

Multiscale Modelling as an Aid to
Decision Making in the Dairy Industry

A thesis presented in fulfilment of the requirements of the degree of

Master of Engineering

Craig Alan Hutchinson

Department of Chemical and Process Engineering

University of Canterbury

Christchurch

New Zealand

March 2006

Abstract

This work presents the first known attempt to model the dairy business from a

multiscale modelling perspective. The multiscale nature of the dairy industry is

examined with emphasis on those key decision making and process scales

involved in production. Decision making scales identified range from the investor

level to the plant operator level, and encompass business, production, plant, and

operational levels. The model considers scales from the production manager to

the unit operation scale.

The cheese making process is used to demonstrate scale identification in the

context of the important phenomena and other natural levels of scrutiny of

interest to decision makers.

This work was a first step in the establishment of a multiscale system model

capable of delivering information for process troubleshooting, scheduling,

process and business optimization, and process control decision-making for the

dairy industry. Here, only material transfer throughout a process, use of raw

materials, and production of manufactured product is modelled. However, an

implementation pathway for adding other models (such as the precipitation of

milk protein which forms curd) to the system model is proposed.

The software implementation of the dairy industry multiscale model presented

here tests the validity of the proposed:

• object model (object and collection classes) used to model unit operations

and integrate them into a process,

• mechanisms for modelling material and energy streams,

• method to create simulations over variable time horizons.

The model was implemented using object oriented programming (OOP) methods

in conjunction with technologies such as Visual Basic .NET and CAPE-OPEN. An

OOP object model is presented which successfully enabled the construction of a

multiscale model of the cheese making process. Material content, unit operation,

and raw milk supply models were integrated into the multiscale model. The

model is capable of performing simulations over variable time horizons, from 1

second, to multiple years.

Mechanisms for modelling material streams, connecting unit operations, and

controlling unit operation behaviour were implemented. Simple unit operations

such as pumps and storage silos along with more complex unit operations, such

as a cheese vat batch, were modelled.

Despite some simplifications to the model of the cheese making process, the

simulations successfully reproduced the major features expected from the

process and its constituent unit operations. Decision making information for

process operators, plant managers, production managers, and the dairy business

manager can be produced from the data generated.

The multiscale model can be made more sophisticated by extending the

functionality of existing objects, and incorporating other scale partial models.

However, increasing the number of reported variables by even a small number

can quickly increase the data processing and storage demands of the model.

A unit operation’s operational state of existence at any point of time was

proposed as a mechanism for integrating and recalculating lower scale partial

models. This mechanism was successfully tested using a unit operation’s

material content model and is presented here as a new concept in multiscale

modelling.

The proposed modelling structure can be extended to include any number of

partial models and any number of scales.

Acknowledgments

Thanks to Dr. Ken Morison for excellent supervision, sharing his dairy industry

expertise, providing a sounding board for the development of ideas and suffering

a continual bombardment of emails.

Henny Fairgray is acknowledged for relieving me of some of my domestic and

social obligations.

Finally I thank Jim Anderton and my colleagues for giving me the support and

flexibility at work to undertake this part-time degree.

Table of Contents

1 Introduction 1

1.1 Project Aim 2

1.2 The New Zealand Dairy Industry 2

2 Literature Review 5

2.1 Process Simulation Tools 5

2.2 Multiscale Modelling 6

2.2.1 Scale Identification and Model Representation 7

2.2.2 Partial Model Integration 9

2.3 Process Modelling and CAPE-OPEN 11

2.3.1 Process Modelling Environment (PME) 12

2.3.2 Process Modelling Component (PMC) 12

2.3.3 Port and Port Type 13

2.3.4 Material and Material Template 13

2.4 Object Oriented Programming & VB .NET 15

2.5 Dairy Processing 16

3 A Multiscale Model of the Dairy Industry 19

3.1 The Multiscale Nature of the Dairy Industry 21

3.1.1 Length and Time Scales 21

3.1.2 The Milk Curve 25

3.2 Dairy Industry Information Flows 26

3.3 The Modelling Goal 28

3.4 Data Requirements and Partial Model Identification 29

3.4.1 Data Requirements 30

3.4.2 Partial Model Identification 31

4 Model Implementation 33

4.1 Implementation Software and Hardware 34

4.2 Object Model 35

4.3 The Cheese Production Model 37

4.3.1 Unit Operation Material Content Model 37

4.3.2 Cheese Vat Unit Operation Partial Model 37

4.3.3 Raw Milk Partial Model 39

4.3.4 Cheese Making Process Partial Model 40

4.3.5 Unit Operation State Control 41

4.3.6 Model Simplifications 42

4.4 Unit Operation Classification 43

4.4.1 Capacitive Unit 43

4.4.2 Flow Unit 44

4.5 Capacitive Unit / Flow Unit Interaction 45

4.6 Multi-class Unit Operations 51

4.6.1 Heat Exchanger 51

4.6.2 Spray Dryer 52

4.7 Modelling Continuous Flow in a Capacitive Unit 53

4.8 Energy Transfer 55

4.9 Unit Operation State Behaviour 56

4.9.1 Static State 56

4.9.2 Dynamic State 57

4.9.3 Compulsory State 57

4.9.4 State Transition Mechanism 58

4.10 Simulation Timekeeping 58

4.10.1 A Failed Simulation Control Mechanism 59

4.10.2 Simulation Time Increment 60

4.10.3 Daily Production Model Iteration 61

4.10.4 Simulation Speed 61

5 Model Operation 63

5.1 Unit Operation Type Templates 63

5.1.1 Unit Operation Types Created 65

5.2 Creating a Unit Operation 66

5.3 Connecting Unit Operations into the Process Flowsheet 67

5.4 Creating a Modelling Scenario 68

5.5 Simulation Solution 69

5.6 Monitoring the Simulation 71

6 Model Results, Accuracy and Verification 75

6.1 Data Generated 76

6.2 Overall Mass Balance 76

6.3 Time Series Graphs 77

6.4 Gantt Charts 78

6.5 Manufactured Product 79

6.6 Raw Material Consumption 81

6.7 Accumulated Energy Consumption 83

6.8 Sources of Error 84

6.8.1 Unsuitable Time Increment 84

6.8.2 Fractional Second Error 85

7 Discussion 87

7.1 Multiscale Model Analysis 87

7.1.1 Implemented Partial Models and Integration Frameworks 89

7.1.2 Where do the Production Scenarios Fit? 93

7.1.3 Analysis Summary 93

7.2 Multiscale Model Performance 94

7.2.1 Data Quality 94

7.2.2 Solution Speed 95

7.2.3 Data Quantity 96

7.2.4 Choosing the Time Increment Mode 97

7.3 Decision Making Information 97

7.3.1 Gantt Charts 97

7.3.2 Time Series Graphs 99

7.4 Modelling Unit Operations using their States 101

7.4.1 Unit Operation State Behaviour 101

7.4.2 A Unit Operation’s State as an Integration Interface 101

7.4.3 Using States to Implement Business Rules 102

7.5 Adding Other Scale Partial Models 103

7.5.1 Microscale Partial Models of Unit Operations 103

7.5.2 A Macroscale Partial Model 105

7.5.3 Other Scale Partial Model Possibilities 106

7.6 Incorporating Actual Plant Data 107

7.7 Stepping Partial Models 108

7.7.1 Inefficient Recalculating of Unit Operation Partial Models108

7.7.2 Time Increment Calculation using Discontinuity 109

7.7.3 Linear and Non-Linear Simulation Discontinuities 111

7.7.4 Implementing Partial Model Recalculation 113

7.8 Software Development 115

7.9 CAPE-OPEN 116

7.10 Ports 117

7.11 Material Streams 118

7.12 Energy Streams 120

7.13 Usability of the Modelling Approach 121

7.14 Implemented Model Limitations 122

7.14.1 Batch Modelling 122

7.14.2 Unit Operation Connection Rules 123

8 Future Work 125

8.1 Adding Functionality to Existing Classes 126

8.2 Addition of Partial Models 126

8.3 Data Reporting Capability 127

8.3.1 Financial Data 128

8.4 CAPE-OPEN Compliance 130

8.5 Improving Software Usability 130

8.5.1 Object Oriented Programming Inheritance 131

8.6 Optimization 132

8.7 Implementing more Sophisticated Time Stepping 133

8.8 An Alternative Modelling Goal 134

9 Conclusion 137

10 References 141

11 Appendices 145

A Software Operating Instructions 145

B Unit Operation Volume Time Series Graphs 150

C Production and Raw Material Consumption Graphs 156

D Sample Object Code – Port Class 157

E Sample Collection Code – Ports Class 161

1 Introduction

Generally business modelling aims to provide the information needed by decision

makers to maximise the profit making potential of the business and minimise

exposure to risks and costs.

Because of the enormous number of inputs a complete business model could

incorporate, and the varying levels of detail resolution required, business

modelling evolved as individual stand alone models. Models tended to focus on

the characteristics, and length and time scales of the system, relevant to the

user. Typically only the most important variables were considered.

The result is often ad hoc system modelling, based on individual models used by

different levels of decision makers. Individual models have minimal or no

interaction between each other or the wider environment – often the only

interaction between models is when a variable value generated by one model is

manually input into a dependent model.

Multiscale modelling integrates individual models across wide time and length

scales (from fractions of seconds to years; molecules to thousands of

kilometres). Individual models simulate behaviour at different time and length

scales. The models are connected (i.e. integrated), and data is transferred

between them as and when required.

In a multiscale model, an input variable at one scale in the form of a constant,

might be a dependent variable and an output variable of a model at a different

scale.

 1

1.1 Project Aim

The aim of this project is to:

• develop and test a feasible multiscale business model capable of

supplying relevant decision-making information to decision makers from

the plant to the boardroom in the dairy process industry.

• utilise developments in multiscale modelling theory, chemical engineering

process modelling theory, and software development technology, to

develop a multiscale model which would utilise a consistent data set.

Examples of these decision makers include plant operators, product production

managers, marketing managers, utility production managers, and business

managers. The types of information considered here includes scheduling,

throughput, set points and production recipe details.

1.2 The New Zealand Dairy Industry

Table 1-1 shows global dairy industry production and export data for 2003. The

New Zealand’s dairy industry currently punches far above its weight in terms of

its significance in the global dairy market. It is unique among major global

producers in that the majority of production is exported. Among the four major

dairy producing regions, New Zealand accounts for about 3% of global milk

intake, yet accounts for 15% of global export market when trade within the

European Union is included.

This position has been attained on the back of significant intervention in primary

production by the New Zealand government from the mid twentieth century,

followed by astute production and marketing diversification at the end of that

century.

Farmers received guaranteed minimum prices, low interest loans encouraged

people onto farms, and tax incentives encouraged investment and development.

The industry benefited from research into animal husbandry and product

 2

development conducted in state funded research institutes and universities.

International activities gave farmers cheap super-phosphate fertilizer resulting in

rich pastures being maintained over decades. The New Zealand Dairy Board had

a monopoly on all international marketing and sales activities involving dairy

products.

Table 1-1 - Global Dairy Industry Production and Export Data
(Source: Danish Dairy Board, 2003)

 Milk Production
(million tonnes)

% Global
Production

Exports (million
tonnes)

% Global Export
Market

NZ 13.9 2.8 1.73 15.1

Asia 113 23.1 0.28 2.4

Australia 10.6 2.2 0.75 6.5

European - EU 144 29.4 7.55 65.8

European - non EU 53.7 11 0.32 2.8

North America 99.3 20.3 0.38 3.3

South America 46.7 9.5 0.36 3.1

Middle East 9 1.8 0.1 0.9

 490.2 100% 11.47 100%

After experiencing near unrestricted access to its traditional markets for decades,

changes in international trade rules in the 1960s and 1970s forced farmers and

the Dairy Board to find new markets. Further change was brought on the industry

in the 1980’s and 1990’s when subsidies and tariffs were removed, government

research institutes were forced into market activities or privatised, and new

international markets opened through the free trade agenda.

To compete internationally, merger and consolidation of the production side of

the industry took place which has only recently ceased. Most recently, the Dairy

Industry Restructuring Act, 2001, removed restrictions on the export of dairy

products and promoted competition in the New Zealand domestic market.

 3

Consequently, the modern New Zealand dairy industry is highly evolved and

technologically advanced with a skilled knowledge based workforce. On-farm-

management practice and animal healthcare are world leading. Production is

characterised by large herd sizes and free range, grass eating stock. A diverse

mix of commodity and niche products are manufactured at large, modern, multi-

plant manufacturing sites which are distributed unevenly throughout the country.

The industry is dominated by farmer owned co-operatives, ranging from the

massive Fonterra which manufacture a diverse range of products, to small niche

product manufacturers. Fonterra deserve special attention.

The eventual result of a series of mergers between New Zealand’s largest dairy

co-operatives and the New Zealand Dairy Board, Fonterra is the world’s 6th

largest dairy company by sales (Rabobank International 2005 as referred on the

Danish Dairy Board website). It accounted for about 97% of New Zealand milk

production in 2003 and most of the country’s dairy exports. Fonterra supplies the

majority of fluid milk, cheese, and butter to the domestic market.

Fonterra owns processing facilities nationwide. In some dairying regions several

manufacturing sites are clustered relatively closely together, providing

management with production alternatives in normal and abnormal process

situations. Other regions have only a few production sites several hours apart,

limiting production alternatives, and severely limiting options in unplanned

shutdown situations. Some sites process a single constituent material (e.g.

lactose) and often separated constituent materials (e.g. milk fat) are transported

to nearby processing facilities. Other sites have multiple processing options and

process the complete milk product.

Though the New Zealand dairy industry has been a significant global player for

many years, a feature of the industry is the low average price achieved for milk

products compared with other global producers. The major contributing factor to

this is the heavy weighting of production towards commodity products such as

milk powder, cheese, and butter rather than high value or niche products.

 4

2 Literature Review

To date there has been no known attempt to apply a multiscale modelling

approach to aid decision making in the dairy industry. Therefore the reviewed

material consisted of an examination of:

• existing process modelling tools

• existing multiscale modelling literature

• current and proposed mechanisms to facilitate the transfer of information

between process models, specifically those which are developed for the

transfer of information within a chemical engineering process modelling

environment

• dairy process operations

2.1 Process Simulation Tools

Marquardt (1995) classifies process simulation tools into two groups, sequential

modular and equation-oriented.

The modular approach allows the user to construct the process flowsheet from

standardised modules, with each module modelling a unit operation (or part of it).

The modules are linked to form the flowsheet. The module connections represent

the material, energy and information streams of the process. The modular

approach, though powerful and accessible to engineers for the solution of

steady-state flowsheet simulation, does not adequately support the solution of

more complex problems such as dynamic simulation.

In the equation-oriented approach, a set of equations which describe the system

under consideration using balances for volume mass, energy, and momentum

 5

conservation, plus initial and boundary conditions, are constructed. These are

then solved using mathematical techniques (section 2.2.1).

Equation-oriented models do not allow the construction of process models using

engineering concepts such as the construction of a flowsheet from existing unit

operation modules (i.e. models). This is readily achieved using sequential

modular simulation. The historic inability to access a module model’s equations

resulted in inadequate levels of detail and minimal model reuse.

2.2 Multiscale Modelling

Multiscale modelling as a technique for improving the accuracy and efficiency of

predictive modelling of engineering problems has been examined with increasing

intensity since the mid 1990s (Cameron et al., 2005).

Charpentier (2003) describes the key factors driving this as:

• decreasing product development lifecycles (from 10 years in 1970 to 2 – 3

years in 2000).

• demands for less material and energy waste, near zero pollution

requirements, defect free and safe products, and safe production.

• development of increasingly complex materials and compounds where

control at the microscopic (and smaller) level is intrinsic to controlling the

manufactured product quality.

Cameron et al. (2005) present a comprehensive coverage of the evolution and

present state of research on engineering oriented multiscale process modelling

and is used as the primary source on this topic. The definition, nature and

characteristics of multiscale systems were identified in the context of the

behaviour and rate processes which underpin the way scientists and engineers

view the world.

 6

The key issues associated with multiscale modelling, and strategies for their

construction were discussed, principally:

• Selection of a specific modelling goal.

• Scale identification – an understanding of the time scales of interest often

dictate the final scales of time and length needed.

• Model representation – in what form does the model exist and what forms

are possible?

• Model integration – the linking of the partial models (i.e. those single scale

models which make up the multiscale model) and the nature of

information flow between partial models.

• Model solution – this is a huge area and remains a major challenge.

Some aspects were briefly discussed.

A multiscale model is the composite model formed by the integration of partial

models, where the partial models simulate important phenomena and other

natural levels of scrutiny (Ennis and Lister, 1997) at different characteristic

length, time or detail scales (Cameron et al., 2005).

Partial models are linked in some way (using a software solution) allowing the

transfer of data between partial models. Much of the literature refers to the

integration of partial models of different scales in a generic context as linking

between a macroscale (large scale) model and microscale (small scale) model

irrespective of the actual length or time scales under consideration.

2.2.1 Scale Identification and Model Representation

Both Charpentier (2003) and Cameron et al. (2005) define the generalized scales

of interest, and discuss the different mathematical modelling techniques which

are used to represent the different scales. Examples given are:

 7

Scale Mathematical Modelling Technique
Nanoscale Molecular mechanics and computational chemistry.
Microscale Molecular dynamics and computational chemistry.
Mesoscale Computational fluid dynamics.
Macroscale Dynamic simulation and process flowsheet simulation

(sequential modular).
Megascale Environmental and enterprise modelling.

There is now a large body of literature available describing attempts to develop

multiscale models, and defining generalized characteristics, using a variety of

applications.

For example, Freeden et al. (2004) attempted to improve the accuracy of ocean

circulation modelling by integrating a global circulation partial model with a local

circulation partial model. Quarteroni & Veneziani (2003) link a localized vascular

flow perturbation partial model with a global blood circulation partial model in

blood flow simulations to successfully predict the outcome of a surgical

operation.

Much of the engineering literature covering this topic examines the interaction

between the mesoscale (e.g. particle – particle, and particle – reactor wall

interaction), the microscale (e.g. particle formation) and the nanoscale (e.g.

reaction kinetics).

For example, Drews et al. (2005) present a multiscale model for simulating the

deposition of copper onto computer chips by integrating a electrical resistance

partial model at the microscale with a nanoscale partial model which simulates

the electrochemical deposition of copper onto an initially flat copper surface.

They also define a generic method for integrating multiple computer codes

(representing partial models at different scales) and demonstrate its use.

Srolovitz et al. (1997) developed a model for diamond chemical vapour

deposition across a range of length scales spanning 10 orders of magnitude.

They integrated the microscale partial model, which provides the fundamental

 8

mechanism for diamond growth, with the mesoscale reactor geometry and

operating parameter partial model.

Rey et al. (2004) developed a multiscale model which was able to provide

fundamental principles for control and optimization of structures in polymer –

liquid crystal material systems. This is an important chemical engineering

application because 60% of all products sold by chemical companies today are

crystalline, polymeric or amorphous solids (Charpentier, 2003). This work

includes references to examples where multiscale material structure control at

the nano- and macroscale is applied.

In a typical corporate business model, enterprise decision making is focused on a

single goal – the creation of wealth for shareholders. Financial measures such as

Shareholder Value Added (Ng, 2004), Net Present Value, and Internal Rate of

Return (Ydstie, 2004) are used to gauge the actual or likely success of this

wealth creation.

Ng (2004) presents a framework for linking financial measures to product and

process design. For the reasons outlined earlier in this section, plus the

recognition that the experience of scientists and engineers can often enhance the

chances of success of a project, successful enterprise decision making will be

increasingly integrated with the decisions of production and technical decision

making. One response to this has been the development of the supply chain

management and process simulation software tools now available.

All of the literature examined took an equation-oriented approach to model

development. No literature was found which examined the dairy industry from a

multiscale perspective.

2.2.2 Partial Model Integration

Cameron et al. (2005) examined the case for multiscale modelling. They discuss

how it has been argued that multiscale modelling is simply the integration of

existing software packages that model different scales. However they believe the

evidence is that this approach may lead to lost conceptual opportunities,

numerical inefficiencies and trouble shooting difficulties later on. Taking a more

 9

systematic approach to the definition and integration of partial models is an

important feature of the implementation and performance of a multiscale model.

Steps have been taken towards understanding and classifying integration

frameworks used in multiscale modelling studies.

Ingram et al. (2004) propose an integration classification scheme, consisting of

five integration frameworks for linking partial models of different scales. The

frameworks are divided into two broad classes:

• Decoupled frameworks (serial, simultaneous) are those where one partial

model is solved, with the data generated by this model used as an input

to its integrated model(s), which is in-turn solved.

• Interactive frameworks (embedded, multi-domain, parallel) involve the

simultaneous solution of the constituent partial models.

The framework used in any particular integration depends on various properties

of the partial models involved. e.g.:

• the portion of the system domain modelled,

• whether the models describe the same portions of the system domain at

different levels of detail, or different adjoining parts of the system,

• the accuracy requirements,

• the direction of information flows between partial models,

• the purpose of the partial model(s).

A catalytic packed bed reactor case study was used to compare three of these

integration frameworks linking a single catalyst pellet partial model (at the

microscale) with a reactor bulk fluid phase partial model (at the mesoscale). The

three frameworks tested produced similar (but not the same) predictions of

system behaviour, but the integrated models displayed different implementation

characteristics (i.e. effort for numerical solution, execution time, and memory

requirements).

 10

Some applications use data generated in a microscale partial model as an input

into an adjacent macroscale partial model – data transfer is in a single direction.

Other applications require bi-directional data transfer between adjacent

microscale and macroscale models.

2.3 Process Modelling and CAPE-OPEN

The development of multiscale models in chemical engineering requires the

integration of the software used to simulate (among others) production and unit

operation partial models.

As discussed in section 1, process models have tended to focus on the particular

characteristics of the system relevant to the decision maker who commissioned

the model – resulting in ad hoc system modelling consisting of independent

partial models having minimal interaction.

An important reason for this has been the physical inability of individual models

to link to each other, let alone communicate and share information with each

other. The CAPE-OPEN Project was the result of an attempt by the chemical and

process engineering industry to develop standards for integrating individual

process software models. It was a collaborative effort by a consortium of process

industry, software industry and academic partners to define standard software

interfaces.

Braunschweig et al. (2000) present an analysis of CAPE-OPEN and its

application in the development and integration of unit operation modelling

software components. The CAPE-OPEN documentation describes important

concepts, and provides software specifications, for the construction of process

modelling components capable of being integrated into a chemical process

model.

Issues such as the construction of process flow diagrams and how to manage

material stream, energy, and information flows between unit operations and

process management applications are addressed.

 11

The CAPE-OPEN Conceptual Design Document (2000) describes the conceptual

ideas behind CAPE-OPEN, including:

• descriptions of the Process Modelling Environment (PME) and the various

classes of Process Modelling Components – PMCs – (i.e. unit operations,

numerical solvers, physical properties, and flowsheet analysis

components).

• Material and material template, energy, and information streams, port and

port type objects.

• connecting ports and sharing information between models.

2.3.1 Process Modelling Environment (PME)

The PME is the graphical user interface (GUI) for the creation of unit operations,

flowsheet construction, and control of the simulation.

The PME is used to:

• define individual PMCs – here that involves creating individual unit

operations based on a unit operation type template (which retains unique

dimension and operational properties).

• construct a process flow diagram from individual unit operations.

• construct different production scenarios.

• manage the simulation and generated data.

2.3.2 Process Modelling Component (PMC)

PMCs are components that perform a specific function. Unit operations,

numerical solvers, and physical and thermodynamic properties calculators are

examples of PMCs. This work implemented unit operation PMCs.

 12

2.3.3 Port and Port Type

A unit operation has a number of ports which allow it to be connected to other

unit operations, and facilitate the exchange of material, energy, or information

between other models.

A port has a given direction; inlet, outlet, or inlet/outlet. To facilitate the

connection of like types of information, a port type is defined. The three types of

Port are:

• Material

A material port is used to facilitate physical material flows. They are the

most complex to implement because of the amount of information needed

to represent all the relevant properties of the material that might need to

be used or calculated. Material ports represent the connection points for

the material streams between unit operations.

• Energy

An energy port is used to represent energy streams in the absence of

material flows; for example, the heat loss from a unit operation or the

transfer of energy through a motor shaft.

• Information

Information ports are used to represent any other information flows which

cannot be represented by either material or energy. An example might be

where information from a downstream unit operation is used to set the

flow ratio of the 2 outlets of an upstream unit operation.

2.3.4 Material and Material Template

A material port has a material object associated with it. The material contains all

the data need to define the material (e.g. flowrate, temperature, constituent

component information for a mixture). Between them, the material/port

association allows the implementation of physical process streams.

The material is based on a material template. The material template provides the

component and property information required, but not necessarily with values

 13

set. For example the milk material template has a collection of components (such

as fat, lactose, protein, and water), plus physical and thermodynamic properties

(such as density, viscosity, and specific heat capacity). Upon creation, the new

material object inherits these components. Property values and component

fractions can then be set.

It is not the intention here to produce a CAPE-OPEN compliant software model.

However, because CAPE-OPEN presents a model for information sharing

between different process modelling components such as unit operations (a key

goal of this project), CAPE-OPEN concepts are implemented here. This also

facilitates future CAPE-OPEN compliance.

The CAPE-OPEN standard is in the early stage of development. However, a

reading of the CAPE-OPEN specification led to the conclusion that:

• the key material-energy-information / port concept which allows data to be

shared via ports underpins CAPE-OPEN, so will not change significantly

and,

• enough flexibility exists at the CAPE-OPEN interface to facilitate any

minor changes that arise with either the port/information association or

the connecting of ports, and

• the CAPE-OPEN specification has been designed to be independent of

the type of process under consideration, therefore is applicable to the

dairy industry.

The full CAPE-OPEN documentation is available in the internet at http://www.Co-

Lan.org. It extends to detailed interface specifications (e.g. CAPE-OPEN

Interface Specification - Unit Operations, 1999) for the construction of CAPE-

OPEN compliant software models (both new and wrap-around for legacy code)

developed in different software applications. Much of this material is targeted at

software developers and is beyond the scope of this work.

 14

http://www.co-lan.org/
http://www.co-lan.org/

2.4 Object Oriented Programming & VB .NET

The model developed here is constructed using the Microsoft Visual Basic .NET

development environment, by creating object oriented programming (OOP)

object classes.

Kurata (2001) gives a good overall discussion of OOP. In this work, the extensive

and detailed MSDN Library online help (distributed with Visual Studio .NET 2003)

is used as the sole reference for programming problems.

OOP is important because it is the software development technology which is

used for building software components and applications today. The major

benefits are it allows for efficient programming and efficient code reuse.

Once an object is built, much of the code can be hidden from the software

developer (i.e. OOP encapsulation). This means the developer using the object

does not need to know how the object performs its tasks. Only knowledge of

what the object does, and what methods are used to achieve the task, is

required.

For example if a developer uses a cheese vat object developed by a third party

and wanted to fill the vat, a Fill function could be called. The Fill function might

perform a series of operations to check that the cheese vat is not already full or

that it is available for filling. If it can be filled the cheese vat object performs that

task. If it can’t be filled the Fill function might return a false value indicating the fill

operation was unsuccessful.

