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Summary. The question of interest in the present study is the inverse problem
for high precision glass forming, i.e. "How to design the mould and the temperature
regime so that at the very end of the forming process we will get at room temperature
a prescribed glass geometry with a precision in the order of the Micron?’ The aim
is to eliminate from the manufacturing process the costly and time-consuming post-
processing when the final shape does not conform precisely to the desired one.
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1 Description of the forward problem

The present study focuses on the cooling stage of the glass forming process
and provides a method based on computer-aided simulations to optimize the
cooling treatment in order to keep the residual stresses below a given admis-
sible threshold and identify the required initial geometry of the glass piece so
that after cooling, it matches precisely the desired one.

The case treated here corresponds to an optical device and the thermo-
mechanical analysis is performed using the commercial Finite-Element code
Ansys. The geometry and boundary conditions are shown on Figure 1. The
glass piece has a symmetry of revolution and occupies the domain 2 bounded
by the surface I' = ITUI,UI3UIy at t = 0. It is assumed to be initially stress-
free and with uniform temperature Ty = 873.15 K. Radiative heat transfer
is ignored so that the temperature field within the glass piece is dictated by
the heat diffusion equation. Moreover, heat is lost to the surrounding through
convective heat transfer characterized by a constant coefficient of heat trans-
fer h. In this optimization problem, the time-dependent temperature of the
surrounding Ty (¢) is the control used to minimize an objective function yet to
be defined.

Upon cooling, the glass behavior undergoes drastic changes. At high tem-
perature (T' > T, 4+ 100 K) it behaves like a Newtonian liquid while at lower
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Fig. 1. Initial glass piece geometry with corresponding Finite Element mesh and
boundary conditions. The deformed glass geometry (after cooling) with the associ-
ated map of the residual Von Mises stresses is also shown.

temperatures (I' < T, — 50 K), classical linear elasticity applies. In the inter-
mediate temperature range, the glass is best described as a viscoelastic solid
where stress and structure relaxation occur. The state of the structure of the
glass is characterized by the fictive temperature Ty (x,t) a concept well estab-
lished after the work of [Narayanaswamy (1971)]. Accordingly, constitutive
laws may be expressed in the following integral form,

si,t) =2 [ G (exin) - €0x0) o

o(x,t) = 3K (e(x,t) — en(x,1)) , (2)

where s;5, 0 and e;;, € are the deviatoric and volumetric parts of the stress and
strain tensor respectively. The bulk modulus K is chosen to be constant while
the shear modulus G is a function of the elapsed reduced time, &(x,t)—§(x,t').
A classical Arrhenius model is used to represent the influence of the temper-
ature on the relaxation behavior so that the relaxation time is expressed as:

t Tref t 4;5’(7;_47T B A’T‘iiﬁ ))
re 12 3 x,t7 x,t/ /
f(xvt)/o Wdt /o e o Teuy Ty dt”, (3)

where T,¢y and 7(T,T¢,t’) are the relaxation times at the initial temperature
and the temperature T', respectively. 8 is a constant (0 < § < 1), AH the
activation energy and R the ideal gas constant. The shear modulus and fictive
temperature are expressed in the form of Prony series, viz
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G(&) = Goo + Y _ Gie ™ with G; = v3(Gp — Goo) and Y vy =1, (4)
=1 =1

Tp(x,t) = Y wiTy,(x,t) with » w; =1, (5)
=1 =1

In egs. (4) and (5), Gp and G are the initial and final shear moduli, respec-
tively, while GG; and w; are weights and \; are constants associated with a
discrete relaxation spectrum in shear. Ty, are the partial fictive temperatures
and these must satisfy the following ODE, [Markovsky et al. (1984)]:

dt i o dt’

where u; are constants associated with a discrete structural relaxation spec-
trum. Finally, the thermal strain in eq. (2) is given by:

etn = ag (T = To) + (au — ag) (T — To) » (7)

where a4 and «; are the coefficients of thermal expansion of solid and liquid
glass respectively. The glass transition occurs around T, = 773.15 K.

The glass piece is assumed to be traction free and slides without friction on
its base. Numerical simulations proceed by first computing the temperature
field until the temperature in the glass is uniform and equal to the room
temperature (293.15 K) and then impose it as a load to the structural analysis.
A typical map of the residual Von Mises stresses can be seen on Figure 1.

