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Abstract

Electron beam therapy planning and custom electron bolus design were iden-
tified as areas in which improvements in equipment and techniques could
lead to significant improvements in treatment delivery and patient outcomes.

The electron pencil beam algorithms used in conventional Treatment
Planning Systems do not accurately model the dose distribution in irregu-
larly shaped objects, near oblique surfaces or in inhomogeneous media. For
this reason, at Christchurch Oncology Centre the TPS is not relied on for
planning electron beam treatments.

This project is an initial study of ways to improve the design of custom
electron bolus, the planning of electron beam therapy, and other radiation
therapy simulation tasks, by developing a system for the accurate assessment
of dose distributions under irregular contours in clinically relevant situations.

A shaped water phantom system and a diode array have been developed
and tested. The design and construction of this water phantom dosimetry
system are described, and its capabilities and limitations discussed.

An EGS/BEAM Monte Carlo simulation system has been installed, and
models of the Christchurch Oncology Centre linacs in 6MeV and 9MeV
electron beam modes have been built and commissioned.

A test was run comparing the EGS/BEAM Monte Carlo system and the
CMS Xio conventional treatment planning system with the experimental
measurement technique using the water phantom and the diode array. This
test was successful as a proof of the concept of the experimental technique.

At the conclusion of this project, the main limitation of the diode array
system was the lack of data processing software. The array produces a large
volume of raw data, but not enough processed data was produced during
this project to match the spatial resolution of the computer models. An
automated data processing system will be needed for clinical use of the
array.

It has been confirmed that Monte Carlo and pencil-beam algorithms
predict significantly different dose distributions for an irregularly shaped
object irradiated with megavoltage electron beams. The results from the
diode array were consistent with the theoretical models.

This project was an initial investigation. At the time of writing, the
diode array and the water phantom systems were still at an early stage of
development. The work reported here was performed to build, test and
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commission the equipment. Additional work will be needed to produce an
instrument for clinical use. Research into electron beam therapy could be
continued, or the equipment used to expand research into new areas.
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1 Introduction

The aim of this project was to develop a system for accurate assessment of
dose distribution under irregular contours in clinically relevant situations.

Electron beam therapy is used as a treatment for superficial cancers.
The depth dose of an electron beam has a narrow build-up region, a high
dose plateau, and then a steep drop in dose with increasing depth (Fig 1).
The build-up region gives a skin-sparing effect, and the steep drop off at
depth spares deeper tissues. The high dose plateau increases in depth with
increasing beam energy. These characteristics make electrons suitable for
superficial therapy.

Figure 1: Relative depth dose curves for electron beams over a range of energies.

Reproduction of Fig 8.4 from [8].

Skin lesions and other superficial cancers can occur on irregularly shaped
body parts, such as the head, face and neck. The irregular shapes make
it difficult to plan and administer an optimum radiation dose to the treat-
ment site. The algorithms used in conventional Treatment Planning Systems
(TPS) do not accurately predict the dose distribution in irregularly shaped
objects [1].

In cases where the shape of the treatment site adversely affects the dose
distribution, material called bolus can be placed on a patient’s skin to alter
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the apparent shape of the body and allow improved treatment. Fig 2 shows
the effect of bolus on the electron beam depth dose. The depth dose curve
starts from the surface of the bolus, so from the point of view of the under-
lying patient tissue, the depth dose is shifted up. The skin dose is increased,
and the dose at depth (below the target volume) is reduced. Bolus that
has been designed for treatment of a specific site for an individual patient
is called custom electron bolus (see Fig 3).

Figure 2: Electron beam depth dose curves without and with bolus in place.

At Christchurch Hospital, custom electron bolus is designed manually
from information such as measured depth dose curves. The CMS Xio treat-
ment planning system used in Christchurch can only simulate bolus with
very simple shapes.

This project was an initial study of ways to incorporate immobilisation
masks into scanning water phantom measurements in order to to improve
the design of custom electron bolus, the planning of electron beam therapy,
and other radiation therapy simulation tasks.

In order to rapidly build a three dimensional dose map in these situations,
a diode detector array has been developed. The array can be mounted on
an existing commercial water tank system which allows the whole array to
be scanned in three dimensions. The original water tank was designed for
performing Quality Assurance (QA) tests on linear accelerators.

The design, construction and testing of the water tank system is de-
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Figure 3: Custom or conformal bolus permits the patient anatomy and the

treatment volume to have different shapes. The patient or distal surface of

the bolus matches the shape of the patient’s body. The beamward or proximal

surface is shaped to match the dose distribution to the Planned Treatment

Volume (PTV). Reproduction of Fig 8.10 from [8].

scribed in Sections 3 and 5.
Given the previously mentioned limitations of the Xio pencil beam al-

gorithm (described in more detail in Section 2), the scope of the project
was extended to include Monte Carlo simulations of the irradiation con-
figurations investigated with the diode array. This should give the most
accurate theoretical representation of the dose distribution for the purpose
of validating the performance of the detector array.

Monte Carlo based treatment planning systems are currently consid-
ered the best replacement for conventional treatment planning algorithms.
EGS/BEAM is the preferred Monte Carlo software for radiation therapy re-
search. Work on simulating radiotherapy linear accelerators (linacs) with
EGS/BEAM is reviewed, as are comparisons between EGS/BEAM and
other Monte Carlo software.

Work on simulating the Christchurch Hospital linacs with EGS/BEAM
is presented. Comparisons between Monte Carlo simulations, plans made
with the conventional Xio TPS, and experimental results obtained with the
water tank system have been made.

A system for manufacturing shape-modifying custom electron bolus has
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already been developed by a team at the University of Texas. A literature
review of this work is presented in Section 2.2. The Texas University group
uses a special treatment planning system called COPPERPlan. This soft-
ware was written in-house and uses the pencil-beam algorithm for modelling
electron beams.

This project is an initial investigation. The experiments reported here
were performed to build, test and commission the equipment for further
use. Future work could improve the water tank dosimetry system and the
EGS/BEAM Monte Carlo capabilities. Research into electron beam therapy
could be continued, or the equipment used to expand research into new areas.
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2 Literature Review

There is a vast body of published scientific literature on subjects relevant
to this project, which include electron beam therapy, cancer of the head
and neck, radiation detectors and phantoms for use in radiation therapy,
amplifiers and signal processing, and Monte Carlo software.

Accordingly this will be a brief review of only the most relevant papers
found.

2.1 Electron Beam Modelling Theory

Theoretical models of electron beams and the interaction of beams with
matter are of interest for basic scientific reasons and for treatment planning.
A radiation therapy prescription specifies a desired dose and a volume of
tissue to irradiate. Treatment planning determines the best way to achieve
the prescription.

Theoretical models for predicting the interaction of electron beams with
matter have been a subject of continuous research since electron beam ther-
apy came into common use more than 50 years ago.

The first step in electron beam modelling was an algorithm to describe
the central axis depth dose, proposed in 1953 [4]. In the following decades
a number of analytical models were proposed to predict dose distributions
using algorithms and empirical data or parameters. A theory based on
diffusion was the subject of a number of publications [4].

The most successful analytical model to date is the Pencil Beam Algo-
rithm by Hogstrom et al (1981). This model is used by current treatment
planning systems such as CMS Xio [1]. The Hogstrom pencil beam algo-
rithm as used in Xio is discussed briefly below.

The Monte Carlo modelling technique has long been considered the best
approach to modelling a probabilistic system like radiation interacting with
matter. Historically the use of Monte Carlo was restricted by the available
computer technology [2]. As computer technology has improved, research
into and use of Monte Carlo techniques has expanded. The use of Monte
Carlo in radiation therapy modelling, and the EGS/BEAM system in par-
ticular, is reviewed below.
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2.1.1 Pencil Beam Model

The Electron Pencil Beam Model is an algorithmic system that models dose
distribution in a phantom or patient by dividing the incident beam into
many beamlets.

The properties of each pencil beam, such as intensity profile, are rep-
resented by functions. These are convolved [5] with other functions rep-
resenting the effects of interactions with such things as air in the beam
path, collimators, and eventually the phantom material or patient [1]. The
various parameters of these functions are determined empirically for each
radiotherapy machine at commissioning time.

In the CMS Xio treatment planning system, relative depth doses im-
ported from the linac commissioning data are used as the basis for beamlet
models (consequently, the central axis depth dose at the standard source-to-
surface distances will always be perfect). Comparison is then made between
measured beam profiles and the predictions of the pencil beam algorithm.
The aim of the comparison is to tweak the modelling parameters to give as
close a match as possible between the measured and calculated beams.

One parameter adjusts the divergence of the pencil beams (which are
modelled as having a Gaussian cross section) and another controls the spread
of scatter radiation in the outer penumbra of the beam. These two parame-
ters affect the shape of the penumbral region on the edge of the beam. The
user can also alter the intensity across the whole beam profile by supplying
(through a graphical interface) a set of points specifying radius from the
beam centre and a factor to adjust the intensity at that radius. The last
method is used to arbitrarily compensate for the beam profile not being ide-
ally flat across the centre. This procedure must be performed for all beam
energies, with all applicator sizes, and commonly used SSDs.

The convolved algorithm is used to calculate the resulting depth dose of
each pencil beam, and these results are combined to give the dose distribu-
tion from the entire electron beam.

In the Xio treatment planning system, the equation representing the
overall process of convolving the electron pencil beam intensity distribution
is [1]:
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D(x, y, z) =
∫ +∞

−∞

∫ +∞

−∞
Sair(x′′, y′′, z) ∗ 1

2π ∗ fmcs ∗ σ2
MCS(x′′, y′′, z)

∗

∗ exp
{
− (x− x′′)2 + (y − y′′)2

2 ∗ fmcs ∗ σ2
MCS(x′′, y′′, z)

}
∗

∗GH2O

(
0, 0, Zeff (x′′, y′′, z)

){SSDbeam + Zeff (x′′, y′′, z)
SSDbeam + z

}2

dx′′dy′′ +

+ Dphoton

(
x, y, Zeff (x, y, z)

)
(1)

where:

Zeff (x′′, y′′, z) is the effective depth of a point.

fmcs is the factor by which the scattering variance in the medium is multi-
plied at each depth.

σ2
MCS(x′′, y′′, z) is the scattering variance due to multiple Coulomb scattering in the

medium.

Sair(x′′, y′′, z) is the air-convolved intensity distribution.

GH2O(0, 0, Zeff ) is the central axis dose in water.

Dphoton is the component of the dose due to photons.

SSD is the source to surface distance.

A brief description of the modelling process follows; the complete set
of equations and description of how the algorithm works is available in the
software manual [1] and has not been reproduced here.

Modelling of the pencil beamlets starts from the final plane of collima-
tion. Electron and photon dose contributions are separated in the calcula-
tions. The calculation of the (minor) photon contribution is much simpler
than the calculation of the electron contribution, and is not covered here.

• The initial electron intensity distribution is modified by convolution
to include the effects of an electron cutout (or other ‘customised port’)
and scatter in the collimators.

• The intensity distribution function is convolved with a function de-
scribing the scattering of the beam in air.
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• Central-axis relative depth dose and inverse square law factors are
included.

• A function describing the scatter of electrons in the medium is con-
volved with the intensity distribution. Information about the medium
composition is included at this stage.

The initial intensity distribution, in-air scatter and medium scatter are
all Gaussian functions. Electron dose and photon dose components are
summed to give the total dose. This completed algorithm describing the
simulation is evaluated for each point in a three dimensional grid. The den-
sity of points in the grid and the volume it covers can be adjusted by the
user. Grid points are not vertically aligned, they are aligned along the same
diverging rays that the pencil beams follow.

For each point, measured sample beam data is deconvolved into the
components described above, combined with the parameters describing the
point location being simulated, the algorithm is convolved and evaluated
to give the calculated dose at that point. For each pencil beam (or point),
the attenuating material varies only with depth. The algorithm contains
the assumption that any inhomogeneities are infinite in lateral extent. This
leads to local inaccuracies in the calculated dose. “. . . Pencil-beam algo-
rithms have been proved useful for broadbeam electron dose calculations in
radiotherapy. However, all pencil-beam models encounter significant limita-
tions (i.e., lateral discontinuities as well as those in depth) when applied to
nonslab geometries. . .This error results from the basic assumption that the
different materials along the central axis of each pencil beam are infinite in
their lateral extent for the purpose of determining the dose to the patient
from that pencil beam. . . ” [K. R. Hogstrom, 1991]

This and other approximations made to reduce the computational work-
load of the pencil beam model give it an accuracy of ±4% in ideal circum-
stances, with errors from 10% to 20% in extreme situations.

2.1.2 Monte Carlo Technique

The Monte Carlo method is widely accepted as the most accurate method
for modelling radiotherapy treatments [2, 3].

Algorithmic modelling is a top-down approach of finding a function that
fits the observed macroscopic properties and behaviour of a system. Monte



2 LITERATURE REVIEW 16

Carlo is a bottom-up technique which involves modellng the interactions of
a very large number of individual particles.

The Monte Carlo technique was named after a famous casino in Monaco,
and like the casino, the technique works on statistical probabilities. Any
given particle moving through a material has a certain probability of un-
dergoing each of the possible interactions. Each interaction has a range of
possible outcomes. Particles produced by one interaction may undergo sub-
sequent interactions, until all the energy of the incident radiation is absorbed
by the target material [3].

By modelling a very large number of particles, macroscopic properties
like the distribution of absorbed dose in a material can be determined with
high statistical accuracy.

A Monte Carlo program consists of a source of random numbers (often
a random initial seed and a pseudorandom algorithm for generating more
numbers) and probability functions that represent the processes occurring
in a system (Compton scattering for example) and yield results consistent
with those processes.

There are, of course, many ways to implement physical processes in
computer code using this general technique. So of the number of independent
Monte Carlo programs available for radiation therapy applications, not all
programs are suitable for all applications, and different programs can give
different results from the same initial conditions [21].

It is generally believed that the use of fundamental physics and statistics
makes Monte Carlo an inherently more accurate method of modelling.

2.2 Custom Electron Bolus

Cancers of the head, face and neck can be difficult to treat with radiation
therapy. The difficulties include small, shallow treatment volumes, proxim-
ity to sensitive organs such as glands and mucosa, and irregularly shaped
and inhomogenous treatment volumes, especially where surgery has been
performed.

A range of techniques has been used to administer radiotherapy in these
situations. Combinations of photon and electron beams, multiple electron
beams with different energies and wedges have been used [7].