Another benefit of OOP is the efficient reuse of code. The creation of multiple

instances of an object is very simple. Once the cheese vat template object is

defined, a new instance of the cheese vat object can be easily created. Each

new instance comes with the methods and properties of the original cheese vat

template object.

One technology which facilitates the sharing of data between software

components and applications is COM – (i.e. Microsoft’s Component Object

Model). COM is a software architecture that allows applications and components

 15

that are built by different vendors to communicate, even when they are

distributed among different computers and operating systems such as Windows,

UNIX and Macintosh.

Microsoft’s Visual Basic .NET is a software tool for the creation of software

applications using COM objects and forms.

2.5 Dairy Processing

A dairy processing site consists of various unit operations and groups of unit

operations, which taken together facilitate the production of the range of dairy

products manufactured. Three processing stages are common to nearly all dairy

processing facilities (Bylund, 2003).

1. Raw milk reception and storage.

2. Most countries require by law that some form of treatment be conducted

on milk to destroy disease causing pathogenic micro-organisms.

3. Due of regulation or specification the milk will undergo fat content

standardisation as an intermediate processing step.

The cheese making process as a series of unit operations is detailed in Jones

(1999). Morison (1997) provides overall and unit operation mass balances at the

constituent component level for a cheddar cheese making process.

The raw milk is received at the plant and stored. For efficient production the

pasteurizer and separator must run continuously, so the milk treatment process

is continuous. Raw milk is pasteurised, and excess cream separated from it

before it is fed as standardised milk into the cheese vats. The cheese vat

reaction process is a batch operation. Process continuity is maintained by filling

the vats sequentially.

There is redundancy in the plant which allows the first vat to complete its batch

cycle, be emptied and cleaned and in the fill queue ready to be filled again,

before the final vat’s first fill is completed. This also maintains a constant flow of

 16

curd onto the cheese belt, where most of the whey is separated out, before final

processing in the block formers and the rapid cooling tunnels (both continuous

processes).

 17

 18

3 A Multiscale Model of the Dairy Industry

At each decision making level of the dairy industry different decisions are made

which will ultimately influence to a greater or lesser extent the immediate and

future performance (in financial, social and environmental terms) of the plant,

business and investment. Different information is required at different levels,

covering different time scales, to facilitate good decision making.

There is little analysis of the relationships between the information required at

various decision making levels, though clearly this information is integrated.

Examples are given below.

A plant manager’s ability to maintain and accurately forecast a plant’s operation,

and produce to-specification-product – thereby giving the greatest returns and

minimal wastage – will influence:

• a production manager’s decision to accept a supply contract of a

particular duration and magnitude.

• a marketing manager’s decision to pursue new markets.

• an investor’s decision to invest (e.g. R&D, new processing).

• a regulatory managers obtaining of permits for pollutant discharges.

While a plant manager’s ability to achieve this is influenced by:

• the production managers decisions (e.g. production schedules and

product production sequence)

• the plant manager’s own decisions (e.g. maintenance scheduling)

• decisions taken by the plant designer. For example, selection of plant

items, measurement and control instrumentation, capacity, and plant

 19

configuration will influence plant maintenance requirements, the ability to

meet specification, and bottlenecks

• decisions taken by supervisors and operators such as cleaning or UF

plant changeovers

Clearly the information transfer process between decision makers is complex and

potentially endless. It is made more difficult because, while much information

transfer occurs formally (in the form of reports based on data), many important

decisions are made using informal information sources, such as experience or

human networks. These are especially relevant when exception-event (e.g.

unusual process conditions or unit operation failures) based decisions are made.

Multiscale modelling potentially has several applications to decision making in

the dairy industry. For example:

• a major benefit will be a consistent data set for higher levels. With

separate modelling, a forecast is produced at a low level (say a cheese

plant production forecast), which is then passed onto a higher level to be

used in a site forecast, and so on up the decision making chain. There is

a time lag between the generation of each of these forecasts. It maybe

that assumptions made at the lowest level is out of date by the time the

data generated using those assumption is used at higher levels. The next

point follows from this.

• providing faster, more accurate and detailed forecasting data.

• modelling the effect on processing facilities of changes to processing

conditions (e.g. alternative products, flowrates, unit operation capacity).

• analysing the exposure of the dairy businesses profit to process scale

variables such as production alternatives, and volatility in material costs

and quality, and interest rates.

Limitations are placed on the degrees and scales of multiscale models by users

(e.g. detail and accuracy requirements) and on users by data processing and

software limitations.

 20

3.1 The Multiscale Nature of the Dairy Industry

Consider an investor who owns among its many investments, a shareholding in a

dairy manufacturing business which consists of multi-site and multi-plants. Each

investment will have its own business model (partial models of the investor’s

model), including the dairy manufacturing business model. Each partial model in

turn may consist of more than one partial models, depending on the accuracy

and level of detail required.

3.1.1 Length and Time Scales

Figure 3-1- Scale Map for the Cheese Manufacturing Process

Figure 3-1 shows the scale map for decision making levels and control scales of

a cheese making investment. The different components and their scales are

discussed below.

3.1.1.1 The Investor Scale

An investor models the short term and long term profit of each business in the

investment portfolio. The time scale of interest ranges from some minimum time,

 21

say 4 monthly reporting (the financial quarter), to the long term duration of the

investment (possibly tens of years). High risk factors which increase the chance

of failure of the investment may be reported on more frequently (e.g. the cash

flow into new processing capacity during the construction and first months of

operation). The characteristic length is the geographical spread of the

investment.

3.1.1.2 Dairy Business Manager Scale

The dairy business manager (e.g. CEO) is responsible for carrying out the tasks

hieving profit and growth targets)

s sales,

characteristic-time ranges between the minimum period of costs and sales

 will

or

n

 level. These scales lie

(such as integrating acquisitions and ac

specified by the investor. The business manager is interested in the complete

supply chain. Modelling is targeted at those factors affecting profit (such a

costs, and production) across the complete business environment.

Factors affecting production, sales, and distribution are of interest. The

monitoring (often monthly) and the maximum forecasting horizon. These

probably be aligned with the business plan (e.g. 5 years). As with the invest

scale, the characteristic length could be global, regional, or domestic, based o

the geographical distribution the dairy business.

The business manager receives many decision making inputs including one from

the Costs level and another from the Marketing & Sales

between the business manager and the various cost and production centres of

the business. All business units will feed data into one or both of these scales.

3.1.1.3 Site Manager Scale

The site manager ensures the smooth oper

overview on all aspects of the dairy

ation of a site, and will maintain an

site’s operations. They have ultimate

s

responsibility for the production, service, and administration operations of the

site. A suitable characteristic time range could be from the daily summarie

extending out to the end of the next production year.

 22

Characteristic lengths are hundreds of metres up to kilometres depending on

geographic scale of the site. Those adjacent areas wh

 the

ich affect the site’s

operation (e.g. natural resources as raw materials), and are affected by its

operation (e.g. pollution), are considered.

3.1.1.4 Production Manager Scale

The production manager’s responsibility is to deliver product on specification, on

terest include the raw material supply,

cteristic lengths are from tens to thousands of metres

time, and on budget. Key areas of in

production, regulatory compliance, and manufacturing costs. They provide

annual production data, costs, and product data (e.g. product specification) from

each production facility.

Characteristic times of interest range from daily production to annual (and

beyond) forecasts. Chara

representing the physical distribution of production facilities.

3.1.1.5 Cheese Plant Manager Scale

The cheese plant manager is responsible for ensuring that cheese production

d processes of interest include fouling

onth’s production schedule). The characteristic

schedules can be met. Phenomena an

rates for separation and heat transfer unit operations, cleaning regimes, reactor

production (e.g. the cooking process in a cheese vat), raw milk supply,

maintenance, the operation of individual unit operations, availability of services,

and quality control are important.

Characteristic times of interest range from a few hours (i.e. the current

production) to a month (the next m

length is the physical boundary of the cheese plant’s processing operations.

3.1.1.6 Cheese Plant Operator Scale

The cheese plant operator’s responsibility is to make the cheese. Factors which

ce on-specification product are important

(e.g. processing conditions, the recipe). Characteristic times for this level could

influence the operator’s ability to produ

 23

range from a few minutes (such as deciding the best moment to cut the curd in a

cheese cooking vat) extending out to the end of the production day.

3.1.1.7 Cheese Vat Scale

The phenomena of interest are the curd production and whey expulsion

processes that occur in a complete batch cycle. The steps involved in a cheese

gulating rennet is added.

 bacteria distribution.

olid curd gel.

ize. Whey

expulsion from the curd gel begins.

6. The curds and whey mixture is then subject to a heating and stirring

7.

The characteristic length is an important

order of a few metres) while the characte

cycle.

vat batch are (Bylund, 2003):

1. The vat is filled with pasteurised milk.

2. Starter bacteria and coa

3. The mixture is stirred to ensure uniform

4. The mixture is left for a period to coagulate into a s

5. The curd gel is cut into particles (curd grains) of the desired s

regime, which may include the removal of some whey and addition of hot

water. This, combined with the bacteria growth that occurs, results in

further whey being expelled from the curd grains.

After a final stirring period (the duration being determined by the desired

pH and moisture content of the curd) the curds and whey phases are

separated and removed from the cheese vat for further processing.

 dimension of the cheese vat (in the

ristic time is the duration of a batch

3.1.1.8 Curd Production

The enzyme action of the rennet causes the casein in milk to precipitate and

coagulate into a solid gel. Factors such as rennet type and distribution,

of the milk govern this process. temperature, pH, and calcium content

 24

Characteristic times are in the order of 20 – 30 minutes (the period covering th

coagulation set stage of the cheese vat batch), while characteristic lengt

an important dimension of the cheese vat (of the order of less than a m

3.1.1.9

e

hs are

etre).

Casein Precipitation

The dominant type of protein in milk is casein (Bylund, 2003). Casein occurs in

the form of micelles caused by the aggregation of sub-micelles. Each sub-micelle

αs-casein and β-casein, and κ-casein. Sub-

 to occur).

as the Milk Curve (Figure 3-2 shows Fonterra’s milk curve for the 2002/2003 and

004 ns, and is used for this discussion). The milk curve is

The enormous variation in milk supply throughout the production season has

implications for product unit costs because plant capacity is under-utilised for

consists of a core of insoluble

micelles on the surface of the micelle have more κ-casein molecules in the

surface that those sub-micelles on the interior of the micelle. This results in the

casein micelle being hydrophilic, preventing its precipitation in the milk.

Curd is formed by the precipitation of casein micelles which occurs when

chymosin enzyme cleaves some of the κ-casein. This allows the micelles to

physically interact and form aggregates that precipitate.

Characteristic lengths between 5-10 nm (length of the κ-casein molecule) and 0.4

μm (diameter of a large casein micelles) are considered. Characteristic times are

in the order of up to a few minutes (for the precipitation mechanism

3.1.2 The Milk Curve

The New Zealand seasonal milk production follows a predictable model known

2003/2 production seaso

a partial model of the production partial model. The milk supply goes from 2 to 3

million litres a day in the off season, increasing to a peak flow of over 65 million

litres a day for up to a 12 week period. Milk flow then decreases in a linear

fashion to the off season flow.

The organic and bacterial nature of milk means some processing (most

importantly anti-pathogen treatment) must be conducted more or less

immediately.

 25

much of the season, with at least 6 weeks complete shut down every yea

many processing facilities.

The milk curve partial model has a time scale of 1 year. The length

r for

 scale,

heese vat batch. From a modelling perspective, information transfer occurs

between adjacent scales.

Consider the investor’s portfolio which consists of multiple investments. Each

representing the distances between farms and the processing facility, ranges

from a few kilometres and a few hundred kilometres.

Figure 3-2 - New Zealand Milk Curve (Fonterra Personal Communication, 2004)

3.2 Dairy Industry Information Flows

Figure 3-3 shows the nature of some of the information flows in a cheese making

investment at different scales, from the investor to the curd formation phase of a

c

investment will contribute a changing profit or loss to the portfolio over time. The

 26

investor provides decision information (such as financial targets) to the dairy

business, and in return receives financial information.

Other investment financial data -

Profit, Internal Rate of Return, and

Net Present Value forecasts.

The dairy business scale takes the investor’s financial targets and uses them to

set sales and expenditure budgets, which are then used to define production

requirements. These include product mix and delivery timing, along with

expenditure budgets. Actual costs and sales are returned to the dairy business

scale by the production scale.

Production expenditure

budgets.

Investor

Dairy Business

Production = Production Manager

Process = Cheese Making

Unit Operation = Cheese Vat

$
Other investmen

business decisio

t

ns.

Financial targets –

profit, growth.
Dairy investment financial data -

Profit, Internal Rate of Return,

and Net Present Value forecasts.

Processing costs –raw

materials, energy.

Cheese making production data,

costs.

Cheese vat state information,

material and energy data, unit

availability.

Recipe,

connection data,

place in filling order.

Product specification,

production schedule,

raw materials.

Order information -

product mix, delivery

requirements, product

specifications.

Mergers, acquisitions,

partnerships.

Sales & Marketing Financial control

Figure 3-3 - A multiscale view of cheese production information flows

Business expenditure

budgets.

Sales budgets.

Sales.

Production data.

 Production, sales & marketing,

and distribution costs.

Curd Formation

Unit operation state,

process conditions,

component information.

Curd formation time.

 27

The production scale provides product specification, scheduling and raw materia

information to the cheese maki

l

ng scale. Upon manufacture of the product, actual

 on and off, when to clean, how

process conditions

3.3 The Modelling Goal

The aim of the dairy business is to make a profit. Several factors contribute to

:

e.g. plant operating conditions, production costs, product quality and

•

 costs, marketing and distribution, R&D.

n.

ies

 credits,

depreciation, capital and interest repayments, dividends.

production and cost information is returned.

The cheese making scale provides an individual unit operation with information

on how to behave. For example, when to turn

much material to take, set points, and what unit operations it is connected to. The

unit operation provides the cheese making process with information on how it is

actually behaving. For example, the amount of material it contains, whether it is

available for use, what its limits are (e.g. capacity, flowrate).

Considering the cheese vat, the formation of curd during the setting phase of a

batch will depend on the component mix of the milk, and the

within the vat. These will determine the duration of the set phase which dictates

when the next processing stage in a cheese vat batch, the cutting phase, can

occur.

profit

• Production

availability.

Business activities

e.g. income,

• Market forces

e.g. prices, exchange rates, market growth, competitio

• Corporate activit

e.g. income and costs generated by new investments, tax

 28

Other factors include environmental, regulatory, and political activities.

A comprehensive multiscale model of t

incorporate partial models for each of t

ficant

contributions to profit comes from the production activity, and is the focus of this

s, years). The scenarios represent the changing supply of raw milk over

time and the final product alternatives available to the manufacturer.

ted decision

 multiscale model. The development of the cheese

production multiscale model is a step towards all of these goals. The plant safety

ion

xamples of the types of information needed to construct a model capable of

achieving the modelling goal are given for production, cheese making, cheese

n be

identified.

he dairy industry investment should

hose factors whose contribution to the

investment’s profit is determined to be significant. One of the most signi

work.

The goal here is to develop a multiscale model capable of modelling different

cheese production scenarios extending over different time horizons (hours, days,

month

The aim is to generate production information relevant to operational and

planning level decision makers. On the financial side, only operating cost and

value data related to processing, such as raw material, energy, and

manufactured products is considered (i.e. costs such as wages and capital

expenditure are not).

Either profit maximization, plant safety or environmental impact orien

making information delivery could be considered as potential business-level

modelling goals for the

aspect is not considered, though partial models which factor safety will probably

be inherent to any detailed process model. Here, only the financial aspect is

considered. The environmental approach is examined in section 8.8.

3.4 Data Requirements and Partial Model Identificat

E

operator and unit operation levels. From this, the required partial models ca

 29

3.4.1 Data Requirements

Production level decision makers needs the following information to generate a

 in section 3.1.2.

re is more than one option available).

e making

supply when more than one manufacturing alternative is available.

•

The ch on:

 unit operation level.

ations. For example the capacity of silos and

within

 meets the specification.

component

ratios.

The ch

• (for example instructions on when to turn a pump on and off, or

).

production schedule:

• raw milk supply over the time period of consideration. This is the milk

curve discussed

• order information so raw milk can be allocated to the various

manufacturing options (that is if the

• processing capacity of manufacturing facilities (e.g. the chees

plant) and their availability. This information is also used to allocate milk

the amount of final product manufactured and when it is delivered.

eese making plant level decision makers need the following informati

• the production schedule for cheese making.

• the raw milk supply.

• the availability of processing equipment at the

• unit operation specific

cheese vats, and pump flowrates.

• reaction information. For example the process conditions and steps

a cheese vat to produce curd which

• unit operation mass balance information. For example the behaviour of a

cream separator at different flowrates and different input milk

eese plant operator requires:

a recipe

when to clean a unit operation

 30

• information on the process conditions in the cheese making processes

unit operations (such as when the temperature within a cheese vat

reaches the set point).

3.4.2 Partial Model Identification

several partial models are required to

erating the production information.

These are:

ss.

 in a

tion.

es unit operation connection information.

rating

r the desired time

horizon.

From the data needs it can be seen that

create a multiscale model capable of gen

• models of each unit operation which constitute the cheese making

proce

• a model capable of calculating the addition and removal of material

unit opera

• a model of a cheese making process capable of generating production

data. This includ

• a raw milk supply model because the raw material supply varies

significantly over the annual milk production cycle.

• a production model capable of using the raw milk model and gene

cheese production data from the process model ove

 31

 32

4 Model Implementation

The model implementation required a process modelling environment (PME) and

process modelling components (PMCs) for each of the unit operations in the

cheese making process.

Two alternatives were available:

• purchase an existing PME from a vendor (such as AspenTech) and

customize it to fit the dairy manufacturing processes being modelled, or

• construct a new PME and PMCs.

It was decided to construct a new PME and PMCs to model dairy industry

processes for the following reasons.

• none of the existing PME vendors have developed modelling software for

the dairy industry.

• the unique features of the dairy industry (e.g. the combination of the

widely varying raw milk supply, the short lifespan of raw milk, the multiple

production alternatives, the unique behaviour of reactors such as cheese

vats, the unique properties of milk and its products, and the unique

business rules such as processing equipment hygiene requirements).

• the author had access to the software code and could customize at the

lowest level, rather than at the level dictated by the software vendor.

• the author had complete flexibility in accessing and formatting the data

generated by the model.

The model implemented here is in the form of a sequential modular simulator

modelling moving steady state behaviour. In other words, the simulator models

the steady state behaviour of the process moving through time. It does not model

the start-up behaviour of the plant, or the behaviour as the plant moves from

 33

cleaning to process fluid. For example, after cleaning, pipe work will contain

cleaning water, which is purged by the first through milk. Milk will only be added

to (say) the cheese vats when this water is removed and a pure milk stream exits

the cheese vat feed pipe work.

Therefore, software solutions were required to:

• create unit operation models

• connect unit operations into a process flowsheet

• create production simulations for multi-product, multi-process, production

scenarios over wide time frames

• run simulations of processes and production scenarios

• generate unit operation and process data

4.1 Implementation Software and Hardware

Software implementations were developed in Microsoft Visual Basic .NET.

Microsoft Access 2003 was used for data storage.

The software design is based on object oriented programming (OOP) techniques.

OOP has the major benefit that it allows the efficient reuse of code. CAPE-OPEN

ideas are used to develop the object model structure for process and unit

operation model development (see section 2.3).

The object model consists of Object and Collection classes. Their software

implementation is an extension of the basic structure (i.e. methods and

properties such as Add, Count, and Item described in any standard Visual Basic

programming text – though none were referenced here). See Appendix D and E

for samples of the object class and collection class code (i.e. Port and Ports)

implemented here.

 34

Simulations were performed using a HP Compaq nx7010 laptop running

Windows XP, with a 1600MHz Intel Pentium M processor.

4.2 Object Model

An object model for the creation of unit operations, their connection into a

process flowsheet model, and the creation and simulation of production

scenarios is proposed. Key object relationships and hierarchy are derived from

CAPE-OPEN.

The singular/plural convention denotes an object/collection respectively.

Collection Object

Figure 4-1 – Partial object model for a chemical process

Processes

Business

Process

Unit Operations

Unit Operation

Ports

Port

(b) (c)

Material

Production Scenarios

Production Scenario

Final Product

(a)

Materials

Material

Port Connections

Port (inlet)

Port (outlet)

Port Connection

Key:

Figure 4-1(a) shows the object hierarchy for a business as it relates to the

production side of the business. A business consists of a collection of processes.

Each process consists of a collection of unit operations. A unit operation’s

collection of ports facilitate flowsheet construction and are used in the transfer of

material, energy, and other information between unit operations.

Figure 4-1(b) shows the relationship between a material port, its material, and its

connections to other ports (the same principle applies to energy and information

 35

ports). A collection of Port Connections provides flowsheet connection

information. Each port connection object defines the connection between two

ports.

Processes: Cheese, Milk Powder, Butter, Town Milk Supply, Whey, Casein

Business: Fonterra

Process: Cheese

Unit Operations: Milk Storage, Pasteuriser, Cream Separation,
Cheese Vats, Cheese Belt, Block Formers

Unit Operation: Cheese Vat

Ports: Cheese Milk Inlet, Curd Outlet, Whey Outlet

Port: Cheese Milk Inlet

Key:

Collection

Object

Materials: Raw Milk, Cream, Cheese Milk,
Curd, Whey, Cheddar Cheese, Water,
Salt., Pasteurised Milk.

Material: Curd

Port Connections: Cream Separator Outlet – Cheese Milk Inlet,
Curd Outlet – Cheese Belt Inlet, Whey Outlet – Whey Storage Silo

Port (inlet): Cheese Belt Inlet

Port (outlet): Curd Outlet

Port Connection: Curd Outlet – Cheese Belt Inlet

Figure 4-2 – Partial object model for a cheese vat in a cheese making process

Material: Cheddar Cheese

Production Scenarios: 1 day cheddar, 3 day cheddar, 1 year cheddar.

Production Scenario: 3 day cheddar.

Final Product: 25kg Bulk Cheddar

(a)

(b)

(c)

 36

Figure 4-1(c) shows the relationship between a production scenario which

manufactures a particular product and, through the material object, a process

that will manufacture that product.

Applying Figure 4-1(a) to a dairy business, Figure 4-2 shows the object hierarchy

used to model a cheese vat in the cheese making process (the collections do not

list all the possible constituent objects).

4.3 The Cheese Production Model

The cheese production model is created from:

• a unit operation material content (i.e. mass or volume) model

• the unit operation models (e.g. the cheese vat)

• a raw material model (e.g. the milk curve)

• the process flowsheet model (e.g. the cheese making process)

• unit operation state control (i.e. a modelling scenario)

4.3.1 Unit Operation Material Content Model

The material content within a capacitive unit (defined in section 4.4.1) is

simulated using Euler’s method. The implementation of this is discussed in

section 7.7.2.

4.3.2 Cheese Vat Unit Operation Partial Model

The classification and behaviour of unit operation models is discussed in section

4.4. Here, a description of how a unit operation model is defined is discussed. A

cheese vat is used to demonstrate.

A cheese vat’s behaviour is controlled using its state property, with maximum

volume as a boundary condition. The state of the cheese vat is defined as the

current state of existence of the vat. At any point in time the cheese vat will exist

 37

in a particular state, and behave according to the rules for that state (e.g. when in

the FILLING or EMPTYING state the cheese vat will recalculate its volume). A

vat will have a collection of possible states.

Jones (1999) gives a description of a cheese vat batch process cycle. The exact

specification for the batch depends on the type of cheese being produced. The

description here is a general recipe for cheddar. In a cheese vat batch cycle the

vat undergoes several state changes. These are:

• FILLING – milk and starter are added and the solution stirred to ensure an

even distribution of starter. Enzyme in the form of microbial rennet is

added; the solution is stirred again.

• SET – the solution is left to coagulate into a gel.

• CUT – once the gel is strong enough the gel is cut into a curds and whey

suspension, followed by stirring.

• COOK – the vat temperature is ramped to the cooking temperature (37oC)

and the solution then cooked.

• STIRRING – the curds and whey is stirred until the desired pH is reached.

• EMPTYING – the vat is emptied onto the cheese belt.

• RINSE – the vat is rinsed with water and rejoins the FILL QUEUE.

The cheese vat can be placed in other states:

FILL QUEUE and EMPTY QUEUE – states that indicate the vat is

available for the transfer of material.

CLEANING – a chemical clean will occur during a production run if that

run continues for longer than some pre-defined period.

OFF LINE – used when the cheese vat is not available to be used in the

simulation.

The default state sequence for a cheese vat batch in this work is:

 38

FILL QUEUE > FILLING (until the maximum material capacity is reached)

> SET (expires 30 minutes) > COOKING (expires 40 minutes) >

CUTTING (expires 10 minutes) > EMPTY QUEUE > EMPTYING (until the

vat is empty of material) > RINSE (5 minutes) > FILL QUEUE

The duration of the states (that expire) above are purely for the purpose of

demonstrating the state transition mechanism proposed in this work, and may not

reflect the actual durations found in any particular cheese making process. These

durations will differ depending on (among other things) the specification of the

cheese being manufactured, and the specification of the cheese vat’s feed milk.

Between them, these states constitute the cheese vat’s State Collection (see

section 5.1 for the implementation of the State Collection). Knowledge of a unit

operation’s state collection is sufficient to model the behaviour of the cheese vat

(but not the chemical processes within the cheese vat – see section 7.4 for a

discussion on incorporating models of process reactions).

4.3.3 Raw Milk Partial Model

The raw milk model provides an amount of raw milk for a certain date. In this

implementation the action taken is simply to look up a value in a data set. The

process flowsheet model instigates this action by calling the raw milk model to

supply an amount of raw material for a certain date.

In this implementation, an amount of raw material is made available to the raw

material storage capacitive units on each 1 day iteration of the simulation. In the

case of raw milk, daily supply data is obtained from the raw milk model, and

stored in a raw materials collection – where it is available to all unit operations

which require raw milk (e.g. for filling raw milk silos).

When an amount of raw milk is used by the process, the amount used is

removed from the daily total available to the simulation. If raw material remains

unused by the process at the end of any day’s iteration, it will be the first to be

used the next time a process requires that raw material.

Some raw materials expire after a period of time (e.g. raw milk) and are no longer

available for use by the process. If raw material expires after it has been added

 39

to the process it can no longer be used by that process. In the case of raw milk

this models its deterioration caused by bacterial growth.

4.3.4 Cheese Making Process Partial Model

Using unit operation information from Jones (1999) and mass balance data

(stream flowrates and components) from Morison (1997), a generic cheese

making process was modelled (Figure 4-3). The flowsheet is constructed via the

addition of material ports to a port connections collection.

Figure 4-3 – Cheese Making Process (after Jones, 1999)

Cream
Separator

5m3
Cream
Storage

Pasteuriser

Block
Formers

Rapid Cooling
Cheese Storage

Raw Milk
Feed Pump

Raw Milk
Storage

Silos

250m3

8 Cheese Cooking Vats

33m3

Whey

Storage

Cheese Belt

Pasteuriser
Feed Pump

Cheese
Milk Silos

250m3

A port connection has two object properties (i.e. properties of the object in the

object oriented programming context), an inlet port and outlet port. Inlet ports can

only connect to outlet ports (or inlet/outlet ports, which aren’t implemented here).

