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 Abstract 
 
Coal seam gas has been recognised as a new, potential energy resource in New Zealand. Exploration 
and assessment programmes carried out by various companies have evaluated the resource and 
indicated that this unconventional gas may form a part of New Zealand’s future energy supply. This 
study has delineated some of the controls between coal properties and gas content in coal seams in 
selected New Zealand locations. 
 
Four coal cores, one from Huntly (Eocene), two from Ohai (Cretaceous) and one from Greymouth 
(Cretaceous), have been sampled and analysed in terms of gas content and coal properties. Methods 
used include proximate, sulphur and calorifc value analyses; ash constituent determination; rank 
assessment; macroscopic analysis; mineralogical analysis; maceral analysis; and gas analyses 
(desorption, adsorption, gas quality and gas isotopes). 
 
Coal cores varied in rank from sub-bituminous B-A (Huntly); sub-bituminous C-A (Ohai); and high 
volatile bituminous A (Greymouth). All locations contained high vitrinite content (~85 %) with 
overall relatively low mineral matter observed in most samples. Mineral matter consisted of both 
detrital grains (quartz in matrix material) and infilling pores and fractures (clays in fusinite pores; 
carbonates in fractures). Average gas contents were 1.6 m3/t in the Huntly core, 4.7 m3/t in the Ohai 
cores, and 2.35 m3/t in the Greymouth core. The Ohai core contained more gas and was more 
saturated than the other cores. Carbon isotopes indicated that the Ohai gas composition was more 
mature, containing heavier 13C isotopes than either the Huntly or Greymouth gas samples. This 
indicates the gas was derived from a mixed biogenic and thermogenic source. The Huntly and 
Greymouth gases appear to be derived from a biogenic (by CO2 reduction) source. 
 
The ash yield proved to be the dominant control on gas volume in all locations when the ash yield 
was above 10 %. Below 10 % the amount of gas variation is unrelated to ash yield. Although 
organic content had some influence on gas volume, associations were basin and /or rank dependant. 
In the Huntly core total gas content and structured vitrinite increased together. Although this 
relationship did not appear in the other cores, in the Ohai SC3 core lost gas and fusinite are 
associated with each other, while desmocollinite (unstructured vitrinite) correlated positively with 
residual gas in the Greymouth core.  Although it is generally accepted that higher rank coals will 
have higher adsorption capacities, this was not seen in this data set. Although the lowest rank coal 
(Huntly) contains the lowest adsorption capacity, the highest adsorption capacity was not seen in the 
highest rank coal (Greymouth), but in the Ohai coal instead.  
 
The Ohai core acted like a higher rank coal with respect to the Greymouth coal, in terms of 
adsorption capacity, isotopic signatures and gas volume. Two hypothesis can be used to explain 
these results: (1) That a thermogenically derived gas migrated from down-dip of the SC3 and SC1 
drill holes and saturated the section. (2) Rank measurements (e.g. proximate analyses) have a fairly 
wide variance in both the Greymouth and Ohai coal cores, thus it maybe feasible that the Ohai cores 
may be higher rank coal than the Greymouth coal core. Although the second hypothesis may explain 
the adsorption capacity, isotopic signatures and the gas volume, when the data is plotted on a 
Suggate rank curve, the Ohai coal core is clearly lower rank than the Greymouth core. Thus, 
pending additional data, the first hypothesis is favoured.  
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Chapter One 

Introduction 
 

 

1.1 Introduction 
The occurrence of methane in coal seams has long been known, with gas explosions first being documented 

in 1810 in the United States and 1845 in France (Flores, 1998).  Since the late 20th Century, there has been 

emphasis on coal seam gas as a potential energy source. This has lead to several countries including the 

United States, the United Kingdom, Canada, Australia, China and India, carrying out active exploration 

programmes (Hayton et al., 2004). As a result of this exploration there are many basins (mainly in the United 

States) which are now producing significant amounts of coal seam gas (CSG). Early CSG models emphasized 

the importance of thermogenic gas but in the last 5 years low rank deposits have also been shown to be 

economically significant, most notably with the successful development of the Powder River Basin as a CSG 

play (Ayers, 2002). 

