

Abstract—The Cyclic Coordinate Descent (CCD) is a well
known algorithm used for inverse kinematics solutions in
applications involving joint-chains and moving targets.
Even though a CCD algorithm can be easily implemented,
it can take a series of iterations before converging to a
solution, and also generate undesirable joint rotations. This
paper presents a novel single-pass algorithm that is fast and
eliminates problems associated with improper and large
angle rotations. Experimental results are presented to show
the performance benefits of the proposed algorithm over
CCD and the “triangulation” methods, using different
types of cost functions.

Index Terms— Character animation, Cyclic coordinate
descent, Goal-directed motion, Inverse kinematics.

I. INTRODUCTION
Animation of an articulated structure often requires inverse
kinematics (IK) solutions, when only the desired positions of
the end-effectors are given. When the number of links in a
joint-chain becomes greater than 3, analytical methods usually
become complex and difficult to implement. Iterative
numerical methods are therefore commonly used in Robotics
and Computer Graphics applications [1]-[3]. An important area
where IK algorithms are used is character animation where
joint angles of 3D character models are needed to be computed
for achieving a goal-directed motion [4]. Character animation
techniques based on motion capture data also require IK
solutions for mapping interpolated data to joint positions [5].
 One of the well-known algorithms used for computing joint
angles from target positions, is the Cyclic Coordinate Descent
(CCD) method [6]. Even though this method can be easily
implemented, it has several drawbacks such as the requirement
for a number of iterations for certain configurations, and
undesirable joint angle rotations performed for certain target
positions. In order to eliminate some of these problems, a
“triangulation” method was recently proposed [7]. This
algorithm tries to reduce an n-link IK problem into a two-link
IK problem using the method of triangulation, to reach the
target position. However, the main drawback of this method is
the need to often rotate a joint by a large angle greater than 100
degrees, which may have to be avoided in many situations with

R. Mukundan is with the Department of Computer Science and Software

Engineering at University of Canterbury, Christchurch, New Zealand.
(telephone: 643-364-2987 x7770, e-mail: mukundan@canterbury.ac.nz).

ICITA2008 ISBN: 978-0-9803267-2-7

joint angle constraints.
 This paper presents an improved version of the triangulation
algorithm, designed to provide solutions without large angle
rotations. The proposed algorithm is a “single-pass” algorithm
in the sense that each link is rotated at most once in an attempt
to find a solution. The above characteristics make the proposed
algorithm both fast and useful for graphics applications
involving multi-joint chains. The paper also presents results of
experimental analysis comparing CCD and the triangulation
method with the proposed algorithm using different types of
cost functions. The paper is organized as follows: The next
section gives an overview of the CCD algorithm and outlines its
drawbacks. Section 3 gives a description of the triangulation
method given in [7]. Section 4 presents the proposed algorithm.
Experimental results are presented in Section 5. Concluding
remarks and possible future extensions are discussed in Section
6.

II. CYCLIC COORDINATE DESCENT
We present below an outline of the CCD algorithm for an

n-link chain as shown in Fig. 1, with the following notations:
(xT, yT) : Position of the target
(xE, yE) : Position of the end-effector
(xi , yi) : Pivot point of the ith link, i=1, 2, …, n
ti : Target vector for the ith link = (xT − xi , yT − yi)
ei : End-effector vector for the ith link = (xE − xi , yE − yi)
αi : Angle between vectors ti and vi .

Fig. 1. An n-link joint chain.

The CCD algorithm can be concisely given as follows:

1: Set i = n.
2: Compute αi
3: Rotate ith link by angle αi so that the end-effector meets the

target vector ti
4: Decrement i, and go to step 2 if i > 0.
5: Repeat steps 1 to 4 until target position is reached. We count

each repetition of the above steps as one iteration.

A Fast Inverse Kinematics Solution for an n-link
Joint Chain

Ramakrishnan Mukundan, Senior Member, IEEE

1 2

i

n

(xi , yi)

(xT , yT) (xE , yE)

ti

ei
αi

 349

5th International Conference on Information Technology and Applications (ICITA 2008)

CCD’s drawbacks are known to the graphics community.
Three typical problems are illustrated in Fig. 2, using a 10-link
joint chain. Throughout this paper, the initial configuration of
the joint chain is assumed to be such that the base (triangle with
solid color) is located at the origin, and every link is axis
aligned with respect to the x-axis.

(a) (b) (c)

Fig. 2. Typical problems associated with CCD algorithm.

For the configuration shown in Fig. 2(a), the algorithm
requires 100 iterations, though the target could be reached
using a single rotation about the base. A simpler solution is
possible in the case of Fig. 2(b), whereas the CCD algorithm
causes the chain to form a loop, intersecting itself. In Fig. 2 (c),
the target position is located close to the base, and the joint
chain gets crumbled together to reach the target.