For example, a port connection with the cheese vat inlet occupying the inlet port

property, and the cream separator skim milk outlet occupying the outlet port

property represents the connection between the cheese vat and the cream

separator.

 40

The information required to transfer material between unit operations and control

their behaviour is:

• The simulation’s time increment (see section 4.10).

• the current state of unit operations, and their material port flowrates.

Once this information is known, a unit operation is sufficiently informed to

recalculate itself.

For example, material transfer between unit operations is initiated by setting the

state of a pump flow unit to ON. At this point, the pump checks that material is

available to transfer (from an upstream capacitive unit), and there is somewhere

to put the material (in a downstream capacitive unit). If both are available, the

emptying and filling flowrates of the upstream and downstream capacitive units

are set, and their states are changed to EMPTYING and FILLING respectively.

The capacitive units, detecting these new states, recalculate the amount of

material contained.

4.3.5 Unit Operation State Control

In order to facilitate the construction of a production model, two software classes

are proposed:

• a Production Scenario class

• a Modelling Scenario class

4.3.5.1 Production Scenario Class

A Production Scenario class is defined as a set of controlling instructions which

place unit operations in a desired state.

The Production Scenario is a 1 day interval, during which time the user controls

the manufacture of product by passing instructions to unit operations. The

selection of 1 day as the standard production modelling time period is arbitrary.

However, 1 day is a useful period for integration with scheduling applications,

and given raw milk supply arrives in 1 day batches.

 41

The instructions change the state (hence the behaviour) of the instructed unit

operation. For example, an instruction changing a pump’s state from OFF to ON

initiates an attempt to transfer material between unit operations on either side of

the pump, while changing a cheese vat’s state from OFF LINE to FILL QUEUE

makes it available to receive material.

4.3.5.2 Modelling Scenario Class

A Modelling Scenario class is a collection of Production Scenarios which span

the number of days required for the simulation. This is the mechanism by which a

time scale is added to the production model. Production Scenarios are added to

the Modelling Scenario in the sequential order with which the 1 day Production

Scenarios are modelled. For example, a 30 day Cheddar Production Modelling

Scenario will be constructed from 30 x 1 day Production Scenarios.

The process flowsheet model combined with the modelling scenario (and its

constituent production scenarios) solve the production problem using a specified

(and varying) supply of raw milk.

4.3.6 Model Simplifications

The model of the cheese making process was simplified. Several material

streams are ignored. A more detailed and accurate model would include all the

material streams, such as rennet and starter into a cheese cooking vat, the salt

flow onto a cheese cheddaring belt, and centrifugal cream separation desludge.

While some of these streams (such as rennet, starter and salt) are critical to the

chemical reactions and consequently final product specification, they do not

significantly affect the mass flows.

Reaction scale and mass balance partial models are not implemented. If they

were these streams would need to be included in the model.

 42

4.4 Unit Operation Classification

Two generic classifications of unit operation are implemented – a Capacitive Unit

and a Flow Unit. Every unit operation in the cheese making process is one (or a

combination of more than one) of these classes. These classifications are used

for behaviour control – in this case hard coded within the capacitive unit and flow

unit software classes.

4.4.1 Capacitive Unit

A capacitive unit is a unit operation which has material storage capacity. Two

types of capacitive unit are identified:

1. Material storage unit operations. Their primary purpose is the batch

storage of quantities of material (e.g. storage silos, cheese vats).

2. Unit operations which operate continuously but contain significant

amounts of material within their modelling boundaries. (e.g. a block former

or a cheese belt).

Figure 4-4 –Capacitive Unit

 Capacitive Unit

Inlet Port Outlet Port

Direction of material flow through capacitive unit

Here, a capacitive unit (Figure 4-4) has no more than one inlet and one outlet

port. Although most capacitive units will have one of each, capacitive units which

have no port in one direction are defined as either a raw material storage (and

are filled from the Raw Materials collection) or final manufactured product

storage (depending on which port direction is missing). Separation operations are

implemented using Flow Units (section 4.4.2).

The Capacitive Unit class has code to perform the following:

• Define the unit operation as a raw material storage vessel (e.g. has no

inlet material ports).

 43

• Define the inlet material as a manufactured product, thereby defining itself

as a product storage vessel.

• Indicate whether it is available to store or release material.

• Recalculate its volume when one or more of its material port’s flowrates is

non zero.

• Fill and empty simultaneously.

• Pre-check the next state and update to a new state.

• Generate unit operation operational data e.g. state, volume, material

stream flowrates, energy flows.

Capacitive units as defined here have at least 5 potential default states:

OFF LINE, FILL QUEUE, FILLING, EMPTY QUEUE, EMPTYING

Other states are user defined, e.g. a cheese vat’s states:

SET, COOKING, CUTTING, RINSE, and CLEANING

4.4.2 Flow Unit

A flow unit is probably easiest to define as a unit operation that isn’t a capacitive

unit (i.e. one that doesn’t store material). Though all unit operations have some

material capacity (e.g. a pump’s impeller chamber or a heat exchanger’s material

space), here a flow unit has been defined as a unit operation:

• for which material storage is not a primary purpose;

• which has an insignificant capacity (in the context of the process);

• which has a low material residence time (a low residence time might be in

the order of a few seconds to a few minutes);

Flow units are modelled as having no residence time. In this work they have two

default states, OFF, and ON. Two types of flow unit are modelled:

 44

1. A flow generating flow unit (Figure 4-5). This type of flow unit has a non-

zero default flowrate. They have one inlet and one outlet port. Pumps and

conveyers are examples of this type of flow unit.

Figure 4-5 – Flow Generating Flow Unit

 Flow Unit
(Default flow ≠ 0)

Inlet Port Outlet Port

Direction of material flow through flow unit

2. A flow unit which performs some processing operation on the material as it

passes through the unit. This type they can have multiple inlet and outlet

ports. Mixers, separators and heat exchangers are examples of this type

of flow unit (Figure 4-6).

Figure 4-6 – Flow Unit

 Flow Unit
(Default flow = 0)

Inlet Ports Outlet Ports

Direction of material flow through flow unit

4.5 Capacitive Unit / Flow Unit Interaction

The cheese making process is made up of capacitive units and flow units

connected together, each with a different role. As discussed in section 2.3.1, the

Process Modelling Environment (PME) is used to manage the inter-connection of

unit operations and construct the process flow sheet. The implementation of this

is discussed in section 5.3.

Capacitive units store material and provide a unit operation for a reaction. Flow

units drive the transfer of material throughout the process, mix or separate

 45

material, or represent a non-capacitive unit operation (e.g. a heat exchanger).

There are many actual connection configurations which exist in processes. For

example flow units are connected to flow units (e.g. pumps feeding heat

exchangers). Flow units are connected downstream of capacitive units (e.g.

pumps drawing material from storage silos. Flow units are connected upstream

of capacitive units (e.g. pumps feeding storage silos). Flow units connected to

multiple capacitive units (e.g. heat exchanger connected to multiple cheese vats).

These do not complete the possibilities.

The following connection regimes were implemented here to construct the

cheese making process:

1. A flow generating flow unit is upstream of a capacitive unit (e.g. a milk

tanker empting pump used to fill a raw milk storage silo – not implemented

here), represented in Figure 4-7). The flow unit is used to fill the capacitive

unit (the assumption is that upstream material is available). The flow unit

generates flow (i.e. its default flowrate property value is non-zero).

When the flow unit’s state is changed from the OFF state to the ON state,

the following steps occur:

Flow Unit Ports Capacitive Unit Ports

(1) – Flow unit outlet material port (2) – Capacitive unit inlet material port

Figure 4-7 – Flow Generating Flow Unit –Capacitive Unit Downstream

Flow Unit (Tanker
Empting pump)

(1)
 Capacitive Unit

(Block Former)

(2)

Data – port flowrate

Material – from capacitive unit to the flow unit.

a. The process modelling environment (PME) checks that the

downstream capacitive unit is available for filling (e.g. state: FILL

QUEUE; current volume is less than maximum volume).

 46

b. The flow unit’s inlet port’s flowrate (1) is set. The PME sets the

flowrate of the capacitive unit’s outlet port (2) which is connected to

port 1.

c. The milk silo capacitive unit, detecting a flowrate at one of its ports,

recalculates its volume. Here data is transferred (i.e. the flowrate) in

the same direction as material flow.

2. A flow generating flow unit is downstream of a capacitive unit (e.g. a pump

connected downstream of a milk storage silo) – Figure 4-8. The flow unit is

emptying the capacitive unit (the assumption is that a downstream

capacitive unit is available for filling). The flow unit generates flow.

When the flow unit’s state is changed from OFF to ON, the following steps

occur:

a. The PME checks that the capacitive unit is available for emptying

(e.g. state: EMPTY QUEUE; volume is non zero).

b. The flow unit’s inlet port’s flowrate (2) is set.

c. The PME sets the flowrate of the capacitive unit’s connected outlet

port (1) which is connected to the flow unit.

d. The milk silo capacitive unit, detecting a flowrate at one of its ports,

recalculates its volume. Here data is transferred (i.e. the flowrate) in

Capacitive Unit Ports Flow Unit Ports

(1) – Capacitive unit outlet material port (2) – Flow unit outlet material port

Figure 4-8 – Flow Generating Flow Unit – Capacitive Unit Upstream

(1)
Flow Unit
(Pump)

(2)
 Capacitive Unit
(Milk Silo)

Data – port flowrate.

Material – milk removed from the capacitive unit by the pump.

 47

the opposite direction to the material flow.

3. A flow unit is connected to, and filling, more than one upstream capacitive

unit (Figure 4-9). Capacitive units are filled sequentially. For example,

multiple cheese vats are placed in parallel, and filled sequentially. The aim

is to operate the pasteurizer (at the cheese vat’s inlet), and the cheese

belt (at the cheese vat’s outlet) continuously.

When the flow unit’s state is changed from OFF to ON, the following steps

occur:

Flow Unit Ports Capacitive Unit Ports

(1) – Flow unit outlet material port (2) – Capacitive unit inlet material port

Figure 4-9 – Flow Unit – Sequential Capacitive Units Downstream

Flow Unit
(Pasteuriser)

(1)

 Capacitive Unit
(Cheese Vat 1)

(2a)

 Capacitive Unit
(Cheese Vat 2)

(2b)
OR

Data

Material

a. The PME selects a downstream capacitive unit which is available

for filling.

b. The flow unit’s outlet port’s flowrate (1) is set.

c. The PME sets the selected capacitive unit’s connected inlet port’s

(2a) flowrate.

d. When the capacitive unit is full, the PME finds another downstream

capacitive unit which is available for filling.

e. The PME sets the selected capacitive unit’s connected inlet port’s

(2b) flowrate.

 48

4. A flow generating flow unit is connected to more than one upstream

capacitive unit (Figure 4-10). An example is the sequential emptying of

cheese vats onto a cheese belt.

When the flow unit’s state is changed from OFF to ON, the following steps

occur:

Capacitive Unit Ports Flow Unit Ports

(1) – Capacitive unit outlet material port (2) – Flow unit inlet material port

Figure 4-10 – Flow Generating Flow Unit – Sequential Capacitive Units Upstream

Flow Unit (Cheese
belt feed pump)

(2)

Material

 Capacitive Unit
(Cheese Vat 1)

(1a)

 Capacitive Unit
(Cheese Vat 2)

(1b)
OR

Data

a. The PME selects an upstream capacitive unit which is available for

emptying.

b. The flow unit’s inlet port’s flowrate (2) is set.

c. The PME sets the selected capacitive unit’s connected outlet port’s

(1a) flowrate.

d. When the capacitive unit is empty, the process controller finds

another upstream capacitive unit which is available for emptying.

e. The PME sets the selected capacitive unit’s connected outlet port’s

(1b) flowrate.

5. Two flow units are connected in series (e.g. a pump connected to a

pasteurizer). Here, the flow generating flow unit is connected upstream of

a non-flow generating flow unit (Figure 4-11). When the flow generating

flow unit’s state is changed from OFF to ON, the following steps occur:

 49

a. The flow generating flow unit’s outlet port’s flowrate (1) is set.

b. The PME sets the flow unit’s connected inlet port’s (2) flowrate.

Flow Unit Ports

(1) – Capacitive unit outlet material port

(2) – Flow unit outlet material port

Figure 4-11 –Flow Generating Flow Unit – Flow Unit Downstream

(1)
Flow Unit

(Pasteuriser)

(2)
Flow Unit
(Pump)

6. A flow unit (both flow generating and non-flow generating instances

were0020implemented) is connected to more than one upstream

capacitive unit (Figure 4-12) through different outlet ports. Each flow unit

port provides flow to its connected capacitive unit.

For example, a cream separator splits flow into two streams (i.e. skim milk

and cream). One stream goes to the skim milk silo capacitive unit, the

other to the cream silo capacitive unit. For the transfer to be successful,

both capacitive units must be available for filling. The flow is split

according to some pre-defined ratio, so the sum of the outlet port’s (2 and

3) flow equals the inlet port (1) flow. Given each capacitive unit can be

filled, flows at ports 4 and 5 are set to the flows at ports 2 and 3

Flow Unit Ports Capacitive Unit Ports

(1) – Flow unit inlet material port (raw milk) (4) – Capacitive unit inlet material port (skim milk)

(2) – Flow unit outlet material port (skim milk) (5) – Capacitive unit inlet material port (cream)

(3) – Flow unit outlet material port (cream)

Figure 4-12 – Flow Unit – Multiple Capacitive Units Downstream

Flow Unit
(Cream

Separator)

(2) Capacitive Unit
(Skim Milk Silo)

(4)

AND
(3) Capacitive Unit

(Cream Silo)

(5)

(1)

 50

respectively.

When the flow generating flow unit’s state is changed from OFF to ON, the

following steps occur:

a. The PME checks that the capacitive units connected to the flow unit

outlet ports are both available for filling.

b. The flow unit’s outlet ports flowrates (2 and 3) are set.

c. The PME sets the flow unit’s connected inlet ports (4 and 5)

flowrates.

4.6 Multi-class Unit Operations

Some unit operations are modelled using a combination of unit operation

classes.

4.6.1 Heat Exchanger

A heat exchanger is modelled using two flow units, a cold side flow unit and a hot

side flow unit. In the case of a plate pasteurizer, the cold side (milk) is part of the

cheese making process model. The hot side is part of a separate energy supply

model.

In Figure 4-13 the pasteurizer cold side is connected to the cheese making

process (ports 1 and 3). The hot side (superheated water) provides the energy

needed to pasteurise the milk, and is connected to an energy source and energy

sink (ports 4 and 6).

Energy ports 2 and 5 provide the connection and energy transfer mechanism

between the cold side and the hot side. In the cold side the milk temperature

increases, while in the hot side the hot water temperature decreases, as they

pass through the flow units.

 51

Warm

Water Sink

Hot Water Energy

Source

Upstream Cheese

Making Process

Downstream Cheese

Making Process

Pasteuriser – Cold
Side (Flow Unit)

Pasteuriser – Hot
Side (Flow Unit)

Energy Process

Cheese Making Process

(1)

(2)

(3)

(4)
(5)

(6)

Pasteuriser Cold Side Ports Pasteuriser Hot Side Ports

(1) – milk inlet (material port) (4) –Hot water inlet (material port)

(2) – pasteuriser energy inlet (energy port) (5) – Energy outlet (energy port)

(3) – pasteuriser milk outlet (material port) (6) – Warm water outlet (material port)

Figure 4-13 –Information exchange in a multiple flow unit pasteuriser

PASTEURISER
BOUNDARY

Material Flows

Energy Flows

This situation was successfully implemented, though more work is needed on the

Energy object to enable more sophisticated energy modelling.

4.6.2 Spray Dryer

Though not part of the cheese making process, another example of a unit

operation important in the dairy industry which could be modelled using

combinations of flow and capacitive units is a spray dryer. In order to examine

the potential of multi-class unit operations the following configuration was

implemented, and successfully tested

A spray dryer is modelled using a flow unit upstream of a capacitive unit (Figure

4-14). The flow unit represents the atomization of milk concentrate and the dryer

vapour space, and also provides the flowrate for the transfer into the spray dryer.

The capacitive unit represents the holdup of powder in the dryer and the fluidized

milk powder bed at the bottom of a spray dryer. This models the accumulation of

milk powder within the spray dryer unit.

Connection to the upstream and downstream processes are via ports 1 and 4.

The vapour phase flow unit’s outlet material port (2) is connected to the milk

powder fluidized bed’s inlet material port (3).

 52

Upstream Milk

Powder Process

Downstream Milk

Powder Process

Spray Dryer Vapour Phase
(Flow Unit)

Spray Dryer Fluidized Bed
(Capacitive Unit)

Cheese Making Process

(1)

(2)

(3)
(4)

Vapour Phase Ports Fluidized Bed Ports

(1) – Concentrated milk inlet (material port) (3) – Milk powder inlet (material port)

(2) – Milk powder outlet (material port) (4) – Milk powder outlet (material port)

Figure 4-14 –Information exchange in a flow unit / capacitive unit spray dryer

Material Flows

4.7 Modelling Continuous Flow in a Capacitive Unit

In the cheese making process, some unit operations perform both flow

generation and material storage functions. This class of unit operation operates

continuously, and essentially transfers material within the process. It is distinct

from a standard flow unit (such as a pump or separator/mixer) in that it has a

non-negligible material residence time.

Note that above, non-negligible is not defined. The decision to model a

continuously operating unit operation’s capacity will depend on how significant

that capacitive nature is to the operation of the process. For example if the unit

operation holds up (say by more than a few minutes) the operation of the process

downstream while it fills and material moves through it than it may be desirable to

model capacitance. The cheese belt and the block forming tower are examples of

this.

The cheese belt is a belt conveyer. The block forming tower is essentially a

vertical sided storage silo which continuously expresses compressed curd at the

bottom of the silo at the same flowrate as the curd is added to the top of the silo.

 53

When not filling or emptying at the start and completion of a process run, they

function as continuous plug-flow unit operations.

Cheese Belt

3:36:00 4:48:00 6:00:00 7:12:00 8:24:00 9:36:00 10:48:00 12:00:00

Time

Vo
lu

m
e

Cheese Belt

Figure 4-15 – Cheese Belt Volume Time Series

As shown in the cheese belt volume time series (Figure 4-15), the cheese belt

process consists of fill and empty phases, separated by a long period of

continuous flow. The cheese belt / block forming tower is modelled using a

combination of capacitive units and flow units (Figure 4-16).

Figure 4-16 – Cheese Belt and Block Forming Tower – ‘Modelled’ Unit Operation Configuration

FG Flow
Unit (ON)

Capacitive

Unit
(FILL/EMPTY)

 Capacitive
Unit (FILLING)

Cheese Belt

‘Imaginary’ cheese

belt auger & vacuum

flow unit Block Forming Tower

FG Flow
Unit (OFF)

Rapid Cool Tunnel

Feed Conveyer

Curd from cheese vat

The Cheese Belt’s FILLING stage models the continuous addition, at constant

flow rate, of curd onto the belt from the cheese vat at the start of a processing

run.

 54

Once the Cheese Belt’s capacitive unit’s maximum material capacity is reached

(simulating the first-added curd reaching the end of the belt), the Cheese Belt

changes to the FILL/EMPTY state, the cheese belt auger and vacuum flow unit is

switched ON, and curd is transferred to the block forming tower at the same

flowrate as the cheese vat emptying flow rate. Thus continuous flow behaviour

through a capacitive unit is modelled.

The Block Forming Tower is also a continuous flow capacitive unit, so once it

reaches capacity, it will switch into the FILL/EMPTY state and the Rapid Cool

Tunnel Feed Conveyer will switch into the ON state.

Figure 4-16 is the implemented configuration of the model, but not the

configuration of the real process. The ‘imaginary’ cheese belt auger & vacuum

flow unit does not in reality exist. In the real process, flow from the Cheese Belt

to the Block Forming Tower is generated by a vacuum in the Block Forming

Tower. See section 7.14.2 for further discussion of this situation.

4.8 Energy Transfer

The feasibility of using the Energy Port – Energy object as the mechanism for

energy transfer (c.f. Material and Material Port objects) is tested in this work.

The multiple flow unit pasteurizer model shown in Figure 4-13 was constructed.

This model connects two separate process models using an energy port.

The cold- and hot-side flow units’ configuration and behaviour are as follows:

• Cold side flow unit inlet (port 1) and outlet (port 2) material temperatures

of 3 ºC and 32 ºC respectively.

• Hot-side flow unit inlet (port 4) and outlet (port 6) material temperatures of

120 ºC and 100 ºC respectively.

• When the cold-side flow rate is non zero 0 and the flow unit detects

different inlet and outlet material temperatures it seeks energy from its

 55

inlet energy ports to (in this case) increase the outlet material port’s

temperature by the desired amount.

• The cold side’s inlet energy port attempts to retrieve energy from its

connected outlet port (the hot side).

• When the hot-side’s flow unit detects an attempt to retrieve an amount of

energy from its outlet energy port, it starts itself (i.e. changes its state to

ON). The flow rate is calculated:

TC
m

pΔ
Δ

=
• E

where

 = mass flow rate ()

 = specific heat ()

 = inlet and outlet ports energy difference ()

•

m 1−kgs

pC 11 −− KJkg

EΔ 1−Js

TΔ = inlet and outlet ports temperature difference (K)

The amount of energy used in the pasteurization process could then be

calculated from the amount of hot water used (not implemented).

This is a simplistic model of the actual pasteurization configuration used in the

dairy industry. A real pasteurizer uses both intra-process energy transfer and

non-process energy to heat and cool the milk (Bylund, 2003).

4.9 Unit Operation State Behaviour

Three different types of unit operation state behaviour are modelled (see section

5.1 for an example of how states are used to model unit operation behaviour).

4.9.1 Static State

A unit operation in this state remains in that state unless it is changed by user

input or a result of interaction with other unit operation’s in the process. The

simplest example is when the unit operation it a ‘ready’ (or not ready) state.

 56

For example, consider an empty cheese vat in a FILL QUEUE state. The cheese

vat will remain in the fill queue unless changed externally or as a result of an

expiry of a compulsory state (see section 4.9.3).

4.9.2 Dynamic State

Dynamic state behaviour causes the cheese vat to stay in a particular state for a

predefined length of time, then automatically changes to another predetermined

state. This mechanism allows batch modelling and automation in unit operations

such as a cheese vat. It can be programmed to carry out a series of steps – each

state expiring and moving the vat onto a new state.

The default state sequence for a cheese vat batch in this work is:

FILL QUEUE > FILLING (until max volume reached) > SET (expires 30

minutes) > COOKING (expires 40 minutes) > CUTTING (expires 10

minutes) > EMPTY QUEUE > EMPTYING (until min volume reached) >

RINSE (5 minutes) > FILL QUEUE

Here, the SET, COOKING, CUTTING, and RINSE states are dynamic states

because they expire, then the unit operation is forced into another predefined

state.

4.9.3 Compulsory State

A compulsory state must be attained within a specified time period. For example

a cheese vat’s CLEANING state is defined so the cheese vat is forced into that

state at least once every 1440 minutes (= 24 hours).

It is always possible for the user to override the current state of a unit operation

during simulation. The behaviour of different types of unit operation in different

states is discussed in section 4.4.

CLEANING is also a dynamic state because once the state is attained, it will

expire after a predefined period of time.

 57

4.9.4 State Transition Mechanism

Two software tools are used to manage the transition of a unit operation out of a

dynamic state or into a compulsory state. An OOP collection stores data on the

times when a unit operations was last in any compulsory state, and the unit

operation software object has a property which records the time the unit

operation was placed in its current state. The compulsory state collection and

current state property are continuously checked during simulation.

If the current simulation time (tg) is equal to a compulsory state’s pervious

occurrence plus the maximum allowed time between occurrences, the unit

operation will be forced into that compulsory state. If the current state is a

dynamic state, and tg is equal to the time the unit operation went into its current

state plus the duration of the state, then the unit operation will be forced into the

next allotted state. What this state will be is defined by the user as part of the unit

operation’s configuration (see section 5.1).

4.10 Simulation Timekeeping

Because a multiscale model (by definition) spans a wide time period, the

implementation requires a mechanism for keeping track of, and incrementing,

time. Simulation is driven using a global date/time variable (tg) and a timer control

(i.e. in this implementation Microsoft Visual Basic’s timer control placed onto a

PME form). At each timer ‘tick’, code is run which:

1. increments tg by a predefined or pre-calculated period.

2. checks the modelling scenario for any state changes to unit operations.

3. iterates through each unit operation in the process. The code implemented

depends on the state of the unit operation.

4. generates process and unit operation data.

The global date/time variable tg keeps track of the simulation’s ‘actual’ time and

increases with each iteration by the value of the time increment.

 58

4.10.1 A Failed Simulation Control Mechanism

The initial software implementation of Process Unit form classes included a timer

control which recalculated the instantiated form’s Process Unit and motivated the

simulation. However, this approach proved both unreliable and inefficient.

Firstly it was difficult to maintain an orderly iteration sequence. Each unit

operation’s timer ticked independently which resulted in a mass balance error

because the capacitive unit might not recalculate with the correct process data.

For example, consider a pump which when turned on changes the flow rate of an

attached capacitive unit’s material port’s flowrate after the capacitive unit has

recalculated. This occurs because the capacitive unit’s timer has (arbitrarily)

ticked first (Figure 4-17). The process time increment is 1 second and the

capacitive unit starts the iteration empty.

When the capacitive unit recalculates it does so without the correct flowrate at

port 2 because the flow unit hasn’t yet recalculated and set the connected port

flowrates. So the mass in the capacitive unit remains at zero and a mass balance

error of (in this case) 50kg/s x 1s = 50kg occurs. Port 2’s flowrate should be 50

kg/s when the capacitive unit is recalculated, giving a content mass after

recalculation of 50kg.

Figure 4-17 – Process Simulation Process Unit Recalculation Sequential Order Error

FG Flow
Unit (ON)

 Capacitive
Unit

Pump 50 kg/s Storage Silo Content Mass = 0

Port
1

Flowrate at Port 1 = 50 kg/s, Port 2 = 0 kg/s

Mass in capacitive unit = 0 Port
2

It became apparent that it was important to control the order of unit operation

recalculation. Because some flow units are the driving force for material transfer,

here, flow units are recalculated first, This sets all the unit operation material

port’s flowrates. Only then are capacitive units recalculated.

The second problem was, as the number of unit operations in the process being

modelled increased the amount of computer processing power required to

 59

simultaneously recalculate unit operations became significant. Usually the

simulation slowed considerably, but sometimes it froze completely. This wa

especially important when small fixed increment time intervals were used (s

section

s

ee

ation Time Increment

The user selects one of two methods of incrementing the simulation time.

4.10.2).

4.10.2 Simul

The first method increments the process by a fixed time interval with each timer

tick. If the user sets the increment at (say) 10 seconds, each increment of the

controlling timer increments the process by 10 seconds. i.e.