 

The overseas development of CSG plays in low rank coal deposits has lead to exploration of basins of similar 

rank in New Zealand. Assessment of New Zealand’s CSG resources began in the 1980s (Thorburn, 1983), 

although it faced a slow start (Manhire and Hayton, 2003).  With the recent decline of gas resources in the 

Maui gas field (Sherwood et al., 2003), renewed activity in CSG exploration has occurred. Currently New 

Zealand does not have any commercially producing CSG wells but there have been a number of companies 
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working on exploration and research, assessing the size and nature of potential resources (Moore and 

Twombly, 2006; Moore and Butland, 2005; Moore et al., 2002a; Twombly et al., 2004; Cave, 2002).  

 

The Huntly, Ohai and Greymouth basins all contain coal measures with ranks ranging from subbituminous to 

bituminous. Coal seams from the Huntly, Ohai and Greymouth basins contain significant amounts of CSG. 

These basins have had only limited amounts of research conducted in relation to their gas content, and the 

relationship with other geological and coal parameters (such as maceral composition, mineral matter and 

proximate analyses). This study will attempt to determine controls on gas variability from these selected New 

Zealand CSG reservoirs, as well as establish some fundamental knowledge regarding types of mineralisation 

in New Zealand coals, maceral composition and the relationship to gas volume.   

 

1.2 Objective of study 
The objective of this study is to determine whether organic or inorganic composition play a more important 

role in controlling gas variation. Thus, three sites in New Zealand have been selected (Huntly, Greymouth 

and Ohai). 

  

In order to accomplish this objective, the study has three aims:  

 

1. Characterise the organic and inorganic composition using four cores, one from each of the basins 

except for the Ohai coalfield from which two cores were available, 

2. Correlate the organic and inorganic composition with gas content and quantity, and 

3. Develop a model which explains the relative contributions organic and inorganic composition have to 

gas content and gas variation.  

 

The objective will be met through a combination of different analytical methodologies. Organic composition 

will be assessed using an optical petrographic analysis, whereas the inorganic components will be assessed 

using XRF, XRD, proximate (moisture, volatile matter, ash yield, fixed carbon and calorific value) analyses 

as well as supporting optical petrographic analysis. Gas content will be characterised using desorption and 

adsorption isotherms, carbon-methane isotopes and gas composition analyses. Simple statistics will be 

applied to look for significant correlations and associations between these parameters. 

 

1.3 What is coal seam gas? 
1.3.1 Introduction 
Coal seam gas, also known as coal seam methane, coalbed methane and coal seam natural gas, develops 

naturally within coal beds and associated sediments as part of the burial and coalification process. Unlike 
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conventional reservoirs where the gas exists in a free state in the pores between sediment grains, CSG exists 

in a near liquid-like state, because of the physical sorption process (Yee et al., 1993). During coalification 

hydrocarbons are released along with nitrogen, carbon dioxide and water. A significant proportion of the gas 

is stored by physical sorption, trapped within the coal seam or associated sediments through van der Waals 

forces (a weak intermolecular force), onto the organic matter in coal (Fig. 1.1).  

 

 
 

In coal, the gas is mainly held in pores and cleats (closely spaced jointing). There have been four mechanisms 

proposed for the storage of gas in coal: 1) as a free gas compressed in pore spaces, 2) Condensed as a solid or 

liquid, 3) dissolved in the coal structure, and 4) adsorbed on the internal surfaces (Crosdale et al., 1998). 

