
An Extensible Framework for Collaborative

Software Engineering

Carl Cook and Neville Churcher
{c.cook, neville}@cosc.canterbury.ac.nz

Technial Report TR-02/03, July 2003
Department of Computer Science

University of Canterbury,
Christchurch, New Zealand

The contents of this work reflect the views of the authors
who are responsible for the facts and accuracy of the data
presented. Responsibility for the application of the ma-
terial to specific cases, however, lies with any user of the
report and no responsibility in such cases will be attributed
to the author or to the University of Canterbury.

This technical report contains a research paper, devel-
opment report, or tutorial article which has been submitted
for publication in a journal or for consideration by the com-
missioning organisation. We ask you to respect the current
and future owner of the copyright by keeping copying of this
article to the essential minimum. Any requests for further
copies should be sent to the author.

Abstract

The size, complexity and duration of typical software engineering projects
means that teams of developers will work on them. However, with the ex-
ception of version control systems, the editors, diagrammers and other
tools used will generally support only a single user. In this paper, we
present an architecture for bringing to software engineering development
environments the advantages of awareness of the presence, and the inten-
tions and actions of others. Thus far, the applications of such facilities
have been primarily in simple Computer Supported Collaborative Work
(CSCW) tools, such as shared whiteboards, where the corresponding ar-
tifacts, unlike those of software engineering, are typically both simple and
transient. We describe our implementation of the architecture and proto-
type tools and illustrate the benefits of providing support for real-time col-
laboration between developers located anywhere on the Internet. We also
describe how our architecture, which is based on a parse tree representa-
tion of artifacts, may be extended readily to include new tools, languages,
and notations or be customised to provide new awareness mechanisms.



1 Introduction

Software engineering is inherently a team-based activity; most projects today
are complex and typically require several iterations of design, development, and
testing by numerous engineers. Unfortunately, very few tools are available to
support real-time, or synchronous, collaborative software engineering. There
are many tools well suited to synchronous unstructured collaboration such as
chat applications and shared digital whiteboards, but software engineers require
additional support for the sharing of source files and other artifacts.

Version control systems such as CVS [2] and VA Software’s SourceForge are
the most popular and successful means of collaborative software development
today. They are, however, fundamentally asynchronous or off-line systems; ar-
tifacts such as source code and class diagrams are locked exclusively by a single
user for modification. This results in code modifications made in isolation from
all other users, and the impact of code changes is not known until the entire
system is rebuilt, which is typically an overnight process.

Consequently, the full advantages of spontaneous teamwork are not being
utilised by software engineers at present, and the practice as a whole appears
content in relying fully on asynchronous tools such as email and version control
systems. We consider this as a serious obstacle to the advance of software
engineering, and a problem that is likely to remain unresolved given the current
lack of activity in the field of asynchronous software development.

Just over a decade ago, Cscw systems promised to revolutionise the way
we worked together. Applications would be replicated to every participant, and
conferencing and whiteboard tools would reduce the affects of any physical sep-
aration between coworkers, as discussed by Saul Greenberg [11]. This had an
immediate appeal to the practice of software engineering—design and devel-
opment tools could be converted to multiuser versions, allowing engineers to
harness the full power of working together.

Unfortunately, this idea failed to realise its full potential. Researchers such
as Jonathan Grudin realised that elaborate Cscw applications are just too hard
to implement effectively, and we should restrict ourselves to only the most simple
applications [12].

From the advent of Cscw came groupware toolkits such as GroupKit [19].
Numerous collaborative tools for general, non-structured tasks have been suc-
cessfully created using such toolkits; Greg Phillips presents a comprehensive
listing in [18]. For relatively focused software engineering tasks, groupware
toolkits may be successfully applied to develop collaborative tools; an example
of such a tool is GroupCRC, a collaborative Class-Responsibility-Collaborator
(Crc) editor [5].

A handful of software engineering tools have also written using other col-
laborative technologies. Tukan is a collaborative SmallTalk editor and class
browser [20] based on the Orwell shared source code repository [22]. Another
example is Rosetta [10], a web-based tool for Java program design.

