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Abstract 

This work presents the first known attempt to model the dairy business from a 

multiscale modelling perspective. The multiscale nature of the dairy industry is 

examined with emphasis on those key decision making and process scales 

involved in production. Decision making scales identified range from the investor 

level to the plant operator level, and encompass business, production, plant, and 

operational levels. The model considers scales from the production manager to 

the unit operation scale.  

The cheese making process is used to demonstrate scale identification in the 

context of the important phenomena and other natural levels of scrutiny of 

interest to decision makers.  

This work was a first step in the establishment of a multiscale system model 

capable of delivering information for process troubleshooting, scheduling, 

process and business optimization, and process control decision-making for the 

dairy industry. Here, only material transfer throughout a process, use of raw 

materials, and production of manufactured product is modelled. However, an 

implementation pathway for adding other models (such as the precipitation of 

milk protein which forms curd) to the system model is proposed.  

The software implementation of the dairy industry multiscale model presented 

here tests the validity of the proposed: 

• object model (object and collection classes) used to model unit operations 

and integrate them into a process, 

• mechanisms for modelling material and energy streams, 

• method to create simulations over variable time horizons. 

The model was implemented using object oriented programming (OOP) methods 

in conjunction with technologies such as Visual Basic .NET and CAPE-OPEN. An 

OOP object model is presented which successfully enabled the construction of a 



multiscale model of the cheese making process. Material content, unit operation, 

and raw milk supply models were integrated into the multiscale model. The 

model is capable of performing simulations over variable time horizons, from 1 

second, to multiple years.  

Mechanisms for modelling material streams, connecting unit operations, and 

controlling unit operation behaviour were implemented. Simple unit operations 

such as pumps and storage silos along with more complex unit operations, such 

as a cheese vat batch, were modelled.  

Despite some simplifications to the model of the cheese making process, the 

simulations successfully reproduced the major features expected from the 

process and its constituent unit operations. Decision making information for 

process operators, plant managers, production managers, and the dairy business 

manager can be produced from the data generated. 

The multiscale model can be made more sophisticated by extending the 

functionality of existing objects, and incorporating other scale partial models. 

However, increasing the number of reported variables by even a small number 

can quickly increase the data processing and storage demands of the model. 

A unit operation’s operational state of existence at any point of time was 

proposed as a mechanism for integrating and recalculating lower scale partial 

models. This mechanism was successfully tested using a unit operation’s 

material content model and is presented here as a new concept in multiscale 

modelling. 

The proposed modelling structure can be extended to include any number of 

partial models and any number of scales. 
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1 Introduction 

Generally business modelling aims to provide the information needed by decision 

makers to maximise the profit making potential of the business and minimise 

exposure to risks and costs.  

Because of the enormous number of inputs a complete business model could 

incorporate, and the varying levels of detail resolution required, business 

modelling evolved as individual stand alone models. Models tended to focus on 

the characteristics, and length and time scales of the system, relevant to the 

user. Typically only the most important variables were considered. 

The result is often ad hoc system modelling, based on individual models used by 

different levels of decision makers. Individual models have minimal or no 

interaction between each other or the wider environment – often the only 

interaction between models is when a variable value generated by one model is 

manually input into a dependent model. 

Multiscale modelling integrates individual models across wide time and length 

scales (from fractions of seconds to years; molecules to thousands of 

kilometres). Individual models simulate behaviour at different time and length 

scales. The models are connected (i.e. integrated), and data is transferred 

between them as and when required. 

In a multiscale model, an input variable at one scale in the form of a constant, 

might be a dependent variable and an output variable of a model at a different 

scale. 
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1.1 Project Aim 

The aim of this project is to: 

• develop and test a feasible multiscale business model capable of 

supplying relevant decision-making information to decision makers from 

the plant to the boardroom in the dairy process industry.  

• utilise developments in multiscale modelling theory, chemical engineering 

process modelling theory, and software development technology, to 

develop a multiscale model which would utilise a consistent data set. 

Examples of these decision makers include plant operators, product production 

managers, marketing managers, utility production managers, and business 

managers. The types of information considered here includes scheduling, 

throughput, set points and production recipe details. 

 

1.2 The New Zealand Dairy Industry 

Table 1-1 shows global dairy industry production and export data for 2003. The 

New Zealand’s dairy industry currently punches far above its weight in terms of 

its significance in the global dairy market. It is unique among major global 

producers in that the majority of production is exported. Among the four major 

dairy producing regions, New Zealand accounts for about 3% of global milk 

intake, yet accounts for 15% of global export market when trade within the 

European Union is included. 

This position has been attained on the back of significant intervention in primary 

production by the New Zealand government from the mid twentieth century, 

followed by astute production and marketing diversification at the end of that 

century.  

Farmers received guaranteed minimum prices, low interest loans encouraged 

people onto farms, and tax incentives encouraged investment and development. 

The industry benefited from research into animal husbandry and product 
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development conducted in state funded research institutes and universities. 

International activities gave farmers cheap super-phosphate fertilizer resulting in 

rich pastures being maintained over decades. The New Zealand Dairy Board had 

a monopoly on all international marketing and sales activities involving dairy 

products. 

Table 1-1 - Global Dairy Industry Production and Export Data 
(Source: Danish Dairy Board, 2003)  

 Milk Production 
(million tonnes)

% Global 
Production

Exports (million 
tonnes) 

% Global Export 
Market 

NZ 13.9 2.8 1.73 15.1 

Asia 113 23.1 0.28 2.4 

Australia 10.6 2.2 0.75 6.5 

European - EU 144 29.4 7.55 65.8 

European - non EU 53.7 11 0.32 2.8 

North America 99.3 20.3 0.38 3.3 

South America 46.7 9.5 0.36 3.1 

Middle East 9 1.8 0.1 0.9 

 490.2 100% 11.47 100% 

 

After experiencing near unrestricted access to its traditional markets for decades, 

changes in international trade rules in the 1960s and 1970s forced farmers and 

the Dairy Board to find new markets. Further change was brought on the industry 

in the 1980’s and 1990’s when subsidies and tariffs were removed, government 

research institutes were forced into market activities or privatised, and new 

international markets opened through the free trade agenda.  

To compete internationally, merger and consolidation of the production side of 

the industry took place which has only recently ceased. Most recently, the Dairy 

Industry Restructuring Act, 2001,  removed restrictions on the export of dairy 

products and promoted competition in the New Zealand domestic market. 
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Consequently, the modern New Zealand dairy industry is highly evolved and 

technologically advanced with a skilled knowledge based workforce. On-farm-

management practice and animal healthcare are world leading. Production is 

characterised by large herd sizes and free range, grass eating stock. A diverse 

mix of commodity and niche products are manufactured at large, modern, multi-

plant manufacturing sites which are distributed unevenly throughout the country.  

The industry is dominated by farmer owned co-operatives, ranging from the 

massive Fonterra which manufacture a diverse range of products, to small niche 

product manufacturers. Fonterra deserve special attention.  

The eventual result of a series of mergers between New Zealand’s largest dairy 

co-operatives and the New Zealand Dairy Board, Fonterra is the world’s 6th 

largest dairy company by sales (Rabobank International 2005 as referred on the 

Danish Dairy Board website). It accounted for about 97% of New Zealand milk 

production in 2003 and most of the country’s dairy exports. Fonterra supplies the 

majority of fluid milk, cheese, and butter to the domestic market.  

Fonterra owns processing facilities nationwide. In some dairying regions several 

manufacturing sites are clustered relatively closely together, providing 

management with production alternatives in normal and abnormal process 

situations. Other regions have only a few production sites several hours apart, 

limiting production alternatives, and severely limiting options in unplanned 

shutdown situations. Some sites process a single constituent material (e.g. 

lactose) and often separated constituent materials (e.g. milk fat) are transported 

to nearby processing facilities. Other sites have multiple processing options and 

process the complete milk product.  

Though the New Zealand dairy industry has been a significant global player for 

many years, a feature of the industry is the low average price achieved for milk 

products compared with other global producers. The major contributing factor to 

this is the heavy weighting of production towards commodity products such as 

milk powder, cheese, and butter rather than high value or niche products.  
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2 Literature Review 

To date there has been no known attempt to apply a multiscale modelling 

approach to aid decision making in the dairy industry. Therefore the reviewed 

material consisted of an examination of: 

• existing process modelling tools 

• existing multiscale modelling literature  

• current and proposed mechanisms to facilitate the transfer of information 

between process models, specifically those which are developed for the 

transfer of information within a chemical engineering process modelling 

environment 

• dairy process operations 

 

2.1 Process Simulation Tools 

Marquardt (1995) classifies process simulation tools into two groups, sequential 

modular and equation-oriented.  

The modular approach allows the user to construct the process flowsheet from 

standardised modules, with each module modelling a unit operation (or part of it). 

The modules are linked to form the flowsheet. The module connections represent 

the material, energy and information streams of the process. The modular 

approach, though powerful and accessible to engineers for the solution of 

steady-state flowsheet simulation, does not adequately support the solution of 

more complex problems such as dynamic simulation.  

In the equation-oriented approach, a set of equations which describe the system 

under consideration using balances for volume mass, energy, and momentum 
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conservation, plus initial and boundary conditions, are constructed. These are 

then solved using mathematical techniques (section 2.2.1). 

Equation-oriented models do not allow the construction of process models using 

engineering concepts such as the construction of a flowsheet from existing unit 

operation modules (i.e. models). This is readily achieved using sequential 

modular simulation. The historic inability to access a module model’s equations 

resulted in inadequate levels of detail and minimal model reuse.  

 

2.2 Multiscale Modelling  

Multiscale modelling as a technique for improving the accuracy and efficiency of 

predictive modelling of engineering problems has been examined with increasing 

intensity since the mid 1990s (Cameron et al., 2005).  

Charpentier (2003) describes the key factors driving this as:  

• decreasing product development lifecycles (from 10 years in 1970 to 2 – 3 

years in 2000). 

• demands for less material and energy waste, near zero pollution 

requirements, defect free and safe products, and safe production. 

• development of increasingly complex materials and compounds where 

control at the microscopic (and smaller) level is intrinsic to controlling the 

manufactured product quality. 

Cameron et al. (2005) present a comprehensive coverage of the evolution and 

present state of research on engineering oriented multiscale process modelling 

and is used as the primary source on this topic. The definition, nature and 

characteristics of multiscale systems were identified in the context of the 

behaviour and rate processes which underpin the way scientists and engineers 

view the world.  
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The key issues associated with multiscale modelling, and strategies for their 

construction were discussed, principally: 

• Selection of a specific modelling goal. 

• Scale identification – an understanding of the time scales of interest often 

dictate the final scales of time and length needed. 

• Model representation – in what form does the model exist and what forms 

are possible? 

• Model integration – the linking of the partial models (i.e. those single scale 

models which make up the multiscale model) and the nature of 

information flow between partial models. 

• Model solution – this is a huge area and remains a major challenge. 

Some aspects were briefly discussed. 

A multiscale model is the composite model formed by the integration of partial 

models, where the partial models simulate important phenomena and other 

natural levels of scrutiny (Ennis and Lister, 1997) at different characteristic 

length, time or detail scales (Cameron et al., 2005). 

Partial models are linked in some way (using a software solution) allowing the 

transfer of data between partial models. Much of the literature refers to the 

integration of partial models of different scales in a generic context as linking 

between a macroscale (large scale) model and microscale (small scale) model 

irrespective of the actual length or time scales under consideration.  

2.2.1 Scale Identification and Model Representation 

Both Charpentier (2003) and Cameron et al. (2005) define the generalized scales 

of interest, and discuss the different mathematical modelling techniques which 

are used to represent the different scales. Examples given are: 
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Scale   Mathematical Modelling Technique 
Nanoscale  Molecular mechanics and computational chemistry. 
Microscale  Molecular dynamics and computational chemistry. 
Mesoscale  Computational fluid dynamics. 
Macroscale Dynamic simulation and process flowsheet simulation 

(sequential modular). 
Megascale  Environmental and enterprise modelling. 

 

There is now a large body of literature available describing attempts to develop 

multiscale models, and defining generalized characteristics, using a variety of 

applications.  

For example, Freeden et al. (2004) attempted to improve the accuracy of ocean 

circulation modelling by integrating a global circulation partial model with a local 

circulation partial model. Quarteroni & Veneziani (2003) link a localized vascular 

flow perturbation partial model with a global blood circulation partial model in 

blood flow simulations to successfully predict the outcome of a surgical 

operation. 

Much of the engineering literature covering this topic examines the interaction 

between the mesoscale (e.g. particle – particle, and particle – reactor wall 

interaction), the microscale (e.g. particle formation) and the nanoscale (e.g. 

reaction kinetics).  

For example, Drews et al. (2005) present a multiscale model for simulating the 

deposition of copper onto computer chips by integrating a electrical resistance 

partial model at the microscale with a nanoscale partial model which simulates 

the electrochemical deposition of copper onto an initially flat copper surface. 

They also define a generic method for integrating multiple computer codes 

(representing partial models at different scales) and demonstrate its use.  

Srolovitz et al. (1997) developed a model for diamond chemical vapour 

deposition across a range of length scales spanning 10 orders of magnitude. 

They integrated the microscale partial model, which provides the fundamental 
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mechanism for diamond growth, with the mesoscale reactor geometry and 

operating parameter partial model.  

Rey et al. (2004) developed a multiscale model which was able to provide 

fundamental principles for control and optimization of structures in polymer – 

liquid crystal material systems. This is an important chemical engineering 

application because 60% of all products sold by chemical companies today are 

crystalline, polymeric or amorphous solids (Charpentier, 2003). This work 

includes references to examples where multiscale material structure control at 

the nano- and macroscale is applied. 

In a typical corporate business model, enterprise decision making is focused on a 

single goal – the creation of wealth for shareholders. Financial measures such as 

Shareholder Value Added (Ng, 2004), Net Present Value, and Internal Rate of 

Return (Ydstie, 2004) are used to gauge the actual or likely success of this 

wealth creation. 

Ng (2004) presents a framework for linking financial measures to product and 

process design. For the reasons outlined earlier in this section, plus the 

recognition that the experience of scientists and engineers can often enhance the 

chances of success of a project, successful enterprise decision making will be 

increasingly integrated with the decisions of production and technical decision 

making. One response to this has been the development of the supply chain 

management and process simulation software tools now available.  

All of the literature examined took an equation-oriented approach to model 

development. No literature was found which examined the dairy industry from a 

multiscale perspective.  

2.2.2 Partial Model Integration  

Cameron et al. (2005) examined the case for multiscale modelling. They discuss 

how it has been argued that multiscale modelling is simply the integration of 

existing software packages that model different scales. However they believe the 

evidence is that this approach may lead to lost conceptual opportunities, 

numerical inefficiencies and trouble shooting difficulties later on. Taking a more 
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systematic approach to the definition and integration of partial models is an 

important feature of the implementation and performance of a multiscale model. 

Steps have been taken towards understanding and classifying integration 

frameworks used in multiscale modelling studies.  

Ingram et al. (2004) propose an integration classification scheme, consisting of 

five integration frameworks for linking partial models of different scales. The 

frameworks are divided into two broad classes: 

• Decoupled frameworks (serial, simultaneous) are those where one partial 

model is solved, with the data generated by this model used as an input 

to its integrated model(s), which is in-turn solved.  

• Interactive frameworks (embedded, multi-domain, parallel) involve the 

simultaneous solution of the constituent partial models. 

The framework used in any particular integration depends on various properties 

of the partial models involved. e.g.: 

• the portion of the system domain modelled, 

• whether the models describe the same portions of the system domain at 

different levels of detail, or different adjoining parts of the system, 

• the accuracy requirements, 

• the direction of information flows between partial models, 

• the purpose of the partial model(s). 

A catalytic packed bed reactor case study was used to compare three of these 

integration frameworks linking a single catalyst pellet partial model (at the 

microscale) with a reactor bulk fluid phase partial model (at the mesoscale). The 

three frameworks tested produced similar (but not the same) predictions of 

system behaviour, but the integrated models displayed different implementation 

characteristics (i.e. effort for numerical solution, execution time, and memory 

requirements).  
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Some applications use data generated in a microscale partial model as an input 

into an adjacent macroscale partial model – data transfer is in a single direction. 

Other applications require bi-directional data transfer between adjacent 

microscale and macroscale models.  

 

2.3 Process Modelling and CAPE-OPEN 

The development of multiscale models in chemical engineering requires the 

integration of the software used to simulate (among others) production and unit 

operation partial models.  

As discussed in section 1, process models have tended to focus on the particular 

characteristics of the system relevant to the decision maker who commissioned 

the model – resulting in ad hoc system modelling consisting of independent 

partial models having minimal interaction.  

An important reason for this has been the physical inability of individual models 

to link to each other, let alone communicate and share information with each 

other. The CAPE-OPEN Project was the result of an attempt by the chemical and 

process engineering industry to develop standards for integrating individual 

process software models. It was a collaborative effort by a consortium of process 

industry, software industry and academic partners to define standard software 

interfaces.  

Braunschweig et al. (2000) present an analysis of CAPE-OPEN and its 

application in the development and integration of unit operation modelling 

software components. The CAPE-OPEN documentation describes important 

concepts, and provides software specifications, for the construction of process 

modelling components capable of being integrated into a chemical process 

model.  

Issues such as the construction of process flow diagrams and how to manage 

material stream, energy, and information flows between unit operations and 

process management applications are addressed.  
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The CAPE-OPEN Conceptual Design Document (2000) describes the conceptual 

ideas behind CAPE-OPEN, including:  

• descriptions of the Process Modelling Environment (PME) and the various 

classes of Process Modelling Components – PMCs – (i.e. unit operations, 

numerical solvers, physical properties, and flowsheet analysis 

components). 

• Material and material template, energy, and information streams, port and 

port type objects.   

• connecting ports and sharing information between models. 

2.3.1 Process Modelling Environment (PME) 

The PME is the graphical user interface (GUI) for the creation of unit operations, 

flowsheet construction, and control of the simulation.  

The PME is used to:  

• define individual PMCs – here that involves creating individual unit 

operations based on a unit operation type template (which retains unique 

dimension and operational properties). 

• construct a process flow diagram from individual unit operations. 

• construct different production scenarios. 

• manage the simulation and generated data. 

2.3.2 Process Modelling Component (PMC) 

PMCs are components that perform a specific function. Unit operations, 

numerical solvers, and physical and thermodynamic properties calculators are 

examples of PMCs. This work implemented unit operation PMCs.  

 12



 

2.3.3 Port and Port Type 

A unit operation has a number of ports which allow it to be connected to other 

unit operations, and facilitate the exchange of material, energy, or information 

between other models.  

A port has a given direction; inlet, outlet, or inlet/outlet. To facilitate the 

connection of like types of information, a port type is defined. The three types of 

Port are: 

• Material 

A material port is used to facilitate physical material flows. They are the 

most complex to implement because of the amount of information needed 

to represent all the relevant properties of the material that might need to 

be used or calculated. Material ports represent the connection points for 

the material streams between unit operations. 

• Energy 

An energy port is used to represent energy streams in the absence of 

material flows; for example, the heat loss from a unit operation or the 

transfer of energy through a motor shaft. 

• Information 

Information ports are used to represent any other information flows which 

cannot be represented by either material or energy. An example might be 

where information from a downstream unit operation is used to set the 

flow ratio of the 2 outlets of an upstream unit operation. 

2.3.4 Material and Material Template 

A material port has a material object associated with it. The material contains all 

the data need to define the material (e.g. flowrate, temperature, constituent 

component information for a mixture). Between them, the material/port 

association allows the implementation of physical process streams. 

The material is based on a material template. The material template provides the 

component and property information required, but not necessarily with values 
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set. For example the milk material template has a collection of components (such 

as fat, lactose, protein, and water), plus physical and thermodynamic properties 

(such as density, viscosity, and specific heat capacity). Upon creation, the new 

material object inherits these components. Property values and component 

fractions can then be set. 

It is not the intention here to produce a CAPE-OPEN compliant software model. 

However, because CAPE-OPEN presents a model for information sharing 

between different process modelling components such as unit operations (a key 

goal of this project), CAPE-OPEN concepts are implemented here. This also 

facilitates future CAPE-OPEN compliance.  

The CAPE-OPEN standard is in the early stage of development. However, a 

reading of the CAPE-OPEN specification led to the conclusion that:  

• the key material-energy-information / port concept which allows data to be 

shared via ports underpins CAPE-OPEN, so will not change significantly 

and,  

• enough flexibility exists at the CAPE-OPEN interface to facilitate any 

minor changes that arise with either the port/information association or 

the connecting of ports, and 

• the CAPE-OPEN specification has been designed to be independent of 

the type of process under consideration, therefore is applicable to the 

dairy industry. 

The full CAPE-OPEN documentation is available in the internet at http://www.Co-

Lan.org. It extends to detailed interface specifications (e.g. CAPE-OPEN 

Interface Specification - Unit Operations, 1999) for the construction of CAPE-

OPEN compliant software models (both new and wrap-around for legacy code) 

developed in different software applications. Much of this material is targeted at 

software developers and is beyond the scope of this work.  
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2.4 Object Oriented Programming & VB .NET 

The model developed here is constructed using the Microsoft Visual Basic .NET 

development environment, by creating object oriented programming (OOP) 

object classes.  

Kurata (2001) gives a good overall discussion of OOP. In this work, the extensive 

and detailed MSDN Library online help (distributed with Visual Studio .NET 2003) 

is used as the sole reference for programming problems. 

OOP is important because it is the software development technology which is 

used for building software components and applications today. The major 

benefits are it allows for efficient programming and efficient code reuse.  

Once an object is built, much of the code can be hidden from the software 

developer (i.e. OOP encapsulation). This means the developer using the object 

does not need to know how the object performs its tasks. Only knowledge of 

what the object does, and what methods are used to achieve the task, is 

required.  

For example if a developer uses a cheese vat object developed by a third party 

and wanted to fill the vat, a Fill function could be called. The Fill function might 

perform a series of operations to check that the cheese vat is not already full or 

that it is available for filling. If it can be filled the cheese vat object performs that 

task. If it can’t be filled the Fill function might return a false value indicating the fill 

operation was unsuccessful. 

Another benefit of OOP is the efficient reuse of code. The creation of multiple 

instances of an object is very simple. Once the cheese vat template object is 

defined, a new instance of the cheese vat object can be easily created. Each 

new instance comes with the methods and properties of the original cheese vat 

template object.  

One technology which facilitates the sharing of data between software 

components and applications is COM – (i.e. Microsoft’s Component Object 

Model). COM is a software architecture that allows applications and components 
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that are built by different vendors to communicate, even when they are 

distributed among different computers and operating systems such as Windows, 

UNIX and Macintosh. 

Microsoft’s Visual Basic .NET is a software tool for the creation of software 

applications using COM objects and forms. 

 

2.5 Dairy Processing 

A dairy processing site consists of various unit operations and groups of unit 

operations, which taken together facilitate the production of the range of dairy 

products manufactured. Three processing stages are common to nearly all dairy 

processing facilities (Bylund, 2003).  

1. Raw milk reception and storage. 

2. Most countries require by law that some form of treatment be conducted 

on milk to destroy disease causing pathogenic micro-organisms. 

3. Due of regulation or specification the milk will undergo fat content 

standardisation as an intermediate processing step. 

The cheese making process as a series of unit operations is detailed in Jones 

(1999). Morison (1997) provides overall and unit operation mass balances at the 

constituent component level for a cheddar cheese making process.  

The raw milk is received at the plant and stored. For efficient production the 

pasteurizer and separator must run continuously, so the milk treatment process 

is continuous. Raw milk is pasteurised, and excess cream separated from it 

before it is fed as standardised milk into the cheese vats. The cheese vat 

reaction process is a batch operation. Process continuity is maintained by filling 

the vats sequentially.  

There is redundancy in the plant which allows the first vat to complete its batch 

cycle, be emptied and cleaned and in the fill queue ready to be filled again, 

before the final vat’s first fill is completed. This also maintains a constant flow of 
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curd onto the cheese belt, where most of the whey is separated out, before final 

processing in the block formers and the rapid cooling tunnels (both continuous 

processes). 
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3 A Multiscale Model of the Dairy Industry 

At each decision making level of the dairy industry different decisions are made 

which will ultimately influence to a greater or lesser extent the immediate and 

future performance (in financial, social and environmental terms) of the plant, 

business and investment. Different information is required at different levels, 

covering different time scales, to facilitate good decision making.  

There is little analysis of the relationships between the information required at 

various decision making levels, though clearly this information is integrated. 

Examples are given below. 

A plant manager’s ability to maintain and accurately forecast a plant’s operation, 

and produce to-specification-product – thereby giving the greatest returns and 

minimal wastage – will influence: 

• a production manager’s decision to accept a supply contract of a 

particular duration and magnitude. 

• a marketing manager’s decision to pursue new markets. 

• an investor’s decision to invest (e.g. R&D, new processing). 

• a regulatory managers obtaining of permits for pollutant discharges. 