Bolus is an important tool in these treatments. As previously described,
bolus shifts the depth dose curve in underlying tissue (Section 1).
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Electron bolus has been defined by Hogstrom as “a specifically shaped
material, which is usually tissue equivalent, that is normally placed either
in direct contact with the patients skin surface, close to the patients skin
surface, or inside a body cavity. This material is designed to provide extra
scattering or energy degradation of the electron beam. Its purpose is usually
to shape the dose distribution to conform to the target volume and/or to
provide a more uniform dose inside the target volume” [6].

Custom or conformal bolus is more complicated than a simple slab (see
Fig 3). The patient surface of the bolus has to be molded to the shape of the
treatment site. The beamward side of the bolus must be shaped to achieve
the desired dose distribution at the treatment site.

A system has been developed and tested by a group at the Department of
Radiation Physics and Department of Radiation Oncology, The University
of Texas and M. D. Anderson Cancer Center, for manufacturing conformal
bolus to enable delivery of improved electron beam therapy to superficial
treatment sites. The main application for this bolus shaping technology so
far is treatment of sites on the head and face [7], although it has also been
used for post-mastectomy treatment of the chest wall [9].

The treatment process developed by the Texas group can be summarised
as follows:

1. CT data acquisition
The patient is positioned and fitted with immobilisation equipment.
The patient is scanned using Computed Tomography (CT) to obtain
a 3D model of them.

2. Initial plan for bolus design
The CT data is used to define the planning target volume (PTV). This
is done by oncologists, using the Pinnacle TPS. The data is transferred
to another TPS, called COPPERplan, which was written in-house by
the researchers. COPPERplan uses a pencil-beam algorithm for elec-
tron treatment simulation. The conformal bolus is designed in COP-
PERplan using a set of operators. There are bolus creation operators,
bolus modification operators and bolus extension operators.

3. Bolus fabrication
The bolus shape has to be transferred from the TPS to a computer
controlled milling machine via CAD/CAM software. The bolus ma-
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terial was modelling wax. The milling procedure takes several hours.
Fig 4 shows both sides of a piece of bolus made for treatment of a site
on the neck.

4. Bolus QA and final plan
Once the bolus has been made, the patient is scanned by CT again
with the bolus in place (Fig 5). This CT data is loaded into the
Pinnacle TPS. Remodelling the treatment with the bolus in place in
the Pinnacle system provides verification of the COPPERplan model.

5. Treatment
Treatment is typically given in daily fractions, with a single field in
each fraction. Each custom bolus can only be used for a single field -
meaning one beam from one direction. Conventional treatment plans
often use multiple beams from different angles.

Figure 4: A: Distal surface. The patient surface, shaped to fit the surface of

the patient. B: Proximal surface. The beamward surface of the bolus, shaped

to give the desired dose distribution. Reproduced from [7].

In cases where a therapeutic dose is not required at the skin surface, bolus
can also have undesirable effects on the dose distribution. When bolus is
used, the skin sparing effect of the build-up region of an electron beam in
tissue is lost. Skin erythema and moist desquamation are side effects that
have resulted from irradiation using the conformal bolus technique [9, 7].
In some cases, some fractions of the electron treatment have been replaced
with x-rays to reduce skin damage.
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Figure 5: Bolus design is verified by scanning the patient in CT with the bolus

in place, and simulating treatment of the patient with bolus in the Pinnacle

TPS. The pink area depicts the Planning Target Volume. Reproduced from [7].

Figure 6: A Dose Volume Histogram comparing the head and neck treatment

shown in Fig 5 with a conventional electron beam treatment for the same area.

Black lines labelled ‘EB’ denote the results of treatment using custom electron

bolus. Reproduced from [7].
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A 1cm thick ring shaped lead shield can be placed between the patient’s
skin and the bolus to minimise enlargement of the electron penumbra by
scatter from the bolus at the edge of the treatment field. This collimation
can reduce the dose to critical structures without reducing the dose to the
PTV [10].

COPPERPlan Treatment Planning System
The COPPERPlan TPS [11] uses a variation of the pencil beam algorithm
described above (Section 2.1.1) for modelling electron beams. Operators
have been added to the TPS for designing custom electron bolus. These
operators will be described only briefly here, for contrast with the methods
used in this project.

Bolus creation operators add bolus to each pencil beam fan line to give
a constant distance from the proximal bolus surface to the distal surface
of the treatment volume. Operators work on either physical distance or
water-equivalent distance. Bolus modification operators edit existing bolus,
changing the thickness along fan lines to meet user-defined constraints, such
as a maximum dose at the proximal surface of a critical structure. Bolus
extension operators set the thickness of bolus beyond the lateral extent of
the treatment volume, avoiding sharp changes in bolus thickness.

These operators do not guarantee the best possible bolus design for any
given plan, and multiple designs for the same treatment plan can differ
significantly depending on the order the bolus operators are applied in.

Bolus materials
A number of materials can be used as bolus. The Texas group uses a type
of modelling wax, which is milled to shape. At Christchurch, another type
of wax is softened by heating and manually shaped. A commercial dental
molding material has also been evaluated for use as bolus [12]. Bolus mate-
rial is preferably equivalent to tissue for interactions with radiation, so that
it does not perturb the beam in undesirable ways, and can be reliably mod-
elled in treatment planning systems. A material that can be easily shaped
but can also hold a given shape is also desirable. Dental molding material
is of interest because it can be manually shaped at body temperature, and
so can be shaped directly on the patient’s skin.



2 LITERATURE REVIEW 21

2.3 Monte Carlo for Radiation Therapy

Several Monte Carlo programs have been used for radiation therapy simu-
lations, including MCNP, XVMC, GEANT4 and EGS. Papers relating to
the two most promising Monte Carlo software packages are reviewed here.
EGS is of the most interest in this project, as it is a popular choice for ra-
diotherapy simulations, and was chosen as the software for the Monte Carlo
component of this project.

Methods of modelling radiotherapy linear accelerators are the focus of
the review. The actual accelerating waveguide and associated beamline
components are never modelled. The linac head is sometimes modelled in
detail, but simplified radiation sources, stored data from prior simulations
and non-Monte Carlo algorithms have been used with success.

2.3.1 GEANT4 and EGS/BEAM

GEANT4 is a relatively new Monte Carlo toolkit that has been used for
modelling radiation transport over a wide energy range. A paper has been
published which compares three models available in GEANT4 that are suit-
able for radiotherapy simulations, the standard, low energy and Penelope
models, with EGSnrc [21].

The paper discusses how GEANT4 models the interaction processes of
photons (the photoelectric effect, Compton scattering, pair production and
Rayleigh scattering) and electrons (including ionisation, Bremsstrahlung
and scattering). The data used by the GEANT4 models, for example the
mass attenuation coefficients and stopping powers for each process, was com-
pared to data from other sources, such as ICRU publications and the PEGS4
data used by EGS/BEAM.

A variety of simulations were run: monoenergetic electron and photon
beams, and model clinical beams, onto flat water phantoms, air interfaces,
and materials that are often found in linacs, such as aluminium and tungsten.
The results varied between the three physics models, but the authors found
the electron transport mechanics were not sufficiently accurate for radiother-
apy simulations, although their requirement of 2% accuracy is sometimes not
attained by conventional radiotherapy treatment planning systems.

GEANT4 was found to be satisfactory for simulations where electron
transport is not of critical importance, and it was noted that the software
is still being improved and updated.
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2.3.2 About EGS/BEAM

The first version of the Monte Carlo simulation software that became EGS
(Electron Gamma Shower) was written in the early 1960s [33]. EGS models
coupled photon, electron and positron interactions with matter. The latest
version of EGS at the time this thesis was written, EGSnrcMP, from a group
at the National Research Council of Canada, is popular for medical physics
applications, especially radiation therapy simulations. A large part of this
popularity is due to the BEAM package. The BEAM package is described
in more detail in Section 4.

2.3.3 Modelling Linear Accelerators

EGS, and Monte Carlo software in general, allows the user freedom to create
whatever geometric structure they desire to simulate, with relatively few
restrictions. This freedom extends to the geometry and other characteristics
of radiation sources. This means there are many options to consider even
when the system to be simulated is a known, specific object like a linac.

The most obvious approach is to reproduce the entire structure of the
linac in the simulation (see Fig 7 for an example). This was the approach
used by researchers at NRC for modeling medical linacs as part of the de-
velopment and testing of BEAM [32]. In that work, linacs from several
manufacturers were modelled, and electron beams from 5MeV to 50MeV
simulated and compared to measured data. One of these linacs was a Varian
2100C, similar to the linacs used in this project. The accelerator beamline,
including the waveguide and bending magnet, was not modelled. The nar-
row, high energy, monoenergetic electron beam exiting the bending magnetic
was the starting point for the simulations. All components of the linac head
which intersect the beam path were modelled. Good results were obtained,
closely matching the measured beam data.

Simulated particle ‘histories’ were recorded in phase space files, and the
origin of each particle recorded in the LATCH section of the history. The
LATCH feature allowed particles produced in different components of the
linac to be isolated. For example, an energy spectrum just of electrons
produced in interactions with applicator scrapers can be plotted.

A phase space file records all parameters of particles incident on a spec-
ified plane in the simulation. A phase space file can also be used as the
source of particles in a simulation. So separate simulations can be combined
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by using phase space files. In this way, a given system or object does not
have to be simulated all at once.

Later work at NRC using the EGS/BEAM software followed a similar
approach, but simulated photon beams, and extended the modelling of linear
accelerators to deriving the linac structure from measured data such as beam
profiles and depth doses [17, 18]. This information was considered to be more
easily accessible than complete and accurate plans of linac heads, which may
be proprietary information.

That work verified BEAM simulations of linac heads by comparing sim-
ulated depth dose curves, off-axis factors and energy spectra with existing
compilations of measured data. Simulation parameters were also varied to
determine which parameters had the greatest influence on the dose distri-
bution and energy spectrum. In addition, the LATCH and ZLAST features
were used to determine the proportion of the scatter particle fluence emitted
by individual components of the linac.

Another approach is to simulate the radiation beam with analytic algo-
rithms while simulating the dose distribution in patients and phantoms by
Monte Carlo calculation [16]. The calculated radiation source used in that
paper to simulate megavoltage photon beams consisted of two Gaussian-
shaped photon sources, corresponding to the target and the flattening filter,
and a uniform source of electron contamination also located at the flattening
filter. This radiation source was designed to match measured dose distri-
butions, with only some geometric parameters obtained from linac manu-
facturers’ documentation. The analytic source model was compared with
measurements and BEAM simulations. The Monte Carlo software used for
calculating the dose distribution in phantoms was XVMC. This modelling
technique was called Virtual Energy Fluence modelling, and the authors be-
lieve use of standard measurements, and the reduced computational work-
load compared to full simulation of a linac head, make this a potentially
useful technique for future treatment planning systems.

A similar approach was taken in the development of the first commercial,
Monte Carlo based, IMRT treatment planning system, PEREGRINE [19].
PEREGRINE does not model the entire linac head either. BEAMnrc linac
simulations were used to create a radiation source composed of a set of
histograms representing the properties of each of four source components.

PEREGRINE generates particles with parameters from the histogram
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data, and uses Monte Carlo calculations to model particle transport through
collimators (jaws and a MLC) and determine the dose distribution in a
patient or phantom.

A range of tests were done comparing PEREGRINE to EGSnrc calcu-
lations and experimental measurements. The experimental measurements
used water phantoms, solid water phantoms and heterogenous solid slab
phantoms made up of slabs of material equivalent to water, bone and lung
tissue. A combination of ion chambers (NACP and Exradin A14P), diodes
(Scanditronix shielded photon diodes, since this work investigated 6MV pho-
ton beams for IMRT) and TLD700 thermoluminescent dosimeters were used.

Figure 7: BEAM simulation of a 20MeV electron beam from an AECL Therac

20 linac. The design of this AECL linac head is quite different from the Varian

linacs used in this project. Reproduced from [29].

2.4 Experimental Techniques

Determining the actual dose distribution within a patient during radiation
therapy is very difficult. Inserting and accurately positioning radiation de-
tectors within a human body is impractical, and would be invasive and
unpleasant for the patient.
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Experimental techniques have been developed for testing the accuracy
and precision of computerised treatment planning systems using phantoms
with varying levels of geometric complexity and anthropomorphic accuracy.

Treatments can be planned for the simple phantoms commonly available
for QA testing, such as flat field water tanks and plastic (eg. solid water)
blocks [13]. But these tests do not simulate the geometric complexity and
inhomogenous composition of a human body.

Simple solid phantoms can be modified to include examples of geometry
that cause problems for treatment planning systems [15]. In that paper,
as well as simulating tissue with epoxy resin, wax bolus was simulated by
pieces of PMMA (perspex).

A more complex phantom was developed for experimental verification of
megavoltage photon beam treatment planning and delivery [14]. The phan-
tom consisted of a solid central block flanked by two sealed water phan-
toms. Markers defining a target volume can be inserted in the central block.
This phantom was used for comparing treatment planning and delivery for
prostate cancer between several radiotherapy facilities. A similar plan was
developed at NRL, in which a commercial anthropomorphic chest phantom
and MOSFET dosimetry system would be used to compare lung treatments
at facilities around New Zealand.

Using an anthropomorphic phantom such as the RANDO (Alderson Re-
search Labs, Stanford, CA.), which has the shape of a generic human torso,
inclusions simulating the lungs, and a real human skeleton, is another option.

Thermoluminescent dosimeters (TLDs) are commonly used as the radia-
tion detectors in experiments using complex phantoms [15], because of they
are small and do not need cables. Film is also used [13] for similar reasons.
TLDs are usually calibrated by intercomparison with an ionisation chamber.

2.5 Diodes

Silicon diode dosimeters designed for use in radiation therapy commonly
have shielding built in to attenuate low energy x-rays. Photoelectric ab-
sorbtion of low energy x-rays by materials increases with increasing atomic
number. The atomic number of silicon is significantly greater than the ef-
fective atomic number of human tissue or substitutes such as water and
tissue equivalent plastic. So an unshielded silicon diode detector will report
a higher absorbed dose from low energy x-rays than tissue or an equivalent
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phantom would actually receive.
In the high energy photon and electron beams used for radiotherapy,

low energy x-rays are produced in the phantom or patient from interactions
with the primary beam. Consequently this dose enhancement effect is most
noticeable in large fields, where there is a large volume of irradiated material.