Whilst effective for their intended purposes, all of the above tools do have a
significant shortcoming: they are designed for a specific task and/or a specific
language. Furthermore, Cscw technology is not well suited to general soft-
ware engineering; the constraints of highly syntactical structures and complex
semantic relationships make persistent software artifacts difficult to develop
and maintain collaboratively. Furthermore, the risk of compromising system

2



integrity by insufficiently coordinated user actions is unacceptably high.
Additionally, most Cscw frameworks do not support transient participants,

where individuals can enter and leave meetings as they please, and/or establish
new meetings as needed. Cscw frameworks normally stipulate strict floor con-
trol policies; often only one person can make a modification and/or communicate
at a time.

The characteristics of Cscw technologies listed above make it very difficult
to create Cscw based software engineering tools. Not surprisingly, today’s
most popular design and development tools such as Microsoft’s Visual Studio
and Borland’s Together [9] only support collaboration through asynchronous
version control systems. Accordingly, asynchronous development by way of
version control systems is by far the main means of collaborative development,
as asserted by Ye and Kishida [25].

Version control system have been very successful over the last decade; Source-
Forge, for example, boasts 300,000 active programmers for 30,000 projects. The
success of the Linux operating system can also be partly attributed to effective
version control systems. As stated previously, however, shortcomings of version
control based programming include having to lock each part of the system in
order to maintain system integrity, a significant lag between modification and
problem identification, and programming in relative isolation.

In an attempt to address some of the problems of version control systems,
a new method of real-time software engineering collaboration is gaining wide-
spread acceptance, namely XP (Extreme Programming). The XP methodology
includes a significant pair programming component, where two users share the
same computer, keyboard, and display. One of the main merits of this method-
ology is to extract the benefits of spontaneous synchronous collaboration, as
described by Kent Beck[1]. Unfortunately, the XP methodology also has sev-
eral shortcomings; the most obvious being the restriction of collaboration to
within pairs of programmers.

As argued by Nardi and Millar, programming is a naturally collaborative
activity, and many benefits arise from collaborative programming [17]. Whilst
there are collaborative architectures for general work, such as Cvw [21], none
can handle the complexities of software engineering. Subsequently, to further
advance the state of software engineering, real-time systems that promote spon-
taneous collaboration between any team of developers must be established, al-
lowing the full advantages of group work to be leveraged.

To address this problem, we present a framework to support synchronous
collaborative software engineering. The framework, Caise (Collaborative Ar-
chitecture for Iterative Software Engineering), is designed to enable the devel-
opment of real-time collaborative software engineering tools. The framework
supports real-time shared development of software artifacts, and is extensible
to any programming language with its associated tools and notations. We be-
lieve that the Caise framework will progress software development tools towards
being collaborative in real-time, which is critical to the advance of software en-
gineering.

The remainder of this paper is structured as follows. In the next section
we outline the design principles of the Caise framework. Section 3 provides
an overview of how the framework is used, using a source code editor and class
diagramming tool as a working example. Implementation details of the Caise
server are discussed in Section 4, followed by a in-depth discussion of the imple-

3



mentation of the example tools in Section 5. Our conclusions and future work
appear in Section 6.

2 Design Principles of the Caise Framework

Realistically sized software projects involve teams of people using several tools
each to edit numerous related artifacts concurrently. The purpose of the Caise
framework is twofold. Firstly, it allows individual software engineers to work
with a minimum of intervention on any part of the system with any tools.
Secondly, it ensures that all cumulative updates are integrated, and users are
kept aware of relevant changes to the system state.

A key characteristic of the Caise framework is that the participating tools
are not required to exclusively lock an entire file in order to edit it. Instead,
each tool is sent updates of changes to all open artifacts as soon as they hap-
pen, meaning that users can immediately see any changes by others that are
in their current view. This increased awareness of each others’ actions and in-
tentions enables users to coordinate their activities in a more informed manner,
minimising possible conflicts.

