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Abstract—The performance of cognitive radio systems will
depend critically on the ability of the secondary user to relinquish
borrowed spectrum when it’s interference level at the primary
user exceeds a certain threshold. Hence, in this paper we
investigate the temporal behaviour of this interference power. In
particular, we derive the level crossing rate (LCR) of the power.
This gives the rate at which a cognitive radio’s interference level
increases above the acceptable threshold. The LCR is derived
for the case of lognormal shadow fading and two different
mobility models. The results cater for temporal variations in both
shadowing and distance. The basic nature of the LCR appears
to be insensitive to the mobility model and suggests that a simple
Gaussian LCR can be used as a good approximation in a broad
range of cases.

Index Terms—Cognitive radio, shadow fading, level crossing
rate, spatial shadowing, lognormal processes.

I. INTRODUCTION

Radio spectrum is one of the most scarce and valuable
resources for wireless communications. Conservative spectrum
policies employed by regulatory authorities have resulted in
spectrum congestion and underutilization of the overall avail-
able spectrum for communications. Measurements performed
by agencies such as the Federal Communications Commission
[1] in the United States and Ofcom [2] in the United King-
dom have revealed that at any given time, large portions of
spectrum are sparsely occupied. Findings of such campaigns
on spectrum usage have challenged the traditional spectrum
management approaches.

The concept of cognitive radio (CR) first introduced by
Mitola [3] refers to a smart radio which can sense the external
electromagnetic environment and adapt its transmission pa-
rameters according to the current state of the environment [4].
CRs employing opportunistic spectrum access can access parts
of the spectrum for their information transmission, provided
that they cause minimal interference to the primary users in
that band [5], [6]. Therefore, spectrum sharing among the
primary licensee and the secondary CR must be carried out in
a controlled fashion [7].

Consider a CR that senses the spectrum before transmission.
In this phase of the CR operation, the spectrum sensing is
likely to be accurate as the terminal is able to allocate a
reasonable amount of time to signal detection. Once the CR

has an established link, repeated checking of the frequency
band in use will occur. However, this monitoring will only be
for short periods of time so as not to interrupt transmission. As
a result, the CR link is likely to be established satisfactorily
but changes in the spectrum environment during transmission
may cause problems. Hence it is important to assess the rate
of change of the spectrum environment. Here, there are two
types of changes. The first kind is a change of state where the
primary user (PU) either takes or drops channels in the band
used by the CR. This is governed by the activity factor of the
PU. The second kind relates to changes in the signal strength.
For example, the PU may have been shadowed from the CR
at call initiation but mobility may result in an increasing PU
signal strength. The CR should detect this and release the
borrowed spectrum. Conversely, a CR may be operating within
acceptable interference temperature limits but the mobility
may cause its interference levels to rise at a particular PU
receiver. It is the second type of change we analyze in this
work. Hence, we consider the joint effects of shadowing and
distance on signal strength variation.

A crude approximation to CR detection of a PU is to set
a threshold power [8], [9], below which detection fails and
above which detection is certain. Similarly, an interference
temperature approach will allow interference up to a certain
threshold, but not above. Hence. the level crossing rate (LCR)
of signal strength across a given threshold is particularly useful
in CR analysis. LCR analysis for Rayleigh fading [10], [11] is
very well known and more recently, exact [12] and approxi-
mate [13] results have appeared for the LCRs of multiple-input
multiple-output (MIMO) eigenvalues. For shadow fading, an
excellent LCR analysis is given in [14]. This work evaluates
the LCR due to shadowing but does not consider the effect of
distance variation on the LCR of signal power. The novelty of
this work lies in the joint investigation of temporal changes in
both distance and shadowing. Hence, we consider variations in
signal strength which include both path loss and shadow fading
effects. To the best our knowledge, this is the first investigation
of signal power LCR which includes stochastic models for
distance and therefore considers path loss variation.

The rest of the paper is organized as follows: In Section
II we describe the system model. In Section III we derive
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Fig. 1. A fixed PU transmitter with a mobile CR in the vicinity.

the LCR results and in Section IV, analytical and simulation
results are presented and discussed. Finally, in Section V some
conclusions are given.

