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ABSTRACT

A process algebraic approach to the speci�cation of fault tolerant systems is de-

scribed. As replication is inevitable for fault tolerance, we extend the process alge-

bra of Aceto and Hennessy with a replication operator. An operational semantics for

replicated processes with majority voting is developed. We model faults as action

re�nement and show how the e�ect of faults on a replicated system can be modelled.

1 Introduction

In this paper we present a process algebraic approach to the semantics of fault
tolerant systems. A fault is an event which causes the system to deviate from its
expected behaviour. Faults may be due to software errors (bugs), hardware design
errors, physical malfunctions due to factors such as fatigue. A system speci�cation
usually makes certain assumptions about the environment in which it operates. If
the environment behaves in an unexpected fashion, the behaviour of the system
cannot be predicted. Such changes in the operating environment may also be called
faults.1

Safety critical systems (also called fault tolerant systems) are those that can
continue to exhibit their speci�ed behaviour in the presence of faults. The main
aspects in building fault tolerant systems include detection, diagnosis, masking and
containment. Strategies for fault detection/diagnosis depends on what is classi�ed
as a fault. Once a fault has been identi�ed/detected it is necessary to protect the
subsequent system behaviour from it (masking) and the fault must not be permitted
to propagate (containment).

Users of a system are rarely concerned with the cause of a fault. They are
primarily interested in the �nal behaviour of the system. Therefore, the techniques
used in building fault tolerant systems must be hidden from the �nal behaviour.

It has been recognised that any attempt to mask systems from faults requires
some form of replication. For example, if a system has to be impervious to single
processor failures, at least two processors (a primary and a standby) are necessary.
It is also essential to relate the computations being performed by the replicated
components. If the stand by processor does not have an accurate view of the com-
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putation being performed, its behaviour after the failure of the primary unit may
not be acceptable. Failures are only one type of fault (and usually benign compared
to the other types). In communicating systems, messages may be corrupted, dupli-
cated, omitted etc. Masking these types of faults can also be handled by replication.

The number of replicated components depends among other things on the types
of faults, and the number of faults the system has to handle. Even though there is
no single uniform technique to build fault tolerant systems, a common strategy is to
replicate the system and obtain reliable results via majority voting.2,3 In this paper
we develop a calculus for systems with replicated systems and majority voting.

While various protocols (algorithms) which hide fault tolerance from the user
exist, there is very little by the way of an algebraic characterisation. Mancini and
Pappalardo4 de�ne a correctness criteria for a trace semantics of replicated CSP
processes but they do not consider general replication. Furthermore they do not
model faults. Process algebras such as ACP,5 CCS,6,7 CSP8 have played an im-
portant role in the development of theories for concurrency. The relevance of these
theories in real systems is illustrated by the ISO speci�cation language LOTOS.9,10

In this paper we extend a calculus similar to ACP with replication (RCP).
As there is no single replication factor to handle di�erent faults, processes in

RCP exhibit di�erent \fault properties". For example, a single replication can han-
dle failure faults but is not su�cient for message garbling. Let a represent a correct
message and b a garbled message. If one considers single replication of a with major-
ity voting the behaviour of the system under the garbling is unpredictable. On the
other hand if the replication factor is greater than two and only one of the messages
is garbled, a correct behaviour is exhibited. Therefore to prove fault properties of
a system one needs to model faulty actions of a system. Formal models of fault
behaviours have focussed on probabilities.11 While probabilistic process algebras
exist,12 their usefulness is limited as it requires the coding of all possible faults into
the system.

The notion of action re�nement13,14 has been used to develop a theory of \in-
cremental" process development. A fault (of a particular action) can be modelled
as an action being re�ned to the faulty behaviour. While the re�ned process has
the faults encoded, the use of re�nement results in a theory where there is a separa-
tion of concerns. The unre�ned process deals with replication while the re�nement
operators specify the faults. It is for this reason we use action re�nement to model
faults.