III. TRIANGULATION ALGORITHM
The triangulation algorithm given in [7] takes into account

the distance of the target from the base, and rotates the entire
chain (i.e., performs a rotation of the base by angle α1) if the
target is not reachable (Fig. 3(a)).

(a) (b) (c) (d)

Fig. 3. The configurations of the joint chain generated by the
triangulation algorithm for different target positions.

If the target distance is less than the total length of the chain,

we have to consider several possibilities. These are explained
with the help of the following diagram (Fig. 4). Here we
assume that each link has a length l, so that the total length of
the chain is nl. The distance from the base of a joint chain to the
target is denoted by c.

Fig. 4. Triangulation Algorithm.

The triangulation algorithm tries to split the joint chain into
two parts consisting of the current link (index 1) of length l, and
the remaining links forming a single segment of length b. As
the name implies, the algorithm then tries to form a triangle
with c, l, b as sides so that the end-effector can reach the target
(Fig. 4(a)). The condition for this to be possible is

 b − l ≤ c ≤ b + l (1)

If the target is close to the base of the joint chain where
c < b− l, then the first link is rotated in the direction opposite to
the target vector and is aligned with it (Fig. 4(b)), so that c is
effectively increased by l and b reduced by l. If condition (1) is
still not satisfied, the next link is also rotated to align with the
target vector and the process continues till (1) is satisfied. This
situation is illustrated in Fig. 3(d). More details about the
triangulation algorithm can be found in [7].

IV. PROPOSED ALGORITHM
The triangulation algorithm obviously performs large angle

rotations in order to reach the target. For example, in Fig. 3(c),
a link is rotated by nearly 165 degrees. Large angle rotations
are not acceptable in many situations where joint constraints
limit rotations to a maximum value (typically in the range
90-150 degrees). Using the triangulation algorithm, a target can
be approached only from the side of the base, whereas a more
natural way to approach a target that is located close to the base
is to go around it and try to reach it from the opposite side of the
base. We take into consideration the above aspects, and
propose an improved version of the triangulation algorithm
below.

We first try to maximize the minimum angle within the
triangle in Fig. 4(a), by splitting the total length b+l evenly.
This is done by performing the rotation on a link k that is closest
to the midpoint of the remaining chain (Fig. 5(a)). Thus we will
have the configuration where the sides of the triangle are a, b,
and c, with the condition (1) changed to

|a − b| ≤ c ≤ a + b (2)

(xT , yT)

c
b

l1

2

(xT , yT)

c b

l

1

2

3

(a) (b)

n n

 350

Fig. 5. Improvements to the triangulation algorithm.

The joint angles at nodes with indices 1 and k are denoted by
θ1 , θk respectively, and are computed as follows:










 −+
= −

ac
bca

b 2
cos

222
1δ

θ1 = α1 − δb

θk = αk = π− 








 −+−

ab
cba

2
cos

222
1 (3)

where αi is defined as in Section II. With the above
modification of the triangulation algorithm, the results
previously shown in Figs 3(b), 3(c), 3(d) change to that given in
Figs 6(a), 6(b), 6(c) respectively.

(a) (b) (c)
Fig. 6. The triangulation algorithm can be modified to split the

chain near the midpoint.

As seen in Fig. 6, the method only produces a 2-link equivalent
of the joint chain to produce a solution that is devoid of any
twisting motion. Large angle rotations are still present, even
though some of the unwanted “backward” movement of the
chain could be eliminated. The values of θk in Figs 6 (a), (b), (c)
are respectively 55.4 degrees, 107.21 degrees, and 162.71
degrees, and the last two configurations are generated by
rotations greater than 90 degrees. Therefore we now consider
joint angle constraints and try to avoid rotations that violate
such constraints. This can be achieved by orienting the current

link at an angle that is nearly orthogonal to the target vector,
finding the middle link of the remaining chain, computing θk,
and repeating the whole process with the next link if the value
of θk is beyond acceptable limits. This process of “going round”
a target is illustrated in Fig. 5(b). The actual angle by which we
rotate each link should depend on how close or far away the
target is with respect to the current link. If the target is too close
to the link, we will have to start moving away from the target,
and later move towards the target. In Fig. 7(a), where the target
position is same as what is shown in Fig. 6(b), the link moves
incrementally towards the target, till a triangulation with θk less
than 90 degrees becomes possible. In Fig. 7(b) (which
corresponds to Fig. 6(c)), the link is rotated away from the
target. The joint angle constraints are met in both cases, with
the maximum rotation in the first figure being 81 degrees, and
in the second figure 75 degrees.