Studies of gas flow show the gas in coal must diffuse through the micropore structure of the matrix, until it 

reaches a cleat (Gamson et al., 1996).  The relationship of coal seam structure and gas flow behaviour can be 

demonstrated as a dual porosity model of macropores (cleats) and micropores. The gas flow through the coal 

can be viewed as a three-stage process (Crosdale at al., 1998, Fig. 1.2): (i) gas desorbs off the internal 

surfaces. This leads to (ii) gas diffusion through the coal matrix, where the gas travels through the micropores 

to the large pores. Unlike flow through the cleat system (stage three), which is pressure driven, flow through 

the matrix is concentration driven and can be modelled using Fick’s law of diffusitivity. Finally (iii) free flow 

(Darcy’s law, which groups pore size, shape, distribution and connectivity as one parameter: permeability) 

where gas flows through large pores out of the coal system, as a response to a pressure change. (Gamson et 

al., 1996; Busch et al., 2004). 



 4                                                                                                                                                    Chapter One                                                                                                 

 
 

1.3.2 Coal Seam Gas Composition 
Coal seam gas consists of various hydrocarbons in different proportions, as well as small quantities of 

nitrogen, oxygen, hydrogen and helium.  CH4 is the dominant component of coal seam gas, followed by CO2 

and heavier hydrocarbons (Rice, 1993; Clayton, 1998). There are a number of controlling factors which 

determine the proportions of gas in the coal seam. These include: 

1. Thermal maturity of the coal, 

2. H/C (elemental composition) of macerals present, and 

3. the mechanism of gas generation (thermogenic vs. biogenic). 

The carbon isotopic composition of coal seam gas has a large amount of variation. The controls over the coal 

seam gas isotopic variation are the same as which determine the proportion of gas in the seam: process of 

formation; thermal maturation, and maceral composition (Clayton, 1998; Whiticar, 1996). Whiticar et al., 

(1986) developed the often reproduced diagram illustrating gas generation mechanisms (see Figure 3.26). The 

diagram combines δ13C and δD values, and although hydrogen isotopes do not exhibit a clear maturity 

dependency, they provide information on depositional environment and therefore pathway of formation.   As 

methane becomes enriched in deuterium (more positive δD values) and the heavy isotope δ13C (more positive 

δ13C values) with increasing maturation (Rice, 1993), the source for gas generation changes from biogenic to 

thermogenic. 

 

Coal seam gas generation is controlled by two distinct processes: biogenic and thermogenic generation. 

Biogenic gas comprises mainly methane and CO2 which have been produced by the decomposition of organic 
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material by micro-organisms, commonly in peat swamps. There are a number of requirements needed to 

produce significant proportions of gas, and these include an anoxic environment, low sulphate concentrations, 

low temperatures, abundant organic material, high pH values, adequate pore space and rapid sedimentation 

(Rice, 1993). Biogenic gas generation is available from two distinct pathways: methyl-type fermentation 

(primary) and CO2 reduction (secondary). Secondary biogenic gases are different from primary biogenic 

gases in that the bacteria involved are introduced into the coal seams after burial and coalification. This is 

often from the influence of the recharge of meteoric waters moving through permeable coal beds, with the 

waters introducing metabolic activity of bacteria (Scott, 2002). Secondary biogenic gas can form in coals of 

any rank, while primary biogenic gas forms early in the burial history of lower rank coal.  

 

Thermogenic gases form at the higher pressures and temperatures associated with increasing coalification. At 

ranks higher than high-volatile bituminous coals, devolatilisation occurs with coals becoming enriched in 

carbon and expelling volatile matter. Methane, CO2 and water are the by products of this reaction (Rice, 

1993).   

 

Thermogenic gas generation can form without deep burial. Gurba and Weber (2001) have observed igneous 

activity in the Gunnedah Basin, which has produced in an increase of rank in local coal. This has lead to large 

areas of coal generating thermogenic gas, as the intrusion has resulted in a move towards the thermogenic gas 

generation window.  Ayers (2002) has noted that although most coal seams are self sourcing reservoirs, many 

contain a mixture of different types of gas. Coal seams may contain any combination of the following: self 

sourced or migrated thermogenic gas; primary biogenic gas; secondary biogenic gas. Ayers (2002) compares 

two end member coal seam gas producing basins: the San Juan Basin and the Powder River Basin. The 

Powder River Basin contains low rank coal (sub-bituminous C-B) and methyl-type fermented biogenic gas. 

