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Abstract 
 

This paper presents a real-time keypoint matching 
algorithm using a local descriptor derived by Zernike 
moments. From an input image, we find a set of key-
points by using an existing corner detection algorithm. 
At each keypoint we extract a fixed size image patch 
and compute a local descriptor derived by Zernike 
moments. The proposed local descriptor is invariant to 
rotation and illumination changes. In order to speed 
up the computation of Zernike moments, we compute 
the Zernike basis functions in advance and store them 
in a set of lookup tables. The matching is performed 
with an Approximate Nearest Neighbor (ANN) method 
and refined by a RANSAC algorithm. In the 
experiments we confirmed that videos of frame size 
320×240 with the scale, rotation, illumination and 
even 3D viewpoint changes are processed at 25~30Hz 
using the proposed method. Unlike existing keypoint 
matching algorithms, our approach also works in real-
time for registering a reference image. 
 
1. Introduction 
 

Keypoints, often called as interest points, are points 
that contain distinctive information so that they can be 
found repeatedly in images when they undergo various 
transformations such as translation, scaling, and 
rotation. Finding and matching keypoints in a pair of 
images has been widely used in many computer vision 
problems for tasks such as object recognition [8], 
tracking [10], and 3D pose estimation problems [9][13]. 

Keypoint matching usually involves three steps: (1) 
Keypoint detection, (2) Keypoint description, and (3) 
Keypoint matching. In keypoint detection, it is 
important to find the same location of keypoints in an 
image even though the image has been geometrically 
deformed. Keypoint description means the 
computation of a feature vector that describes the 
characteristics of an image patch around the keypoint. 

Keypoint matching is used to find the corresponding 
points in two images by using the keypoint descriptors.  

Lepetit and Fua treat keypoint matching as a 
classification problem and have proposed a matching 
algorithm robust to camera pose [9]. They synthesized 
various views of keypoints and used randomized trees 
as statistical classification tools. However, with their 
method it takes more than 10 minutes to train a 
reference image because rotated images at every 
possible angle have to be synthesized. Tran and 
Marchand proposed a fast keypoint matching 
algorithm for visual servoing applications [13]. They 
computed the keypoint orientation using a histogram 
of gradient orientation. However, they used a local 
descriptor based on Principal Component Analysis 
(PCA) so that their method also needs a training step 
and takes time for the registration of a reference image.  

In this paper we present a real-time keypoint 
matching algorithm with a local descriptor defined by 
Zernike moments. Zernike moments are rotation 
invariant and robust to noise, so the local descriptor 
also has these properties. We extract an image patch 
with a fixed size at every keypoint and compute a 
feature vector for the patch. For a real-time 
implementation, we compute the full set of Zernike 
basis functions with the fixed size in advance and store 
that in a set of look-up tables. Then, Zernike moments 
are computed by projecting image patches onto the 
pre-computed basis functions. Therefore Zernike 
moments at every keypoint can be computed very 
quickly and the whole process works in real-time. 
Unlike existing keypoint matching algorithms, the 
proposed method registers a reference image in real-
time. 

In the next Section we describe the keypoint 
detection method. In Section 3, we describe the local 
descriptor derived by Zernike moments in detail. 
Section 4 describes the keypoint matching techniques. 
Experimental results are given in Section 5 and the 
conclusions follow in Section 6. 

 



2. Keypoint Detection 
 
Over the last several decades many keypoint 

detectors have been proposed including Harris [4] and 
Laplacian of Gaussian (LoG) [10]. These methods are 
often combined with scale-space techniques to find 
scale invariant keypoints [10][11]. However, they are 
computationally too expensive to be used in real-time 
applications.  

Recently a simple and fast corner detection algo-
rithm has been proposed [12][14]. The method scans 
an image and checks the 16 points around a pixel as 
shown by the black squares in Figure 1. A pixel p is 
classified as a corner point if there are a set of n 
contiguous pixels in the surrounding 16 pixels which 
are brighter, or darker, than the intensity of p. This 
corner detector requires only 1~2ms for finding all 
corners in a 320×240 pixel image on a normal PC. We 
use the algorithm as a keypoint detector in our system. 
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Figure 1. Keypoint detection in an image 

 
3. Local Descriptor by Zernike Moments 

 
3.1. Zernike moments 

 
Zernike moments have been widely used in pattern 

recognition systems because of their ability to 
effectively represent the properties of an image [7]. 
They are computed by projecting an input image onto 
a set of Zernike basis functions. Zernike moments of 
order n with repetition m are defined as 
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where ),( θρf  is the input image function, ),( θρnmV  is 
the complex Zernike basis function, and * denotes the 
complex conjugate. 

