Towards Synchronous Collaborative Software
Engineering

Carl Cook Warwick Irwin Neville Churcher

Technial Report TR-03/04, June 2004
Software Engineering & Visualisation Group,
Department of Computer Science and Software Engineering,
University of Canterbury, Private Bag 4800,

Christchurch, New Zealand
{carl, wal, neville}@cosc.canterbury.ac.nz

The contents of this work reflect the views of the authors
who are responsible for the facts and accuracy of the data
presented. Responsibility for the application of the ma-
terial to specific cases, however, lies with any user of the
report and no responsibility in such cases will be attributed
to the author or to the University of Canterbury.

This technical report contains a research paper, devel-
opment report, or tutorial article which has been submitted
for publication in a journal or for consideration by the com-
missioning organisation. We ask you to respect the current
and future owner of the copyright by keeping copying of this
article to the essential minimum. Any requests for further
copies should be sent to the author.

Abstract

CAISE, a collaborative software engineering architecture, provides ex-
tensible real-time support for collaboration between participating tools
and users. The architecture maintains a semantic project model con-
structed incrementally from software artifacts as they are developed; this
model is used to determine the impact of changes at a semantic level.
This information is relayed to developers, providing them with awareness
of others’ locations, and alerting them to potential conflicts and the need
for closer collaboration. We use examples from CAISE-based tools to il-
lustrate the potential of real-time collaborative software engineering to
enhance awareness of other developers’ actions.

1 Introduction

Software engineers work in teams, but typical development tools are effectively
single-user. In this paper, we present a working framework that supports the
real-time concurrent development of a shared set of artifacts within a software
engineering project. CAISE is an environment developed to explore the poten-
tial for combining features of Computer Supported Collaborative Work (Cscw),
such as relaxed floor-control policies and awareness of others’ presence and ac-
tions, with features of software engineering, such as complex persistent artifacts.
At all times, CAISE maintains a semantic understanding of the project’s arti-
facts, allowing useful information to be leveraged during development such as
code inter-dependencies and relationships between concurrently editing users.

In earlier work [6], we reported that we had expanded the architecture to
accommodate the Java programming language, and that we intended to develop
some industrial-strength collaborative tools. In this paper we focus primarily on
the architecture and role of the CAISE server. We introduce a number of client
tools in order to illustrate some of the ways that CAISE can enhance real-time
collaboration. We also report new additions to the architecture, such as the
adaptation of a versatile model of software, a project changes database and a
restructured event model.

The remainder of the paper is structured as follows: In section 2 we ad-
vocate the discipline of Collaborative Software Engineering (CSE) research. In
section 3 we put forward our argument that real-time collaborative tools are
increasingly necessary to support today’s software engineering tasks. Section 4
gives a detailed description of the CAISE architecture, with a particular focus
on the advances in the latest version. Section 5 provides several examples of
new tools developed for the CAISE architecture, including the integration of
Borland’s Together with CAISE. Finally, section 6 outlines the future work,
including additional proposed tool development, user and system evaluations,
and the analysis and visualisation of user activity data.

2 Defining CSE

It is essential to collaborate within software engineering. We observe, however,
that direct support for collaboration is absent from most software engineering
tools such as editors, compilers and debuggers. Instead, support for collabora-
tion is relegated to version control tools such as Cvs [3], Rcs [13] and Source-
Forge [2]. Version control tools are a highly successful mechanism for archiving
multiple versions of software, but software engineering tools often use the same
approach to convert the complex task of developing an application into a series
of partitioned activities that may be individually worked on in isolation. This
introduces numerous problems as inter-developer communication is restricted
and programming conflicts are likely to occur during project rebuilds (section 3
provides an example of such a conflict). Even today, the current practice in
software engineering is only to perform a regular global synchronisation of all
code—typically known as the nightly build—in an attempt to prevent individual
programmers’ efforts deviating significantly from the project version.

To increase the degree of awareness within a software development team, sev-
eral comparable frameworks and tools to CAISE have been developed ranging

from project management tools to collaborative debuggers. For example, Tukan
is a code editor for SmallTalk programs, and uses several metaphorical repre-
sentations to alert programmers about potential conflicts with each other [12].
More recently, the Jazz toolkit has been introduced within the Eclipse IDE en-
vironment, providing all developers with version control information, as well
as awareness of others’ locations within Java programs [4]. Finally, Rosetta is
another collaboration-aware tool, allowing users to design and document UML
class diagrams in real-time over the Internet [8]. A comparative analysis of such
work is provided elsewhere [5].

Tools such as those described elsewhere are often limited to a specific lan-
guage, development task, or set of tools. We argue that for a CSE architecture
to be of significant value to the community at large, it must not prevent pro-
grammers from using their favourite tools, nor restrict programming to a given
language or development methodology. Only when CSE tools and frameworks
become extensible do we expect the mainstream of developers to use them.