However the current theories of action re�nement place restrictions (such as
disjoint behaviours, con
ict free event structures) on the types of re�nement. We
will be forced to relax some of these conditions to model realistic faults. For example,
message garbling cannot assume disjoint behaviours. In this paper we only consider
the operational behaviour of processes under re�nement. The denotational models
for processes with re�nement are available only for re�nements which satisfy certain
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constraints. Further research is necessary to develop denotational models for RCP.
In the next section we de�ne the syntax and semantics of RCP. In section 3 we

consider re�nement.

2 Replicated Processes

We assume, as in previous work,5{7 a countable set of atomic actions �. The
usual combinators of \;", \j " and \+" are extended with q to indicate replication.
The set of processes is de�ned as follows

P ::= nil j � j �2 �j (P;P) j (P j P) j (P + P) j (P q P)

The two special processes nil and � represent termination and deadlock respec-
tively. Thus neither can exhibit any action. The atomic action terminates after
exhibiting itself. ; represents sequential composition, j parallel execution, + non
determinism and q replication. In this paper we only consider �nite processes.
Pr denotes all �nite processes with replication, while P denotes �nite processes
without replication (i.e., the Aceto and Hennessy15 subset of Pr). For purely behav-
ioral speci�cations, sequential composition can be replaced by action pre�x. But
sequential composition is necessary when faults are introduced in the system.

As Aceto and Hennessy15 explain, a set
p

is necessary to develop an operational
semantics for ACP and hence RCP.

p
represents the set of all terminated processes

with nil indicating termination.

De�nition: 1 De�ne
p

to be the smallest set satisfying the following conditions.

� nil 2 p

� if P, Q 2 p
, (P;Q), (P j Q), (P + Q) and (P q Q) 2 p

.

The operational semantics consists of two parts. The �rst speci�es the internal
moves of a replicated system and the process of obtaining votes (the relation �).
The second speci�es the interaction of the system with the environment (�!), viz.,
exhibiting the action that has received the maximum number of votes. Figure 1 is
a pictorial description of our model.

This is similar to the notion of high-level and low-level transitions introduced
in Gorrieri et.al.16 but they do not consider voting. Their main concern is the
decomposition of atomic actions at an implementation level. In our semantics,
actions are atomic for both the internal and the external moves.

To capture the state of the voting machine, we need the following auxiliary
de�nitions.

De�nition: 2 De�ne Residual Process as the set of partial functions: �! (Integer
� Pr)
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Figure 1: Fault Tolerant System

De�nition: 3 For S an element of Residual Process and a an element of �, de�ne
projection functions �1 and �2 as follows. If S(a) = hn,Pi, �1(S(a)) = n and �2(S(a))
= P.

Each process indicates an action it can perform and the process it evolves to
under the action. This is noted by the voting machine. For each action, the voting
machine stores the number of votes and the process to be executed after exhibiting
the chosen action. The current state of votes obtained is indicated by an element
of Residual Process .

The e�ect of combining two votes is de�ned by ] as follows.

De�nition: 4 For S1 and S2 elements of Residual Process , de�ne S1 ] S2 as S
where S(a) = h �1(S1(a))+�1(S2(a)), �2(S1(a)) q �2(S2(a)) i.

The �r (�l) operators extend to the right(left) the residual processes with a
parallel branch. Its usage will become clear when the internal moves are formally
de�ned.

De�nition: 5 Let S be an element of Residual Process and P an element of Pr.
De�ne �r :: Residual Process , Pr! Residual Process .

S �r P = S' where S'(a) = h �1(S(a)), (�2(S(a))j P) i.
S �l P = S' where S'(a) = h �1(S(a)), (P j �2(S(a))) i.
An operation +r similar to �r is de�ned for sequential composition.

De�nition: 6 Let S be an element of Residual Process and P an element of Pr.
De�ne +r :: Residual Process , Pr! Residual Process .