While a plant manager’s ability to achieve this is influenced by: 

• the production managers decisions (e.g. production schedules and 

product production sequence) 

• the plant manager’s own decisions (e.g. maintenance scheduling) 

• decisions taken by the plant designer. For example, selection of plant 

items, measurement and control instrumentation, capacity, and plant 
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configuration will influence plant maintenance requirements, the ability to 

meet specification, and bottlenecks 

• decisions taken by supervisors and operators such as cleaning or UF 

plant changeovers 

Clearly the information transfer process between decision makers is complex and 

potentially endless. It is made more difficult because, while much information 

transfer occurs formally (in the form of reports based on data), many important 

decisions are made using informal information sources, such as experience or 

human networks. These are especially relevant when exception-event (e.g. 

unusual process conditions or unit operation failures) based decisions are made. 

Multiscale modelling potentially has several applications to decision making in 

the dairy industry. For example: 

• a major benefit will be a consistent data set for higher levels. With 

separate modelling, a forecast is produced at a low level (say a cheese 

plant production forecast), which is then passed onto a higher level to be 

used in a site forecast, and so on up the decision making chain. There is 

a time lag between the generation of each of these forecasts. It maybe 

that assumptions made at the lowest level is out of date by the time the 

data generated using those assumption is used at higher levels. The next 

point follows from this. 

• providing faster, more accurate and detailed forecasting data.  

• modelling the effect on processing facilities of changes to processing 

conditions (e.g. alternative products, flowrates, unit operation capacity).  

• analysing the exposure of the dairy businesses profit to process scale 

variables such as production alternatives, and volatility in material costs 

and quality, and interest rates. 

Limitations are placed on the degrees and scales of multiscale models by users 

(e.g. detail and accuracy requirements) and on users by data processing and 

software limitations.  
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3.1 The Multiscale Nature of the Dairy Industry 

Consider an investor who owns among its many investments, a shareholding in a 

dairy manufacturing business which consists of multi-site and multi-plants. Each 

investment will have its own business model (partial models of the investor’s 

model), including the dairy manufacturing business model. Each partial model in 

turn may consist of more than one partial models, depending on the accuracy 

and level of detail required. 

3.1.1 Length and Time Scales 

Figure 3-1- Scale Map for the Cheese Manufacturing Process 

Figure 3-1 shows the scale map for decision making levels and control scales of 

a cheese making investment. The different components and their scales are 

discussed below.  

3.1.1.1 The Investor Scale 

An investor models the short term and long term profit of each business in the 

investment portfolio. The time scale of interest ranges from some minimum time, 
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say 4 monthly reporting (the financial quarter), to the long term duration of the 

investment (possibly tens of years). High risk factors which increase the chance 

of failure of the investment may be reported on more frequently (e.g. the cash 

flow into new processing capacity during the construction and first months of 

operation). The characteristic length is the geographical spread of the 

investment.  

3.1.1.2 Dairy Business Manager Scale 

The dairy business manager (e.g. CEO) is responsible for carrying out the tasks 

hieving profit and growth targets) 

s sales, 

characteristic-time ranges between the minimum period of costs and sales 

 will 

or 

n 

 level. These scales lie 

 
(such as integrating acquisitions and ac

specified by the investor. The business manager is interested in the complete 

supply chain. Modelling is targeted at those factors affecting profit (such a

costs, and production) across the complete business environment.  

Factors affecting production, sales, and distribution are of interest. The 

monitoring (often monthly) and the maximum forecasting horizon. These

probably be aligned with the business plan (e.g. 5 years). As with the invest

scale, the characteristic length could be global, regional, or domestic, based o

the geographical distribution the dairy business. 

The business manager receives many decision making inputs including one from 

the Costs level and another from the Marketing & Sales

between the business manager and the various cost and production centres of 

the business. All business units will feed data into one or both of these scales.  

3.1.1.3 Site Manager Scale 

The site manager ensures the smooth oper

overview on all aspects of the dairy 

ation of a site, and will maintain an 

site’s operations. They have ultimate 

s 

responsibility for the production, service, and administration operations of the 

site. A suitable characteristic time range could be from the daily summarie

extending out to the end of the next production year.  
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Characteristic lengths are hundreds of metres up to kilometres depending on

geographic scale of the site. Those adjacent areas wh

 the 

ich affect the site’s 

operation (e.g. natural resources as raw materials), and are affected by its 

operation (e.g. pollution), are considered. 

3.1.1.4 Production Manager Scale 

The production manager’s responsibility is to deliver product on specification, on 

terest include the raw material supply, 

cteristic lengths are from tens to thousands of metres 

time, and on budget. Key areas of in

production, regulatory compliance, and manufacturing costs. They provide 

annual production data, costs, and product data (e.g. product specification) from 

each production facility.  

Characteristic times of interest range from daily production to annual (and 

beyond) forecasts. Chara

representing the physical distribution of production facilities.  

3.1.1.5 Cheese Plant Manager Scale 

The cheese plant manager is responsible for ensuring that cheese production 

d processes of interest include fouling 

onth’s production schedule). The characteristic 

schedules can be met. Phenomena an

rates for separation and heat transfer unit operations, cleaning regimes, reactor 

production (e.g. the cooking process in a cheese vat), raw milk supply, 

maintenance, the operation of individual unit operations, availability of services, 

and quality control are important.  

Characteristic times of interest range from a few hours (i.e. the current 

production) to a month (the next m

length is the physical boundary of the cheese plant’s processing operations. 

3.1.1.6 Cheese Plant Operator Scale 

The cheese plant operator’s responsibility is to make the cheese. Factors which 

ce on-specification product are important 

(e.g. processing conditions, the recipe). Characteristic times for this level could 

influence the operator’s ability to produ
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range from a few minutes (such as deciding the best moment to cut the curd in a 

cheese cooking vat) extending out to the end of the production day.  

3.1.1.7 Cheese Vat Scale  

The phenomena of interest are the curd production and whey expulsion 

processes that occur in a complete batch cycle. The steps involved in a cheese 

gulating rennet is added. 

 bacteria distribution. 

olid curd gel.  

ize. Whey 

expulsion from the curd gel begins. 

6. The curds and whey mixture is then subject to a heating and stirring 

7. 

 

The characteristic length is an important

order of a few metres) while the characte

cycle. 

vat batch are (Bylund, 2003): 

1. The vat is filled with pasteurised milk. 

2. Starter bacteria and coa

3. The mixture is stirred to ensure uniform

4. The mixture is left for a period to coagulate into a s

5. The curd gel is cut into particles (curd grains) of the desired s

regime, which may include the removal of some whey and addition of hot 

water. This, combined with the bacteria growth that occurs, results in 

further whey being expelled from the curd grains. 

After a final stirring period (the duration being determined by the desired 

pH and moisture content of the curd) the curds and whey phases are 

separated and removed from the cheese vat for further processing.

 dimension of the cheese vat (in the 

ristic time is the duration of a batch 

3.1.1.8 Curd Production 

The enzyme action of the rennet causes the casein in milk to precipitate and 

coagulate into a solid gel. Factors such as rennet type and distribution, 

of the milk govern this process. temperature, pH, and calcium content 
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Characteristic times are in the order of 20 – 30 minutes (the period covering th

coagulation set stage of the cheese vat batch), while characteristic lengt

an important dimension of the cheese vat (of the order of less than a m

3.1.1.9 

e 

hs are 

etre). 

Casein Precipitation 

The dominant type of protein in milk is casein (Bylund, 2003). Casein occurs in 

the form of micelles caused by the aggregation of sub-micelles. Each sub-micelle 

αs-casein and β-casein, and κ-casein. Sub-

 to occur). 

 

as the Milk Curve (Figure 3-2 shows Fonterra’s milk curve for the 2002/2003 and 

004 ns, and is used for this discussion). The milk curve is 

 

The enormous variation in milk supply throughout the production season has 

implications for product unit costs because plant capacity is under-utilised for 

consists of a core of insoluble 

micelles on the surface of the micelle have more κ-casein molecules in the 

surface that those sub-micelles on the interior of the micelle. This results in the 

casein micelle being hydrophilic, preventing its precipitation in the milk.  

Curd is formed by the precipitation of casein micelles which occurs when 

chymosin enzyme cleaves some of the κ-casein. This allows the micelles to 

physically interact and form aggregates that precipitate.  

Characteristic lengths between 5-10 nm (length of the κ-casein molecule) and 0.4 

μm (diameter of a large casein micelles) are considered. Characteristic times are 

in the order of up to a few minutes (for the precipitation mechanism

3.1.2 The Milk Curve 

The New Zealand seasonal milk production follows a predictable model known

2003/2  production seaso

a partial model of the production partial model. The milk supply goes from 2 to 3

million litres a day in the off season, increasing to a peak flow of over 65 million 

litres a day for up to a 12 week period. Milk flow then decreases in a linear 

fashion to the off season flow. 

The organic and bacterial nature of milk means some processing (most 

importantly anti-pathogen treatment) must be conducted more or less 

immediately. 
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much of the season, with at least 6 weeks complete shut down every yea

many processing facilities.  

The milk curve partial model has a time scale of 1 year. The length

r for 

 scale, 

heese vat batch. From a modelling perspective, information transfer occurs 

between adjacent scales.  

Consider the investor’s portfolio which consists of multiple investments. Each 

representing the distances between farms and the processing facility, ranges 

from a few kilometres and a few hundred kilometres. 

Figure 3-2 - New Zealand Milk Curve (Fonterra Personal Communication, 2004) 

 

3.2 Dairy Industry Information Flows  

Figure 3-3 shows the nature of some of the information flows in a cheese making 

investment at different scales, from the investor to the curd formation phase of a 

c

investment will contribute a changing profit or loss to the portfolio over time. The 
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investor provides decision information (such as financial targets) to the dairy 

business, and in return receives financial information.  

Other investment financial data - 

Profit, Internal Rate of Return, and 

Net Present Value forecasts. 

 

The dairy business scale takes the investor’s financial targets and uses them to 

set sales and expenditure budgets, which are then used to define production 

requirements. These include product mix and delivery timing, along with 

expenditure budgets. Actual costs and sales are returned to the dairy business 

scale by the production scale. 

Production expenditure 

budgets. 

Investor 

Dairy Business 

Production = Production Manager 

Process = Cheese Making 

Unit Operation = Cheese Vat 

$
Other investmen

business decisio

t 

ns. 

Financial targets – 

profit, growth. 
Dairy investment financial data - 

Profit, Internal Rate of Return, 

and Net Present Value forecasts.

Processing costs –raw 

materials, energy. 

Cheese making production data, 

costs. 

Cheese vat state information, 

material and energy data, unit 

availability.  

Recipe, 

connection data, 

place in filling order. 

Product specification, 

production schedule, 

raw materials. 

Order information - 

product mix, delivery 

requirements, product 

specifications. 

Mergers, acquisitions, 

partnerships. 

Sales & Marketing Financial control 

Figure 3-3 - A multiscale view of cheese production information flows 

Business expenditure 

budgets. 

Sales budgets. 

Sales. 

Production data.

 Production, sales & marketing, 

and distribution costs. 

Curd Formation

Unit operation state, 

process conditions, 

component information. 

Curd formation time. 
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The production scale provides product specification, scheduling and raw materia

information to the cheese maki

l 

ng scale. Upon manufacture of the product, actual 

 on and off, when to clean, how 

process conditions 

3.3 The Modelling Goal 

The aim of the dairy business is to make a profit. Several factors contribute to 

: 

e.g. plant operating conditions, production costs, product quality and 

• 

 costs, marketing and distribution, R&D.  

n. 

ies 

 credits, 

depreciation, capital and interest repayments, dividends. 

production and cost information is returned.  

The cheese making scale provides an individual unit operation with information 

on how to behave. For example, when to turn

much material to take, set points, and what unit operations it is connected to. The 

unit operation provides the cheese making process with information on how it is 

actually behaving. For example, the amount of material it contains, whether it is 

available for use, what its limits are (e.g. capacity, flowrate). 

Considering the cheese vat, the formation of curd during the setting phase of a 

batch will depend on the component mix of the milk, and the 

within the vat. These will determine the duration of the set phase which dictates 

when the next processing stage in a cheese vat batch, the cutting phase, can 

occur.  

 

profit

• Production  

availability. 

Business activities 

e.g. income,

• Market forces 

e.g. prices, exchange rates, market growth, competitio

• Corporate activit

e.g. income and costs generated by new investments, tax
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Other factors include environmental, regulatory, and political activities. 

A comprehensive multiscale model of t

incorporate partial models for each of t

ficant 

contributions to profit comes from the production activity, and is the focus of this 

 

s, years). The scenarios represent the changing supply of raw milk over 

time and the final product alternatives available to the manufacturer.  

ted decision 

 

 multiscale model. The development of the cheese 

production multiscale model is a step towards all of these goals. The plant safety 

ion 

xamples of the types of information needed to construct a model capable of 

achieving the modelling goal are given for production, cheese making, cheese 

n be 

identified. 

he dairy industry investment should 

hose factors whose contribution to the 

investment’s profit is determined to be significant. One of the most signi

work. 

The goal here is to develop a multiscale model capable of modelling different 

cheese production scenarios extending over different time horizons (hours, days,

month

The aim is to generate production information relevant to operational and 

planning level decision makers. On the financial side, only operating cost and 

value data related to processing, such as raw material, energy, and 

manufactured products is considered (i.e. costs such as wages and capital 

expenditure are not).  

Either profit maximization, plant safety or environmental impact orien

making information delivery could be considered as potential business-level

modelling goals for the

aspect is not considered, though partial models which factor safety will probably 

be inherent to any detailed process model. Here, only the financial aspect is 

considered. The environmental approach is examined in section 8.8. 

 

3.4 Data Requirements and Partial Model Identificat

E

operator and unit operation levels. From this, the required partial models ca
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3.4.1 Data Requirements 

Production level decision makers needs the following information to generate a 

 in section 3.1.2.  

re is more than one option available). 

e making 

supply when more than one manufacturing alternative is available.  

• 

The ch on: 

 unit operation level. 

ations. For example the capacity of silos and 

within 

 meets the specification.  

component 

ratios.  

The ch

•  (for example instructions on when to turn a pump on and off, or 

). 

production schedule:  

• raw milk supply over the time period of consideration. This is the milk 

curve discussed

• order information so raw milk can be allocated to the various 

manufacturing options (that is if the

• processing capacity of manufacturing facilities (e.g. the chees

plant) and their availability. This information is also used to allocate milk 

the amount of final product manufactured and when it is delivered. 

eese making plant level decision makers need the following informati

• the production schedule for cheese making. 

• the raw milk supply. 

• the availability of processing equipment at the

• unit operation specific

cheese vats, and pump flowrates. 

• reaction information. For example the process conditions and steps 

a cheese vat to produce curd which

• unit operation mass balance information. For example the behaviour of a 

cream separator at different flowrates and different input milk 

eese plant operator requires: 

a recipe

when to clean a unit operation

 30



 

• information on the process conditions in the cheese making processes 

unit operations (such as when the temperature within a cheese vat 

reaches the set point).  

 

3.4.2 Partial Model Identification 

several partial models are required to 

erating the production information. 

These are:  

ss. 

 in a 

tion. 

es unit operation connection information.  

rating 

r the desired time 

horizon. 

From the data needs it can be seen that 

create a multiscale model capable of gen

• models of each unit operation which constitute the cheese making 

proce

• a model capable of calculating the addition and removal of material

unit opera

• a model of a cheese making process capable of generating production 

data. This includ

• a raw milk supply model because the raw material supply varies 

significantly over the annual milk production cycle. 

• a production model capable of using the raw milk model and gene

cheese production data from the process model ove
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4 Model Implementation  

The model implementation required a process modelling environment (PME) and 

process modelling components (PMCs) for each of the unit operations in the 

cheese making process.  

Two alternatives were available:  

• purchase an existing PME from a vendor (such as AspenTech) and 

customize it to fit the dairy manufacturing processes being modelled, or 

• construct a new PME and PMCs.  

It was decided to construct a new PME and PMCs to model dairy industry 

processes for the following reasons.  

• none of the existing PME vendors have developed modelling software for 

the dairy industry.   

• the unique features of the dairy industry (e.g. the combination of the 

widely varying raw milk supply, the short lifespan of raw milk, the multiple 

production alternatives, the unique behaviour of reactors such as cheese 

vats, the unique properties of milk and its products, and the unique 

business rules such as processing equipment hygiene requirements).  

• the author had access to the software code and could customize at the 

lowest level, rather than at the level dictated by the software vendor.  

• the author had complete flexibility in accessing and formatting the data 

generated by the model.  

The model implemented here is in the form of a sequential modular simulator 

modelling moving steady state behaviour. In other words, the simulator models 

the steady state behaviour of the process moving through time. It does not model 

the start-up behaviour of the plant, or the behaviour as the plant moves from 
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cleaning to process fluid. For example, after cleaning, pipe work will contain 

cleaning water, which is purged by the first through milk. Milk will only be added 

to (say) the cheese vats when this water is removed and a pure milk stream exits 

the cheese vat feed pipe work.   

Therefore, software solutions were required to:  

• create unit operation models 

• connect unit operations into a process flowsheet 

• create production simulations for multi-product, multi-process, production 

scenarios over wide time frames 

• run simulations of processes and production scenarios 

• generate unit operation and process data 

 

4.1 Implementation Software and Hardware 

Software implementations were developed in Microsoft Visual Basic .NET. 

Microsoft Access 2003 was used for data storage.  

The software design is based on object oriented programming (OOP) techniques. 

OOP has the major benefit that it allows the efficient reuse of code. CAPE-OPEN 

ideas are used to develop the object model structure for process and unit 

operation model development (see section 2.3).  

The object model consists of Object and Collection classes. Their software 

implementation is an extension of the basic structure (i.e. methods and 

properties such as Add, Count, and Item described in any standard Visual Basic 

programming text – though none were referenced here). See Appendix D and E 

for samples of the object class and collection class code (i.e. Port and Ports) 

implemented here.  

 34



 

Simulations were performed using a HP Compaq nx7010 laptop running 

Windows XP, with a 1600MHz Intel Pentium M processor.   

 

4.2 Object Model 

An object model for the creation of unit operations, their connection into a 

process flowsheet model, and the creation and simulation of production 

scenarios is proposed. Key object relationships and hierarchy are derived from 

CAPE-OPEN.  

The singular/plural convention denotes an object/collection respectively. 

 

Collection Object 

Figure 4-1 – Partial object model for a chemical process 

Processes 

Business 

Process 

Unit Operations 

Unit Operation 

Ports 

Port 

(b) (c) 

Material 

Production  Scenarios 

Production Scenario 

Final Product 

(a) 

Materials 

Material 

Port Connections 

Port (inlet) 

Port (outlet) 

Port Connection 

Key:  

Figure 4-1(a) shows the object hierarchy for a business as it relates to the 

production side of the business. A business consists of a collection of processes. 

Each process consists of a collection of unit operations. A unit operation’s 

collection of ports facilitate flowsheet construction and are used in the transfer of 

material, energy, and other information between unit operations.  

Figure 4-1(b) shows the relationship between a material port, its material, and its 

connections to other ports (the same principle applies to energy and information 
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ports). A collection of Port Connections provides flowsheet connection 

information. Each port connection object defines the connection between two 

ports.  

Processes: Cheese, Milk Powder, Butter, Town Milk Supply, Whey, Casein 

Business: Fonterra 

Process: Cheese 

Unit Operations: Milk Storage, Pasteuriser, Cream Separation, 
Cheese Vats, Cheese Belt, Block Formers 

Unit Operation: Cheese Vat 

Ports: Cheese Milk Inlet, Curd Outlet, Whey Outlet 

Port: Cheese Milk Inlet

Key:  

Collection 

Object 

Materials: Raw Milk, Cream, Cheese Milk, 
Curd, Whey, Cheddar Cheese, Water, 
Salt., Pasteurised Milk. 

Material: Curd 

Port Connections: Cream Separator Outlet – Cheese Milk Inlet, 
Curd Outlet – Cheese Belt Inlet, Whey Outlet – Whey Storage Silo 

Port (inlet): Cheese Belt Inlet 

Port (outlet): Curd Outlet 

Port Connection: Curd Outlet – Cheese Belt Inlet 

Figure 4-2 – Partial object model for a cheese vat in a cheese making process

Material: Cheddar Cheese 

Production  Scenarios: 1 day cheddar, 3 day cheddar, 1 year cheddar. 

Production Scenario: 3 day cheddar. 

Final Product: 25kg Bulk Cheddar 

(a) 

(b) 

(c) 
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Figure 4-1(c) shows the relationship between a production scenario which 

manufactures a particular product and, through the material object, a process 

that will manufacture that product. 

Applying Figure 4-1(a) to a dairy business, Figure 4-2 shows the object hierarchy 

used to model a cheese vat in the cheese making process (the collections do not 

list all the possible constituent objects).  

 

4.3 The Cheese Production Model 

The cheese production model is created from: 

• a unit operation material content (i.e. mass or volume) model 

• the unit operation models (e.g. the cheese vat) 

• a raw material model (e.g. the milk curve) 

• the process flowsheet model (e.g. the cheese making process)  

• unit operation state control (i.e. a modelling scenario) 

4.3.1 Unit Operation Material Content Model 

The material content within a capacitive unit (defined in section 4.4.1) is 

simulated using Euler’s method. The implementation of this is discussed in 

section 7.7.2. 

4.3.2 Cheese Vat Unit Operation Partial Model 

The classification and behaviour of unit operation models is discussed in section 

4.4. Here, a description of how a unit operation model is defined is discussed. A 

cheese vat is used to demonstrate. 

A cheese vat’s behaviour is controlled using its state property, with maximum 

volume as a boundary condition. The state of the cheese vat is defined as the 

current state of existence of the vat. At any point in time the cheese vat will exist 
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in a particular state, and behave according to the rules for that state (e.g. when in 

the FILLING or EMPTYING state the cheese vat will recalculate its volume). A 

vat will have a collection of possible states. 

Jones (1999) gives a description of a cheese vat batch process cycle. The exact 

specification for the batch depends on the type of cheese being produced. The 

description here is a general recipe for cheddar. In a cheese vat batch cycle the 

vat undergoes several state changes. These are: 

• FILLING – milk and starter are added and the solution stirred to ensure an 

even distribution of starter. Enzyme in the form of microbial rennet is 

added; the solution is stirred again. 

• SET – the solution is left to coagulate into a gel.  

• CUT – once the gel is strong enough the gel is cut into a curds and whey 

suspension, followed by stirring. 

• COOK – the vat temperature is ramped to the cooking temperature (37oC) 

and the solution then cooked.  

• STIRRING – the curds and whey is stirred until the desired pH is reached. 

• EMPTYING – the vat is emptied onto the cheese belt. 

• RINSE – the vat is rinsed with water and rejoins the FILL QUEUE. 

The cheese vat can be placed in other states: 

FILL QUEUE and EMPTY QUEUE – states that indicate the vat is 

available for the transfer of material. 

CLEANING – a chemical clean will occur during a production run if that 

run continues for longer than some pre-defined period. 

OFF LINE – used when the cheese vat is not available to be used in the 

simulation. 

The default state sequence for a cheese vat batch in this work is: 
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FILL QUEUE > FILLING (until the maximum material capacity is reached) 

> SET ( expires 30 minutes) > COOKING (expires 40 minutes) > 

CUTTING (expires 10 minutes) > EMPTY QUEUE > EMPTYING (until the 

vat is empty of material) > RINSE (5 minutes) > FILL QUEUE 

The duration of the states (that expire) above are purely for the purpose of 

demonstrating the state transition mechanism proposed in this work, and may not 

reflect the actual durations found in any particular cheese making process. These 

durations will differ depending on (among other things) the specification of the 

cheese being manufactured, and the specification of the cheese vat’s feed milk.  

Between them, these states constitute the cheese vat’s State Collection (see 

section 5.1 for the implementation of the State Collection). Knowledge of a unit 

operation’s state collection is sufficient to model the behaviour of the cheese vat 

(but not the chemical processes within the cheese vat – see section 7.4 for a 

discussion on incorporating models of process reactions).  

4.3.3 Raw Milk Partial Model 

The raw milk model provides an amount of raw milk for a certain date. In this 

implementation the action taken is simply to look up a value in a data set. The 

process flowsheet model instigates this action by calling the raw milk model to 

supply an amount of raw material for a certain date. 

In this implementation, an amount of raw material is made available to the raw 

material storage capacitive units on each 1 day iteration of the simulation. In the 

case of raw milk, daily supply data is obtained from the raw milk model, and 

stored in a raw materials collection – where it is available to all unit operations 

which require raw milk (e.g. for filling raw milk silos).  

When an amount of raw milk is used by the process, the amount used is 

removed from the daily total available to the simulation. If raw material remains 

unused by the process at the end of any day’s iteration, it will be the first to be 

used the next time a process requires that raw material.  

Some raw materials expire after a period of time (e.g. raw milk) and are no longer 

available for use by the process. If raw material expires after it has been added 

 39



 

to the process it can no longer be used by that process. In the case of raw milk 

this models its deterioration caused by bacterial growth. 