II. SYSTEM AND MODEL

Consider a fixed PU transmitter with a mobile CR in the
vicinity, as shown in Fig. 1. We locate the PU at the origin
and denote the coordinates of the CR at time t as (x(t), y(t)).
The distance of the CR from the PU is d(t) =

√
x2(t) + y2(t)

and the classical signal strength model is

p(t) = AeX(t)[d(t)]−γ (1)

In (1), p(t) is the signal strength of the CR signal received
at the PU, X(t) ∼ N (0, σ2

s) giving lognormal shadowing and
γ is the path loss exponent (normally in the range of 2 to
4). The constant A is determined by the transmit power. Note
that this problem is defined in terms of the CR signal at the
PU, but we could equally well consider the PU signal at the
CR. In order for a LCR of p(t) to be valid we must consider
stationary models for X(t) and d(t). This is reasonable for
short periods of time although in the longer term, directionality
of the CR paths will tend to give a non-stationary trend to
the distance component. In this paper, we consider simple
Gaussian processes for the CR motion. Such models are not
particularly realistic but represent a suitable starting point for
analysis. Furthermore, results suggest that the nature of the
LCR is insensitive to the precise mobility model used.

A. Motion Model 1 (MM1)

Here the distance, d(t), is assumed to follow a stationary
Gaussian process with mean distance d0, standard deviation
σm and autocorrelation function (ACF) ρm(τ). The subscript,
m, denotes mobility. For small time lags, τ ≈ 0, we further
assume that ρm(τ) = 1 − aτ2 + o(τ2) as in [13] and [15].
By standard usage, f(τ) = o(τ2) is used to indicate that

lim
τ→0

∣∣∣ f(τ)
τ2

∣∣∣ = 0. Discrete time simulations of such a model

are achieved via

d(t) = d0 + ρm(τ)[d(t− τ)− d0] +
√

1− ρ2
m(τ)ε(t)

where ε(t) is an independent and identically distributed (i.i.d)
N (0, σ2

m) process.

B. Motion Model 2 (MM2)

Here we assume a more realistic two-dimensional motion
where both the x and y-coordinates of the CR vary as
stationary Gaussian processes. We adopt some of the notation
from MM1 so that the mean position is (x0, y0), both x(t)
and y(t) have standard deviation σm and the common ACF
is ρm(τ). Discrete time simulations of the CR position follow
from

x(t) = x0 + ρm(τ)(x(t− τ)− x0) +
√

1− ρ2
m(τ)εx(t)

y(t) = y0 + ρm(τ)(y(t− τ)− x0) +
√

1− ρ2
m(τ)εy(t)

where εx(t) and εy(t) are i.i.d N (0, σ2
m) processes. With

this 2D model we have the distance process, d(t) =√
x2(t) + y2(t).

C. Shadowing Model

We assume stationary correlated lognormal shadowing so
that X(t) ∼ N (0, σ2

s). The ACF is ρX(δ) where δ represents
distance. Hence the correlation between X(t1) and X(t2)
where the spatial separation is δ is given by ρX(δ). Again, we
assume that ρX(δ) ≈ 1−bδ2+o(δ2) when δ ≈ 0. Note that this
assumption is not satisfied by the well-known Gudmundson
model [16]. However, as discussed in [14], there are physical
problems with the Gudmundson model, which leads to an
infinite LCR. To avoid such difficulites Patzöld and Yang
[14] propose alternative models which satisfy the assumption.
This is the approach taken here. In the technical literature,
lognormal shadowing is usually characterized in terms of its
dB spread which is related to σs by σs = 0.1 ln(10)σdB. As
indicated by empirical measurements, values of the dB spread
for wireless systems typically range from 6 to 12 dB [17].

For MM2 we compute spatial correlation via the Euclidean
distance between the (x, y) coordinates at two time points. For
MM1, which is essentially a one-dimensional model, we use
d(t2)− d(t1) to give a measure of spatial separation.