2 Optimization of the cooling curve

A first step in the identification of the required initial shape consists in op-
timizing the cooling curve in order to reduce the permanent stresses pro-
duced by temperature gradients. To this end, the algorithm proposed by
[Sonmez et al. (2002)] was employed which attempts to reduce the total cool-
ing period while keeping residual stresses below a prescribed threshold, 044

As seen on Figure 2, three regions define the cooling curve. The stresses
only have the ability to relax in the first region characterized by Ty, — 50 <
T, < Ty + 100. The optimization is therefore restricted to this part of the
cooling curve. In the region to be optimized, the cooling curve is defined by
N = 7 key-points with locations (iAt,T;),i = 1,..., N, where At is a time
interval. The initial and final temperatures are fixed to T,(t = 0) = T and
To(ty = (N +1)At) = 723.15K and the temperature is interpolated linearly
between the key-points. The optimization problem has therefore N 41 degrees
of freedom, namely the N values of the temperature T; and At.

The aim of the optimization is to reduce the total cooling time ¢; subject
to the constraint that the maximum value of the Von-Mises stresses should not
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Fig. 2. (a): Initial and optimized cooling curves for oagm = 5 x 10° Pa, 0adm =
5 x 107 Pa; (b): Convergence history of the proposed algorithm for each line I’.

exceed 044m at room temperature. Moreover, realistic cooling curves should
be monotonically decreasing and the slope bounded by a constant k = 1K /s
in order to avoid exceedingly large temporary stresses. Accordingly, the opti-
mization problem is formulated as follows:

i 1+P +P,+ P
jlgnAnt tr(1+ P+ P+ Ps) (8)

where the P; correspond to the penalty functions associated with each con-
straint. These are given by:

Teag(ovzu (x,t=te))—0aam

P = C1 P if Tea(azs (ovm (X, t=te)) > Cadm
0 if mazx (oyap(x,t =te)) < Cadm
xEN

P

Cr=t i Ty > T, P Cy Bl S || Ty — T3l > kAt
0 if Ty <T; 0 if [|Ti41 — T3] < kAt

The constant C; is chosen to be equal to 10°. The Nelder-Mead simplex direct
search method from Matlab was adopted to minimize eq. (8).

The initial and optimized cooling curves for ougm = 5 x 108 Pa and
Oadm = Hx 107 Pa are shown on Figure 2 (a). As expected when the constraint
on the maximum admissible Von Mises stress is least severe, a much quicker
cooling is possible. The shape of the cooling curve for o 44, = 5 x 10® Pa is also
as expected: after an initial rapid cooling, the temperature remains approx-
imately constant. This feature allows the stresses to relax to the admissible
level. Finally, the map of the residual Von Mises stresses when oqqm = 5 x 10°
Pa shown on Figure 1 confirms that, the level of stress is kept below o gqm -
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3 Identification of the required initial geometry

In order to describe the algorithm which tackles the inverse problem of identi-
fying the required initial geometry, notations are introduced. Let M, ..., M‘Li
denotes the L boundary nodes of the desired glass geometry at room temper-
ature. The required initial geometry is found by updating the location of the
boundary nodes M; iteratively (the superscript indicates the iteration num-
ber). At each iteration Nij corresponds to new location of the node Ml] in the

deformed geometry and U;j is the associated displacement. The algorithm is
defined in pseudo-code notation as follows:

1. for i=1 to L {
OM} = OMZ; ON} = OM} +U}l; Al = OME — ON}; } j=2;
2. Do {
for i=1 to L{
OM] = OM]™'+ A"'; ON} = OM] +U?; Al = OMZ—~ONj; } j=3+1;}
While max(||A7[]) > e

Stated in simpler terms, the initial guess for the required initial boundary node
locations is taken to be the location of the nodes of the desired geometry at

room temperature. At each iteration the residual vector (Af ) which measures
how far the deformed geometry is from the desired one is evaluated and added
to the previous guess of the required initial boundary node location.

This algorithm was tested for the case when the desired geometry at room
temperature corresponds to the initial geometry on Figure 1 and the cooling
treatment is as shown on Figure 2 (a) with 044, = 5 x 10 Pa. The conver-
gence history is displayed on Figure 2 (b). For each of the I'; of the contour

I', the maximum of the Euclidean norm of Ag is plotted against the number
of iteration. The convergence rate is around two decades per iteration which is
very satisfactory and the Micron threshold is achieved after three iterations.
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