
 

  

Abstract—The Cyclic Coordinate Descent (CCD) is a well 
known algorithm used for inverse kinematics solutions in 
applications involving joint-chains and moving targets. 
Even though a CCD algorithm can be easily implemented, 
it can take a series of iterations before converging to a 
solution, and also generate undesirable joint rotations. This 
paper presents a novel single-pass algorithm that is fast and 
eliminates problems associated with improper and large 
angle rotations. Experimental results are presented to show 
the performance benefits of the proposed algorithm over 
CCD and the “triangulation” methods, using different 
types of cost functions.  
 

Index Terms— Character animation, Cyclic coordinate 
descent, Goal-directed motion, Inverse kinematics.  

I. INTRODUCTION 
Animation of an articulated structure often requires inverse 
kinematics (IK) solutions, when only the desired positions of 
the end-effectors are given. When the number of links in a 
joint-chain becomes greater than 3, analytical methods usually 
become complex and difficult to implement. Iterative 
numerical methods are therefore commonly used in Robotics 
and Computer Graphics applications [1]-[3]. An important area 
where IK algorithms are used is character animation where 
joint angles of 3D character models are needed to be computed 
for achieving a goal-directed motion [4]. Character animation 
techniques based on motion capture data also require IK 
solutions for mapping interpolated data to joint positions [5]. 
   One of the well-known algorithms used for computing joint 
angles from target positions, is the Cyclic Coordinate Descent 
(CCD) method [6]. Even though this method can be easily 
implemented, it has several drawbacks such as the requirement 
for a number of iterations for certain configurations, and 
undesirable joint angle rotations performed for certain target 
positions. In order to eliminate some of these problems, a 
“triangulation” method was recently proposed [7]. This 
algorithm tries to reduce an n-link IK problem into a two-link 
IK problem using the method of triangulation, to reach the 
target position. However, the main drawback of this method is 
the need to often rotate a joint by a large angle greater than 100 
degrees, which may have to be avoided in many situations with 
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joint angle constraints. 
    This paper presents an improved version of the triangulation 
algorithm, designed to provide solutions without large angle 
rotations. The proposed algorithm is a “single-pass” algorithm 
in the sense that each link is rotated at most once in an attempt 
to find a solution. The above characteristics make the proposed 
algorithm both fast and useful for graphics applications 
involving multi-joint chains. The paper also presents results of 
experimental analysis comparing CCD and the triangulation 
method with the proposed algorithm using different types of 
cost functions. The paper is organized as follows:  The next 
section gives an overview of the CCD algorithm and outlines its 
drawbacks. Section 3 gives a description of the triangulation 
method given in [7]. Section 4 presents the proposed algorithm. 
Experimental results are presented in Section 5.  Concluding 
remarks and possible future extensions are discussed in Section 
6. 

II. CYCLIC COORDINATE DESCENT 
We present below an outline of the CCD algorithm for an 

n-link chain as shown in Fig. 1, with the following notations: 
(xT, yT)  : Position of the target 
(xE, yE)  : Position of the end-effector 
(xi , yi)  : Pivot point of the ith link, i=1, 2, …, n 
ti :  Target vector for the ith link = (xT − xi , yT − yi )  
ei :  End-effector vector for the ith link = (xE − xi , yE − yi ) 
αi : Angle between vectors ti  and vi . 

 
Fig.  1.  An n-link joint chain. 

 
The CCD algorithm can be concisely given as follows: 

1: Set i = n. 
2: Compute αi 
3: Rotate ith link by angle αi so that the end-effector meets the 

target vector ti 
4:  Decrement i, and go to step 2 if  i > 0.  
5:  Repeat steps 1 to 4 until target position is reached. We count 

each repetition of the above steps as one iteration. 
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CCD’s drawbacks are known to the graphics community. 
Three typical problems are illustrated in Fig. 2, using a 10-link 
joint chain. Throughout this paper, the initial configuration of 
the joint chain is assumed to be such that the base (triangle with 
solid color) is located at the origin, and every link is axis 
aligned with respect to the x-axis.  
 

 

 
 

 

 
 
 
 
 
 
 
 
 

 
(a) (b) (c) 

Fig.  2.  Typical problems associated with CCD algorithm. 

