the outage probability of the end-to-end signal-to-noise ratio
(SNR) and the average bit error probability (ABEP). (See
[3]–[7] and references therein). In [3], Hasna and Alouini
have studied the ABEP of dual-hop systems with AF relaying
over Rayleigh fading channels. In [5] and [6], Karagiannidis
et al. have studied the performance bounds of AF multihop
transmissions over non-identically distributed Nakagami-m
fading channels. More recently, in [4], Mheidat and Uysal have
investigated the impact of receive diversity on the performance
of a relay-assisted network in which the relay is operating
under the fixed gain constraint. Zhao et al. [7] presented an
asymptotic SER study of a selection AF network where the
“best” relay which contributes most to received SNR is chosen
for retransmission.

In addition to the widely used Rayleigh and Nakagami-m
fading assumptions, Rician fading is often used in the technical
literature to model wireless propagation comprising with a
line-of-sight (LoS) component and a scattered component [8].
A recently released WINNER II project deliverable [9] also
documents Rician propagation characteristics in micro/macro
cellular multi-hop transmissions. Despite the importance of
the Rician model, only a few works have analyzed the perfor-
mance of relays under LoS fading conditions [10], [11]. For
example, the performance of Decode-and-Forward (DF) relay
networks under Rician fading has been considered in [10]. The
symbol error probability of a multiple-input multiple-output
semi-blind relay system has been studied in [11].

Recently, some papers have also studied the performance of
relay networks under asymmetric fading scenarios [12], [13].
Asymmetric fading conditions, where links associated in the
relay network are subject to different fading distributions, may
arise due to the close proximity of the terminals or shadowing
effects. In [12], Adinoyi and Yanikomeroglu have studied the
error performance for a DF relay network by considering
different signal strengths/severities such as non-LoS Rayleigh
and LoS Rician fading for the network hops. The information
theoretic work of [13] has also been considered an asymmetric
scenario where the source’s transmission experiences Rayleigh
fading, while the relay transmission experiences a fixed am-
plitude gain additive white Gaussian noise (AWGN) channel.

In this work, the outage probability and the ABEP of a
dual-hop relay system in an asymmetric fading environment
is investigated. We assume that the source-relay and relay-
destination links experience Rayleigh or Rician fading. First,
using the cumulative distribution functions (cdfs) of the end-
to-end signal-to-noise ratio (SNR), the outage probability is
derived. Next, using the cdf, the ABEP of M -ary square QAM
modulation is derived. Simulation results are also presented to
verify the theoretical analysis.
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The rest of the paper is organized as follows: In Section II
we outline the system and channel model. In Section III, we
derive outage probability expressions for the asymmetric chan-
nel. The ABEP of M -QAM modulated signals is computed
in Section IV. Finally, we conclude with a brief summary of
results in Section V.

II. SYSTEM AND CHANNEL MODEL

Assume a dual-hop fixed gain AF relay system (cf. [3,
Fig. 1]) operating in an asymmetric fading environment. The
source, S communicates with the destination, D using a relay,
R. Each transmission period is divided into two signalling
intervals: In the first signalling interval, the received signal
at R is multiplied by a gain factor G and in the second
signalling interval, it is retransmitted to D. Assuming that S
transmits a signal with an average power normalized to unity,
the instantaneous end-to-end SNR at the destination, γeq, is
[3]

γeq =
(α2

1/N01)(α2
2/N02)

(α2
2/N02) + (1/G2N01)

(1)

where α1, α2 are the fading amplitudes of the wireless chan-
nels in the S−R and R−D links respectively, N01 and N02 are
the power of the AWGN component at the input of the relay
and the destination, and G is the relay gain. If C = 1/G2N01,
γi = α2

i /N0i for i = 1, 2 and then (1) simplifies to

γeq =
γ1γ2

C + γ2
. (2)

In this work, we consider two cases for the fading distributions
of the S − R and R − D links, namely:

• The S − R link is subject to Rayleigh fading and the
R−D link is subject to Rician fading. In the following,
this Rayleigh/Rician fading condition will be identified
as scenario (a).

• The S − R link is subject to Rician fading and the R −
D link is subject to Rayleigh fading. In the following,
this Rician/Rayleigh fading condition will be identified
as scenario (b).

If a link experiences Rayleigh fading, γi, (with i = 1 or 2),
is an exponentially distributed random variable (RV). That is,
its probability density function (pdf) is given by

pγi(γ) =
1
γ̄i

e−γ/γ̄i (3)

where γ̄i = Ωi/N0i and Ωi is the average fading power of
that link.