Distributed
Systems

Configuration
Management

Software

[Collaborative Software
A r Engineering
Engineering . Processes

HCl &
Awareness
Support

Groupware
Systems

Figure 1: Research areas related to CSE

To provide genuinely extensible CSE tools, several distinct fields of research
must be taken into consideration, including Cscw for groupware support, Hu-
man Computer Interaction for providing suitable forms of information display,
Distributed Systems to assist interprocess communication, and Configuration
Management to accommodate source code versioning issues. Whilst these fields
are distinct in their own right, figure 1 illustrates the overlap between them and
the field of CSE.

We observe that most tools developed to support CSE only exploit a few of
the intersections between the related fields. In developing CAISE we seek to
take into account all of these areas of research to provide an architecture that
is truly extensible and general.

Unfortunately, we also observe that there appears to be no ‘umbrella’ field
for CSE research; the relevant literature is fragmented. We argue that CSE
deserves recognition as a distinct area of research that is critical to the advance
of software engineering, particularly as complexity and size of projects increases.

Unrestrained Ideal CSCSE Tools Data
Communication |< >| Integrity

(Free) & P (Locked)
Chat Shared Apps Optimistic CVs Databases
Shared Whiteboards (Word, Excel) Pessimistic CVS

Figure 2: The collaborative spectrum in general software engineering terms

2.1 The Collaborative Spectrum

Software engineering can vary greatly in terms of degree of collaboration. In
conventional approaches, such as version control systems, each artifact under
modification is locked by its given developer. In order to reduce the granularity
of code updates, optimistic locking is a possibility. This does, however, increase
the complexity of merging changes when the underlying repository fails to con-
solidate the committed files—a situation that occurs frequently in real-world
projects.

At the other extreme, developers could consider sharing every artifact via a
Cscw tool. The goal of CsCW is to support fine-grained real-time interactions
between participants by sharing the same application amongst several users, and
by propagating each user’s actions amongst all others by way of telepointers,
telecursors and an array of other multi-user widgets. The GroupKit toolkit, for
example, is excellent for developing collaboration-aware applications via CSCwW
technology [11].

Software engineering certainly involves times of fine-grained communication.
Often, programmers work together on a single unit of code, and can benefit from
the services of Cscw for chat and collaborative file editing facilities. Similarly,
developers working on related units of code are also likely to initiate discus-
sions, and will often be interested in what the other related developers inten-
tions are. Unfortunately, Cscw technology does not provide a direct solution
to supporting fine-grained collaboration within software engineering. Current
Cscw technology is only applicable to relatively trivial applications when com-
munication is mainly transient [9]; collaborative editing of highly structured,
inter-related and persistent artifacts such as program source files is far beyond
the scope of any Cscw system. CSE tools also have the difficult requirement
that programmers must be able to revert back to the last known good version of
a project, otherwise it becomes increasingly difficult to compile the system at
regular intervals proportional to the number of concurrent developers—another
requirement beyond conventional CSCW capabilities.

It is clear that in order for CSE to progress, we must find a balance between
the potential for the fine-grained, casual interaction of Cscw, and the stringent
requirements of software engineering such as the integrity and persistence of
syntactically-structured source files. We feel that ideally, a CSE architecture
should fall somewhere sensible between these two extremes, as indicated in
figure 2. We do not want to jeopardize the integrity of the software engineering
artifacts and products, but we also do not want the very low bandwidth of
communication that is apparent with fully-locked source code control schemes.

3 Motivation for CAISE

Often programmers work concurrently, yet in isolation, using file locking and
merging tools such as CVS to partition their set of active artifacts. Whilst this
provides a mechanism for each programmer to work privately on a given task,
such programmers often experience surprises when merging or checking out code,
such as the code no longer compiling due to a simultaneous change to part of the
project elsewhere by another user. In developing CAISE, we demonstrate that
it is possible for tools to operate in a highly collaborative programmer-centric
manner, where a single set of source files are browsed and edited collaboratively
and in real time by any number of users and tools, even in a distributed setting.

The primary motivation in the development of our architecture is to increase
the level of communication between project members and the timeliness of that
communication. We argue that conventional software engineering tools, such
as text editors, compilers and source code control systems unnecessarily stifle
communication due to their single-user and artifact-centric approach. The de-
velopment model imposed by such systems is one where appropriate levels of
communication occur predominantly as a reaction to project compilation failure
during the rebuild phase—problems that could have been avoided with earlier
detection as a result of increased collaboration and communication.

Our goal is not to replace version control systems with architectures such
as CAISE. We simply suggest that the use of version control systems should
be restricted to what they were designed for—maintaining multiple versions of
projects. We observe that the use of version control systems for managing fine-
grained collaboration between highly-related artifacts is problematic, and that
more semantically-aware mechanisms should be employed. We argue that archi-
tectures such as CAISE should be used to facilitate the fine-grained development
of software, and version control programs used for coarser-grained duties.