The metal shielding, however, enhances production of secondary elec-
trons in the detector, and scatters electron beams more strongly than semi-
conductor or tissue equivalent material. These effects can cause errors in
dose measurement in electron beams and in the buildup region for photon
beams.

A research group, in collaboration with a manufacturer of radiation de-
tectors for radiotherapy, built and tested an unshielded diode detector [27].
Electron beam depth doses were measured with shielded and unshielded
diodes, and a Roos type ionisation chamber. Their primary aim was to
build an improved detector for photon beam IMRT, but the point that the
internal structure and composition of a diode detector can have significant
effects on the absorbed dose readings obtained is important in this project
too.

The dose rate dependence of diode detector response has been reported
in a pair of papers [25, 26]. Variation in the sensitivity of diodes to pulsed
and continuous radiation was investigated. A range of commercial dosimetry
diodes was tested. Ordinary electronics diodes were not. The sensitivity of
various diodes varied by up to ∼ 7% over the range of dose rates from
continuous irradiation by a Co-60 source to the instantaneous dose rate of
a pulsed linac beam.

The effect of dose rate on the sensitivity of diodes was not investigated as
part of this project, as all the measurements made here were relative dose
measurements. The diode radiation detectors constructed as part of this
project are not intended for absolute dosimetry without further development
work.
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3 Water Phantom and Diode Array System

Planning for radiotherapy procedures is generally done by theoretical beam
modelling on computers, but most commercial planning systems have limited
accuracy when used for electron beam modelling. As such, monitor unit
calculations for irregularly shaped electron cutouts (Section 4.2.3) are often
checked by experimental measurement. Further dosimetric challenges arise
if the surface contour is highly irregular, or if compensating bolus is required.

This Section covers the development of the water phantom dosimetry
system, the design and construction of the various components made for this
project, and the tests done to characterise the system’s performance. The
original idea of using a water tank based experimental system to help with
the design of electron bolus was Graham Sorell’s. The water tank system
and associated equipment evolved over a series of experiments. Fig 8 shows
an early test configuration of the water tank dosimetry system.

Figure 8: An early configuration of the water tank system, showing a mask in

position for scanning and a single Scanditronix diode detector beneath.
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The procedure for using the water tank phantom dosimetry is as follows:
A mask is placed in the water tank, filled with water and raised above
the bulk water surface to form the shaped water phantom. A radiation
detector (or detectors) is positioned just under the mask. During irradiation,
the detector is lowered to obtain the relative depth dose curve under that
particular point. More depth dose scans are performed at different points
until the desired volume has been scanned at the desired resolution.

3.1 Masks

Patients undergoing radiation therapy to their head or neck are typically
fitted with an immobilisation mask to assist them in remaining stationary
during irradiation. Immobilisation is used very frequently with head and
neck treatment because the small size of anatomical features in the head
and neck, and the close proximity of tumours and treatment volumes to
critical structures. Any movement during irradiation could cause serious
side effects. These masks are custom made for each patient.

3.1.1 Laser Scanner vs Plaster Casting

At the time of this project, there were two methods available at Christchurch
Hospital for manufacturing masks, plaster casting and laser scanning.

Plaster casting is the older, more established method. A plaster negative
is made directly from the patient’s face and head. A plaster positive bust
is cast from the negative. A vacuum former is used to shape a plastic mask
from the positive bust (see Fig 10). The plastic cannot be molded directly
on the patient because it is rigid at body temperature, and only becomes
flexible and ductile at much higher temperatures.

The laser scanning mask manufacturing method uses an ARANZ hand
held laser scanner (Fig 9) to capture a three dimensional representation of
the patient’s face and head on a computer. A computer controlled milling
machine is then used to mill a plaster bust from the patient data. The plaster
bust is then used to form the plastic mask as in the previous method.

3.1.2 Mask Mounts

The masks which form the custom shaped water phantom must be supported
at the correct height in the water tank. Two perspex panels were cut to hang
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Figure 9: The handheld ARANZ laser scanner has a fan-beam laser emitter in

the middle, and two cameras, one at each end. A Polhemus magnetic positioning

system is used to determine the location and orientation of the scanner.

Figure 10: A sheet of plastic (not easily visible here because it is transparent)

is heated until it becomes flexible. The plaster bust is then raised through the

plane of the plastic sheet while a vacuum pump evacuates the space in between.

When it has cooled, the plastic mask is removed and trimmed.
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from the edges of the water tank and support a mask between them.
In the first setup, the mask was attached by G-clamps to the two hanging

panels. Perspex inserts gave additional rigidity to the end faces of the mask.
This setup is shown in Fig 8. This early mask was prone to distortion from
the weight of the water inside the mask. Detector positions programmed
with the water tank empty were out of position when the mask was filled
with water. The mask could slip between the G-clamps or rotate around
the axis formed by the clamp points. One axis of the mask position in the
tank depended on the rigidity of the mask, which was limited. As well as
making experiments more difficult, distortion of the mask meant the water
phantom was not accurately reproducing the shape of the patient. A better
mask mount was needed.

A full frame was designed and built to support the mask in the correct
shape in all three axes. When a mask is molded in the vacuum former, it
is surrounded by flat, undistorted plastic sheet. A strip of this flat plastic
was left intact around the periphery of the mask. Two perspex rectangular
frames were made. These are placed above and below the peripheral strip
round the mask like a sandwich, and held together by four nylon screws.
The frame is screwed to the two hanging panels.

3.2 Single Detector Mounts

If a single radiation detector is used, the RFA detector positioning system
must be programmed to make multiple depth dose scans, and the starting
positioning under the mask must be found for each scan. For example, scan-
ning a 5× 5cm field at 1cm resolution will require 25 depth dose scans. To
reduce the time required with a linac and treatment room, it was preferred
to program the detector movements before an experiment.

It is important that the detector start each scan as close as possible
to the inside surface of the mask, however if the detector hits the mask,
then the position will be inaccurate and probably not reproducible. If the
detector hits the mask on a curved surface, it is usually deflected sideways.
If the detector cannot be deflected, the mask may deform, or the detector
may be damaged. Several collision detection systems were tried.

Visual Checking for collisions by visual inspection was unsuccessful, because
refraction effects from the plastic mask and the water produced opti-
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cal distortions that were very difficult to discern from collisions and
deflections. Fig 11 shows an example of this.

Spring switch The first detector mount with collision detection used a mechanical
switch (see Fig 12). Deflection of the diode closes a circuit between a
hollow cup and a metal post. This system was not sensitive enough.
The gap between the two contacts could not be made small enough, a
deflection large enough to close the circuit could already be identified
visually.

Strain gauge A more successful system used strain gauges. The mount was a slightly
flexible plastic tube (see Fig 13). Two strain gauges in a bridge circuit
(see Fig 14) were stuck to the tube ∼ 90◦ apart using glue. The
strain gauges and electrical contacts were waterproofed with a silicone
sealant. A digital voltmeter measured the voltage across the bridge,
collisions were easily seen as changes in the voltage. This system
was sufficiently sensitive, but the motorised positioning system could
not reproduce preprogrammed positions accurately enough after being
turned off.

Scan positions were programmed on the day before the experiment and
verified on the day. The verification tests revealed errors of 0.5mm to
1.0mm in the scan positions. The cause of these could not be found.
The mask and mask mount was quite rigid, and the position of the
mask in the tank was reproducible to within 2mm. The origin of the
detector position coordinate system was reset to compensate for any
change in the mask position. The detector positions were reproducible
to within ∼ 0.2mm on each day, but not from one day to the next, with
the system shutdown over night. The tolerance specification of the
water tank positioning system is 2mm, so these errors do not indicate
a fault.

3.3 Diode Array Radiation Detector System

The diode array mount (see below) does not require detector positions to be
preprogrammed. Using multiple detectors, fewer scans with the mount are
required. The detectors can be positioned manually during the experiment
in an acceptable amount of time.
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Figure 11: Two views of the diode array in use with a mask water phantom.

With the mask full of water, refraction and the irregular shape cause significant

optical distortions, making it difficult to position the detectors visually.

Figure 12: Diode detector mount with spring switch collision detection. An

RFA diode (red) is mounted. A post protrudes through the spring into a cup

machined into the inside of the diode holder (which has a grey cable exiting on

the left).
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Figure 13: Diode detector mount with strain gauges for collision detection. Two

strain gauges are affixed around the centre of the plastic tube. The diode screws

into the white holder at the top of the mount, and the metal plug at the bottom

fits the RFA detector mount.

Figure 14: Circuit diagram for the strain gauge collision detection system.
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The diode array mount is described in Section 3.4. This subsection de-
scribes the design, construction and testing of the diode radiation detectors
used in the array. The choice of diode detectors is discussed first, followed by
design and construction of a radiation detector. The detectors were tested
for dependence on radiation dose rate, particle type and energy, angle of
incidence, and for effects of radiation hardening.

3.3.1 Detector Selection

MOSFET - Thomson-Nielsen system
A Thomson—Nielsen MOSFET radiation detector system has been consid-
ered for use in the water tank experiments [22].

MOSFET stands for Metal Oxide Semiconductor Field Effect Transistor
(see Fig 15). In a field effect transistor the current between two electrodes,
the Source and the Drain, is controlled by the voltage on a third electrode
called the Gate. When the gate is charged, its electric field attracts charge
carriers to a region called the channel, allowing conduction between the
source and drain. Metal Oxide Semiconductor refers to the construction of
the transistor. The metal gate electrode is separated from the semiconductor
channel (typically silicon) by a layer of insulating silicon dioxide.

Figure 15: A MOSFET radiation detector. When a voltage is applied to the

Gate, the electric field from the Gate forms a conducting channel between the

Source and the Drain. Irradiation forms electron-hole pairs in the insulator be-

tween the Gate and the channel, altering the relationship between Gate voltage

and Source to Drain conductivity. Reproduced from Thomson—Nielsen website

[22].

Semiconductors can be categorised as n-type, in which the charge car-



3 WATER PHANTOM AND DIODE ARRAY SYSTEM 35

riers are electrons, and p-type, where the charge carriers can be considered
holes or vacancies. The Thomson—Nielsen radiation detector is a p-channel
MOSFET, meaning the substrate is n-type silicon, and the transistor is
turned on when a negative gate voltage repels electrons to form a p-type
channel from source to drain.

When a MOSFET is exposed to radiation, ionisations occur in the in-
sulating oxide layer between the gate and the channel. If a positive voltage
is on the gate electrode during irradiation, the electrons freed by ionisation
will migrate to the gate, leaving the oxide enriched in holes. This effective
positive charge means a greater negative voltage must be applied to the gate
to turn on the transistor. This change in the characteristics of the transistor
can be used to measure the dose it was exposed to.

MOSFET detectors are cumulative dosimeters that have a limited life.
When the maximum useable gate voltage is reached by accumulated radia-
tion exposure, the MOSFET has to be replaced.

Diode
Diodes are widely used as dosimeters in radiation therapy applications, al-
though ionisation chambers are considered to be more accurate. The main
advantage of a diode over an ion chambers is smaller size, giving greater
spatial resolution.

A semiconductor diode is formed by producing p-type material (semi-
conductor doped to have an excess of holes) adjacent to n-type material
(doped to have an excess of electrons). The diode behaviour arises from the
properties of the junction between the materials.

Diode radiation detectors behave like photovoltaic cells. Photons with
energy greater than the band gap of silicon can generate electron-hole pairs
in a diode. At the diode junction, the electric field of the depletion layer
separates the radiation-generated electrons and holes, producing a reverse
current through the diode.

The base material for diodes is most commonly silicon. Common dopants
are boron and aluminium (for n-type), and phosphorus (for p-type). Elec-
trical contacts are typically copper. The envelope or casing of a diode is
usually plastic or glass. With the possible exception of plastic casings, none
of these materials is tissue or water equivalent in interactions with photon
or electron radiation used for radiotherapy.

Silicon has a higher atomic number than air, water, biological tissue
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or graphite (which is a common material for ion chamber walls). As a
consequence of the photoelectric effect, which is Z dependent, silicon diodes
are more sensitive than ion chambers to low energy photons. Diamond
detectors are one way to avoid this problem, replacing silicon with carbon.
At the time of this work, however, diamond detectors remain uncommon
and expensive.

Many types of silicon diode manufactured for dosimetry have built-in
metal shielding around the semiconductor. This shielding blocks low energy
scattered photons produced in the phantom material around the detector.
The effects of detector shielding were discussed in Section 2.5.

It has been decided not to use the MOSFET system, first because of the
limited life of the devices, and second because the Thomson—Nielsen system
is designed to measure a dose and then be read out, while a continuous
measurement of dose rate is more useful for the planned experiments.

Some years ago a radiation detector system based on a diode was de-
signed and built in the Oncology Department of Chistchurch Hospital. This
system can be duplicated and modified for this project. This system mea-
sures dose rate, and any components that wear out can be replaced at low
cost. For these reasons, diodes were selected to be the radiation detectors
in this project.

3.3.2 Detector Design and Construction

The new detector system was built using an existing design by Dave Pinchin
[31]. This design is tried, proven and modifiable. A new detector was not
a vital part of this project, but it was thought the results would be better.
The amplifier is in principle a photovoltaic diode and a current to voltage
converter (see Fig 16).

A range of diode detectors could be used with this system. A smaller
diode than the one supplied with the RFA water tank was preferred, so
that smaller volumes can be scanned, and the detector can get closer to the
surface. Diodes left over from an old commercial diode array were available,
but these are similar in size to the RFA diodes. Ordinary electronics diodes
were chosen for their compact size and the ease with which they can be
replaced or modified.

Dave Pinchin built a prototype amplifier to go between the chosen detec-
tor diode and the analog-to-digital converter chosen. The amplifier had to
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Figure 16: Basic operational amplifier circuit for use with a photovoltaic diode.

Reproduced from [24].

be tunable to take the input characteristics of the diode, and give an output
signal suitable for the ADC. Testing and refinement of the design using the
prototype detector was followed by construction of more detectors to form
an array.

Analog to Digital Converter
It was not intended to use fast detection or to acquire individual pulses from
the accelerator. That could be useful, but would have required careful re-
design of the detector and amplifier for accurate response at high frequency.

From the Picotech manufacturer there was a choice of a fast (up to
10kHz) 12bit ADC or a slow (1.5Hz) 16bit ADC. Given the speed of the
existing water tank detector system, the slow ADC would have adequate
speed. The input voltage range of the 16bit ADC is −2.5V to +2.5V; the
input range of the 12bit ADC is 0V to +2.5V.