If a link experiences Rician fading, the pdf of αi is given
by

pαi(α) =
2(K + 1)e−Kα

Ωi
e
− (K+1)α2

Ωi I0

⎛
⎝2α

√
K(K + 1)

Ωi

⎞
⎠
(4)

where K is the Rician K-factor defined as the ratio of the
powers of the LoS component to the scattered components and
I0(·) is the zeroth order modified Bessel function of the first

kind. γi is distributed according to a noncentral-χ2 distribution
given by

pγi(γ) =
(K + 1)e−K

γ̄i
e
− (K+1)γ

γ̄i I0

(
2

√
K(K + 1)γ

γ̄i

)
.

(5)

Observe that when K = 0 the Rician distribution becomes
the Rayleigh distribution. As K → ∞, the distribution
approximates that of an AWGN (no fading) channel. Values
of the K-factor in indoor/outdoor land mobile applications
normally range from 0 − 12 dB [8].

III. OUTAGE PROBABILITY

Outage probability is an important performance measure
that is commonly used to characterize a wireless commu-
nication system. It is defined as the probability that the
instantaneous end-to-end SNR, γeq, falls below a threshold
γth. Therefore mathematically, the outage probability is given
by [3]

Pout = Fγeq(γth) = Pr

[
γ1γ2

C + γ2
< γth

]
(6)

where Fγeq(γ) is the cdf of the end-to-end SNR. Next, we
calculate the outage probability applicable to scenarios (a) and
(b).

A. Scenario (a)

In the case of scenario (a) we can express Pout as

Pout =
∫ ∞

0

Pr

[
γ1 <

γth(C + γ2)
γ2

|γ2

]
pγ2(γ2)dγ2. (7)

The cdf of γ1 is 1− e−γ/γ̄1 , and using (5), (7) can be written
as

Pout =
(K + 1)e−K

γ̄2

∫ ∞

0

[
1 − e−(γth/γ̄1)(1+C/γ2)

]
(8)

× e
− (K+1)γ2

γ̄2 I0

(
2

√
K(K + 1)γ2

γ̄2

)
dγ2

= 1 − (K + 1)e−K

γ̄2

∫ ∞

0

e−(γth/γ̄1)(1+C/γ2)

× e−
(K+1)γ2

γ̄2 I0

(
2

√
K(K + 1)γ2

γ̄2

)
dγ2.

The integral required to compute the outage probability in (8)
is

I1 =

∫ ∞

0

e−Cγth/(γ̄1γ2)−(K+1)γ2/γ̄2I0

(
2

√
K(K + 1)γ2

γ̄2

)
dγ2.

(9)
We are unaware of a closed-form analytical solution to this

integral. Nevertheless, using the infinite-series representation
of I0(x) [14, Eq. (8.447-1)]

I0(x) =
∞∑

�=0

x2�

22�(�!)2
(10)
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we can rewrite I1 as

I1 =
∞∑

�=0

K�(K + 1)�

(�!)2γ̄2
�

∫ ∞

0

γ�
2e

−Cγth/(γ̄1γ2)−(K+1)γ2/γ̄2dγ2.

(11)

The integral in (11) can be evaluated using [14, Eq. (3.471-9)].
We write I1 as

I1 =
∞∑

�=0

2K�

(�!)2

(
K + 1

γ̄2

) �−1
2
(

Cγth

γ̄1

) �+1
2

(12)

×K�+1

(
2

√
C(K + 1)γth

γ̄1γ̄2

)

for γth > 0 and Kν(·) is the νth-order modified Bessel function
of the second kind. Finally, Pout, for scenario (a) is given by

Pout = 1 − e−K−γth/γ̄1

∞∑
�=0

2K�

(�!)2

(
C(K + 1)γth

γ̄1γ̄2

) �+1
2

(13)

×K�+1

(
2

√
C(K + 1)γth

γ̄1γ̄2

)
.

Concerning the convergence of the infinite series in (13), the
truncation error if T1 terms are used is

R1 = e−K−γth/γ̄1

∞∑
�=T1+1

2K�

(�!)2

(
C(K + 1)γth

γ̄1γ̄2

) �+1
2

(14)

×K�+1

(
2

√
C(K + 1)γth

γ̄1γ̄2

)

For ν > 0 and fixed x, Kν(x) can be asymptotically approx-
imated as [15]

Kν(x) ∝ (ν − 1)!
2

(x

2

)−ν

(15)

Substituting (15) in (14) and after simplifications we get

R1 ∝ e−K−γth/γ̄1

(
eK −

T∑
�=0

K�

�!

)
(16)

Finally using [16, Eq. (4.1.7.10)]

R1 ∝ e−γth/γ̄1

(
1 − Γ(T1 + 1, K)

T1!