3.1 Factors Influencing Collaboration

Conflicts arising from project modification may eventually lead to discussions
and increased interaction between programmers to resolve the problem. Putting
aside project-specific aspects such as the programming language used, the ex-
perience of programmers and team dynamics, conflicts and subsequent inter-
programmer discussions are largely determined by the following factors:

Granularity This is both in terms of the size and number of artifacts locked
by each user, and the granularity of the actual modification—a line, a
method, or an entire class. The coarser the granularity of modification,
the higher the likelihood of coding conflict.

Interleaving The more a series of modifications is interleaved by two or more
programmers, the greater the chance of conflicts arising.

Semantic Understanding The likelihood of conflicts also increases when mod-
ifications are made to units of code that are known to be semantically
inter-related. When developers understand that they are working between
highly-coupled modules, greater care is taken to avoid breaking the code.
Similarly, caution is often taken when developers are aware that a given
unit of code is referred to by many others.

Awareness Support Locked files, Cvs logs, and email are a common means
of communicating the actions, intentions and status of others within a
software engineering project, particularly in distributed development set-
tings. At the other extreme, some editing tools today also provide a degree
of Cscw support to increase awareness of others’ current actions and lo-
cations in order to reduce the likelihood of conflicts.

3.2 A Development Scenario without CAISE

To illustrate the factors influencing inter-developer cohesion as identified in sec-
tion 3.1, and to assert the necessity for architectures such as CAISE, we present
a simple example of two developers working on a small Java-based project using
only standard tools. The project’s artifacts are held in a source code control
system, and stand-alone code editors are used. The first developer, Wal, is work-
ing within the file ‘DynamicSprite.java’, as illustrated in figure 3. The second
developer, Carl, is editing the file ‘AnimiatedSprite.java’—which is a subclass
of DynamicSprite. Both users employ the coarse-grained approach of taking
copies of the entire source files needed to work on in private.

In the given example, there are no lexical conflicts—each class is in a dif-
ferent file, hence the concurrent editing of a single artifact does not need to be
supported. Both users need to know, however, that the code they are editing is
highly inter-related at the semantic level; in other words, they require a semantic
understanding of the code base. In particular, Wal must be aware that certain
changes to the implemented interfaces, constructors and properties could cause
compiler errors or changes in implementation behaviour. Additionally, both
users must be aware that changes to method signatures could also cause dif-
ficulties for Carl—specifically when explicitly invoked superclass methods and
implicitly invoked superclass constructors no longer match.

At the very least, the actual area of significance for both users in the current
scenario is both classes plus the parent class, as illustrated by the grey shaded
area in figure 3. As other users begin editing classes that are semantically related
to the three illustrated classes, the area of logical interest, or semantic under-
standing, grows—an area far beyond the set of observed artifacts for any one
user. There are most certainly numerous other dependencies as well from other
related classes, but in this example we are focusing on the direct dependencies
between the artifacts being modified by Wal and Carl.

From the current example, we can see that the lexical units under the mod-
ification of Wal and Carl are highly inter-related. A modification to either class
has the potential to significantly distort the other class, either in terms of a
compilation error, or altered run-time behavior (for example, a changed signa-
ture to an overridden method of the subclass will change the actual method
called). Unfortunately, the list of complications is not yet complete—we are yet
to address development errors from Wal and Carl working on two different sets
of source code.

To give an example of a simple, yet typical development error, let us imagine
that Carl makes one publicly visible yet fine-grained change—he changed a
parameter within a method from one type to another. He then updates another
block of code that calls this newly changed method, and finally recompiles this
code against the entire project. Everything works as intended—for now. At the
same time, Wal begins work on his file by making a new call to the subclass’s

Sprite

+move:void
+turn:void

Combined area
of logical interest

DynamicSprite

Wal
Lex_ical area
of interest +DynamicSprite

+start:void

+stop:void
#update:void

AnimatedSprite

+AnimatedSprite

Carl #update:void ‘
Lexical area .
of interest #advancelmage:void

Figure 3: Lexical vs. logical views of code

method that Carl just changed—again, another fine-grained change. We know
that Wal is now passing the wrong parameter type to this method, but the
change by Carl is yet to be propagated to Wal via the source code control
system. Accordingly, Wal’s version of the project compiles as well. No one
knows of this problem caused by interleaved modifications until the code is
merged—at which point both programmers scratch their heads, and then begin
their discussion on what went wrong and when.

The CAISE architecture has been developed to prevent development problems
by allowing programmers to discuss potential conflicts as they begin to form. In
the above example, the CAISE architecture would inform both users that they
are in units of code semantically related to each other. Both users can then
mediate through the communication channels provided by CAISE, or perhaps
enter another form of discussion to assess and resolve the current problem.