4.3.4 Cheese Making Process Partial Model 

Using unit operation information from Jones (1999) and mass balance data 

(stream flowrates and components) from Morison (1997), a generic cheese 

making process was modelled (Figure 4-3). The flowsheet is constructed via the 

addition of material ports to a port connections collection.  

Figure 4-3 – Cheese Making Process (after Jones, 1999) 
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A port connection has two object properties (i.e. properties of the object in the 

object oriented programming context), an inlet port and outlet port. Inlet ports can 

only connect to outlet ports (or inlet/outlet ports, which aren’t implemented here).  

For example, a port connection with the cheese vat inlet occupying the inlet port 

property, and the cream separator skim milk outlet occupying the outlet port 

property represents the connection between the cheese vat and the cream 

separator. 
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The information required to transfer material between unit operations and control 

their behaviour is: 

• The simulation’s time increment (see section 4.10). 

• the current state of unit operations, and their material port flowrates. 

Once this information is known, a unit operation is sufficiently informed to 

recalculate itself.  

For example, material transfer between unit operations is initiated by setting the 

state of a pump flow unit to ON. At this point, the pump checks that material is 

available to transfer (from an upstream capacitive unit), and there is somewhere 

to put the material (in a downstream capacitive unit). If both are available, the 

emptying and filling flowrates of the upstream and downstream capacitive units 

are set, and their states are changed to EMPTYING and FILLING respectively. 

The capacitive units, detecting these new states, recalculate the amount of 

material contained. 

4.3.5 Unit Operation State Control 

In order to facilitate the construction of a production model, two software classes 

are proposed: 

• a Production Scenario class 

• a Modelling Scenario class 

4.3.5.1 Production Scenario Class 

A Production Scenario class is defined as a set of controlling instructions which 

place unit operations in a desired state.  

The Production Scenario is a 1 day interval, during which time the user controls 

the manufacture of product by passing instructions to unit operations. The 

selection of 1 day as the standard production modelling time period is arbitrary. 

However, 1 day is a useful period for integration with scheduling applications, 

and given raw milk supply arrives in 1 day batches. 
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The instructions change the state (hence the behaviour) of the instructed unit 

operation. For example, an instruction changing a pump’s state from OFF to ON 

initiates an attempt to transfer material between unit operations on either side of 

the pump, while changing a cheese vat’s state from OFF LINE to FILL QUEUE 

makes it available to receive material. 

4.3.5.2 Modelling Scenario Class 

A Modelling Scenario class is a collection of Production Scenarios which span 

the number of days required for the simulation. This is the mechanism by which a 

time scale is added to the production model. Production Scenarios are added to 

the Modelling Scenario in the sequential order with which the 1 day Production 

Scenarios are modelled. For example, a 30 day Cheddar Production Modelling 

Scenario will be constructed from 30 x 1 day Production Scenarios. 

The process flowsheet model combined with the modelling scenario (and its 

constituent production scenarios) solve the production problem using a specified 

(and varying) supply of raw milk.  

4.3.6 Model Simplifications 

The model of the cheese making process was simplified. Several material 

streams are ignored. A more detailed and accurate model would include all the 

material streams, such as rennet and starter into a cheese cooking vat, the salt 

flow onto a cheese cheddaring belt, and centrifugal cream separation desludge. 

While some of these streams (such as rennet, starter and salt) are critical to the 

chemical reactions and consequently final product specification, they do not 

significantly affect the mass flows.  

Reaction scale and mass balance partial models are not implemented. If they 

were these streams would need to be included in the model.  

 

 42



 

4.4 Unit Operation Classification 

Two generic classifications of unit operation are implemented – a Capacitive Unit 

and a Flow Unit. Every unit operation in the cheese making process is one (or a 

combination of more than one) of these classes. These classifications are used 

for behaviour control – in this case hard coded within the capacitive unit and flow 

unit software classes.  

4.4.1 Capacitive Unit 

A capacitive unit is a unit operation which has material storage capacity. Two 

types of capacitive unit are identified: 

1. Material storage unit operations. Their primary purpose is the batch 

storage of quantities of material (e.g. storage silos, cheese vats). 

2. Unit operations which operate continuously but contain significant 

amounts of material within their modelling boundaries. (e.g. a block former 

or a cheese belt). 

Figure 4-4 –Capacitive Unit 

 Capacitive Unit  

Inlet Port Outlet Port 

Direction of material flow through capacitive unit 

 

Here, a capacitive unit (Figure 4-4) has no more than one inlet and one outlet 

port. Although most capacitive units will have one of each, capacitive units which 

have no port in one direction are defined as either a raw material storage (and 

are filled from the Raw Materials collection) or final manufactured product 

storage (depending on which port direction is missing). Separation operations are 

implemented using Flow Units (section 4.4.2). 

The Capacitive Unit class has code to perform the following: 

• Define the unit operation as a raw material storage vessel (e.g. has no 

inlet material ports).  
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• Define the inlet material as a manufactured product, thereby defining itself 

as a product storage vessel. 

• Indicate whether it is available to store or release material. 

• Recalculate its volume when one or more of its material port’s flowrates is 

non zero. 

• Fill and empty simultaneously.  

• Pre-check the next state and update to a new state. 

• Generate unit operation operational data e.g. state, volume, material 

stream flowrates, energy flows.  

Capacitive units as defined here have at least 5 potential default states: 

OFF LINE, FILL QUEUE, FILLING, EMPTY QUEUE, EMPTYING 

Other states are user defined, e.g. a cheese vat’s states: 

SET, COOKING, CUTTING, RINSE, and CLEANING 

4.4.2 Flow Unit 

A flow unit is probably easiest to define as a unit operation that isn’t a capacitive 

unit (i.e. one that doesn’t store material). Though all unit operations have some 

material capacity (e.g. a pump’s impeller chamber or a heat exchanger’s material 

space), here a flow unit has been defined as a unit operation: 

• for which material storage is not a primary purpose; 

• which has an insignificant capacity (in the context of the process); 

• which has a low material residence time (a low residence time might be in 

the order of a few seconds to a few minutes); 

Flow units are modelled as having no residence time. In this work they have two 

default states, OFF, and ON. Two types of flow unit are modelled:  
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1. A flow generating flow unit (Figure 4-5). This type of flow unit has a non-

zero default flowrate. They have one inlet and one outlet port. Pumps and 

conveyers are examples of this type of flow unit.  

 

Figure 4-5 – Flow Generating Flow Unit 

 Flow Unit  
(Default flow ≠  0 )

Inlet Port Outlet Port 

Direction of material flow through flow unit 

 

2. A flow unit which performs some processing operation on the material as it 

passes through the unit. This type they can have multiple inlet and outlet 

ports. Mixers, separators and heat exchangers are examples of this type 

of flow unit (Figure 4-6). 

Figure 4-6 – Flow Unit 

 Flow Unit  
(Default flow =  0 )

Inlet Ports Outlet Ports 

Direction of material flow through flow unit 

 

 

4.5 Capacitive Unit / Flow Unit Interaction 

The cheese making process is made up of capacitive units and flow units 

connected together, each with a different role. As discussed in section 2.3.1, the 

Process Modelling Environment (PME) is used to manage the inter-connection of 

unit operations and construct the process flow sheet. The implementation of this 

is discussed in section 5.3. 

Capacitive units store material and provide a unit operation for a reaction. Flow 

units drive the transfer of material throughout the process, mix or separate 
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material, or represent a non-capacitive unit operation (e.g. a heat exchanger). 

There are many actual connection configurations which exist in processes. For 

example flow units are connected to flow units (e.g. pumps feeding heat 

exchangers). Flow units are connected downstream of capacitive units (e.g. 

pumps drawing material from storage silos. Flow units are connected upstream 

of capacitive units (e.g. pumps feeding storage silos). Flow units connected to 

multiple capacitive units (e.g. heat exchanger connected to multiple cheese vats). 

These do not complete the possibilities.  

The following connection regimes were implemented here to construct the 

cheese making process: 

1. A flow generating flow unit is upstream of a capacitive unit (e.g. a milk 

tanker empting pump used to fill a raw milk storage silo – not implemented 

here), represented in Figure 4-7). The flow unit is used to fill the capacitive 

unit (the assumption is that upstream material is available). The flow unit 

generates flow (i.e. its default flowrate property value is non-zero).  

 

 
 

When the flow unit’s state is changed from the OFF state to the ON state, 

the following steps occur: 

Flow Unit Ports   Capacitive Unit Ports 

(1) – Flow unit outlet material port (2) – Capacitive unit inlet material port 

Figure 4-7 – Flow Generating Flow Unit –Capacitive Unit Downstream 

Flow Unit (Tanker 
Empting pump) 

(1) 
 Capacitive Unit 

(Block Former)

(2) 

Data – port flowrate 

Material – from capacitive unit to the flow unit. 

a. The process modelling environment (PME) checks that the 

downstream capacitive unit is available for filling (e.g. state: FILL 

QUEUE; current volume is less than maximum volume).  
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b. The flow unit’s inlet port’s flowrate (1) is set. The PME sets the 

flowrate of the capacitive unit’s outlet port (2) which is connected to 

port 1.  

c. The milk silo capacitive unit, detecting a flowrate at one of its ports, 

recalculates its volume. Here data is transferred (i.e. the flowrate) in 

the same direction as material flow. 

 

2. A flow generating flow unit is downstream of a capacitive unit (e.g. a pump 

connected downstream of a milk storage silo) – Figure 4-8. The flow unit is 

emptying the capacitive unit (the assumption is that a downstream 

capacitive unit is available for filling). The flow unit generates flow.  

 

 
 

When the flow unit’s state is changed from OFF to ON, the following steps 

occur: 

a. The PME checks that the capacitive unit is available for emptying 

(e.g. state: EMPTY QUEUE; volume is non zero).  

b. The flow unit’s inlet port’s flowrate (2) is set. 

c. The PME sets the flowrate of the capacitive unit’s connected outlet 

port (1) which is connected to the flow unit.  

d. The milk silo capacitive unit, detecting a flowrate at one of its ports, 

recalculates its volume. Here data is transferred (i.e. the flowrate) in 

Capacitive Unit Ports   Flow Unit Ports 

(1) – Capacitive unit outlet material port  (2) – Flow unit outlet material port 

Figure 4-8 – Flow Generating Flow Unit – Capacitive Unit Upstream 

(1) 
Flow Unit 
(Pump) 

(2) 
 Capacitive Unit 
(Milk Silo) 

Data – port flowrate. 

Material – milk removed from the capacitive unit by the pump. 
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the opposite direction to the material flow. 

 

3. A flow unit is connected to, and filling, more than one upstream capacitive 

unit (Figure 4-9). Capacitive units are filled sequentially. For example, 

multiple cheese vats are placed in parallel, and filled sequentially. The aim 

is to operate the pasteurizer (at the cheese vat’s inlet), and the cheese 

belt (at the cheese vat’s outlet) continuously. 

 

 
 

When the flow unit’s state is changed from OFF to ON, the following steps 

occur: 

Flow Unit Ports   Capacitive Unit Ports 

(1) – Flow unit outlet material port (2) – Capacitive unit inlet material port 

Figure 4-9 – Flow Unit – Sequential Capacitive Units Downstream 

Flow Unit 
(Pasteuriser) 

(1) 

 Capacitive Unit 
(Cheese Vat 1) 

(2a) 

 Capacitive Unit 
(Cheese Vat 2) 

(2b) 
OR

Data  

Material  

a. The PME selects a downstream capacitive unit which is available 

for filling.  

b. The flow unit’s outlet port’s flowrate (1) is set. 

c. The PME sets the selected capacitive unit’s connected inlet port’s 

(2a) flowrate.  

d. When the capacitive unit is full, the PME finds another downstream 

capacitive unit which is available for filling. 

e. The PME sets the selected capacitive unit’s connected inlet port’s 

(2b) flowrate. 

 

 48



 

4. A flow generating flow unit is connected to more than one upstream 

capacitive unit (Figure 4-10). An example is the sequential emptying of 

cheese vats onto a cheese belt. 

 

 

When the flow unit’s state is changed from OFF to ON, the following steps 

occur: 

Capacitive Unit Ports   Flow Unit Ports 

(1) – Capacitive unit outlet material port  (2) – Flow unit inlet material port 

Figure 4-10 – Flow Generating Flow Unit – Sequential Capacitive Units Upstream 

Flow Unit (Cheese 
belt feed pump) 

(2) 

Material 

 Capacitive Unit 
(Cheese Vat 1)

(1a) 

 Capacitive Unit 
(Cheese Vat 2)

(1b) 
OR

Data 

a. The PME selects an upstream capacitive unit which is available for 

emptying.  

b. The flow unit’s inlet port’s flowrate (2) is set. 

c. The PME sets the selected capacitive unit’s connected outlet port’s 

(1a) flowrate.  

d. When the capacitive unit is empty, the process controller finds 

another upstream capacitive unit which is available for emptying. 

e. The PME sets the selected capacitive unit’s connected outlet port’s 

(1b) flowrate. 

 

5. Two flow units are connected in series (e.g. a pump connected to a 

pasteurizer). Here, the flow generating flow unit is connected upstream of 

a non-flow generating flow unit (Figure 4-11). When the flow generating 

flow unit’s state is changed from OFF to ON, the following steps occur: 
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a. The flow generating flow unit’s outlet port’s flowrate (1) is set. 

b. The PME sets the flow unit’s connected inlet port’s (2) flowrate. 

 

 
 

Flow Unit Ports 

(1) – Capacitive unit outlet material port 

(2) – Flow unit outlet material port 

Figure 4-11 –Flow Generating Flow Unit – Flow Unit Downstream 

(1) 
Flow Unit 

(Pasteuriser)

(2) 
Flow Unit 
(Pump) 

6. A flow unit (both flow generating and non-flow generating instances 

were0020implemented) is connected to more than one upstream 

capacitive unit (Figure 4-12) through different outlet ports. Each flow unit 

port provides flow to its connected capacitive unit. 

 

 
 

For example, a cream separator splits flow into two streams (i.e. skim milk 

and cream). One stream goes to the skim milk silo capacitive unit, the 

other to the cream silo capacitive unit. For the transfer to be successful, 

both capacitive units must be available for filling. The flow is split 

according to some pre-defined ratio, so the sum of the outlet port’s (2 and 

3) flow equals the inlet port (1) flow. Given each capacitive unit can be 

filled, flows at ports 4 and 5 are set to the flows at ports 2 and 3 

Flow Unit Ports    Capacitive Unit Ports 

(1) – Flow unit inlet material port (raw milk) (4) – Capacitive unit inlet material port (skim milk) 

(2) – Flow unit outlet material port (skim milk) (5) – Capacitive unit inlet material port (cream) 

(3) – Flow unit outlet material port (cream) 

Figure 4-12 – Flow Unit – Multiple Capacitive Units Downstream 

Flow Unit 
(Cream 

Separator) 

(2)  Capacitive Unit 
(Skim Milk Silo) 

(4) 

AND 
(3)  Capacitive Unit 

(Cream Silo) 

(5) 

(1) 
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respectively. 

 

When the flow generating flow unit’s state is changed from OFF to ON, the 

following steps occur: 

a. The PME checks that the capacitive units connected to the flow unit 

outlet ports are both available for filling. 

b. The flow unit’s outlet ports flowrates (2 and 3) are set. 

c. The PME sets the flow unit’s connected inlet ports (4 and 5) 

flowrates. 

 

4.6 Multi-class Unit Operations 

Some unit operations are modelled using a combination of unit operation 

classes.  

4.6.1 Heat Exchanger 

A heat exchanger is modelled using two flow units, a cold side flow unit and a hot 

side flow unit. In the case of a plate pasteurizer, the cold side (milk) is part of the 

cheese making process model. The hot side is part of a separate energy supply 

model.  

In Figure 4-13 the pasteurizer cold side is connected to the cheese making 

process (ports 1 and 3). The hot side (superheated water) provides the energy 

needed to pasteurise the milk, and is connected to an energy source and energy 

sink (ports 4 and 6).  

Energy ports 2 and 5 provide the connection and energy transfer mechanism 

between the cold side and the hot side. In the cold side the milk temperature 

increases, while in the hot side the hot water temperature decreases, as they 

pass through the flow units. 
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Pasteuriser Cold Side Ports   Pasteuriser Hot Side Ports 

(1) – milk inlet (material port)   (4) –Hot water inlet (material port) 

(2) – pasteuriser energy inlet (energy port) (5) – Energy outlet (energy port) 

(3) – pasteuriser milk outlet (material port) (6) – Warm water outlet (material port) 

Figure 4-13 –Information exchange in a multiple flow unit pasteuriser  
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BOUNDARY 

Material Flows 

Energy Flows

 

This situation was successfully implemented, though more work is needed on the 

Energy object to enable more sophisticated energy modelling. 

4.6.2 Spray Dryer 

Though not part of the cheese making process, another example of a unit 

operation important in the dairy industry which could be modelled using 

combinations of flow and capacitive units is a spray dryer. In order to examine 

the potential of multi-class unit operations the following configuration was 

implemented, and successfully tested 

A spray dryer is modelled using a flow unit upstream of a capacitive unit (Figure 

4-14). The flow unit represents the atomization of milk concentrate and the dryer 

vapour space, and also provides the flowrate for the transfer into the spray dryer. 

The capacitive unit represents the holdup of powder in the dryer and the fluidized 

milk powder bed at the bottom of a spray dryer. This models the accumulation of 

milk powder within the spray dryer unit.  

Connection to the upstream and downstream processes are via ports 1 and 4. 

The vapour phase flow unit’s outlet material port (2) is connected to the milk 

powder fluidized bed’s inlet material port (3). 

 52



 

Upstream Milk 

Powder Process 

Downstream Milk 

Powder Process 

Spray Dryer Vapour Phase
(Flow Unit) 

Spray Dryer Fluidized Bed 
(Capacitive Unit) 

Cheese Making Process 

(1) 

(2) 

(3) 
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Vapour Phase Ports    Fluidized Bed Ports 

(1) – Concentrated milk inlet (material port) (3) – Milk powder inlet (material port) 

(2) – Milk powder outlet (material port)  (4) – Milk powder outlet (material port) 

Figure 4-14 –Information exchange in a flow unit / capacitive unit spray dryer 

Material Flows 

 

 

4.7 Modelling Continuous Flow in a Capacitive Unit 

In the cheese making process, some unit operations perform both flow 

generation and material storage functions. This class of unit operation operates 

continuously, and essentially transfers material within the process. It is distinct 

from a standard flow unit (such as a pump or separator/mixer) in that it has a 

non-negligible material residence time.  

Note that above, non-negligible is not defined. The decision to model a 

continuously operating unit operation’s capacity will depend on how significant 

that capacitive nature is to the operation of the process. For example if the unit 

operation holds up (say by more than a few minutes) the operation of the process 

downstream while it fills and material moves through it than it may be desirable to 

model capacitance. The cheese belt and the block forming tower are examples of 

this.  

The cheese belt is a belt conveyer. The block forming tower is essentially a 

vertical sided storage silo which continuously expresses compressed curd at the 

bottom of the silo at the same flowrate as the curd is added to the top of the silo. 

 53



 

When not filling or emptying at the start and completion of a process run, they 

function as continuous plug-flow unit operations.  

Cheese Belt

3:36:00 4:48:00 6:00:00 7:12:00 8:24:00 9:36:00 10:48:00 12:00:00

Time

Vo
lu

m
e

Cheese Belt

Figure 4-15 – Cheese Belt Volume Time Series  

As shown in the cheese belt volume time series (Figure 4-15), the cheese belt 

process consists of fill and empty phases, separated by a long period of 

continuous flow. The cheese belt / block forming tower is modelled using a 

combination of capacitive units and flow units (Figure 4-16).  

Figure 4-16 – Cheese Belt and Block Forming Tower – ‘Modelled’ Unit Operation Configuration 

FG Flow 
Unit (ON)

 
Capacitive  

Unit  
(FILL/EMPTY) 

 Capacitive 
Unit (FILLING)

Cheese Belt 

‘Imaginary’ cheese 

belt auger & vacuum 

flow unit Block Forming Tower 

FG Flow 
Unit (OFF)

Rapid Cool Tunnel 

Feed Conveyer 

Curd from cheese vat 

The Cheese Belt’s FILLING stage models the continuous addition, at constant 

flow rate, of curd onto the belt from the cheese vat at the start of a processing 

run.  
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Once the Cheese Belt’s capacitive unit’s maximum material capacity is reached 

(simulating the first-added curd reaching the end of the belt), the Cheese Belt 

changes to the FILL/EMPTY state, the cheese belt auger and vacuum flow unit is 

switched ON, and curd is transferred to the block forming tower at the same 

flowrate as the cheese vat emptying flow rate. Thus continuous flow behaviour 

through a capacitive unit is modelled.  

The Block Forming Tower is also a continuous flow capacitive unit, so once it 

reaches capacity, it will switch into the FILL/EMPTY state and the Rapid Cool 

Tunnel Feed Conveyer will switch into the ON state. 

Figure 4-16 is the implemented configuration of the model, but not the 

configuration of the real process. The ‘imaginary’ cheese belt auger & vacuum 

flow unit does not in reality exist. In the real process, flow from the Cheese Belt 

to the Block Forming Tower is generated by a vacuum in the Block Forming 

Tower. See section 7.14.2 for further discussion of this situation. 

 

4.8 Energy Transfer  

The feasibility of using the Energy Port – Energy object as the mechanism for 

energy transfer (c.f. Material and Material Port objects) is tested in this work.  

The multiple flow unit pasteurizer model shown in Figure 4-13 was constructed. 

This model connects two separate process models using an energy port.  

The cold- and hot-side flow units’ configuration and behaviour are as follows: 

• Cold side flow unit inlet (port 1) and outlet (port 2) material temperatures 

of 3 ºC and 32 ºC respectively.  

• Hot-side flow unit inlet (port 4) and outlet (port 6) material temperatures of 

120 ºC and 100 ºC respectively.  

• When the cold-side flow rate is non zero 0 and the flow unit detects 

different inlet and outlet material temperatures it seeks energy from its 
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inlet energy ports to (in this case) increase the outlet material port’s 

temperature by the desired amount.  

• The cold side’s inlet energy port attempts to retrieve energy from its 

connected outlet port (the hot side).  

• When the hot-side’s flow unit detects an attempt to retrieve an amount of 

energy from its outlet energy port, it starts itself (i.e. changes its state to 

ON). The flow rate is calculated:  

TC
m

pΔ
Δ

=
• E  

where  

 = mass flow rate ( ) 

 = specific heat ( ) 

 = inlet and outlet ports energy difference ( ) 

•

m 1−kgs

pC 11 −− KJkg

EΔ 1−Js

TΔ  = inlet and outlet ports temperature difference ( K ) 

The amount of energy used in the pasteurization process could then be 

calculated from the amount of hot water used (not implemented).  

This is a simplistic model of the actual pasteurization configuration used in the 

dairy industry. A real pasteurizer uses both intra-process energy transfer and 

non-process energy to heat and cool the milk (Bylund, 2003). 

4.9 Unit Operation State Behaviour 

Three different types of unit operation state behaviour are modelled (see section 

5.1 for an example of how states are used to model unit operation behaviour). 

4.9.1 Static State 

A unit operation in this state remains in that state unless it is changed by user 

input or a result of interaction with other unit operation’s in the process. The 

simplest example is when the unit operation it a ‘ready’ (or not ready) state.  
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For example, consider an empty cheese vat in a FILL QUEUE state. The cheese 

vat will remain in the fill queue unless changed externally or as a result of an 

expiry of a compulsory state (see section 4.9.3).  

4.9.2 Dynamic State 

Dynamic state behaviour causes the cheese vat to stay in a particular state for a 

predefined length of time, then automatically changes to another predetermined 

state. This mechanism allows batch modelling and automation in unit operations 

such as a cheese vat. It can be programmed to carry out a series of steps – each 

state expiring and moving the vat onto a new state.  

The default state sequence for a cheese vat batch in this work is: 

FILL QUEUE > FILLING (until max volume reached) > SET ( expires 30 

minutes) > COOKING (expires 40 minutes) > CUTTING (expires 10 

minutes) > EMPTY QUEUE > EMPTYING (until min volume reached) > 

RINSE (5 minutes) > FILL QUEUE 

Here, the SET, COOKING, CUTTING, and RINSE states are dynamic states 

because they expire, then the unit operation is forced into another predefined 

state. 

4.9.3 Compulsory State 

A compulsory state must be attained within a specified time period. For example 

a cheese vat’s CLEANING state is defined so the cheese vat is forced into that 

state at least once every 1440 minutes ( = 24 hours).  

It is always possible for the user to override the current state of a unit operation 

during simulation. The behaviour of different types of unit operation in different 

states is discussed in section 4.4. 

CLEANING is also a dynamic state because once the state is attained, it will 

expire after a predefined period of time. 
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4.9.4 State Transition Mechanism 

Two software tools are used to manage the transition of a unit operation out of a 

dynamic state or into a compulsory state. An OOP collection stores data on the 

times when a unit operations was last in any compulsory state, and the unit 

operation software object has a property which records the time the unit 

operation was placed in its current state. The compulsory state collection and 

current state property are continuously checked during simulation. 