(a) (b)
Fig. 7. The proposed algorithm tries to move a link closer or

away from the target, depending on its distance from the target.

The following figure (Fig. 8) explains the important parameters
that need to be taken into account while forcing a joint chain to
go around a target.

Fig. 8. Angle parameters that control joint rotations in the

modified algorithm.

With reference to Fig. 8(a), the value of θk is greater than 90
degs for the outer dotted triangle. Obviously, the necessary
condition for this to happen is

a2 + b2 − c2 > 0 (4)

(xT , yT)

c

b
n

a

1

δb

θ1

θk

k (xT , yT)

c

b n

a

1

θk

k

(a) (b)

(xT , yT)

l

c

(xT , yT)

a
c

b

δ

(a) (b)

θk

 351

If the above condition is satisfied, we decide to either move
away or towards the target based on the target distance c. We
calculate θk using (3), and if this angle is greater than 135
degrees in magnitude, we move away from the target,
otherwise we move closer. This direction of movement is
determined as follows. Referring to Fig. 8(b), the distance to
the target will not change if







= −

c
l

2
cos 1δ (5)

In order to move closer to the target, we rotate the current link
such that it makes an angle δ−20 degs to the target vector. To
move away from the target, this angle is set to δ+20 degs. The
overall algorithm for the proposed method is given below in
pseudo-code form:

1: Set i = 1; k = n/2
2: a = k*l ; b = n*l − a
3: Compute distance to target c from the current link i.
4: Compute αi
5: If (c > a + b) then rotate base by angle αi ; End.
6: If a2 + b2 − c2 > 0 then
 6.1: Compute θk using (3)
 6.2: Compute δ using (5)
 6.3: If θk > 130°, δ = δ +20; else δ = δ −20;
 6.4: θi = αi − δ
 6.5: Rotate ith link by angle θi
 6.6 n = n − 1; k = n/2; a = k*l ; b = n*l−a; i = i+1
 6.7: Compute a, b, c for the new link; Goto 6
7: Compute αi
8: Compute δb using (3)
9: θi = αi − δb
10: Rotate ith link by angle θi
11: Rotate kth link by angle θk

V. COMPARATIVE ANALYSIS
The proposed algorithm is designed to avoid large angle

rotations and twisted/self-intersecting configurations that can
be produced by CCD and triangulation algorithms. By
comparing the pseudo codes of the CCD algorithm in Section II
and the proposed method in the previous section, three
fundamental differences become obvious: (i) The CCD
algorithm processes links from the end-effector towards the
base, while both the triangulation and the proposed algorithms
process links from the base and move towards the end-effector.
(ii) The CCD algorithm uses several passes through the joint
chain to converge to a solution, while the proposed method
visits each node at most once to find a solution (iii) The CCD
algorithm computes joint angles for every link, while the
proposed algorithm rotates only those joints that are needed to
move the end-effector to the target. The “single-pass” nature of
the proposed method makes it a fast algorithm suitable for
real-time graphics applications.

We give below a comparative analysis of the three methods
using different types of cost functions:
(i) Total number of joint angle rotations performed, where

only rotations greater than 5 degs in magnitude are
counted.

(ii) Sum of magnitudes of all joint angle rotations performed.
(iii) Total distance traveled by the end effector.

Ten target positions were randomly generated, and the results
for the above three cost functions are tabulated in Table 1, 2, 3
respectively. As shown in the various examples of the paper,
the joint chain had 10 links, each of length 2 units. The initial
configuration of the joint chain for all experiments was parallel
to the x-axis, with the base located at the origin (0, 0), and the
end effector at (20, 0).

Table I. Comparison of total number of rotations.
 Total Number of Rotations
 Target Position CCD Triangulation Proposed
1 (15.17, 4.58) 12 3 2
2 (8.33, 2.83) 9 6 10
3 (−10.58, 2.58) 49 6 4
4 (−4.08, 16.0) 35 2 2
5 (6.41, −10.08) 25 6 6
6 (−17.75, 15.75) 77 1 1
7 (3.33, −13.0) 37 4 3
8 (−1.08, 6.91) 17 8 9
9 (−8.33, 0.33) 34 2 5
10 (0.667, 11.33) 28 6 7

Table II. Comparison of sum of joint angle rotations.
 Sum of Joint Angle Rotations
 Target Position CCD Triangulation Proposed
1 (15.17, 4.58) 512.68 355.17 96.09
2 (8.33, 2.83) 668.19 879.56 299.94
3 (−10.58, 2.58) 2156.80 228.25 225.05
4 (−4.08, 16.0) 1899.72 171.66 139.43
5 (6.41, −10.08) 914.28 549.08 153.99
6 (−17.75, 15.75) 2753.46 130.41 138.41
7 (3.33, −13.0) 1238.17 346.76 119.74
8 (−1.08, 6.91) 1281.12 593.44 242.92
9 (−8.33, 0.33) 2067.28 191.73 249.20
10 (0.667, 11.33) 1350.44 465.85 174.50