To provide useful information to each programmer, CAISE can identify what
the type of code dependencies are involved with the programming conflict, the
cardinality of the relationships, and if the change is accepted, what the impact
on the project will be. At a Cscw level, CAISE will also provide both users’
tools with awareness information related to the physical location of each user,
and any actions such as code modifications.

3.3 Required Feedback Types

Readers can empathize that real-world programming difficulties resulting from
concurrent editing are often far worse than the example given in the previous
section, and are all too common. The longer the synchronisation intervals and
the coarser the granularity of the locked code, the more problematic updates to
code can be. Even worse, as the number of concurrent editors increases, diffi-
culties are even more likely to arise. Additionally, many such changes happen
simultaneously within real-world projects.

The types of feedback to prevent these problems, such as awareness of other
user’s actions, and awareness of relationships between semantically related units
of code, are not provided by conventional tools. Initially it may appear rela-
tively straightforward to integrate such support into existing software engineer-
ing tools, but to do so correctly requires an adequate understanding of the entire
project, along with technology to control the editing of artifacts, monitor the
activity of users, control the submission of changes and provide the relevant
feedback.

The CAISE architecture defines and provides three main forms of feedback to
increase the awareness of other developers’ actions within a software engineering
project:

Code Dependencies The references that other parts of the project make to
a given lexical unit of code, and references that the current unit of code
makes to others. For example, when an expression within a unit of code
makes a reference to a method, a dependency exists between the two. For
the expression, an outwards dependency exists, and for the method, this
is an inwards dependency.

User Relationships These are relationships between the developers within
the project. They are derived from the dependencies of the code being
edited. User relationships are particularly important, as these identify the
areas of the project that may experience conflicting changes.

Change Impact The set of resultant error messages and resolved errors based
on a given modification. For example, if a new method call is added to
a body of code, and the referred-to method does not yet exist, a message
will be raised informing the user. Similarly, when a previously non-existent
method is declared, a message will be raised that all prior references to it
have now been resolved.

It is hoped that by providing this feedback support, we can avoid the prob-
lems of code synchronisation and programmer isolation.

4 The CAISE Approach

We now discuss the implementation of CAISE and how it supports the desired
properties of collaborative software engineering tools as outlined in the previous
section. With CAISE it is immediately possible to merge the capabilities of
Cscw with software engineering to support the real-time development of shared
artifacts.

CAISE is not a set of tools, although some CAISE-based client tools are
reported here. As illustrated in figure 4, CAISE is an underlying framework
to support collaborative software engineering tools. CAISE keeps track of the
software project as it changes, and provides feedback to participating tools. The
architecture also handles the persistence of all software engineering artifacts
within the project, maintains a change database of all significant changes made,
and provides an interface to query and/or update the model.

CAISE Server

Project Info
- Clignts Souree files
— Artifacts (with parse

User Actions
{edits, file deletions,
location changes, etc)

%}ag;g I Input Event - Filters trees)
Processor ~
(Tools that inspect = i
the model periodically, Y Modules

such as visualisation . _
h Semantic i parsers
generation ftools) EY— Software _ formatters
model AP Model ™ - analysers
I
Real-time
Observer
Tools

A (tools that A
A update upon v
\ output events) v

Feedback Change [Server

Modules Calculator Applications
(direct model
manipulation)

Change
Database

Event
Filters

Output events

{updated file,

feedback info,
etc)

Distributed
Communication
Channel

Figure 4: The entire CAISE architecture, including participating tools

4.1 A Robust Model of Software

CAISE now has a robust semantic model of software at the core of the architec-
ture, as illustrated in figure 4. In the initial version of CAISE, each language-
specific semantic analyser maintained its own private model for each project
implemented in that language. We realised, however, that CAISE could be made
more extensible if a common project model format could be used. After making
this change, much of the work in maintaining the model is now provided by
the server, making the development of language-specific analysers considerably
easier. This also allowed us to generalise the event model, integrate a generic
change determination module, and write language-independent feedback mod-
ules.

The semantic model is a fine-grained collection of all components within a
software project, from packages and classes down to parameters, variables and

blocks. IDEs such as Borland’s Together [7] and Eclipse [1] provide broadly
similar models to ours in terms of program structure, however we also model
the location of users within the project space, and incorporate a change his-
tory within each model component. The model is constructed incrementally
via updated parse trees from recently edited artifacts, and can accommodate
inconsistencies such as reference to undeclared classes and methods. Please re-
fer to Irwin and Churcher [10] for a full description of the semantic model of
software.

4.1.1 Related Work

The semantic model within CAISE is broadly similar to that of Eclipse. A signif-
icant difference, however, is that the model within CAISE is collaboration-centric
where the one instance of the model per project is shared by all participating
tools. In addition, the CAISE architecture and semantic model were designed
upon the assumption that multiple programmers are likely to be editing a com-
mon set of artifacts at the same time. For a team of developers using Eclipse,
each IDE instance has its own working version of an underlying project model.
Therefore, each IDE instance must be manually synchronised at regular intervals
by a version control system in order to maintain a degree of consistency within
the project.