For the configuration shown in Fig. 2(a), the algorithm 
requires 100 iterations, though the target could be reached 
using a single rotation about the base. A simpler solution is 
possible in the case of Fig. 2(b), whereas the CCD algorithm 
causes the chain to form a loop, intersecting itself. In Fig. 2 (c), 
the target position is located close to the base, and the joint 
chain gets crumbled together to reach the target.   

III. TRIANGULATION ALGORITHM 
The triangulation algorithm given in [7] takes into account 

the distance of the target from the base, and rotates the entire 
chain (i.e., performs a rotation of the base by angle α1) if the 
target is not reachable (Fig. 3(a)). 

 

 
 
 

 

 
 
 

 

 
 
 
 
 
 
 

 
(a)    (b) (c) (d) 

Fig.  3. The configurations of the joint chain generated by the 
triangulation algorithm for different target positions. 

If the target distance is less than the total length of the chain, 

we have to consider several possibilities. These are explained 
with the help of the following diagram (Fig. 4). Here we 
assume that each link has a length l, so that the total length of 
the chain is nl. The distance from the base of a joint chain to the 
target is denoted  by c. 

 
Fig.  4. Triangulation Algorithm. 

The triangulation algorithm tries to split the joint chain into 
two parts consisting of the current link (index 1) of length l, and 
the remaining links forming a single segment of length b. As 
the name implies, the algorithm then tries to form a triangle 
with c, l, b as sides so that the end-effector can reach the target 
(Fig. 4(a)). The condition for this to be possible is  

 b − l  ≤  c ≤  b + l (1) 

If the target is close to the base of the joint chain where             
c < b− l, then the first link is rotated in the direction opposite to 
the target vector and is aligned with it (Fig. 4(b)), so that c is 
effectively increased by l  and b reduced by l. If condition (1) is 
still not satisfied, the next link is also rotated to align with the 
target vector and the process continues till (1) is satisfied. This 
situation is illustrated in Fig. 3(d).  More details about the 
triangulation algorithm can be found in [7]. 

IV. PROPOSED ALGORITHM 
The triangulation algorithm obviously performs large angle 

rotations in order to reach the target. For example, in Fig. 3(c), 
a link is rotated by nearly 165 degrees. Large angle rotations 
are not acceptable in many situations where joint constraints 
limit rotations to a maximum value (typically in the range 
90-150 degrees). Using the triangulation algorithm, a target can 
be approached only from the side of the base, whereas a more 
natural way to approach a target that is located close to the base 
is to go around it and try to reach it from the opposite side of the 
base. We take into consideration the above aspects, and 
propose an improved version of the triangulation algorithm 
below. 

We first try to maximize the minimum angle within the 
triangle in Fig. 4(a), by splitting the total length b+l evenly. 
This is done by performing the rotation on a link k that is closest 
to the midpoint of the remaining chain (Fig. 5(a)). Thus we will 
have the configuration where the sides of the triangle are a, b, 
and c,  with the condition (1) changed to 

|a − b|  ≤  c ≤  a + b (2) 
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Fig.  5.  Improvements to the triangulation algorithm. 

The joint angles at nodes with indices 1 and k are denoted by 
θ1 ,  θk  respectively, and are computed as  follows: 
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where αi  is defined as in Section II. With the above 
modification of the triangulation algorithm, the results 
previously shown in Figs 3(b), 3(c), 3(d) change to that given in 
Figs 6(a), 6(b), 6(c) respectively. 

 

 

 

 

 

 

(a) (b) (c) 
Fig.  6.  The triangulation algorithm can be modified to split the 

chain near the midpoint. 

As seen in Fig. 6, the method only produces a 2-link equivalent 
of the joint chain to produce a solution that is devoid of any 
twisting motion. Large angle rotations are still present, even 
though some of the unwanted “backward” movement of the 
chain could be eliminated. The values of θk in Figs 6 (a), (b), (c) 
are respectively 55.4 degrees, 107.21 degrees, and 162.71 
degrees, and the last two configurations are generated by 
rotations greater than 90 degrees. Therefore we now consider 
joint angle constraints and try to avoid rotations that violate 
such constraints. This can be achieved by orienting the current 

link at an angle that is nearly orthogonal to the target vector, 
finding the middle link of the remaining chain, computing θk, 
and repeating the whole process with the next link if the value 
of θk is beyond acceptable limits. This process of “going round” 
a target is illustrated in Fig. 5(b). The actual angle by which we 
rotate each link should depend on how close or far away the 
target is with respect to the current link. If the target is too close 
to the link, we will have to start moving away from the target, 
and later move towards the target. In Fig. 7(a), where the target 
position is same as what is shown in Fig. 6(b),  the link moves 
incrementally towards the target, till a triangulation with θk less 
than 90 degrees becomes possible.  In Fig. 7(b) (which 
corresponds to Fig. 6(c)), the link is rotated away from the 
target. The joint angle constraints are met in both cases, with 
the maximum rotation in the first figure being 81 degrees, and 
in the second figure 75 degrees. 