S +r P = S' where S'(a) = h �1(S(a)), (�2(S(a));P) i.
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De�nition: 7 De�ne the ready set of P, rd(P), as the set of actions P can exhibit
initially. rd(P) = fa j 9 P', P

a�! P'g.

De�nition: 8 The internal moves of a replicated system is de�ned to be the smallest
relation �� Pr� Residual Process satisfying the axioms in �gure 2.

An atomic action yields a single vote following which it terminates. The usual
rules for sequential composition, choice and parallel apply here. Thus, we adopt
an operationally \interleaving" model for the parallel combinator. The �rst rule
for replication takes into account the votes from its two branches. This is similar
to SCCS,17 i.e, there is no asynchronous evolution. However replication di�ers
from SCCS in that if one of the branches cannot exhibit any action (terminated or
deadlocked), it is discarded while in SCCS (nil � P) will not be able to proceed.

The external transition rules are derived from the internal moves. This requires
identifying the action that has received maximum number of votes.

De�nition: 9 As the current state of the voting machine is indicated by an element
of Residual Process , for S an element of Residual Process , de�ne
Voted Action (S) = fa j 8 b 2 �, �1(S(a)) � �1(S(b))g.

De�nition: 10 De�ne �! as the smallest set satisfying the axioms in �gure 3.

The �rst transition rule describes the process of exhibiting the action that re-
ceived the maximum number of votes. As only the residual process for the chosen
action is selected, containment is achieved. The other rules are as usual. There is
no direct external transition for replicated processes. Thus replicated processes can
only evolve via voting.

Example 1 Consider the process (a;P q b;Q q a;R). As the action a receives the
maximum votes, the system exhibits action a and evolves to (P q R). The \faulty"
action b and its residual process Q is discarded.

2.1 Behavioral Relations

In this section we describe the properties for replicated processes.

De�nition: 11 A preorder relation � on Pr is de�ned as: P � Q i� P
a�! P'

implies 9 Q', Q
a�! Q' and P' � Q'.

If � is a symmetric relation we indicate it by ' called the bisimilar relation.

In this paper we do not distinguish between a terminated process and a dead-
locked process. Thus � is not a precongruence.
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Action a;P �fha; h1; P iig

Sequential Composition1
P �S, S' = +r(S,Q)

P;Q �S'

Sequential Composition2
P 2 p

, Q �S
P;Q �S

Non-deterministic Choice
P �S

P + Q �S
Q + P �S

Parallelism1

P �S, S' = S �r Q
P j Q �S'

Parallelism2

Q �S, S' = S �l P
P j Q �S'

Replication1
P �S1, Q �S2, S=S1 ] S2

P q Q �S

Replication2

P �S, rd(Q) = ;
P q Q �S
Q q P �S

Figure 2: Internal Moves
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System Transition
P �S, a 2 Voted Action (S), P'=�2(S(a))

P
a�! P'

Sequential Composition1
P

a�! P'

P;Q
a�! P';Q

Sequential Composition2
P 2 p

, Q
a�! Q'

P;Q
a�! Q'

Nondeterministic Choice

P
a�! P'

P + Q
a�! P'

Q + P
a�! P'

Parallelism

P
a�! P'

P j Q a�! P' j Q
Q j P a�! Q j P'

Figure 3: External Transition Rules
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Proposition 1 (nil q P) 'P (�q P) 'P
(P q Q) '(Q q P) ( (P q Q) q R) '(P q (Q q R))

(P q P) 'P (P + Q) q R '(P q R) + (Q q R)
P � Q implies (P q Q) � Q

As mentioned earlier ' is not a congruence within the language. This is true
even if we distinguish deadlock and termination. For example (a q a) 'a, but (a
q a q b) 6' (a q b) This is not surprising as weak bisimulation is a congruence with
respect to all operators except +. Replication generalised the notion of an internal
move and q the generalisation of choice.

The following two propositions are expansion like theorems for replicated pro-
cesses. The �rst takes a replication of choice into choice, while the second takes a
replication of guarded processes into a choice of processes.