Table III. Comparison of distance travelled by end-effector.
 Total Distance Travelled
 Target Position CCD Triangulation Proposed
1 (15.17, 4.58) 14.05 83.34 19.42
2 (8.33, 2.83) 14.07 192.76 46.35
3 (−10.58, 2.58) 72.81 58.27 52.98
4 (−4.08, 16.0) 100.64 44.69 34.21
5 (6.41, −10.08) 36.80 141.94 26.17
6 (−17.75, 15.75) 207.21 37.39 37.39
7 (3.33, −13.0) 57.72 94.92 25.69
8 (−1.08, 6.91) 31.22 155.56 34.33
9 (−8.33, 0.33) 53.37 39.21 56.95
10 (0.667, 11.33) 40.29 128.15 31.40

 352

 From the results presented above in Table II, it can be seen

that the proposed method produces significantly less amount of
joint rotations compared to other methods. This is an important
cost factor to be considered for both hardware and software
implementations as it directly translates to the total effort
expended by joint motors. Table I shows that both triangulation
method and the proposed method generate considerably less
number of rotations than CCD algorithm. On an average, the
number of rotations for the proposed method is slightly larger
than the triangulation method, because of the additional
transformations used to move around the target for certain
configurations. Table III shows that the proposed method gives
a shorter path for the end effector in most of the cases, wben
compared with the other two methods. Figs. 9, 10 compare the
shape and lengths of paths traced of the end effector for the
three methods, for two different target positions.

Fig. 9. Comparison of end effector traces for target position

(−4.08, 16.0)

Fig. 10. Comparison of end effector traces for target position

(3.06, 8.91)

VI. CONCLUDING REMARKS
This paper has discussed the inverse kinematics solution for

an n-link joint chain and the methods used by the Cyclic
Coordinate Descent algorithm and the triangulation algorithm.
The main limitations of the two algorithms have been outlined.
The paper then proposed an improved method similar to the
triangulation algorithm, but providing a solution without large
angle rotations. The proposed method can be easily
implemented in real-time rendering applications, as it processes
each link at most once to obtain a solution. A detailed
comparative analysis has also been presented to show the
benefits of the proposed algorithm over CCD and triangulation
algorithm in terms of a set of cost functions.

A possible future extension of the method presented is a
more general IK solution in 3D space, with quaternion rotations
[8]. The solution provided by the proposed algorithm could be
further optimized in terms of the cost functions, such as
minimum path distance, or minimum sum of joint angles.

CCD
Path Length = 100.64

Triangulation
Path Length = 44.69

Proposed Method
Path Length = 34.31

CCD
Path Length = 42.57

Triangulation
Path Length = 19.12

Proposed Method
Path Length = 19.09

 353

REFERENCES
[1] R.W. Sumner, M. Zwicker, C.Gotsman, J.Popovic, "Mesh based inverse

kinematics," ACM Trans. on Graphics, vol. 24 (3), pp. 488-495, 2005.
[2] C.Y.Chen, M.G. Her, Y.C. Hung, M. Karkoub, “Approximating a robot

inverse kinematics solution using fuzzy logic tuned by genetic
algorithms,” Intnl. Jnl. of Advanced Manufacturing Technology, vol. 20
(5), pp. 375-380, 2002.

[3] J. Zhao, N.I.Badler, “Inverse kinematics positioning using nonlinear
programming for highly articulated figures”, ACM Trans. on Graphics,
vol. 13, pp. 313–336, 1994.

[4] Bruderlin and Calvert, "Goal-Directed, Dynamic Animation of Human
Walking", Computer Graphics (Siggraph), vol. 23 (3), pp. 233-242, 1989.

[5] M. Meredith, S. Maddock, “Adapting motion capture data using
weighted real-time inverse kinematics”, Computers in Entertainment, vol.
3, pp. 5-20, 2005.

[6] J. Lander, “Making Kine more flexible”, Game Developer Magazine, vol.
11, pp. 15-22, 1998.

[7] R. Muller-Cajar, R. Mukundan, “Triangualation – A new algorithm for
inverse kinematics”, Proc. Image and Vision Computing – IVCNZ 07, 5-7
Dec 2007, Waikato, New Zealand, pp. 181-186. 2007.

[8] Y. Aydin, S. Kucuk, “Quaternion based inverse kinematics for industrial
robot manipulators with Euler wrist”, Proc. IEEE Conf. on Mechatronics,
pp. 581-586, 2006.

 354