If the current simulation time (tg) is equal to a compulsory state’s pervious 

occurrence plus the maximum allowed time between occurrences, the unit 

operation will be forced into that compulsory state. If the current state is a 

dynamic state, and tg is equal to the time the unit operation went into its current 

state plus the duration of the state, then the unit operation will be forced into the 

next allotted state. What this state will be is defined by the user as part of the unit 

operation’s configuration (see section 5.1).  

 

4.10 Simulation Timekeeping 

Because a multiscale model (by definition) spans a wide time period, the 

implementation requires a mechanism for keeping track of, and incrementing, 

time. Simulation is driven using a global date/time variable (tg) and a timer control 

(i.e. in this implementation Microsoft Visual Basic’s timer control placed onto a 

PME form). At each timer ‘tick’, code is run which: 

1. increments tg by a predefined or pre-calculated period. 

2. checks the modelling scenario for any state changes to unit operations. 

3. iterates through each unit operation in the process. The code implemented 

depends on the state of the unit operation. 

4. generates process and unit operation data. 

The global date/time variable tg keeps track of the simulation’s ‘actual’ time and 

increases with each iteration by the value of the time increment. 
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4.10.1 A Failed Simulation Control Mechanism 

The initial software implementation of Process Unit form classes included a timer 

control which recalculated the instantiated form’s Process Unit and motivated the 

simulation. However, this approach proved both unreliable and inefficient.  

Firstly it was difficult to maintain an orderly iteration sequence. Each unit 

operation’s timer ticked independently which resulted in a mass balance error 

because the capacitive unit might not recalculate with the correct process data.  

For example, consider a pump which when turned on changes the flow rate of an 

attached capacitive unit’s material port’s flowrate after the capacitive unit has 

recalculated. This occurs because the capacitive unit’s timer has (arbitrarily) 

ticked first (Figure 4-17). The process time increment is 1 second and the 

capacitive unit starts the iteration empty.  

When the capacitive unit recalculates it does so without the correct flowrate at 

port 2 because the flow unit hasn’t yet recalculated and set the connected port 

flowrates. So the mass in the capacitive unit remains at zero and a mass balance 

error of (in this case) 50kg/s x 1s = 50kg occurs. Port 2’s flowrate should be 50 

kg/s when the capacitive unit is recalculated, giving a content mass after 

recalculation of 50kg. 

Figure 4-17 – Process Simulation Process Unit Recalculation Sequential Order Error 

FG Flow 
Unit (ON)

 Capacitive 
Unit 

Pump 50 kg/s Storage Silo Content Mass = 0 

Port 
1 

Flowrate at Port 1 = 50 kg/s, Port 2 = 0 kg/s 

Mass in capacitive unit = 0 Port 
2 

 

It became apparent that it was important to control the order of unit operation 

recalculation. Because some flow units are the driving force for material transfer, 

here, flow units are recalculated first, This sets all the unit operation material 

port’s flowrates. Only then are capacitive units recalculated. 

The second problem was, as the number of unit operations in the process being 

modelled increased the amount of computer processing power required to 
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simultaneously recalculate unit operations became significant. Usually the 

simulation slowed considerably, but sometimes it froze completely. This wa

especially important when small fixed increment time intervals were used (s

section 

s 

ee 

ation Time Increment 

The user selects one of two methods of incrementing the simulation time.  

4.10.2). 

4.10.2 Simul

The first method increments the process by a fixed time interval with each timer 

tick. If the user sets the increment at (say) 10 seconds, each increment of the 

controlling timer increments the process by 10 seconds. i.e. 

Timer Tick  Simulation ‘Actual’ Time (tg) 

0   1 January 2005 12:00:00am (Start Time) 

ement that state. With a 

 

1   1 January 2005 12:00:10am 

2   1 January 2005 12:00:20am 

3   1 January 2005 12:00:30am 

4   1 January 2005 12:00:40am 

The second method examines the process to find what the next state of each unit 

operation will be, and the time increment that would impl

one exception, the smallest time increment returned from all unit operations is 

used as the time increment for the next iteration. The exception is when the 

expiry time of the production scenario (i.e. the time to midnight) is less than the

smallest time increment. In that case the time increment is the seconds to 

midnight. 

Each iteration can (and generally will) have a different time increment. i.e. 

Timer Tick Increment (s)  Simulation ‘Actual’ Time (tg) 

0     1 January 2005 12:00:00am (Start Time) 

January 

0 

1  120   1 2005 12:02:00am 

2  6   1 January 2005 12:03:00am 

3  240   1 January 2005 12:07:00am 

4  1980   1 January 2005 12:40:00am 
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This fixed-interval time increment method produces redundant data, a

slower simulation solution and than the discontinuity method (see sec

s well as a 

tion 7.6 for 

g

ur during the simulation’s ‘current’ 

he timer ‘tick’ interval. Increasing the 

easing the interval causes it to tick more 

a full discussion of the discontinuity method). The smallest time increment 

currently possible is one second (this is a software implementation limitation).  

4.10.3 Daily Production Model Iteration 

The simulation’s actual time t  is used to select and increment the production 

scenario, which controls unit operation behavio

1 day cycle. Each unit operation is iterated and recalculated, the process time is 

incremented, and data is generated. Because tg is a unique incrementing 

variable, it can be used as part of a unique identification key for process 

simulation data. Data can also be easily compared to historic plant data or 

current process data using tg. 

4.10.4 Simulation Speed 

Simulation speed is controlled by changing t

interval slows the timer, while decr

frequently. This means the user can change the model iteration rate. For 

example, a 1ms timer tick interval = 1000 iterations per second; a 50ms tick 

interval = 20 iterations per second; 1s tick interval = 1 iteration per second.  
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5 Model Operation 

5 steps are required to design and configure the process for simulation: 

1. Define unit operation type templates, their properties and state collection. 

2. Create individual unit operations based on unit operation type templates. 

3. Connect the unit operations into a process flowsheet. 

4. Construct 1 day production scenarios, and add these in sequential order 

to construct a modelling scenario. 

5. Set the simulation’s start date/time, the time increment of each timer step, 

and the timer ‘tick’ interval.  

The CD included with this thesis has a copy of the software application used to 

perform simulations. Appendix A provides the necessary installation and 

operating instructions to view a preconfigured simulation. 

In this section, the Process Modelling Environment (PME) implementation is 

shown. Here, the PME manifests as several software forms; the Process 

Modelling Executive Form, the Unit Operation Type Template Form, and the 

Modelling Scenario Form, all of which are discussed below. 

5.1 Unit Operation Type Templates 

The unit operation’s type template determines its behaviour and is the basis for 

the creation of individual unit operation partial models. They are essentially the 

model for the unit operation. The template consists of properties (e.g. mass or 

volume capacity) and a state collection. Figure 5-1 shows the template for a 

capacitive unit. The capacitive type name is Cheese Vat Type 1, its volume is 

33,500L). A cheese vat modelled on this template has 10 possible states (i.e. its 

state collection count = 10).  

 63



 

As identified in section 4.3.2 a unit operation will exist in different states at 

different times. By controlling the state of the unit operation its behaviour is 

determined. A unit operation’s state collection provides the list of possible states.  

Instructions for some of the cheese vat’s behaviour is obtained from the state 

collection. Its behaviour is determined by changing its state using one of two 

control mechanisms: 

1. The state changes automatically as it steps through a predefined 

sequence of states.  

2. The user can set the state of a cheese vat during simulation, using the 

production scenario state control mechanism (discussed in section 4.3.5). 

Figure 5-1 – Cheese Vat Template 
 

Figure 5-1 shows the unit operation template for a cheese cooking vat. The state 

collection gives a cheese vat created from this template the following behaviour: 

1. The first state (order = 1) is OFF LINE. Therefore, when the cheese vat 

object is first instantiated by the process modelling environment, its state 

is set to OFF LINE. 
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2. The FILL QUEUE state does not expire (duration = 0). 

3. Upon completion of the cheese vat FILLING (order = 3), it will move into 

the SET state (order = 4). 

4. The cheese vat will remain in the SET state for 30 minutes, then move into 

the COOKING state (duration = 30, order on expiry = 5). 

5. The cheese vat will remain in the COOKING state for 40 minutes, then 

move into the CUTTING state (duration = 40, order on expiry = 6). 

6. The cheese vat will remain in the CUTTING state for 10 minutes, then 

move into the EMPTY QUEUE state (duration = 10, order on expiry = 7). 

7. Upon completion of the cheese vat EMPTYING (order = 8), it will move 

into the RINSE state (order = 9). 

8. The cheese vat will remain in the RINSE state for 5 minutes, then move 

into the FILL QUEUE state (duration = 5, order on expiry = 2). 

9. If the cheese vat is not cleaned for 1440 minutes, it will go into the 

CLEANING state for 2 minutes then move into the RINSE state (duration = 

2, order on expiry = 9). 

The mechanism initiating these state changes was discussed in section 4.9.4. 

5.1.1 Unit Operation Types Created 

15 unit operation type models were developed in this work to model the cheese 

making process: 

Capacitive:  Raw milk storage silo, cream storage silo, cheese milk silo, cheese 

vat, whey collector, block forming tower, rapid cool tunnel, cheese 

storage. 

Flow:  Raw milk supply pump, cream separator, pasteurizer, pasteurizer 

pump, cheese belt, rapid cool tunnel conveyer, cheese transfer to 

storage. 
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In addition, a spray dryer process was configured to enable testing of the 

Process Modelling Environment. Because this was outside the parameters of this 

work it will not be discussed further.  

 

5.2 Creating a Unit Operation  

In this implementation, unit operations are created within the context of the 

process. The following steps are performed: 

1. A Process object is created.  

2. Each unit operation is created and added to the Process.  

3. The unit operation is defined (based on a unit operation template – see 

section 5.1). 

4. Ports are added to the unit operation. Each port’s type is defined (i.e. 

material, energy, or information port), given a direction (i.e. inlet, outlet, 

inlet/outlet) and configured depending on the its type. For example, a 

material type port will be given a material.  

Figure 5–2a – Process Modelling Executive - Process Data Tab 

Unit operation list – 

cheese vat 1 selected. 

Selected process and unit 

operation details. 

List of possible states for 

the selected unit operation.
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Figure 5-2b - Process Modelling Executive – Port Tab 

Selected port details (CV1’s 

inlet port selected). 
Port Connections: CV1 inlet 

port connected to the 

pasteuriser outlet. 

 

Figure 5-2a shows the process modelling executive form – process data tab.  

Figure 5-2b shows the same form with the port tab displayed. The unit operations 

which constitute the cheese making process are in the left hand column, with the 

detail for the selected cheese vat (name = CV1) displayed in the central column. 

 

5.3 Connecting Unit Operations into the Process Flowsheet 

Once the process’ unit operations are defined, they are connected together into a 

process flowsheet. This requires the interconnection of ports. The following rules 

are defined: 

1. A unit operation cannot connect to itself (i.e. a port on a unit operation 

cannot connect to another port on the same unit operation). 

2. A port cannot connect to a port of the same direction (e.g. inlet ports can 

only connect to outlet or inlet/outlet ports). 

3. Ports can only connect to ports of the same type (i.e. a material port can 

only connect to another material port). 

4. A material port can only connect to a port which has the same material. 
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The PortConnection object is used as the mechanism for connecting ports. A 

PortConnection consists of an inlet port, and an outlet port. 

 

5.4 Creating a Modelling Scenario 

After a process’ unit operations are created and the process constructed, the 

user creates a modelling scenario.  

1 day Production 

Scenarios 
Production Scenario Events Modelling Scenario List 

Figure 5-3 – 2 Day Modelling Scenario: Standard Cheddar  
 

Figure 5-3 shows a 2 day cheese modelling scenario, which consists of two 1 

day production scenarios. In this case the production scenarios are the same – 

i.e. the process repeats the same production scenario for each day of the 

modelling scenario. The 1 day production scenario is essentially a collection of 
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controlling instructions to individual unit operations, which set the state of the unit 

operation at a particular time within the 1 day period. 

In Figure 5-3, the 12.5 hour production – Standard Cheddar production scenario  

is selected. This production scenario, for example, places the raw milk silo unit 

operation into a FILL QUEUE at 00:01:00. The raw milk supply pump is switched 

ON at 00:55:00, while the Cheese Vats (CV1 – CV8) are placed into the FILL 

QUEUE at 02:00:00 (note: in this example the modelling scenario begins at 

00:00:00 on 17/10/2005 – see Figure 5-2a).  

The model is tested during construction by running the simulation using a 1 

second fixed-interval time increment. This ensures at least 1 feasible model 

solution is guaranteed.  

The simulation is completed when the modelling scenario’s final production 

scenario has been run. During simulation, individual unit operation and 

production data is being generated.  

 

5.5 Simulation Solution 

The multiscale model’s simulation is solved by time stepping. The simulation is 

given a process start date (Dstart). With each recalculation, the process time is 

incremented by some specified time period. The size of the time step is either set 

manually or is generated from the process scale or the unit operation scale 

partial model (previously discussed in section 4.10).  

Figure 5-4 represents a production model simulation (a modelling scenario). A 

single cycle of the modelling scenario represents a complete production 

simulation (Figure 5-4 - 1). It consists of a collection of production scenarios. 

Each of the production scenarios which constitute the modelling scenario are 

used to control the cheese making process (Figure 5-4 - 21 to n where n = number 

of production scenarios =  the number of days of the simulation). 

Individual production scenarios represent a 1 day cycle (Figure 5-4 - 2) of the 

production model’s simulation. For each production scenario, the raw milk supply 
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model is recalculated once (i.e. a date is passed to the raw milk supply model 

and an amount of milk which is available to the model for that day is returned).  

1 

The cheese production model 

(i.e. the Modelling Scenario) 

cycles once per simulation.  

Figure 5-4 – Cheese Production Model Iteration

21

Each constituent production scenario is 

selected based on the process date (i.e. when 

the production scenario increments, a date is 

passed by the production model and a 

production scenario is returned). 22

23

2n

2 

One cheese production 

scenario in the production 

model’s collection of 

production scenarios. 
32

3raw milk

3m

1 day cycle. 

Each cheese production 

scenario consists of a 

recalculation of the raw milk 

supply model … 

… and multiple 

recalculations of 

the cheese 

process model. 

31

33

1 

Dstart

Dstart+1 day 

n days in 
the 

simulation 

t = 00:00:00

represents an recalculation of a model  

 

The process model recalculates multiple times (Figure 5-4 – m iterations, each 

iteration 31 to m where m = the number of times the process model iterates).   
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The raw milk supply model is recalculated at time t = 00:00:00 (Figure 5-4 – 3raw 

milk) of the day being modelled. The first recalculation of the cheese process 

model also occurs at this time (for clarity it is shown offset in Figure 5-4 - 31). 

Subsequent recalculations of the cheese making process occur with each time 

increment (section 4.10). 

 

Figure 5-5 – Cheese Process Model Recalculation

3 

The cheese making 

process recalculates. 

42

43

41

4n

Each unit 

operation in the 

process model 

recalculates once 

per cheese 

making process 

recalculation. 
44

2 

45

represents a recalculation of a model  

 

For each recalculation of the process model (Figure 5-5 - 3) all unit operations 

are recalculated once (Figure 5-5 – 41 to n where n = the number of unit 

operations in the process). A capacitive unit operation’s material content 

microscale partial model will recalculate if certain criteria are met (discussed in 

section 7.6). 

 

5.6 Monitoring the Simulation 

The implementation of process graphics is rudimentary, using forms. The 

graphical user interface for monitoring a unit operation during simulation is the 

unit operation form. The user can instantiate individual unit operations, and 
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relocate them around their container MDI form. Two generic form objects are

used. The Capacitive Unit form (Figure 5–6a), and the Flow Unit form (Figure 

6b).  

 

5–

it 

ing simulation.  

 Both form objects display unit operation name, state, and port information. The 

capacitive unit form also displays volume information. Using these forms, the 

user can construct a visual representation of the process, and monitor each un

operation’s behaviour during simulation. No visual representation of the 

connections and flow between unit operations was implemented. 

Figure 5-7 shows the user view of the cheese making process dur

 

Figure 5-6a - Capacitive Unit Form Figure 5-6b – Flow Unit Form 

Inlet material 

port: 

Tag = iCV5 

Port flowrate = 

0kg/s 

Outlet material 

port: 

Tag = oCV5 

Port flowrate = 

0kg/s 

Outlet material 

port: 

Tag = oPASTm

Port flowrate = 

35kg/s 

Inlet material 

port: 

Tag = iPASTm

Port flowrate = 

35kg/s 

State = SET (note: 

this graphic shows a 

cheese vat) 

Current volume = 

33500 L (100%) 
State = ON (note: this 

graphic shows a 

pasteuriser) 

Inlet energy port: 

Tag = iSTEAMe 

Port energy flow = 

4060000 Joules 
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Figure 5-7 – Cheese Making Simulation (User View) 
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6 Model Results, Accuracy and Verification 

The multiscale model should be tested against a real cheese making process to 

be properly tested and verified. In the absence of that here, the model was 

verified using: 

• a simple overall mass balance 

• unit operation volume time series graphs 

• unit operation state Gantt charts 

• manufactured product time series graphs 

• raw milk consumption time series graphs 

To test the multiscale model, several simulations were conducted using a 

combination of:  

• different modelling scenarios (i.e. different combinations of 1 day 

production scenarios),  

• different time periods (i.e. 1 day, 2 day, 6 day),  

• the fixed-interval time increment method using different iteration time 

intervals, 

• the discontinuity time increment method. 

As discussed in section 5.4 a production scenario is tested during construction 

with a 1 second fixed-interval time increment. This ensures that the modelling 

problem has at least one feasible solution (albeit an inefficient one).  

For all production scenarios tested, once the 1 second time increment solution 

was found, the model reached a successful solution when running in 

discontinuity time increment mode. 
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6.1 Data Generated 

The cheese production model presented here generated data on capacitive unit 

material content and state, flow unit state, totalized manufactured product, 

totalized energy consumption, and raw material use data. Each new data record 

receives a date/time stamp.  

A simulation running in fixed-increment mode of 1 second time increments 

completes 43,200 steps in 12 hours. The 20 capacitive unit operations in the 

cheese making process modelled here produced 864,000 data records for a 12 

hour simulation – for volume alone. 

The same simulation operating in discontinuity mode produced 200 records per 

capacitive unit for 12 hours simulation. For 20 capacitive unit operations, this 

equates to 4000 data records for volume. 

 

6.2 Overall Mass Balance 

The mass balance is simply the sum of the material contents within each 

capacitive unit operation, calculated with each iteration of the multiscale model. 

1,000,000kg per day of raw milk was made available as feed for the simulation. 

As the fixed-interval time increment was increased, the solution time decreased, 

and the overall mass balance error trended upwards. Table 6-1 shows the results 

for 1 day cheese making process simulations processing 1,000,000 kg of raw 

milk. All simulations ran with a timer speed of 10 steps per second (the same 

simulation in discontinuity mode is shown for comparison). 
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Table 6-1 – Fixed Interval Simulation 

 

Fixed Interval Time 
Increment 

Simulation 
Duration 

(seconds) 

Overall Mass 
Balance Error 

1s 3600 0% 

2s 1800 +0.012% 

3s 1200 +0.039% 

4s 900 +0.027% 

5s 720 +0.048% 

6s 600 +0.133% 

10s 360 +0.048% 

12s 300 +0.042% 

15s 270 +0.234% 

20s 180 +0.153% 

30s 120 +0.506% 

60s 60 +1.011% 

Discontinuity 90 0% 

 

6.3 Time Series Graphs 

While the model mass balance gives one indication of the validity of the result, it 

doesn’t provide unit operation detail.  

Figure 6-1 shows the volume time series for cheese vat 8 from a cheese making 

simulation (in fixed-interval time increment mode). This graph has all the features 

expected from a cheese vat: 

• The volume went through repeated fill and empty cycles, 

• The linearity of the fill and empty stages indicates constant fill and empty 

flowrates, 

• The mirror image fill and empty line slopes indicate the fill flowrate was 

the same as the empty flowrate, 
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• The maximum volume stage for each cycle is the same duration, 

indicating a batch cycle. 

Time series graphs for other unit operations are shown in Appendix B. There is 

little difference in data quality between the fixed and discontinuity time increment 

modes simulation results. All the key behaviors of process units were 

reproduced.  

Figure 6-1 – Volume Time Series for Cheese Vat 1  
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6.4 Gantt Charts 

Gantt charts are useful for providing unit operation utilization information. Figure 

6-2 shows a unit operation state Gantt chart for the 8 cheese vats in an 12 hour 

cheese making simulation. It shows the following: 

• the batch cycle nature of each cheese vat. Cheese vat 1 fills, then enters 

the SET state, followed by the COOKING state, then CUTTING. At the 

completion of CUTTING, it enters the EMPTY QUEUE, then begins 
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EMPTYING. Once emptied, cheese vat 1 is washed using a RINSE, then 

re-enters the FILL QUEUE. 

• the sequential batch nature of the combination of the cheese vats is 

shown. Cheese vat 1 FILLING occurs, followed by cheese vat 2, then 

cheese vat 3 and so on until cheese vat 8. Each of the vats then enters its 

sequence of states. The time lag for each cheese vat’s sequence is 

equivalent to the time required to fill a cheese vat. 

The Gantt chart demonstrates the ability of the multiscale model presented here 

to accurately model the changing utilization of individual unit operations.  

Time 
00:00:00 02:00:00 04:00:00 06:00:00 08:00:00 10:00:00 

Unit Operation State 
Colour Key 

Figure 6-2 – 8 Cheese Vats Gantt Chart – 12 Hour Simulation 

Figure 6-2 was generated using a Microsoft Excel spreadsheet. 

 

6.5 Manufactured Product 

A manufactured products collection class stores all the manufactured product in 

final shipping form. The production model was set up to manufacture a product 

called 25kg Bulk Cheddar.  
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The manufactured product collection gains a 25kg Bulk Cheddar object each 

time 25kg of product is added to the manufactured product storage unit 

operation. The manufactured product collection is a time based dataset which 

can be used by adjacent macroscale partial models (see section 7.5.2). 

Figure 6-3 shows the time series data for the production of 25kg Bulk Cheddar. 

Day 1 produced 3484 x 25kg units. Day 2 produced 3618 x 25kg units, taking the 

total number of 25 kg units to 7102. These unit amounts came from the 87103kg 

of cheese produced on day 1 and 90453kg produced on day 2. 

Figure 6-3 – Total Manufactured Units of 25kg Bulk Cheddar – 2 day simulation 
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The different amounts produced on each day reflects the extra cheese cooking 

vat batch which was done on day 2 as a result of the day 1 run leaving some 

unprocessed cheese milk. The remaining milk was not enough for an extra batch 

on day 1, but combined with the day 2 cheese milk was enough for the extra 

batch. 

Figure C-1 in appendix C shows the manufactured unit graph for a 6 day 

simulation. 

 

 80



 

6.6 Raw Material Consumption 

Figure 6-4 shows a graph of the consumption of raw milk as it is used by the 

cheese making process. The simulation makes an amount of raw milk available 

to all processes being modelled, though here only the cheese making process 

consumes the milk. The amount that is made available is obtained on each 1 day 

iteration from the milk curve.  

Figure 6-4 –Raw Milk Consumption –1 Day Simulation 
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On Figure 6-4, 3,296,422 kg is available at the start of the simulation (at 00:00:00 

on the 17/10/2005). As the cheese making process consumes the raw milk, the 

total available amount reduces. The final amount of milk is taken at about 

04:00:00, after which the amount available remains constant. This amount is 

2,296,422 kg, which is 1,000,000 kg less that the amount available at the start of 

the day (and exactly the amount consumed by the cheese making process). 

Figure 6-5 shows the raw milk consumption for a 6 day simulation. On each 1 

day iteration a new (and in this case slightly increased) amount of raw milk is 

made available to the simulation from the milk curve. 
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Figure 6-5 –Raw Milk Consumption – 6 Day Simulation 
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Two important dairy manufacturing business rules which are modelled are 

evident from Figure 6-5: 

1. Raw milk ‘expires’ after an amount of time has passed from it being added 

to the model. In this simulation the chosen expiry time is 48 hours, after 

which any unused milk is no longer available for processing. This models 

the perishable nature of raw milk. 

2.  The oldest milk is processed first. The raw milk from 17/10/05 was used 

on that date. On the 18/10/05 a new supply of raw milk was made 

available, but was not used because older milk was still available (i.e. the 

remaining milk from 17/10/05). On the 19/10/05 the raw milk from the 

18/10/05 was used, and so on. 

Figure 6-5 implies a large amount of raw milk having to be disposed of because it 

is unprocessed by its expiry date. In reality most or all of the raw milk would be 

processed using other processing facilities. A more realistic raw milk 

consumption graph might look like Figure 6-6. In this example some day 1 raw 

 82



 

milk remained unprocessed at the end of that day’s processing. It was consumed 

first on day 2, then the day 2 raw milk supply was used. 