Similarly, tools within the same project are made aware of any relevant
relationships that exist between artifacts. For example, if one tool is editing a
particular class, and another tool is editing a source file that makes a reference
to that class, both tools will be notified that a dependency exists. Section 5.2
shows a detailed illustrated example of this feature.

Users of Caise based tools are also immediately informed of the system-wide
affects of their changes to artifacts, such as notification when a dependency be-
tween two source files is broken. It has been shown by Wilcox et. al. that
immediate feedback can assist programming [24], and we believe that immedi-
ate impact reports are useful to all programmers—rather than waiting for the
nightly build to determine the full consequences of a system modification.

To support the aspects of immediate feedback and synchronous editing, the
Caise framework introduces the following features:

A central model: For each software project, a model of the software is built
up every time a source file is submitted. The model is internal to the
Caise server—no tool will ever access the model directly. The server uses
the model to calculate the impact of impending user changes, and to detect
relationships between artifacts.

A grammar and parse tree format: For every programming language sup-
ported by Caise, a grammar is shared between the server and associated
language-specific tools. The framework stores each artifact as a parse tree
conforming to the relevant grammar; such trees are sent to each client
when requested, enabling tools to update their own views of artifacts.
The central model for each project is built up by inspecting every arti-
fact’s corresponding parse tree.

Propagating events: Every time the model is changed in a project, the Caise
server sends an updated artifact out to each tool currently viewing that
artifact. The artifact contains both a parse tree and the latest source code
file, along with other information such as current viewers and modification

4



dates. Other events propagated to clients include user events such as users
changing location in a file, or a user changing the integrity of the model,
such as adding a previously unresolved symbol into the software project.

Extensibility of tools and supported languages: Any number of program-
ming languages can be supported within the framework, and any tools and
technologies may connect to the project as long as they conform to the
project grammar.

Our experiences with Caise have convinced us that it is a genuinely useful
framework for supporting collaborative software engineering. To our knowl-
edge, the Caise approach is original: its combination of the ability to concur-
rently edit shared artifacts of any type, the provision of immediate context-based
feedback, and the ability to incorporate new programming languages into a col-
laborative framework represents a significant step forward within the field of
collaborative software engineering.

3 Using the Caise Framework

Typical usage of the Caise framework is presented in Figure 1, which illustrates
three participating applications, known as Caise tools, editing numerous shared
artifacts of project ‘A’. The Caise framework allows software projects to be
developed by any number of users concurrently, where each project may have
any number of artifacts in the form of source files and other resources.

Figure 1: A high-level view of the Caise architecture

To accommodate multiple programming languages, the server loads language-
specific components during system startup, known as Caise plug-ins. Plug-ins,

5



such as those illustrated in Figure 1, are typically in the form of parsers, parse
tree semantic analysers, and source code formatters (see Section 5). Parsers
turn source files into parse trees, semantical analysers build an in-memory model
of software based from the project parse trees, and source formatters reverse-
engineer source files from the project model.

3.1 Tour of a Caise Project

Here we present a brief tour of the framework, showing how to create a Caise
based project and commence collaborative work. For this example, we are not
concerned with implementing Caise plug-ins to support a new language—we
will assume that such components already exist. For details on how to extend
the framework with a new language, please refer to Section 5.4.

To configure a new or existing project, we use the Project Manager com-
ponent. Figure 2 demonstrates the Project Manager being used to inspect the
project ‘Utils Library’. To create a new project, the administrator simply selects
the appropriate item from the Project Manager menu, and supplies a unique
project name.

Figure 2: The Caise Project Manager component being used to inspect the
‘Utils Library’ project

Each project is configured to use an analyser; typically this is done at project
creation time through the ‘PlugIns’ panel of the Project Manager component.
For each artifact, the analyser determines which parser and source formatter
plug-ins to use. The project in the current example has been configured to use
an existing analyser for the Decaf language; further details of this language and
associated plug-ins are given in Section 5.1.