The linac outputs are approximately 2.5, 4.0 and 6.0 Gymin−1. A 12bit
ADC gives 4096 levels, giving a dose rate resolution of ∼ 1mGymin−1, pro-
vided the analog signal spans the input voltage range of the ADC. The
resolution of the 12bit ADC should be sufficient for most dosimetry appli-
cations. A 16bit ADC (65536 levels) would definitely be adequate.

The 12bit ADC was chosen for this project. This model has adequate
resolution, high speed, and more analog inputs than the higher resolution
model, allowing a larger array of detectors.
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3.3.3 Prototype Testing

‘Solid Water’ was used for buildup and backscatter material when testing
the prototype diode detector. 6MV x-rays were used for many test expo-
sures. A 6MV photon beam is available on all the linacs at Christchurch
Oncology, and the type of radiation should not significantly affect the diode
performance. Solid Water block D/H40 has a hole designed to accommodate
a Farmer type ion chamber. The diode is fed into this hole.

As an initial test, the prototype diode was connected to an oscilloscope
without any amplification. A good, low noise signal was obtained. Individ-
ual radiation pulses from the accelerator could be seen. This test confirmed
that the IN4004 diodes could be used as radiation detectors.

When the diode array instrument was planned, it was decided not to
record the discrete radiation pulses. Instead, pulses were integrated to give
the effective continuous dose rate, a similar output to that available from
existing diode and ion chamber instruments in the department.

The prototype amplifier was initially configured as a single stage inte-
grator, using a single CA3130 operational amplifier integrated circuit. The
single stage amplifier provided a stable continuous dose rate signal with
typical rise and fall forms at the beginning and end of an irradiation.

However, the maximum output voltage was only 150mV. A second am-
plifier stage, using another CA3130 chip, was added to provide additional
gain. The second stage amplifier was initially set to provide a gain of 10,
but this was later increased to 12 when it was found that electron beams
generally gave a lower voltage than x-rays.

Fig 17 shows the output from the prototype detector in a 6MV photon
beam from a Varian 600C linac. The dose rate was reduced in steps during
this irradiation from 250MUmin−1 (2.5Gymin−1 at the calibrated output of
1cGy/MU) to zero. The Varian 600C emits a pulsed beam of radiation. To
vary the dose rate from the linac, the pulse rate is changed. The dose rates
used were: 250, 200, 150, 100 and 0 MUmin−1. Individual pulses were not
seen in the detector output, and no artifacts from the changes in pulse rate
were seen either.

Fig 18 shows a beam profile of the 6MV photon beam. The diode de-
tector and Solid Water phantom were set up on the treatment couch of the
600C linac. The profile was acquired by translating the couch, scanning the
detector and phantom across the beam.
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Figure 17: Effect of progressively reducing the pulse repetition rate, and hence

the average dose rate, of a 6MV photon beam. The response of the detector

was quite linear across this range of dose rates, a linear fit gave a R2 value of

0.9996.
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Figure 18: Profile of a 6MV photon beam obtained with the prototype diode

detector.

Fig 19 was acquired by translating the treatment couch vertically during
irradiation, increasing the source-to-detector distance. The resulting curve
has the expected inverse square law shape.

The intention of these simple experiments was to demonstrate the pro-
totype detector performing the kind of measurements commercial radiation
detectors are used for. Precision measurement was not the objective at this
stage, so neither the beam profile nor the source-to-detector distance graphs
has been plotted against actual position.

With the second stage amplifier installed, low frequency noise was seen
in the data. The amplitude of the noise increased when the beam was on,
but the periodicity was unchanged. Fig 20 shows datapoints recorded with
no radiation beam. The quantisation of the Analog to Digital Converter can
be seen in the way the points take only a few discrete voltage levels. Fig 21
shows datapoints with the beam on. The periodicity is the highest frequency
displayable with this sampling rate. The grouping of datapoints into high,
middle and low bands suggests the data is aliasing a higher frequency vari-
ation. Measurements at a higher sample rate of 1kHz were made.

Runs were made with the same settings as previously, except the sam-
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Figure 19: The inverse square law effect of increasing the source-to-detector

distance during irradiation.

Figure 20: Prototype detector signal noise with no radiation.
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Figure 21: Signal noise during irradiation at 6Gy min−1 (600MU min−1) with

6MV photons.

ple rate was increased to 1kHz, and other ADC sampling parameters were
adjusted to allow this frequency.
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ADC sampling parameters

Sample rate How often the sample scanning process is initiated.

Sample mode There are two modes, ‘continuous’ records as many readings
as possible in available time, ‘single’ takes one reading.

Scan time The time allowed for readings. The readings acquired are aver-
aged, and the average is the sample value.

A very noisy signal was obtained, both with the linac beam on and with
the beam off (dark current). The noise had no obvious periodicity and an
amplitude of 0.2V. The waveform resembled that obtained previously, but
with greater amplitude. Averaging using the sampling parameters reduced
the amplitude of the noise, but did not eliminate it.

Using an oscilloscope capable of higher frequencies than the ADC, the
noise was found to be a 1.3MHz sine wave from the second stage of the
amplifier. A strobe capacitor was fitted to the second stage to provide
frequency compensation, and the noise disappeared. Subsequent measure-
ments showed the dark current noise with the radiation beam off is set by
the quantisation noise of the ADC (Fig 22).

Fig 23 compares the noise in a 6MeV electron measured before and after
the second stage strobe capacitor was installed. The scatter of the datapoints
is similar both with and without the strobe capacitor. The noise with the
strobe capacitor installed appears slightly greater, but this is not thought
to be significant. The source of the noise when the beam is on was never
found. High frequency electromagnetic noise from the linac or instabilities
in the radiation beam are suggested possibilities.

This process of discovering a fault, investigating and correcting it, il-
lustrates how much of this project proceeded. Technical issues with the
equipment required to perform experiments and simulations occupied more
time than expected.

Frequency Compensation
Operational amplifiers are usually configured with negative feedback net-
works which trade gain for other desirable properties. In the case of this
project, the negative feedback network on the first stage amplifier causes
it to function as an integrator. On the second stage amplifier, negative
feedback is used to set the gain of the op-amp.
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Figure 22: Signal noise with no radiation from the prototype detector with

frequency compensation installed.

Op-amps (and connected negative feedback components) introduce a
phase shift into AC signals which is frequency dependent. At some criti-
cal frequency, the phase of the amplifier is −180◦, which changes negative
feedback to positive feedback.

If the critical frequency falls within the frequency range over which the
amplifier must operate, frequency compensation is used to shift the fre-
quency response and the critical frequency.

Modern operational amplifiers have a built in frequency compensation
circuit, and the user simply attaches a capacitor (in the case of the CA3130
used here) to set the desired compensation. In many cases, the preset inter-
nal compensation is sufficient, and no additional components are necessary.

3.3.4 Radiation Hardening of Diodes

With exposure to ionising radiation, diodes initially undergo radiation hard-
ening. The irradiation causes defects in the crystal structure of the semi-
conductor, raising the resistivity of the material. The detector’s sensitivity
decreases with cumulative dose. After a certain dose the concentration of
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Figure 23: Signal noise during irradiation at 6Gy min−1 (600MU min−1) with

6MeV electrons, before and after installing frequency compensation.



3 WATER PHANTOM AND DIODE ARRAY SYSTEM 46

crystal defects reaches a maximum, with further irradiation the rate of de-
fect repair equals the rate of defect production, and the diode is said to be
hardened. The response of a hardened diode depends only on dose rate.

A search for information on diode hardening yielded only a margin note
in the manual for the old diode detector system giving the hardening dose
as 200Gy. The source of that figure has not been found. More recent papers
on the subject of radiation hardening of semiconductors deal with complex
integrated circuits in high energy proton and ion beams.

Papers on diode detectors for dosimetry in radiotherapy report manu-
facturers hardening their diodes with doses up to 10kGy [25].

The change in response from an unhardened diode is reported to be slow.
At the doses anticipated for experiments with the water tank, the error due
to hardening is expected to be less than the existing uncertainties in the
dosimetric system.

It was decided not to deliberately harden the diodes. Initially it was
planned to take measurements under fixed conditions before and after each
experiment to provide data on the effects of hardening. This could reveal
the dose required to harden diodes of this type. A deliberate hardening irra-
diation was planned if the errors due to gradual hardening were significant.

A long exposure of 3000 Monitor Units (30Gy with the linac calibrated to
1cGy/MU) was made. Fig 24 shows a rescaled graph of the long exposure. A
linear fit to this data gave a gradient of zero, although the R2 value and other
indicators of the fit quality were very poor due to the noise in the signal. The
signal noise is easily visible in this view. The prototype detector amplifier
was quite noisy when this experiment was performed. The maximum spread
of approximately ±0.02V in 2V indicates a maximum possible change of 2%
over the course of this 30Gy exposure. The fit result suggests there was no
significant change.

3.3.5 Diode Angular Dependence

Some diode detectors, particularly ordinary electronics diodes, have shown
significant sensitivity to the angle of incidence in their response to irradia-
tion. The angular dependence of the diodes used in the array was tested in
the experiment described here.

The diode array was built to stand upright in the detector mount in the
water tank. This orientation, with the beam incident along the longitudinal
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Figure 24: The prototype diode detector was irradiated with a 6MV photon

beam to a dose of 3000MU (30Gy). The complete dataset is shown on the

left. On the right is a magnified view. The noise most probably originates in

the second stage amplifier. A linear fit to this data indicated no change in the

detector output.

axis of the diodes, will be referred to as 0◦. A rotation of 90◦ could be
achieved using adhesive tape, but reliably orienting the diodes in any angle
between 0◦ and 90◦ would have required construction of a new rotatable
mounting. Rotating the linac gantry rather than the diode allows the gantry
angle display built into the machine to be used.

Testing the angular dependence of diode response in water would have
been difficult. The linac gantry cannot be turned very far without dipping
the electron applicator into the water. The water surface would, of course,
remain level.

Therefore, a solid phantom was constructed for the angular dependence
test. The shape of the phantom is based on a sphere. With the diode
junction at the centre of the sphere, the material will be the same thick-
ness in all directions (see Fig 25, and Appendix for complete plans of the
miniphantom).

The diode is symmetrical around its long axis, and symmetrical end to
end about the junction (see Fig 30 and Fig 26). A single sweep from 0◦

to 90◦ should be representative of the angular dependence of the diode.
Neither increasing the angle of incidence beyond 90◦, nor rotating the diode
about its axis was expected to reveal new variations in the signal. In all the
experiments conducted here, the beam was incident from either 0◦ or 90◦,
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Figure 25: Plan of the miniphantom for testing diode detector angular depen-

dence.
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so the angular dependence beyond 90◦ is not relevant here. Accordingly,
for ease of manufacturing, the shape of the phantom was modified to a
hemisphere atop a cylinder.

Figure 26: An IN4004 diode was filed down to expose a cross section. The diode

junction material is grey. The copper contacts and wires are large compared

to the junction. Most of the device is black plastic casing material. A smaller

diode with a glass envelope is shown at top right for comparison.

The experimental setup is shown in Fig 27. One of the array diodes was
inserted in the phantom. The phantom was mounted on a block polystyrene
foam to position the diode junction at the accelerator isocentre with a mini-
mum of solid material nearby. The phantom was positioned using the treat-
ment room lasers (see Fig 28). The alignment of the lasers with the isocentre
is checked every two weeks during normal quality assurance tests. The QA
test tolerance is ±1mm.

From Fig 29 it can be seen that the diode is least sensitive to radiation
incident from 0◦. This direction is along the long axis of the diode, with
the maximum amount of copper in the beam path (see Fig 30). The diode
sensitivity is highest at an angle of incidence of 90◦, where the edge of the
diode semiconductor is not shielded by any copper.

Fig 31 shows the signal is well within the input voltage range for the
ADC at all angles.

The angular dependence of the diode response is similar for both avail-
able photon energies. There is also less angular dependence for photon
beams than electrons.
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Figure 27: The miniphantom is shown here in position for the angular depen-

dence test. The diode can be seen at the centre of the phantom. The end of

the electron applicator is visible at the top of the frame.

Figure 28: The laser system was used to position the miniphantom at the linac

isocentre.
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Figure 29: The normalised signals are lowest at an angle of incidence of 0◦,
where the diode junction is shielded by the maximum thickness of metal.

Figure 30: Internal structure of the IN4004 diodes used in the diode array.
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Figure 31: The angular dependence of the signal from a detector diode for a

range of electron and photon beams. The buildup material around the diode

was fixed at 20mm thick.
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For electron beams, the variation in diode response with angle of inci-
dence increases with beam energy. The higher energy electron beams showed
a local minimum in dose rate at approximately 60◦. This is attributed to
production of secondary electrons changing as the amount of copper (which
has a high atomic number) in the beam changes with angle. Secondary
electron production becomes more significant at higher beam energies.

Conclusions should not be drawn from the relative signal strength ob-
tained from each beam. The miniphantom provides a fixed buildup of 20mm,
which does not correspond to the reference depth (where the dose rate is
set) of any of the beams.

During this project, all measurements made with the diodes in water
were at 0◦, and all measurements made in ‘Solid Water’ plastic phantoms
were at 90◦. If measurements made at different angles are to be compared,
the angular dependence must be compensated for.

3.4 Building and Testing the Array

3.4.1 Array Design and Construction

Early versions of the water tank system had a single detector, which scanned
depth doses sequentially. The depth dose scans were arranged in a grid under
the treatment field or region of interest. The diode array was designed to
reduce the amount of time spent positioning the detector at scan start points.
The array is a 2x5 grid of detector diodes (see Fig 32, and the Appendix
for plans of the array). The gap between adjacent diodes is 2cm. This
wide spacing was chosen to minimise perturbations of the radiation beam
by adjacent detectors. A closer spacing on the order of 1cm is expected
to be desirable for clinical work and advanced experiments. The plan is to
interlace multiple scans with the array to give a minimum of approximately
20 scans with 1cm separation under a typical field.

Design issues included the thickness of the cable to the detector diodes.
The cable should be coaxial for shielding of the small signal. As thin a
cable as possible is desirable to reduce the mass of metal in the radiation
beam. The cable passes through a plastic tube which supports the detector
diode in position. The cable must be thin enough to fit through the tube;
or alternatively the plastic tube must be wide enough to accommodate the
cable. The tube needs to be strong enough the support the detector reliably
and reproducibly, but the presence of the tube perturbs the radiation beam.
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Figure 32: The diode array before (left) and after (right) installation of the

detector diodes.