Figure 6-6 –Raw Milk Consumption – 2 Day Simulation – Multiple Processing Facilities 
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Data for Figure 6-6 was generated using a second process operating 

simultaneously with the cheese making process. This second process was 

essentially a sink for raw milk, which was created to consume excess raw milk 

and generate this data. 

 

6.7 Accumulated Energy Consumption 

The pasteurizer model described in section 4.8 was implemented to test the 

proposed energy transfer mechanism. Though the pasteurizer model was 

simplified, the test showed the potential of the mechanism. The data generated 

was used to produce a graph (Figure 6-7) of the total energy consumption by the 

pasteurizer with a throughput of 35 kg/s, which increased the temperature of the 

cheese milk by 29 degrees Celsius (from 3 to 32 degrees C).  
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Figure 6-7 – Pasteuriser Accumulated Energy Consumption – 2 Day Simulation 

0

50000

100000

150000

200000

250000

16/10/2005 12:00:00 17/10/2005 00:00:00 17/10/2005 12:00:00 18/10/2005 00:00:00 18/10/2005 12:00:00 19/10/2005 00:00:00 19/10/2005 12:00:00

Time

A
cc

um
ul

at
ed

 E
ne

rg
y 

M
J

 

On day 1 of the simulation, 102,132 MJ was consumed by the pasteurizer, while 

on day 2, 106,017 MJ was consumed.  

On day 1 of the simulation 871,030 kg of cheese milk was pasteurised. Using a 

specific heat capacity for milk of 4000 J/(kg K) this equates to 101,039 MJ of 

energy required to raise the temperature by 29 degrees C. There is a 

discrepancy of 1.08% between the calculated result and the simulation’s result. 

On day 2, 904,530 kg of cheese milk was pasteurised. This equates to 104,925 

MJ, a discrepancy of 1.04%. 

 

6.8 Sources of Error 

6.8.1 Unsuitable Time Increment 

Selecting an unsuitable fixed-interval time increment can result in the model 

becoming unsolvable. If the time increment used results in an instruction (from a 
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production scenario) to a unit operation being missed, the unit operation will not 

have the state it is meant to have, when it is meant to have it, for the simulation 

to run.  

For example, if the current time is 08:30:50, and the fixed increment time 

increment is 30s (meaning the time of the next iteration is 08:31:20), then an 

instruction for a unit operation to go into (say) FILL QUEUE at 08:31:00 will not 

be performed with the current software implementation. Therefore, in this work all 

production scenario instructions are placed on the minute. Consequently the 

choice of fixed-interval time increments in Table 6-1 are all the whole number 

quotients of 60 seconds i.e. divided by the numbers  

60, 30, 20, 15, 12, 10, 6, 5, 4, 3, 2, 1. 

The (arbitrary) selection of the minute as the point at which to place instructions 

also defines the maximum allowable fixed-interval time increment – i.e. in this 

case 60 seconds. If the instructions were placed on the ½ minute, the maximum 

fixed-interval time increment would be 30 seconds. 

6.8.2 Fractional Second Error 

If the time required to change the state of a unit operation is less than one 

second, an error will occur that will affect the mass balance. For example, 

consider a capacitive unit which is emptying into a downstream capacitive unit 

(Figure 6-8).  

Figure 6-8 – Flow Generating Flow Unit – Capacitive Unit Upstream & Downstream 

FG Flow 
Unit 

 Capacitive  
Unit 1 

 Capacitive  
Unit 2 

30kg remaining 50 kg/s 

(1) (2) 

50kg added 

 

The capacitive unit’s outlet port’s flowrate (port 1) is 50kg/s. The capacitive unit 

has only 30kg remaining, so the time required to empty it is 0.6s. Because the 

smallest allowable time increment is 1 second, capacitive unit 1 will lose 30kg, 

but capacitive unit 2 will add 50kg. The overall mass balance will gain 20kg. 
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7 Discussion 

The cheese making model developed here takes an amount of raw material, 

processes it, and produces a quantity of manufactured product. The model 

reproduces expected features of the cheese making process and its constituent 

unit operations, such as the cheese vat batch cycle, and the use of multiple 

cheese vats to give continuous production. Process and production data is 

generated which can be used by a variety of decision makers. 

The model implementation developed in Visual Basic .NET uses two software 

technologies, CAPE-OPEN and OOP to: 

• construct a software tool for defining unit operation models,  

• integrate them into a chemical process model,  

• build production modelling scenarios over varying time horizons, and  

• run simulations which generate process data. 

In this chapter the key features of the model are discussed in the context of the 

aims of this work – i.e. to develop a multiscale model of cheese production 

capable of delivering information for operations and management level decision 

makers. 

 

7.1 Multiscale Model Analysis 

Though a cheese making process and production model is presented, the 

question remains whether the model as implemented is a multiscale model. The 

key to a multiscale model is the integration of individual partial models which 

describe phenomena of interest at different time, length and detail scales (section 

2.2).  
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This section will examine: 

• whether the individual models are partial models (i.e. models representing 

phenomena at different time, length and detail scales), 

• whether the partial models are integrated and what the integration 

frameworks are. Can they be classified according to the integration 

classification scheme discussed in section 2.2.2?  

If partial models exist and are integrated the model presented here is a 

multiscale model. 

Table 7-1 - Partial Model Scale Comparison 

Partial Model Phenomena of Interest Length Scale  Time Scale 

Production 

Model 

The control of the all 

production facilities to process 

an amount of raw milk and 

manufacture specified 

amounts of products at the 

specified time.  

~101 – 105 metres.  

The distribution of all the 

important features of 

production (i.e. raw milk 

supply, production facilities). 

~105 – 108 seconds. 

The duration of the production 

schedule under consideration. 

Raw Milk 

Supply 

The quantity of raw milk 

available for processing on any 

day in the year. 

~103 –105 metres. 

The distance of farms from 

production facilities. 

~105 – 107.5 seconds. 

The duration of the milk curve cycle. 

Cheese 

Making 

Process 

The transfer of material and 

energy into the cheese making 

process and between unit 

operations.  

~101 – 102 metres. 

The physical size and spread 

of the cheese making plant. 

~103 – 105 seconds. 

The duration of batches and cycles of 

unit operations. 

Unit Operation 

(15 of – see 

5.1.1) 

The possible states of the unit 

operation and the expected 

duration of the states. 

~ 100 – 101 metres. 

The physical size of the unit 

operation. 

102 – 105 seconds. 

The time for the unit operation to pass 

through its different states during 

processing. Some unit operations, such 

as cheese vat, cycle in a few hours. 

Others such as a milk storage silo 

cycle in 24 hours (i.e. maximum 

allowable time between cleanings). 

Capacitive 

Unit’s Material 

Content 

Calculation  

The calculation of material 

quantity in the capacitive unit 

operation when it is in a 

material transfer state (i.e. 

FILLING, EMPTYING, or 

FILLING / EMPTYING). 

~ 100 – 101 metres. 

The physical size of the 

storage capacity of the unit 

operation. 

~ 100 – 104 seconds. 

The time that the unit operation exists 

in a material transfer state. 

 88



 

7.1.1 Implemented Partial Models and Integration Frameworks 

From the list of models implemented here (Table 7-1) it can be seen that they 

represent different time and/or length scales, and meet the criteria to be 

classified as partial models. In some cases the classification of integrating 

frameworks is not clear.  

7.1.1.1 Production Scale Model 

Here, the system domain consists of all the processing plant options (one of 

which is the cheese making process) and the raw milk supply model. This is a 

discrete – continuous hybrid model, where an amount of raw material for the day 

being modelled is input, and continuous amounts of product are output. The 

production scale model appears to meet the classification criteria of more than 

one of the integration frameworks proposed by Ingram et al. (2004) and Cameron 

et al. (2005). 

At first glance it appears that the entire system is modelled at the microscale and 

the results are converted into macroscale variables (i.e. a simultaneous 

integration). The production macroscale model is comprised of the raw milk and 

cheese making process partial models, plus the other processing options which 

are not implemented here (Figure 7-1).  

One of the microscale models (i.e. the cheese making model) produces a data 

set of manufactured final product. This data set is a macroscale model and is a 

totalised time based series, which is consistent with the definition of a 

simultaneous integration framework. 

Raw milk supply model. 

Production Model = 
Manufactured Product

Cheese making 

process model. 

Figure 7-1 –Production Model from Simultaneously Integrated Partial Models 

Other processing 

options (not 

implemented in this 

work). 

Macroscale model 

Microscale models 

= direction of 

information 

flow.

= model 

domain
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However this framework is defined by Cameron et al. (2005) as having 

unidirectional information flows only, and therefore does not account for the bi-

directional nature of information flows seen here: i.e.  

• control of the cheese making process model being achieved by unit 

operation state instructions being passed to the process model (using the 

production scenario software class discussed in section 4.3.5).  

• production allocating raw milk to each of the processing options by 

dividing up the total daily raw milk supply.  

Another possible integration framework classification which could apply here is 

multi-domain, where the microscale and macroscale models describe separate 

but adjoining parts of the whole system (Cameron et al., 2005). Here, the cheese 

making process model is the macroscale model, and the raw milk curve is the 

microscale model, with the combination of the two being the production model.  

= direction of 

information 

flow.

Raw milk 

supply model.

Production 
Model 

Cheese making 

process model.

Figure 7-2 –Production Model from Multi-Domain Integrated Partial Models 

Macroscale model 

Microscale model 
= model 

domain
}

 

The multi-domain framework classification does not appear to either satisfactorily 

describe the interactions between the production model and its component partial 

models, nor does it incorporate the controlling of the process using unit operation 

state instructions.   

Though other integration frameworks have been defined by Cameron et al. 

(2005), none fit the production model as well as the simultaneous or multi-

domain frameworks. The nature of the integration framework between the 

models which form the production model remains unresolved. It may be that the 

frameworks defined by Cameron et al. (2005) do not apply here, or the different 
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partial models (i.e. the cheese making process and the raw milk models) are 

integrated using different frameworks.  

7.1.1.2 Raw Milk Supply Model 

The raw milk model provides a boundary condition on the cheese production 

model for a particular day, by placing an upper limit on the amount of raw milk 

which is available. Here, the raw milk supply model (microscale) supplies an 

amount of milk to the cheese production model (macroscale). As discussed in 

section 4.3.3, an amount of milk is made available to the process on each 1 day 

production scenario.  

In this implementation, the complete yearly milk curve is stored as a database 

table, and as each 1 day production scenario is iterated, that day’s raw milk is 

added to the Raw Materials software collection class.  

7.1.1.3 Cheese Making Process Model 

The cheese making process is a sequential modular model, where all the unit 

operations are connected into a process flow sheet. The model of the cheese 

making process is the composite of the connected unit operation microscale 

models (Figure 7-3). The integration framework classification which seems the 

best fit here is the embedded integration framework, where the microscale unit 

operation is embedded within the process model. 

Figure 7-3 – Cheese Making Process Model using Embedded Partial Models 

Individual 

unit 

operation 

models. 

Cheese Making Process Model 
Macroscale model 

Microscale models 

= direction of 

information 

flow.

= model 

domain

 

From any single unit operation’s perspective, the rest of the cheese making 

process is the macroscale model while the unit operation itself is the microscale 
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model. In other words, a unit operation does not need to know the state, or any 

state variables, of any other unit operation. The Process Modelling Environment 

(section 2.3.1) manages intra-process data, such as connection information and 

material port flowrates, between the micro- and macro scales.  

The connection of unit operations into a process flowsheet performs a single 

task. It provides a pathway for the movement of material, energy, and information 

between unit operations. The cheese making model generates data on 

phenomena such as production, energy and material use and unit operation 

behaviour at any point in time. 

7.1.1.4 Unit Operation Models 

Unit operation models are constructed using a combination of empirical data and 

mechanistic phenomena. As shown in section 4.3.2, the generalized models are 

a user defined collection of possible states of existence of the unit operation, 

various rules defining a state’s existence and duration, and boundary conditions.  

Where a state has a duration, generally the value is set using empirical data. For 

example, a cheese vat’s CUTTING state’s duration is set based on the empirical 

data gathered from previous batches. However, in one case, unit operation 

models use a partial model to calculate the duration of a state and provide 

important macroscale model detail.  

Figure 7-4 – Capacitive Unit Operation Model using an Embedded Partial Model 

Capacitive Unit 
Operation Model 

Macroscale model 

Microscale model 

= direction of 

information 

flow. 

= model 

domain
Filling/Emptying 

model using 

Euler’s method 

 

The filling and emptying of a capacitive unit is modelled using a microscale 

partial model (see section 7.1.1.5) which provides information on the material 

content (e.g. the material volume) within the unit operation. The unit operation 
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macroscale model spans the system domain. The filling/emptying model spans 

only a small part of that domain (Figure 7-4). This is an example of an embedded 

integration framework.  

7.1.1.5 Unit Operation Material Content Model 

When the unit operation is a capacitive unit, it has among its possible states 

FILLING, EMPTYING and FILLING/EMPTYING. When a capacitive unit is in one 

of these states, and there is flow at one of the material ports, the unit operation’s 

material content is changing (increasing or decreasing). This change is 

calculated using Euler’s method (see section 7.7.2). 

7.1.2 Where do the Production Scenarios Fit? 

One final issue is where the so called production scenarios defined in section 

4.3.5 fit into the multiscale modelling context. As discussed these instructions are 

central to the control of the process model. They are responsible for turning the 

process model which would otherwise only be capable of simulating a single 1 

day period into a model capable of simulating any time horizon. In other words, 

they allow the cheese making process scale to be extended in time and used as 

a cheese production scale model. 

Production scenarios do not intuitively appear to be models. They are a set of 

instructions which tell the process what state a unit operation must be in. The 

process modelling environment then uses them to set the unit operation state. 

Perhaps they should be thought of as boundary conditions for the process model. 

This issue remains unresolved. 

7.1.3 Analysis Summary 

The model presented here is a multiscale model. Multiple partial models 

spanning different time and length scales are integrated into a production model 

capable of simulation a different (and greater) time span than its constituent 

partial models.  

 

 93



 

7.2 Multiscale Model Performance 

In this section the performance characteristics of the model are examined in the 

context of the model’s solution speed, data quality (i.e. accuracy and detail), and 

data quantity. The model was not compared against an actual process, which 

would be the real test of the model’s accuracy.  

7.2.1 Data Quality 

Once a solution to the modelling problem is found a simulation can be performed 

using either of the two time increment modes (i.e. fixed-interval or discontinuity). 

In the simulations performed here, both the discontinuity and the fixed interval 

with a 1 second increment generated data of equal accuracy at both the unit 

operation and process scales. When the fixed interval time increment was 

increased, accuracy was reduced and detail was lost.  

For all simulations the largest overall mass balance error on the cheese making 

process for a 2 day simulation which processed 2 million kilograms of milk was 

1%. The smallest was zero. The primary source of mass balance error occurred 

when the time increment to the next unit operation state change should have 

been less than 1 second. However, the software was limited to a minimum time 

increment of 1 second. To improve the accuracy of the model a mechanism for 

incrementing fraction of second time increments would need to be implemented. 

Performing a simulation with a 1 second time increment is inefficient. Often 

nothing of significance occurs in the production process’s unit operations over a 

particular 1 second period (e.g. there is no change in unit operation volumes or 

states). This results in data being generated which contains no important 

information, and computer processing and data storage capacity is wasted.  

Increasing the size of the time increment reduced the number of unnecessary 

iterations (therefore reducing both the number of calculations required and the 

amount of data generated), but resulted in data errors and possible simulation 

solution failure.  
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The discontinuity mode time increment mechanism overcame this problem. In 

this mode a forward calculation is performed to find at what time increment the 

next unit operation state change will occur. So the model solution will have fewer 

steps and consequently produce less data. 

The model operating in both fixed increment and discontinuity mode captured all 

the important features of the cheese making process and characteristics of 

individual unit operations. For example, features such as the continuous – batch 

nature of the cheese vats were successfully modelled.  

The model accurately generated the correct amount of manufactured product 

based on the mass of final product material (i.e. cheddar cheese) produced.  

Overall, the model performed with very low error and accurately modelled the 

behaviour of unit operations and the overall process on short time horizons (up to 

6 days tested). Longer time horizon simulation testing is needed to validate the 

model on monthly and yearly time horizons.  

7.2.2 Solution Speed  

The solution speed of the multiscale model depends on several factors: 

• The simulation’s time horizon (i.e. hours, days, months, or years). 

Because of the time-interval incrementing mechanism driving this model, 

the longer the time horizon for the simulation, the longer the solution time. 

• Time increment calculation mode. A fixed interval time increment mode 

simulation solution (note that the time interval chosen must give a 

solution) will always take longer than the same simulation run in 

discontinuity mode. 

• The type of process. A process which operates continuously with few unit 

operation state changes will require less computer processing than a 

batch process where unit operations have many state changes. 

• The number of unit operations in the process. For a given simulation timer 

control time interval, as unit operations are added to the model, the 
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computer processing required to run the model can be increased.  

 

A simulation involving one capacitive unit operation, operating a 20ms 

iteration rate (see section 4.10.4) with a 1 second time increment took 1 

minute to simulate 50 minutes. When the number of unit operations was 

increased to ten, the same iteration rate and time increment took 3min 7s 

to simulate 50 minutes.  

Solution speed is an important factor in the usefulness of a model from an 

industrial perspective. A simulation that takes days (which is conceivable using 

this model) may be acceptable if the time horizon being modelled is years, but 

not so acceptable if the time horizon being modelled is days. Fortunately the 

discontinuity calculation mechanism facilitates large time steps and shortens the 

solution speed. However as microscale partial models (at the reaction level) are 

added it may be that a simulation’s maximum time step may become smaller. In 

this work the maximum time step seen was over 5000s.    

Speed can be improved using more powerful computer processing. The 

1600MHz Intel Pentium M  processor used here limited the model’s iteration 

speed to a maximum speed of about 20ms (depending on the number of unit 

operations in the simulation) before the processor reached capacity. The 

smallest possible standard iteration speed available in Visual Basic .NET is 1ms. 

It maybe that software changes, such as improving the discontinuity calculation 

mechanism, will decrease the solution time by reducing the number of 

calculations. FOR…NEXT software loops for example can slow processing, and 

there may be gains in efficiency available by re-examining the need for some of 

these. 

7.2.3 Data Quantity 

This modelling technique potentially generates enormous amounts of data.  

For example, in the cheese manufacturing process modelled here (with 28 unit 

operations), a simulation operating a 1 second fixed-interval time increment 

modelling a 6 month period would generate over 15 million records for a single 
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variable (e.g. volume). A 60 second time increment would generate over 260,000 

records. If 5 properties are reported on, the simulation’s data burden for a 1 

second time increment becomes nearly 79 million records (1.3 million records for 

a 60 second fixed increment).  

In the case of a discontinuity mode simulation, the number of data records per 

property becomes a function of the placement of a production scenario’s unit 

operation state instructions and the number of variables being reported. This 

mode will always generate less data than the fixed interval mode. 

7.2.4 Choosing the Time Increment Mode 

The choice of one time increment mode over another depends on the 

requirement of the user. The fixed increment mode (with a small time increment) 

is used when designing and testing a new modelling solution. The discontinuity 

mode is the better alternative when performing the actual simulation once a 

modelling solution has been found. It should also be useful when performing 

optimizations on multiple production options (not implemented).  

The calculation of the time step to discontinuity for linear and non-linear 

simulation models is discussed in section 7.7.3.  

 

7.3 Decision Making Information 

The data generated by the cheese making process model implemented here has 

uses in multiple levels from the dairy business, from process operations and 

production planning, to supply chain management and process design.  

7.3.1 Gantt Charts 

Gantt charts (see section 6.4) are of interest to production operational and 

management levels. The information can be used for scheduling and 

maintenance planning, and process optimization. They give a useful visualization 

of the behaviour of a combination of unit operations over time relative to each 

other, and of the utilization of an individual unit operation. For manual processes, 
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they also provide a recipe for plant operators to run the process. For automated 

processes, they provide the information needed to programme the plant’s control 

system.  

Consider a manually operated cheese plant, with a cheese vat batch cycle which 

generates the Gantt chart shown in Figure 7-5.  

07:30 07:50 08:30 

FILLING SET CUT COOK STIR 

Figure 7-5 –Cheese Vat State Gantt Chart (not to scale) 

09:00 09:50 10:10 

EMPTYING

10:30 

 

The operator can use the Gantt chart to operate the cheese vat as follows. 

1. The cheese vat should start FILLING at 7:30. The operator will initiate the 

actions required to achieve this (e.g. opening of cheese vat inlet valve).  

2. At 07:50 the unit operation should go into the SET state, and the operator 

might close the inlet valve (the addition of starter bacteria and rennet is 

not considered here).  

3. At 8:30, the operator sees that the SET state should be complete and the 

curd should be formed. The operator will check the strength of the gel, and 

initiate the CUT state (e.g. by switching on the cheese vat’s cutting 

knives).  

4. At 09:00 the operator will stop the CUT and initiate the vat’s COOK (e.g. 

by opening a hot water valve which adds hot water to a heating jacket 

surrounding the vat).  

5. At 09:50 the operator will start the STIR by switching on the stirring 

blades. It may be that the operator will monitor the pH of the curds and 

whey mixture during the STIR.  

6. At 10:10, if the pH is correct, the operator will terminate the STIR, and 

open the cheese vat’s outlet valve to begin EMPTYING the vat. 
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From the plant operator’s perspective, each state change may require one or 

more actions. The Gantt chart in this example shows the operator when to begin 

and end the tasks associated with a particular state.  

The combined cheese vat Gantt chart shown in Figure 6-2 gives the plant 

manager information on the utilization of the cheese vats and redundancy in the 

process. For example, because the cheese plant must be operated continuously, 

it is important that there is some redundancy in the cheese vats to (say) allow for 

a batch which takes longer than usual to complete. From Figure 6-2 it can be 

seen there is little redundancy in the modelled process. If a batch required a 

longer cook stage than normal, the vat might not be available for emptying onto 

the cheese belt when needed (to keep the process continuous). Similarly, the vat 

might not be ready for filling on schedule. In this case the plant management may 

decide to add an extra cheese vat to better ensure continuous operation. 

Over longer time frames, Gantt charts can be used to examine the availability of 

the cheese making process over (say) the milk production season. This is 

particularly useful to management who are involved in production planning. 

Because there are long periods of under utilization due to the varying milk supply 

(discussed in section 3.1.2) a Gantt chart of a complete process gives 

information on the availability of the process at any point in the season. This 

information would also be used for human resource allocation and plant operator 

shift scheduling. 

Gantt charts are also useful for process design and optimization. For example a 

proposed process can be modelled using different cleaning and maintenance 

regimes, capacitive unit operation volumes, and flowrates. The effect of these 

variables on process and unit operation availability can be analyzed.  

7.3.2 Time Series Graphs 

In this work several time series graphs are presented: 

• unit operation volume time series (section 6.3) 

• manufactured product (section 6.5) 
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• raw material consumption (section 6.6) 

• accumulated energy consumption (section 6.7) 

Between them they provide important information for plant operations, production 

planning, maintenance scheduling, inventory control, sales and supply chain, and 

dairy business management decision makers.  

The production manager can analyze the viability of different short, medium and 

long term manufacturing scenarios and different production schedules using the 

manufactured product and raw material data. 

The dairy business manager can use production information in conjunction with 

sales and cost models (which also use production data) as part of the overall 

business plan forecast and analysis.  

Manufactured product information is important to production planning decision 

makers to ensure they can meet manufacturing requirements. This is also 

important to inventory control. 

Raw material consumption information is important to supply chain decision 

makers to ensure the timely ordering and delivery of raw materials (aside from 

raw milk) used in the manufacturing process.  

This information can be used in the form presented or other forms which may be 

useful for other types of decision making. For example, whereas the accumulated 

energy consumption would be useful for cost planning, time series data of actual 

energy consumption is useful for production planning.  

Consider a site which has multiple processing options which compete for a finite 

electricity supply. It may be that, based on a modelling scenario’s actual energy 

consumption data, production scheduling is reconfigured to allow the competing 

processes to operate at different times. This type of analysis is also useful if 

electricity prices fluctuate over the short to medium term. An analysis of the 

timing of electricity consumption will allow decision-makers to schedule 

production for times when electricity prices are lower. 
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7.4 Modelling Unit Operations using their States 

Once a unit operation’s possible states have been identified (see section 4.3.2) 

and defined (in sections 4.9 and 5.1) the behaviour of a unit operation can be 

modelled, and the process controlled. The use of the state as the core process 

control mechanism which is used to create multiple time period modelling 

scenarios (by forcing a unit operation into a particular state at a particular time) 

has been discussed in sections 4.3.5 and 5.4. This section will discuss using a 

unit operation’s state to:  

• model unit operation behaviour 

• integrate lower scale partial models and calculate process information 

• enforce unit operation business rules. 