To commence collaborative work on a project, we must use tools that con-
form to the Caise framework. For the purpose of this illustrated section, our ex-
amples use existing Caise tools written for the Decaf language (see Section 5.2).
For information on the creation of new tools for the Caise framework, please re-
fer to Section 5.3. These tools are presented for illustratory purposes, and whilst

6



they allow us to demonstrate the Caise framework, they do not represent the
complete capabilities of Caise based tools.

Figures 3, 4, and 5 present three running instances of Caise tools connected
to the ‘Utils Library’ project. As can be seen from the Project Manager com-
ponent in Figure 2, this project contains several artifacts, with some artifacts
being currently modified. Neville has opened the artifact ‘Main.decaf’ with a
code editor (Figure 3), Carl is using the same type of editor as Neville to work
on the artifact ‘AppInfo.decaf’ (Figure 4), and Warwick is editing the same
artifact as Neville , but he is using a class diagramming tool to do so (Figure 5).

Figure 3: The Decaf source code editor being used by Neville to edit ‘Main.decaf’

Whenever an artifact is opened or modified, each user receives feedback via
the control panel component, as shown in the related figures. This feedback
can be displayed in any arbitrary manner. Each time an artifact is modified,
the model is updated, and the corresponding Caise tools update their displays
and present any associated feedback. The example presented in this section
illustrates such feedback, reinforcing the key design principles introduced in
Section 2:

Artifacts can be viewed and edited concurrently even with multiple views.

Unresolved references are displayed as soon as they are encountered.

Dependencies are highlighted relevant to open artifacts.

This example also illustrates communication between users within a Caise
project. To assist communication, the control panel component also provides a

7



Figure 4: The Decaf source code editor being used by Carl to edit ‘Ap-
pInfo.decaf’

8



Figure 5: The Decaf class diagrammer being used by Warwick to edit ‘Ap-
pInfo.decaf’

‘Users’ panel, which enables text and audio messaging. This panel can be seen
in Figure 6. When a Caise tool connects to a project, the associated user is
subscribed to the internal project channel, allowing him or her to send both text
and voice messages to other selected users or the entire group in an unobtrusive
manner.

Figure 6: The Control Panel component of the Caise framework being used by
Neville to communicate with Carl

4 Inside the Caise Server

Within the Caise framework, the server is a key component, enabling real-
time collaborative development of the artifacts it maintains for each project. In

9



this section, we discuss the mechanisms of the Caise server, including how it
builds up an internal software model, how it facilitates the concurrent editing
of artifacts, and how it communicates with remote tools.

The Caise server holds several types of information for each project. Each
artifact is stored on the server, including additional details such as the clients
currently editing it, and the artifact’s modification and creation dates. The
software model for each project is also held and maintained on the Caise server.
As mentioned in Section 2, this model authoritatively defines the software being
developed within the project.

In further detail, the model holds all the source code declarations made
by each project’s artifacts, in enough detail to build the project as machine
instructions, or reverse engineer the project back into a collection of artifacts.
In terms of compiler technology, the model is effectively a type-checked and
semantically analysed collection of parse trees for the entire project. The model
represents every component of the program being developed, including classes,
properties, methods, statements, and references. For the purposes of the Caise
framework, the model is used to determine dependencies between open artifacts.

Given that the server-maintained model represents the core of each software
project, the Caise framework implements the Model-View-Controller design
pattern [8]. The Caise server represents the controller—allowing modifications
to the model, and each Caise tool maintains its own view of the model.

The next aspect of the server to describe is the mechanism for distributing
the model to each Caise tool. The most obvious approach is to serialize the
model in its entirety to send to each tool, but it turns out that this is not
necessary. In the Caise framework, the server actually sends artifacts out to
each Caise tool; each tool can retrieve the source code buffer and the parse
tree from the artifact for display purposes, along with other information such
as current viewers and modification details.

For many tools, an updated source code buffer is sufficient - every time an
artifact is modified, the updated version is received immediately. For other tools,
such as class diagrammers, a parse tree is required. Parse trees are trivial to
inspect when looking for specific entities such as class and member declarations;
this is discussed further in Section 5.2.