The San Juan Basin, however, is much more variable. It can be broken into four regions all containing 

bituminous coal, ranging from high-volatile A to low volatile bituminous coal. Each region contains a 

different blend of gas, with regions 1a-c containing thermogenic gas with a high biogenic component, and 

regions 2 and 3 containing early stage and migrated thermogenic gas. Different gas mixtures can be a result 

of number of parameters, including structural history, which will determine the thermal maturation patterns 

of the basin, and hydrology, which promotes the migration of secondary biogenic gases into the coal seam. 

 

1.4  General Geology  
 

1.4.1 The Waikato Region 
The Waikato coal region comprises several distinct coal areas, from Drury, 30km south of Auckland, to 

Mangapehi, 20km south of Te Kuiti, in the north of the North Island, New Zealand. There are thirteen coal 
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areas in total, and their boundaries are based on major seam discontinuities, usually at major fault zones. See 

Edbrooke et al. (1999) for a comprehensive delineation of the coal basins. The general geology is illustrated 

in Figure 1.3. 
 

The general structural style of the Waikato coalfield is dominated by block faulting (Hall, 2003, Gillard and 

Trumm, 2002). This faulting has resulted in a regional north-westerly dip of 5-15° for the Tertiary sequence 

with vertical to steeply dipping normal faults (Gillard and Trumm, 2002). Two main fault sets dominate the 

region: a north-northwest trending fault set which runs parallel to the Waipa Fault (a major basement 

structure) active in the early Cenozoic, and a northeast to north-northeast trending fault set, originally thought 

to be related to the ongoing Kaikoura Orogeny. The latter set tends to offset the north trending set, which has 

resulted in the sector boundaries of the coalfield (Barry et al., 1994). Hall (2003) and Hall et al., (2006) 

demonstrated that fault displacement in the Waikato region post-dates the deposition of the coal measures, 

contrary to previous studies (for example Kear and Schofield, 1978; Kirk et al. 1988; Barry et al. 1994), with 

fault movement commencing around 36-35 Ma and continuing to approximately 30 Ma. 

 

Waikato Coalfield stratigraphy was initially defined in 1864 by Ferdinand Hochstetter (cited in Edbrooke et 

al., 1994) and since then has undergone many revisions. Kear and Schofield (1959) revised the nomenclature, 

and subsequent publications have uniformly adopted their usage.  Two major stratigraphic groups are 

recognised in the Waikato Coal Region (Table 1.1): 

 

a) The Tauranga Group: Late  Miocene to Recent. 

b) The Te Kuiti Group, which contain the Waikato Coal Measures: Late Eocene to Oligiocene in age. 

 
Table 1.1 Stratigraphy of the Waikato coal region. 
 

Group Formation Member Age 
Tauranga Group   Pleistocene to Recent 
  Whaingaroa Siltstone  
  Glen Massey Formation  
Te Kuiti Group Mangakotuku Formation Mangakotuku Siltstone Miocene to Pleistocene 
  Pukemiro Sandstone  
  Glen Afton Claystone  
 Waikato Coal Measures  Late Eocene to Oligocene 
 

The Waikato Coal Measures are the basal formation of the transgressive Te Kuiti Group, and rest on an 

undulating erosion surface which cuts deeply weathered and indurated Mesozoic basement rocks, and grades 

upwards into shallow marine formations (Whaingaroa Siltstone, Glen Massey Formation) (Edbrooke et al., 

1999; Kirk et al., 1988). The Waikato Coal Measures are mid-to late Eocene in age in the Huntly coalfield, 

and become younger in both north and south directions.  