Proposition 2 Let P =
X
i2I

ai;Pi and Q =
X
j2J

bj;Qj. P q Q is bisimilar to

X
i2I;8j2J:ai 6=bj

ai;Pi +
X

j2J;8i2I:bj 6=ai

bj;Qj +
X

i2I;9j2J:ai=bj

ai; (Pi q Qj)

The above can be extended to handle n-replication of guarded processes. The
conversion of replication into choice is de�ned as follows.

Proposition 3
a
i2I

ai;Pi '
X
a2A

a; (
a

k2Ka

Pk) where AI = fai j i 2 Ig and

count(a) = #fk 2 I j ak = ag and A = fa 2 AI j (8j 2 I:count(a) �
count(aj))g and Ka = fk 2 I j ak = ag.
De�nition: 12 Let �c be the coarsest congruence relation contained in '(�c �
').
Proposition 4 Let P �c Q. If P �Sp then 9 Q �Sq such that for all a 2 �,
�1(Sp(a)) = �1(Sq(a)) and �2(Sp(a)) �c �2(Sq(a)).

Proof: We prove this by contradiction. If for any a, Sp(a) is unde�ned and Sq(a) is
de�ned, consider R=

a
k

a where k is di�erence between the votes received by a in Sq

and the maximum number of votes received by any event. Clearly Q in replication
with R can exhibit an a while P cannot.

Let a 2 �, �1(Sp(a)) = kp and �1(Sq(a)) = kq. Without loss of generality assume
kp > kq. By a similar argument to the above one can construct a process which
when joined with Q can exhibit an action which is not possible for P. (The formal
proof of this part is tedious.) As an example, consider P = (aq aq bq b) and Q
= (a q b). The process (c q P) cannot exhibit c but (c q Q) can. 2

The following two propositions are immediate consequences of the above theo-
rem.
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Proposition 5 �c is completely axiomatised by any complete axiomatisation for
P and the axioms: (nil q P) = P, (� q P) = P, q is commutative and associative.

Note: The proof of soundness of the axiomatisation requires an extended syntax.

Proposition 6 An extension to the Hennessy-Milner logic18 with multiset of ac-
tions instead of actions characterises �c completely. That is, the logic obtained by
replacing the modality hai with the modality hmi where a is an action and m a
multiset of actions is a sound and complete characterisation of �c .

It is also easy to show that �nite replication is not su�cient to make a system
totally fault tolerant.

Proposition 7 Given a �nitely replicated system S, there exists a process P such
that (P q S) 6' S.

3 Modelling Faults

So far we have only considered replicated systems. We have not mode-led faults.
As mentioned earlier, behaviour of systems under re�nement can model a system
with faults. Most of the theories of re�nement place restrictions on the types of
re�nement (such as no autoparallelism, no empty process, disjoin behaviours). These
restrictions are relaxed for fault modelling.

Another drawback in the traditional theories is that applying a re�nement to
a process alters all occurrences of the relevant action. As the degree of replication
used depends on the number of faults the system has to withstand, fault re�nement
should alter only a bounded number of actions. Therefore re�nement of a process
is indexed by the number of potential faults that can be introduced.

Given a re�nement operator % and an integer n, the application of it to a process
is de�ned in �gure 4.

Example 2 Given below are a few examples showing the modelling of faults via
re�nement. As faults do not always manifest themselves, they are de�ned as the
choice between the correct action and the incorrect process.

a-Omission = % : % (b) =

(
a+ nil b = a

b otherwise

a-Deadlock = % : % (b) =

(
a+ � b = a

b otherwise

a-Duplication = % : % (b) =

(
a + (a; a) b = a

b otherwise
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P % 0 = P
nil % n = nil

� % n = �

a % n = % (a)

(P;Q) % n =
X

0�i�n

(P % i); (Q % n� i)

(P j Q) % n =
X

0�i�n

(P % i) j (Q % n� i)

(P q Q) % n =
X

0�i�n

(P % i) q (Q % n� i)

(P + Q) % n = (P % n) + (Q % n)

Figure 4: Bounded Re�nement

a� b-Garbling = % : % (c) =

(
a+ b c = a

c otherwise

Re�ning a process with no fault yields the process, while processes that cannot
exhibit any action cannot be re�ned. Re�ning sequential/parallel composition or
replication results in the faults being distributed arbitrarily to both the subprocesses.
For a process involving choice, there is no distribution of faults as non-determinism
does not reduce the chance of a fault.

