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Abstract—In copper interconnect technology, dielectric trenches
are patterned, filled with copper, and polished. We report a
cluster-based deposition technology that provides efficient trench
filling and excellent selectivity between trenches and plateaus on
damascene structures. The selectivity arises due to the propen-
sity for reflection of clusters from the planar surfaces between
trenches. Trenches of sub-200 nm widths, with various diffusion
barriers and seed layers, and up to 5 : 1 aspect ratios have been
completely filled with copper clusters. We also show that copper
clusters can be sintered into a seed layer using hydrogen an-
nealing. Thus, dense copper films within trenches are obtained.
Preliminary results from planar samples show that the resistivity
is around 2.3 10 8


m

Index Terms—Cluster deposition, copper, damascene trench
filling, integrated circuit interconnections, integrated circuit
metallization, materials science and technology.

I. INTRODUCTION

I N advanced integrated circuit technology, transistors, and
metal lines for the connections between them (known as

interconnects) must now be fabricated with dimensions in the
nanoscale regime [1]. In order to continue the progression to
smaller dimensions and higher performance, many different
challenges relating to interconnect processing must be solved
[2]. For example, as the pitch decreases and the aspect ratio
(depth to width) increases, it is difficult to fill damascene
trenches with copper without voids. Key-hole formation within
the damascene structures compromises the reliability of the
interconnects [3]. Furthermore, the chemical mechanical pol-
ishing (CMP) processes used to remove excess copper after
electroplating have encountered great challenges especially
with the integration of ultralow-k dielectrics [2]. Minimizing or
even eliminating copper CMP would be highly desirable from
a process integration point of view. Selective copper deposition
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into deep and narrow trenches and vias would therefore be
an advantage for technological advancement; we present a
cluster-based deposition technique that has this capability.

Metallic clusters, which are aggregates of metal atoms, have
many interesting and unusual properties [4] but there has not
been extensive investigation of their application in integrated
circuit applications. In one recent case, it has been shown
that, depending on the kinetic energy and the momentum of
the nanoscale clusters, they can bounce or slide in a tem-
plate yielding nanowires [5]. The transition from adhesion
to reflection has been verified by molecular dynamics sim-
ulations [6]. Previously, the use of cluster beams for filling
micrometer-scale holes with copper [7] and the metallization
of nonplanar surfaces [8] have been demonstrated. However,
to our knowledge, there is no previous demonstration of the
filling with clusters of the high aspect ratio nanoscale trenches
which are currently employed for interconnects by industry. In
addition, we demonstrate selective deposition and the sintering
of the deposited clusters into the seed layer to achieve dense
metal lines. Sintering is achieved by simple molecular hydrogen
annealing without the need to apply other advanced annealing
techniques [9], [10]. The high surface/volume ratio of the
clusters is expected to enhance surface melting and coalescence
[11], [12] during this annealing process.

II. EXPERIMENTAL PROCEDURE

In this work, nanoscale copper clusters are generated in
an ultrahigh-vacuum compatible system (operating pressure

10 torr) by inert gas aggregation (IGA) in a magnetron
sputtering source using a 99.99% pure Cu target. Fig. 1(a)
shows the schematic of the sputtering source and full details of
the cluster deposition system have been presented elsewhere
[13]. Argon gas ( 1 ppm impurities) is introduced into the
source chamber to generate a plasma, to assist in the cluster
aggregation, and to transport the clusters towards the exit of
the source. The clusters are accelerated by the gas as it ex-
pands through the source exit nozzle into the ultrahigh-vacuum
chamber.

Approximately one-third of the clusters deposited onto the
samples are neutral and roughly the same proportions are pos-
itively or negatively charged (as determined by the effect of an
applied electric field on the measured deposition rate). Similar
ratios were also measured in [14]. By applying electrical pulses
to a pair of parallel deflector plates and measuring the delay
signal in a Faraday cup, the velocity of the clusters was found to
be 230 30 m/s at 800 sccm Ar flow. The cluster diameter can
be varied from 10 to 30 nm depending on the source parameters,
as characterized using scanning electron microscopy (SEM) of
deposited clusters.
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Fig. 1. (a) Clusters are generated in an inert gas aggregation system equipped
with magnetron sputtering source. (b) Selective deposition in the trenches is en-
hanced because clusters can not easily escape from the high aspect ratio struc-
tures. (c) After annealing in hydrogen (�5 torr) at 450 C for 2 h, the clusters
sinter into the seed layer and form dense metal lines.