)
(17)

where Γ(α, x) =
∫∞

x tα−1e−tdt is the complementary incom-
plete gamma function [16, p. 792].

B. Scenario (b)

In the case of scenario (b) we can express Pout as

Pout =
∫ ∞

0

Pr

[
γ2 <

Cγth

(γ1 − γth)
|γ1

]
pγ1(γ1)dγ1 (18)

and after some manipulations (18) can be reexpressed as

Pout = 1 −
∫ ∞

γth

eCγth/γ̄2(γ1−γth)pγ1(γ1)dγ1. (19)

Using the Rician pdf of (5), the integral in (19) is given by

I2 =
(K + 1)e−K

γ̄1

∫ ∞

γth

eCγth/γ̄2(γ1−γth)e
− (K+1)

γ̄1
γ1 (20)

× I0

(
2

√
K(K + 1)γ1

γ̄1

)
dγ1.

Let u = γ1 − γth, then

I2 =
K + 1

γ̄1
e−K− (K+1)γth

γ̄2

∫ ∞

0

e−Cγth/γ̄2ue−
(K+1)u

γ̄1 (21)

× I0

(
2

√
K(K + 1)(γth + u)

γ̄1

)
du

Invoking again the infinite series representation of I0(x) we
can expand (21) as

I2 =
(K + 1)

γ̄1
e−K− (K+1)γth

γ̄1

∞∑
�=0

K�(K + 1)�

(�!)2γ̄�
1

(22)

×
∫ ∞

0

e−Cγth/γ̄2ue
− (K+1)u

γ̄1 (u + γth)�du.

Using the binomial expansion and the integral result of [14,
Eq. (3.471-9)] I2 can be solved. Therefore, Pout for scenario
(b) is expressed as

Pout = 1 − e−K− (K+1)γth
γ̄1

∞∑
�=0

2K�

(�!)2

�∑
r=0

(
�

r

)
γ

2�−r+1
2

th (23)

×
(

K + 1
γ̄1

) 2�−r+1
2

(
C

γ̄2

) r+1
2

Kr+1

(
2

√
C(K + 1)γth

γ̄1γ̄2

)
.

For numerical verification, assume that both the S − R and
R − D links experience Rayleigh fading, i.e., the scenario
considered in [3]. Substituting K = 0 in (13) and (23) we get
[3, Eq. (9)].

In all cases of practical significance, the infinite series
representations involved in (23) can be truncated without
sacrificing numerical accuracy. Suppose that we truncate (23)
after T2 terms. Therefore, the remainder, R2 after applying
(15) becomes asymptotically

R2 ∝ e−K− (K+1)γth
γ̄1

∞∑
�=T2+1

1
�!

(
K(K + 1)γth

γ̄1

)�

(24)

×
�∑

r=0

1
(� − r)!

(
(K + 1)γth

γ̄1

)−r

and simplifying further

R2 ∝ e−K
∞∑

�=T2+1

K�

(�!)2
Γ
(

� + 1,
(K + 1)γth

γ̄1

)
. (25)

We are unable to obtain a closed-form solution for the
summation in (25). However note that, using the L’Hopital
rule it can be shown that lim

x→∞Kx/(x!)2 = 0. Therefore, R2

asymptotically converges to a finite number.
Figs. 1 and 2 show the outage probability for scenarios

(a) and (b) respectively. In all cases, we have employed the
fixed gain G assumed in [4] under the so-called average power
scaling. The theoretical results were plotted using the first 20
terms of the infinite series (� = 20), where they match exactly
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Fig. 1. Outage probability in Rayleigh/Rician fading.
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Fig. 2. Outage probability in Rician/Rayleigh fading.

with the simulated results. The plots in Figs. 1 and 2 show
similar trends, i.e., with an increasing K-factor, outage events
decrease. However, in all cases, the outage probability of
Rician/Rayleigh fading is lower than Rayleigh/Rician fading.
Better channel conditions in the first hop (Rician fading) leads
to an outage performance improvement because the end-to-end
SNR probabilistically reaches higher values more often than
in the first hop Rayleigh fading scenario.

IV. AVERAGE BIT ERROR PROBABILITY

In this section we evaluate the ABEP of the dual-hop relay
network assuming that the transmitted data are modulated
using a M -ary square QAM alphabet which transmits data by
changing the amplitude of two carrier signals, and is widely
used in wireless communication systems.