Timer Tick Simulation ‘Actual’ Time (tg)

0 1 January 2005 12:00:00am (Start Time)

ement that state. With a

1 1 January 2005 12:00:10am

2 1 January 2005 12:00:20am

3 1 January 2005 12:00:30am

4 1 January 2005 12:00:40am

The second method examines the process to find what the next state of each unit

operation will be, and the time increment that would impl

one exception, the smallest time increment returned from all unit operations is

used as the time increment for the next iteration. The exception is when the

expiry time of the production scenario (i.e. the time to midnight) is less than the

smallest time increment. In that case the time increment is the seconds to

midnight.

Each iteration can (and generally will) have a different time increment. i.e.

Timer Tick Increment (s) Simulation ‘Actual’ Time (tg)

0 1 January 2005 12:00:00am (Start Time)

January

0

1 120 1 2005 12:02:00am

2 6 1 January 2005 12:03:00am

3 240 1 January 2005 12:07:00am

4 1980 1 January 2005 12:40:00am

 60

This fixed-interval time increment method produces redundant data, a

slower simulation solution and than the discontinuity method (see sec

s well as a

tion 7.6 for

g

ur during the simulation’s ‘current’

he timer ‘tick’ interval. Increasing the

easing the interval causes it to tick more

a full discussion of the discontinuity method). The smallest time increment

currently possible is one second (this is a software implementation limitation).

4.10.3 Daily Production Model Iteration

The simulation’s actual time t is used to select and increment the production

scenario, which controls unit operation behavio

1 day cycle. Each unit operation is iterated and recalculated, the process time is

incremented, and data is generated. Because tg is a unique incrementing

variable, it can be used as part of a unique identification key for process

simulation data. Data can also be easily compared to historic plant data or

current process data using tg.

4.10.4 Simulation Speed

Simulation speed is controlled by changing t

interval slows the timer, while decr

frequently. This means the user can change the model iteration rate. For

example, a 1ms timer tick interval = 1000 iterations per second; a 50ms tick

interval = 20 iterations per second; 1s tick interval = 1 iteration per second.

 61

 62

5 Model Operation

5 steps are required to design and configure the process for simulation:

1. Define unit operation type templates, their properties and state collection.

2. Create individual unit operations based on unit operation type templates.

3. Connect the unit operations into a process flowsheet.

4. Construct 1 day production scenarios, and add these in sequential order

to construct a modelling scenario.

5. Set the simulation’s start date/time, the time increment of each timer step,

and the timer ‘tick’ interval.

The CD included with this thesis has a copy of the software application used to

perform simulations. Appendix A provides the necessary installation and

operating instructions to view a preconfigured simulation.

In this section, the Process Modelling Environment (PME) implementation is

shown. Here, the PME manifests as several software forms; the Process

Modelling Executive Form, the Unit Operation Type Template Form, and the

Modelling Scenario Form, all of which are discussed below.

5.1 Unit Operation Type Templates

The unit operation’s type template determines its behaviour and is the basis for

the creation of individual unit operation partial models. They are essentially the

model for the unit operation. The template consists of properties (e.g. mass or

volume capacity) and a state collection. Figure 5-1 shows the template for a

capacitive unit. The capacitive type name is Cheese Vat Type 1, its volume is

33,500L). A cheese vat modelled on this template has 10 possible states (i.e. its

state collection count = 10).

 63

As identified in section 4.3.2 a unit operation will exist in different states at

different times. By controlling the state of the unit operation its behaviour is

determined. A unit operation’s state collection provides the list of possible states.

Instructions for some of the cheese vat’s behaviour is obtained from the state

collection. Its behaviour is determined by changing its state using one of two

control mechanisms:

1. The state changes automatically as it steps through a predefined

sequence of states.

2. The user can set the state of a cheese vat during simulation, using the

production scenario state control mechanism (discussed in section 4.3.5).

Figure 5-1 – Cheese Vat Template

Figure 5-1 shows the unit operation template for a cheese cooking vat. The state

collection gives a cheese vat created from this template the following behaviour:

1. The first state (order = 1) is OFF LINE. Therefore, when the cheese vat

object is first instantiated by the process modelling environment, its state

is set to OFF LINE.

 64

2. The FILL QUEUE state does not expire (duration = 0).

3. Upon completion of the cheese vat FILLING (order = 3), it will move into

the SET state (order = 4).

4. The cheese vat will remain in the SET state for 30 minutes, then move into

the COOKING state (duration = 30, order on expiry = 5).

5. The cheese vat will remain in the COOKING state for 40 minutes, then

move into the CUTTING state (duration = 40, order on expiry = 6).

6. The cheese vat will remain in the CUTTING state for 10 minutes, then

move into the EMPTY QUEUE state (duration = 10, order on expiry = 7).

7. Upon completion of the cheese vat EMPTYING (order = 8), it will move

into the RINSE state (order = 9).

8. The cheese vat will remain in the RINSE state for 5 minutes, then move

into the FILL QUEUE state (duration = 5, order on expiry = 2).

9. If the cheese vat is not cleaned for 1440 minutes, it will go into the

CLEANING state for 2 minutes then move into the RINSE state (duration =

2, order on expiry = 9).

The mechanism initiating these state changes was discussed in section 4.9.4.

5.1.1 Unit Operation Types Created

15 unit operation type models were developed in this work to model the cheese

making process:

Capacitive: Raw milk storage silo, cream storage silo, cheese milk silo, cheese

vat, whey collector, block forming tower, rapid cool tunnel, cheese

storage.

Flow: Raw milk supply pump, cream separator, pasteurizer, pasteurizer

pump, cheese belt, rapid cool tunnel conveyer, cheese transfer to

storage.

 65

In addition, a spray dryer process was configured to enable testing of the

Process Modelling Environment. Because this was outside the parameters of this

work it will not be discussed further.

5.2 Creating a Unit Operation

In this implementation, unit operations are created within the context of the

process. The following steps are performed:

1. A Process object is created.

2. Each unit operation is created and added to the Process.

3. The unit operation is defined (based on a unit operation template – see

section 5.1).

4. Ports are added to the unit operation. Each port’s type is defined (i.e.

material, energy, or information port), given a direction (i.e. inlet, outlet,

inlet/outlet) and configured depending on the its type. For example, a

material type port will be given a material.

Figure 5–2a – Process Modelling Executive - Process Data Tab

Unit operation list –

cheese vat 1 selected.

Selected process and unit

operation details.

List of possible states for

the selected unit operation.

 66

Figure 5-2b - Process Modelling Executive – Port Tab

Selected port details (CV1’s

inlet port selected).
Port Connections: CV1 inlet

port connected to the

pasteuriser outlet.

Figure 5-2a shows the process modelling executive form – process data tab.

Figure 5-2b shows the same form with the port tab displayed. The unit operations

which constitute the cheese making process are in the left hand column, with the

detail for the selected cheese vat (name = CV1) displayed in the central column.

5.3 Connecting Unit Operations into the Process Flowsheet

Once the process’ unit operations are defined, they are connected together into a

process flowsheet. This requires the interconnection of ports. The following rules

are defined:

1. A unit operation cannot connect to itself (i.e. a port on a unit operation

cannot connect to another port on the same unit operation).

2. A port cannot connect to a port of the same direction (e.g. inlet ports can

only connect to outlet or inlet/outlet ports).

3. Ports can only connect to ports of the same type (i.e. a material port can

only connect to another material port).

4. A material port can only connect to a port which has the same material.

 67

The PortConnection object is used as the mechanism for connecting ports. A

PortConnection consists of an inlet port, and an outlet port.

5.4 Creating a Modelling Scenario

After a process’ unit operations are created and the process constructed, the

user creates a modelling scenario.

1 day Production

Scenarios
Production Scenario Events Modelling Scenario List

Figure 5-3 – 2 Day Modelling Scenario: Standard Cheddar

Figure 5-3 shows a 2 day cheese modelling scenario, which consists of two 1

day production scenarios. In this case the production scenarios are the same –

i.e. the process repeats the same production scenario for each day of the

modelling scenario. The 1 day production scenario is essentially a collection of

 68

controlling instructions to individual unit operations, which set the state of the unit

operation at a particular time within the 1 day period.

In Figure 5-3, the 12.5 hour production – Standard Cheddar production scenario

is selected. This production scenario, for example, places the raw milk silo unit

operation into a FILL QUEUE at 00:01:00. The raw milk supply pump is switched

ON at 00:55:00, while the Cheese Vats (CV1 – CV8) are placed into the FILL

QUEUE at 02:00:00 (note: in this example the modelling scenario begins at

00:00:00 on 17/10/2005 – see Figure 5-2a).

The model is tested during construction by running the simulation using a 1

second fixed-interval time increment. This ensures at least 1 feasible model

solution is guaranteed.

The simulation is completed when the modelling scenario’s final production

scenario has been run. During simulation, individual unit operation and

production data is being generated.

5.5 Simulation Solution

The multiscale model’s simulation is solved by time stepping. The simulation is

given a process start date (Dstart). With each recalculation, the process time is

incremented by some specified time period. The size of the time step is either set

manually or is generated from the process scale or the unit operation scale

partial model (previously discussed in section 4.10).

Figure 5-4 represents a production model simulation (a modelling scenario). A

single cycle of the modelling scenario represents a complete production

simulation (Figure 5-4 - 1). It consists of a collection of production scenarios.

Each of the production scenarios which constitute the modelling scenario are

used to control the cheese making process (Figure 5-4 - 21 to n where n = number

of production scenarios = the number of days of the simulation).

Individual production scenarios represent a 1 day cycle (Figure 5-4 - 2) of the

production model’s simulation. For each production scenario, the raw milk supply

 69

model is recalculated once (i.e. a date is passed to the raw milk supply model

and an amount of milk which is available to the model for that day is returned).

1

The cheese production model

(i.e. the Modelling Scenario)

cycles once per simulation.

Figure 5-4 – Cheese Production Model Iteration

21

Each constituent production scenario is

selected based on the process date (i.e. when

the production scenario increments, a date is

passed by the production model and a

production scenario is returned). 22

23

2n

2

One cheese production

scenario in the production

model’s collection of

production scenarios.
32

3raw milk

3m

1 day cycle.

Each cheese production

scenario consists of a

recalculation of the raw milk

supply model …

… and multiple

recalculations of

the cheese

process model.

31

33

1

Dstart

Dstart+1 day

n days in
the

simulation

t = 00:00:00

represents an recalculation of a model

The process model recalculates multiple times (Figure 5-4 – m iterations, each

iteration 31 to m where m = the number of times the process model iterates).

 70

The raw milk supply model is recalculated at time t = 00:00:00 (Figure 5-4 – 3raw

milk) of the day being modelled. The first recalculation of the cheese process

model also occurs at this time (for clarity it is shown offset in Figure 5-4 - 31).

Subsequent recalculations of the cheese making process occur with each time

increment (section 4.10).

Figure 5-5 – Cheese Process Model Recalculation

3

The cheese making

process recalculates.

42

43

41

4n

Each unit

operation in the

process model

recalculates once

per cheese

making process

recalculation.
44

2

45

represents a recalculation of a model

For each recalculation of the process model (Figure 5-5 - 3) all unit operations

are recalculated once (Figure 5-5 – 41 to n where n = the number of unit

operations in the process). A capacitive unit operation’s material content

microscale partial model will recalculate if certain criteria are met (discussed in

section 7.6).

5.6 Monitoring the Simulation

The implementation of process graphics is rudimentary, using forms. The

graphical user interface for monitoring a unit operation during simulation is the

unit operation form. The user can instantiate individual unit operations, and

 71

relocate them around their container MDI form. Two generic form objects are

used. The Capacitive Unit form (Figure 5–6a), and the Flow Unit form (Figure

6b).

5–

it

ing simulation.

 Both form objects display unit operation name, state, and port information. The

capacitive unit form also displays volume information. Using these forms, the

user can construct a visual representation of the process, and monitor each un

operation’s behaviour during simulation. No visual representation of the

connections and flow between unit operations was implemented.

Figure 5-7 shows the user view of the cheese making process dur

Figure 5-6a - Capacitive Unit Form Figure 5-6b – Flow Unit Form

Inlet material

port:

Tag = iCV5

Port flowrate =

0kg/s

Outlet material

port:

Tag = oCV5

Port flowrate =

0kg/s

Outlet material

port:

Tag = oPASTm

Port flowrate =

35kg/s

Inlet material

port:

Tag = iPASTm

Port flowrate =

35kg/s

State = SET (note:

this graphic shows a

cheese vat)

Current volume =

33500 L (100%)
State = ON (note: this

graphic shows a

pasteuriser)

Inlet energy port:

Tag = iSTEAMe

Port energy flow =

4060000 Joules

 72

 73

Figure 5-7 – Cheese Making Simulation (User View)

D
ire

ct
io

n
of

 fl
ow

D
ire

ct
io

n
of

 fl
ow

 74

6 Model Results, Accuracy and Verification

The multiscale model should be tested against a real cheese making process to

be properly tested and verified. In the absence of that here, the model was

verified using:

• a simple overall mass balance

• unit operation volume time series graphs

• unit operation state Gantt charts

• manufactured product time series graphs

• raw milk consumption time series graphs

To test the multiscale model, several simulations were conducted using a

combination of:

• different modelling scenarios (i.e. different combinations of 1 day

production scenarios),

• different time periods (i.e. 1 day, 2 day, 6 day),

• the fixed-interval time increment method using different iteration time

intervals,

• the discontinuity time increment method.

As discussed in section 5.4 a production scenario is tested during construction

with a 1 second fixed-interval time increment. This ensures that the modelling

problem has at least one feasible solution (albeit an inefficient one).

For all production scenarios tested, once the 1 second time increment solution

was found, the model reached a successful solution when running in

discontinuity time increment mode.

 75

6.1 Data Generated

The cheese production model presented here generated data on capacitive unit

material content and state, flow unit state, totalized manufactured product,

totalized energy consumption, and raw material use data. Each new data record

receives a date/time stamp.

A simulation running in fixed-increment mode of 1 second time increments

completes 43,200 steps in 12 hours. The 20 capacitive unit operations in the

cheese making process modelled here produced 864,000 data records for a 12

hour simulation – for volume alone.

The same simulation operating in discontinuity mode produced 200 records per

capacitive unit for 12 hours simulation. For 20 capacitive unit operations, this

equates to 4000 data records for volume.

6.2 Overall Mass Balance

The mass balance is simply the sum of the material contents within each

capacitive unit operation, calculated with each iteration of the multiscale model.

1,000,000kg per day of raw milk was made available as feed for the simulation.

As the fixed-interval time increment was increased, the solution time decreased,

and the overall mass balance error trended upwards. Table 6-1 shows the results

for 1 day cheese making process simulations processing 1,000,000 kg of raw

milk. All simulations ran with a timer speed of 10 steps per second (the same

simulation in discontinuity mode is shown for comparison).

 76

Table 6-1 – Fixed Interval Simulation

Fixed Interval Time
Increment

Simulation
Duration

(seconds)

Overall Mass
Balance Error

1s 3600 0%

2s 1800 +0.012%

3s 1200 +0.039%

4s 900 +0.027%

5s 720 +0.048%

6s 600 +0.133%

10s 360 +0.048%

12s 300 +0.042%

15s 270 +0.234%

20s 180 +0.153%

30s 120 +0.506%

60s 60 +1.011%

Discontinuity 90 0%

6.3 Time Series Graphs

While the model mass balance gives one indication of the validity of the result, it

doesn’t provide unit operation detail.

Figure 6-1 shows the volume time series for cheese vat 8 from a cheese making

simulation (in fixed-interval time increment mode). This graph has all the features

expected from a cheese vat:

• The volume went through repeated fill and empty cycles,

• The linearity of the fill and empty stages indicates constant fill and empty

flowrates,

• The mirror image fill and empty line slopes indicate the fill flowrate was

the same as the empty flowrate,

 77

• The maximum volume stage for each cycle is the same duration,

indicating a batch cycle.

Time series graphs for other unit operations are shown in Appendix B. There is

little difference in data quality between the fixed and discontinuity time increment

modes simulation results. All the key behaviors of process units were

reproduced.

Figure 6-1 – Volume Time Series for Cheese Vat 1

Fill Empty

0

10000

20000

30000

00:00:00 01:12:00 02:24:00 03:36:00 04:48:00 06:00:00 07:12:00 08:24:00 09:36:00 10:48:00 12:00:00

Time (HH:mm:ss)

Vo
lu

m
e

(L
)

6.4 Gantt Charts

Gantt charts are useful for providing unit operation utilization information. Figure

6-2 shows a unit operation state Gantt chart for the 8 cheese vats in an 12 hour

cheese making simulation. It shows the following:

• the batch cycle nature of each cheese vat. Cheese vat 1 fills, then enters

the SET state, followed by the COOKING state, then CUTTING. At the

completion of CUTTING, it enters the EMPTY QUEUE, then begins

 78

EMPTYING. Once emptied, cheese vat 1 is washed using a RINSE, then

re-enters the FILL QUEUE.

• the sequential batch nature of the combination of the cheese vats is

shown. Cheese vat 1 FILLING occurs, followed by cheese vat 2, then

cheese vat 3 and so on until cheese vat 8. Each of the vats then enters its

sequence of states. The time lag for each cheese vat’s sequence is

equivalent to the time required to fill a cheese vat.

The Gantt chart demonstrates the ability of the multiscale model presented here

to accurately model the changing utilization of individual unit operations.

Time
00:00:00 02:00:00 04:00:00 06:00:00 08:00:00 10:00:00

Unit Operation State
Colour Key

Figure 6-2 – 8 Cheese Vats Gantt Chart – 12 Hour Simulation

Figure 6-2 was generated using a Microsoft Excel spreadsheet.

6.5 Manufactured Product

A manufactured products collection class stores all the manufactured product in

final shipping form. The production model was set up to manufacture a product

called 25kg Bulk Cheddar.

 79

The manufactured product collection gains a 25kg Bulk Cheddar object each

time 25kg of product is added to the manufactured product storage unit

operation. The manufactured product collection is a time based dataset which

can be used by adjacent macroscale partial models (see section 7.5.2).

Figure 6-3 shows the time series data for the production of 25kg Bulk Cheddar.

Day 1 produced 3484 x 25kg units. Day 2 produced 3618 x 25kg units, taking the

total number of 25 kg units to 7102. These unit amounts came from the 87103kg

of cheese produced on day 1 and 90453kg produced on day 2.

Figure 6-3 – Total Manufactured Units of 25kg Bulk Cheddar – 2 day simulation

0

1000

2000

3000

4000

5000

6000

7000

8000

17
/10

/05
 00

:00
:00

17
/10

/05
 06

:00
:00

17
/10

/05
 12

:00
:00

17
/10

/05
 18

:00
:00

18
/10

/05
 00

:00
:00

18
/10

/05
 06

:00
:00

18
/10

/05
 12

:00
:00

18
/10

/05
 18

:00
:00

19
/10

/05
 00

:00
:00

Time

To
ta

l U
ni

ts

3484

7102

The different amounts produced on each day reflects the extra cheese cooking

vat batch which was done on day 2 as a result of the day 1 run leaving some

unprocessed cheese milk. The remaining milk was not enough for an extra batch

on day 1, but combined with the day 2 cheese milk was enough for the extra

batch.

Figure C-1 in appendix C shows the manufactured unit graph for a 6 day

simulation.

 80

6.6 Raw Material Consumption

Figure 6-4 shows a graph of the consumption of raw milk as it is used by the

cheese making process. The simulation makes an amount of raw milk available

to all processes being modelled, though here only the cheese making process

consumes the milk. The amount that is made available is obtained on each 1 day

iteration from the milk curve.

Figure 6-4 –Raw Milk Consumption –1 Day Simulation

2000000

2500000

3000000

3500000

17
/10

/20
05

 00
:00

:00

17
/10

/20
05

 02
:24

:00

17
/10

/20
05

 04
:48

:00

17
/10

/20
05

 07
:12

:00

17
/10

/20
05

 09
:36

:00

17
/10

/20
05

 12
:00

:00

17
/10

/20
05

 14
:24

:00

17
/10

/20
05

 16
:48

:00

17
/10

/20
05

 19
:12

:00

17
/10

/20
05

 21
:36

:00

18
/10

/20
05

 00
:00

:00

Date/Time

R
aw

 M
ilk

 R
em

ai
ni

ng
 (k

g)

On Figure 6-4, 3,296,422 kg is available at the start of the simulation (at 00:00:00

on the 17/10/2005). As the cheese making process consumes the raw milk, the

total available amount reduces. The final amount of milk is taken at about

04:00:00, after which the amount available remains constant. This amount is

2,296,422 kg, which is 1,000,000 kg less that the amount available at the start of

the day (and exactly the amount consumed by the cheese making process).

Figure 6-5 shows the raw milk consumption for a 6 day simulation. On each 1

day iteration a new (and in this case slightly increased) amount of raw milk is

made available to the simulation from the milk curve.

 81

Figure 6-5 –Raw Milk Consumption – 6 Day Simulation

1000000

2000000

3000000

17
/10

/20
05

 00
:00

:00

17
/10

/20
05

 12
:00

:00

18
/10

/20
05

 00
:00

:00

18
/10

/20
05

 12
:00

:00

19
/10

/20
05

 00
:00

:00

19
/10

/20
05

 12
:00

:00

20
/10

/20
05

 00
:00

:00

20
/10

/20
05

 12
:00

:00

21
/10

/20
05

 00
:00

:00

21
/10

/20
05

 12
:00

:00

22
/10

/20
05

 00
:00

:00

22
/10

/20
05

 12
:00

:00

23
/10

/20
05

 00
:00

:00

Date/Time

A
va

ila
bl

e
R

aw
 M

ilk
(k

g)
17/10/2005 18/10/2005 19/10/2005 20/10/2005 21/10/2005 22/10/2005

Two important dairy manufacturing business rules which are modelled are

evident from Figure 6-5:

1. Raw milk ‘expires’ after an amount of time has passed from it being added

to the model. In this simulation the chosen expiry time is 48 hours, after

which any unused milk is no longer available for processing. This models

the perishable nature of raw milk.

2. The oldest milk is processed first. The raw milk from 17/10/05 was used

on that date. On the 18/10/05 a new supply of raw milk was made

available, but was not used because older milk was still available (i.e. the

remaining milk from 17/10/05). On the 19/10/05 the raw milk from the

18/10/05 was used, and so on.

Figure 6-5 implies a large amount of raw milk having to be disposed of because it

is unprocessed by its expiry date. In reality most or all of the raw milk would be

processed using other processing facilities. A more realistic raw milk

consumption graph might look like Figure 6-6. In this example some day 1 raw

 82

milk remained unprocessed at the end of that day’s processing. It was consumed

first on day 2, then the day 2 raw milk supply was used.

Figure 6-6 –Raw Milk Consumption – 2 Day Simulation – Multiple Processing Facilities

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

17
/10

/20
05

 00
:00

:00

17
/10

/20
05

 04
:48

:00

17
/10

/20
05

 09
:36

:00

17
/10

/20
05

 14
:24

:00

17
/10

/20
05

 19
:12

:00

18
/10

/20
05

 00
:00

:00

18
/10

/20
05

 04
:48

:00

18
/10

/20
05

 09
:36

:00

18
/10

/20
05

 14
:24

:00

18
/10

/20
05

 19
:12

:00

19
/10

/20
05

 00
:00

:00

Date/Time

R
aw

 M
ilk

 R
em

ai
ni

ng
 (

kg
)

17/10/2005 18/10/2005

Data for Figure 6-6 was generated using a second process operating

simultaneously with the cheese making process. This second process was

essentially a sink for raw milk, which was created to consume excess raw milk

and generate this data.

6.7 Accumulated Energy Consumption

The pasteurizer model described in section 4.8 was implemented to test the

proposed energy transfer mechanism. Though the pasteurizer model was

simplified, the test showed the potential of the mechanism. The data generated

was used to produce a graph (Figure 6-7) of the total energy consumption by the

pasteurizer with a throughput of 35 kg/s, which increased the temperature of the

cheese milk by 29 degrees Celsius (from 3 to 32 degrees C).

 83

Figure 6-7 – Pasteuriser Accumulated Energy Consumption – 2 Day Simulation

0

50000

100000

150000

200000

250000

16/10/2005 12:00:00 17/10/2005 00:00:00 17/10/2005 12:00:00 18/10/2005 00:00:00 18/10/2005 12:00:00 19/10/2005 00:00:00 19/10/2005 12:00:00

Time

A
cc

um
ul

at
ed

 E
ne

rg
y

M
J

On day 1 of the simulation, 102,132 MJ was consumed by the pasteurizer, while

on day 2, 106,017 MJ was consumed.

On day 1 of the simulation 871,030 kg of cheese milk was pasteurised. Using a

specific heat capacity for milk of 4000 J/(kg K) this equates to 101,039 MJ of

energy required to raise the temperature by 29 degrees C. There is a

discrepancy of 1.08% between the calculated result and the simulation’s result.

On day 2, 904,530 kg of cheese milk was pasteurised. This equates to 104,925

MJ, a discrepancy of 1.04%.

6.8 Sources of Error

6.8.1 Unsuitable Time Increment

Selecting an unsuitable fixed-interval time increment can result in the model

becoming unsolvable. If the time increment used results in an instruction (from a

 84

production scenario) to a unit operation being missed, the unit operation will not

have the state it is meant to have, when it is meant to have it, for the simulation

to run.

For example, if the current time is 08:30:50, and the fixed increment time

increment is 30s (meaning the time of the next iteration is 08:31:20), then an

instruction for a unit operation to go into (say) FILL QUEUE at 08:31:00 will not

be performed with the current software implementation. Therefore, in this work all

production scenario instructions are placed on the minute. Consequently the

choice of fixed-interval time increments in Table 6-1 are all the whole number

quotients of 60 seconds i.e. divided by the numbers

60, 30, 20, 15, 12, 10, 6, 5, 4, 3, 2, 1.

The (arbitrary) selection of the minute as the point at which to place instructions

also defines the maximum allowable fixed-interval time increment – i.e. in this

case 60 seconds. If the instructions were placed on the ½ minute, the maximum

fixed-interval time increment would be 30 seconds.

6.8.2 Fractional Second Error

If the time required to change the state of a unit operation is less than one

second, an error will occur that will affect the mass balance. For example,

consider a capacitive unit which is emptying into a downstream capacitive unit

(Figure 6-8).

Figure 6-8 – Flow Generating Flow Unit – Capacitive Unit Upstream & Downstream

FG Flow
Unit

 Capacitive
Unit 1

 Capacitive
Unit 2

30kg remaining 50 kg/s

(1) (2)

50kg added

The capacitive unit’s outlet port’s flowrate (port 1) is 50kg/s. The capacitive unit

has only 30kg remaining, so the time required to empty it is 0.6s. Because the

smallest allowable time increment is 1 second, capacitive unit 1 will lose 30kg,

but capacitive unit 2 will add 50kg. The overall mass balance will gain 20kg.

 85

 86

7 Discussion

The cheese making model developed here takes an amount of raw material,

processes it, and produces a quantity of manufactured product. The model

reproduces expected features of the cheese making process and its constituent

unit operations, such as the cheese vat batch cycle, and the use of multiple

cheese vats to give continuous production. Process and production data is

generated which can be used by a variety of decision makers.

The model implementation developed in Visual Basic .NET uses two software

technologies, CAPE-OPEN and OOP to:

• construct a software tool for defining unit operation models,

• integrate them into a chemical process model,

• build production modelling scenarios over varying time horizons, and

• run simulations which generate process data.