7.4.1 Unit Operation State Behaviour  

It is intuitive that an entity’s behaviour is dependent on the state it is in. In this 

work a unit operation’s behaviour is driven by its current state. This was achieved 

by two mechanisms. One mechanism uses software code. The other mechanism 

uses the state collection of a unit operation. 

The unit operation software object is programmed to run certain code in certain 

states. For example, a pump (i.e. a flow generating flow unit), when in an ON 

state, sets its own material port flowrates to a predefined non zero value. This is 

all it does in that state. If the pump’s state is OFF, it will set its material port 

flowrates to zero.  

Other unit operation behaviour is dictated by what type of state it is in (i.e. static 

state or dynamic state). For example a cheese vat’s batch process is modelled 

using dynamic states (see section 4.9.2) which model the various stages of the 

batch process.  

7.4.2 A Unit Operation’s State as an Integration Interface 

Following on from the previous section, it is proposed here that a particular 

microscale partial model which is integrated with a unit operation macroscale 
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model will be run when the unit operation is in a particular state. In other words, 

the unit operation’s state is used as the mechanism for deciding which 

microscale model to recalculate. This is achieved by associating a microscale 

partial mode with a state. When a unit operation is in a state which has a 

microscale partial model associated with it, that partial model is recalculated, and 

process information which is relevant to that state is obtained. 

In this work, the model of a capacitive unit operation (at the macroscale) is 

integrated with a material content microscale model (discussed in section 

7.1.1.5). The microscale model will recalculate when certain criteria are met. If an 

upstream capacitive unit is in a suitable state (i.e. EMPTY QUEUE or 

EMPTYING), and has a non zero material content, that capacitive unit will begin 

emptying subject to a downstream capacitive unit being in a suitable state (i.e. 

FILL QUEUE or FILLING) and having capacity to receive material. There must 

also be flow at the material ports, and the current global time must be different 

from the last time the microscale model was recalculated. 

The concept of using the state to integrate microscale partial models with unit 

operation model is developed further in section 7.5.  

7.4.3 Using States to Implement Business Rules 

Business rules can also be implemented using states. For example if a unit 

operation must be cleaned every 24 hours, then the unit operation will have a 

compulsory state (see section 4.9.3) assigned to it. The unit operation will be 

forced into the CLEANING state if it is not placed manually into that state (by a 

production scenario) before the maximum time interval between the state 

occurring has passed.  

The compulsory state concept allows other business rules, such as preventative 

maintenance regimes, to be incorporated into the model. 
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7.5 Adding Other Scale Partial Models 

Integrating a unit operation (e.g. a reactor) macroscale model with microscale 

partial models will improve the detail of the unit operation model. Integrating this 

multiscale model with a macroscale model allows that model to access the 

production data generated by a simulation. In this section a mechanism which 

allows the integration of unit operation partial models with both macro- and 

micro- scale partial models is presented.  

The decision to integrate will depend on the level of interest in the data 

generated by any model and its contribution to the task of achieving the overall 

modelling goal. For example whether a more accurate and detailed 

representation of the variable(s) supplied by that model will significantly improve 

the accuracy of the system model. So a microscale partial model could be used 

in lieu of a constant value to provide more realistic model behaviour.  

Using object oriented programming (OOP) software development, the potential to 

add partial models appears unlimited. Not withstanding processing and data 

management costs, OOP should allow the incremental addition of partial models 

without requiring extensive changes to the core software model.  

7.5.1 Microscale Partial Models of Unit Operations 

It seen in section 7.4 a unit operation’s state property is a useful interface for 

integrating unit operation microscale partial models.  

The capacitive unit software class is currently programmed to perform certain 

calculations when in the FILLING or EMPTYING state (i.e. its volume 

recalculation method discussed in section 7.7). In this case the capacitive unit 

performs the calculation for the duration of its existence in either of these states.  

As discussed in section 4.9 some unit operation states have a time component 

associated with them. Some expire after a predefined lapse of time from when 

that state is first attained (e.g. COOKING in a cheese vat) and are used to 

simulate the steps in a batch process. Others must occur at predefined intervals 
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(e.g. CLEANING in most unit operations). Here, the time component is set 

manually by the user during configuration of the model. 

However, in some instances it may be possible to calculate the time component 

of a state using a microscale partial model integrated with the unit operation 

partial model. Consider a cheese vat batch. The vat’s state collection is used to 

step through the batch states that represent the stages of reaction and 

processing that produce the curd.  

In Figure 7-6, interface A shows a representation of the current implementation 

(not all states in the state collection are shown). The cheese vat’s SET, 

CUTTING and COOKING state’s durations are currently configured by the user. 

As the cheese vat simulation progresses, and the cheese vat simulation needs 

duration data on the states, the state collection supplies it. 

A more accurate and detailed multiscale model would use a microscale model to 

calculate the duration of each state based on process conditions. It might work 

like this. 

SET 

Curd formation microscale 
partial model 

Figure 7-6 – Cheese Vat Status Duration Calculation   

Cheese Vat State Collection 

Time for controlling curd 

formation set points (e.g. 

particle size) to be reached.

Vat stirring & 
cutting microscale 

partial model 

CUTTING 

Time for controlling set 

points (e.g. pH, cut curd 

size) to be reached. 

A 

B 

COOKING 

Cheese Vat Simulation Progress 

Cheese Vat 

Process data used as 

inputs for a microscale 

partial model. 

 

The cheese vat batch macroscale model is integrated with a curd formation 

microscale model (Figure 7-6). At the start of the simulation, the duration of the 
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SET state is calculated. The unit operation passes the curd formation model 

process information (components, pH, temperature). The curd formation model 

calculates the length of time for the model to reach the target curd consistency 

and rigidity, and returns it as the SET state’s duration. 

Similarly, a partial model could be used provide the CUTTING state’s duration by 

calculating the time for the required average curd size and whey pH to be 

reached. 

Figure 7-6, interface B shows the cheese vat’s SET and CUTTING state 

durations are calculated by the partial models. The COOKING duration remains 

user configured (i.e. a fixed value). The states’ duration values are then supplied 

to the cheese vat model in the currently implemented way (Figure 7-6 interface 

A).  

A state’s duration may need to be recalculated during simulation. For example 

when a unit operation’s mass balance changes, or if process conditions which 

are inputs to a microscale partial model change (e.g. pH, temperature, cutting or 

stirring rate).  

The current multiscale model can provide flow, volume, and unit state data. In the 

above example, process detail comes from a scale below the cheese vat unit 

operation. Reactor and process control properties such as pH, particle formation, 

temperature (e.g. for an exothermic reaction) will be provided by the microscale 

partial models. 

7.5.2 A Macroscale Partial Model 

A simulation can generate datasets which can be used by other scale models. 

Consider cheese manufacture. Over time cheese is manufactured and placed in 

storage (i.e. the Manufactured Product collection) – Figure 7-7 interface B.  

A sales and marketing partial model that sells cheese would access the 

Manufactured Product collection (Figure 7-7 interface A) to obtain the required 

amount of cheese. The cheese in the storage varies as manufactured cheese is 

added and sold cheese is removed. 
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Figure 7-7 – Cheese Process Manufactured Product Collection  

Cheese Making Process Simulation Progress 

Sales/Marketing Model Simulation Progress 
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7.5.3 Other Scale Partial Model Possibilities 

Other partial model possibilities exist. Wherever an input variable can be 

calculated or obtained from empirical data, a partial model could potentially be 

integrated into the multiscale model to provide that variable’s value. Possibilities 

include: 

• Raw material and utility cost data which experiences price volatility (such 

as electricity) could be provided using a partial model. For long term 

modelling, most costs will not remain constant and it may be desirable to 

model them from a partial model (e.g. labour and raw materials).  

• Dynamic modelling of startup and reactions. 

• A variable speed pump, where the flowrate is a function of the power 

supplied could be connected via an energy port to a flowrate/power 

supply partial model. 
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• Pumps could be modelled using pressure-flow models to provide greater 

process detail such as providing a material object with a pressure 

property value.  

• Pipe work could be modelled using the capacitive unit class with a 

pressure drop property (which in itself might use a partial model 

consisting of a Reynolds number calculation).  

• Heat transfer in a heat exchanger might use a partial model to calculate 

the changing heat transfer coefficient due to scale build-up. This in turn 

would be used to schedule maintenance and model energy demand. 

Each additional microscale model added to the multiscale model will increase the 

data processing and storage demands of simulation.  

Possibilities also exist for integrating this multiscale model with other macroscale 

models other that the sales and marketing model discussed in section 7.5.2. For 

example, the raw material consumption model could be used as input data for a 

supply chain management model. The amount and timing of raw material 

consumption could be used for purchasing and warehousing modelling.  

Another possibility is price data associated with production, such as electricity 

costs and manufactured product value could be used as inputs into the financial 

control models. 

 

7.6 Incorporating Actual Plant Data 

The potential exists to incorporate actual plant data into the model. The data 

could be historic or real time. This involves taking recorded or live data (e.g. 

flowrates, material components, temperatures, raw material and utility prices) 

and using it as the initial or boundary conditions for the relevant partial models. 

The current implementation will not facilitate this, but its implementation has two 

benefits.  
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Firstly it would enable the decision maker to use the model to provide a more 

accurate prediction of process performance, and raw material and utility 

consumption. This would allow an immediate update of reported production and 

cost forecasts. 

The second benefit would be to improve the model or the process. The causes of 

inconsistencies between process and model data can be identified and 

improvements to either made.  

 

7.7 Stepping Partial Models 

From sections 5.5 and 7.1 it is seen that the production model generates cheese 

production data by stepping of the cheese making process, raw milk supply, unit 

operation and capacitive unit models. 

However, the decision on when to iterate each of these models has important 

implications for the overall performance of the model (section 7.2). This section 

will look at an inefficient recalculation regime which was first implemented, and 

show how it was improved. The general implementation of partial model stepping 

(which drives model recalculation) is also examined. 

7.7.1 Inefficient Recalculating of Unit Operation Partial Models  

In the sequential modular cheese making process model presented here, the 

simplest strategy for recalculating the model (and consequently every constituent 

unit operation microscale partial model) was to iterate it at 1 second fixed 

intervals for the duration of the simulation. This was the strategy adopted in the 

first software implementation.  

It quickly became apparent that this approach was impractical because of the 

potentially long simulation solution times involved, and the large amount of data 

generated. Both these are the consequence of unnecessary recalculation of 

partial models. Therefore it was desirable to increase the time increment per 

iteration, and only recalculate a partial model when necessary.  
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A mechanism was needed to identify what a unit operation’s next state would be, 

and when the change to that state would occur. The simulation could then be 

incremented using a time step which was a large as possible, while capturing all 

the occurrences of interest within the process. The search for the change in state 

is to look for the next discontinuity in the behaviour of the unit operation.  

7.7.2 Time Increment Calculation using Discontinuity  

The use of the discontinuity time increment method provides a mechanism to 

ensure the model is recalculated only when some change of interest occurs. This 

approach makes use of the linear nature of this system. To illustrate this, 

consider a simple simulation which models the filling and emptying of a storage 

silo with a material of constant density.  

The silo is empty to begin with. At a user defined time t1 it begins to fill at 

constant mass flowrate MF, and continues until the maximum volume Vmax is 

reached at time t2. A period of time elapses before the silo begins to empty at 

time t3 at constant flowrate ME, until the silo is completely empty at t4.  

The volume time series of this cycle is shown in Figure 7-8.   

The discontinuities occur when the simulation’s actual time (tg) equals times t1, t2, 

t3, and t4. At each of these times an important event occurs in the silo. The aim of 

the discontinuity time increment method is to identify when the next important 

event occurs at any point in the simulation.  

Simulation Actual Time (tg) 

Figure 7-8 – Time Series Graph of a Filling and Emptying Silo Showing Discontinuities 

Vmax

Volume 

in silo 

Slope = MF

Slope = ME

t = 0 
V=0

t 1 t 2 t 3 t 4 
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Consider each of the possible situations for tg:  

1. tg < t1 

The silo’s state is FILL QUEUE. Because the FILL QUEUE is a static state 

(section 4.9.1) t1 will not be identified from an examination of the silo’s state 

collection (section 4.3.2) or those in the production scenario’s state collection 

(section 4.3.5). t1 will be dictated by the time that the silo’s feed pump’s state 

is changed to ON. However, this time point will still be modelled because the 

simulation will identify that pump’s state changes also. 

2. t1 < tg < t2 

The silo’s state is FILLING. The t2 discontinuity point is calculated using 

Euler’s method: 

∆V = M x ρ x ∆t   where   

∆V = silo volume change (i.e. Vmax - Vcurrent),  

M = the inlet ports mass flow rate, 

ρ = material density,  

∆t = time increment (i.e. t2 - tg).  

with appropriate units to ensure dimensional consistency. All variable quantities 

except for t2 are known so the equation can be solved for t2.  

3. t2 < tg < t3 

The silo’s state is EMPTY QUEUE. As in case 1 above, because the EMPTY 

QUEUE is a static state t3 will not  be identified from examination of the silo’s 

states, but will be dictated by the time that the silo’s empty pump’s state is 

changed to ON. 

4. t3 < tg < t4 

The silo’s state is EMPTYING. As in case 2 above, t4 will by found by Euler’s 

method. 
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The discontinuities in this example can be seen visually by the changes in slope, 

which imply a change of state, of the volume time series (Figure 7-8). This is not 

always the case. In this work, more often than not, the discontinuity occurs 

through some change in state which is not the result of a change in volume (such 

as the silo changing from the RINSE state to the FILL QUEUE state).  

Extending this concept out to a process consisting of multiple unit operation 

partial models, each unit operation will have its own time increment to 

discontinuity. The time increment used for the next iteration of the simulation will 

be the smallest time increment to discontinuity of all the unit operations. 

7.7.3 Linear and Non-Linear Simulation Discontinuities 

 

Time 

Figure 7-9 – Time Step Calculation – Linear Algebraic  

Vmax

Volume 

in silo 

Slope = MF

V0

t0 tmax 

In this work only linear simulation discontinuities are considered. Consider a 

storage silo being filled by a pump at constant flowrate MF. The volume in the silo 

is represented by Figure 7-9. Discontinuity occurs when the material volume 

reaches the maximum volume Vmax. 

Preston and Berzins (1991) describe two types of discontinuity, explicit and 

implicit. An explicit discontinuity is one where the time to discontinuity is known a 

priori. The volume model above is an example of an explicit discontinuity. The 

time to discontinuity is found from the linear algebraic equation: 
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∆V = MF ρ ∆t   where  

∆V = volume change to full (i.e. Vmax – V0) 

MF = the inlet port’s mass flow rate 

ρ = material density 

∆t = time increment to discontinuity (i.e. tmax – t0) 

and can be solved explicitly for ∆t.  

∆t  =  ∆V 
       MF ρ 

Vmax is the maximum volume, V0 the current volume, and along with MF and ρ are 

known by the simulation. So the time increment ∆t can be found.  

In an implicit discontinuity not only is the time to discontinuity not able to be 

obtained explicitly, the final state (e.g. in this example the final volume) might not 

be known. If the final state is known this is defined as partially-implicit. If the final 

state is not known this is defined as fully-implicit.  

An implicit discontinuity takes the form f(x) = 0. 

Consider the tank emptying in a non-linear manner which has a minimum volume 

set point (Vmin). Say the volume in the tank is described by the non-linear 

ordinary differential equation (ODE) 

Vk
dt
dV

= . 

and represented in Figure 7-10.  

 

Time 

Figure 7-10 –Non Linear Tank Empting  
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t0 tmax 
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Backward differential formulae (BDFs) and Runge-Kutta numerical methods are 

used to solve such non-linear ode’s (Akai, 1994).  Some of these methods (e.g., 

ODE15S in Matlab, The Mathworks, Inc, MA, USA) allow the specification of 

implicit discontinuities so that a series of time steps will reach the discontinuity 

Vmin efficiently. Because the final state (i.e. Vmin) is known this is an example of a 

partially-implicit discontinuity. 

 

7.7.4 Implementing Partial Model Recalculation 

As discussed in section 7.2, an important issue from the perspective of model 

performance when integrating partial models is when to recalculate any particular 

partial model. Potentially, each partial model in a multiscale could be recalculated 

whenever the macroscale model it is integrated with is recalculated.  

However as shown above this type of recalculation regime leads to computer 

processing inefficiency. To achieve optimal processing efficiency, it is desirable 

to recalculate a partial model only when there is a need to refresh the data which 

the model provides. 

The production model is iterated whenever the simulation time reaches 00:00:00 

hours (i.e. on a one day cycle). At each iteration: 

• the raw milk partial model is recalculated to generate new raw milk supply 

data for the day (based on the new date), and  

• a production scenario for the date is obtained (remembering a production 

scenario is a set of user defined unit operation state instructions – section 

5.4). 

The decision to recalculate these models at 00:00:00 is arbitrary, albeit made for 

the reason that raw milk supply changes on a daily basis. There is no reason for 

example that the raw milk supply could not be modelled on an hourly basis, to 

model the movement of milk tankers (e.g. arrival, emptying, cleaning) in the site’s 

milk reception facility.  
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The cheese making process model then proceeds to iterate multiple times and 

generate production data. The number of process model iterations is determined 

by the time increment mode used (i.e. fixed increment or discontinuity). The 

discontinuity mode of operation is the most efficient because the cheese making 

process model will only recalculate when a unit operation state change occurs – 

that is when some time point of interest in the simulation is reached. 

In the software implementation here each iteration of the cheese making process 

iterates every constituent unit operation partial model of the process model. The 

material content partial model, which is integrated with the capacitive unit 

operation model, will iterate when two criteria are fulfilled. i.e.:  

1. there is flow at any of the capacitive unit’s material ports, and  

2. the current simulation global date-time is later than the date-time when it 

was previously recalculated.  

In general, the best iteration regime would be one which that only recalculates a 

partial model when an input variable to that model changes. Here, time 

dependant models, such as the capacitive unit material content model, are 

responsible for much of the computer processing demand.  

The instances where a partial model would require recalculation are presented. 

Example 1 – Mass Balance 

Consider a mass balance partial model which calculates the components and 

flowrates from a cream separator. In this case the model would be recalculated 

when a flowrate or component concentration changes at one of the input ports. It 

would also be recalculated when the spjjecification of material from the separator 

is changed by the user.  

Example 2 – Unit Operation State Duration Calculation 

Consider a cheese vat’s SET state duration calculation (not implemented here). 

The curd formation SET time in the cheese cooking vat is a function of the 

concentration of protein in the milk, the rennet concentration in the 

milk/rennet/starter mixture, the temperature of the milk, and the pH of the mixture 
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(O’Callaghan and O’Donnell, 1998). When the value of any of these factors 

change it will be necessary to recalculate the SET time. 

Example 3 – Heat Balance 

Consider the case of a heat exchanger which uses a partial model to calculate 

the temperature change of a process side fluid. For a given heat exchanger with 

constant hot and cold side fluids, and a given desired process outlet temperature, 

the factors which might change the performance of the heat exchanger include a 

change in the flowrates, inlet temperatures, and heat transfer coefficients due to 

buildup of material on surfaces. Partial model implementations should provide a 

mechanism for deciding when a recalculation needs to be performed based on 

pre-defined criteria.  

 

7.8 Software Development 

This work shows the benefits of taking an object oriented approach to the 

construction of a multiscale model.  

The model is constructed using object oriented programming (OOP) methods in 

conjunction with technologies such as the Visual Basic .NET software 

development environment and CAPE-OPEN (discussed in section 7.9). These 

technologies lent themselves well to the construction of the cheese making 

process model. OOP classes facilitated the rapid and flexible construction of 

multiple unit operation partial models while CAPE-OPEN provided technology for 

the successful integration of, and communication between, unit operation 

models.  

Any chemical process industry multiscale model, by its very nature, consists of 

extensive data and functionality requirements. The core material, energy, 

processing, production, and cost information streams alone have multiple 

sources and multiple interactions. OOP reduces the complexity of the software 

implementation and allows functionality to be incrementally added to existing 

models more readily that tradition software programming methods.  
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For example, even though this model doesn’t include comprehensive energy and 

costs, there are practical options available for incorporating them which requires 

the modification of existing (and possibly the addition of new) software classes. 

Their implementation should not affect the current implementation of material 

streams, though it could add complexity to the classes involved. The point is that 

the core model structure remains unchanged. 

Another benefit of taking an object oriented approach to multiscale modelling 

approach to business modelling is that maintenance of the system model from a 

software development perspective is simplified. If a particular partial model 

requires changes, which could be as straightforward as new boundary conditions 

or as complex as a new mathematical model, as long as the inputs and outputs 

remain the same the partial model can be readily modified without expensive 

changes to other parts of the software. If the inputs or outputs change 

modification becomes more complex. 

Though the individual models are not implemented as standalone (e.g. dynamic 

link library) software components, the basic class structure is in place to make 

the transformation into a distributed application.  

 

7.9 CAPE-OPEN 

The CAPE-OPEN documentation is extensive, currently consisting of over 35 

separate documents and specifications. Much of this is aimed at the experienced 

software developer in the form of detailed specifications for constructing process 

modelling components and environments. They include unit operations, 

thermodynamics and physical properties packages, numerical solvers, sequential 

modular flowsheet simulator interfaces, and planning and scheduling tools. 

The specification’s emphasise on the oil, gas and refining industry reflects the 

make-up of the majority of the CO-LaN (CAPE-OPEN Laboratories Network) 

consortium partners who publish it. However this emphasis does not detract from 

the usefulness of CAPE-OPEN to software developed for the dairy industry. 

Many of the concepts are generic to the chemical process industry and the 
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documentation provides useful in-sites into the latest thinking in the area of 

process modelling in general.  

The CAPE-OPEN specification is central to the development of the software 

used to construct the cheese production model. It was used for, among other 

things, the construction of unit operation models and their interconnection into 

process flow sheets (such as ports, materials, port connections).  

The models built here are not CAPE-OPEN compliant. However the basic 

structure is in place allow compliance with the CAPE-OPEN specification to be 

implemented. CAPE-OPEN compliance would allow process modelling 

components and environments to be integrated with CAPE-OPEN compliant 

third-party software. 

 

7.10 Ports 

Ports are the mechanism which facilitate the exchange of information (i.e. 

material flows, energy flows, and other types of information) between unit 

operations. In this work material ports were implemented, and one energy port 

implementation was tested. Ports proved simple to implement, and are intuitive to 

the chemical engineer because they reflect the real world connection mechanism 

of unit operations in a processing facility. 

In this work, multiple outlet material port unit operations have a flow fraction 

assigned to each material port when the material port is added to the flow unit. 

This flow factor is based on empirical data (such as the experience of the 

separation achieved by a cream separator at a particular flowrate). 

Figure 7-11 – Multiple Outlet Port Flow Fractions 
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This forces the total inlet flowrate (whether from 1 or more inlet ports) to split 

according to the fractions assigned. The sum of the flow fractions = 1 (Figure 

7-11). Splitting flow using this method is crude. A better way of assigning outlet 

port flowrates would be to calculate them using a mass balance. 

The outlet material ports may have different material objects assigned. So the 

cream separator implemented here has two outlet material ports. Skim milk is 

assigned to one outlet port, and cream assigned to the other. In reality a third 

outlet port could be added to incorporate the cream separator’s purge. 

 

7.11 Material Streams 

The Material Port – Material class mechanism for modelling material streams (i.e. 

filling and empting of vessels, material transfer between unit operations, mixing 

and separation) and connecting unit operations successfully enabled the 

construction and simulation of a cheese making process model.  

Capacitive unit and flow unit classes are used to manage the storage and 

transfer of material throughout the process and provide core unit operation 

behaviour, functionality and properties for material transfer. 

While capacitive units in practice can have multiple inlet and outlet material 

streams, here they are implemented with no more than one of each. Stream 

mixing and separation is modelled using flow units with multiple inlet and outlet 

ports. In this implementation, for material transfer to proceed, some configuration 

and operating rules were defined: 

• A capacitive unit must be available for filling or emptying before material 

can be transferred to or from it. It must have available capacity or existing 

material, and be in a state to receive or release material (i.e. state equals 

FILL QUEUE or FILLING or state equals = EMPTY QUEUE or 

EMPTYING). 
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• Only a flow-generating flow unit can initiate material transfer (i.e. flow) 

between unit operations.  

• The flow-generating flow unit’s inlet port must be connected to a 

capacitive unit’s outlet port (i.e. they can only generate flow when 

immediately downstream of a capacitive unit). 

• The flow-generating flow unit must feed into a capacitive unit 

downstream, though it doesn’t have to be connected directly to the 

capacitive unit (e.g. a pump – pasteurizer – cheese vat configuration). 

• A multiple outlet port flow unit (e.g. a separator) must be connected at 

each of its outlet ports to downstream capacitive units which are available 

for filling. 

• A multiple inlet port flow unit (e.g. a mixer) must be connected at each of 

its inlet ports to upstream capacitive units which are available for 

emptying. 

• Non-flow-generating flow unit’s such as heat exchangers can only be 

connected downstream of flow-generating flow unit’s such as pumps. 

• Capacitive units are only connected to flow units. Never directly to 

another capacitive unit. At the very least a flow unit must separate them 

for material transfer to occur. 