 

 

 

 

(a) (b) 
Fig.  7. The proposed algorithm tries to move a link closer or 

away from the target, depending on its distance from the target. 

The following figure (Fig. 8) explains the important parameters 
that need to be taken into account while forcing a joint chain to 
go around a target. 

 
Fig.  8. Angle parameters that control joint rotations in the 

modified algorithm. 

With reference to Fig. 8(a), the value of θk is greater than 90 
degs for the outer dotted triangle. Obviously, the necessary 
condition for this to happen is 

a2 + b2 − c2 > 0 (4) 
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If the above condition is satisfied, we decide to either move 
away or towards the target based on the target distance c. We 
calculate θk using (3), and if this angle is greater than 135 
degrees in magnitude, we move away from the target, 
otherwise we move closer. This direction of movement is 
determined as follows. Referring to Fig. 8(b), the distance to 
the target will not change if  







= −

c
l

2
cos 1δ  (5) 

In order to move closer to the target, we rotate the current link 
such that it makes an angle δ−20 degs to the target vector. To 
move away from the target, this angle is set to δ+20 degs. The 
overall algorithm for the proposed method is given below in 
pseudo-code form: 

1: Set i = 1;   k = n/2 
2: a = k*l ;    b = n*l − a 
3: Compute distance to target c from the current link i.  
4: Compute αi 
5: If (c > a + b) then rotate base by angle αi ;  End. 
6: If  a2 + b2 − c2 > 0  then 
    6.1:  Compute θk  using (3) 
    6.2:  Compute  δ  using (5) 
    6.3:  If θk > 130°, δ = δ +20;  else δ = δ −20;   
    6.4:  θi = αi − δ 
    6.5:  Rotate ith link by angle θi 
    6.6   n = n − 1;    k = n/2;  a = k*l ;   b = n*l−a;   i = i+1 
    6.7:  Compute a, b, c for the new link;  Goto 6   
7: Compute αi 
8: Compute δb  using (3) 
9:  θi = αi − δb 
10: Rotate ith link by angle θi 
11: Rotate kth link by angle θk 
 

V. COMPARATIVE ANALYSIS 
The proposed algorithm is designed to avoid large angle 

rotations and twisted/self-intersecting configurations that can 
be produced by CCD and triangulation algorithms. By 
comparing the pseudo codes of the CCD algorithm in Section II 
and the proposed method in the previous section, three 
fundamental differences become obvious: (i) The CCD 
algorithm processes links from the end-effector towards the 
base, while both the triangulation and the proposed algorithms 
process links from the base and move towards the end-effector. 
(ii)   The CCD algorithm uses several passes through the joint 
chain to converge to a solution, while the proposed method 
visits each node at most once to find a solution (iii) The CCD 
algorithm computes joint angles for every link, while the 
proposed algorithm rotates only those joints that are needed to 
move the end-effector to the target. The “single-pass” nature of 
the proposed method makes it a fast algorithm suitable for 
real-time graphics applications. 
 

We give below a comparative analysis of the three methods 
using different types of cost functions: 
(i)   Total number of joint angle rotations performed, where 

only rotations greater than 5 degs in magnitude are 
counted. 

(ii)   Sum of magnitudes of all joint angle rotations performed. 
(iii)  Total distance traveled by the end effector. 

Ten target positions were randomly generated, and the results 
for the above three cost functions are tabulated in Table 1, 2, 3 
respectively. As shown in the various examples of the paper, 
the joint chain had 10 links, each of length 2 units. The initial 
configuration of the joint chain for all experiments was parallel 
to the x-axis, with the base located at the origin (0, 0), and the 
end effector at (20, 0).  
 