In this chapter the key features of the model are discussed in the context of the

aims of this work – i.e. to develop a multiscale model of cheese production

capable of delivering information for operations and management level decision

makers.

7.1 Multiscale Model Analysis

Though a cheese making process and production model is presented, the

question remains whether the model as implemented is a multiscale model. The

key to a multiscale model is the integration of individual partial models which

describe phenomena of interest at different time, length and detail scales (section

2.2).

 87

This section will examine:

• whether the individual models are partial models (i.e. models representing

phenomena at different time, length and detail scales),

• whether the partial models are integrated and what the integration

frameworks are. Can they be classified according to the integration

classification scheme discussed in section 2.2.2?

If partial models exist and are integrated the model presented here is a

multiscale model.

Table 7-1 - Partial Model Scale Comparison

Partial Model Phenomena of Interest Length Scale Time Scale

Production

Model

The control of the all

production facilities to process

an amount of raw milk and

manufacture specified

amounts of products at the

specified time.

~101 – 105 metres.

The distribution of all the

important features of

production (i.e. raw milk

supply, production facilities).

~105 – 108 seconds.

The duration of the production

schedule under consideration.

Raw Milk

Supply

The quantity of raw milk

available for processing on any

day in the year.

~103 –105 metres.

The distance of farms from

production facilities.

~105 – 107.5 seconds.

The duration of the milk curve cycle.

Cheese

Making

Process

The transfer of material and

energy into the cheese making

process and between unit

operations.

~101 – 102 metres.

The physical size and spread

of the cheese making plant.

~103 – 105 seconds.

The duration of batches and cycles of

unit operations.

Unit Operation

(15 of – see

5.1.1)

The possible states of the unit

operation and the expected

duration of the states.

~ 100 – 101 metres.

The physical size of the unit

operation.

102 – 105 seconds.

The time for the unit operation to pass

through its different states during

processing. Some unit operations, such

as cheese vat, cycle in a few hours.

Others such as a milk storage silo

cycle in 24 hours (i.e. maximum

allowable time between cleanings).

Capacitive

Unit’s Material

Content

Calculation

The calculation of material

quantity in the capacitive unit

operation when it is in a

material transfer state (i.e.

FILLING, EMPTYING, or

FILLING / EMPTYING).

~ 100 – 101 metres.

The physical size of the

storage capacity of the unit

operation.

~ 100 – 104 seconds.

The time that the unit operation exists

in a material transfer state.

 88

7.1.1 Implemented Partial Models and Integration Frameworks

From the list of models implemented here (Table 7-1) it can be seen that they

represent different time and/or length scales, and meet the criteria to be

classified as partial models. In some cases the classification of integrating

frameworks is not clear.

7.1.1.1 Production Scale Model

Here, the system domain consists of all the processing plant options (one of

which is the cheese making process) and the raw milk supply model. This is a

discrete – continuous hybrid model, where an amount of raw material for the day

being modelled is input, and continuous amounts of product are output. The

production scale model appears to meet the classification criteria of more than

one of the integration frameworks proposed by Ingram et al. (2004) and Cameron

et al. (2005).

At first glance it appears that the entire system is modelled at the microscale and

the results are converted into macroscale variables (i.e. a simultaneous

integration). The production macroscale model is comprised of the raw milk and

cheese making process partial models, plus the other processing options which

are not implemented here (Figure 7-1).

One of the microscale models (i.e. the cheese making model) produces a data

set of manufactured final product. This data set is a macroscale model and is a

totalised time based series, which is consistent with the definition of a

simultaneous integration framework.

Raw milk supply model.

Production Model =
Manufactured Product

Cheese making

process model.

Figure 7-1 –Production Model from Simultaneously Integrated Partial Models

Other processing

options (not

implemented in this

work).

Macroscale model

Microscale models

= direction of

information

flow.

= model

domain

 89

However this framework is defined by Cameron et al. (2005) as having

unidirectional information flows only, and therefore does not account for the bi-

directional nature of information flows seen here: i.e.

• control of the cheese making process model being achieved by unit

operation state instructions being passed to the process model (using the

production scenario software class discussed in section 4.3.5).

• production allocating raw milk to each of the processing options by

dividing up the total daily raw milk supply.

Another possible integration framework classification which could apply here is

multi-domain, where the microscale and macroscale models describe separate

but adjoining parts of the whole system (Cameron et al., 2005). Here, the cheese

making process model is the macroscale model, and the raw milk curve is the

microscale model, with the combination of the two being the production model.

= direction of

information

flow.

Raw milk

supply model.

Production
Model

Cheese making

process model.

Figure 7-2 –Production Model from Multi-Domain Integrated Partial Models

Macroscale model

Microscale model
= model

domain
}

The multi-domain framework classification does not appear to either satisfactorily

describe the interactions between the production model and its component partial

models, nor does it incorporate the controlling of the process using unit operation

state instructions.

Though other integration frameworks have been defined by Cameron et al.

(2005), none fit the production model as well as the simultaneous or multi-

domain frameworks. The nature of the integration framework between the

models which form the production model remains unresolved. It may be that the

frameworks defined by Cameron et al. (2005) do not apply here, or the different

 90

partial models (i.e. the cheese making process and the raw milk models) are

integrated using different frameworks.

7.1.1.2 Raw Milk Supply Model

The raw milk model provides a boundary condition on the cheese production

model for a particular day, by placing an upper limit on the amount of raw milk

which is available. Here, the raw milk supply model (microscale) supplies an

amount of milk to the cheese production model (macroscale). As discussed in

section 4.3.3, an amount of milk is made available to the process on each 1 day

production scenario.

In this implementation, the complete yearly milk curve is stored as a database

table, and as each 1 day production scenario is iterated, that day’s raw milk is

added to the Raw Materials software collection class.

7.1.1.3 Cheese Making Process Model

The cheese making process is a sequential modular model, where all the unit

operations are connected into a process flow sheet. The model of the cheese

making process is the composite of the connected unit operation microscale

models (Figure 7-3). The integration framework classification which seems the

best fit here is the embedded integration framework, where the microscale unit

operation is embedded within the process model.

Figure 7-3 – Cheese Making Process Model using Embedded Partial Models

Individual

unit

operation

models.

Cheese Making Process Model
Macroscale model

Microscale models

= direction of

information

flow.

= model

domain

From any single unit operation’s perspective, the rest of the cheese making

process is the macroscale model while the unit operation itself is the microscale

 91

model. In other words, a unit operation does not need to know the state, or any

state variables, of any other unit operation. The Process Modelling Environment

(section 2.3.1) manages intra-process data, such as connection information and

material port flowrates, between the micro- and macro scales.

The connection of unit operations into a process flowsheet performs a single

task. It provides a pathway for the movement of material, energy, and information

between unit operations. The cheese making model generates data on

phenomena such as production, energy and material use and unit operation

behaviour at any point in time.

7.1.1.4 Unit Operation Models

Unit operation models are constructed using a combination of empirical data and

mechanistic phenomena. As shown in section 4.3.2, the generalized models are

a user defined collection of possible states of existence of the unit operation,

various rules defining a state’s existence and duration, and boundary conditions.

Where a state has a duration, generally the value is set using empirical data. For

example, a cheese vat’s CUTTING state’s duration is set based on the empirical

data gathered from previous batches. However, in one case, unit operation

models use a partial model to calculate the duration of a state and provide

important macroscale model detail.

Figure 7-4 – Capacitive Unit Operation Model using an Embedded Partial Model

Capacitive Unit
Operation Model

Macroscale model

Microscale model

= direction of

information

flow.

= model

domain
Filling/Emptying

model using

Euler’s method

The filling and emptying of a capacitive unit is modelled using a microscale

partial model (see section 7.1.1.5) which provides information on the material

content (e.g. the material volume) within the unit operation. The unit operation

 92

macroscale model spans the system domain. The filling/emptying model spans

only a small part of that domain (Figure 7-4). This is an example of an embedded

integration framework.

7.1.1.5 Unit Operation Material Content Model

When the unit operation is a capacitive unit, it has among its possible states

FILLING, EMPTYING and FILLING/EMPTYING. When a capacitive unit is in one

of these states, and there is flow at one of the material ports, the unit operation’s

material content is changing (increasing or decreasing). This change is

calculated using Euler’s method (see section 7.7.2).

7.1.2 Where do the Production Scenarios Fit?

One final issue is where the so called production scenarios defined in section

4.3.5 fit into the multiscale modelling context. As discussed these instructions are

central to the control of the process model. They are responsible for turning the

process model which would otherwise only be capable of simulating a single 1

day period into a model capable of simulating any time horizon. In other words,

they allow the cheese making process scale to be extended in time and used as

a cheese production scale model.

Production scenarios do not intuitively appear to be models. They are a set of

instructions which tell the process what state a unit operation must be in. The

process modelling environment then uses them to set the unit operation state.

Perhaps they should be thought of as boundary conditions for the process model.

This issue remains unresolved.

7.1.3 Analysis Summary

The model presented here is a multiscale model. Multiple partial models

spanning different time and length scales are integrated into a production model

capable of simulation a different (and greater) time span than its constituent

partial models.

 93

7.2 Multiscale Model Performance

In this section the performance characteristics of the model are examined in the

context of the model’s solution speed, data quality (i.e. accuracy and detail), and

data quantity. The model was not compared against an actual process, which

would be the real test of the model’s accuracy.

7.2.1 Data Quality

Once a solution to the modelling problem is found a simulation can be performed

using either of the two time increment modes (i.e. fixed-interval or discontinuity).

In the simulations performed here, both the discontinuity and the fixed interval

with a 1 second increment generated data of equal accuracy at both the unit

operation and process scales. When the fixed interval time increment was

increased, accuracy was reduced and detail was lost.

For all simulations the largest overall mass balance error on the cheese making

process for a 2 day simulation which processed 2 million kilograms of milk was

1%. The smallest was zero. The primary source of mass balance error occurred

when the time increment to the next unit operation state change should have

been less than 1 second. However, the software was limited to a minimum time

increment of 1 second. To improve the accuracy of the model a mechanism for

incrementing fraction of second time increments would need to be implemented.

Performing a simulation with a 1 second time increment is inefficient. Often

nothing of significance occurs in the production process’s unit operations over a

particular 1 second period (e.g. there is no change in unit operation volumes or

states). This results in data being generated which contains no important

information, and computer processing and data storage capacity is wasted.

Increasing the size of the time increment reduced the number of unnecessary

iterations (therefore reducing both the number of calculations required and the

amount of data generated), but resulted in data errors and possible simulation

solution failure.

 94

The discontinuity mode time increment mechanism overcame this problem. In

this mode a forward calculation is performed to find at what time increment the

next unit operation state change will occur. So the model solution will have fewer

steps and consequently produce less data.

The model operating in both fixed increment and discontinuity mode captured all

the important features of the cheese making process and characteristics of

individual unit operations. For example, features such as the continuous – batch

nature of the cheese vats were successfully modelled.

The model accurately generated the correct amount of manufactured product

based on the mass of final product material (i.e. cheddar cheese) produced.

Overall, the model performed with very low error and accurately modelled the

behaviour of unit operations and the overall process on short time horizons (up to

6 days tested). Longer time horizon simulation testing is needed to validate the

model on monthly and yearly time horizons.

7.2.2 Solution Speed

The solution speed of the multiscale model depends on several factors:

• The simulation’s time horizon (i.e. hours, days, months, or years).

Because of the time-interval incrementing mechanism driving this model,

the longer the time horizon for the simulation, the longer the solution time.

• Time increment calculation mode. A fixed interval time increment mode

simulation solution (note that the time interval chosen must give a

solution) will always take longer than the same simulation run in

discontinuity mode.

• The type of process. A process which operates continuously with few unit

operation state changes will require less computer processing than a

batch process where unit operations have many state changes.

• The number of unit operations in the process. For a given simulation timer

control time interval, as unit operations are added to the model, the

 95

computer processing required to run the model can be increased.

A simulation involving one capacitive unit operation, operating a 20ms

iteration rate (see section 4.10.4) with a 1 second time increment took 1

minute to simulate 50 minutes. When the number of unit operations was

increased to ten, the same iteration rate and time increment took 3min 7s

to simulate 50 minutes.

Solution speed is an important factor in the usefulness of a model from an

industrial perspective. A simulation that takes days (which is conceivable using

this model) may be acceptable if the time horizon being modelled is years, but

not so acceptable if the time horizon being modelled is days. Fortunately the

discontinuity calculation mechanism facilitates large time steps and shortens the

solution speed. However as microscale partial models (at the reaction level) are

added it may be that a simulation’s maximum time step may become smaller. In

this work the maximum time step seen was over 5000s.

Speed can be improved using more powerful computer processing. The

1600MHz Intel Pentium M processor used here limited the model’s iteration

speed to a maximum speed of about 20ms (depending on the number of unit

operations in the simulation) before the processor reached capacity. The

smallest possible standard iteration speed available in Visual Basic .NET is 1ms.

It maybe that software changes, such as improving the discontinuity calculation

mechanism, will decrease the solution time by reducing the number of

calculations. FOR…NEXT software loops for example can slow processing, and

there may be gains in efficiency available by re-examining the need for some of

these.

7.2.3 Data Quantity

This modelling technique potentially generates enormous amounts of data.

For example, in the cheese manufacturing process modelled here (with 28 unit

operations), a simulation operating a 1 second fixed-interval time increment

modelling a 6 month period would generate over 15 million records for a single

 96

variable (e.g. volume). A 60 second time increment would generate over 260,000

records. If 5 properties are reported on, the simulation’s data burden for a 1

second time increment becomes nearly 79 million records (1.3 million records for

a 60 second fixed increment).

In the case of a discontinuity mode simulation, the number of data records per

property becomes a function of the placement of a production scenario’s unit

operation state instructions and the number of variables being reported. This

mode will always generate less data than the fixed interval mode.

7.2.4 Choosing the Time Increment Mode

The choice of one time increment mode over another depends on the

requirement of the user. The fixed increment mode (with a small time increment)

is used when designing and testing a new modelling solution. The discontinuity

mode is the better alternative when performing the actual simulation once a

modelling solution has been found. It should also be useful when performing

optimizations on multiple production options (not implemented).

The calculation of the time step to discontinuity for linear and non-linear

simulation models is discussed in section 7.7.3.

7.3 Decision Making Information

The data generated by the cheese making process model implemented here has

uses in multiple levels from the dairy business, from process operations and

production planning, to supply chain management and process design.

7.3.1 Gantt Charts

Gantt charts (see section 6.4) are of interest to production operational and

management levels. The information can be used for scheduling and

maintenance planning, and process optimization. They give a useful visualization

of the behaviour of a combination of unit operations over time relative to each

other, and of the utilization of an individual unit operation. For manual processes,

 97

they also provide a recipe for plant operators to run the process. For automated

processes, they provide the information needed to programme the plant’s control

system.

Consider a manually operated cheese plant, with a cheese vat batch cycle which

generates the Gantt chart shown in Figure 7-5.

07:30 07:50 08:30

FILLING SET CUT COOK STIR

Figure 7-5 –Cheese Vat State Gantt Chart (not to scale)

09:00 09:50 10:10

EMPTYING

10:30

The operator can use the Gantt chart to operate the cheese vat as follows.

1. The cheese vat should start FILLING at 7:30. The operator will initiate the

actions required to achieve this (e.g. opening of cheese vat inlet valve).

2. At 07:50 the unit operation should go into the SET state, and the operator

might close the inlet valve (the addition of starter bacteria and rennet is

not considered here).

3. At 8:30, the operator sees that the SET state should be complete and the

curd should be formed. The operator will check the strength of the gel, and

initiate the CUT state (e.g. by switching on the cheese vat’s cutting

knives).

4. At 09:00 the operator will stop the CUT and initiate the vat’s COOK (e.g.

by opening a hot water valve which adds hot water to a heating jacket

surrounding the vat).

5. At 09:50 the operator will start the STIR by switching on the stirring

blades. It may be that the operator will monitor the pH of the curds and

whey mixture during the STIR.

6. At 10:10, if the pH is correct, the operator will terminate the STIR, and

open the cheese vat’s outlet valve to begin EMPTYING the vat.

 98

From the plant operator’s perspective, each state change may require one or

more actions. The Gantt chart in this example shows the operator when to begin

and end the tasks associated with a particular state.

The combined cheese vat Gantt chart shown in Figure 6-2 gives the plant

manager information on the utilization of the cheese vats and redundancy in the

process. For example, because the cheese plant must be operated continuously,

it is important that there is some redundancy in the cheese vats to (say) allow for

a batch which takes longer than usual to complete. From Figure 6-2 it can be

seen there is little redundancy in the modelled process. If a batch required a

longer cook stage than normal, the vat might not be available for emptying onto

the cheese belt when needed (to keep the process continuous). Similarly, the vat

might not be ready for filling on schedule. In this case the plant management may

decide to add an extra cheese vat to better ensure continuous operation.

Over longer time frames, Gantt charts can be used to examine the availability of

the cheese making process over (say) the milk production season. This is

particularly useful to management who are involved in production planning.

Because there are long periods of under utilization due to the varying milk supply

(discussed in section 3.1.2) a Gantt chart of a complete process gives

information on the availability of the process at any point in the season. This

information would also be used for human resource allocation and plant operator

shift scheduling.

Gantt charts are also useful for process design and optimization. For example a

proposed process can be modelled using different cleaning and maintenance

regimes, capacitive unit operation volumes, and flowrates. The effect of these

variables on process and unit operation availability can be analyzed.

7.3.2 Time Series Graphs

In this work several time series graphs are presented:

• unit operation volume time series (section 6.3)

• manufactured product (section 6.5)

 99

• raw material consumption (section 6.6)

• accumulated energy consumption (section 6.7)

Between them they provide important information for plant operations, production

planning, maintenance scheduling, inventory control, sales and supply chain, and

dairy business management decision makers.

The production manager can analyze the viability of different short, medium and

long term manufacturing scenarios and different production schedules using the

manufactured product and raw material data.

The dairy business manager can use production information in conjunction with

sales and cost models (which also use production data) as part of the overall

business plan forecast and analysis.

Manufactured product information is important to production planning decision

makers to ensure they can meet manufacturing requirements. This is also

important to inventory control.

Raw material consumption information is important to supply chain decision

makers to ensure the timely ordering and delivery of raw materials (aside from

raw milk) used in the manufacturing process.

This information can be used in the form presented or other forms which may be

useful for other types of decision making. For example, whereas the accumulated

energy consumption would be useful for cost planning, time series data of actual

energy consumption is useful for production planning.

Consider a site which has multiple processing options which compete for a finite

electricity supply. It may be that, based on a modelling scenario’s actual energy

consumption data, production scheduling is reconfigured to allow the competing

processes to operate at different times. This type of analysis is also useful if

electricity prices fluctuate over the short to medium term. An analysis of the

timing of electricity consumption will allow decision-makers to schedule

production for times when electricity prices are lower.

 100

7.4 Modelling Unit Operations using their States

Once a unit operation’s possible states have been identified (see section 4.3.2)

and defined (in sections 4.9 and 5.1) the behaviour of a unit operation can be

modelled, and the process controlled. The use of the state as the core process

control mechanism which is used to create multiple time period modelling

scenarios (by forcing a unit operation into a particular state at a particular time)

has been discussed in sections 4.3.5 and 5.4. This section will discuss using a

unit operation’s state to:

• model unit operation behaviour

• integrate lower scale partial models and calculate process information

• enforce unit operation business rules.

7.4.1 Unit Operation State Behaviour

It is intuitive that an entity’s behaviour is dependent on the state it is in. In this

work a unit operation’s behaviour is driven by its current state. This was achieved

by two mechanisms. One mechanism uses software code. The other mechanism

uses the state collection of a unit operation.

The unit operation software object is programmed to run certain code in certain

states. For example, a pump (i.e. a flow generating flow unit), when in an ON

state, sets its own material port flowrates to a predefined non zero value. This is

all it does in that state. If the pump’s state is OFF, it will set its material port

flowrates to zero.

Other unit operation behaviour is dictated by what type of state it is in (i.e. static

state or dynamic state). For example a cheese vat’s batch process is modelled

using dynamic states (see section 4.9.2) which model the various stages of the

batch process.

7.4.2 A Unit Operation’s State as an Integration Interface

Following on from the previous section, it is proposed here that a particular

microscale partial model which is integrated with a unit operation macroscale

 101

model will be run when the unit operation is in a particular state. In other words,

the unit operation’s state is used as the mechanism for deciding which

microscale model to recalculate. This is achieved by associating a microscale

partial mode with a state. When a unit operation is in a state which has a

microscale partial model associated with it, that partial model is recalculated, and

process information which is relevant to that state is obtained.

In this work, the model of a capacitive unit operation (at the macroscale) is

integrated with a material content microscale model (discussed in section

7.1.1.5). The microscale model will recalculate when certain criteria are met. If an

upstream capacitive unit is in a suitable state (i.e. EMPTY QUEUE or

EMPTYING), and has a non zero material content, that capacitive unit will begin

emptying subject to a downstream capacitive unit being in a suitable state (i.e.

FILL QUEUE or FILLING) and having capacity to receive material. There must

also be flow at the material ports, and the current global time must be different

from the last time the microscale model was recalculated.

The concept of using the state to integrate microscale partial models with unit

operation model is developed further in section 7.5.

7.4.3 Using States to Implement Business Rules

Business rules can also be implemented using states. For example if a unit

operation must be cleaned every 24 hours, then the unit operation will have a

compulsory state (see section 4.9.3) assigned to it. The unit operation will be

forced into the CLEANING state if it is not placed manually into that state (by a

production scenario) before the maximum time interval between the state

occurring has passed.

The compulsory state concept allows other business rules, such as preventative

maintenance regimes, to be incorporated into the model.

 102

7.5 Adding Other Scale Partial Models

Integrating a unit operation (e.g. a reactor) macroscale model with microscale

partial models will improve the detail of the unit operation model. Integrating this

multiscale model with a macroscale model allows that model to access the

production data generated by a simulation. In this section a mechanism which

allows the integration of unit operation partial models with both macro- and

micro- scale partial models is presented.

The decision to integrate will depend on the level of interest in the data

generated by any model and its contribution to the task of achieving the overall

modelling goal. For example whether a more accurate and detailed

representation of the variable(s) supplied by that model will significantly improve

the accuracy of the system model. So a microscale partial model could be used

in lieu of a constant value to provide more realistic model behaviour.

Using object oriented programming (OOP) software development, the potential to

add partial models appears unlimited. Not withstanding processing and data

management costs, OOP should allow the incremental addition of partial models

without requiring extensive changes to the core software model.

7.5.1 Microscale Partial Models of Unit Operations

It seen in section 7.4 a unit operation’s state property is a useful interface for

integrating unit operation microscale partial models.

The capacitive unit software class is currently programmed to perform certain

calculations when in the FILLING or EMPTYING state (i.e. its volume

recalculation method discussed in section 7.7). In this case the capacitive unit

performs the calculation for the duration of its existence in either of these states.

As discussed in section 4.9 some unit operation states have a time component

associated with them. Some expire after a predefined lapse of time from when

that state is first attained (e.g. COOKING in a cheese vat) and are used to

simulate the steps in a batch process. Others must occur at predefined intervals

 103

(e.g. CLEANING in most unit operations). Here, the time component is set

manually by the user during configuration of the model.

However, in some instances it may be possible to calculate the time component

of a state using a microscale partial model integrated with the unit operation

partial model. Consider a cheese vat batch. The vat’s state collection is used to

step through the batch states that represent the stages of reaction and

processing that produce the curd.

In Figure 7-6, interface A shows a representation of the current implementation

(not all states in the state collection are shown). The cheese vat’s SET,

CUTTING and COOKING state’s durations are currently configured by the user.

As the cheese vat simulation progresses, and the cheese vat simulation needs

duration data on the states, the state collection supplies it.

A more accurate and detailed multiscale model would use a microscale model to

calculate the duration of each state based on process conditions. It might work

like this.

SET

Curd formation microscale
partial model

Figure 7-6 – Cheese Vat Status Duration Calculation

Cheese Vat State Collection

Time for controlling curd

formation set points (e.g.

particle size) to be reached.

Vat stirring &
cutting microscale

partial model

CUTTING

Time for controlling set

points (e.g. pH, cut curd

size) to be reached.

A

B

COOKING

Cheese Vat Simulation Progress

Cheese Vat

Process data used as

inputs for a microscale

partial model.

The cheese vat batch macroscale model is integrated with a curd formation

microscale model (Figure 7-6). At the start of the simulation, the duration of the

 104

SET state is calculated. The unit operation passes the curd formation model

process information (components, pH, temperature). The curd formation model

calculates the length of time for the model to reach the target curd consistency

and rigidity, and returns it as the SET state’s duration.

Similarly, a partial model could be used provide the CUTTING state’s duration by

calculating the time for the required average curd size and whey pH to be

reached.

Figure 7-6, interface B shows the cheese vat’s SET and CUTTING state

durations are calculated by the partial models. The COOKING duration remains

user configured (i.e. a fixed value). The states’ duration values are then supplied

to the cheese vat model in the currently implemented way (Figure 7-6 interface

A).

A state’s duration may need to be recalculated during simulation. For example

when a unit operation’s mass balance changes, or if process conditions which

are inputs to a microscale partial model change (e.g. pH, temperature, cutting or

stirring rate).

The current multiscale model can provide flow, volume, and unit state data. In the

above example, process detail comes from a scale below the cheese vat unit

operation. Reactor and process control properties such as pH, particle formation,

temperature (e.g. for an exothermic reaction) will be provided by the microscale

partial models.

7.5.2 A Macroscale Partial Model

A simulation can generate datasets which can be used by other scale models.

Consider cheese manufacture. Over time cheese is manufactured and placed in

storage (i.e. the Manufactured Product collection) – Figure 7-7 interface B.

A sales and marketing partial model that sells cheese would access the

Manufactured Product collection (Figure 7-7 interface A) to obtain the required

amount of cheese. The cheese in the storage varies as manufactured cheese is

added and sold cheese is removed.

 105

Figure 7-7 – Cheese Process Manufactured Product Collection

Cheese Making Process Simulation Progress

Sales/Marketing Model Simulation Progress

Time

A

B

Manufactured cheese collection

Manufactured cheese

Request for amount

of cheese (i.e. a sale)
Amount of

cheese supplied

7.5.3 Other Scale Partial Model Possibilities

Other partial model possibilities exist. Wherever an input variable can be

calculated or obtained from empirical data, a partial model could potentially be

integrated into the multiscale model to provide that variable’s value. Possibilities

include:

• Raw material and utility cost data which experiences price volatility (such

as electricity) could be provided using a partial model. For long term

modelling, most costs will not remain constant and it may be desirable to

model them from a partial model (e.g. labour and raw materials).

• Dynamic modelling of startup and reactions.

• A variable speed pump, where the flowrate is a function of the power

supplied could be connected via an energy port to a flowrate/power

supply partial model.

 106

• Pumps could be modelled using pressure-flow models to provide greater

process detail such as providing a material object with a pressure

property value.

• Pipe work could be modelled using the capacitive unit class with a

pressure drop property (which in itself might use a partial model

consisting of a Reynolds number calculation).