The diode array and amplifier box are a single inseparable unit (see
Fig 33). The cable to each diode is soldered onto the amplifier board, and
the diodes cannot be removed from the array. This may limit the flexibility
of the instrument for purposes beyond this project. The main reason for
this hardwired construction was practicality. Each waterproofed diode is
too large to fit through its supporting tube, and fitting a plug and socket
connection to each diode would not help, because any coaxial plug would
also be too large to pass through the tube. So the diodes are trapped in the
array mount. Fitting a single large plug to allow the array to be detached
from the amplifier box has only slight convenience value. Putting plugs
and sockets in the line between the diodes and the amplifiers also raises the
possibility of connection problems and degraded signals.

The amplifier box incorporates two layers of shielding against electro-
magnetic noise. The box itself is metal, and inside, the amplifier board is
enclosed in a smaller, metal coated box. On the amplifier circuit board,
grounded shield tracks were laid either side of tracks carrying low strength
signals.
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Figure 33: The box containing the diode array amplifier (top), and the amplifier

inside (bottom). There are 12 amplifiers on the circuit board, 10 for the array,

one for the refeence diode, and one spare. The circuit board itself is inside a

second metal coated box for additional shielding against electromagnetic noise.

The batteries provide 6V to the circuit board.
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3.4.2 Testing the Array

The diode array detector system was initially tested by surrounding the ar-
ray with Solid Water. Solid Water was placed above, below and between the
two rows of detectors. The top row of diodes was at dmax. The bottom row
gave a smaller signal than the top row, consistent with detectors positioned
below dmax. Detectors on the same row had very similar signals, indicating
the detectors have similar characteristics.

Comparison was then made between the array and commercial detectors
used with the RFA water tank. Beam profiles and depth dose scans were
made with a ‘grey’ Scanditronix diode, a RK type waterproof ion chamber,
and the array. Five electron beams from 4MeV to 16MeV, and 6 MV and
18MV photon beams, were used in this experiment.

The array was operated here without a reference detector because the
noise seen in the reference diode signal was much greater than the noise from
the array diodes. The reference diode might give a usable reference signal
with a larger buildup cap than was available for this test. The top section
of the angular dependence test phantom may suffice.

Fig 34 shows the results for a 6MeV electron beam. This data was col-
lected in a single irradiation. The centre of the array was positioned at the
central axis of the radiation field. All the diodes were therefore off-axis,
but prior measurement of the flatness of the beam showed a maximum out-
put variation of ±2.8% for 18MV x-rays, a variation of ±1.3% for 4MeV
electrons, and variations of ±0.7% or less for all other energies used. The
diodes in the array are consistent with each other, but there are significant
differences between the depth dose curves obtained with the array and the
curves from the Scanditronix diode and the RK chamber. The steeper build
up and drop off of the dose rate, and in particular the flat region near the
surface, are attributed to shielding of the semiconductor junction of each
diode by copper electrical contacts, the plastic casing of the diode, and the
waterproofing glue coating the diode and wires (see Fig 26 and Fig 30).
The flat region of constant dose rate is especially interesting. The depth at
which the dose rate begins to increase reveals the effective, water equivalent
thickness of the material covering the diode junctions. Each diode records a
slightly different dose rate in the flat region, but they become more consis-
tent through the buildup region. The difference in dose rates could be due to
small differences in the amount of copper and plastic shielding each diode.
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The change with depth may be due to the spectrum of the beam chang-
ing with depth (since the composition of each detector remains the same).
The fluence of low energy secondary electrons and photon contamination
increases through the buildup region, and the energy of the beam decreases
with depth [8]. The array depth doses show more noise-like variation than
the commercial detectors. This noise is thought to show fluctuations in the
radiation output of the accelerator. The depth doses from the commercial
detectors are ratios of a detector in water to a reference detector in air. The
array was operating without a reference detector. The magnitude of the
variations is consistent with output fluctuations typical of this linac.

Figure 34: Relative depth dose curves of a 6MeV beam from a Scanditronix

RFA diode, an RK type ion chamber, and the diode array.

Installing smaller diodes that have less material surrounding the diode
junction in the array, and an improved reference detector for in-air mea-
surements to compensate for fluctuations in linac output, may improve the
performance of the diode array compared to commercial detector systems.
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3.4.3 Z-positioning System

The Pico analog to digital converter system used with the diode array records
voltages from its inputs, and elapsed time. It was initially planned to use
this internally generated time and knowledge of how fast the RFA water
tank system moves the array to determine the array position for a given
measurement. All the ADC inputs were therefore used for diode detectors.

However, this method now appears unreliable and imprecise. The RFA
motorised movement system is designed to move a detector in steps, pausing
to take readings. As the RFA system has a readout of position in all three
movement axes, no information on velocity or time is given. Smooth, con-
tinuous, slow movement is not possible. Only fast continuous movement for
repositioning and slow, stepwise movement for measurement are available.

Design
A modification has been made to the water tank electronics to make a
Z-axis position signal available to the ADC. The position of the detector
mount in each of the three axes is determined by potentiometers geared
to the detector movement motors. The output range of this system is 0V
to +10V. A voltage dividing resistor network was designed and installed
on the Z-axis potentiometer (Fig 35). This network provides an output
from the Z-axis potentiometer compatible with the ADC input range (0V
to +2.5V). An additional requirement was to keep the current drawn by
this extra output low enough to avoid effecting the performance of the RFA
positioning system.

Figure 35: Z-position system circuit diagram. The ADC can be unplugged at

the point denoted by the “V” shapes in the connections.

Having built the Z-position system, it needed to be wired into the am-
plifier box. The ADC is plugged into the box for use with the diode array,
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making the D25 socket on the box the only way to access the ADC inputs.
There were two faulty amplifiers in the array, numbers 3 and 10. These

were disconnected from their respective ADC inputs. Diode number 3 was
transferred to the spare amplifier, number 12, which was in turn connected
to ADC input number 3. This should have restored detector number 3 in
the array to functionality. The Z-position system was connected to ADC
input 10.

Calibration and testing
The voltage output obtained with the voltage divider was calibrated using
the water tank QA equipment: a ruler with an accuracy greater than the
RFA positioning system with attachments to mount it in the tank. It should
be noted that the RFA system measures depth downward from whatever zero
point is set as the surface, while the QA ruler measures height above the
floor of the water tank.

The properties of the resistor network are described by Ohm’s Law
(Equation 2)

V = IR (2)

and the formulae for parallel (Equation 3) and series resistance (Equation 4)

1
Rtotal

=
1

R1
+

1
R2

+
1

R3
· · · (3)

Rtotal = R1 + R2 + R3 · · · (4)

The ADC voltage divider resistors are in series with each other and with
the portion of the potentiometer resistance between the +10V power supply
and the movable tap. The voltage divider is in parallel with the portion
of the potentiometer resistance between the tap and ground (see Fig 35).
With the ADC voltage divider connected, the total resistance of the posi-
tion measuring system changes with the potentiometer position. The total
current through the system changes as the total resistance changes (assum-
ing the power supply voltage is constant). The RFA voltage is changed by
the resistance between the potentiometer tap and ground, and the change
in current. The ADC voltage is a constant proportion of the RFA voltage.
The Z-position data from the Pico ADC will be free of error if the curve fit
converting the potentiometer voltage to position is good. The RFA system
conversion formula is incorrect for the new resistance network, and unless
corrected there will be errors in positions set using the RFA controller. The
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function for the output voltage, accounting for the changing resistance and
current, was plotted, and gave a linear graph.

Figure 36: The error in the Z-positions reported by the RFA system, according

to the QA ruler. The errors are attributed to the resistor network connecting

the ADC to the Z-potentiometer.

Fig 36 shows the positioning errors made by the RFA system when the
ADC voltage divider is connected to the system. Since only the RFA position
shows any significant non-linearity, the existing linear fit will be used to
obtain the Z-position from the ADC data. Fig 37 shows approximately
linear relationships between the RFA motor system, the position according
to the QA ruler and the ADC voltage. On this scale, the errors in Fig 36
are not apparent in the RFA data. A linear fit relating the ADC voltage to
the QA ruler was made:

Zruler = a× VADC + c (5)

where Zruler is the height above the tank floor in mm, VADC is the ADC
voltage, the value of a was found to be −3.05636 and c was found to be
1800.11. The software used, Sigmaplot 8.0, reported an R value of 0.9999
for the fit. This fit was used in the processing of data from the diode array,
described below.
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Figure 37: A good linear fit was made to this data to convert the potentiometer

voltage recorded by the ADC to give the Z-position of the diode array.

The best solution to the problems with the Z-positioning system would
be to replace the resistor network with an operational amplifier based device.
An amplifier based system would have a much higher input impedance than
the resistor network.
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3.5 Data Processing and Analysis

The water tank system generates a lot of data. On the order of 25 depth dose
scans are needed to cover a typical head-and-neck treatment area (5cm×5cm
field with scans 1cm apart). Larger fields will generate more data, unless
the spacing of the scans is increased.

The work required to merge the diode array dose data and the patient
geometry data, and to transform the data from multiple depth doses into an
isodose map (the representation of anatomical and dose distribution data
most commonly used in treatment planning) is also considerable.

It was therefore decided to automate some at least some of the data
processing for this project. For future clinical use, full automation of data
processing will be needed to reduce the workload and time required, and so
that the system can be easily used by a wider range of personnel, who are
not trained in mathematics and physics.

3.5.1 Software

C++: The C++ programming language was the first choice for automated
data processing, as it the language GEANT4 uses. However, GEANT4
was replaced with EGS/BEAM for the Monte Carlo work, and C++ is a
complicated language to learn.

Excel macros: Macros in Microsoft Excel were considered next. There
are several stages in the current data analysis process which use spreadsheets
and formulae.

Matlab: Matlab was the final choice for the processing stages that
required programming work. Matlab has the flexibility of a programming
language, but is relatively simple to use, and is intended for mathematical
and scientific work.

3.5.2 Procedure

Data was recorded by the ADC in the form of a table with columns for
elapsed time and each of the 11 channels. Here, one channel recorded the
output of the reference detector, one channel the Z-position system output,
and the remaining channels were used for diodes in the array. This data
was processed using Microsoft Excel, Matlab and Sigmaplot to give isodose
maps. The procedure is described below.
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• Datapoints recorded before or after a scan, with the array stationary,
were cropped and discarded.

• The dark current for each diode was established from a few datapoints
from each channel, recorded with the radiation beam off. In Excel,
the dark current for each diode was subtracted from the appropriate
channel.

• All datapoints from a scan were normalised to the scan maximum dose.

• The sampling frequency of the ADC was higher than the movement
rate of the detector mount. A formula to identify multiple datapoints
recorded at the same depth was run in Excel. A new table was made,
in which the last of a set of multiple entries was replaced with their
mean, and the other rows were marked. The ‘array collapse’ function
was written in Matlab to delete the marked rows from the table.

• The Z-position system recorded the position of the entire array mount.
The diode detectors in the array were set to different heights to match
the shape of the mask. These height offsets were manually measured
and recorded. The ‘offset’ function was written in Matlab which made
individual spreadsheets for each data channel, and adjusted the Z-
position data to include the appropriate offset.

• Extra datapoints recorded while the array was being moved into po-
sition for a scan were discarded. Datapoints recording a relative dose
of less than 5% were discarded.

• To obtain isodose contours from the depth dose data, the INTERP1
interpolation function in Matlab was used. Interpolation was used to
sample the depth dose data at 1mm intervals. The function was used
again to determine the depths at which specified isodose values were
reached within each depth dose.

There were some instances of multiple readings from the same depth,
jumbled and out of order. As the same pattern of these duplicates
appeared in every channel of a given depth dose scan, these multiple
readings are attributed to jitters in the detector positioning system.
The detector mount would jump a couple of times between adjacent
steps (approximately 0.3mm), before resuming normal motion. These
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multiple entries must be removed, as the interpolation works by fit-
ting a function to the data, so it does not handle multiple values of
the dependent variable assigned to a single value of the independent
variable.

• At this stage, the data consisted of a table for each scan with a column
for each isodose level and a row for each diode channel. Each diode
had a corresponding position in the horizontal plane, so the data can
be rearranged into a table of x, y and z values for each isodose.

This procedure was used to produce the isodose plots in Section 5 from
experimental data.
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4 Monte Carlo

Based on fundamental physics and statistics, the Monte Carlo technique is
accepted as the most accurate method for modelling systems such as radi-
ation therapy treatment. Monte Carlo was used in this project to verify
the experimental results obtained with the water tank system. The simula-
tion technique used here is similar to that described in papers reviewed in
Section 2.3.

EGS/BEAM was chosen as the Monte Carlo software for use in this
project, so a detailed description of the installation and operation of the
EGS/BEAM software is given. GEANT4 software was also considered.
Work on modelling the linear accelerators at Christchurch Hospital in EGS/BEAM
is reported, including verification of models with measured linac commission-
ing data.

4.1 GEANT4

GEANT4 is a relatively new Monte Carlo toolkit [20]. It was developed at
CERN for use with the LHC (Large Hadron Collider), primarily for mod-
elling particle detectors. The GEANT4 code was written in object-oriented
C++, a more modern language than the Fortran used for much of EGS and
GEANT3. GEANT4 was originally intended for high energy particle physics
work, but the modular design allows any part of the code to be modified or
replaced, so GEANT4 has been tried in medical radiation therapy research.

As mentioned in Section 2.3, electron modelling in GEANT4 was found
by Poon and Verhaegen [21] to be insufficently accurate for radiation therapy
applications involving electron transport. Because of this, and Deloar Hos-
sain’s in depth knowledge of EGS/BEAM, it was decided to use EGS/BEAM
for the Monte Carlo modelling aspect of this project.

4.2 EGS/BEAM

4.2.1 Installation

EGS/BEAM is a large and complex collection of software written in a combi-
nation of Fortran77, Mortran, C and C++. It is distributed as source code,
not executable binary files, and must be compiled on each machine it is to
be run on. For researchers who do not have experience in Unix system ad-
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ministration for programming and scientific applications, the workload and
learning curve for EGS/BEAM installation and maintenance is considerable.

The current versions of EGS and BEAM are called EGSnrcMP and
BEAMnrcMP, where MP stands for multi-platform. These versions are
available for the Windows OS and Mac OS/X as well as Linux. However,
the Windows installation, like the Linux installation, is source code that
requires compilation.