De�nition: 13 The safety (fault tolerant) requirement for a system P can be de-
�ned as P ' (P % n).

Proposition 8 If P � P % n and (P % n) � P then (P % n� 1) � P.

Proposition 9 As we do not consider communication, if P and % are deadlock free,
then (P % n) is also deadlock free.

Proposition 10 Let P be an unreplicated proccess (i.e., element of P).
If for all % and k (

a
2k+1

P) % k 'P then, the cardinality of rd(P) is less than or

equal to 1, and if P
a�! P', the cardinality of rd(P') is less than or equal to 1.

Proof: Let the cardinality of rd(P) be greater than 1. Then P
a�! P1 and P

b�!
P2 with a 6= b. Thus (

a
2k+1

P)
a�! a

k+1

P1 and (
a
2k+1

P)
b�! a

k+1

P2 Let k = 1 and let

% (a) = a + c, where c 62 rd(P). It is easy to see that (P q P q P) % 1 can exhibit
c (one of the branches selects an a the other b and the third c). Therefore (P q P
q P) % 1 6' P.

If P
a�! P1 and P1 does not satisfy the requirement, the existence of a re�nement

is proved by a straightforward induction. 2
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The signi�cance of the above result is that majority replication is adequate, only
if Process P is deterministic. By a combinatorial argument, a degree of replication
for a particular cardinality of ready sets and the length of a computation can be
obtained.

Example 3 Consider for example, the process P = a; (b + c). Applying % for a
single fault results in the process % (a); (b+ c) + a; (% (b) + % (c)).

Clearly a single replication (i.e., P q P) is not su�cient. If % (a) = d, then (P
q P) can exhibit d with d obtaining a single vote from % (a) and a getting only one
vote from the correct P.

Q = (P q P q P) is also not su�cient. If % (b) = d, after exhibiting a, Q can
evolve to (b + c) q (b + c) q (% (b) + % (c)) which can exhibit a d. P replicated 4
times can with stand single faults.

For single failures, and processes with only one subterm P whose ready set is
greater than 1, a replication factor of cardinality of rd(P) + 2 is su�cient.

For the process (a+ b); (c+ d) to withstand a single fault, a replication factor of
8 is essential.

A proposition similar to proposition 7 can be proved for processes with repli-
cation. That is, given a �nite replicated process, it cannot handle more than a
bounded number of faults.

Proposition 11 If rd(P) 6= ;, there exists % and n such that (P % n) 6' P.

Proof Outline: We explicitly construct such a re�nement and n. We do this only
for the replication operator. Consider the process (P q Q). A (P q Q) is deadlock
free and not termination there is an action (say a) exhibited by it. Let a receive kp
votes from P and kq votes from Q. Consider the a� b garbling re�nement where b is
not the ready set of (P q Q), and n = kp + kq. As (P % kp) q (Q % kq) is a term in
the re�nement of (P q Q), the action b receives exactly the same number of votes
as a and hence (P q Q) % n can exhibit b. But as b was not in the ready set (P
q Q) cannot exhibit b. 2

4 Conclusion

In this paper we have developed a calculus for replicated processes and showed
how faults can be modelled. The q combinator is basic in that it cannot be trans-
lated into the others in a congruent fashion. We have also found a novel use for
action re�nement. While our calculus is general, we envisage a restricted usage
viz., (

a
k

P) % n, where P is an unreplicated process. This is because usually there

is a replication of identical processes. Further research is in progress to study the
properties satis�ed by the restricted calculus.
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