We now discuss how the project model is updated within the Caise frame-
work. As illustrated in Figure 7, each Caise tool maintains its own local version
of the server model, in a manner representative of the Proxy design pattern [23].
For the Caise framework, initially each tool has its own copy of every artifact.
Upon editing of an artifact, the artifact is immediately sent to the Caise server;
this can be seen the second time-sequence of Figure 7.

Continuing with the time-sequence of Figure 7, the server then invokes a
parser over the modified artifact to generate an updated parse tree. The analyser
then integrates this parse tree into the model, updating the model accordingly.
Finally, the updated artifact is redistributed to every relevant Caise tool in
the project, allowing each local model (if any exist) to be updated, and each
associated artifact to be redisplayed.

4.1 The Caise Communication Layer

Until now, no mention has been made as to how the Caise server and tools
communicate with each other. To facilitate communication, one sub-layer of the

10



Figure 7: Schematic view of an artifact modification within the Caise frame-
work

11



Caise architecture provides a messaging framework for groups of applications.
The messaging framework is in the form of a Pure-Java Api, and allows

groups of applications to communicate via synchronous method calls. Through
the use of the messaging framework, locality of the tools and the Caise server
is transparent—all processes could run on the same machine, different machines
within a local network, or spread across the Internet.

The messaging framework is based loosely on the Java Shared Data Toolkit [3],
and provides several multi-user facilities such as the audio ‘TalkButton’ com-
ponent presented in Section 3.1. Full design and implementation details of the
messaging framework are presented in Cook et. al. [6].

5 Inside Caise Tools and Plug-ins

In this section we take a closer look at the Caise tools presented in Section 3.
We explain how the tools are implemented, how to implement new tools, and
how to introduce a new programming language into the Caise framework.

5.1 Custom Grammars and Components

The tools presented in Section 3 conform to a Caise supported grammar called
Decaf. Decaf is a simple subset of the Java language, created to assist us in
illustrating the Caise framework. Decaf is powerful enough to write useful
programs, but not so complicated that it becomes impossible to explain the
details of Caise compliant tools.

To describe the grammar, each source file may have any number of classes
just like Java, although there are no inner or nested classes, and there are also
no interfaces. Each Decaf class can have any number of methods and properties,
and methods may declare variables, call other methods, make assignments, and
declare return statements. Figure 4 shows a typical Decaf source file.

For the Caise framework to support the Decaf language, corresponding
server plug-ins were required. A parser plug-in that conformed to the Decaf
grammar was the first component developed. This was written easily using the
Cup parser generator [13], and the JFlex lexical scanner [15]; we provided a
grammar for Decaf and the rules for building up a parse tree, and Cup generated
a Decaf-compliant parser.

A source formatter also had to be implemented in order for the Caise frame-
work to support the Decaf language. A source formatter is essentially the op-
posite of a parser—it reconstructs a source file from the parse tree. Source
formatters are typically used within the Caise framework to supply a source
file to a source code editor, based off an artifact initially generated by a class
diagramming tool. Again, this component was trivial to implement; the for-
matter simply walks through the given Decaf parse tree and writes out code
statements based on the elements it finds. We found the Visitor design pattern
particularly suitable for this task [8].

The final component necessary to support Decaf within the Caise framework
is that of the project semantic analyser. Unlike parser and source formatter
components, analysers require substantially more effort to implement, regardless
of the language being supported. In the case of Decaf, the semantic analyser
was written in approximately 200 lines of code. The main functions of the

12



analyser were to build up a model of the project software based from the artifact
parse trees, type-check and semantically analyse the model, and detect any
dependencies by inspecting the model, given the artifact locations of every active
user.

5.2 Mechanisms of Caise Tools

In this section, we discuss the implementation details of the Caise tools pre-
sented in Figures 3, 4, and 5.

For both the Decaf source code editor and Decaf class diagramming tool,
we started development specifically as single user applications, then integrated
the services of the Caise Api as the final step. The Api is used by both
applications in order to connect to the Caise server, open existing projects,
create new artifacts, and open existing artifacts in order to retrieve the latest
source file buffers and parse trees.