• A capacitive unit can be downstream of either a flow-generating flow unit 

or a non-flow-generating flow unit. It does not know the difference. 

A failed attempt to transfer material may or may not affect the state of the unit 

operations involved. For example: 

• Capacitive units remain unaffected by a failed attempt to transfer material 

to them. An attempt to add material to a full storage silo with an EMPTY 

QUEUE state will not change the capacitive unit’s state.  
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• A flow unit that attempts to transfer material (i.e. in the ON state) from or 

to a unit operation that is not available to give or receive material will be 

forced into the OFF state. 

• Flow units feeding or emptying an available capacitive unit will be in the 

ON state. Once the capacitive unit reaches full or empty, the state of the 

capacitive unit will change (from FILLING or EMPTYING) to the next state 

in the state collection sequence. The flow units will not be able to transfer 

material and will be forced into the OFF state. 

Some of these rules are the result of real world behaviour, others came about 

because of software implementation constraints and could be made redundant 

by further software development. For example requiring a capacitive unit to be 

available for filling or emptying before material can be transferred to or from is a 

real world constraint. On the other hand requiring a flow generating flow unit to 

always be upstream of a non-flow generating flow unit may not always reflect real 

world behaviour and improvements to the software would remove the need for 

this rule.  

 

7.12 Energy Streams 

The energy transfer trial discussed in sections 4.8 and 6.7 was successful, and 

showed that energy transfer requirements can be managed using the Energy 

Port – Energy objects.  

In the trial, two assumptions are made:  

1. energy into (or out of) a unit operation raises (or lowers) the temperature 

of the material attained from inlet material streams and any material 

already contained within the unit operation (i.e. in the case of a capacitive 

unit). 

2. all material streams leaving the unit operation are at the same 

temperature. All outlet port’s materials are at the same temperature. In 
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practice it is possible for a unit operation to have different outlet stream 

temperatures. For example a continuous distillation column with reflux. 

These models could be implemented using combinations of capacitive 

units and flow units discussed in section 4.6. 

An energy balance is required to calculate the outlet temperature. The energy 

balance includes the energy from all inlet and outlet material ports, all inlet and 

outlet energy ports, plus, in the case of a capacitive unit, the energy in the 

material contained within it. 

The temperature in a capacitive unit operation modelling a reactor can also be 

increased if an exothermic reaction occurs. One possible method for modelling 

this is to use an inlet energy port connected to a reaction partial model to provide 

the energy generated by the reaction.  

There was an error of 1.04% and 1.08% between the model’s energy 

consumption and the calculated energy consumption on days 1 and 2 

respectively of the simulation. Because the energy implementation was not done 

as carefully as the mass transfer implementation it may be this is due to a 

software bug. However, the accuracy is such that the concept has been proven 

to be worthwhile pursuing.  

More work is needed to implement the many different energy transfer possibilities 

found in the dairy industry. 

 

7.13 Usability of the Modelling Approach 

The question of the usability of this modelling approach is a matter of how easily 

a model can be defined, constructed, configured, and solved, and whether data 

from a simulation can be readily accessed and used. 

As discussed in Cameron et al. (2005) the traditional approach to the 

construction of production process modelling involves the construction of a set of 

equations using balance volume conservation (e.g. mass, momentum and 

energy balances), boundary conditions, and initial conditions. The equations are 
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then solved using various mathematical techniques. The development of these 

models is the domain of highly specialized technicians.  

A process modelling environment is presented which is used to build the model. 

That is:  

• define unit operation templates,  

• construct unit operations from the templates,  

• connect them into a process flow sheet, and  

• create the production modelling scenarios used to control the simulation.  

To utilize this modelling environment a user requires knowledge of the process 

flow sheet being modelled (e.g. how the unit operations are connected and 

relevant process conditions such as flowrates) and an understanding of the 

possible states of unit operations. The ability to apply this modelling technique is 

within the capability of any plant or process engineer. Specialized modelling 

expertise is not required. 

This modelling approach has benefits to both the user and the software 

programmer. A sequential modular process model in the form of a flow sheet is 

intuitive for the chemical engineer user while for the software developer, the 

model can be easily extended (as discussed in section 7.8).  

 

7.14 Implemented Model Limitations 

The cheese making process multiscale model as implemented is limited in 

several ways.  

7.14.1 Batch Modelling  

Currently only simple unit operation behaviour is modelled. For example, the 

cheese vat batch is modelled using a sequence of time-based state changes, 

which model the steps in the batch (i.e. SET, CUT, COOK, STIR). Material 
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component mass fractions and process conditions which change during the 

batch are not modelled. 

A more sophisticated cheese vat simulation would model, for example, the curd 

formation in the vat, and the pH development as the batch reaches completion. 

Thus, the consequence of varying the batch operating conditions could be 

modelled, with the curd formation model providing material stream property 

information (e.g. pH) and component data (i.e. mass fractions). An interface for 

integrating reaction scale partial models is proposed (section 7.4).  

7.14.2 Unit Operation Connection Rules 

As discussed in section 7.11, the implementation here only allows material 

transfer when certain flow unit – capacitive unit connection rules are followed. 

These rules should be extended. For example currently a flow generating flow 

unit (e.g. a pump) must be connected immediately downstream of a capacitive 

unit, though flow is not necessarily generated in this manner.  

Consider the case of the block forming tower in a real cheese making process. 

The Block Forming Tower operates under a vacuum. The curd is sucked from the 

cheese belt to the block forming towers. Here, this situation is modelled using a 

flow generating flow unit between the Cheese Belt and the Block Forming Tower 

(Figure 4-16). In reality the Vacuum Pump is downstream of the Block Forming 

Tower (Figure 7-12).  

Figure 7-12 – Block Forming Tower – ‘Real’ Unit Operation Configuration 

 Capacitive  
Unit 

 Capacitive 
Unit 

Cheese Belt 

FG Flow  
Unit 

Vacuum Pump Block Forming Tower 

 

Currently, a model of this configuration would not generate flow between the 

Cheese Belt capacitive unit and the Block Forming Tower capacitive unit. Two 

alternatives to model this situation exist: 

• implement imaginary unit operations as discussed in section 4.7 
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• add functionality to the flow unit and capacitive unit classes to allow the 

actual situation to be modelled.  
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8 Future Work  

Though a start has been made on developing tools for the creation of models 

(e.g. CAPE-OPEN) and general theories on multiscale modelling (e.g. integration 

frameworks), there is much scope for further work in the area of multiscale 

modelling applied to dairy industry process modelling.  

For example, the literature review did not turn up any previous multiscale 

modelling work examining the process – unit operation scales covered here. 

Also, the previous work appears to have considered no more than two partial 

models at adjacent scales. Here, four partial models have been integrated to 

create a cheese making production model, and the overall model covers 5 time 

or distance scales. Finally, no previous work was found which examined the role 

of object oriented programming concepts in multiscale modelling.  

So in the general multiscale modelling context, possible areas of future work 

include: 

• multiscale modelling applied to the construction of a process model from 

unit operation partial models 

• multiscale model construction from more than two partial models across 

multiple scales 

• object oriented programming and multiscale modelling 

The remainder of this section will examine the possible areas of future work on 

the multiscale model proposed here. The various areas of work fall into the 

following broad categories: 

• adding functionality to existing classes 

• adding partial models 

• adding data reporting capability 
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• making the software CAPE-OPEN compliant 

• improving the usability of the software 

• adding optimization functionality to the software 

• implementing more sophisticated time stepping algorithms 

• an alternative modelling goal 

8.1 Adding Functionality to Existing Classes 

The connection alternatives of the flow unit and capacitive unit classes is 

currently limited to those discussed in section 7.11. For example no work has 

been done to examine the suitability of the software for incorporating recycle 

streams. An analysis of the various unit operation connection alternatives is 

needed to add flexibility to the modelling software. 

The error caused by the inability of a simulation to increment fractional seconds 

has been discussed (section 6.8.2). If functionality was added which would allow 

the model to increment by less than 1 second, this source of error would be 

eliminated.  

8.2 Addition of Partial Models 

Several possible partial models have been presented in this work.  

• A model to calculate the duration of a cheese vat’s SET state’s existence 

(section 7.4).  

• A sales model to utilise the data generated by the production model 

(section 7.4).  

• Cost models for volatile cost contributing inputs (section 7.4). 

• Modelling pipe work (section 7.4). 

• Pump models generating energy, pressure and flow data (section 7.4).  
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• Scale build-up in a heat exchanger (section 7.4). 

• A mass balance model to calculate the components and flowrates from a 

cream separator (section 7.6). 

• A energy balance model to calculate temperatures and energy 

consumption (section 7.6). 

Each of these models can potentially be integrated with the multiscale model 

presented in this work. However, whether any particular model will bring real 

benefits to the multiscale model is not determined. Some, such as volatile cost 

models, would at first glance appear to be beneficial to the performance of the 

model. Others, such as pump models and scale build-up in heat exchangers, 

might be of academic interest, but their contribution to improving the performance 

of the multiscale model is less clear.   

This leads to another possible area of future work. Currently, there are no clear 

rules for determining whether a partial model should be added to a multiscale 

model. Factors such as the importance of the data provided by a partial model, 

partial model contribution to the modelling goal, cost of implementation (e.g. 

software development), and cost of implemented operation (e.g. computer 

processing, effect on solvability) will all be important. However, it would be useful 

to have some definitive guidelines on when implementing a partial model 

integration is of real benefit. 

 

8.3 Data Reporting Capability 

The data reporting capability can be extended in several ways by implementing 

scheduling and resource reporting tools. In this work, data was stored in a 

Microsoft Access database, then imported into a Microsoft Excel spreadsheet 

where it was converted into the graphs presented in this work. This is 

cumbersome and inefficient for the user. Two possibilities for improvement are 

the implementation of a ‘real time’ charting, where data could be generated as 

the simulation runs, and for graphing tools to be incorporated in the software that 
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would enable graphs and reports to be generated at the completion of a 

simulation from within the software application.  

Tools such as Crystal Reports may be suitable for some of these tasks, 

especially time series data. A search for a specialized Gantt charting tool was 

unsuccessful, and it may be that something suitable would need to be developed 

specifically for this application. 

8.3.1 Financial Data 

One important reporting requirement which was not implemented here is financial 

data. The ability to generate financial data generation is a desirable function of a 

dairy process model. Financial data falls into two categories, production costs 

and manufactured product value.  

The full analysis of the requirements of a financial implementation has not been 

done, but there are two possibilities.  

8.3.1.1 Totalized Financial Data 

Raw material object classes, energy, and manufactured product classes could be 

given a Value property, which could then be used to calculate the value of the 

totalized raw materials, energy consumption and manufactured product at the 

completion of a simulation.  

8.3.1.2 Unit Operation Cost Data 

It may be that in some cases it is desirable to analyze costs on a unit operation 

basis. One approach seems worth considering. This approach involves the 

creation of a cost software class. In this approach, Material, Energy and unit 

operation State software classes can have a Cost class attached to them. The 

cost class has properties, such as value and value units which enable material or 

energy stream cost data to be calculated.  

As material is transferred from unit operation to unit operation as it moves 

through the process, an outlet material accumulates costs which reflects the 

additional price of processing within a unit operation. Here, energy and unit 
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operation state costs are contributors to material costs; that is a unit operation’s 

outlet material’s costs are functions of the inlet material costs, plus any costs 

added while the unit operation is in a particular unit state, plus inlet energy costs 

(Figure 8-1).  

Raw milk flow =10 kg/s 

Material cost = $1/kg 

($10/s) 

Figure 8-1 – Costs Added by Unit Operation and Energy  

Flow Unit 
(Pasteuriser)

Flow Unit 
(Pump) 

Pump ON State cost = $0.10/s. This 

reflects the cost of electricity, and is an 

alternative to using an Energy port. 

Raw milk flow = 10 kg/s 

Material Cost = $1.01/kg

($10.1/s) 

Energy flow = 2000J/s 

Energy cost = $0.001/J 

($2/s) 

Raw milk flow = 10 kg/s 

Material Cost = $1.21/kg 

($12.1/s) 

 

Situations requiring cost removal from a material are not considered. Cost 

removal from a material would imply that the cost of processing the material is 

reduced by having passed through a unit operation. No situation where this might 

occur is foreseen. 

The cost value of a manufactured product material is calculated during the 

process simulation, as are the cost values of unit operation outlet materials. Raw 

material, energy, and unit operation state costs are input by the user, using data 

obtained from either a fixed value or a data set (depending on the expected 

volatility of a cost over the simulation’s time horizon). For example, a 3 month 

simulation might use a fixed value for the price of electricity, while a 2 year 

simulation uses an electricity pricing model which is a function of the time of the 

year. 

Though this approach to implementing costs has not been tested, it seems likely 

that a cost implementation will involve a Cost class in some form because of the 

flexibility and programming benefits of classes (section 2.4).  
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8.4 CAPE-OPEN Compliance 

There are benefits in developing CAPE-OPEN compliant simulation 

environments and unit operation models.  

Using a chemical process industry standard specification reduces the resources 

required to develop the core software functionality. Efforts can be better spent on 

integrating partial models and developing industry specific functionality.  

Also, the potential exists to integrate with third-party CAPE-OPEN compliant 

process modelling components or environments. 

Not all CAPE-OPEN functionality (such as the information port, numerical 

solvers, physical properties, thermodynamics) was implemented here, and there 

are opportunities to do so using applications from the dairy industry.  

 

8.5 Improving Software Usability 

The software can be made more usable. Tools to simplify the unit operation 

creation and connection process will both improve the model construction 

process. For example:  

• implementing unit operation type classes (using inheritance),  

• object creation and editing wizards,  

• drag-and-drop data transfer between object classes,  

• visualization of the physical connections between unit operations,  

• more realistic graphical representations of particular unit operation types 

in the process flow sheet.  

• A timeline control with the ability to drag and drop unit operations onto 

date-time positions and have their state set would reduce the time to 

construct and edit production scenarios. 
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The implementation of inheritance warrants closer examination because of the 

benefits it would bring to the user and the developer.  

8.5.1 Object Oriented Programming Inheritance  

One feature on object oriented programming not implemented here was 

inheritance. While it is a powerful tool that allows more efficient reuse of code, 

the complexities and pitfalls associated with inheritance mean its implementation 

fell outside the scope of this work. However one potential implementation is 

identified.  

Using the “is a” rule for determining when to use inheritance (Pattison, 2001), it is 

apparent that: 

• a Capacitive Unit is a Process Unit,  

• a Flow Unit is a Process Unit. 

The potential exists to implement inheritance by allowing the Capacitive Unit and 

Flow Unit classes to inherit Process Unit properties. Furthermore, those classes 

can be used as the basis for the creation of industry specific unit operation type 

classes, each inheriting core functionality provided by flow or capacitive unit 

classes. 

For example, a dairy industry specific application would consist of unique unit 

operation classes used in this industry, such as cheese vats, spray dryers, 

cooling tunnels, cheese belts, centrifugal separators and block formers for 

example. Also available would be generic unit operations such as pumps, heat 

exchangers, manifolds, storage silos.  

The flow sheet would be constructed from actual unit operations rather than 

combinations of capacitive and flow units as is the case in this work. This is a 

more intuitive approach for the industry user. 
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8.6 Optimization 

Both plant level and business level decision-makers have optimization problems. 

Naysmith and Douglas (1995) give a comprehensive review of optimization in the 

chemical process industry and look at the constituent components and tasks 

required of an optimizer. A general objective function to be maximized is given 

as: 

Objective =  Product value - feed costs - utility costs + other variable 

economic effects. 

At the plant level, the optimization problem is focused on maximizing throughput, 

product quality and product yields while fulfilling the business rules (such as the 

hygiene requirements) demanded of the dairy industry. A cheese plant manager 

may for example want to alter operating conditions in a cheese vat based on the 

component mix of the feed milk to maximize yield, or change unit operation 

cleaning regimes to increase throughput. 

At the production level, the optimization problem may be more complex. Multiple 

processing plant alternatives mean that, along with the optimization of individual 

production plants, the objective function may include factors such as co-products 

(e.g. cream, whey), market influences, product shelf life (i.e. production timing) 

and product warehousing capability. It may be that the multi-plant production 

optimum has individual processes operating at sub-optimum conditions to 

manage the competing demands of different parts of the business.  

For example, say the dairy manufacturer can produce cheese or skim milk 

powder (SMP), and has an order for a quantity of cheese. SMP is manufactured 

with excess raw milk supply if desired. The optimization problem is to maximize 

profit over a specified time period whilst meeting the cheese order. Cream, which 

is a co-product of both the cheese and SMP processes, is itself a product, and 

also an intermediate material in the manufacture of butter. Once the minimum 

cheese production is reached the excess raw milk can be used to manufacture 

more cheese or SMP. It maybe that the cheese plant would operate closer to 

optimal with greater through-put. But this might be countered by the remaining 
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raw milk (once optimum cheese production is obtained) not being enough to 

operate the spray dryer.  

So the optimal solution lies in both plants operating at sub-optimal conditions. 

Though this work did not consider optimization, it is an integral part of the dairy 

industry modelling problem. Taking a sequential modular multiscale approach 

may be advantageous because it would allow the solution to be implemented in 

an incremental manner, something which may not be so easily done using an 

equation oriented approach to modelling.  

Optimization of object oriented models in the multiscale modelling context is 

possibly a new field of research. 

 

8.7 Implementing more Sophisticated Time Stepping 

As discussed in section 7.7.3, this work considers only linear simulation models 

which can be solved explicitly for the time step to discontinuity. In engineering 

there are many instances where the model is non-linear and time steps cannot 

be found explicitly. Models of this type require more sophisticated solution tools 

using numerical methods such as Runge-Kutta or Backward Differential 

Formulae methods. 

Two tasks are required; the identification of applications which require non-linear 

models (e.g. emptying of a tank using gravity), and the software implementation 

of solution methods. 

In terms of software implementation, two possibilities are identified. One is to 

implement these tools within the framework of the software developed. The 

second is to incorporate third party software tools which provide these solution 

tools. The second alternative is the more attractive because software already 

exists (such as Matlab) which is capable of solving non-linear models. It maybe 

that CAPE-OPEN is the key here, because CAPE-OPEN provides mechanism 

for integrating numerical method software into chemical engineering modelling 

software (Open Interface Specification Numerical Solvers, 1999). 
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The integration of more advanced methods with the OOP approach proposed will 

require more consideration. 

 

8.8 An Alternative Modelling Goal 

An alternative approach to the modelling goal could be to consider the dairy 

business from an environmental perspective (which could also be important in 

the profit context). As the influence of environmental factors on profit becomes 

significant (whether from artificial influences such as carbon credits, or more 

tangible factors like resource scarcity) the environmental focus may become an 

important part of the system (i.e. business) model. For example climatic factors 

are important to the long term look of the New Zealand raw milk supply curve, 

and they are also important contributors to the price of electricity and availability 

of water.  

While energy and water consumption have always been important cost factors in 

the New Zealand dairy industry, until the mid 1990s they had been readily and 

cheaply available, and prices were relatively stable. As the industry (and the New 

Zealand economy) has grown, pressure has been placed on infrastructure and 

supply, so this is now changing. Prices that were once stable in the short term 

can now fluctuate significantly.  

For example, where a long term fixed (i.e. steady state) power price model would 

have once sufficed, today only a dynamic model would be capable of providing 

quality data for even short term modelling. At the time of writing, New Zealand’s 

average annual power price was $25 - $30 per MWh (though the 3 month 

average to February 2006 was $90 per MWh). However, in the 2005 – 2006 

summer spot prices reached as high as $270 per MWh (Gorman, 2006). Much of 

New Zealand’s electricity comes from hydro-generation. The consequence of low 

alpine rainfall is high power prices and stresses on both river and ground water 

supplies.  

In New Zealand the environment can be a significant factor at a local level 

(primarily floods, drought, and earthquakes), and the climate is varied and 
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occasionally harsh, the climate is reasonably predictable over the long term. Also 

the dairy industry has manufacturing flexibility, and for much of the year spare 

manufacturing capacity, so the effects of unusual climatic events which cause 

localized production shocks can be mitigated. In countries like Australia where 

extreme climatic conditions (caused by the El Niño Southern Oscillation) can be 

devastating to pastoral activities, it may be appropriate to include an 

environmental model as a partial model.  

Monitoring and modelling of the environmental impact of industrial sites has in 

recent years taken on new significance, particularly regarding regulatory 

constraints and obligations, non-renewable resource consumption, and pollutant 

and effluent emissions. These three factors are important in the New Zealand 

context. Resource use consent must be obtained before water is extracted and 

effluent emitted – with legal limits being imposed on both. 

The potential exists to extend, and improve the accuracy of, a profit focused 

system model by incorporating an environmental partial model into it. 
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9 Conclusion 

Multiscale modelling as a practical tool for delivering decision making information 

is in its infancy. This work is the first known attempt to apply its concepts to dairy 

industry modelling. This is also the first known attempt to construct a multiscale 

production model from four partial models covering more than two scales. 

By combining multiscale modelling theory, CAPE-OPEN specifications, and 

object oriented programming (OOP) concepts, a modelling and simulation tool 

has been developed using Microsoft’s Visual Basic .NET software development 

environment. This software tool is capable of being used to construct unit 

operation models, connect them into a sequential modular process model, and 

perform time incrementing simulations over the desired time frame, potentially 

extending out to years. 

The following conclusions are drawn: 

• OOP concepts used in conjunction with CAPE-OPEN specifications have 

a practical application in the implementation of multiscale models. 

• multiscale modelling as applied here has a useful role in providing 

information to multiple decision making levels in the dairy industry.  

• classifying partial model integration frameworks using the classification 

system proposed by Cameron et al. (2005) is not straightforward in all 

cases.  

• the simulation’s incrementing regime, which controls the recalculation of 

partial models, has a significant effect on the performance of the system 

model. The number of unit operations in the process is also a factor in 

solution speed. 

• a unit operation’s State property is a mechanism for integrating that model 

(at the macroscale) with microscale models. 

 137



 

OOP has distinct advantages in the multiscale modelling context. It readily 

facilitates the incremental addition of partial models to the system model. It also 

allows the modification of existing partial models without expensive modifications 

to other parts of the software. CAPE-OPEN provides, among other things, 

specifications and templates for the construction of unit operation models and 

their interconnection into process flow sheets. CAPE-OPEN also provides 

infrastructure definitions (such as ports, materials, port connection) and 

mechanisms (e.g. interface specifications) for the transfer of information between 

process scale, unit operation scale, and lower scale models. These are useful in 

the multiscale modelling context. 

Using OOP to facilitate the construction of a sequential modular process model 

requires a different skill set from the model builder than the alternative equation 

oriented approach. Using the sequential modular modelling method the process 

model can be constructed intuitively by the process or production engineer who 

has knowledge of the process being modelled. Highly specialized modelling 

knowledge is not a requirement. 

Other benefits of taking an OOP approach to the implementation of the 

multiscale model is demonstrated by the ease of construction of the model. 

Specifically, the ability to define unit operations with unique behavioral 

characteristics using generic software classes increases the flexibility of the 

model. OOP also facilitated rapid software development. 

Though not done in this work, the basic structure has been developed in the 

modelling tool to allow compliance with the CAPE-OPEN specification to be 

implemented. CAPE-OPEN compliance would allow process modelling 

components and environments to be integrated with CAPE-OPEN compliant 

third-party software. 

Using the cheese making process to demonstrate, the modelling tool has proved 

capable of delivering information to multiple decision making levels, including 

plant operators, plant managers, production managers, and sales and marketing 

managers. Though the model was a simplified representation of the cheese 
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making process, information suitable for process troubleshooting, scheduling, 

optimization, and process control decision-making is generated. 

The capacitive unit and flow unit object classes developed here were 

successfully able to be used to construct models for all the required unit 

operations in the cheese making process. These two classes are potentially 

powerful core objects which can be used as the basis for any unit operation 

model in any process. By implementing inheritance, it should be possible to 

construct more sophisticated unit operation models and construct industry 

specific modelling tools which are more intuitive to the chemical engineer. 

It is evident that the cheese production model has the characteristics seen in 

multiscale models. Four partial models (i.e. unit operation material content, unit 

operation, raw milk supply, cheese making process) are integrated to create the 

production model. The partial models describing different levels of time, length 

and detail are integrated, and data can be generated for time scales ranging out 

to years.  

In the time stepping mechanism used here to motivate model simulation, the 

iteration regime used to recalculate partial models significantly affected the 

performance of simulations. Because it is possible to iterate the simulation (and 

consequently recalculate the partial models) at fixed one second increments, 

solution times using this iteration regime are potentially too lengthy to be of 

practical use. This is especially true for long duration simulations (i.e. weeks and 

longer). This regime also resulted in extraneous data which is supplementary to 

reporting needs.  