III. ANALYSIS

Changes in p(t), particularly relative to an interference
temperature threshold, are of interest. Hence we consider the
LCR of p(t) across T̃ , denoted by LCRp(T̃ ). Recalling that
p(t) is AeX(t)d(t)−γ and taking logarithms, we see that

LCRp(T̃ ) = LCRg(T ) (2)

where g(t) is the process

g(t) = X(t)− γ log(d(t)) (3)

and T = log(T̃ ) − log(A). The classic Rice formula for the
LCR [11] is given by

LCRg(T ) =
∫ ∞

0

ġfg,ġ(T, ġ)dġ (4)
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where ġ(t) is the derivative of g(t) and fg,ġ(·, ·) is the joint
density of g(t) and ġ(t). This joint density can be broken down
as below

fg,ġ(T, ġ) =
∫ ∞

0

fg(T |d = z)fġ(ġ|d = z)fd(z)dz (5)

where fg(·), fġ(·) and fd(·) are the probability density func-
tions (PDFs) of g(t), ġ(t) and d(t) respectively. This result
follows since for fixed d(t) = z, g(t) = X(t) − γ log(d(t))
and ġ(t) = Ẋ(t)− γḋ(t)/d(t) are independent of each other.
The independence follows from the well-known property that
X(t) is independent of Ẋ(t) [11] and X(t) is also independent
of ḋ(t) by construction.

A. MM1

For MM1, d(t) is Gaussian, d(t) ∼ N (d0, σ
2
m) so fd(z)

is a Gaussian PDF. Similarly, for fixed d(t) = z, g(t) is
also Gaussian, g(t) ∼ N (−γ log z, σ2

s). Hence, it remains to
compute the density of ġ. Now ġ(t) relies on Ẋ(t) which is
given by

Ẋ(t) =
∂d(t)
∂t

∂X(t)
∂d(t)

= ḋ(t)
∂X(t)
∂d(t)

(6)

By construction, both d(t) and X(t) are Gaussian processes
and their derivatives are therefore independent Gaussian pro-
cesses [11]. We write ḋ(t) = εd(t) and ∂X(t)

∂d(t) = εX(t) where
εd(t), εX(t) are white Gaussian processes with mean zero
and variances 2aσ2

m and 2bσ2
s respectively. With this notation,

ġ(t) = εd(t)[εX(t) − γ/d(t)], and the conditional density of
ġ(t) can be written

fġ(ġ|d = z) = E [fġ(ġ|d = z, εd)] (7)

where E [·] is the statistical expectation operator. The advantage
of this formulation is that with d(t) and εd(t) fixed, ġ(t) is
a Gaussian. In Appendix I we show that substituting (7) and
the Gaussian PDFs for d(t) and g(t) into (5) and (4) gives the
LCR result

LCRg(T ) =

√
ab

π2σs

∫ ∞

0

exp

[
− (T + γ log z)2

2σ2
s

(8)

− (z − d0)2

2σ2
m

− γ2

4bσ2
sz2

]
dz

B. MM2

The approach for MM2 follows the same general scheme
as for MM1 but is considerably more complex due to the two-
dimensional nature of the mobility model. In Appendix II we
show that

ḋ(t) =
√

a
x(t)εx(t) + y(t)εy(t)√

x2(t) + y2(t)
(9)

and

Ẋ(t) =
√

2a εx(t)
√

ε2x(t) + ε2y(t) (10)

Since g(t) = X(t)− γ log d(t) and ġ(t) = Ẋ(t)− γḋ(t)/d(t)
we see that conditioning on x(t), y(t), εx(t), εy(t) leaves g(t)
and ġ(t) as independent variables. Hence, we can write

fg,ġ(T, ġ) =
∫ ∞

−∞
. . .

∫ ∞

−∞
fg(T |x, y)fġ(ġ|x, y, εx, εy) (11)

f(x, y, εx, εy)dxdydεxεy

where f(·, ·, ·, ·) is the joint PDF of x(t), y(t), εx(t), εy(t).
Note that both fg(T |x, y) and fġ(ġ|x, y, εx, εy) are Gaussian
PDFs. Also, since x(t), y(t), εx(t) and εy(t) are independent
Gaussians, f(·, ·, ·, ·) can be broken down into four separate
Gaussian PDFs. Substituting (11) into (4) leads after consid-
erable algebraic manipulation to the desired result. Very brief
details can be found in Appendix 2 and the final result is given
by

LCRg(T ) =
1√

2πσs

∫ ∞

0

exp
[
− (T + γ log z)2

2σ2
s

]
(12)

(B1(z) + B2(z)) fd(z)dz

where

B1(z) = σsσm

√
ab exp

[
− γ2

8bσ2
sz2

]
I0

(
γ2

8bσ2
sz2

)
,

B2(z) =
γσm

√
a

2z
√

π

{
Φ
(

γ

2
√

bσsz

)
− Φ

(
− γ

2
√

bσsz

)}
,

fd(z) =
z

σ2
m

exp
[−(λ + z2/σ2

m)
2

]
I0

(
z
√

λ/σm

)
,

and λ = (x2
0 + y2

0)/σ2
m. The functions I0(·) and Φ(·) are

the zeroth order modified Bessel function and the standard
Gaussian cumulative distribution function respectively.