Typically, artifacts are saved via the Api upon every significant change—
for example a new line of code in a source code buffer, or any new event in
a class diagram. If the server runs on fast hardware, character-by-character
saves are possible without any noticeable delay; we asserted this when using
a dual Pentium-4 server with 1 gigabyte of primary memory. To avoid any
transactional errors when modifying source files, each source code editor may
send an update of the buffer on a character by character basis. This allows
every other viewer of the artifact to immediately see any changes pending, and
possibly discuss the change between developers before the update is committed.

Upon a Caise tool saving a source file, the update will immediately be de-
livered to all current viewers of the artifact, as described in Section 4. Each
tool will then extract either the source code buffer or the parse tree from the
artifact, and update the local model. For the Decaf source code editor, this
simply involved redisplaying the source file. For the Decaf class diagramming
tool, this meant walking through the parse tree, and redisplaying the classes,
methods, properties, and references as they were discovered. As this task in-
volves iterating through the elements of the parse tree in a similar to that of
the Decaf source formatter component, much of the code is common between
the programs.

When two or more instances of a Caise tool work on the same project, the
Caise server is likely to detect dependencies between currently opened artifacts.
Similarly, whenever the state of the program changes, for example a reference is
made to a class that does not yet exist, the Caise server will also take notice.
Whenever such information is gathered, the server will send a message out to
every Caise tool that requires notification.

We can see an example of this in Figures 3 and 4. In Figure 3, user Neville is
editing the file ‘Main.decaf’ that declares a property appInfo of type AppInfo.
Concurrently, in Figure 4, user Carl is editing the class ‘AppInfo.decaf’ that
declares and defines the type AppInfo. The server generates an appropriate
warning to both users, which is delivered to each Caise tool for application-
defined processing.

For users where collaborative feedback is not required, applications may
choose to ignore feedback messages from the server. A balance between enforc-
ing system integrity through conflict management and delegating responsibility
through social protocols (as described by Uwe Busbach [4]) is maintained at

13



the server. Consequently, the entire system may be effectively locked for a pe-
riod during conflict resolution. In the case of the Decaf tools, the messages are
simply displayed in the ‘Feedback’ region of the Control Panel component, as
presented in Section 3.

5.3 Extensibility: Creating New Caise Tools

Creating new tools for a Caise supported programming language is a relatively
simple process. As described the previous section, the easiest way to create
a new Caise tool is to start with a single user tool, and then integrate the
collaborative services of the Caise Api. The Api may be used to connect
to the Caise server, and obtain lists of available projects and artifacts. Caise
compliant software engineering tools simply need to notify the server every time
an artifact is modified or saved, and redisplay artifacts every time a change is
made remotely.

The Caise Api is intended to minimise the programming effort required
to develop a new collaborative tool, allowing tools to communicate with the
Caise server, and other tools. Additionally, several other Caise components
are provided to assist the rapid development of collaborative tools. The Control
Panel allows navigation of artifacts and users for the current project, and also
facilities text and audio communication between project members. Multi-user
widgets, such as the TalkButton, allow the development of custom interfaces for
more elaborate applications.

The Caise Api is written in Java. This means that only Java-based appli-
cations can be developed for use with the Caise framework. It also means that
all server plug-ins must be written in Java or Java-supported languages such
as C++. We do not consider this to be a negative characteristic of the Caise
framework—Java has gained widespread acceptance throughout the research
community as a platform-independent language, and a commercial version of
the Caise system could easily support multiple languages and technologies such
as Sun Microsystems’ J2EE architecture and Microsoft’s .net framework.

5.4 Extensibility: Supporting a New Language

As explained in Section 5.1, for a language to be supported by the Caise frame-
work, the core server components for that language must be implemented. The
degree of effort required to support a new language is proportional to the com-
plexity of the language. Whilst scanners and parsers are relatively trivial to
create for any carefully planned language, semantic analysers are complex and
time consuming to develop. For the Decaf language, the analyser component
only required a day to develop, but for a more complex language, considerable
effort will be required.