In addition to the core simulation programs, a number of programs for
building phantoms and displaying and analysing results are available. The
programs used in this project are discussed below. Some of these programs
require additional software packages such as Tcl/Tk, Qt, Python and xm-
Grace. Some of these programs (or their prerequisites) are only available
for the Linux operating system.

Several Linux distributions were tried during this project. The Gen-
too distribution is designed for customisation and optimisation, but conse-
quently requires more time and expertise to administer. Redhat-based dis-
tributions are numerous and popular. The Fedora Core series and rebuilds
of the Redhat Enterpruse Linux (RHEL) series are available for free. Fedora
Core 4 performed well during this project. CentOS 4, a rebuild of RHEL
4, which in turn is the Enterprise version of Fedora 4, was recommended
for use with EGS/BEAM by another researcher. Fedora 5 was less success-
ful; there were problems with compilation of software, and with networking
through proxies. The Debian-based Ubuntu distribution has (in this au-
thor’s opinion) better package management software than the Redhat-based
distributions. With the variety of programming languages, toolkits, libraries
and supporting applications required for a complete EGS/BEAM system,
good package management is very helpful.

As an example, the final problem encountered when installing the EGS/BEAM
system was caused by the choice of Fortran compiler. Initially, the GFor-
tran compiler was linked to the G77 name expected by the EGS and BEAM
installers. This compiler successfully installed EGS and BEAM, but could
not compile BEAM simulations. After changing the G77 link to point to
G77-3.4 (an older GNU Fortran compiler), and reinstalling EGS/BEAM,
simulations ran successfully.

At the time this thesis was written, the current versions of EGS and
BEAM had an incompatibility issue. A solution was provided on the distri-
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bution website, two replacement files to be downloaded and saved over the
incompatible files in an EGS/BEAM install.

4.2.2 BEAMnrc

A complete EGS/BEAM run, from specifying a linac to obtaining percentage
depth doses and beam profiles, had three stages:

1. Simulating the linac.

2. Simulating dose delivery to a phantom.

3. Analysis of the dose distribution.

BEAM is the User Code for building linac simulations. With BEAM,
a user does not need to specify the geometry of a linac from scratch; a
variety of Component Modules are provided with predefined, but customis-
able, geometry for common linac components. For example, to build an
electron applicator using one of the modules, only the number of scrapers,
their vertical separation, aperture size, thickness and composition need to
be specified. The detail of drawing all the rectangular shapes is done auto-
matically. Similarly, a module for x-ray beam flattening filters is provided.
The preset geometry for flattening filters is a stack of conical slabs, since a
flattening filter is approximately conical in shape. The jaw module includes
a tool which calculates jaw positions from the desired field size at SSD.
The modules can be used for any purpose the preset geometry suits [29].
The information generally required to build a working linac head model is
summarised in [36].

It is not intended to reproduce a procedure for specifying and building
a linac here, the process is well documented in the BEAM manual [29].
The BEAM tools are helpful, but it is still many hours work to construct a
simulated linac head.

The specifications of a linac are divided between two files: a module
file, listing the prebuilt BEAM linac components to use; and an input file,
specifying the values of various module parameters, the initial radiation
source, and simulation parameters such as variance reduction and seeds for
random number generation.

The output of a linac simulation is one or more phase space files. A phase
space is a way of representing data about a large number of objects, each
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with several parameters. It is similar to a database in that each object is
assigned a record containing the same fields in which data about the object is
written. A phase space can also be thought of as a multidimensional graph,
with each axis representing a parameter, and the position of the particle in
that dimension is the value of the parameter for that particle.

A phase space file contains the position, direction of motion, energy and
other parameters for each particle that passed through the plane specified
for the phase space during the simulation. The plane of the phase space must
be within an appropriately sized component module of the simulation. The
phase space data can be used directly as a source of particles in subsequent
simulations, or analysed to obtain fluence profiles and energy spectra.

An absorbed dose calculation requires a phantom and a radiation source.
The radiation source can be a phase space file, an energy spectrum or a Multi
Source Model.

Multi Source Modelling uses the Latch tool. The Latch is a set of bits
in each particle history. Component modules in a BEAM simulation can be
assigned one of the Latch bits, and every particle produced in that compo-
nent module will have that Latch bit set to 1. Fluence and energy spectra
can be generated for each linac component, allowing greater flexibility than
a single spectrum representing the entire linac.

A phantom file or an input file describing the object the radiation beam
will be absorbed in and deposit dose in. The phantom file stores EGS
representations of complex objects such as patient anatomy converted from
CT data. Input files contain parametric information such as composition
and voxel size for simple specified objects like a cuboid water phantom.

A program developed by Deloar Hossain et al. replaces the dose distri-
bution in an Xio plan with a distribution calculated by DOSXYZnrc. This
program was written primarily to obtain DVHs for Monte Carlo simulations
for a study of 3DCRT plans [37], but is useful here to visualise dose distri-
butions from Monte Carlo simulations and Xio plans in the same format.
The DVH capabilities of Xio will become important if the systems in this
project are used clinically in future.

After a linac model has been built, it must be verified against experi-
mental data to ensure the model is producing accurate results. Depth doses
and beam profiles obtained during the commissioning and quality assurance
tesing of a Varian 21IX linac were compared with simulated depth doses and
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profiles.

4.2.3 Linac Simulations

Simulated Varian 2100C linac heads for this project were constructed in
BEAM using data on geometry and composition supplied by Varian [28].
Some parts of a decommissioned linac of a similar type were available for
disassembly and measurement.

Models were made of each linac configuration used. Photon beams use a
target and flattening filter, while electron beams use a scattering foil. Each
energy has a different foil (except 6MeV and 9MeV electron beams, which
share the same foil), or target and filter combination. There are six different
sized electron applicators.

Electron scattering foils
Fig 38 shows one of the scattering foils from the decommissioned Varian
2100C linac. The foil assemblies each consist of 2 foils. The upper foil is
supported by the crossbar. The lower foil is a button held between two
sheets of aluminium (which also contribute to the scattering foil).

Jaws
The secondary collimators or ‘jaws’ of a linac are movable blocks of tungsten
that set the size of photon beams. With an electron beam, the electron
applicator and insert are the main means of beam collimation. The jaws
assist with collimation, but are kept slightly wider than the intended beam
size would dictate to reduce contamination of the beam with scatter from
the jaws.

Electron applicators
An electron applicator is a frame that supports a set of fixed size collimators
and a cutout mount between the linac and the patient, improving collimation
of the electron beam. Applicators may also serve to improve the flatness of
the beam profile. Varian linacs use open frame or diaphragm applicators.
These produce fewer low energy scattered electrons than other applicator
designs (such as fully enclosed cone shapes), reducing the skin dose. (Based
on [30]).

Electron cutouts
The final scraper of an electron applicator holds an insert called an electron
cutout. The electron cutout sets the shape and size of the electron field at
the patient surface.
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Electron cutouts are molded slabs of Cerrubend with holes through the
middle. There is a standard thickness for the slab. The hole is molded
to the size and shape of the area to be treated with radiation. The outer
dimensions of the cutout match the smallest applicator that can encompass
the hole.

Cerrubend is an alloy of Bi, Pb and Cd with a low melting point and high
atomic number and density. It can be melted, poured and molded easily,
and effectively attenuates high energy electron beams. (Based on [30]).

Manufacturing electron cutouts
To manufacture a cutout, the desired shape is drawn on paper and cut out.
The shaped paper is affixed to a block of polystyrene foam. A hot wire
cutter is used to cut the foam to match the paper. A mold is assembled
with a base plate, a cutout holder, and the foam shape held down with a
lead block. The mold is placed on a temperature controlled slab. The mold
is filled with molten cerrubend. For pouring, the slab is heated to improve
mobility of the cerrubend for good filling of the mold. The slab is then
water-cooled to accelerate cooling of the cutout. Lastly, the base plate and
foam shape are removed from the cutout. (Based on [30]).

The BEAM interface for specifying electron applicators offers only square
and rectangular shapes. Simulating cutouts with arbitrary shapes would re-
quire modification of the applicator component module in the BEAM user-
code, or a workaround using another component module. For the proof-of-
concept purposes of this project, square fields were sufficient.

The following images, Figs 40, 41 and 42 show a completed model linac
head, of a Varian 2100C (or similar machine) configured to produce a 6MeV
electron beam with a 10x10cm square field.

Once an electron beam linac head had been built in BEAM, trial and
error simulation was used to find the electron beam source that gave the
final, clinical beam which best matched commissioning data.

Three different source geometries were tried, a pencil beam, a point
source, and a parallel beam with a Gaussian radial distribution of intensity.
The latter source geometry is the one recommended as most accurate by
researchers at NRC [17] and linac manufacturers.

The global electron cutoff energy (ECUT) and photon cutoff energy
(PCUT) were set to 0.5MeV and 0.1MeV respectively. When a simulated
particle drops below the appropriate energy, the particle is stopped and its
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Figure 38: The three parts on the right are the disassembled components of the

12MeV scattering foil from a Varian 2100C linear accelerator. On the left is a

complete foil assembly, for a different energy beam.
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Figure 39: A disused Varian electron applicator. The top scraper is at lower

right in this image, and the bottom scraper where an electron cutout or insert

would be mounted is towards the upper left. The field size set by this applicator,

10x10cm, is embossed on the middle scraper. This applicator is designed to be

mounted 65.4cm (embossed on the top scraper) from the reference origin of the

linac head, which is taken from the top surface of the x-ray target.
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Figure 40: A EGS/BEAM model of a Varian 2100C type linac head, configured

for a 6MeV electron beam. The electron beam source (corresponding to the

bending magnet exit) is at the top left. The electron applicator scrapers are the

three squares at the lower right. Only objects in the beam path are modelled

- the frame that supports the scrapers is not shown, nor is the outer casing of

the linac head, or any of the other equipment it contains.
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Figure 41: A EGS/BEAM model of a Varian 2100C type linac head, configured

for a 6MeV electron beam, as shown in Fig 40, showing the paths of a represen-

tative sample of simulated particles. Electrons are blue, photons are yellow. It

can be seen that only a small fraction of the total number of particles produced

by a linac are used in the final treatment beam, and that photon contamination

of clinical electron beams is significant.
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Figure 42: The upper part of a EGS/BEAM model of a Varian 2100C type

linac head, configured for a 6MeV electron beam, as shown in Fig 40. The

electron source, the inner wall of the primary collimator, the vacuum window,

the scattering foils and the monitor ion chamber, are shown. Only electron

particle tracks are shown.
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remaining energy added to the dose in the current voxel. Increasing the
cutoff energy reduces calculation time, as particle histories are terminated
sooner, but if the range of a particle at the cutoff energy exceeds the size
of the voxel then the simulation will not be accurate. Information on cutoff
energies is available from help in the BEAM interface.

The electron beam of greatest interest had a nominal energy of 6MeV.
This beam is the most frequently used in clinical practice. Neither the
mean energy of the clinical beam leaving the linac head, nor the energy
of the monoenergetic beam entering the head from the bending magnet, is
exactly 6MeV.

The half-value depth in water method [4] uses formulae obtained by
empirical experiments to calculate the mean beam energy from the depth in
water at which the beam is attenuated to half its initial dose rate.

Several formulae are discussed in [4], each valid over a different energy
range, and all of the linear form

E0 = a×HV D + c

where E0 is the mean beam energy, HV D is the Half Value Depth, and a

and c have experimentally determined values.
The formula used below is valid for all energies below 30MeV:

E0 = 2.33×HV D (6)

4.2.4 Simulations of Phantoms and Patients

The program for calculating dose distribution in a phantom is called ‘DOSXYZnrc’,
where ‘XYZ’ denotes a Cartesian three dimensional coordinate system. An-
other version of the program uses cylindrical coordinates. As input, DOSXYZnrc
requires a phase space file or other source of particles, and a phantom
file or the user can manually specify phantom parameters from within the
DOSXYZ interface. The output is an array of voxels and the dose deposited
in each.

Setting up a simulation involves specifying a large number of variables
and options. Some options and settings are well documented, with adja-
cent help buttons or entries in the manuals. Some options are less well
documented.

In the case of the ZLAST feature (which records the Z-position of the
last interaction of a particle), to run a dose distribution calculation using
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a phase space file as the source of radiation, the user must specify whether
or not ZLAST was on during the simulation that generated the phase space
file. A problem can arise because the default setting for ZLAST in BEAM
is ‘on’, while in DOS it is ‘off’ by default. A user who had no interest in the
ZLAST feature, and left the defaults in both programs unchanged, is given
a generic message that their dose calculation run failed.

The source of three dimensional anatomical data for treatment planning
systems is generally Computed Tomography (CT). To use a TPS to verify
the results obtained with the diode array, CT data of the experimental
water phantom was required. The Scanditronix water tank cannot be used
with a CT machine (it cannot fit into the torus), so a miniature water tank
was made by gluing a 1cm thick plastic panel to the bottom of one of the
masks described in Section 3.1. This CT water phantom is shown in Fig 43.
Initially a brass plug was used to seal the hole used to fill and drain the
phantom, because a brass plug is more easily made. But that plug produced
large CT artifacts (see Fig 44), and had to be replaced with a plastic plug.

A couple of minor problems were encountered with the CT water phan-
tom. If the tank is filled with water directly from a tap, air dissolved in the
water forms bubbles. If the tank is left full, changes in temperature cause
leaks and presumably small deformations of the mask shape.

The CT scan data is reconstructed as axial slice images, each of which
is exported as a DICOM image. There were 135 images in the complete
scan of the CT water phantom. DOSXYXnrc, the EGS/BEAM code for
calculating absorbed dose distribution, begins to have difficulty coping with
the workload when a phantom is composed of more than about 100 slices.
Slices, mainly depicting only the CT scanner table and the baseboard of the
water phantom, were discarded from either end of the scan, leaving only 91
images. In addition, the resolution of each CT slice was reduced to 256×256
pixels.

There are two programs for building phantom files for DOSXYZnrc from
sets of DICOM images. CTCREATE is distributed with EGS/BEAM, but
was not used here. CTED was developed by Deloar et al. The output phan-
tom is in a format called egs4phant. For both programs, the CT data needs
to be in the form of uncompressed DICOM files. EGS uses the PEGS cross
section data. Materials from the PEGS data are assigned to the phantom
based on pixel values. The default PEGS dataset is ICRU700, which is
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Figure 43: This miniature water tank was made for use with CT scanners. A

plastic back panel was glued to the rectangular margin of a mask. It allows the

same combination of uniquely shaped plastic mask and homogenous water fill,

used in the linac experiments, to be imaged with CT.