IV. SIMULATION RESULTS AND DISCUSSION

In Figs. 2 and 3 we plot the LCR curve for MM1 under
two scenarios. In both cases an average distance of 75m
between CR and PU is assumed with an average power of
5 dB. The path loss exponent is 3.5 and a = 1. In Fig. 2,
σm = 5, σdB = 4.3 dB and b = 0.0142 whereas in Fig.
3 σm = 20, σdB = 7.5 dB and b is in (0.005, 0.0142, 0.1).
These settings correspond to an urban scenario [14]. The LCR
result is affected by the parameter a only through scaling.
Hence the choice of a = 1 gives a normalized curve. The
increased values of σm and σdB result in a much broader LCR
curve in Fig. 3. As can be seen, for both curves the analytical
results are verified by simulation. Note that the effect of
parameter b is also a simple scaling. From (8) we see that

√
b

multiplies the LCR but b also appears in the exponent term.
The exponential term in b, however, has little effect since z−2

is small around d0 where most of the probability lies. Hence,
the effect of b is primarily due to the scaling term,

√
b. Also

plotted in Figs. 2 and 3 are the best fitting Gaussian curves to
approximate the LCR. The excellent agreement is due to the
fact that g(t) = X(t) − log(d(t)), X(t) is exactly Gaussian
and log(d(t)) is unimodal and approximately symmetric. As a
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Fig. 2. Level crossing rate versus threshold power for MM1.
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Fig. 3. Level crossing rate versus threshold power for MM1. The Gaussian
fitted curve is shown by “dots”.

result, g(t), the sum of these variables, is also approximately
Gaussian. Finally, we note that the LCR of a Gaussian process
has a Gaussian shape, hence the proximity of the two curves.
Similar results will occur with lognormal shadowing and any
mobility model as long as the log-distance distribution is not
strongly non-Gaussian. This makes the analysis much more
widely applicable, which is useful as the mobility models
presented here are rather simple and have limited scope. A
general approach could use a Gaussian approximation to g(t),
for which LCR results are already known. The problem then
simplifies to the computation of the mean, variance and ACF
of the approximate Gaussian process. It is to be expected that
this approach will remain tractable for a far wider class of
mobility models.

Next, we consider the MM2 model. The parameters used are
the same as for Fig. 3 with b = 0.0142 and

√
x2

0 + y2
0 = 75.

As shown in Fig. 4 the analytical result is verified by simu-
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Fig. 4. Level crossing rate versus threshold power for MM2.

lation and a Gaussian approximation is excellent once more.
It is worth noting that the analytical results are very rapid
and numerically robust whereas the simulations require large
numbers of iterations before accurate estimates are returned.

Note that for MM1 the distance is Gaussian, whereas for
MM2 distance is the square root of a non-central chi-squared
variable. Hence, as discussed above, despite variation in the
mobility models and the corresponding distance distributions
the basic Gaussian shape of the LCR curve remains.

V. CONCLUSIONS

We have derived exact LCR results for the classic lognormal
shadowing model which caters for temporal variation both in
shadowing and in distance. Our analysis demonstrates that
a simple Gaussian approximation may be appropriate as a
general methodology. Hence, for complex mobility patterns
the problem reduces to finding second order statistics which
suffice to compute a Gaussian LCR. The effect of increasing
variance in distance and shadow fading is to spread the LCR
curves and changes in the ACFs of the mobility and shadowing
models scale the LCR. The analysis has direct application to
CR systems where LCRs across detection thresholds at the CR
and allowable interference thresholds at the PU are important
for performance analysis.