To demonstrate that supporting a more complex language is possible, mean-
ingful, and useful, we are currently extending the Caise framework to accom-
modate the Java language. To do so, we require a full Java semantic analyser;
in other words, the complete compiler front-end for Java, including the type
checker and ambiguous symbol resolver. We intend to use the Java analyser as
described by Irwin et. al. [14]. By making minor modifications to this anal-
yser, it is possible to wrap it as a server plug-in, and implement Caise tools to
support the Java language.

14



6 Conclusions & Further Work

In this paper, we have presented an architecture for supporting real-time col-
laborative software engineering by developers located anywhere on the Internet.
The key features of the approach are:

Grammar-based tools and models: User-level tools, such as diagrammers
and editors, work with appropriate level views of local models of the cor-
responding artifacts. Both the models and views are based on grammars.
For example, a simple editor might represent a Decaf class in terms of
paragraphs, lines and words while a more powerful editor might represent
the same class in terms of declarations, expressions and other terms from
the full Decaf grammar.

Change integration and analysis: Changes generated by individual tool users
are sent to the Caise server which maintains current parse trees for all
project artifacts. The Caise server integrates changes, and resolves (po-
tential) conflicts.

Upgrade propagation and awareness: Semantic analysers react to changes
in relevant portions of the project parse trees and initiate the propagation
updates to the local models of individual users.

Flexibility and extensibility: The use of plug-ins enables customisation of
the behaviour of analysers to support arbitrary awareness notification
mechanisms or to respond to new patterns of updates. The addition of
new tools, to allow for new languages or notations, simply requires the
development of an appropriate grammar, parser, and analyser along with
the tool interface. The Caise Api provides support for developers of such
tools.

A selection of prototype tools for the Decaf language has been described to
illustrate the major aspects of the implementation of the architecture. These
provide:

• awareness of other users and their activity, together with text and audio
facilities to augment individual tools with real-time group discussion.

• support for editing, including feedback on the impact of changes to project
artifacts resulting from the activities of other users, regardless of the par-
ticular tools used.

• support for diagram-based development to complement text editing. In-
dividual users may update artifacts using either, or both, editor or dia-
grammer tools: updates are integrated and propagated back to the users
irrespective of the tools used to initiate them.

The Caise architecture could be used effectively for supporting flexible
single-user development tool sets. However, we are primarily interested in sup-
porting communities of developers collaborating in real time.

Having demonstrated the feasibility of implementing the architecture, we
are currently developing tools for Java and Uml in order to illustrate the ex-
tension to “real” programming languages and techniques. This will also allow
our approach to be compared with alternative tools.

15



The major thrust of our work to date has been the towards the development
and implementation of the architecture, and we are encouraged by its perfor-
mance so far. However, it is also important to evaluate its potential to be of
real use to physically separated groups of developers. Evaluation has several
aspects including:

• scalability of the Caise server.

• ability to maintain project integrity.

• usability of individual tools and sets of tools.

• provision of sufficient awareness of the locations, intentions and actions of
others that real-time collaboration is effective.

• extensibility.

Currently, only anecdotal feedback has been obtained. However, we plan to
conduct more formal trials as development proceeds to the stage where the tool
functions match our users’ experience more closely.

Our experiences with Caise have convinced us that it is a genuinely useful
framework for supporting collaborative software engineering.

References

[1] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading, MA, 1 edition, October 1999.

[2] B. Berliner. CVS II: Parallelizing Software Development. In Proceedings of the
USENIX Winter 1990 Technical Conference, pages 341–352, Berkeley, CA, 1990.
USENIX Association.

[3] R. Burridge. Java Shared Data Toolkit User Guide. Sun Microsystems, October
1999. Online document, Available from java.sun.com/products.

[4] U. Busbach. Activity Coordination in Decentralized Working Environments, chap-
ter 8. In Dix and Beale [7], September 1996.

[5] N. Churcher and C. Cerecke. GroupCRC: Exploring CSCW Support for Software
Engineering. In Proceedings of the 4th Australasian Conference on Computer-
Human Interaction, Hamilton, New Zealand, November 1996. IEEE Computer
Society Press.