Additionally, as the semantic model maintained by CAISE is located within
a server, it is affordable to hold the entire model in memory for unrestricted
querying and manipulation by client tools and other components. Conversely,
Eclipse is designed to run on standard workstations, therefore it must restrict
the size of the in-memory software model in order to not use all the memory and
processor resources. Therefore, direct access to the software model in Eclipse is
not possible—access is instead provided by symbol-table indexes and a cached
model.

4.2 The Server Architecture

The server within CAISE is responsible for coordinating events from all partic-
ipating tools, maintaining the project’s artifacts, and propagating events back
out to all relevant listeners. From a client tool’s aspect, the server is simply
the point of contact for obtaining artifacts and other project-based information.
The underlying duties of the server, however, are more complex than this, and
can be summarised as discovering dependencies (building up the model), iden-
tifying relationships (inspecting the model) and alerting change (propagating
events to relevant participants).

To describe the lifecycle of collaboration within the CAISE architecture, we
refer back to the example scenario presented in section 3.2. When user Carl
changed the parameter of a method from one type to another, a sequence of
character-edit events will have been delivered to the server by Carl’s CAISE-
based code editor. Not only will Wal have been informed that Carl was located
in a semantically related area of code, but Wal will now also see the file update
in real-time if he chooses to view it in his code editor. Upon Carl’s changes being
recognised as syntactically correct, the CAISE server will re-parse the artifact,
and update the model accordingly. The updated parse tree and source file buffer

10

will be propagated out to all artifact viewers, in which their local models can
be updated if necessary.

In the case that Wal and Carl agree on the modification this time, the change
to the model will be saved in the change database, and change information will
also be sent to any other remote tools that are observing the project state.
In the case that a third programmer wishes to open the same artifact at any
time they are able to do so—the local artifact cache within each CAISE-based
tool is automatically updated with the real-time copies upon tool initialisation.
For a more in-depth discussion of the CAISE architecture including clients’ local
models, parse trees and event propagation, please refer to our previous paper [6].

4.2.1 The Change Database

A new feature in this version of CAISE is the change database. This component
of the architecture allows CAISE to keep a record of all changes to the model—
changes at the semantic level such as a renamed variable or a deleted class. The
change calculator, working on the updated semantic model, performs a ‘before
and after’ comparison to determine what has been added, removed and modi-
fied. This not only allows change events to be propagated out to all interested
listeners, but gives researchers a complete breakdown of how a given project
develops over time.

4.2.2 The Plugins Facility

The plugins facility within CAISE is one of the key means of providing exten-
sibility. Plugins are user-defined modules that extend the capabilities of the
server.

By default, the CAISE architecture provides basic support for sharing and
storing both artifacts and the semantic model, and facilitates communication
between all participating CAISE-based tools. Language-specific plugins of the
following types extend the architecture: Parsers allow artifacts to be translated
from source code to a tree-based format in order to provide data for the semantic
model. Analysers allow the model to be incrementally constructed and queried.
Formatters provide a means of generating source files from a project model.
Feedback modules, however, are general in nature because they operate purely
on the semantic model, rather than with language-specific artifacts and parse
trees.

4.3 Feedback for CAise-Based Tools

It is important to provide accurate information for developers, but this is diffi-
cult for complicated languages such as Java. Often, the only reliable information
is derived from compiler and linker error messages. CAISE provides accurate and
reliable information because of its use of an underlying semantic model, which is
comparable to that used by a compiler. Within CAISE, feedback can simply be
edit updates, user location updates, significant change updates, or customized
feedback information based on user events.

11

4.3.1 Extending the Feedback

An important aspect of CAISE is that feedback can be extended. Application
developers can write module to perform custom calculations and feedback gen-
eration. Such feedback is sent to all requesting applications, providing the tools
with the necessary data to fuel any desired type of feedback mechanism. De-
velopers write a feedback module (or extend an existing one), place it in the
server’s plugin directory, and configure tools to catch and handle the resultant
feedback events.

The type of action that CAISE-based tools choose when feedback events occur
is entirely at the discretion of the tool developer; CAISE is simply the mechanism
that provides collaborative management and feedback. New feedback modules
can be written and used with CAISE, providing virtually any type of informa-
tion to CAISE-based tools. Feedback modules are invoked upon relevant user
events, at which point the project model may be inspected, including informa-
tion related to the location of users within the project, the change history of
the project and the entire project structure—from packages down to individual
blocks of code.

4.3.2 The User Neighbourhood

The user neighbourhood is a simple mechanism for CAISE-based tools to re-
strict feedback received from the server. Using the user neighbourhood com-
ponent, programmers can instruct their tools to ignore atomic operations, such
as character-by-character edits, made by other users. This gives programmers
an opportunity to rebuild the complete project without risking compiler syn-
tax errors due to the ongoing edits by others. Significant changes such as a
new declaration being made, however, can not be ignored and will always be
propagated; otherwise this will cause development errors to come into effect, as
experienced in conventional version control systems.