• Heat transfer in a heat exchanger might use a partial model to calculate

the changing heat transfer coefficient due to scale build-up. This in turn

would be used to schedule maintenance and model energy demand.

Each additional microscale model added to the multiscale model will increase the

data processing and storage demands of simulation.

Possibilities also exist for integrating this multiscale model with other macroscale

models other that the sales and marketing model discussed in section 7.5.2. For

example, the raw material consumption model could be used as input data for a

supply chain management model. The amount and timing of raw material

consumption could be used for purchasing and warehousing modelling.

Another possibility is price data associated with production, such as electricity

costs and manufactured product value could be used as inputs into the financial

control models.

7.6 Incorporating Actual Plant Data

The potential exists to incorporate actual plant data into the model. The data

could be historic or real time. This involves taking recorded or live data (e.g.

flowrates, material components, temperatures, raw material and utility prices)

and using it as the initial or boundary conditions for the relevant partial models.

The current implementation will not facilitate this, but its implementation has two

benefits.

 107

Firstly it would enable the decision maker to use the model to provide a more

accurate prediction of process performance, and raw material and utility

consumption. This would allow an immediate update of reported production and

cost forecasts.

The second benefit would be to improve the model or the process. The causes of

inconsistencies between process and model data can be identified and

improvements to either made.

7.7 Stepping Partial Models

From sections 5.5 and 7.1 it is seen that the production model generates cheese

production data by stepping of the cheese making process, raw milk supply, unit

operation and capacitive unit models.

However, the decision on when to iterate each of these models has important

implications for the overall performance of the model (section 7.2). This section

will look at an inefficient recalculation regime which was first implemented, and

show how it was improved. The general implementation of partial model stepping

(which drives model recalculation) is also examined.

7.7.1 Inefficient Recalculating of Unit Operation Partial Models

In the sequential modular cheese making process model presented here, the

simplest strategy for recalculating the model (and consequently every constituent

unit operation microscale partial model) was to iterate it at 1 second fixed

intervals for the duration of the simulation. This was the strategy adopted in the

first software implementation.

It quickly became apparent that this approach was impractical because of the

potentially long simulation solution times involved, and the large amount of data

generated. Both these are the consequence of unnecessary recalculation of

partial models. Therefore it was desirable to increase the time increment per

iteration, and only recalculate a partial model when necessary.

 108

A mechanism was needed to identify what a unit operation’s next state would be,

and when the change to that state would occur. The simulation could then be

incremented using a time step which was a large as possible, while capturing all

the occurrences of interest within the process. The search for the change in state

is to look for the next discontinuity in the behaviour of the unit operation.

7.7.2 Time Increment Calculation using Discontinuity

The use of the discontinuity time increment method provides a mechanism to

ensure the model is recalculated only when some change of interest occurs. This

approach makes use of the linear nature of this system. To illustrate this,

consider a simple simulation which models the filling and emptying of a storage

silo with a material of constant density.

The silo is empty to begin with. At a user defined time t1 it begins to fill at

constant mass flowrate MF, and continues until the maximum volume Vmax is

reached at time t2. A period of time elapses before the silo begins to empty at

time t3 at constant flowrate ME, until the silo is completely empty at t4.

The volume time series of this cycle is shown in Figure 7-8.

The discontinuities occur when the simulation’s actual time (tg) equals times t1, t2,

t3, and t4. At each of these times an important event occurs in the silo. The aim of

the discontinuity time increment method is to identify when the next important

event occurs at any point in the simulation.

Simulation Actual Time (tg)

Figure 7-8 – Time Series Graph of a Filling and Emptying Silo Showing Discontinuities

Vmax

Volume

in silo

Slope = MF

Slope = ME

t = 0
V=0

t 1 t 2 t 3 t 4

 109

Consider each of the possible situations for tg:

1. tg < t1

The silo’s state is FILL QUEUE. Because the FILL QUEUE is a static state

(section 4.9.1) t1 will not be identified from an examination of the silo’s state

collection (section 4.3.2) or those in the production scenario’s state collection

(section 4.3.5). t1 will be dictated by the time that the silo’s feed pump’s state

is changed to ON. However, this time point will still be modelled because the

simulation will identify that pump’s state changes also.

2. t1 < tg < t2

The silo’s state is FILLING. The t2 discontinuity point is calculated using

Euler’s method:

∆V = M x ρ x ∆t where

∆V = silo volume change (i.e. Vmax - Vcurrent),

M = the inlet ports mass flow rate,

ρ = material density,

∆t = time increment (i.e. t2 - tg).

with appropriate units to ensure dimensional consistency. All variable quantities

except for t2 are known so the equation can be solved for t2.

3. t2 < tg < t3

The silo’s state is EMPTY QUEUE. As in case 1 above, because the EMPTY

QUEUE is a static state t3 will not be identified from examination of the silo’s

states, but will be dictated by the time that the silo’s empty pump’s state is

changed to ON.

4. t3 < tg < t4

The silo’s state is EMPTYING. As in case 2 above, t4 will by found by Euler’s

method.

 110

The discontinuities in this example can be seen visually by the changes in slope,

which imply a change of state, of the volume time series (Figure 7-8). This is not

always the case. In this work, more often than not, the discontinuity occurs

through some change in state which is not the result of a change in volume (such

as the silo changing from the RINSE state to the FILL QUEUE state).

Extending this concept out to a process consisting of multiple unit operation

partial models, each unit operation will have its own time increment to

discontinuity. The time increment used for the next iteration of the simulation will

be the smallest time increment to discontinuity of all the unit operations.

7.7.3 Linear and Non-Linear Simulation Discontinuities

Time

Figure 7-9 – Time Step Calculation – Linear Algebraic

Vmax

Volume

in silo

Slope = MF

V0

t0 tmax

In this work only linear simulation discontinuities are considered. Consider a

storage silo being filled by a pump at constant flowrate MF. The volume in the silo

is represented by Figure 7-9. Discontinuity occurs when the material volume

reaches the maximum volume Vmax.

Preston and Berzins (1991) describe two types of discontinuity, explicit and

implicit. An explicit discontinuity is one where the time to discontinuity is known a

priori. The volume model above is an example of an explicit discontinuity. The

time to discontinuity is found from the linear algebraic equation:

 111

∆V = MF ρ ∆t where

∆V = volume change to full (i.e. Vmax – V0)

MF = the inlet port’s mass flow rate

ρ = material density

∆t = time increment to discontinuity (i.e. tmax – t0)

and can be solved explicitly for ∆t.

∆t = ∆V
 MF ρ

Vmax is the maximum volume, V0 the current volume, and along with MF and ρ are

known by the simulation. So the time increment ∆t can be found.

In an implicit discontinuity not only is the time to discontinuity not able to be

obtained explicitly, the final state (e.g. in this example the final volume) might not

be known. If the final state is known this is defined as partially-implicit. If the final

state is not known this is defined as fully-implicit.

An implicit discontinuity takes the form f(x) = 0.

Consider the tank emptying in a non-linear manner which has a minimum volume

set point (Vmin). Say the volume in the tank is described by the non-linear

ordinary differential equation (ODE)

Vk
dt
dV

= .

and represented in Figure 7-10.

Time

Figure 7-10 –Non Linear Tank Empting

V0

Volume

in silo

Vmin

t0 tmax

 112

Backward differential formulae (BDFs) and Runge-Kutta numerical methods are

used to solve such non-linear ode’s (Akai, 1994). Some of these methods (e.g.,

ODE15S in Matlab, The Mathworks, Inc, MA, USA) allow the specification of

implicit discontinuities so that a series of time steps will reach the discontinuity

Vmin efficiently. Because the final state (i.e. Vmin) is known this is an example of a

partially-implicit discontinuity.

7.7.4 Implementing Partial Model Recalculation

As discussed in section 7.2, an important issue from the perspective of model

performance when integrating partial models is when to recalculate any particular

partial model. Potentially, each partial model in a multiscale could be recalculated

whenever the macroscale model it is integrated with is recalculated.

However as shown above this type of recalculation regime leads to computer

processing inefficiency. To achieve optimal processing efficiency, it is desirable

to recalculate a partial model only when there is a need to refresh the data which

the model provides.

The production model is iterated whenever the simulation time reaches 00:00:00

hours (i.e. on a one day cycle). At each iteration:

• the raw milk partial model is recalculated to generate new raw milk supply

data for the day (based on the new date), and

• a production scenario for the date is obtained (remembering a production

scenario is a set of user defined unit operation state instructions – section

5.4).

The decision to recalculate these models at 00:00:00 is arbitrary, albeit made for

the reason that raw milk supply changes on a daily basis. There is no reason for

example that the raw milk supply could not be modelled on an hourly basis, to

model the movement of milk tankers (e.g. arrival, emptying, cleaning) in the site’s

milk reception facility.

 113

The cheese making process model then proceeds to iterate multiple times and

generate production data. The number of process model iterations is determined

by the time increment mode used (i.e. fixed increment or discontinuity). The

discontinuity mode of operation is the most efficient because the cheese making

process model will only recalculate when a unit operation state change occurs –

that is when some time point of interest in the simulation is reached.

In the software implementation here each iteration of the cheese making process

iterates every constituent unit operation partial model of the process model. The

material content partial model, which is integrated with the capacitive unit

operation model, will iterate when two criteria are fulfilled. i.e.:

1. there is flow at any of the capacitive unit’s material ports, and

2. the current simulation global date-time is later than the date-time when it

was previously recalculated.

In general, the best iteration regime would be one which that only recalculates a

partial model when an input variable to that model changes. Here, time

dependant models, such as the capacitive unit material content model, are

responsible for much of the computer processing demand.

The instances where a partial model would require recalculation are presented.

Example 1 – Mass Balance

Consider a mass balance partial model which calculates the components and

flowrates from a cream separator. In this case the model would be recalculated

when a flowrate or component concentration changes at one of the input ports. It

would also be recalculated when the spjjecification of material from the separator

is changed by the user.

Example 2 – Unit Operation State Duration Calculation

Consider a cheese vat’s SET state duration calculation (not implemented here).

The curd formation SET time in the cheese cooking vat is a function of the

concentration of protein in the milk, the rennet concentration in the

milk/rennet/starter mixture, the temperature of the milk, and the pH of the mixture

 114

(O’Callaghan and O’Donnell, 1998). When the value of any of these factors

change it will be necessary to recalculate the SET time.

Example 3 – Heat Balance

Consider the case of a heat exchanger which uses a partial model to calculate

the temperature change of a process side fluid. For a given heat exchanger with

constant hot and cold side fluids, and a given desired process outlet temperature,

the factors which might change the performance of the heat exchanger include a

change in the flowrates, inlet temperatures, and heat transfer coefficients due to

buildup of material on surfaces. Partial model implementations should provide a

mechanism for deciding when a recalculation needs to be performed based on

pre-defined criteria.

7.8 Software Development

This work shows the benefits of taking an object oriented approach to the

construction of a multiscale model.

The model is constructed using object oriented programming (OOP) methods in

conjunction with technologies such as the Visual Basic .NET software

development environment and CAPE-OPEN (discussed in section 7.9). These

technologies lent themselves well to the construction of the cheese making

process model. OOP classes facilitated the rapid and flexible construction of

multiple unit operation partial models while CAPE-OPEN provided technology for

the successful integration of, and communication between, unit operation

models.

Any chemical process industry multiscale model, by its very nature, consists of

extensive data and functionality requirements. The core material, energy,

processing, production, and cost information streams alone have multiple

sources and multiple interactions. OOP reduces the complexity of the software

implementation and allows functionality to be incrementally added to existing

models more readily that tradition software programming methods.

 115

For example, even though this model doesn’t include comprehensive energy and

costs, there are practical options available for incorporating them which requires

the modification of existing (and possibly the addition of new) software classes.

Their implementation should not affect the current implementation of material

streams, though it could add complexity to the classes involved. The point is that

the core model structure remains unchanged.

Another benefit of taking an object oriented approach to multiscale modelling

approach to business modelling is that maintenance of the system model from a

software development perspective is simplified. If a particular partial model

requires changes, which could be as straightforward as new boundary conditions

or as complex as a new mathematical model, as long as the inputs and outputs

remain the same the partial model can be readily modified without expensive

changes to other parts of the software. If the inputs or outputs change

modification becomes more complex.

Though the individual models are not implemented as standalone (e.g. dynamic

link library) software components, the basic class structure is in place to make

the transformation into a distributed application.

7.9 CAPE-OPEN

The CAPE-OPEN documentation is extensive, currently consisting of over 35

separate documents and specifications. Much of this is aimed at the experienced

software developer in the form of detailed specifications for constructing process

modelling components and environments. They include unit operations,

thermodynamics and physical properties packages, numerical solvers, sequential

modular flowsheet simulator interfaces, and planning and scheduling tools.

The specification’s emphasise on the oil, gas and refining industry reflects the

make-up of the majority of the CO-LaN (CAPE-OPEN Laboratories Network)

consortium partners who publish it. However this emphasis does not detract from

the usefulness of CAPE-OPEN to software developed for the dairy industry.

Many of the concepts are generic to the chemical process industry and the

 116

documentation provides useful in-sites into the latest thinking in the area of

process modelling in general.

The CAPE-OPEN specification is central to the development of the software

used to construct the cheese production model. It was used for, among other

things, the construction of unit operation models and their interconnection into

process flow sheets (such as ports, materials, port connections).

The models built here are not CAPE-OPEN compliant. However the basic

structure is in place allow compliance with the CAPE-OPEN specification to be

implemented. CAPE-OPEN compliance would allow process modelling

components and environments to be integrated with CAPE-OPEN compliant

third-party software.

7.10 Ports

Ports are the mechanism which facilitate the exchange of information (i.e.

material flows, energy flows, and other types of information) between unit

operations. In this work material ports were implemented, and one energy port

implementation was tested. Ports proved simple to implement, and are intuitive to

the chemical engineer because they reflect the real world connection mechanism

of unit operations in a processing facility.

In this work, multiple outlet material port unit operations have a flow fraction

assigned to each material port when the material port is added to the flow unit.

This flow factor is based on empirical data (such as the experience of the

separation achieved by a cream separator at a particular flowrate).

Figure 7-11 – Multiple Outlet Port Flow Fractions

 Flow Unit

Inlet Port Outlet Ports

Flow Fractions

FF1

FF2

∑ FF = 1 M inlet

M outlet 1

M outlet 2

∑ M outlet = M inlet

 117

This forces the total inlet flowrate (whether from 1 or more inlet ports) to split

according to the fractions assigned. The sum of the flow fractions = 1 (Figure

7-11). Splitting flow using this method is crude. A better way of assigning outlet

port flowrates would be to calculate them using a mass balance.

The outlet material ports may have different material objects assigned. So the

cream separator implemented here has two outlet material ports. Skim milk is

assigned to one outlet port, and cream assigned to the other. In reality a third

outlet port could be added to incorporate the cream separator’s purge.

7.11 Material Streams

The Material Port – Material class mechanism for modelling material streams (i.e.

filling and empting of vessels, material transfer between unit operations, mixing

and separation) and connecting unit operations successfully enabled the

construction and simulation of a cheese making process model.

Capacitive unit and flow unit classes are used to manage the storage and

transfer of material throughout the process and provide core unit operation

behaviour, functionality and properties for material transfer.

While capacitive units in practice can have multiple inlet and outlet material

streams, here they are implemented with no more than one of each. Stream

mixing and separation is modelled using flow units with multiple inlet and outlet

ports. In this implementation, for material transfer to proceed, some configuration

and operating rules were defined:

• A capacitive unit must be available for filling or emptying before material

can be transferred to or from it. It must have available capacity or existing

material, and be in a state to receive or release material (i.e. state equals

FILL QUEUE or FILLING or state equals = EMPTY QUEUE or

EMPTYING).

 118

• Only a flow-generating flow unit can initiate material transfer (i.e. flow)

between unit operations.

• The flow-generating flow unit’s inlet port must be connected to a

capacitive unit’s outlet port (i.e. they can only generate flow when

immediately downstream of a capacitive unit).

• The flow-generating flow unit must feed into a capacitive unit

downstream, though it doesn’t have to be connected directly to the

capacitive unit (e.g. a pump – pasteurizer – cheese vat configuration).

• A multiple outlet port flow unit (e.g. a separator) must be connected at

each of its outlet ports to downstream capacitive units which are available

for filling.

• A multiple inlet port flow unit (e.g. a mixer) must be connected at each of

its inlet ports to upstream capacitive units which are available for

emptying.

• Non-flow-generating flow unit’s such as heat exchangers can only be

connected downstream of flow-generating flow unit’s such as pumps.

• Capacitive units are only connected to flow units. Never directly to

another capacitive unit. At the very least a flow unit must separate them

for material transfer to occur.

• A capacitive unit can be downstream of either a flow-generating flow unit

or a non-flow-generating flow unit. It does not know the difference.

A failed attempt to transfer material may or may not affect the state of the unit

operations involved. For example:

• Capacitive units remain unaffected by a failed attempt to transfer material

to them. An attempt to add material to a full storage silo with an EMPTY

QUEUE state will not change the capacitive unit’s state.

 119

• A flow unit that attempts to transfer material (i.e. in the ON state) from or

to a unit operation that is not available to give or receive material will be

forced into the OFF state.

• Flow units feeding or emptying an available capacitive unit will be in the

ON state. Once the capacitive unit reaches full or empty, the state of the

capacitive unit will change (from FILLING or EMPTYING) to the next state

in the state collection sequence. The flow units will not be able to transfer

material and will be forced into the OFF state.

Some of these rules are the result of real world behaviour, others came about

because of software implementation constraints and could be made redundant

by further software development. For example requiring a capacitive unit to be

available for filling or emptying before material can be transferred to or from is a

real world constraint. On the other hand requiring a flow generating flow unit to

always be upstream of a non-flow generating flow unit may not always reflect real

world behaviour and improvements to the software would remove the need for

this rule.

7.12 Energy Streams

The energy transfer trial discussed in sections 4.8 and 6.7 was successful, and

showed that energy transfer requirements can be managed using the Energy

Port – Energy objects.

In the trial, two assumptions are made:

1. energy into (or out of) a unit operation raises (or lowers) the temperature

of the material attained from inlet material streams and any material

already contained within the unit operation (i.e. in the case of a capacitive

unit).

2. all material streams leaving the unit operation are at the same

temperature. All outlet port’s materials are at the same temperature. In

 120

practice it is possible for a unit operation to have different outlet stream

temperatures. For example a continuous distillation column with reflux.

These models could be implemented using combinations of capacitive

units and flow units discussed in section 4.6.

An energy balance is required to calculate the outlet temperature. The energy

balance includes the energy from all inlet and outlet material ports, all inlet and

outlet energy ports, plus, in the case of a capacitive unit, the energy in the

material contained within it.

The temperature in a capacitive unit operation modelling a reactor can also be

increased if an exothermic reaction occurs. One possible method for modelling

this is to use an inlet energy port connected to a reaction partial model to provide

the energy generated by the reaction.

There was an error of 1.04% and 1.08% between the model’s energy

consumption and the calculated energy consumption on days 1 and 2

respectively of the simulation. Because the energy implementation was not done

as carefully as the mass transfer implementation it may be this is due to a

software bug. However, the accuracy is such that the concept has been proven

to be worthwhile pursuing.

More work is needed to implement the many different energy transfer possibilities

found in the dairy industry.

7.13 Usability of the Modelling Approach

The question of the usability of this modelling approach is a matter of how easily

a model can be defined, constructed, configured, and solved, and whether data

from a simulation can be readily accessed and used.

As discussed in Cameron et al. (2005) the traditional approach to the

construction of production process modelling involves the construction of a set of

equations using balance volume conservation (e.g. mass, momentum and

energy balances), boundary conditions, and initial conditions. The equations are

 121

then solved using various mathematical techniques. The development of these

models is the domain of highly specialized technicians.

A process modelling environment is presented which is used to build the model.

That is:

• define unit operation templates,

• construct unit operations from the templates,

• connect them into a process flow sheet, and

• create the production modelling scenarios used to control the simulation.

To utilize this modelling environment a user requires knowledge of the process

flow sheet being modelled (e.g. how the unit operations are connected and

relevant process conditions such as flowrates) and an understanding of the

possible states of unit operations. The ability to apply this modelling technique is

within the capability of any plant or process engineer. Specialized modelling

expertise is not required.

This modelling approach has benefits to both the user and the software

programmer. A sequential modular process model in the form of a flow sheet is

intuitive for the chemical engineer user while for the software developer, the

model can be easily extended (as discussed in section 7.8).

7.14 Implemented Model Limitations

The cheese making process multiscale model as implemented is limited in

several ways.

7.14.1 Batch Modelling

Currently only simple unit operation behaviour is modelled. For example, the

cheese vat batch is modelled using a sequence of time-based state changes,

which model the steps in the batch (i.e. SET, CUT, COOK, STIR). Material

 122

component mass fractions and process conditions which change during the

batch are not modelled.

A more sophisticated cheese vat simulation would model, for example, the curd

formation in the vat, and the pH development as the batch reaches completion.

Thus, the consequence of varying the batch operating conditions could be

modelled, with the curd formation model providing material stream property

information (e.g. pH) and component data (i.e. mass fractions). An interface for

integrating reaction scale partial models is proposed (section 7.4).

7.14.2 Unit Operation Connection Rules

As discussed in section 7.11, the implementation here only allows material

transfer when certain flow unit – capacitive unit connection rules are followed.

These rules should be extended. For example currently a flow generating flow

unit (e.g. a pump) must be connected immediately downstream of a capacitive

unit, though flow is not necessarily generated in this manner.

Consider the case of the block forming tower in a real cheese making process.

The Block Forming Tower operates under a vacuum. The curd is sucked from the

cheese belt to the block forming towers. Here, this situation is modelled using a

flow generating flow unit between the Cheese Belt and the Block Forming Tower

(Figure 4-16). In reality the Vacuum Pump is downstream of the Block Forming

Tower (Figure 7-12).

Figure 7-12 – Block Forming Tower – ‘Real’ Unit Operation Configuration

 Capacitive
Unit

 Capacitive
Unit

Cheese Belt

FG Flow
Unit

Vacuum Pump Block Forming Tower

Currently, a model of this configuration would not generate flow between the

Cheese Belt capacitive unit and the Block Forming Tower capacitive unit. Two

alternatives to model this situation exist:

• implement imaginary unit operations as discussed in section 4.7

 123

• add functionality to the flow unit and capacitive unit classes to allow the

actual situation to be modelled.

 124

8 Future Work

Though a start has been made on developing tools for the creation of models

(e.g. CAPE-OPEN) and general theories on multiscale modelling (e.g. integration

frameworks), there is much scope for further work in the area of multiscale

modelling applied to dairy industry process modelling.

For example, the literature review did not turn up any previous multiscale

modelling work examining the process – unit operation scales covered here.

Also, the previous work appears to have considered no more than two partial

models at adjacent scales. Here, four partial models have been integrated to

create a cheese making production model, and the overall model covers 5 time

or distance scales. Finally, no previous work was found which examined the role

of object oriented programming concepts in multiscale modelling.

So in the general multiscale modelling context, possible areas of future work

include:

• multiscale modelling applied to the construction of a process model from

unit operation partial models

• multiscale model construction from more than two partial models across

multiple scales

• object oriented programming and multiscale modelling

The remainder of this section will examine the possible areas of future work on

the multiscale model proposed here. The various areas of work fall into the

following broad categories:

• adding functionality to existing classes

• adding partial models

• adding data reporting capability

 125

• making the software CAPE-OPEN compliant

• improving the usability of the software

• adding optimization functionality to the software

• implementing more sophisticated time stepping algorithms

• an alternative modelling goal

8.1 Adding Functionality to Existing Classes

The connection alternatives of the flow unit and capacitive unit classes is

currently limited to those discussed in section 7.11. For example no work has

been done to examine the suitability of the software for incorporating recycle

streams. An analysis of the various unit operation connection alternatives is

needed to add flexibility to the modelling software.

The error caused by the inability of a simulation to increment fractional seconds

has been discussed (section 6.8.2). If functionality was added which would allow

the model to increment by less than 1 second, this source of error would be

eliminated.

8.2 Addition of Partial Models

Several possible partial models have been presented in this work.

• A model to calculate the duration of a cheese vat’s SET state’s existence

(section 7.4).

• A sales model to utilise the data generated by the production model

(section 7.4).

• Cost models for volatile cost contributing inputs (section 7.4).

• Modelling pipe work (section 7.4).

• Pump models generating energy, pressure and flow data (section 7.4).

 126

• Scale build-up in a heat exchanger (section 7.4).

• A mass balance model to calculate the components and flowrates from a

cream separator (section 7.6).

• A energy balance model to calculate temperatures and energy

consumption (section 7.6).

Each of these models can potentially be integrated with the multiscale model

presented in this work. However, whether any particular model will bring real

benefits to the multiscale model is not determined. Some, such as volatile cost

models, would at first glance appear to be beneficial to the performance of the

model. Others, such as pump models and scale build-up in heat exchangers,

might be of academic interest, but their contribution to improving the performance

of the multiscale model is less clear.

This leads to another possible area of future work. Currently, there are no clear

rules for determining whether a partial model should be added to a multiscale

model. Factors such as the importance of the data provided by a partial model,

partial model contribution to the modelling goal, cost of implementation (e.g.

software development), and cost of implemented operation (e.g. computer

processing, effect on solvability) will all be important. However, it would be useful

to have some definitive guidelines on when implementing a partial model

integration is of real benefit.

8.3 Data Reporting Capability

The data reporting capability can be extended in several ways by implementing

scheduling and resource reporting tools. In this work, data was stored in a

Microsoft Access database, then imported into a Microsoft Excel spreadsheet

where it was converted into the graphs presented in this work. This is

cumbersome and inefficient for the user. Two possibilities for improvement are

the implementation of a ‘real time’ charting, where data could be generated as

the simulation runs, and for graphing tools to be incorporated in the software that

 127

would enable graphs and reports to be generated at the completion of a

simulation from within the software application.

Tools such as Crystal Reports may be suitable for some of these tasks,

especially time series data. A search for a specialized Gantt charting tool was

unsuccessful, and it may be that something suitable would need to be developed

specifically for this application.

8.3.1 Financial Data

One important reporting requirement which was not implemented here is financial

data. The ability to generate financial data generation is a desirable function of a

dairy process model. Financial data falls into two categories, production costs

and manufactured product value.

The full analysis of the requirements of a financial implementation has not been

done, but there are two possibilities.

8.3.1.1 Totalized Financial Data

Raw material object classes, energy, and manufactured product classes could be

given a Value property, which could then be used to calculate the value of the

totalized raw materials, energy consumption and manufactured product at the

completion of a simulation.

8.3.1.2 Unit Operation Cost Data

It may be that in some cases it is desirable to analyze costs on a unit operation

basis. One approach seems worth considering. This approach involves the

creation of a cost software class. In this approach, Material, Energy and unit

operation State software classes can have a Cost class attached to them. The

cost class has properties, such as value and value units which enable material or

energy stream cost data to be calculated.

As material is transferred from unit operation to unit operation as it moves

through the process, an outlet material accumulates costs which reflects the

additional price of processing within a unit operation. Here, energy and unit

 128

operation state costs are contributors to material costs; that is a unit operation’s

outlet material’s costs are functions of the inlet material costs, plus any costs

added while the unit operation is in a particular unit state, plus inlet energy costs

(Figure 8-1).