[6] C. Cook and N. Churcher. A Pure-Java Group Communication Framework.
Technical Report TR-COSC 02/03, Department of Canterbury, University of
Canterbury, Christchurch, New Zealand, June 2003.

[7] A. Dix and R. Beale, editors. Remote Cooperation: CSCW issues for Mobile and
Tele-workers. Springer/BCS, September 1996.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns : Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, 1995.

[9] C. Garrett. Software Modeling Introduction: What Do You Need from a Modeling
Tool? Borland Software Corporation White Paper, 28 May 2003.

[10] N. Graham, H. Stewart, A. Ryman, R. Kopaee, and R. Rasouli. A World-Wide-
Web Architecture for Collaborative Software Design. In Software Technology and
Engineering Practice, Pittsburgh, Pennsylvania, August 30 - September 02 1999.
IEEE.

[11] S. Greenberg. The 1988 Conference on Computer-Supported Cooperative Work:
Trip Report. In SIGCHI Bulletin, volume 20 of 5, pages 49–55. ACM, July 1989.

16



[12] J. Grudin. Why CSCW Applications Fail: Problems in the Design and Evaluation
of Organizational Interfaces, pages 552–560. In Marca and Bock [16], 1992.

[13] S. E. Hudson. LALR Parser Generator for Java. Visualization and Usability
Center, Georgia Institute of Technology, Atlanta, GA, July 1999.

[14] W. Irwin and N. Churcher. Object Oriented Metrics: Precision Tools and Config-
urable Visualisations. In 9th International Software Metrics Symposium, Sydney,
Australia, September 2003.

[15] G. Klein. JFlex Version 1.4, The Fast Lexical Analyzer Generator for Java.
Munich, Germany, March 2003. Available from www.jflex.de

[16] D. Marca and G. Bock, editors. Groupware: Software for Computer-Supported
Cooperative Work. IEEE Press, Los Alamitos, CA, 1992.

[17] B. A. Nardi and J. R. Miller. An Ethnographic Study of Distributed Problem
Solving in Spreadsheet Development. In Proceedings of the Conference on Com-
puter Supported Cooperative Work, pages 197 – 208, Los Angeles, CA, October
7-10 1990. ACM.

[18] W. G. Phillips. Architectures for Synchronous Groupware. Technical report,
Department of Computing and Information Science, Queen’s University, Ontario,
Canada, May 1999.

[19] M. Roseman and S. Greenberg. Building Real Time Groupware with Group-
Kit, A Groupware Toolkit. ACM Transactions on Computer-Human Interaction,
3(1):66–106, March 1996.

[20] T. Schmmer. Lost and Found in Software Space. In 34th Annual Hawaii Inter-
national Conference on System Sciences, Maui, Hawaii, January 2001. IEEE.

[21] P. Spellman, J. Mosier, L. Deus, and J. Carlson. Collaborative Virtual Workspace.
In Proceedings of the International ACM SIGGROUP Conference on Supporting
Group Work, pages 197–203, Phoenix, AZ, November 1997. ACM Press, NY.

[22] D. Thomas and K. Johnson. Orwell: A Configuration Management System for
Team Programming. In Proceedings of Object-Oriented Programming Systems,
Languages, and Applications (SIGPLAN), pages 135–141, San Diego, CA, 1988.
ACM.

[23] J. Vlissides. Pattern Hatching: Design Patterns Applied. Addison-Wesley, Read-
ing, Massachusetts, 1998.

[24] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R. Cook.
Does Continuous Visual Feedback Aid Debugging in Direct-Manipulation Pro-
gramming Systems? In Proceedings of CHI 97: Human Factors in Computing
Systems, Atlanta, GA, 22-27 March 1997. ACM.

[25] Y. Ye and K. Kishida. Toward an Understanding of the Motivation of Open
Source Software Developers. In Proceedings of the International Conference on
Software Engineering (ICSE2003), Portland, Oregon, May 3-10 2003.

17