The ABEP is a useful measure of evaluating the perfor-
mance of wireless communication applications. Traditionally
the ABEP is computed by determining the pdf of γeq and then
averaging the conditional BEP in AWGN, Pb(e|γ), over this

pdf. Mathematically, Pb(e) in the relay channel is given by

Pb(e) =
∫ ∞

0

Pb(e|γ)pγeq(γ)dγ. (26)

Using the BEP in an AWGN channel [17, Eq. (14)], the k-th
bit ABEP of Gray bit-mapped M -ary square QAM is given
by

Pb(e|k) =
2√
M

(1−2−k)
√

M−1∑
i=0

{
(−1)

⌊
i.2k−1√

M

⌋
(27)

×
(

2k−1 −
⌊ i.2k−1

√
M

+
1
2

⌋)
E
[
Q

(
(2i + 1)

√
3γ

M − 1

)]}

where E [·] denotes the statistical expectation operator,
Q(x) being the Gaussian Q-function defined as Q(x) =
(1/

√
2π)

∫∞
x

e−t2/2dt and �x� is the largest integer smaller
or equal to x. Finally, the ABEP of M -ary square QAM is
calculated from,

Pb(e) =
1

log2

√
M

log2

√
M∑

k=0

Pb(e|k) (28)

In order to compute the ABEP for scenarios (a) and (b) we
identify that the integral that needs to be computed is of the
form:

J =
∫ ∞

0

Q(
√

βγ)pγeq(γ)dγ (29)

where β is a constant. Note, that J can be computed using
the method presented in [7]. After integration by parts and the
change of variable t =

√
βγ, (29) can be rewritten as

J =
1√
2π

∫ ∞

0

Fγeq

(
t2

β

)
e−

t2
2 dt. (30)

Consider scenario (a): Using (30), J , can be written as

J1 =
1
2
− e−K

√
2π

∞∑
�=0

2K�

(�!)2

(
C(K + 1)

γ̄1γ̄2β

) �+1
2

(31)

×
∫ ∞

0

t�+1e
−
(

2+γ̄1β
2γ̄1β

)
t2K�+1

(
2

√
C(K + 1)

γ̄1γ̄2β
t

)
dt.

Using [14, Eq. (6.631-3)], (31) can be evaluated as

J1 =
1
2
− e−K

∞∑
�=0

(2K)�

(�!)2
√

1 + 2/(γ̄1β)
Γ
(

� +
3
2

)
(32)

×
(

C(K + 1)
(2 + γ̄1β)γ̄2

)�+1

Ψ
(

� +
3
2
, � + 2;

2C(K + 1)
(2 + γ̄1β)γ̄2

)

where Ψ(a, b; z) is the Tricomi function (also known as
the Kummer U function) [18], defined as Ψ(a, c; z) =

1
Γ(a)

∫∞
0 e−ztta−1(1 + t)c−a−1dt [19, p. 504] and Γ(x) =∫∞

0
tz−1e−tdt is the gamma function. We have employed

the well known relationship between the Whittaker function
and Ψ(a, b; z) [19, p. 505] to arrive at (32). Note, that
Ψ(·, ·; z) can be evaluated using popular symbolic software
such as MATLAB, MAPLE and MATHEMATICA. Finally,
after substituting (32) with β = 3(2i + 1)2/(M − 1) in (27)
and using (28) we arrive at the ABEP.
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Tricomi function Ψ(a, b, z) is a monotonically decreasing
function respect to a and b. This means that when a and b
increase Tricomi decreases. Therefore, the truncation error,
R3 in (32) after T3 terms can be upper bounded as

R3 < Ψ
(

T3 +
5
2
, T3 + 3;

2C(K + 1)
(2 + γ̄1β)γ̄2

)
e−K (33)

×
∞∑

�=T3+1

(2K)�Γ
(
� + 3

2

)
(�!)2

√
1 + 2/(γ̄1β)

(
C(K + 1)

(2 + γ̄1β)γ̄2

)�+1

.

Using the identity Γ
(
� + 3

2

)
=

√
π(2�+1)!
22�+1�!

[16, p. 773] and
expressing the summation of (33) in closed-form we finally
obtain

R3 <
(2K)T3+1Γ

(
T3 + 5

2

)
((T3 + 1)!)2

√
1 + 2/(γ̄1β)

(
C(K + 1)

(2 + γ̄1β)γ̄2

)T3+2

(34)

× e−KΨ
(

T3 +
5
2
, T3 + 3;

2C(K + 1)
(2 + γ̄1β)γ̄2

)

× 2F2

(
1, T3 +

5
2
; T3 + 2, T3 + 2;

2CK(K + 1)
(2 + γ̄1β)γ̄2

)
where pFq(a1, . . . , ap; b1, . . . , bq; z) is the generalized hyper-
geometric function [16, p. 788].