Coal Seam Gas Associations in New Zealand Coals                                                                                       7 

 



 8                                                                                                                                                    Chapter One                                                                                                 

The coal measures were mainly deposited and preserved in a north-northwest trending valley system, 30 km 

by 200 km, which was coaxial with the major Mesozoic movement on the Waipa Fault (Kirk et al, 1988). The 

Waikato Coal Measures contain eight significant coal seams: four in the northern region and four in the 

southern region. Depth to seams through the region varies considerably from 2 m to 550 m + (Edbrooke, 

1999). Ferm et al. (2000) have produced a pictorial guide to the classification of the coal measure sediments 

in the North Waikato coal region. 

 

The Huntly coalfield extends almost 20km in a north, northwest direction from the township of Huntly, and 

encompasses an area of up to 140 km2 (Kirk et al., 1988). The Huntly coalfield is dominated by the presence 

of the Kupakupa and the Renown seams, both of economic importance. The Kupakupa seam occurs at or near 

the base of the coal measures, and typically varies from 3 to12 m thick, although it exceeds 20 m in the 

Huntly region, where it converges with the overlying Renown seam. The Renown seam is less extensive and 

thinner than the Kupakupa seam, and seam splitting is more common. Newman et al., (1997) examined the 

petrography and geochemistry of the Kupakupa seam. 

 

Two main depositional environments controlled the accumulation of sediments, and the influence that these 

settings exerted can be seen in two distinct, subregions of the coalfield (Edbrooke et al., 1994). The northern 

region was dominated by an inland alluvial plain setting and was bounded by hills and was not influenced by 

marine sedimentation until the marginal marine sediments of the Mangakotuku Formation were laid above 

the coal measures. In the southern region the coal measures accumulated in a coastal plain setting strongly 

influenced by marine sediments, in particular at the end of coal measure deposition.   

 

Gas characteristics of the Waikato coalfield have also been documented (Moore nad Twombly, 2006; 

Twombly et al., 2004) with particular reference to four commercially producing US basins. Adsorption 

isotherm data have been published from the Huntly area, however associations between coal properties and 

gas characteristics have yet to be determined. 

 

1.4.2 The Ohai Region 
The Ohai coalfield is situated at the south of the South Island, approximately 80 km north west of 

Invercargill. The coalfield lies in an east-west trending fault bounded depression, known as the Ohai or 

Birchwood-Wairio depression, which separates the Takutimu and Longwood mountain ranges. The coalfield 

extends for approximately 100 km2, and has been extensively mapped by the New Zealand Geological Survey 

(Sykes, 1988) and by Bowen (1964, Fig. 1.4). 

 

 

 



Coal Seam Gas Associations in New Zealand Coals                                                                                       9 

 



 10                                                                                                                                                    Chapter One                                                                                                 

Bowen (1964) and Bowman et al., (1987) interpreted the structural nature of the Ohai region. A north-south 

structural trend dominates the Ohai region. The area is further divisible into three north-south trending belts, 

which from west to east comprise the Tertiary sediments of the Waiau Basin; the Permo-Carboniferous 

volcanics and intrusives of the Taktimu-Longwood Divide; and the Triassic sediments which help form the 

south-west limb of the Southland Syncline. Within the Takitimu volcanics lies the fault bounded Ohai basin. 

The Ohai Basin, prominent because of its east-west trend and Cretaceous age sediments, contains coal 

measure sediments which form the north-eastern limb of a major syncline, the axis which lies 2 km south-

west of the town of Birchwood. Additional folds in the coalfield trend to the north-west and follow a 

dominant Cretaceous structural trend (Warnes, 1990). Major faults in the area are parallel to the north-east 

trend of folding, whereas minor faults seem randomly orientated.  Faulting and folding are believed to be 

contemporaneous with sedimentation (Warnes, 1990). 
 

The stratigraphy has been defined by Bowen (1964). Two major groups are recognised (Table 1.2): 

a) The Nightcaps Group of Mid Eocene to Early Oligocene (Bortonian-Whaingaroan) age. The 

Nightcaps Group unconformably overlies the Ohai Group. 

b) The Ohai Group of Late Cretaceous (Piripauan-Haumaurian) age, which contains the Morley Coal  

Measures. 
 