Figure 44: CT slice image of the water phantom in Fig 43. The tank was

initially fitted with a brass plug (at left), which caused the ray artefacts visible

in this image. The brass plug was replaced with a plastic one.
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better for x-ray beam simulations. ICRU521 is preferred for electron beam
simulations.

An interface program has been developed by Deloar et al to import a
dose distribution calculated by EGS/BEAM into the Xio RTP treatment
planning system (Xio version 4.2, CMS, St Louis, USA). The interface over-
writes the dose distribution data in an existing Xio treatment plan with
data from DOSXYZnrc. A plan must be created in Xio using the same CT
data as the Monte Carlo simulation. The program ‘DICOMcopy’ in Xio
converts DICOM images into Xio’s format for CT slices. In Xio terminol-
ogy, the images can then be used in Xio as cross sections forming a datapool
of anatomical data. In the interface program, an offset must be entered to
shift the origin of the Monte Carlo coordinate system to coincide with the
origin in the Xio plan. The absolute dose values in the Monte Carlo data
are usually very small (∼ 10−14Gy), so a multiplicative factor can also be
entered to normalise the dose.

In Xio, the tissue density of a pixel is determined from the pixel value
and a CT number to electron density conversion file. This process is au-
tomatic, although it may be necessary for the user to specify the model
of CT scanner (and hence the conversion file) if the DICOM files do not
contain that information. Anatomical structures to be used in the planning
process must be delineated with contours. Contours can be drawn man-
ually, or automatically. The water phantom has no internal structure, so
only one contour (the external outline) was required. This was contoured
automatically using the auto-by-threshold option to draw the contour along
the change in density between the phantom and the air.

Output files from the dose distribution simulator DOSXYZnrc have the
suffix ‘.3ddose’. These results can be viewed graphically with the program
DOSXYZ show [35]. DOSXYZ show requires both the dose distribution and
a file (suffix ‘.egsphant’) containing the phantom geometry. Generation of a
.egsphant file must be selected when running DOSXYZnrc.

To extract numerical absorbed dose data from a .3ddose file for plotting
depth dose curves and beam profiles, the ‘statdose’ program is used. Stat-
dose is a command line interface program, run from a terminal. It calls the
xmgrace software to display data as graphs. Statdose lists all .3ddose files
available in the current directory, but can only enumerate 40 files, so if there
are more than 40 files, some (listed alphabetically) will not be accessible.
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Once a .3ddose file is selected, it must be assigned one of two numbered tem-
porary files. This allows two .3ddose files to be compared. Once assigned
to a temporary file, the data can be normalised, plotted and saved. ASCII
format data can be retrieved from xmgrace plot files or saved files.

4.2.5 Verification Tests

Using the methods described above, linac models were built for 6MeV and
9MeV electron beams, both with 10x10cm applicators. The field size and
beam energies were those chosen for the first tests of the diode array and
water phantom experiments. Simulations were run to find the best initial
energy for each electron beam. The best results are presented here, along
with some less optimal results that were used in the simulations described
in Section 5.

The less than optimal results were produced when the starting plane for
particles in DOSXYZnrc dose calculations was mistakenly set to 1mm deep
in the simulated water phantom, instead of at the surface, and the initial
electron beam energies of the linac simulations were adjusted accordingly.
The depth doses and beam profiles of these simulated electron beams are
included here to demonstrate the effect of altering the initial electron energy,
and to provide data on the Monte Carlo simulated beams used in Section 5.

The precise discrepancies between the Monte Carlo simulation results
and measured beam profiles and depth doses are not analysed in depth
here. A number of papers have been published which focus on the accuracy
attainable with EGS/BEAM and other Monte Carlo programs, and it is
not the objective of this project to repeat that work. The uncertainties in
the Monte Carlo depth doses and profiles are typically approximately equal
to the size of the dots marking the datapoints. Given the uncertainties
in the RFA instrumentation and the Xio TPS, the errors apparent in the
Monte Carlo simulations were considered acceptable for the purposes of this
project.

Fig 45 shows percentage depth dose curves in water for a 6MeV electron
beam from a Varian 21IX linac, and two Monte Carlo simulated beams with
initial, monochromatic electron beam energies of 6.65MeV and 6.90MeV.
The PDDs show the 6.90MeV simulation is clearly the better match for the
measured data. The lower initial energy gives a shallower depth dose.

Initially, the 6.65MeV simulation was mistakenly run with the source of
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particles (the plane of the phase space), located 1mm below the surface of
the water phantom. In that configuration, the 6.65MeV PDD matches the
measured PDD more closely. This mistake is expected to have produced a
corresponding 1mm error in the Monte Carlo results in Section 5.

The mistake also produced consistent discrepancies between the simu-
lated and measured depth dose curves near the surface of the water, but
these were initially disregarded as an artifact in the measured data caused
by the diode detector.

Figure 45: Comparison of the percentage depth dose of a clinical 6MeV electron

beam measured in water with a Scanditronix RFA diode, and the calculated

depth doses of simulations of the same beam with 6.65MeV and 6.90MeV

electron sources.

Beam profiles of the same simulated and measured electron beams (Fig 46)
show the 6.90MeV simulation as being the closer match for the measured
data in the profile taken below dmax, and the 6.65MeV simulation matches
similarly above dmax.

From Equation 6, the mean beam energy in the 6.90MeV simulation was
5.64MeV, very close to the mean energy of the measured Varian 21IX beam
(5.66MeV).

The water phantom simulated by DOSXYZnrc is divided into voxels.
In these simulations, the voxels were 4mm wide in each horizontal dimen-
sion, and 2mm thick in the Z-dimension. A larger number of smaller voxels
would improve the spatial resolution, but the simulation would take longer
to run. The depths of the beam profiles displayed here in Figs 46 and 48
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Figure 46: Comparison of beam profiles of a clinical 6MeV electron beam mea-

sured in water with a Scanditronix RFA diode, and the calculated depth doses

of simulations of the same beam with 6.65MeV and 6.90MeV electron sources.

are restricted to the particular depths where the DOSXYZnrc output and
the scans made with the RFA diode coincide. For 6MeV, profiles coincide
at depths of 5mm and 25mm; for 9MeV the depths are 15mm and 35mm.
The non-zero size of the voxels in DOSXYZnrc, and the non-zero size of the
RFA diode, contribute to discrepancies between the Monte Carlo and mea-
sured results, especially where the dose changes rapidly with position, and
especially in the beam profiles, where the DOSXYZnrc voxel size is large.
For the purpose of determining the best initial electron beam energy, the
voxel size used here is thought to be adequate.

Fig 47 shows measured and simulated percentage depth doses for a 9MeV
beam in the same linac used for the 6MeV beam. Fig 48 shows beam profiles
for the same 9MeV beam. The simulation with the initial, monochromatic
beam energy of 9.90MeV was the best match obtained for 9MeV. From
Equation 6, the mean beam energy in the 9.90MeV simulation was 8.48MeV.
The mean beam energy of the measured Varian 21IX beam was 8.43MeV.
The obvious effects of reducing the initial energy by just 270keV can be seen
from the 9.63MeV simulation. The 9.63MeV simulation is actually a closer
match above dmax than the 9.90MeV simulation. A small local maximum in
the depth dose at approximately 5mm depth is exaggerated in the 9.90MeV
simulation.

The profiles in Fig 46 also show the 6.90MeV simulation is noisy at shal-
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Figure 47: Comparison of the percentage depth dose of a clinical 9MeV electron

beam measured in water with a Scanditronix RFA diode, and the calculated

depth doses of simulations of the same beam with 9.63MeV and 9.90MeV

electron sources.

Figure 48: Comparison of profiles of a clinical 9MeV electron beam measured

in water with a Scanditronix RFA diode, and the calculated depth doses of

simulations of the same beam with 9.63MeV and 9.90MeV electron sources.
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low depth. The source of the noise is uncertain, as the number of simulated
particles was the same for both simulations.

The simplest way to reduce noise in a Monte Carlo simulation is to
increase the number of simulated particles. The linac simulations in Figs 45,
46, 47 and 48 were each set for 25 million initial particles, which yielded
between 1 and 5 million histories in each phase space file. These histories
were redistributed and recycled [34] to obtain 100 million particles incident
on the model water phantom. Reusing particles in this way increases the
noise and statistical errors.

Once the best initial energy was found, the linac simulations were rerun
to increase the number of initial particles to 100 million, and the number
of histories in each phase space file increased accordingly. The larger phase
space files were used for determining dose distributions in the mask phantom
simulations.
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5 System Tests and Intercomparisons

The project objective was to develop a system for accurate assessment by ex-
perimental measurement of the dose distribution delivered to an irregularly
shaped object by an electron beam.

This Section presents the results of an early experiment using a mask
water phantom to test a proposed custom electron bolus treatment plan, and
the results of an experiment comparing the diode array and water phantom
measurement system with the EGS/BEAM Monte Carlo system and CMS
Xio.

The possible clinical applications of the systems developed in this project
are also discussed.

5.1 Patient Selection

The three treatment types considered for investigation in this project were:
custom electron bolus, deep x-ray therapy of the brain, and complex lead
compensators. Only custom electron bolus experiments had been performed
at the time of writing. The other treatments may be investigated in subse-
quent work.

It was decided to restrict experiments to head and neck treatments to
use the irregular shape advantage of the mask and water tank system. Some
scans were made of a flat water field for testing and calibration purposes.
Manufacturing special shapes of other body parts was not attempted here.

Real patient face mask molds and laser scans were used because manufac-
turing a realistic artificial face would have been significantly more difficult.
Use of real patient treatment planning data in future work will allow compar-
ison between the results of experiments, professionally planned treatments
and, in some cases, actual patient dose measurements.

Four patient datasets were selected for use in this project. One was
a custom electron bolus treatment, another was a photon beam treatment
of a region of the brain, and the other two used complicated compensator
arrangements.

The process of designing, building and testing the equipment and Monte
Carlo software for the project took much longer than initially anticipated.
Consequently, less progress was made towards preparing the system for clin-
ical use, and much of the patient data went unused.
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Custom electron bolus design was the primary area of interest for this
project. Previously, all electron bolus was designed manually from basic first
principles, and there was no verification of the design. Thermoluminescent
dosimeters may be used during one or more fractions of a patient’s treatment
to ensure the dose delivered does not exceed the limits for organs at risk.

Experiments on deep x-ray treatment were proposed mainly to test the
versatility of the water tank and mask system.

Compensators are for photon beam treatments. The transmission of
compensator material has been measured and entered into the TPS. The Xio
photon beam modelling is thought to be quite accurate (more accurate than
the electron beam model). It may still be worth performing experiments
to test the modelling of complex compensator sets with irregular shapes for
head and neck treatment.

5.2 Custom Electron Bolus Experiment

In a typical treatment for a facial skin lesion, a Radiation Oncologist will
outline an area of skin to be treated, specify the depth to treat to and
prescribe a radiation dose. By convention, the entire volume specified should
receive at least 90% of the prescribed dose. The entire volume cannot usually
be irradiated to 100% of the prescribed dose. Achieving the highest possible
dose uniformity within the treatment volume and minimising the dose to
tissue outside the treatment volume is the objective of treatment planning.

Fig 49 shows a typical scan of a patient’s face made with the ARANZ
laser scanner. The area for treatment here included the nose. The prescrip-
tion specified treatment to a depth of 10mm. Achieving uniform irradiation
of this treatment volume is a significant challenge.

Points in Fig 49 are sparsest on flat planes, such as the operator spec-
ified end of this mask at the neck. Points are densest where the shape is
complex and rapidly changing, such as the nose region here. There were
approximately 20000 points in the original scan - only a fraction are plotted
here.

The treatment plan devised by Oncology Centre staff used a custom
made electron cutout (see Section 4.2.3) to collimate a 6MeV electron beam
to the treatment area, and a 10mm thick layer of wax bolus material shaped
to conform to the skin surface to obtain irradiation to the desired depth.

An experiment was performed to find out if the water phantom system
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Figure 49: The ARANZ laser scanner represents a shape as a collection of points

in a three dimensional space. For clarity, only a fraction of the saved points are

shown in this graph.

could produce data that would assist in the treatment planning process. A
mask was made using the procedure described in Section 3.1. The experi-
ment used the first version of the mask mount (see Fig 8) and first version
of the detector mount. With the single RFA diode, seven depth dose scans
were made under the mask with the 10mm thick wax bolus in place on the
mask. Fig 50 shows the relative depth dose curves obtained in four of these
scans. According to these results, the dose dropped below the preferred min-
imum level of 90% well before the prescribed depth of 10mm was reached.
Fig 51 shows results of this experiment presented as an isodose plot.

From this result, the medical physicist reviewing the plan recommended
that the thickness of the wax bolus be reduced to 5mm.



5 SYSTEM TESTS AND INTERCOMPARISONS 88

Figure 50: Percentage depth dose curves for a 6MeV electron beam at several

points under a mask water phantom overlaid with a 1cm thick layer of wax

bolus. The measurements here were obtained using a Scanditronix RFA diode.

The depth of the treatment volume (10mm) and the minimum dose required

within the treatment volume (90%) are marked.

5.3 Flat Fields

During the recent commissioning of a linac, measured data was entered into
the Xio treatment planning system, and the beam models were matched to
the measured data. The same commissioning data was used here to verify
the Monte Carlo simulations, with the results reported in Section 4. The
same linac and quality assurance instruments were used to test the diode
array, with the results reported in Section 3. Quality Assurance tests are
performed regularly on the linac to detect any deviation from its perfor-
mance at commissioning.

An additional comparison of the dose distribution to a flat water phan-
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Figure 51: Isodose plot of the midline sagittal plane under a mask water phan-

tom overlaid with a 1cm thick layer of wax bolus in a 6MeV electron beam.

The measurements here were obtained using a Scanditronix RFA diode.

tom from electron beams, as measured by the diode array, and simulated by
EGS/BEAM and the Xio treatment planning system, was planned. Exper-
imental measurements have been made, and simulations run.

This flat field comparison experiment is now considered unnecessary,
given the verification and quality assurance work described above, and can
be cancelled without invalidating the other work presented here.