Our approach throughout the development of CAISE is always to deal with
coding conflicts as they happen rather than ignoring them. We believe that the
user neighbourhood mechanism keeps feedback within the acceptable range for
fine-grained CSE.

4.3.3 The Event Model

The CAISE event model now provides three core event types: user events, change
events and feedback events. User events are those generated by tools when
users edit code, commit a change, open, close or delete a file, or join or leave
the project. Change events are notifications the server issues when it detects a
change to the semantic model, as a result of an artifact being modified. Feedback
events have been discussed previously.

In terms of utilising CAISE events, client tools simply listen and respond to
events they are specifically interested in. A code editor will be interested when
a file is modified, whereas a project management tool might only be interested
when an excessively high number of programmers are modifying one artifact.
Finally, feedback events will only be propagated to tools that specifically request
them. In section 5 we show how tools utilise such events.

12

4.4 Scalability

At present, the CAISE architecture has only been tested with groups of up to
five concurrent developers. We see no foreseeable reason, however, why the
architecture will not scale to larger projects with many developers.

From our observations, the load on the CAISE server has been lightweight—
even though the server is just a standard dual-processor Linux/Intel machine
which runs numerous other unrelated services in parallel. Under mainstream
use the number of concurrent developers and project sizes could be considerably
larger, however, work on semantically related artifacts typically involves only
a small group of users regardless of the project size. Additionally, the critical
work per project modification is not overwhelming; whilst the semantic model
for an entire project may be vast, typically the area to inspect and process per
modification is relatively small.

5 Applications

Fundamental to the motivation of CAISE is that CSE tools and architectures
should not be limited to a particular tool or programming environment. In this
section, we briefly present two different software engineering tools, and describe
how other tools can be integrated with the CAISE architecture. In a later paper,
we will discuss the integration and use of new CAISE-based tools in more detail.

5.1 A Plugin for Together

A CaAise-enabled version of Borland’s Together IDE for Java is presented in
figure 5. As Together provides a plugins interface, we implemented a CAISE-
based plugin that allows Together to integrate with the CAISE architecture.
Developers may now use this version of Together as their IDE when working
on CAISE-based projects, allowing all project artifacts to be shared and edited
concurrently.

In the current example, user ‘clc38’ is editing the class ‘DynamicSprite’. At
the same time, users Wal and Neville are editing the subclasses ‘MobileSprite’
and ‘Animated Sprite’ respectively. To the users of Together, the most obvious
impact of CAISE is that updates to artifacts from remote users are immediately
propagated to the local views of the Together IDE. There are, however, further
enhancements in this version of Together to illustrate the way propagated CAISE
events support user awareness, as labelled on figure 5.

Under label ‘A’ is a collaborative project management widget that we have
called a change graph. This panel provides real-time updates on the number of
additions and deletions to the project’s semantic model per active developer.
The change graph listens to change events propagated by the CAISE server as
they occur, and updates its display accordingly. Whilst this component merely
counts and displays changes of all granularities, countless complex project man-
agement components are possible and straight-forward to develop. Within the
Together IDE, we decided to host the change graph in its own window, allowing
users to hide it when desired.

Under label ‘B’ is another component to provide real-time feedback. Called
the user tree, this panel keeps a running update on the locations of each active
user within the project, and displays a ‘viewing’ or ‘editing’ icon according to

13

their status. Again, this component obtains its data from propagated CAISE
events in order to show the location of users within the semantic model.

Eile Edit §earch View Project Run Eepl
Additions
DExE& 2e|4hH|
(2 Inspectar: ... 0 O x ||B3 Designer @
Collaborative Model Viewl | (E
Bean | b | B2 od Deletions
HTMLdoc | Requirements | Q el
= = i yramicyprire
Description Javadoc | % .] Attributes
Properties | Hyperlink | View £ -timerTimer
Default Package [Hatyle:Spritestyle
= . X Bga Operations
= animation [¥] Properties
=] Dynamicsprite
&ocle3s
= MobileSprite
B @ setLocation Ry MobileSprite AnimatedSprite
£ wal Ol =
_ % || s B
= Animatedsprite e r
= @ getlcons
_ [3] Editar o O x
[ﬁ Meville &
o Z S A= b | =
B E] animiation El"’ e{”|!* <::IE>|@ |_|
¥
B [E] utilities 7 BB i -
=] Utilities 12 Hpublic abstract class Dynamiciprite extends Spm';
= @ getCount 13 {]
Ld carl 14 S Timer that will call spriredctiony,
15 private Timer timer;
17 S Numer of degrees ro ruwrn Ciockwis
15 private int rotationIncrement; =
Wi | | »
Presz Ctrl+Alt+] ta finizh ed. . FooBar.javal Bob.javal B DynamicSprite. java
El Message Pane o O x
Meville is editing the class AnimatedSprite, which has the superclass DynamicSprite. You are editing class Dy~
wal is editing the class MobileSprite, which has the superclass DynamicSprite. You are editing class Dynamics[o
= ©
E1 Messages U
| || Synchronizing with external chan... IE Cancel || | Insert Ln: 15 Col: 25 v

Figure 5: A CAisE-enabled Together IDE

Under label ‘C’ is Together’s message panel. Again via Together’s plugin
facility, we modified the message panel to display messages from a specifically-
written CAISE feedback module. This particular feedback module analyses user
relationships between superclasses and subclasses, and warns pairs of users if
such relationships between them exist.