Consider scenario (b). Substituting Fγeq(γ) of (23) in (30)
we obtain

J2 =
1
2
− e−K

√
π

∞∑
�=0

√
2(K)�

(�!)2

�∑
r=0

(
�

r

)
(35)

×
(

K + 1
γ̄1

) 2�−r−1
2

(
C

γ̄2

) r+1
2

β
r−2�−1

2

∫ ∞

0

t2�−r+1

× e
−
(

2(K+1)+γ̄1β
2γ̄1β

)
t2Kr+1

(
2

√
C(K + 1)

γ̄1γ̄2β
t

)
dt.

Using [14, Eq. (6.631-3)], J2 can be simplified as shown
at the top of the next page.

Note that by exploiting the monotonic behavior of the
Tricomi function as in (33) and using the L’Hopital rule, we
can show that (36) converge. This proof is omitted here due
to limited space.

Figs. 3 and 4 show the ABEP performance of the dual-
hop relay network over Rayleigh/Rician and Rician/Rayleigh
fading. All cases correspond to 4-QAM and 16-QAM. Theo-
retical results were obtained by truncating the infinite series of
(32) and (36) to 20 terms, i.e., � = 20. The number of terms
required in (32) and (36) to achieve a given figure accuracy
depend on the SNR and the K-factor. For example, to achieve
six significant figure accuracy at K = 0 dB, only eight terms
are necessary, while at K = 20 dB, 250 terms are required.
However compared to time consuming computer simulations,
in all cases, the computational load required for calculating
the theoretical ABEP is marginal.

In Fig. 3 we have also plotted the performance curves
for Rayleigh/Rayleigh fading for comparison purposes. Under
Rayleigh/Rayleigh fading, J simplifies to

J =
1
2

(
1 − ϕ (K1(ϕ) − K0(ϕ)) eϕ√

1 + (2/γ̄1β)

)
, (37)
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Fig. 3. ABEP of 4 and 16-QAM in Rayleigh/Rician fading. Dashed lines
and “markers” denote theoretical and simulated ABEPs respectively.
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Fig. 4. ABEP of 4 and 16-QAM in Rician/Rayleigh fading. Dashed lines
and “markers” denote theoretical and simulated ABEPs respectively.

where ϕ = C/(2+ γ̄1β)γ̄2. Clearly, Rayleigh/Rayleigh fading
deteriorates the ABEP of the relay system compared to both
asymmetric fading conditions. In all cases, theoretical ABEPs
and simulations match very well. For a small K-factor (0 dB),
Figs. 3 and 4 illustrate that ABEP of scenarios (a) and (b) are
almost identical. However, for a typical K-factor (6 dB) and at
high SNR, Rician/Rayleigh fading is able to provide a slightly
better error performance compared to Rayleigh/Rician fading.
This is due to the fact in AF systems with fixed-gain, the end-
to-end performance is dominated by the first hop channel gain.
This is evident from (2). Therefore, better channel conditions
in the first hop (Rician fading) leads to improved performance
compared to the first hop Rayleigh fading scenario.

V. CONCLUSIONS

In this paper, we have presented two infinite-series repre-
sentations for the outage probability of a dual-hop commu-
nication system equipped with a single fixed-gain amplify-
and-forward relay in Rayleigh/Rician and Rician/Rayleigh
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J2 =
1
2
− e−K√

π(1 + 2(K + 1)/(γ̄1β))

∞∑
�=0

(2K)�

(�!)2(2 + γ̄1β/(K + 1))�+1
Γ
(

� +
3
2

)
(36)

�∑
r=0

(
�

r

)(
C

γ̄2

)r+1

Γ
(

� − r +
1
2

)
Ψ
(

� +
3
2
, r + 2;

2C(K + 1)
(2(K + 1) + γ̄1β)γ̄2

)
.

fading environments respectively. Based on these expressions,
the average bit error probability (ABEP) of M -ary square
QAM was also derived. These results demonstrate that the
system exhibits an improved performance in a Rician/Rayleigh
(source-relay link/relay-destination link) environment com-
pared to a Rayleigh/Rician environment. Furthermore, both
Rayleigh/Rician and Rician/Rayleigh asymmetric fading envi-
ronments, compared to the scenario where both links suffer
only from Rayleigh fading (Rayleigh/Rayleigh), produce im-
proved ABEPs. Simulation results for the outage probability
and the ABEP are in excellent agreement with the theoretical
results obtained in this paper. Since it has been found in
practice that different links of a relay system could experience
line-of-sight/non line-of-sight fading conditions, this analysis
is useful to the system design engineer for performance
evaluation purposes.
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