The matching of the Xio pencil beam algorithm to measured data from
the linac commissioning is shown in Fig 52. The data was obtained from
the Christchurch Oncology Centre Xio RTP system, and is discussed in the
linac commissioning report [38]. The pencil beam algorithm parameters
were adjusted to achieve the best possible match at dmax for each energy
at a source-to-surface distance (SSD) of 100cm. Above and below dmax the
match is not as good.
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Figure 52: Comparison of the Xio electron pencil beam algorithm with measured

data from linac commissioning tests [38]. Both graphs show profiles of 10 ×
10cm beams in flat water phantoms at a source-to-surface distance of 100cm.

The upper graph is for a 6MeV electron beam, the lower graph 9MeV. The

profile depths are the same as were plotted in the Monte Carlo verification tests

(Section 4.2.5).
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5.4 Mask Phantom

An experiment was performed comparing the measurement system described
in Section 3 (consisting of the diode array and the mask water phantom),
the Monte Carlo system described in Section 4 and the CMS Xio treatment
planning system.

Figure 53: The CT water phantom in Xio. 91 transverse CT images of the

phantom were used to form an anatomical datapool in Xio. The Automatic-

by-threshold method of contouring was used, where a contour is automatically

drawn along a user definable change in CT number. Only the surface contour

was required, as the phantom is a homogenous volume of water.

After imaging the phantom by CT, 91 transverse images were used to
form an anatomical datapool in Xio. In Xio, the surface contour is manda-
tory, and defines the volume for dose calculations. Additional contours can
be added, delineating organs or other regions of interest. This can be useful
for obtaining Dose Volume Histograms from a treatment plan. Here, only
the surface contour was required, as the phantom is a homogenous volume
of water. The thin plastic mask and perspex base of the phantom were
ignored.

Two methods were available for displaying the results from DOSXYZnrc
Monte Carlo dose distribution calculations. DOSXYZ show is distributed
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Figure 54: Two isodose plots showing the dose distribution to a sagittal cross

section of an irregularly shaped water phantom from a 6MeV, 10×10cm electron

beam. This sagittal slice was through the geometric centre of the phantom and

the electron beam. The upper plot was generated by DOSXYZ show. The lower

plot was made in CMS Xio. Both were plotted from the same data.
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as part of the EGS/BEAM software from NRC. CMS Xio is the conven-
tional treatment planning system used at the Christchurch Oncology Centre.
Fig 54 is a comparison of the isodose displays available from these programs.

The upper plot was generated by DOSXYZ show. The lower plot was
made in CMS Xio. Both were plotted from the same data. The differences in
the isodose maps, for example, the area encompassed by 80% isodose lines is
greater in the Xio plot, may be explained by the programs’ use of different
coordinate systems. The two plots may not show exactly the same slice
of the phantom. This is another reason to import Monte Carlo simulation
results into Xio for display and comparison with conventional treatment
planning algorithms.

Figs 55, 56, 57 and 58 show the results of the comparison experiment, as
isodose graphs. Xio was used to display both the Xio and the EGS/BEAM
(DOSXYZnrc user code) results. The diode array data was plotted using a
different program, Sigmaplot.

The Monte Carlo dose calculations used linac models with initial elec-
tron beam energies that were approximately 250keV lower than optimal, as
described in Section 4.2.5. The differences between dose distributions cal-
culated by Xio and EGS/BEAM described here are therefore not reliable.
Unfortunately, the Xio hardware and software used in this experiment is no
longer available to redo the isodose maps using better Monte Carlo data.
Future work using the Matlab-based CERR (Computational Environment
for Radiotherapy Research) software may resolve this situation.[39]
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Figure 55: Isodose plots showing the dose distribution to a transverse cross
section of an irregularly shaped water phantom from a 6MeV, 10×10cm electron
beam. The plots show the dose as calculated by Xio (top) and EGS/BEAM
(middle), and as measured using the diode array (bottom). The placement and
direction of the incident beam is depicted with fine green lines in the upper two
plots.
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Figure 56: Isodose plots showing the dose distribution to a sagittal cross section
of an irregularly shaped water phantom from a 6MeV, 10×10cm electron beam.
The plots show the dose as calculated by Xio (top) and EGS/BEAM (middle),
and as measured using the diode array (bottom). To better show the position of
the slice the isodoses refer to, and because of the low resolution of the surface
contour in the diode array plot, the midline surface contour has also been plotted
in the background (darker gray).
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Figure 57: Isodose plots showing the dose distribution to a transverse cross
section of an irregularly shaped water phantom from a 9MeV, 10×10cm electron
beam. The plots show the dose as calculated by Xio (top) and EGS/BEAM
(middle), and as measured using the diode array (bottom).
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Figure 58: Isodose plots showing the dose distribution to a sagittal cross section
of an irregularly shaped water phantom from a 9MeV, 10×10cm electron beam.
The plots show the dose as calculated by Xio (top) and EGS/BEAM (middle),
and as measured using the diode array (bottom).To better show the position of
the slice the isodoses refer to, and because of the low resolution of the surface
contour in the diode array plot, the midline surface contour has also been plotted
in the background (darker gray).
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The dose distributions predicted by Xio and EGS/BEAM differ signifi-
cantly. EGS/BEAM consistently gives a high dose at the phantom surface,
typically 80% of the maximum. Xio predicts a lower dose for the first ∼ 5mm
of tissue immediately below the surface, with the maximum dose reached
somewhat deeper, depending on the shape of the phantom.

The largest disagreements between Xio and EGS/BEAM occur on the
nose of the phantom, the most irregularly shaped part of the mask. At the
tip of the nose, EGS/BEAM predicts a high dose, while Xio predicts a low
dose. The result is reversed on the side of the nose, where the electron beam
strikes the phantom at the most oblique angle. Over these small regions,
the difference in dose between the Monte Carlo and pencil-beam algorithms
can be up to 50%.

EGS/BEAM also consistently reports the beam penumbra to be larger
than Xio does, with a higher dose. The dose at the edges of the beam is gen-
erally 5-10% higher in EGS/BEAM, and the penumbra several millimetres
broader. The differences are greatest where the electron beam is incident
on the phantom at a shallow angle. In this experiment, the diode array did
not make any measurements in the penumbral region.

The results from the diode array are not yet good enough to be used
to determine which of the theoretical models, Monte Carlo or pencil-beam,
more accurately predicts the dose distribution in this experiment. The diode
array has not produced enough data in this experiment to match the spatial
resolution available from the computer models.

The isodose points and lines derived from the diode array measurements
are generally consistent with the theoretically predicted results from Xio and
EGS/BEAM. In Fig 55, the diode array results are more consistent with the
dose distribution calculated by EGS/BEAM, with high doses at the tip of
the nose and beside the base of the nose. In Figs 56, 57 and 58 the diode
array results are consistent with both theoretical models.

The large volume of data produced by the diode array means that an
automated data processing system will be needed for clinical use of the
array. The main limitation on the diode array system at the conclusion
of this project is the lack of good data processing software. To obtain the
isodose maps in Figs 55, 56, 57 and 58, data from the ARANZ Fastscan
software and the Pico ADC software had to be combined. This was achieved
using a combination of Matlab, Sigmaplot and Excel. A combination of
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formulae and logic operations in Excel spreadsheets and small programs in
Matlab were used to achieve partial automation of the data processing. The
Sigmaplot graphing software was used to display the processed results.
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6 Conclusion

This project was an initial study of ways to improve the design of custom
electron bolus, the planning of electron beam therapy, and other radiation
therapy simulation tasks.

Electron beam therapy planning and custom electron bolus design were
identified as areas in which improvements in equipment and techniques could
lead to significant improvements in treatment delivery and patient outcomes.

6.1 Progress to Date

Equipment for experimental determination of the radiation dose distribu-
tion inside irregularly shaped objects has been developed and tested. Sec-
tion 3 described the design, construction and testing of the diode array.
Experiments were performed to prove the concept of an array of inexpen-
sive electronics diodes as an instrument for determining the dose distribution
in irregularly shaped water phantoms. The operation of a prototype diode
detector and a full array were demonstrated. The capabilities and limita-
tions of the diode detectors and the array were explored. The process of
developing this instrument was described.

A Monte Carlo simulation system has been installed, and models of the
Christchurch Oncology Centre linacs in the more commonly used electron
beam modes have been built and commissioned.

The selection and installation of the EGS/BEAMnrcMP Monte Carlo
software, and the process of modelling 6MeV and 9MeV electron beam
linacs, was described in Section 4. Linac models were built from informa-
tion supplied by the manufacturer, Varian, with additional measurements
of components from a decommissioned linac. The initial electron beam en-
ergy and related parameters were adjusted to obtain matches between the
simulations and commissioning data from a Varian 21IX linac.

A test was run comparing the experimental measurement technique us-
ing the mask water phantom and the diode array with the EGS/BEAM
Monte Carlo system and the CMS Xio conventional treatment planning sys-
tem. This test was successful as a proof of the concept of the experimental
technique. The results were presented and discussed in Section 5. This
experiment confirmed that Monte Carlo and pencil-beam algorithms pre-
dict significantly different dose distributions to an irregularly shaped object
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from megavoltage electron beams. The dose distributions measured with
the diode array were consistent with the theoretical models.

Fig 59 shows a plan of experiments to intercompare the three systems
used here, and possible applications for evaluating treatment plans. At the
time of writing, some intercomparison tests from the blue and green groups,
and an experiment on custom electron bolus have been performed.

6.2 Future Developments

By the end of this project, the diode array and the water phantom systems
were still at an early stage of development, and a lot of additional work
will be needed to produce an instrument for clinical use. Some possible
directions for future development of these systems are listed below.

Smaller diodes on diode array
Smaller diodes such as the glass enveloped one shown at the top right of
Fig 26 could be substituted for the IN4004 diodes currently used in the
array, potentially improving spatial resolution and reducing the shielding
effects of the electrical contacts and casing material.

Anatomical modifications to masks
A plastic mask filled with water may accurately reproduce the external shape
of a patient, but it does not accurately model the internal anatomy of a
patient. This is especially true of the head, which contains bones, soft
tissue and air spaces.

It may be possible to modify masks to improve the modelling of internal
anatomy. An insert, possibly made of aluminium foil, might simulate part
of the skull. Foam or air filled capsules might simulate low density tissue
and air spaces.

If an organ of interest is significantly larger than the lateral extent of
the radiation beam, it could be simulated by a miniphantom mounted on
the detector mount and enclosing the detector. Scanning the detector (and
miniphantom) across the beam would reveal the effect of the irregular mask
shape on the dose to the organ.

Comparison of water phantom CT and real patient CT
A simpler proposition than making an anatomically accurate phantom is
using real patient CT data for treatment simulations. Comparing the dose
distribution calculated using a patient CT scan with the dose distribution
calculated for a water phantom made with a mask of the same patient would
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Figure 59: A plan of intercomparisons and experiments for the three dosimetry

systems used in this project, CMS Xio, EGS/BEAM and the diode array and

water tank system.
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reveal the effect of facial bones and the airway and sinuses.
Compensator experiments

Compensators are 0.9mm thick Pb sheets used to improve dose homogeneity
by reducing the radiation dose to ’hotspots’ found during treatment plan-
ning. Each layer of compensator reduces the intensity by ∼ 6%. Stacks
of irregularly shaped compensators are now being used in conjunction with
shields. The water tank system could be used to verify that the effect of
these complex assemblies of compensators on the dose distribution is con-
sistent with the treatment planning system predictions.

Op-amp Z-position system
The Z-position system provides a signal compatible with the Pico ADC
which allows the height of the diode array to be recorded at each dose
measurement. In this project, the Z-position system used a voltage divider.
This network of resistors alters the resistance of the RFA detector mount
positioning system, potentially a source of error in future experiments.

Replacing the existing Z-position system with one based on operational
amplifiers, which have very high input impedance, could improve the char-
acteristics of the system and avoid future problems.

Mushroom miniphantom as buildup cap
The diode array is equipped with 10 detectors. There is an identical, eleventh
detector diode which is not built into the array. This diode was intended
to be used as a reference detector. A reference detector is held stationary
in the radiation beam, so the signal from it is dependent only on changes
in the beam, such as variations in the linac output. Taking a ratio of the
field detector (in this case the array) signal to the reference signal provides
relative dose measurements which are independent of variations in the linac
output. Reference detectors used with the Scaditronix water tank are usually
positioned in air at the edge of the radiation beam above the tank.

Unfortunately, in air measurements with the reference IN4004 detector
diode had high noise. Taking a ratio of the array diode signals to this noisy
reference signal would increase the noise and uncertainty in the results. The
noisy reference signal is attributed to the lack of buildup material around
the diode in air.

The “mushroom” miniphantom designed and built to test the angular
dependence of the detector diodes used in the array could be modified for use
as a buildup cap for the reference diode. The miniphantom provides 20mm
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of perspex all around a diode, a suitable thickness of buildup material for
all the electron and photon beams available at Christchurch Oncology.

Monte Carlo simulation of a diode radiation detector
The EGS/BEAM Monte Carlo software could be used to simulate various
diodes, if the internal structure and composition can be determined. The
structure of the IN4004 was determined by abrading the plastic casing with
a file (see Figs 26 and 30). The composition of the diode junction semicon-
ductor material has not been established, except that it is silicon-based. It
may be more difficult to use such direct methods on a diode with a glass
casing.

EGS/BEAM dose distribution format
It is desirable to view the results from Xio, EGS/BEAM and the diode ar-
ray in the same format. A program to transfer the results of Monte Carlo
simulations into Xio plans is already in use. This program reads dose dis-
tribution data from .3ddose files written by DOSXYZnrc, and writes a new
file in Xio format. If the data processing software for the diode array is
developed further, provision could be made to write the dose distribution
in .3ddose format, so that the same program used to transfer EGS/BEAM
results into Xio could be used with the array.

Monte Carlo computer hardware benchmarking
As an aside to the MC work done in this project, benchmarking the per-
formance of EGS/BEAM on different computer hardware was considered.
Specifications for two computers equipped with CPUs from different manu-
facturers (Intel and AMD) using different processor architectures were com-
posed. These machines would have had as many other components in com-
mon as possible, allowing the performance of the CPUs to be compared.
However, when the computers were delivered, they did not meet these spec-
ifications, and insufficient time remained to run the benchmark tests.
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Appendix

• Radiation detector: Diode and amplifier block diagram

• Radiation detector: Diode and amplifier circuit diagram

• Radiation detector: Detector diodes

• Radiation detector: Diode array mount

• Spherical miniphantom for radiation detector diode

• Matlab program: Collapse array.m

• Matlab program: Offset.m

• CA3130 operational amplifier datasheet

• IN4004 diode datasheet
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