The CAIsE-enabled plugin for Together presents a comprehensive test of the

14

strength and viability of the CAISE architecture. By using an industrial-strength
tool such as Together, we can illustrate that CAISE is suitable for commercial
tool use, and can accommodate multiple users joining and leaving at any time.

5.2 A Code-Age Editor

Code age editors assist the visualisation of code ‘lifetimes’, where lifetimes typ-
ically mean the time since creation date for a given line of code, or the number
of edits a line of code has received. As another example of how CAISE supports
collaboration by means of project change analysis and propagating events, in
figure 6 we present a CAISE-based code age editor for the Java language. To the
best of our knowledge, this is the first collaborative, real-time code age editor
for any programming language.

File
package animation; -~ efault Package
@ B animation

import javax. swing.*; g AnirationFrarne
import jawva. awt. event.*; m e lle
o B spriteview

/™ The main frame of the GUI. */f @ @ setRotation
£ il
@ & Mohilesprite

private Borderlayout layout = new Borderlayout ; ® @ getLocation
J** Creates new form JFrame *)f lﬁ Carl
public AnimationFrame
{

initGUI 0] |
ack. 0 -
2 | ’l

| Arifacts [[Users | Feedback |

Project Files Current File Yiewers [Current File Editor

animation/SpriteStyle.java

Modification Date
11:07:49 NZST 2l]l]4|
Creation Date
16:14:29 NZST 2l]l]4|
Current File Size
Delete File 2004 bytes |

animation, AnimatedSprite.java
animation;/ AnimationFrame.java
animation, MohileSprite.java
animation; BounceStylejava -

File "animation/ AnimationFrame.java’ saved

Figure 6: A code age editor for Java

The code age editor presented here has another interesting feature: code age
is not on a line by line basis—it is per component because of the server’s ability
to detect fine-grained changes within the model. The code age editor updates
its display every time a new project change event is received from the CAISE

15

server; at which point the editor inspects the updated parse tree and extracts the
modification history details for each component. Therefore, this code age editor
can display the code age for each non-terminal production in the artifact—from
a class declaration right down to a string literal. Upon identifying a component
with previous changes, the editor shades the appropriate declarations according
to their number of modifications.

The client panel, as described in our previous paper on CAISE, is also in-
cluded within the code age editor to provide additional awareness support. The
client panel provides information on the project’s artifacts, facilitates commu-
nication amongst project members via both voice and text chat, and provides
an area to display custom feedback messages as they occur.

The final component within the code age editor is the user tree. The user
tree gives an object-oriented model-based view of the project, focused on the
locations of the current users. This type of awareness is useful even within com-
prehensive tools such as Together, but for an otherwise naive application such
as the code age editor, semantically rich information is now readily available.
Even though the editor’s knowledge only extends to displaying and shading text
files, the user tree provides full information about the underlying model—how
it is constructed and where everybody is within it.

5.3 Integration of New Tools and Languages

To support a new language within CAISE, three language-specific plugins must
be supplied: a parser that generates CAISE-compliant parse trees, an analyser
to assist in the building and querying of the semantic model, and a formatter
to generate source files. The parser and formatter can normally be produced
by generator programs, and the analyser, whilst relatively complex, provides an
intuitive API to assist development.

Any software engineering tool can be extended to utilise CAISE once the
relative language(s) have been integrated, allowing it to be collaboration-aware.
Once a tool has been written or converted—simply by making appropriate calls
to the CAISE API—it can share and edit project artifacts, and respond to CAISE
generated events. Any number and type of CAISE-based tools can work together
collaboratively with a project. For example, the code age editor and Together
IDE were used concurrently on the same project during our evaluations and
testing.

Individual CAISE-based components such as collaborative widgets can also
be developed by utilising the CAISE API. For example, the change graph, user
tree and client panel are all extensions of Swing JComponents, and can be added
as a widget to any existing Java application to make it collaboration-aware,
without the need for any further modification or configuration.

6 Conclusions and Future Work

The CAISE architecture provides a basis for supporting CSE in which developers
located anywhere on the Internet can work together effectively. Our approach
combines the immediacy and flexibility of Cscw with the rigour and robust-
ness of conventional development tools, and draws from other fields, such as
information visualisation, as needed.