The copper clusters were deposited onto various commer-
cially prepared trench structures [Fig. 1(b)], and these samples
were subjected to hydrogen annealing to sinter the clusters
[Fig. 1(c)]. Three types of trenches and coating were used
for this work, namely tantalum nitride (TaN) barriers on SiO
trenches, ion-induced atomic layer deposition (iALD) TaN
barrier/ruthenium (Ru) barrier on low-k dielectric (CORAL)
trenches [15], and tantalum (Ta) barrier/copper seed on SiO
trenches, as summarized in Table I, representing a selection
of existing and future barrier/seed technologies. Top-view
and cross-sectional SEM images of pre- and postdeposition

TABLE I
DETAILS OF THE THREE DIFFERENT DIELECTRIC, BARRIER, AND SEED LAYER

COMBINATIONS USED PRIOR TO DISPOSITION

Fig. 2. XSEM image of trenches with a TaN barrier and 5 : 1 aspect ratio filled
with copper clusters. The surface of the sample was covered with photoresist to
ensure that the clusters were not disturbed during cleaving and inspection.

Fig. 3. XSEM of clusters filling 96 nm wide Ru-coated trenches. The low-k
dielectric in the Ru coated sample has deformed during the SEM imaging.

structures have been taken to analyze the results of cluster
deposition in these structures.

III. RESULTS AND DISCUSSION

A. Selective Trench Filling

TaN coated trenches with a high aspect ratio (5 : 1) filled
with copper clusters are illustrated in Fig. 2. The 200 nm wide
trenches are completely filled with clusters and there is a rela-
tively low density of clusters on the top surface. Similarly, the
excellent filling of sub-100 nm trenches coated with TaN/Ru
barriers is demonstrated in Fig. 3. In this case the trenches have
an aspect ratio of 3.5 : 1, but the selectivity is not apparent be-
cause the deposition time was longer than necessary, resulting
in clusters spilling out of the trenches and spreading across the
neighboring plateaus. This assertion is supported by top-view
images of large planar regions of the same sample (Fig. 4)
which have clean plateaus. To further prove the selectivity,
an experiment was carried out with a shorter deposition time.
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Fig. 4. Large-scale top-view SEM image of the sample shown in Fig. 3, high-
lighting the selectivity of the deposition.

Fig. 5. SEM images of selectively filling sub-200 nm Ru coated trenches and
holes from: (a) top-view and (b) cross-sectional view. Very few clusters adhere
to the top planar surface, while the trenches and holes are filled.

Fig. 5 shows that excellent selectivity on a Ru-coated sample,
with accumulation in trenches and clean plateaus between
them. From the relative cluster coverage on the plateaus and
trenches in Fig. 5, a selectivity of at least 500 : 1 is estimated.

The surfaces of the samples studied were oxidized after being
exposed to air and it is clear that the surface state might play an
important role in determining the selectivity. However, excellent
selectivity (similar to Fig. 4) has also been observed on a Ru
sample which has been preannealed in H at 200 C for 30 min
prior to deposition. After the preannealing, the ruthenium oxide
should be reduced to pure ruthenium [16], and yet the selectivity
has not been degraded. This proves that the selectivity is not
limited to oxidized metal surfaces.

These results indicate that our cluster-based deposition
technique has some desirable and unique characteristics. For
example, it has the same high purity and directional deposition
as ionized physical vapor deposition (iPVD) [17], as well as the
selective filling capability of electrochemical deposition (ECD)

Fig. 6. With long deposition time on planar Ru sample, more clusters have been
collected on the plateau. From the distribution of the clusters, this demonstrates
that the clusters stick to other clusters better than to the Ru substrate.

[18]. It is generally accepted in the cluster community that
clusters generated in similar sources are free from oxidation
or other contamination (see, for example, the mass and pho-
toelectron spectra in [4]). Hence, the purity of the Cu clusters
which can in principle be at least as good as in iPVD processes,
is in strong contrast with the significant level of impurities
that are incorporated into interconnect structures by ECD pro-
cesses [19]. Although selective filling has been demonstrated
in electro-deposition and a chemical vapor deposition (CVD)
process [20], this is the first time it has been achieved with a
technique which intrinsically produced high purity metal.