Zernike basis functions are defined as 
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In the equation (3), the order n is a non-negative 
integer and the repetition m is an integer satisfying 

| | ( )n m even− =  and | |m n≤ . ( )nmR ρ , called a Zernike 
radial polynomial, is orthogonal with different orders. 
Therefore Zernike moments can represent the 
properties of an image with no redundancy or overlap 
of information between the moments. 

To compute Zernike moments from a digital image, 
the equation (1) is changed to  
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where Nλ  is the number of pixels located in a unit 
circle by a mapping [6].  

 
3.2. Local descriptors 

 
Recently Zernike moments were successfully used 

as local descriptors for model-based object recognition 
[8]. The local descriptor is invariant to rotation trans-
form and robust to noise and illumination changes.  

For a rotated image, ( , )f ρ θ α+ , the Zernike mo-
ments are defined as 

)exp( αjmZZ nm
r
nm −= . (5) 

This means that the rotation of an input image affects 
only the phase of the Zernike moments and the 
absolute value of the Zernike moments is invariant, 

r
nm nmZ Z= . (6) 

To cope with the illumination changes, we 
normalized the absolute value of Zernike moments 
with 

00Z . Zernike moments with order 0 and 

repetition 0, 00Z , represent the average intensity of an 
input image. We assumed that the intensity of an input 
image is 

' ( , ) ( , )f x y f x yγ= ⋅ . (7) 

Then, dividing the absolute values of Zernike moments 
with 

00Z , the feature vector stays unchanged, 
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Therefore the feature vector for the i-th keypoint is 
defined as 

{ }|1 , ,0i i
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where N is the maximum order to be computed. Note 
that the order n starts from 1. In our experiments, we 
set 7N =  and the length of a feature vector to be 19. 

 
3.3. Fast computation 

 
For a real-time implementation, fast computation of 

Zernike moments is essential. When Zernike moments 
are extracted from an image, the computation of 2D 
complex Zernike basis functions usually takes the most 
time because there are many factorial and sinusoidal 
operations.  

In our method, we extract an image patch with a 
fixed size around every keypoint and compute a 
feature vector to represent the image patch. As the size 
of the image patches is fixed, a set of Zernike basis 
functions of that size is computed in advance and can 
be used in the computation of Zernike moments for the 
image patches. In our implementation, we set the 
image patch size to 15×15, where the size was 
empirically determined. Since Zernike basis functions 
are defined within a unit circle, only 177 pixels in an 
image patch are used for the computation as shown in 
Figure 2. So, computing a feature vector for a keypoint 
requires 177 multiplications and 176 additions. The 
number of multiplication is effectively reduced by 
using the symmetrical properties of Zernike basis 
functions [6].  
 
4. Keypoint Matching 
 

We find the candidates for initial correspondences 
of keypoints using an Approximate Nearest Neighbor 
(ANN) algorithm [1][14]. ANN is an algorithm to find 
the approximate nearest neighbor in a set of points. 
Using a set of data points, ANN constructs a kd-tree, 
where k denotes the dimension of the data points and, 
in this paper, k is 19. If a query point q is given then 
ANN finds an approximate nearest point p in the data 
set. The distance between two points is generally 
defined as 
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The advantage of the ANN method is that it 
produces a fast response for a given query. In addition, 
since the construction of the kd-tree has a complexity 
of ( log )O K K , where K is the number of feature 

vectors, the registration of a reference image can be 
performed very quickly. 

However, since the initial correspondences by ANN 
usually contain a number of incorrect matchings 
because of noise or distortion of the input images. So a 
process to refine the initial correspondence has to 
follow. In this paper, a RANSAC based algorithm is 
performed to remove the undesirable correspondences. 
We assumed that the keypoints are on a single plane 
for simplicity. In this case, a planar homography can 
be computed with four correspondences and it is used 
in a RANSAC algorithm as a model [3][5]. In our 
method, we used the LO RANSAC algorithm [2] 
because it is more robust and faster than the traditional 
RANSAC algorithm.  