16

In this paper, we have described the design and implementation of the CAISE
server, which manages the interleaving of concurrent developers’ activities via
incrementally-updated parse-trees and a corresponding semantic model.

The server also generates events, based on its analysis of the semantic model
and the actions of users, which are then propagated to individual tools. In this
way, individual tools (and hence users) are made aware not only of the locations
and actions of others, but also of potential conflicts.

Such awareness allows users to work more closely (supported by chat, voice or
video communication) where potential conflicts arise, yet to assist productivity
by permitting increased fine-grained interleaving where appropriate.

We have also illustrated the application of CAISE by discussing some specific
client tools which utilise feedback in various ways. The CAISE change database
is a valuable resource for other tools, particularly those performing off-line ac-
tivities, such as design critics or process metrics analysis.

We are encouraged by the successful implementation of CAISE and client
tools. Performance is adequate where both server and client tools are running
on standard machines. Feedback from focus group trials is also encouraging.

Our work on CAISE is part of a long-term project and many aspects of CSE
are yet to be explored. As our tools mature, we are in a position to conduct both
longer-term experiments, to compare the effectiveness of collaborative develop-
ment with traditional approaches, and shorter term HcCI and other evaluations
of specific features such as the GUI components which deliver user feedback.

Our future work includes aspects such as the following;:

Metrics and Analysis The CAISE logs provide data concerning the ways in
which developers collaborate and the frequency of changes to individual
artifacts. Analysis and visualisation of this data can shed light on devel-
opment practice and product quality issues.

Feedback Too much feedback is overwhelming; too little is dangerous. Use-
ful feedback is context-sensitive; sometimes it should be unobtrusive, yet
sometimes needs to provide an alarm.

Patterns of Collaboration Sometimes a group will ‘follow the leader’ around
a project, but may then switch to working in relative isolation, followed by
concentration of changes in a small number of artifacts. In processes such
as eXtreme Programming, close collaboration between developers may be
critical.

Client Tools We aim to identify those tools which can benefit most from CAISE
and to develop a suite of tools which includes stand-alone tools as well as
plug-ins for IDEs such as Eclipse.

Performance and Scalability There may be natural limits on the size and
interaction of groups of developers; there will always be technical limits to
what can be supported. Longer-term studies may indicate optimal group
and project sizes.

References

[1] Eclipse Platform Technical Overview Version 2.1. White Paper, February
2003. URL www.eclipse.org/articles/.

17

2]

3]

[12]

[13]

SourceForge.net Home Page. Internet URL, July 2003. URL
www.sourceforge.net.

B Berliner. CVS II: Parallelizing Software Development. In Proceedings of
the USENIX Winter 1990 Technical Conference, pages 341-352, Berkeley,
CA, 1990. USENIX Association.

Li-Te Cheng, Susanne Hupfer, Steven Ross, and John Patterson. Jazz:
A Collaborative Application Development Environment. In Proceedings
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 102-103, Ana-
heim, California, USA, October 2003. ACM Press.

Carl Cook. Collaborative Software Engineering: An Annotated Bibliogra-
phy. Technical Report TR-COSC 02/04, Department of Computer Science
and Software Engineering, University of Canterbury, Christchurch, New
Zealand, June 2004. Work in Progress.

Carl Cook and Neville Churcher. An Extensible Framework for Collabo-
rative Software Engineering. In Deeber Azada, editor, Proceedings of the
Tenth Asia-Pacific Software Engineering Conference, pages 290-299, Chi-
ang Mai, Thailand, December 2003.

Christopher Garrett. Software Modeling Introduction: What Do You Need
from a Modeling Tool? White Paper, 28 May 2003.

Nicholas Graham, Hugh Stewart, Authur Ryman, Reza Kopaee, and Rittu
Rasouli. A World-Wide-Web Architecture for Collaborative Software De-
sign. In Software Technology and Engineering Practice, pages 22-32, Pitts-
burgh, Pennsylvania, August 1999. IEEE.

Jonathan Grudin. Groupware and social dynamics: Eight challenges for
developers. In Communications of the ACM, volume 37 of 1, pages 92-105.
ACM Press, January 1994.

Warwick Irwin and Neville Churcher. Object Oriented Metrics: Precision
Tools and Configurable Visualisations. In 9th International Software Met-
rics Symposium, Sydney, Australia, September 2003.

Mark Roseman and Saul Greenberg. Building Real Time Groupware with
GroupKit, A Groupware Toolkit. ACM Transactions on Computer-Human
Interaction, 3(1):66-106, March 1996.

Till Schummer. Lost and Found in Software Space. In 3/th Annual Hawaii
International Conference on System Sciences, Maui, Hawaii, January 2001.
IEEE.

Walter F. Tichy. RCS — A System for Version Control. Software —
Practice and Experience, 15(7):637-654, 1985.

18