Increasing the fixed increment to speed up the simulation results in losses of 

accuracy. To overcome this problem, the discontinuity time step mechanism is a 

better method. The smallest time step which will result in the next important 

change in the process is found, and the next iteration of the simulation uses that 

time step. This method not only resulted in the fastest solution speed, but 

maintained the accuracy of the one second fixed increment method.  
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A simulation’s solution speed is also a function of the number of unit operations 

in the process. As more unit operations are added, computer processing 

demands increase and will slow the simulation.  

The use of the unit operation’s State property is potentially a powerful 

mechanism to facilitate the construction of sophisticated unit operation models. 

The proposition is that the State could be used to define when a particular 

microscale model of a unit operation is to be recalculated. That is, a particular 

partial model would be recalculated when the unit operation is in a particular 

user-defined state. The example of this which has been implemented in this work 

is the recalculation of a capacitive unit operation’s material content when the unit 

operation is in the FILLING, EMPTYING, or FILLING/EMPTY state. Though a 

simple example, the potential of this mechanism is evident.  

Further work on the model would be beneficial. Adding other microscale partial 

models to this model is desirable in order to further examine the usefulness of 

the State integration mechanism. This would also achieve better modelling 

accuracy, detail and data reporting capabilities. More work is also needed to 

refine unit operation behaviour, define interaction characteristics and examine 

connection possibilities which will provide more flexible and accurate process 

modelling. The construction of more sophisticated graphical user interfaces will 

make the model more user friendly while the implications of and methods for 

managing and distributing the large amounts of data which are generated needs 

analysis.  
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11 Appendices 

 

A Software Operating Instructions  

The CD enclosed with this thesis contains the following files: 

1. DecisionBridge.exe 

The software application developed to test the theories discussed in this 

thesis.  

2. DecisionBridgeData.mdb 

The database to be used with DecisionBridge.exe. This database does not 

store simulation data. 

Disclaimer 

DecisionBridge was developed solely for the purposes of testing the ideas 

presented in this thesis. No responsibility is taken for any use of results 

generated by this software. 

System Requirements 

The DecisionBridge.exe application software has not undergone any systems or 

installation testing. However, it was developed on a Microsoft Windows XP 

system, with Microsoft Access 2003 installed and will function on that, or a 

compatible system. It is likely that the application will operate without Access 

installed (as earlier versions of Visual Basic did), but this has not been tested. 

No minimum hardware requirements are specified. However, simulations were 

performed satisfactorily using a 1600MHz Intel Pentium M processor. 
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Installation Instructions 

1. Create a folder called C:\Junk\ 

2. Copy both DecisionBridge.exe and DescisionBridgeData.mdb into 

C:\Junk\ 

Operating Instructions 

Follow these instructions to perform a simulation of a 2 day production run on the 

cheese making model.  

1. Double click on DecisionBridge.exe. The MDI form will open with the 

Process Executive displayed.  

 

The cheese making process is selected on the left hand column of the 

process executive. 

2. With the cheese making process selected, click on the “Open Unit” button. 

Click ‘Yes’ on the “Do you want to open all units?” message to open all the 

unit operation images. 

 
Figure A-1 – Opening Application Window Image 
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 The application window should now look like Figure A-2. 

 
Figure A-2 –Application Window with Unit Operations 

 

3. On the ‘File’ menu click on the “Modelling Scenario Executive” item to 

open the Modelling Scenario Executive form. 

 
Figure A-3 –Application Window with Open Modelling Scenario Executive form 
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4. On the Modelling Scenario Executive form (Figure A-4) click on the 

second item to select the modelling scenario. A tick should appear in the 

check box next to the scenario name. 

 
Figure A-4 –Application Window with Open Unit Operations 

 

5. Click the “Discontinuity” check box on the Process Executive to select it. 

6. Click the “Run Scenario” button to start the simulation. The simulation will 

now run in discontinuity time increment mode. It will run until the 2 day 

simulation is complete (this should take a few minutes). 

7. Once step 6 is complete, close the application and repeat the above 

steps, this time omitting Step 5. The simulation will now run in fixed time 

increment mode.  

As the scenario runs, note the changing: 

• port flowrates 

• Unit operation state  

• volume progress bar 
Figure A-5 –Capacitive Unit Operation 

on the capacitive unit operation forms (Figure A-5). 
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If an message appears with the appearance of Figure A-6, click on the Abort 

button, close the application, and start from Step 1 again. This is the error 

handling mechanism in the software. 

 
Figure A-6 –Sample Error Message 

 

 

 

 

 149



 

 

B Unit Operation Volume Time Series Graphs  
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Figure B-1 – Cheese Milk Silos 1 & 2 – 12 hour volume time series – fixed time increment  
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Figure B-2 – Cheese Milk Silos 1 & 2 – 12 hour volume time series – discontinuity time increment  
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Figure B-3 – Cheese Vat 1 – 12 hour volume time series – fixed time increment  
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Figure B-4 – Cheese Vat 1 –  12 hour volume time series - discontinuity time increment 
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Figure B-5 – Raw Milk Silos 1, 2, 3 & 4 – 12 hour volume time series - discontinuity time increment  
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Figure B-6 – Cheese Milk Silos 1  – 6 day volume time series - discontinuity time increment  
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Figure B-7 – Cheese Milk Silos 1  – 6 day volume time series - discontinuity time increment  
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Figure B-8 – Cheese Milk Silos 1 & 2 – 6 day volume time series - discontinuity time increment  
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Figure B-9 – Cheese Vat 1 – 6 day volume time series - discontinuity time increment  
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Figure B-10 – Cheese Vat 7 – 6 day volume time series - discontinuity time increment  
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Figure B-11 – Cheese Vat 1 & 7 – 6 day volume time series - discontinuity time increment  
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Figure C-1 – Total Manufactured Units of 25kg Bulk Cheddar – 6 day simulation 
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D Sample Object Code – Port Class 

Software is developed in Visual Basic .NET. 

This Port object is used below to demonstrate the general software coding 

structure of object classes used. Along with object properties (e.g. CollectionKey, 

PortKey, ProcessUnitKey, Tag), some of the Port’s objects are shown (e.g. 

Material, Energy, Information, ConnectedPorts). The RecordStatus property is 

used to indicate if an object’s properties have changed or if the object is new. 

When object data is being written to a database, only those objects whose record 

status is changed or new are saved.  

Public Class Port 
Private zCollectionKey As String 
Private zRecordStatus As Integer 
Private zPortKey As Long 
Private zProcessUnitKey As Long 
Private zDirection As Long 
Private zPortType As Long 
Private zTag As String 
Private zDescription As String 
Private zFlowFraction As Single 
Private zFinalProductKey As Long 
Private zMaterial As Material 
Private zEnergy As Energy 
Private zInformation As Information 
Private zConnectedPorts As Ports 

 
Public Property RecordStatus() As Integer 

Get  
Return zRecordStatus 

End Get 
Set(ByVal Value As Integer) 

If zRecordStatus = RecordStatusEnum.gRecordAdd Then 
If Value = RecordStatusEnum.gRecordDelete Then zRecordStatus = 

RecordStatusEnum.gRecordAddDelete 
If Value = RecordStatusEnum.gRecordNoChange Then zRecordStatus = Value 

Else 
zRecordStatus = Value 

End If 
End Set 

End Property 
 
 Public Property PortKey() As Long 
  Get 
   Return zPortKey 
  End Get 
  Set(ByVal Value As Long) 
   zPortKey = Value 
   RecordStatus = RecordStatusEnum.gRecordModify 
  End Set 
 End Property 
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 Public Property CollectionKey() As String 
  Get 
   Return zCollectionKey 
  End Get 
  Set(ByVal Value As String) 
   zCollectionKey = Value 
   RecordStatus = RecordStatusEnum.gRecordModify 
  End Set 
 End Property 
 
Public Property ProcessUnitKey() As Long 
  Get 
   Return zProcessUnitKey 
  End Get 
  Set(ByVal Value As Long) 
   zProcessUnitKey = Value 
   RecordStatus = RecordStatusEnum.gRecordModify 
  End Set 
 End Property 
 
 Public Property Direction() As Long 
  Get 
   Return zDirection 
  End Get 
  Set(ByVal Value As Long) 
   zDirection = Value 
   RecordStatus = RecordStatusEnum.gRecordModify 
  End Set 
 End Property 
 
 Public Property PortType() As Long 
  Get 
   Return zPortType 
  End Get 
  Set(ByVal Value As Long) 
  zPortType = Value 
  RecordStatus = RecordStatusEnum.gRecordModify 
  End Set 
 End Property 
 
 Public Property Description() As String 
  Get 
   Return zDescription 
  End Get 
  Set(ByVal Value As String) 
   zDescription = Value 
   RecordStatus = RecordStatusEnum.gRecordModify 
  End Set 
 End Property 
 
 Public Property Tag() As String 
  Get 
   Return zTag 
  End Get 
  Set(ByVal Value As String) 
   zTag = Value 
   RecordStatus = RecordStatusEnum.gRecordModify 
  End Set 
 End Property 
 
 Public Property FlowFraction() As Single 
  Get 
   Return zFlowFraction 
  End Get 
  Set(ByVal Value As Single) 
   zFlowFraction = Value 
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   RecordStatus = RecordStatusEnum.gRecordModify 
  End Set 
 End Property 
 
 Public Property FinalProductKey() As Long 
  Get 
   Return zFinalProductKey 
  End Get 
  Set(ByVal Value As Long) 
   zFinalProductKey = Value 
   RecordStatus = RecordStatusEnum.gRecordModify 
  End Set 
 End Property 
 
 Public Property Material() As Material 
  Get 
   If zMaterial Is Nothing Then 
    zMaterial = gMaterials.Item(PortKey.ToString) 
   End If 
   Return zMaterial 
  End Get 
  Set(ByVal Value As Material) 
   zMaterial = Value 
  End Set 
 End Property 
 
 Public Property Energy() As Energy 
  Get 
   If zEnergy Is Nothing Then 
    zEnergy = gEnergys.Item(PortKey.ToString) 
   End If 
   Return zEnergy 
  End Get 
  Set(ByVal Value As Energy) 
   zEnergy = Value 
  End Set 
 End Property 
 
 Public Property Information() As Information 
  Get 
   If zInformation Is Nothing Then 
    zInformation = gInformations.Item(PortKey.ToString) 
   End If 
   Return zInformation 
  End Get 
  Set(ByVal Value As Information) 
   zInformation = Value 
  End Set 
 End Property 
 
 Public ReadOnly Property PortConnections() As PortConnections 
  Get 
   Dim tmpPortConnections As PortConnections, tmpPortConnection As PortConnection 
   Dim i As Integer 
   Dim strCollKey As String 
 
   tmpPortConnections = New PortConnections 
 
   For Each tmpPortConnection In gPortConnections 
    With tmpPortConnection 
     strCollKey = .OutputKey & "_" & .InputKey 
     If .InputKey = PortKey Or .OutputKey = PortKey Then 
      tmpPortConnections.Insert(tmpPortConnection, tmpPortConnection.CollectionKey) 
     End If 
    End With 
   Next 
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   Return tmpPortConnections 
  End Get 
 End Property 
 
 Public ReadOnly Property ConnectedPorts() As Ports 
  Get 
   Dim tmpPortConnection As PortConnection 
   Dim tmpConnectedPort As Port 
 
   If zConnectedPorts Is Nothing Then zConnectedPorts = New Ports 
   zConnectedPorts.Clear() 
 
   For Each tmpPortConnection In PortConnections 
    tmpConnectedPort = Nothing 
    If PortKey = tmpPortConnection.InputKey Then tmpConnectedPort =  
       Ports.Item(CStr(tmpPortConnection.OutputKey)) 
    Else 
     tmpConnectedPort = gPorts.Item(CStr(tmpPortConnection.InputKey)) 
    End If 
    If Not tmpConnectedPort Is Nothing Then 
     zConnectedPorts.Insert(tmpConnectedPort, tmpConnectedPort.CollectionKey) 
    End If 
   Next 
   Return zConnectedPorts 
  End Get 
 End Property 
 
End Class 
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E Sample Collection Code – Ports Class 

The Ports collection class is used to demonstrate the general structure of a 

collection.  

Imports System.Collections 
Public Class Ports 
 Implements IEnumerable 
 
 Private DeleteColl As Collection 
 Private Coll As Collection 
 
 
 Public Sub New() 
  DeleteColl = New Collection 
  Coll = New Collection 
 End Sub 
 
 Protected Overrides Sub Finalize() 
  MyBase.Finalize() 
  DeleteColl = Nothing 
  Coll = Nothing 
 End Sub 
 
 Public ReadOnly Property Item(ByVal Index As Object) As Port 
  Get 
   Dim obj As Port 
   On Error Resume Next 
   obj = Coll.Item(Index) 
   If Err.Number = 0 Then Return obj Else Return Nothing 
  End Get 
 End Property 
 
 Public ReadOnly Property Count() 
  Get 
   Return Coll.Count 
  End Get 
 End Property 
 
 Public ReadOnly Property DeleteCount() 
  Get 
   Return DeleteColl.Count 
  End Get 
 End Property 
 
 Public Sub Clear() 
  Coll = New Collection 
  DeleteColl = New Collection 
 End Sub 
 
 
 Public Sub Remove(ByVal Index As Object) 
  Coll.Remove(Index) 
 End Sub 
 
 Public Sub ClearDeleted() 
  DeleteColl = New Collection 
 End Sub 
 
 Public Sub DeletePort(ByVal Index As Object) 

 161



 

  Dim tmpPort As Port 
  tmpPort = Coll.Item(Index) 
  If tmpPort.RecordStatus <> RecordStatusEnum.gRecordAdd Then 
   DeleteColl.Add(tmpPort) 
   Coll.Remove(Index) 
  Else 
   tmpPort.RecordStatus = RecordStatusEnum.gRecordAddDelete 
  End If 
  tmpPort = Nothing 
 End Sub 
 
 Public Function Add(Optional ByVal Key As Long = 0, Optional ByVal CollectionKey As String = "",  
      Optional ByVal Before As Object = Nothing, Optional ByVal After As Object = Nothing) As Port 
  Dim tmpPort As Port 
  Dim lngKey As Long 
  tmpPort = New Port 
  If Key = 0 Then lngKey = NextKey() Else lngKey = Key 
  If CollectionKey = "" Then CollectionKey = CStr(lngKey) 
  Coll.Add(tmpPort, CollectionKey) 
  With tmpPort 
   .PortKey = lngKey 
   .CollectionKey = CollectionKey 
   .RecordStatus = RecordStatusEnum.gRecordAdd 
  End With 
  Return tmpPort 
 End Function 
 
 Public Sub Insert(ByVal inPort As Port, ByVal Key As String, Optional ByVal Before As Object = Nothing,  
       Optional ByVal After As Object = Nothing) 
 
  Coll.Add(inPort, CStr(Key), Before, After) 
  inPort.CollectionKey = CStr(Key) 
 End Sub 
 
 Public Function GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator 
  Return Coll.GetEnumerator 
 End Function 
 
 Private Function NextKey() As Long 
  Dim tmpConnection As New System.Data.OleDb.OleDbConnection 
  Dim tmpAdapter As System.Data.OleDb.OleDbDataAdapter 
  Dim dsKey As New System.Data.DataSet 
  Dim dt As New DataTable 
  Dim dr As DataRow 
  Dim tmpPort As Port 
  Dim intKey As Integer 
 
  tmpConnection.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _ 
       "Data Source=C:\Documents and Settings\Craig\My Documents\Masters  
       Project\DecisionBridgeData.mdb;Mode=Share Deny None" 
 
  tmpAdapter = New System.Data.OleDb.OleDbDataAdapter("Select * FROM NextKey WHERE  
       TableName = 'Port'", tmpConnection.ConnectionString) 
 
  dsKey = New System.Data.DataSet 
  tmpAdapter.Fill(dsKey) 
  dt = dsKey.Tables(0) 
  dr = dt.Rows(0) 
  intKey = dr.Item(1) 
  dr.Item(1) = intKey + 1 
 
  tmpAdapter.UpdateCommand = New OleDb.OleDbCommand("UPDATE NextKey SET NextKey = ?  
       WHERE TableName = 'Port'", tmpConnection) 
  tmpAdapter.UpdateCommand.Parameters.Add("@NextKey", OleDb.OleDbType.VarChar, 15,  
       NextKey") 
  tmpAdapter.Update(dsKey) 
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  dsKey.AcceptChanges() 
  tmpConnection.Close() 
  tmpConnection = Nothing 
  Return intKey 
 End Function 
 
 Public Function GetPorts(Optional ByVal ProcessUnitKey As Long = 0) As Boolean 
  Dim tmpConnection As New System.Data.OleDb.OleDbConnection 
  Dim tmpAdapter As System.Data.OleDb.OleDbDataAdapter 
  Dim dsPorts As New System.Data.DataSet 
  Dim dt As New DataTable 
  Dim dr As DataRow 
  Dim tmpPort As Port 
  Dim i As Int32, intKey As Int32 
  Dim strSQL As String 
  Dim tmpItemArray As Object 
  GetPorts = False 
 
  tmpConnection.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _ 
       "Data Source=C:\Documents and Settings\Craig\My Documents\Masters  
       Project\DecisionBridgeData.mdb;Mode=Share Deny None" 
 
  strSQL = "Select * FROM Port" 
  If ProcessUnitKey <> 0 Then 
   strSQL = strSQL & " WHERE ProcessUnitKey = " & ProcessUnitKey.ToString 
  End If 
 
  tmpAdapter = New System.Data.OleDb.OleDbDataAdapter(strSQL, tmpConnection.ConnectionString) 
  dsPorts = New System.Data.DataSet 
  tmpAdapter.Fill(dsPorts) 
  dt = dsPorts.Tables(0) 
 
  For i = 0 To dt.Rows.Count - 1 
   dr = dt.Rows(i) 
   intKey = dr.ItemArray(0) 
   tmpPort = Me.Add(intKey) 
   With tmpPort 
    .ProcessUnitKey = dr.ItemArray(1) 
    .Direction = dr.ItemArray(2) 
    .PortType = dr.ItemArray(3) 
    .Tag = IIf(IsDBNull(dr.ItemArray(4)), "", dr.ItemArray(4)) 
    .FlowFraction = IIf(IsDBNull(dr.ItemArray(5)), 0, dr.ItemArray(5)) 
    .Description = IIf(IsDBNull(dr.ItemArray(6)), "", dr.ItemArray(6)) 
    .FinalProductKey = IIf(IsDBNull(dr.ItemArray(7)), 0, dr.ItemArray(7)) 
    .RecordStatus = RecordStatusEnum.gRecordNoChange 
   End With 
  Next 
 
  tmpConnection.Close() 
  tmpConnection = Nothing 
  Return True 
 End Function 
 
 Public Function Update(Optional ByVal Key As Integer = Nothing) As Boolean 
  Dim tmpConnection As New System.Data.OleDb.OleDbConnection 
  Dim tmpAdapter As System.Data.OleDb.OleDbDataAdapter 
  Dim ds As New System.Data.DataSet 
  Dim dt As New DataTable, dr As DataRow 
  Dim tmpPort As Port 
  Dim intKey As Integer 
  Dim strSQL As String 
  Update = False 
 
  tmpConnection.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _ 
       "Data Source=C:\Documents and Settings\Craig\My Documents\Masters  
       Project\DecisionBridgeData.mdb;Mode=Share Deny None" 
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  If Not DeleteColl.Count = 0 Then 
   For Each tmpPort In DeleteColl 
    tmpAdapter = New System.Data.OleDb.OleDbDataAdapter("Select * FROM Port WHERE PortKey  
       = " & tmpPort.PortKey, tmpConnection.ConnectionString) 
    With tmpAdapter 
     .Fill(ds) 
     dt = ds.Tables(0) 
     dr = dt.Rows(0) 
     dr.Delete() 
     strSQL = "DELETE FROM Port WHERE PortKey = " & tmpPort.PortKey 
     .DeleteCommand = New OleDb.OleDbCommand(strSQL, tmpConnection) 
     .DeleteCommand.Parameters.Add("@PortKey", OleDb.OleDbType.VarChar, 15, "PortKey") 
     .Update(ds) 
     tmpAdapter = Nothing 
     ds.AcceptChanges() 
     ds.Clear() 
    End With 
   Next 
   ClearDeleted() 
  End If 
 
  For Each tmpPort In Coll 
   If tmpPort.RecordStatus = RecordStatusEnum.gRecordModify Or tmpPort.RecordStatus =  
        RecordStatusEnum.gRecordAdd Then 
  tmpAdapter = New System.Data.OleDb.OleDbDataAdapter("Select * FROM Port WHERE PortKey  
        = " & tmpPort.PortKey, tmpConnection.ConnectionString) 
    With tmpAdapter 
     .Fill(ds) 
     dt = ds.Tables(0) 
     Select Case tmpPort.RecordStatus 
      Case RecordStatusEnum.gRecordNoChange 
      Case RecordStatusEnum.gRecordAddDelete 
      Case RecordStatusEnum.gRecordDelete 
      Case RecordStatusEnum.gRecordModify 
 
      dr = dt.Rows(0) 
      If dr.Item(1) <> tmpPort.ProcessUnitKey Then dr.Item(1) = tmpPort.ProcessUnitKey 
      If dr.Item(2) <> tmpPort.Direction Then dr.Item(2) = tmpPort.Direction 
      If dr.Item(3) <> tmpPort.PortType Then dr.Item(3) = tmpPort.PortType 
      If IIf(IsDBNull(dr.Item(4)), "", dr.Item(4)) <> tmpPort.Tag Then dr.Item(4) = tmpPort.Tag 
      If dr.Item(5) <> tmpPort.FlowFraction Then dr.Item(5) = tmpPort.FlowFraction 
      If IIf(IsDBNull(dr.Item(6)), "", dr.Item(6)) <> tmpPort.Description Then dr.Item(6) =  
        tmpPort.Description 
      If IIf(IsDBNull(dr.Item(7)), 0, dr.Item(7)) <> tmpPort.FinalProductKey Then dr.Item(7) =   
        tmpPort.FinalProductKey 
 
      strSQL = "UPDATE Port SET ProcessUnitKey = ?, Direction = ?, PortType = ?, Tag = ?,  
        FlowFraction = ?, Description = ?, FinalProductKey = ? WHERE PortKey = " &   
        tmpPort.PortKey 
 
      .UpdateCommand = New OleDb.OleDbCommand(strSQL, tmpConnection) 
      With .UpdateCommand.Parameters 
       .Add("@ProcessUnitKey", OleDb.OleDbType.VarChar, 15, "ProcessUnitKey") 
       .Add("@Direction", OleDb.OleDbType.VarChar, 15, "Direction") 
       .Add("@PortType", OleDb.OleDbType.VarChar, 15, "PortType") 
       .Add("@Tag", OleDb.OleDbType.VarChar, 10, "Tag") 
       .Add("@FlowFraction", OleDb.OleDbType.VarChar, 15, "FlowFraction") 
       .Add("@Description", OleDb.OleDbType.VarChar, 255, "Description") 
       .Add("@FinalProductKey", OleDb.OleDbType.VarChar, 15, "FinalProductKey") 
      End With 
      tmpPort.RecordStatus = RecordStatusEnum.gRecordNoChange 
 
     Case RecordStatusEnum.gRecordAdd 
      dr = dt.NewRow 
      dr(0) = tmpPort.PortKey 
      dr(1) = tmpPort.ProcessUnitKey 
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      dr(2) = tmpPort.Direction 
      dr(3) = tmpPort.PortType 
      dr(4) = tmpPort.Tag 
      dr(5) = tmpPort.FlowFraction 
      dr(6) = tmpPort.Description 
      dr(7) = tmpPort.FinalProductKey 
      dt.Rows.Add(dr) 
 
      strSQL = "INSERT INTO Port(PortKey, ProcessUnitKey, Direction, PortType, Tag,  
        FlowFraction, Description, FinalProductKey) VALUES (?, ?, ?, ?, ?, ?, ?, ?)" 
 
      .InsertCommand = New OleDb.OleDbCommand(strSQL, tmpConnection) 
 
      With .InsertCommand.Parameters 
       .Add("@PortKey", OleDb.OleDbType.VarChar, 15, "PortKey") 
       .Add("@ProcessUnitKey", OleDb.OleDbType.VarChar, 15, "ProcessUnitKey") 
       .Add("@Direction", OleDb.OleDbType.VarChar, 15, "Direction") 
       .Add("@PortType", OleDb.OleDbType.VarChar, 15, "PortType") 
       .Add("@Tag", OleDb.OleDbType.VarChar, 6, "Tag") 
       .Add("@FlowFraction", OleDb.OleDbType.VarChar, 15, "FlowFraction") 
       .Add("@Description", OleDb.OleDbType.VarChar, 255, "Description") 
       .Add("@FinalProductKey", OleDb.OleDbType.VarChar, 15, "FinalProductKey") 
      End With 
     End Select 
 
     .Update(ds) 
     tmpAdapter = Nothing 
     ds.AcceptChanges() 
     ds.Clear() 
     tmpPort.RecordStatus = RecordStatusEnum.gRecordNoChange 
    End With 
   End If 
  Next 
 
  tmpConnection.Close() 
  tmpConnection = Nothing 
  Return True 
 End Function 
End Class 
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