Raw milk flow =10 kg/s

Material cost = $1/kg

($10/s)

Figure 8-1 – Costs Added by Unit Operation and Energy

Flow Unit
(Pasteuriser)

Flow Unit
(Pump)

Pump ON State cost = $0.10/s. This

reflects the cost of electricity, and is an

alternative to using an Energy port.

Raw milk flow = 10 kg/s

Material Cost = $1.01/kg

($10.1/s)

Energy flow = 2000J/s

Energy cost = $0.001/J

($2/s)

Raw milk flow = 10 kg/s

Material Cost = $1.21/kg

($12.1/s)

Situations requiring cost removal from a material are not considered. Cost

removal from a material would imply that the cost of processing the material is

reduced by having passed through a unit operation. No situation where this might

occur is foreseen.

The cost value of a manufactured product material is calculated during the

process simulation, as are the cost values of unit operation outlet materials. Raw

material, energy, and unit operation state costs are input by the user, using data

obtained from either a fixed value or a data set (depending on the expected

volatility of a cost over the simulation’s time horizon). For example, a 3 month

simulation might use a fixed value for the price of electricity, while a 2 year

simulation uses an electricity pricing model which is a function of the time of the

year.

Though this approach to implementing costs has not been tested, it seems likely

that a cost implementation will involve a Cost class in some form because of the

flexibility and programming benefits of classes (section 2.4).

 129

8.4 CAPE-OPEN Compliance

There are benefits in developing CAPE-OPEN compliant simulation

environments and unit operation models.

Using a chemical process industry standard specification reduces the resources

required to develop the core software functionality. Efforts can be better spent on

integrating partial models and developing industry specific functionality.

Also, the potential exists to integrate with third-party CAPE-OPEN compliant

process modelling components or environments.

Not all CAPE-OPEN functionality (such as the information port, numerical

solvers, physical properties, thermodynamics) was implemented here, and there

are opportunities to do so using applications from the dairy industry.

8.5 Improving Software Usability

The software can be made more usable. Tools to simplify the unit operation

creation and connection process will both improve the model construction

process. For example:

• implementing unit operation type classes (using inheritance),

• object creation and editing wizards,

• drag-and-drop data transfer between object classes,

• visualization of the physical connections between unit operations,

• more realistic graphical representations of particular unit operation types

in the process flow sheet.

• A timeline control with the ability to drag and drop unit operations onto

date-time positions and have their state set would reduce the time to

construct and edit production scenarios.

 130

The implementation of inheritance warrants closer examination because of the

benefits it would bring to the user and the developer.

8.5.1 Object Oriented Programming Inheritance

One feature on object oriented programming not implemented here was

inheritance. While it is a powerful tool that allows more efficient reuse of code,

the complexities and pitfalls associated with inheritance mean its implementation

fell outside the scope of this work. However one potential implementation is

identified.

Using the “is a” rule for determining when to use inheritance (Pattison, 2001), it is

apparent that:

• a Capacitive Unit is a Process Unit,

• a Flow Unit is a Process Unit.

The potential exists to implement inheritance by allowing the Capacitive Unit and

Flow Unit classes to inherit Process Unit properties. Furthermore, those classes

can be used as the basis for the creation of industry specific unit operation type

classes, each inheriting core functionality provided by flow or capacitive unit

classes.

For example, a dairy industry specific application would consist of unique unit

operation classes used in this industry, such as cheese vats, spray dryers,

cooling tunnels, cheese belts, centrifugal separators and block formers for

example. Also available would be generic unit operations such as pumps, heat

exchangers, manifolds, storage silos.

The flow sheet would be constructed from actual unit operations rather than

combinations of capacitive and flow units as is the case in this work. This is a

more intuitive approach for the industry user.

 131

8.6 Optimization

Both plant level and business level decision-makers have optimization problems.

Naysmith and Douglas (1995) give a comprehensive review of optimization in the

chemical process industry and look at the constituent components and tasks

required of an optimizer. A general objective function to be maximized is given

as:

Objective = Product value - feed costs - utility costs + other variable

economic effects.

At the plant level, the optimization problem is focused on maximizing throughput,

product quality and product yields while fulfilling the business rules (such as the

hygiene requirements) demanded of the dairy industry. A cheese plant manager

may for example want to alter operating conditions in a cheese vat based on the

component mix of the feed milk to maximize yield, or change unit operation

cleaning regimes to increase throughput.

At the production level, the optimization problem may be more complex. Multiple

processing plant alternatives mean that, along with the optimization of individual

production plants, the objective function may include factors such as co-products

(e.g. cream, whey), market influences, product shelf life (i.e. production timing)

and product warehousing capability. It may be that the multi-plant production

optimum has individual processes operating at sub-optimum conditions to

manage the competing demands of different parts of the business.

For example, say the dairy manufacturer can produce cheese or skim milk

powder (SMP), and has an order for a quantity of cheese. SMP is manufactured

with excess raw milk supply if desired. The optimization problem is to maximize

profit over a specified time period whilst meeting the cheese order. Cream, which

is a co-product of both the cheese and SMP processes, is itself a product, and

also an intermediate material in the manufacture of butter. Once the minimum

cheese production is reached the excess raw milk can be used to manufacture

more cheese or SMP. It maybe that the cheese plant would operate closer to

optimal with greater through-put. But this might be countered by the remaining

 132

raw milk (once optimum cheese production is obtained) not being enough to

operate the spray dryer.

So the optimal solution lies in both plants operating at sub-optimal conditions.

Though this work did not consider optimization, it is an integral part of the dairy

industry modelling problem. Taking a sequential modular multiscale approach

may be advantageous because it would allow the solution to be implemented in

an incremental manner, something which may not be so easily done using an

equation oriented approach to modelling.

Optimization of object oriented models in the multiscale modelling context is

possibly a new field of research.

8.7 Implementing more Sophisticated Time Stepping

As discussed in section 7.7.3, this work considers only linear simulation models

which can be solved explicitly for the time step to discontinuity. In engineering

there are many instances where the model is non-linear and time steps cannot

be found explicitly. Models of this type require more sophisticated solution tools

using numerical methods such as Runge-Kutta or Backward Differential

Formulae methods.

Two tasks are required; the identification of applications which require non-linear

models (e.g. emptying of a tank using gravity), and the software implementation

of solution methods.

In terms of software implementation, two possibilities are identified. One is to

implement these tools within the framework of the software developed. The

second is to incorporate third party software tools which provide these solution

tools. The second alternative is the more attractive because software already

exists (such as Matlab) which is capable of solving non-linear models. It maybe

that CAPE-OPEN is the key here, because CAPE-OPEN provides mechanism

for integrating numerical method software into chemical engineering modelling

software (Open Interface Specification Numerical Solvers, 1999).

 133

The integration of more advanced methods with the OOP approach proposed will

require more consideration.

8.8 An Alternative Modelling Goal

An alternative approach to the modelling goal could be to consider the dairy

business from an environmental perspective (which could also be important in

the profit context). As the influence of environmental factors on profit becomes

significant (whether from artificial influences such as carbon credits, or more

tangible factors like resource scarcity) the environmental focus may become an

important part of the system (i.e. business) model. For example climatic factors

are important to the long term look of the New Zealand raw milk supply curve,

and they are also important contributors to the price of electricity and availability

of water.

While energy and water consumption have always been important cost factors in

the New Zealand dairy industry, until the mid 1990s they had been readily and

cheaply available, and prices were relatively stable. As the industry (and the New

Zealand economy) has grown, pressure has been placed on infrastructure and

supply, so this is now changing. Prices that were once stable in the short term

can now fluctuate significantly.

For example, where a long term fixed (i.e. steady state) power price model would

have once sufficed, today only a dynamic model would be capable of providing

quality data for even short term modelling. At the time of writing, New Zealand’s

average annual power price was $25 - $30 per MWh (though the 3 month

average to February 2006 was $90 per MWh). However, in the 2005 – 2006

summer spot prices reached as high as $270 per MWh (Gorman, 2006). Much of

New Zealand’s electricity comes from hydro-generation. The consequence of low

alpine rainfall is high power prices and stresses on both river and ground water

supplies.

In New Zealand the environment can be a significant factor at a local level

(primarily floods, drought, and earthquakes), and the climate is varied and

 134

occasionally harsh, the climate is reasonably predictable over the long term. Also

the dairy industry has manufacturing flexibility, and for much of the year spare

manufacturing capacity, so the effects of unusual climatic events which cause

localized production shocks can be mitigated. In countries like Australia where

extreme climatic conditions (caused by the El Niño Southern Oscillation) can be

devastating to pastoral activities, it may be appropriate to include an

environmental model as a partial model.

Monitoring and modelling of the environmental impact of industrial sites has in

recent years taken on new significance, particularly regarding regulatory

constraints and obligations, non-renewable resource consumption, and pollutant

and effluent emissions. These three factors are important in the New Zealand

context. Resource use consent must be obtained before water is extracted and

effluent emitted – with legal limits being imposed on both.

The potential exists to extend, and improve the accuracy of, a profit focused

system model by incorporating an environmental partial model into it.

 135

 136

9 Conclusion

Multiscale modelling as a practical tool for delivering decision making information

is in its infancy. This work is the first known attempt to apply its concepts to dairy

industry modelling. This is also the first known attempt to construct a multiscale

production model from four partial models covering more than two scales.

By combining multiscale modelling theory, CAPE-OPEN specifications, and

object oriented programming (OOP) concepts, a modelling and simulation tool

has been developed using Microsoft’s Visual Basic .NET software development

environment. This software tool is capable of being used to construct unit

operation models, connect them into a sequential modular process model, and

perform time incrementing simulations over the desired time frame, potentially

extending out to years.

The following conclusions are drawn:

• OOP concepts used in conjunction with CAPE-OPEN specifications have

a practical application in the implementation of multiscale models.

• multiscale modelling as applied here has a useful role in providing

information to multiple decision making levels in the dairy industry.

• classifying partial model integration frameworks using the classification

system proposed by Cameron et al. (2005) is not straightforward in all

cases.

• the simulation’s incrementing regime, which controls the recalculation of

partial models, has a significant effect on the performance of the system

model. The number of unit operations in the process is also a factor in

solution speed.

• a unit operation’s State property is a mechanism for integrating that model

(at the macroscale) with microscale models.

 137

OOP has distinct advantages in the multiscale modelling context. It readily

facilitates the incremental addition of partial models to the system model. It also

allows the modification of existing partial models without expensive modifications

to other parts of the software. CAPE-OPEN provides, among other things,

specifications and templates for the construction of unit operation models and

their interconnection into process flow sheets. CAPE-OPEN also provides

infrastructure definitions (such as ports, materials, port connection) and

mechanisms (e.g. interface specifications) for the transfer of information between

process scale, unit operation scale, and lower scale models. These are useful in

the multiscale modelling context.

Using OOP to facilitate the construction of a sequential modular process model

requires a different skill set from the model builder than the alternative equation

oriented approach. Using the sequential modular modelling method the process

model can be constructed intuitively by the process or production engineer who

has knowledge of the process being modelled. Highly specialized modelling

knowledge is not a requirement.

Other benefits of taking an OOP approach to the implementation of the

multiscale model is demonstrated by the ease of construction of the model.

Specifically, the ability to define unit operations with unique behavioral

characteristics using generic software classes increases the flexibility of the

model. OOP also facilitated rapid software development.

Though not done in this work, the basic structure has been developed in the

modelling tool to allow compliance with the CAPE-OPEN specification to be

implemented. CAPE-OPEN compliance would allow process modelling

components and environments to be integrated with CAPE-OPEN compliant

third-party software.

Using the cheese making process to demonstrate, the modelling tool has proved

capable of delivering information to multiple decision making levels, including

plant operators, plant managers, production managers, and sales and marketing

managers. Though the model was a simplified representation of the cheese

 138

making process, information suitable for process troubleshooting, scheduling,

optimization, and process control decision-making is generated.

The capacitive unit and flow unit object classes developed here were

successfully able to be used to construct models for all the required unit

operations in the cheese making process. These two classes are potentially

powerful core objects which can be used as the basis for any unit operation

model in any process. By implementing inheritance, it should be possible to

construct more sophisticated unit operation models and construct industry

specific modelling tools which are more intuitive to the chemical engineer.

It is evident that the cheese production model has the characteristics seen in

multiscale models. Four partial models (i.e. unit operation material content, unit

operation, raw milk supply, cheese making process) are integrated to create the

production model. The partial models describing different levels of time, length

and detail are integrated, and data can be generated for time scales ranging out

to years.

In the time stepping mechanism used here to motivate model simulation, the

iteration regime used to recalculate partial models significantly affected the

performance of simulations. Because it is possible to iterate the simulation (and

consequently recalculate the partial models) at fixed one second increments,

solution times using this iteration regime are potentially too lengthy to be of

practical use. This is especially true for long duration simulations (i.e. weeks and

longer). This regime also resulted in extraneous data which is supplementary to

reporting needs.

Increasing the fixed increment to speed up the simulation results in losses of

accuracy. To overcome this problem, the discontinuity time step mechanism is a

better method. The smallest time step which will result in the next important

change in the process is found, and the next iteration of the simulation uses that

time step. This method not only resulted in the fastest solution speed, but

maintained the accuracy of the one second fixed increment method.

 139

A simulation’s solution speed is also a function of the number of unit operations

in the process. As more unit operations are added, computer processing

demands increase and will slow the simulation.

The use of the unit operation’s State property is potentially a powerful

mechanism to facilitate the construction of sophisticated unit operation models.

The proposition is that the State could be used to define when a particular

microscale model of a unit operation is to be recalculated. That is, a particular

partial model would be recalculated when the unit operation is in a particular

user-defined state. The example of this which has been implemented in this work

is the recalculation of a capacitive unit operation’s material content when the unit

operation is in the FILLING, EMPTYING, or FILLING/EMPTY state. Though a

simple example, the potential of this mechanism is evident.

Further work on the model would be beneficial. Adding other microscale partial

models to this model is desirable in order to further examine the usefulness of

the State integration mechanism. This would also achieve better modelling

accuracy, detail and data reporting capabilities. More work is also needed to

refine unit operation behaviour, define interaction characteristics and examine

connection possibilities which will provide more flexible and accurate process

modelling. The construction of more sophisticated graphical user interfaces will

make the model more user friendly while the implications of and methods for

managing and distributing the large amounts of data which are generated needs

analysis.

 140

10 References

Akai, T. J., Applied Numerical Methods for Engineers, John Wiley and Sons,

1994.

Braunschweig, B. L., Pantelides, C. C., Britt, H. I., and Sama, S. (2000). Process

Modelling; The promise of open software architectures, Chemical Engineering

Progress, New York, 96 (9), 65-77.

Bylund, G. (2003). Tetra Pak Dairy Processing Handbook, Tetra Pak Processing

Systems AB.

Cameron, I. T., Ingram, G. D. and Hangos ,K.M. (2005). Chapter ??? –

Multiscale process modelling. In Computer Aided Process and Product

Engineering (Puigjaner, L. & Heyen, G. Eds), Wiley – VCH Verlag, Weinheim,

Germany.

CAPE-OPEN Consortium (1999). CAPE-OPEN Open Interface Specifications –

Unit Operations v2. Complete copies of CAPE-OPEN documentation are found

at http://www.colan.org (last accessed 6 December 2005).

CAPE-OPEN Consortium (1999). Open Interface Specification Numerical Solvers

1.08. Complete copies of CAPE-OPEN documentation are found at

http://www.colan.org (last accessed 6 December 2005).

CAPE-OPEN Consortium (2000). Conceptual Design Document (CDD2) v4.

Complete copies of CAPE-OPEN documentation are found at

http://www.colan.org (last accessed 6 December 2005).

Charpentier, J. C. (2003). Market Demand versus Technological Development:

the Future of Chemical Engineering. International Journal of Chemical Reactor

Engineering 1, Article A14.

Danish Dairy Board. http://www.mejeri.dk (last accessed 12 February 2006).

 141

Drews, T. O., Krishnan, S., Alameda Jr, J. C., Gannon, D., Braatz, R. D. and

Alkire, R. C. (2005). Multiscale simulations of copper electrodeposition onto a

resistive substrate. IBM Journal of Research and Development, 49, (1), 49 – 58.

Ennis, B. J, and Lister, J. D. Perry’s Chemical Engineer’s Handbook 7th ed.,

Perry, R. H., Green, D. W., Maloney, J. O. Editors, McGraw Hill, New York, 1997,

20-56 – 20-89.

Freeden, W., Michel, D. and Michel, V. (2004). Multiscale Modelling of Ocean

Circulation. Proc. Second International GOCE User Workshop “GOCE, The

Geoid and Oceanography”, ESA-ESRIN, Frascati, Italy, 8-10 March 2004 (ESA

SP-569, June 2004).

Gorman, P. (21 January 2006). Breakdowns cause spot-price frenzy,

Christchurch Press. pE4.

Ingram, G. D., Cameron, I. T. and Hangos, K. M. (2004). Classification and

analysis of integrating frameworks in multiscale modelling. Chemical Engineering

Science 59, 2171 – 2187.

Jones, B. J. (1999). Cheese Process Control, Master of Engineering Thesis,

Department of Chemical and Process Engineering, University of Canterbury.

Kurata, D. (2001). Object-Oriented Programming in Visual Basic, Visual Studio

.NET Technical Articles, MSDN Library – Visual Studio .NET 2003.

Marquardt, W. (1995). Trends in Computer-Aided Process Modelling. Computers

and Chemical Engineering 20 (6/7), 591 – 609.

Morison, K. R. (1997). Cheese Manufacture as a Separation and Reaction

Process. Journal of Food Engineering 32, 179 – 198.

Naysmith, M. and Douglas, P. L. (1995). Review of Real Time Optimization in

Chemical Process Industries. Developments in Chemical Engineering and

Mineral Processing, 3, (2), 67 – 87.

Ng, K. M. (2004). MOPSD: A framework linking business decision-making to

product and process design. Computers and Chemical Engineering, 29, 51 – 56.

 142

O’Callaghan, D. and O’Donnell, C. (1998). The Use of On-Line Sensors in Food

Processing. Report DPRC No. 23, Dairy Products Research Centre, Moorepark,

Fermoy, County Cork, Ireland.

Pattison, T. (2001). Using Inheritance in the .NET World. Microsoft Developer

Network (MSDN) Magazine. November 2001 from Basic Instincts: Using

Inheritance in the .NET World. MSDN Library – Visual Studio .NET 2003.

Preston, A. J. and Berzins, M. (1991). Algorithms for the Location of

Discontinuities in Dynamic Simulation Problems, Computers & Chemical

Engineering, 15, 701 – 713.

Rey, A. D., Grecov, D. and Das, S. K. (2004). Thermodynamic and Flow

Modelling of Meso- and Macrotexures in Polymer – Liquid Crystal Material

systems. Ind. Eng. Chem. Res., 43, 7343 – 7355.

Srolovitz, D. J., Dandy, D. S., Butler, J. E., Battaile, C, C. and Paritosh (1997).

The Integrated Multiscale Modelling of Diamond Chemical Vapour Deposition.

JOM 49 (9) ABI / INFORM Trade and Industry, 42 – 47.

Ydstie, B. E. (2004). Distributed decision making in complex organizations: the

adaptive enterprise. Computers and Chemical Engineering, 29, 11 – 27.

 143

 144

11 Appendices

A Software Operating Instructions

The CD enclosed with this thesis contains the following files:

1. DecisionBridge.exe

The software application developed to test the theories discussed in this

thesis.

2. DecisionBridgeData.mdb

The database to be used with DecisionBridge.exe. This database does not

store simulation data.

Disclaimer

DecisionBridge was developed solely for the purposes of testing the ideas

presented in this thesis. No responsibility is taken for any use of results

generated by this software.

System Requirements

The DecisionBridge.exe application software has not undergone any systems or

installation testing. However, it was developed on a Microsoft Windows XP

system, with Microsoft Access 2003 installed and will function on that, or a

compatible system. It is likely that the application will operate without Access

installed (as earlier versions of Visual Basic did), but this has not been tested.

No minimum hardware requirements are specified. However, simulations were

performed satisfactorily using a 1600MHz Intel Pentium M processor.

 145

Installation Instructions

1. Create a folder called C:\Junk\

2. Copy both DecisionBridge.exe and DescisionBridgeData.mdb into

C:\Junk\

Operating Instructions

Follow these instructions to perform a simulation of a 2 day production run on the

cheese making model.

1. Double click on DecisionBridge.exe. The MDI form will open with the

Process Executive displayed.

The cheese making process is selected on the left hand column of the

process executive.

2. With the cheese making process selected, click on the “Open Unit” button.

Click ‘Yes’ on the “Do you want to open all units?” message to open all the

unit operation images.

Figure A-1 – Opening Application Window Image

 146

 The application window should now look like Figure A-2.

Figure A-2 –Application Window with Unit Operations

3. On the ‘File’ menu click on the “Modelling Scenario Executive” item to

open the Modelling Scenario Executive form.

Figure A-3 –Application Window with Open Modelling Scenario Executive form

 147

4. On the Modelling Scenario Executive form (Figure A-4) click on the

second item to select the modelling scenario. A tick should appear in the

check box next to the scenario name.

Figure A-4 –Application Window with Open Unit Operations

5. Click the “Discontinuity” check box on the Process Executive to select it.

6. Click the “Run Scenario” button to start the simulation. The simulation will

now run in discontinuity time increment mode. It will run until the 2 day

simulation is complete (this should take a few minutes).

7. Once step 6 is complete, close the application and repeat the above

steps, this time omitting Step 5. The simulation will now run in fixed time

increment mode.

As the scenario runs, note the changing:

• port flowrates

• Unit operation state

• volume progress bar
Figure A-5 –Capacitive Unit Operation

on the capacitive unit operation forms (Figure A-5).

 148

If an message appears with the appearance of Figure A-6, click on the Abort

button, close the application, and start from Step 1 again. This is the error

handling mechanism in the software.

Figure A-6 –Sample Error Message

 149

B Unit Operation Volume Time Series Graphs

0

50000

100000

150000

200000

250000

00:00:00 01:12:00 02:24:00 03:36:00 04:48:00 06:00:00 07:12:00 08:24:00 09:36:00 10:48:00 12:00:00

Time (HH:mm:ss)

Vo
lu

m
e

(L
)

Cheese Milk Silo 2 Cheese Milk Silo1

Figure B-1 – Cheese Milk Silos 1 & 2 – 12 hour volume time series – fixed time increment

0

50000

100000

150000

200000

250000

00:00:00 01:12:00 02:24:00 03:36:00 04:48:00 06:00:00 07:12:00 08:24:00 09:36:00 10:48:00 12:00:00

Time (HH:mm:ss)

Vo
lu

m
e

(L
)

Cheese Milk Silo 2 Cheese Milk Silo1

Figure B-2 – Cheese Milk Silos 1 & 2 – 12 hour volume time series – discontinuity time increment

 150

0

10000

20000

30000

00:00:00 01:12:00 02:24:00 03:36:00 04:48:00 06:00:00 07:12:00 08:24:00 09:36:00 10:48:00 12:00:00

Time (HH:mm:ss)

Vo
lu

m
e

(L
)

Figure B-3 – Cheese Vat 1 – 12 hour volume time series – fixed time increment

0

10000

20000

30000

00:00:00 01:12:00 02:24:00 03:36:00 04:48:00 06:00:00 07:12:00 08:24:00 09:36:00 10:48:00 12:00:00

Time (HH:mm:ss)

Vo
lu

m
e

(L
)

Figure B-4 – Cheese Vat 1 – 12 hour volume time series - discontinuity time increment

 151

0

50000

100000

150000

200000

250000

00:00:00 01:12:00 02:24:00 03:36:00 04:48:00 06:00:00 07:12:00 08:24:00 09:36:00 10:48:00 12:00:00

Time (HH:mm:ss)

Vo
lu

m
e

(L
)

Raw Milk Silo 1 Raw Milk Silo 2 Raw Milk Silo 3 Raw Milk Silo 4

Figure B-5 – Raw Milk Silos 1, 2, 3 & 4 – 12 hour volume time series - discontinuity time increment

0

50000

100000

150000

200000

250000

20
05

/10
/17

 00
:00

:00

20
05

/10
/17

 12
:00

:00

20
05

/10
/18

 00
:00

:00

20
05

/10
/18

 12
:00

:00

20
05

/10
/19

 00
:00

:00

20
05

/10
/19

 12
:00

:00

20
05

/10
/20

 00
:00

:00

20
05

/10
/20

 12
:00

:00

20
05

/10
/21

 00
:00

:00

20
05

/10
/21

 12
:00

:00

20
05

/10
/22

 00
:00

:00

20
05

/10
/22

 12
:00

:00

DateTime (yyyy/mm/dd HH:mm:ss)

Vo
lu

m
e

(L
)

Cheese Milk Silo 2

Figure B-6 – Cheese Milk Silos 1 – 6 day volume time series - discontinuity time increment

 152

0

50000

100000

150000

200000

250000
20

05
/10

/17
 00

:00
:00

20
05

/10
/17

 12
:00

:00

20
05

/10
/18

 00
:00

:00

20
05

/10
/18

 12
:00

:00

20
05

/10
/19

 00
:00

:00

20
05

/10
/19

 12
:00

:00

20
05

/10
/20

 00
:00

:00

20
05

/10
/20

 12
:00

:00

20
05

/10
/21

 00
:00

:00

20
05

/10
/21

 12
:00

:00

20
05

/10
/22

 00
:00

:00

20
05

/10
/22

 12
:00

:00

DateTime (yyyy/mm/dd HH:mm:ss)

Vo
lu

m
e

(L
)

Cheese Milk Silo1

Figure B-7 – Cheese Milk Silos 1 – 6 day volume time series - discontinuity time increment

0

50000

100000

150000

200000

250000

20
05

/10
/17

 00
:00

:00

20
05

/10
/17

 12
:00

:00

20
05

/10
/18

 00
:00

:00

20
05

/10
/18

 12
:00

:00

20
05

/10
/19

 00
:00

:00

20
05

/10
/19

 12
:00

:00

20
05

/10
/20

 00
:00

:00

20
05

/10
/20

 12
:00

:00

20
05

/10
/21

 00
:00

:00

20
05

/10
/21

 12
:00

:00

20
05

/10
/22

 00
:00

:00

20
05

/10
/22

 12
:00

:00

DateTime (yyyy/mm/dd HH:mm:ss)

Vo
lu

m
e

(L
)

Cheese Milk Silo 2 Cheese Milk Silo1

Figure B-8 – Cheese Milk Silos 1 & 2 – 6 day volume time series - discontinuity time increment

 153

0

10000

20000

30000

40000

20
05

/1
0/

17
 0

0:
00

:0
0

20
05

/1
0/

17
 1

2:
00

:0
0

20
05

/1
0/

18
 0

0:
00

:0
0

20
05

/1
0/

18
 1

2:
00

:0
0

20
05

/1
0/

19
 0

0:
00

:0
0

20
05

/1
0/

19
 1

2:
00

:0
0

20
05

/1
0/

20
 0

0:
00

:0
0

20
05

/1
0/

20
 1

2:
00

:0
0

20
05

/1
0/

21
 0

0:
00

:0
0

20
05

/1
0/

21
 1

2:
00

:0
0

20
05

/1
0/

22
 0

0:
00

:0
0

20
05

/1
0/

22
 1

2:
00

:0
0

Time (HH:mm:ss)

Vo
lu

m
e

(L
)

CV1

Figure B-9 – Cheese Vat 1 – 6 day volume time series - discontinuity time increment

0

10000

20000

30000

40000

20
05

/1
0/

17
 0

0:
00

:0
0

20
05

/1
0/

17
 1

2:
00

:0
0

20
05

/1
0/

18
 0

0:
00

:0
0

20
05

/1
0/

18
 1

2:
00

:0
0

20
05

/1
0/

19
 0

0:
00

:0
0

20
05

/1
0/

19
 1

2:
00

:0
0

20
05

/1
0/

20
 0

0:
00

:0
0

20
05

/1
0/

20
 1

2:
00

:0
0

20
05

/1
0/

21
 0

0:
00

:0
0

20
05

/1
0/

21
 1

2:
00

:0
0

20
05

/1
0/

22
 0

0:
00

:0
0

20
05

/1
0/

22
 1

2:
00

:0
0

Time (HH:mm:ss)

Vo
lu

m
e

(L
)

CV7

Figure B-10 – Cheese Vat 7 – 6 day volume time series - discontinuity time increment

 154

0

10000

20000

30000

40000

20
05

/1
0/

17
 0

0:
00

:0
0

20
05

/1
0/

17
 1

2:
00

:0
0

20
05

/1
0/

18
 0

0:
00

:0
0

20
05

/1
0/

18
 1

2:
00

:0
0

20
05

/1
0/

19
 0

0:
00

:0
0

20
05

/1
0/

19
 1

2:
00

:0
0

20
05

/1
0/

20
 0

0:
00

:0
0

20
05

/1
0/

20
 1

2:
00

:0
0

20
05

/1
0/

21
 0

0:
00

:0
0

20
05

/1
0/

21
 1

2:
00

:0
0

20
05

/1
0/

22
 0

0:
00

:0
0

20
05

/1
0/

22
 1

2:
00

:0
0

Time (HH:mm:ss)

Vo
lu

m
e

(L
)

CV1 CV7

Figure B-11 – Cheese Vat 1 & 7 – 6 day volume time series - discontinuity time increment

 155

C 6 Day Production Graph

0

5000

10000

15000

20000

25000

17
/10

/05
 00

:00
:00

17
/10

/05
 12

:00
:00

18
/10

/05
 00

:00
:00

18
/10

/05
 12

:00
:00

19
/10

/05
 00

:00
:00

19
/10

/05
 12

:00
:00

20
/10

/05
 00

:00
:00

20
/10

/05
 12

:00
:00

21
/10

/05
 00

:00
:00

21
/10

/05
 12

:00
:00

22
/10

/05
 00

:00
:00

22
/10

/05
 12

:00
:00

23
/10

/05
 00

:00
:00

Time

To
ta

l U
ni

ts

21306

17688

14204

10586

7102

3484

Figure C-1 – Total Manufactured Units of 25kg Bulk Cheddar – 6 day simulation

 156

D Sample Object Code – Port Class

Software is developed in Visual Basic .NET.