 
5. Experiments 

 
To evaluate the performance of our method, we 

performed experiments with different sets of images 
and measured the running time. All the experiments 
were carried out with an implementation developed 
using Visual C++ 2005 on a 2.8GHz PC. 

In our first experiment we synthesized query images 
from a reference image by transforming scale, rotation, 
translation, and brightness. We constructed a kd-tree 
with a reference image only once and found the 
corresponding points from input images. Figure 2 
shows the matching results for each input image. 
Figure 2(a) shows the initial correspondences proc-
essed by the ANN algorithm, where the input image 
was scaled 110% from a reference image. As shown in 
the figure, the initial correspondences contain many 
outliers as well as inliers. The RANSAC algorithm was 
then performed to remove the outliers and generated 
the result shown in Figure 2(b), where only inlier 
correspondences remained. Figure 2(c) shows the 
matching result for an image rotated 160° from the 
image in Figure 2(b). The proposed method found the 
matching points well, even though the rotated image 
became 70% darker as shown in Figure 2(d). 

The elapsed times of the processes for the first 
experiment are listed in Table 1. It took 24ms for 
registering a reference image. For finding correspond-
ing points from input images, it took less than 40ms. 
The computation of the local descriptor takes the most 
of time in proportion with the number of keypoints. 
For Figure 2(d), the matching procedure took only 
20ms because the number of keypoints found was 
reduced. 

In our second experiment we acquired images of a 
magazine from a webcam to introduce changes in 3D 
camera pose. The matching results with the test images 



are shown in Figure 3 and the elapsed time for each 
process is tabulated in Table 2. We confirmed that the 
matching results are reasonable and the elapsed time is 
very low because the number of keypoints is less than 
the first experiment. In this experiment, the number of 
the final correspondences is small but it is enough to 

compute the 3D camera pose by a conventional pose 
estimation method. 

In the last experiment we tested our method with 
actual 3D views. From a image sequence by a webcam, 
we registered a frame as a reference image. The 
reference image contains 3D objects such as chair and 
bookshelf. The proposed keypoint matching was 
performed for every further input frame. We confirmed 
that the proposed keypoint matching worked at 25~30 
Hz and the results are displayed in Figure 4. 

 
6. Conclusions 
 

In this paper, we have presented a real-time key-
point matching method with a moment-based local 
descriptor. The local descriptor is defined by Zernike 
moments so that they are robust to rotation and noise. 
In addition, the descriptor is normalized to cope with 
the change of illumination. The matching of keypoints 
are then performed with an ANN method and followed 
by a RANSAC algorithm for refinement. Our experi-
mental results show that our method works in real-time 
on a normal PC. The registration of a reference image 
works in real-time, which is a significant improvement 
compared to existing keypoint matching methods.  

 
(a) (b) (c) (d) 

Figure 2. Keypoint matching for synthesized images 

Table 1. Computation time for each process for Figure 2 

Times (ms) Operations Reference image Figure 3(b) Figure 3(c) Figure 3(d) 
Keypoint detection 1 
Local descriptor (# of keypoints) 22 (388) 
Kd-tree construction 1 

 

Keypoint detection 2 2 1 
Local descriptor (# of keypoints) 22 (387) 20 (350) 10 (146) 
Initial correspondence 4 4 2 
Outlier removal 
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(a) (b) 

Figure 3. Keypoint matching for planar images 
with a different camera pose



In our experiments we confirmed that the slight 
change of the scale of an input image does not affect 
the performance of the proposed method. However, 
large changes of the scale will be critical to this 
method. Therefore, in the future work, we will 
consider registration of multi-scale images to cope 
with large changes of scale. We will also explore 
applications of this technique in domains such a 
camera pose tracking for Augmented Reality tracking, 
or other areas. 
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Table 2. Computation time for each process for Figure 3 

Times (ms) Operations Reference image Figure 4(a) Figure 4(b) 
Keypoint detection 1 
Local descriptor (# of keypoints) 5 (75) 
Kd-tree construction 0 

 

Keypoint detection 0 1 
Local descriptor (# of keypoints) 3 (52) 7 (101) 
Initial correspondence 0 1 
Outlier removal 
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Figure 4. Keypoint matching from a 3D scene