B. Mechanism

We propose the following mechanism for the selective ac-
cumulation of clusters at the bottom of the trenches for our
deposition technique. Due to the high kinetic energy (at least
2 keV/cluster), clusters bounce off the planar surfaces which
are perpendicular to the cluster beam but slide along the side
walls to the bottom of the trenches. The clusters do not stick
where they land because their energy is large enough to over-
come the adhesion energy to the surface. The relatively rough
or disordered morphology of barrier/seed at the bottom of the
trenches may also facilitate the adhesion of clusters. After the
arrival of the first clusters at the bottom of the trenches, the accu-
mulation is enhanced because clusters adhere to other clusters
efficiently. This effect is shown on a planar surface in Fig. 6.
Copper clusters were deposited on a planar Ru sample with
double the deposition time compared to the sample in Fig. 5.
From the distribution of the clusters, this demonstrates that the
clusters stick to other clusters better than to the substrate (cf.
antimony clusters in [21]).

The selectivity is better for larger clusters because of their
large kinetic energy [5]; however, we have achieved filling
of narrow trenches with small (10–15 nm diameter) clusters,
showing that the technique is compatible with the requirement
of current and future ultralarge-scale integrated (ULSI) tech-
nology. More generally the probability of sticking or bouncing
is a complex function of the substrate and cluster materials,
and the cluster size and velocity [6]. The bouncing behavior
observed here was not observed in [7], most likely due to
differences in substrate materials and the kinetic energy/atom
of the clusters: in the present case the kinetic energies/atom
are very small ( .02 eV/atom), and so the deposition is within
what is usually considered the “soft-landing” regime.
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Fig. 7. Results of annealing experiment in �5 torr hydrogen at 450 C for 2 h. (a) After cleaving but before cluster deposition. (b) After deposition but prior to
annealing. (c) After annealing. The cluster material appears to be darker than the barrier/seed layer. (d) After annealing and after additional cleaving. All images
showing XSEM of Ta/Cu coated trenches are with the same magnification.

C. Sintering Process

Clearly the cluster-filled trenches shown in Figs. 2–6 have
many voids and would have low electrical conductivity. There-
fore, a sintering process [22] is required. We now show that the
copper clusters can be sintered into a seed layer by annealing in
hydrogen at 450 C. Initial annealing experiments on Ru seed
layers were not successful because the copper clusters failed to
adhere to the seed. This was clearly due to oxidation of the Ru
seed, which meant that the Cu clusters did not wet the seed layer
as intended. We therefore turned our attention to trenches with a
Cu seed. Cross-sectional SEM (XSEM) of the cleaved samples
before and after deposition are shown in Fig. 7(a) and 7(b) re-
spectively. Since these structures are relatively shallow, it is dif-
ficult to optimize the deposition time and the clusters have over-
flowed from the trenches onto the plateaus (as per discussion of
Figs. 3 and 4). The cleaved sample was subjected to annealing
at 450 C in a 5 torr ultrahigh purity hydrogen environment
for 2 h. Higher annealing temperatures are expected to cause
decomposition of the low-k dielectric. Fig. 7(c) shows that the
copper clusters have been effectively sintered after annealing.
Since the clusters on the cleaved surface were directly exposed
to hydrogen gas during annealing, the wafer was recleaved to
demonstrate the effect of sintering within the trenches. Fig. 7(d)
shows that, while there is some roughness/damage caused by
the cleaving process, the trenches are indeed densely filled with
copper.

In a separate experiment, 30 nm copper clusters were de-
posited on a planar sample with copper seed. After ( 5 torr)
hydrogen annealing at 450 C for 2 h, the sheet resistance was
obtained using four-terminal resistance measurement. Prelimi-
nary results indicate that the resistivity of 100 nm thick annealed
cluster film is around 2.3 10 m. This is reasonably close
to the bulk resistivity 1.6 10 m and the value required
by industry 2.2 10 m [1]. The details of the resistivity
measurement will be reported elsewhere.

IV. CONCLUSION

In summary, we have demonstrated that reflection of clusters
can be employed to achieve selective filling of high-aspect-ratio

(5 : 1) damascene trenches with copper. In that case, the CMP
issues such as dishing or erosion would be minimized, thus
leading to better process integration. Annealing in hydrogen
greatly improves the quality of the deposited material. Prelimi-
nary results show that the resistivity is around 2.3 10 m.
This technique has great potential to meet the requirements
for ULSI interconnect metallization. Future work will focus
on direct measurements of the electrical conductivity of the
annealed copper material within the trenches, and reliability
testing (stress-migration and electromigration).
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