This Port object is used below to demonstrate the general software coding

structure of object classes used. Along with object properties (e.g. CollectionKey,

PortKey, ProcessUnitKey, Tag), some of the Port’s objects are shown (e.g.

Material, Energy, Information, ConnectedPorts). The RecordStatus property is

used to indicate if an object’s properties have changed or if the object is new.

When object data is being written to a database, only those objects whose record

status is changed or new are saved.

Public Class Port
Private zCollectionKey As String
Private zRecordStatus As Integer
Private zPortKey As Long
Private zProcessUnitKey As Long
Private zDirection As Long
Private zPortType As Long
Private zTag As String
Private zDescription As String
Private zFlowFraction As Single
Private zFinalProductKey As Long
Private zMaterial As Material
Private zEnergy As Energy
Private zInformation As Information
Private zConnectedPorts As Ports

Public Property RecordStatus() As Integer

Get
Return zRecordStatus

End Get
Set(ByVal Value As Integer)

If zRecordStatus = RecordStatusEnum.gRecordAdd Then
If Value = RecordStatusEnum.gRecordDelete Then zRecordStatus =

RecordStatusEnum.gRecordAddDelete
If Value = RecordStatusEnum.gRecordNoChange Then zRecordStatus = Value

Else
zRecordStatus = Value

End If
End Set

End Property

 Public Property PortKey() As Long
 Get
 Return zPortKey
 End Get
 Set(ByVal Value As Long)
 zPortKey = Value
 RecordStatus = RecordStatusEnum.gRecordModify
 End Set
 End Property

 157

 Public Property CollectionKey() As String
 Get
 Return zCollectionKey
 End Get
 Set(ByVal Value As String)
 zCollectionKey = Value
 RecordStatus = RecordStatusEnum.gRecordModify
 End Set
 End Property

Public Property ProcessUnitKey() As Long
 Get
 Return zProcessUnitKey
 End Get
 Set(ByVal Value As Long)
 zProcessUnitKey = Value
 RecordStatus = RecordStatusEnum.gRecordModify
 End Set
 End Property

 Public Property Direction() As Long
 Get
 Return zDirection
 End Get
 Set(ByVal Value As Long)
 zDirection = Value
 RecordStatus = RecordStatusEnum.gRecordModify
 End Set
 End Property

 Public Property PortType() As Long
 Get
 Return zPortType
 End Get
 Set(ByVal Value As Long)
 zPortType = Value
 RecordStatus = RecordStatusEnum.gRecordModify
 End Set
 End Property

 Public Property Description() As String
 Get
 Return zDescription
 End Get
 Set(ByVal Value As String)
 zDescription = Value
 RecordStatus = RecordStatusEnum.gRecordModify
 End Set
 End Property

 Public Property Tag() As String
 Get
 Return zTag
 End Get
 Set(ByVal Value As String)
 zTag = Value
 RecordStatus = RecordStatusEnum.gRecordModify
 End Set
 End Property

 Public Property FlowFraction() As Single
 Get
 Return zFlowFraction
 End Get
 Set(ByVal Value As Single)
 zFlowFraction = Value

 158

 RecordStatus = RecordStatusEnum.gRecordModify
 End Set
 End Property

 Public Property FinalProductKey() As Long
 Get
 Return zFinalProductKey
 End Get
 Set(ByVal Value As Long)
 zFinalProductKey = Value
 RecordStatus = RecordStatusEnum.gRecordModify
 End Set
 End Property

 Public Property Material() As Material
 Get
 If zMaterial Is Nothing Then
 zMaterial = gMaterials.Item(PortKey.ToString)
 End If
 Return zMaterial
 End Get
 Set(ByVal Value As Material)
 zMaterial = Value
 End Set
 End Property

 Public Property Energy() As Energy
 Get
 If zEnergy Is Nothing Then
 zEnergy = gEnergys.Item(PortKey.ToString)
 End If
 Return zEnergy
 End Get
 Set(ByVal Value As Energy)
 zEnergy = Value
 End Set
 End Property

 Public Property Information() As Information
 Get
 If zInformation Is Nothing Then
 zInformation = gInformations.Item(PortKey.ToString)
 End If
 Return zInformation
 End Get
 Set(ByVal Value As Information)
 zInformation = Value
 End Set
 End Property

 Public ReadOnly Property PortConnections() As PortConnections
 Get
 Dim tmpPortConnections As PortConnections, tmpPortConnection As PortConnection
 Dim i As Integer
 Dim strCollKey As String

 tmpPortConnections = New PortConnections

 For Each tmpPortConnection In gPortConnections
 With tmpPortConnection
 strCollKey = .OutputKey & "_" & .InputKey
 If .InputKey = PortKey Or .OutputKey = PortKey Then
 tmpPortConnections.Insert(tmpPortConnection, tmpPortConnection.CollectionKey)
 End If
 End With
 Next

 159

 Return tmpPortConnections
 End Get
 End Property

 Public ReadOnly Property ConnectedPorts() As Ports
 Get
 Dim tmpPortConnection As PortConnection
 Dim tmpConnectedPort As Port

 If zConnectedPorts Is Nothing Then zConnectedPorts = New Ports
 zConnectedPorts.Clear()

 For Each tmpPortConnection In PortConnections
 tmpConnectedPort = Nothing
 If PortKey = tmpPortConnection.InputKey Then tmpConnectedPort =
 Ports.Item(CStr(tmpPortConnection.OutputKey))
 Else
 tmpConnectedPort = gPorts.Item(CStr(tmpPortConnection.InputKey))
 End If
 If Not tmpConnectedPort Is Nothing Then
 zConnectedPorts.Insert(tmpConnectedPort, tmpConnectedPort.CollectionKey)
 End If
 Next
 Return zConnectedPorts
 End Get
 End Property

End Class

 160

E Sample Collection Code – Ports Class

The Ports collection class is used to demonstrate the general structure of a

collection.

Imports System.Collections
Public Class Ports
 Implements IEnumerable

 Private DeleteColl As Collection
 Private Coll As Collection

 Public Sub New()
 DeleteColl = New Collection
 Coll = New Collection
 End Sub

 Protected Overrides Sub Finalize()
 MyBase.Finalize()
 DeleteColl = Nothing
 Coll = Nothing
 End Sub

 Public ReadOnly Property Item(ByVal Index As Object) As Port
 Get
 Dim obj As Port
 On Error Resume Next
 obj = Coll.Item(Index)
 If Err.Number = 0 Then Return obj Else Return Nothing
 End Get
 End Property

 Public ReadOnly Property Count()
 Get
 Return Coll.Count
 End Get
 End Property

 Public ReadOnly Property DeleteCount()
 Get
 Return DeleteColl.Count
 End Get
 End Property

 Public Sub Clear()
 Coll = New Collection
 DeleteColl = New Collection
 End Sub

 Public Sub Remove(ByVal Index As Object)
 Coll.Remove(Index)
 End Sub

 Public Sub ClearDeleted()
 DeleteColl = New Collection
 End Sub

 Public Sub DeletePort(ByVal Index As Object)

 161

 Dim tmpPort As Port
 tmpPort = Coll.Item(Index)
 If tmpPort.RecordStatus <> RecordStatusEnum.gRecordAdd Then
 DeleteColl.Add(tmpPort)
 Coll.Remove(Index)
 Else
 tmpPort.RecordStatus = RecordStatusEnum.gRecordAddDelete
 End If
 tmpPort = Nothing
 End Sub

 Public Function Add(Optional ByVal Key As Long = 0, Optional ByVal CollectionKey As String = "",
 Optional ByVal Before As Object = Nothing, Optional ByVal After As Object = Nothing) As Port
 Dim tmpPort As Port
 Dim lngKey As Long
 tmpPort = New Port
 If Key = 0 Then lngKey = NextKey() Else lngKey = Key
 If CollectionKey = "" Then CollectionKey = CStr(lngKey)
 Coll.Add(tmpPort, CollectionKey)
 With tmpPort
 .PortKey = lngKey
 .CollectionKey = CollectionKey
 .RecordStatus = RecordStatusEnum.gRecordAdd
 End With
 Return tmpPort
 End Function

 Public Sub Insert(ByVal inPort As Port, ByVal Key As String, Optional ByVal Before As Object = Nothing,
 Optional ByVal After As Object = Nothing)

 Coll.Add(inPort, CStr(Key), Before, After)
 inPort.CollectionKey = CStr(Key)
 End Sub

 Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator
 Return Coll.GetEnumerator
 End Function

 Private Function NextKey() As Long
 Dim tmpConnection As New System.Data.OleDb.OleDbConnection
 Dim tmpAdapter As System.Data.OleDb.OleDbDataAdapter
 Dim dsKey As New System.Data.DataSet
 Dim dt As New DataTable
 Dim dr As DataRow
 Dim tmpPort As Port
 Dim intKey As Integer

 tmpConnection.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\Documents and Settings\Craig\My Documents\Masters
 Project\DecisionBridgeData.mdb;Mode=Share Deny None"

 tmpAdapter = New System.Data.OleDb.OleDbDataAdapter("Select * FROM NextKey WHERE
 TableName = 'Port'", tmpConnection.ConnectionString)

 dsKey = New System.Data.DataSet
 tmpAdapter.Fill(dsKey)
 dt = dsKey.Tables(0)
 dr = dt.Rows(0)
 intKey = dr.Item(1)
 dr.Item(1) = intKey + 1

 tmpAdapter.UpdateCommand = New OleDb.OleDbCommand("UPDATE NextKey SET NextKey = ?
 WHERE TableName = 'Port'", tmpConnection)
 tmpAdapter.UpdateCommand.Parameters.Add("@NextKey", OleDb.OleDbType.VarChar, 15,
 NextKey")
 tmpAdapter.Update(dsKey)

 162

 dsKey.AcceptChanges()
 tmpConnection.Close()
 tmpConnection = Nothing
 Return intKey
 End Function

 Public Function GetPorts(Optional ByVal ProcessUnitKey As Long = 0) As Boolean
 Dim tmpConnection As New System.Data.OleDb.OleDbConnection
 Dim tmpAdapter As System.Data.OleDb.OleDbDataAdapter
 Dim dsPorts As New System.Data.DataSet
 Dim dt As New DataTable
 Dim dr As DataRow
 Dim tmpPort As Port
 Dim i As Int32, intKey As Int32
 Dim strSQL As String
 Dim tmpItemArray As Object
 GetPorts = False

 tmpConnection.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\Documents and Settings\Craig\My Documents\Masters
 Project\DecisionBridgeData.mdb;Mode=Share Deny None"

 strSQL = "Select * FROM Port"
 If ProcessUnitKey <> 0 Then
 strSQL = strSQL & " WHERE ProcessUnitKey = " & ProcessUnitKey.ToString
 End If

 tmpAdapter = New System.Data.OleDb.OleDbDataAdapter(strSQL, tmpConnection.ConnectionString)
 dsPorts = New System.Data.DataSet
 tmpAdapter.Fill(dsPorts)
 dt = dsPorts.Tables(0)

 For i = 0 To dt.Rows.Count - 1
 dr = dt.Rows(i)
 intKey = dr.ItemArray(0)
 tmpPort = Me.Add(intKey)
 With tmpPort
 .ProcessUnitKey = dr.ItemArray(1)
 .Direction = dr.ItemArray(2)
 .PortType = dr.ItemArray(3)
 .Tag = IIf(IsDBNull(dr.ItemArray(4)), "", dr.ItemArray(4))
 .FlowFraction = IIf(IsDBNull(dr.ItemArray(5)), 0, dr.ItemArray(5))
 .Description = IIf(IsDBNull(dr.ItemArray(6)), "", dr.ItemArray(6))
 .FinalProductKey = IIf(IsDBNull(dr.ItemArray(7)), 0, dr.ItemArray(7))
 .RecordStatus = RecordStatusEnum.gRecordNoChange
 End With
 Next

 tmpConnection.Close()
 tmpConnection = Nothing
 Return True
 End Function

 Public Function Update(Optional ByVal Key As Integer = Nothing) As Boolean
 Dim tmpConnection As New System.Data.OleDb.OleDbConnection
 Dim tmpAdapter As System.Data.OleDb.OleDbDataAdapter
 Dim ds As New System.Data.DataSet
 Dim dt As New DataTable, dr As DataRow
 Dim tmpPort As Port
 Dim intKey As Integer
 Dim strSQL As String
 Update = False

 tmpConnection.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\Documents and Settings\Craig\My Documents\Masters
 Project\DecisionBridgeData.mdb;Mode=Share Deny None"

 163

 If Not DeleteColl.Count = 0 Then
 For Each tmpPort In DeleteColl
 tmpAdapter = New System.Data.OleDb.OleDbDataAdapter("Select * FROM Port WHERE PortKey
 = " & tmpPort.PortKey, tmpConnection.ConnectionString)
 With tmpAdapter
 .Fill(ds)
 dt = ds.Tables(0)
 dr = dt.Rows(0)
 dr.Delete()
 strSQL = "DELETE FROM Port WHERE PortKey = " & tmpPort.PortKey
 .DeleteCommand = New OleDb.OleDbCommand(strSQL, tmpConnection)
 .DeleteCommand.Parameters.Add("@PortKey", OleDb.OleDbType.VarChar, 15, "PortKey")
 .Update(ds)
 tmpAdapter = Nothing
 ds.AcceptChanges()
 ds.Clear()
 End With
 Next
 ClearDeleted()
 End If

 For Each tmpPort In Coll
 If tmpPort.RecordStatus = RecordStatusEnum.gRecordModify Or tmpPort.RecordStatus =
 RecordStatusEnum.gRecordAdd Then
 tmpAdapter = New System.Data.OleDb.OleDbDataAdapter("Select * FROM Port WHERE PortKey
 = " & tmpPort.PortKey, tmpConnection.ConnectionString)
 With tmpAdapter
 .Fill(ds)
 dt = ds.Tables(0)
 Select Case tmpPort.RecordStatus
 Case RecordStatusEnum.gRecordNoChange
 Case RecordStatusEnum.gRecordAddDelete
 Case RecordStatusEnum.gRecordDelete
 Case RecordStatusEnum.gRecordModify

 dr = dt.Rows(0)
 If dr.Item(1) <> tmpPort.ProcessUnitKey Then dr.Item(1) = tmpPort.ProcessUnitKey
 If dr.Item(2) <> tmpPort.Direction Then dr.Item(2) = tmpPort.Direction
 If dr.Item(3) <> tmpPort.PortType Then dr.Item(3) = tmpPort.PortType
 If IIf(IsDBNull(dr.Item(4)), "", dr.Item(4)) <> tmpPort.Tag Then dr.Item(4) = tmpPort.Tag
 If dr.Item(5) <> tmpPort.FlowFraction Then dr.Item(5) = tmpPort.FlowFraction
 If IIf(IsDBNull(dr.Item(6)), "", dr.Item(6)) <> tmpPort.Description Then dr.Item(6) =
 tmpPort.Description
 If IIf(IsDBNull(dr.Item(7)), 0, dr.Item(7)) <> tmpPort.FinalProductKey Then dr.Item(7) =
 tmpPort.FinalProductKey

 strSQL = "UPDATE Port SET ProcessUnitKey = ?, Direction = ?, PortType = ?, Tag = ?,
 FlowFraction = ?, Description = ?, FinalProductKey = ? WHERE PortKey = " &
 tmpPort.PortKey

 .UpdateCommand = New OleDb.OleDbCommand(strSQL, tmpConnection)
 With .UpdateCommand.Parameters
 .Add("@ProcessUnitKey", OleDb.OleDbType.VarChar, 15, "ProcessUnitKey")
 .Add("@Direction", OleDb.OleDbType.VarChar, 15, "Direction")
 .Add("@PortType", OleDb.OleDbType.VarChar, 15, "PortType")
 .Add("@Tag", OleDb.OleDbType.VarChar, 10, "Tag")
 .Add("@FlowFraction", OleDb.OleDbType.VarChar, 15, "FlowFraction")
 .Add("@Description", OleDb.OleDbType.VarChar, 255, "Description")
 .Add("@FinalProductKey", OleDb.OleDbType.VarChar, 15, "FinalProductKey")
 End With
 tmpPort.RecordStatus = RecordStatusEnum.gRecordNoChange

 Case RecordStatusEnum.gRecordAdd
 dr = dt.NewRow
 dr(0) = tmpPort.PortKey
 dr(1) = tmpPort.ProcessUnitKey

 164

 dr(2) = tmpPort.Direction
 dr(3) = tmpPort.PortType
 dr(4) = tmpPort.Tag
 dr(5) = tmpPort.FlowFraction
 dr(6) = tmpPort.Description
 dr(7) = tmpPort.FinalProductKey
 dt.Rows.Add(dr)

 strSQL = "INSERT INTO Port(PortKey, ProcessUnitKey, Direction, PortType, Tag,
 FlowFraction, Description, FinalProductKey) VALUES (?, ?, ?, ?, ?, ?, ?, ?)"

 .InsertCommand = New OleDb.OleDbCommand(strSQL, tmpConnection)

 With .InsertCommand.Parameters
 .Add("@PortKey", OleDb.OleDbType.VarChar, 15, "PortKey")
 .Add("@ProcessUnitKey", OleDb.OleDbType.VarChar, 15, "ProcessUnitKey")
 .Add("@Direction", OleDb.OleDbType.VarChar, 15, "Direction")
 .Add("@PortType", OleDb.OleDbType.VarChar, 15, "PortType")
 .Add("@Tag", OleDb.OleDbType.VarChar, 6, "Tag")
 .Add("@FlowFraction", OleDb.OleDbType.VarChar, 15, "FlowFraction")
 .Add("@Description", OleDb.OleDbType.VarChar, 255, "Description")
 .Add("@FinalProductKey", OleDb.OleDbType.VarChar, 15, "FinalProductKey")
 End With
 End Select

 .Update(ds)
 tmpAdapter = Nothing
 ds.AcceptChanges()
 ds.Clear()
 tmpPort.RecordStatus = RecordStatusEnum.gRecordNoChange
 End With
 End If
 Next

 tmpConnection.Close()
 tmpConnection = Nothing
 Return True
 End Function
End Class

 165

	1 Introduction
	1.1 Project Aim
	1.2 The New Zealand Dairy Industry
	2 Literature Review
	2.1 Process Simulation Tools
	2.2 Multiscale Modelling
	2.2.1 Scale Identification and Model Representation
	2.2.2 Partial Model Integration

	2.3 Process Modelling and CAPE-OPEN
	2.3.1 Process Modelling Environment (PME)
	2.3.2 Process Modelling Component (PMC)
	2.3.3 Port and Port Type
	2.3.4 Material and Material Template

	2.4 Object Oriented Programming & VB .NET
	2.5 Dairy Processing

	3 A Multiscale Model of the Dairy Industry
	3.1 The Multiscale Nature of the Dairy Industry
	Length and Time Scales
	3.1.1.1 The Investor Scale
	3.1.1.2 Dairy Business Manager Scale
	3.1.1.3 Site Manager Scale
	3.1.1.4 Production Manager Scale
	3.1.1.5 Cheese Plant Manager Scale
	3.1.1.6 Cheese Plant Operator Scale
	3.1.1.7 Cheese Vat Scale
	3.1.1.8 Curd Production
	3.1.1.9 Casein Precipitation

	3.1.2 The Milk Curve

	3.2 Dairy Industry Information Flows
	3.3 The Modelling Goal
	3.4 Data Requirements and Partial Model Identification
	3.4.1 Data Requirements
	3.4.2 Partial Model Identification

	4 Model Implementation
	4.1 Implementation Software and Hardware
	4.2 Object Model
	4.3 The Cheese Production Model
	4.3.1 Unit Operation Material Content Model
	4.3.2 Cheese Vat Unit Operation Partial Model
	4.3.3 Raw Milk Partial Model
	4.3.4 Cheese Making Process Partial Model
	4.3.5 Unit Operation State Control
	4.3.5.1 Production Scenario Class
	4.3.5.2 Modelling Scenario Class

	4.3.6 Model Simplifications

	4.4 Unit Operation Classification
	4.4.1 Capacitive Unit
	4.4.2 Flow Unit

	4.5 Capacitive Unit / Flow Unit Interaction
	4.6 Multi-class Unit Operations
	4.6.1 Heat Exchanger
	4.6.2 Spray Dryer

	4.7 Modelling Continuous Flow in a Capacitive Unit
	4.8 Energy Transfer
	4.9 Unit Operation State Behaviour
	4.9.1 Static State
	4.9.2 Dynamic State
	4.9.3 Compulsory State
	4.9.4 State Transition Mechanism

	4.10 Simulation Timekeeping
	4.10.1 A Failed Simulation Control Mechanism
	4.10.2 Simulation Time Increment
	4.10.3 Daily Production Model Iteration
	4.10.4 Simulation Speed

	5 Model Operation
	5.1 Unit Operation Type Templates
	5.1.1 Unit Operation Types Created

	5.2 Creating a Unit Operation
	5.3 Connecting Unit Operations into the Process Flowsheet
	5.4 Creating a Modelling Scenario
	5.5 Simulation Solution
	5.6 Monitoring the Simulation

	6 Model Results, Accuracy and Verification
	6.1 Data Generated
	6.2 Overall Mass Balance
	6.3 Time Series Graphs
	6.4 Gantt Charts
	6.5 Manufactured Product
	6.6 Raw Material Consumption
	6.7 Accumulated Energy Consumption
	6.8 Sources of Error
	6.8.1 Unsuitable Time Increment
	6.8.2 Fractional Second Error

	7 Discussion
	7.1 Multiscale Model Analysis
	7.1.1 Implemented Partial Models and Integration Frameworks
	7.1.1.1 Production Scale Model
	7.1.1.2 Raw Milk Supply Model
	7.1.1.3 Cheese Making Process Model
	7.1.1.4 Unit Operation Models
	7.1.1.5 Unit Operation Material Content Model

	7.1.2 Where do the Production Scenarios Fit?
	7.1.3 Analysis Summary

	7.2 Multiscale Model Performance
	7.2.1 Data Quality
	7.2.2 Solution Speed
	7.2.3 Data Quantity
	7.2.4 Choosing the Time Increment Mode

	7.3 Decision Making Information
	7.3.1 Gantt Charts
	7.3.2 Time Series Graphs

	7.4 Modelling Unit Operations using their States
	7.4.1 Unit Operation State Behaviour
	7.4.2 A Unit Operation’s State as an Integration Interface
	7.4.3 Using States to Implement Business Rules

	7.5 Adding Other Scale Partial Models
	7.5.1 Microscale Partial Models of Unit Operations
	7.5.2 A Macroscale Partial Model
	7.5.3 Other Scale Partial Model Possibilities

	7.6 Incorporating Actual Plant Data
	7.7 Stepping Partial Models
	7.7.1 Inefficient Recalculating of Unit Operation Partial Models
	7.7.2 Time Increment Calculation using Discontinuity
	7.7.3 Linear and Non-Linear Simulation Discontinuities
	7.7.4 Implementing Partial Model Recalculation

	7.8 Software Development
	7.9 CAPE-OPEN
	7.10 Ports
	7.11 Material Streams
	7.12 Energy Streams
	7.13 Usability of the Modelling Approach
	7.14 Implemented Model Limitations
	7.14.1 Batch Modelling
	7.14.2 Unit Operation Connection Rules

	8 Future Work
	8.1 Adding Functionality to Existing Classes
	8.2 Addition of Partial Models
	8.3 Data Reporting Capability
	8.3.1 Financial Data
	8.3.1.1 Totalized Financial Data
	8.3.1.2 Unit Operation Cost Data

	8.4 CAPE-OPEN Compliance
	8.5 Improving Software Usability
	8.5.1 Object Oriented Programming Inheritance

	8.6 Optimization
	8.7 Implementing more Sophisticated Time Stepping
	8.8 An Alternative Modelling Goal

	9 Conclusion
	10 References
	11 Appendices
	A Software Operating Instructions
	B Unit Operation Volume Time Series Graphs
	C 6 Day Production Graph
	D Sample Object Code – Port Class
	E Sample Collection Code – Ports Class