Table  I.  Comparison of total number of rotations. 
  Total Number of Rotations 
 Target Position CCD Triangulation Proposed 
1 (15.17, 4.58) 12 3 2 
2 (8.33, 2.83) 9 6 10 
3 (−10.58, 2.58) 49 6 4 
4 (−4.08, 16.0) 35 2 2 
5 (6.41, −10.08) 25 6 6 
6 (−17.75, 15.75) 77 1 1 
7 (3.33, −13.0) 37 4 3 
8 (−1.08, 6.91) 17 8 9 
9 (−8.33, 0.33) 34 2 5 
10 (0.667, 11.33) 28 6 7 

 
 

Table  II.  Comparison of sum of joint angle rotations. 
  Sum of Joint Angle Rotations 
 Target Position CCD Triangulation Proposed 
1 (15.17, 4.58) 512.68 355.17 96.09 
2 (8.33, 2.83) 668.19 879.56 299.94 
3 (−10.58, 2.58) 2156.80 228.25 225.05 
4 (−4.08, 16.0) 1899.72 171.66 139.43 
5 (6.41, −10.08) 914.28 549.08 153.99 
6 (−17.75, 15.75) 2753.46 130.41 138.41 
7 (3.33, −13.0) 1238.17 346.76 119.74 
8 (−1.08, 6.91) 1281.12 593.44 242.92 
9 (−8.33, 0.33) 2067.28 191.73 249.20 
10 (0.667, 11.33) 1350.44 465.85 174.50 

 
 

Table  III.  Comparison of distance travelled by end-effector. 
  Total Distance Travelled 
 Target Position CCD Triangulation Proposed 
1 (15.17, 4.58) 14.05 83.34 19.42 
2 (8.33, 2.83) 14.07 192.76 46.35 
3 (−10.58, 2.58) 72.81 58.27 52.98 
4 (−4.08, 16.0) 100.64 44.69 34.21 
5 (6.41, −10.08) 36.80 141.94 26.17 
6 (−17.75, 15.75) 207.21 37.39 37.39 
7 (3.33, −13.0) 57.72 94.92 25.69 
8 (−1.08, 6.91) 31.22 155.56 34.33 
9 (−8.33, 0.33) 53.37 39.21 56.95 
10 (0.667, 11.33) 40.29 128.15 31.40 
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 From the results presented above in Table II, it can be seen 

that the proposed method produces significantly less amount of 
joint rotations compared to other methods. This is an important 
cost factor to be considered for both hardware and software 
implementations as it directly translates to the total effort 
expended by joint motors. Table I shows that both triangulation 
method and the proposed method generate considerably less 
number of rotations than CCD algorithm. On an average, the 
number of rotations for the proposed method is slightly larger 
than the triangulation method, because of the additional 
transformations used to move around the target for certain 
configurations. Table III shows that the proposed method gives 
a shorter path for the end effector in most of the cases, wben 
compared with the other two methods. Figs. 9, 10 compare the 
shape and lengths of paths traced of the end effector for the 
three methods, for two different target positions. 

 

 

 

 
Fig.  9. Comparison of end effector traces for target position 

(−4.08, 16.0) 
 

 
 

 

 

 
Fig.  10. Comparison of end effector traces for target position 

(3.06, 8.91) 
 

  

VI. CONCLUDING REMARKS 
This paper has discussed the inverse kinematics solution for 

an n-link joint chain and the methods used by the Cyclic 
Coordinate Descent algorithm and the triangulation algorithm. 
The main limitations of the two algorithms have been outlined. 
The paper then proposed an improved method similar to the 
triangulation algorithm, but providing a solution without large 
angle rotations. The proposed method can be easily 
implemented in real-time rendering applications, as it processes 
each link at most once to obtain a solution. A detailed 
comparative analysis has also been presented to show the 
benefits of the proposed algorithm over CCD and triangulation 
algorithm in terms of a set of cost functions.  

A possible future extension of the method presented is a 
more general IK solution in 3D space, with quaternion rotations 
[8]. The solution provided by the proposed algorithm could be 
further optimized in terms of the cost functions, such as 
minimum path distance, or minimum sum of joint angles. 

CCD 
Path Length = 100.64 

Triangulation 
Path Length = 44.69 

Proposed Method 
Path Length = 34.31 

CCD 
Path Length = 42.57 

Triangulation 
Path Length = 19.12 

Proposed Method 
Path Length = 19.09 
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