APPENDIX A
LCR CALCULATION FOR MM1

From (7) we can write fġ(ġ|d = z) as

1
4πεdσmσs

√
ab

∫ ∞

−∞
exp

[
− (ġ + γεd/z)2

4ε2dbσ
2
s

− ε2d
4aσ2

m

]
dεd

(13)
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Also, both fg(T |d = z) and fd(z) in (5) are Gaussian, so the
LCR can be written as

LCRg(T ) =
1

8π2σ2
sσ2

m|εd|
√

ab

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
ġ (14)

× exp

[
− (ġ + γεd/z)2

4ε2dbσ
2
s

− ε2d
4bσ2

m

− (T + γ log z)2

2σ2
s

− (z − d0)2

2σ2
m

]
dεddzdġ

Next, we reorder the integrals so that the integration over ġ is
performed first. We use the result,

1
2εdσs

√
πb

∫ ∞

0

ġ exp
[
− (ġ + γεd/z)2

4ε2dbσ
2
s

]
dġ =

|εd|
√

2bσs√
2π

(15)

× exp
[
− γ2

4bσ2
sz2

]
− γεd

z

[
1− Φ

(
γ

2bσsz

)]

The next integration over εd simplifies since∫ ∞

−∞
εd exp

(
− ε2d

4aσ2
m

)
dεd = 0 (16)

and ∫ ∞

−∞
|εd| exp

(
− ε2d

4aσ2
m

)
dεd = 4aσ2

m (17)

Substituting these results in (14) gives the desired LCR in (8).

APPENDIX B
LCR CALCULATION FOR MM2

For MM2 we require a slightly different version of (6). Let
w(t) be the distance moved by the terminal at time t. The
shadow fading varies with w(t) rather than d(t). Hence we
define

Ẋ(t) =
∂w(t)

∂t

∂X(t)
∂w(t)

= ẇ(t)
∂X(t)
∂w(t)

(18)

As before we define ∂X(t)
∂w(t) = εX(t) where εX(t) is a white

Gaussian noise process with zero mean and variance 2bσ2
s .

Next we require ḋ(t) (to compute ġ(t)) and ẇ(t) (to compute
Ẋ(t)). The distance travelled in [t, t + τ ] is w(t + τ)− w(t)
which is given by([

x0 + ρm(τ)(x(t)− x0) +
√

1− ρ2
m(τ) (19)

εx(t + τ)− x(t)

]2

+

[
y0 + ρm(τ)(y(t)− y0)

+
√

1− ρ2
m(τ)εy(t + τ)− y(t)

]2) 1
2

Taking the limit of (w(t + τ)− w(t))/τ as τ → 0 gives

ẇ(t) =
√

4a
√

ε2x(t) + ε2y(t) (20)

Similarly, over the interval [t, t + τ ] the change in d(t), d(t +
τ)− d(t), is given by

(
[x0 + ρm(τ)(x(t)− x0) +

√
1− ρ2

m(τ)εx(t + τ)]2 (21)

+ [y0 + ρm(τ)(y(t)− y0) +
√

1− ρ2
m(τ)εy(t + τ)]2

) 1
2

−
√

x2(t) + y2(t)

Taking the limit of (d(t + τ)− d(t))/τ as τ → 0 gives

ḋ(t) =
√

2a
x(t)εx(t) + y(t)εy(t)√

x2(t) + y2(t)
(22)

Hence, from (18), (20) and (22) we have

ġ(t) = Ẋ(t)− γ
ḋ(t)
dt

(23)

=
√

4aεX(t)
√

ε2x(t) + ε2y(t)

− γ
√

2a
x(t)εx(t) + y(t)εy(t)

x2(t) + y2(t)

With ḋ(t) and ġ(t) given by (22) and (23) we can rewrite (11)
so that (4) gives

LCRg(T ) =
1

4πσ2
s

√
ab

∫ ∞

0

ġ

∫ ∞

0

· · ·
∫ ∞

0

1√
ε2x + ε2y

(24)

× exp
[
− (T + γ log d)2

2σ2
s

]
exp

[
− (ġ + γḋ/d)2

8abσ2
s(ε2x + ε2y)

]

× f(x, y, εx, εy)dxdydεxdεydġ.

Rearranging the order of integration in (24), the integral over
ġ can be done first in closed-form. The following integrals
over εx, εy can be performed by using the polar coordinates,
εx = r cos θ, εy = r sin θ. The final resulting integral is solely
a function of d =

√
x2 + y2 and gives the final result in (12).
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