Table 1.2: Stratigraphy of the Ohai coalfield, based on Bowen (1964). Source: Warnes, 1990. 
 

Group Formation Age 
Nightcaps Group Orauea Mudstone 
 Beaumont Coal Measures Eocene 

Ohai Group New Brighton Conglomerate 
 Wairo Coal Measures Late Cretaceous 

 Basement Triassic to Carboniferous 
 

The Morley Coal Measures are the most economically important formation in the Ohai coalfield. The Morley 

Coal Measures lie conformably above the New Brighton Conglomerate, although it has been suggested that 

the conformable contact may not extend through the whole of the coalfield (Bowen, 1964). Lithologies in the 

coal measures range from clay to boulder conglomerate. Areas contiguous to coal seams show prominent 

occurrences of carbonaceous mud, siltstone and sandstone. There are six coal horizons recognized but these 

cannot be referred to as discrete seams as they undergo splitting and thinning throughout the coalfield. These 

coal seams vary with a maximum thickness of 30m. The maximum indicated thickness of the coal measures 

is 270  m, (Sherwood et al., 1992). The estimates of Sherwood et al. (1992) are considered similar to Sykes 

(1988), and more accurate than Bowen (1964), as palynological age control was introduced. 

 

The Morley Coal Measures were deposited in an intermontane basin. An alluvial environment gave rise to 

three interrelated depositional environments: a sandy, braided river system; a well-drained flood plain 
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environment; and poorly drained, peat-accumulating backswamps. Depositional models have been suggested 

by Sykes (1985) and Shearer (1992). Sykes (1985) incorporates sandstone and coal petrography as well as 

geochemistry to his interpretations. Shearer (1992) focussed on integrating sedimentology, coal chemistry, 

coal petrography and palynology to delineate the depositional environments for both the Morley and 

Beamont coal measures. 

 

Of all the basins in New Zealand, the Ohai coalfield has had the most work conducted on it for CSG. For 

example, in the 1980s a New Zealand joint venture company, Southgas, formed and investigated the potential 

for methane extraction of deep coal from the Ohai coalfield. Preliminary data on desorption of methane were 

gathered and discussed in a government report (Thorburn, 1983). Isotopic composition of South Island 

natural gas has also been briefly studied, and determined that gas from the Ohai coalfield originated from a 

low-maturity microbial source (Lyon and Giggenbach, 1994). Adsorption and desorption data has been 

commonly collected, however only a limited amount of these data has been published (Manhire and Hayton, 

2003; Pope at al., 2004; Moore and Butland, 2005).  

 

1.4.2 The Greymouth Region 
The Greymouth coalfield is situated on the West Coast of the South Island, 10 km north of the town of 

Greymouth (Fig. 1.5). It occupies an area of 200 km2 at the southern end of the Paparoa Ranges, west of the 

Alpine Fault. Both the southern and the eastern margins are defined by the Grey River, whereas the western 

margin extends offshore into the Tasman Sea. The Greymouth coalfield was first discovered by Thomas 

Brunner in 1848. Gage (1952) and Nathan (1978) conducted detailed geological surveys of the Greymouth 

region, followed by a comprehensive basin study by Nathan et al.(1986).  

 

The Greymouth coalfield is part of the West Coast Basin and Range tectonic unit, which is one of four that 

dominate all of the west coast regions of New Zealand. The West Coast Basin and Range Province is 

dominated by a north-northeast structural trend, which developed from Late Cenozoic block faulting. This 

region is tectonically unstable, and this is characterized by subsidence in small fault bounded basins. The 

north-northeast fault pattern has controlled sedimentation over the last 80 million years as well as the 

orientation of several Late Cretaceous to Pliocene sedimentary basins (Nathan, 1986). Individual faults have 

been reactivated in response to changing stress regimes (Laird, 1968, 1972). 

 

Coal measure sedimentation began in the Late Cretaceous, and was restricted to four fault-bounded basins. 

The Paparoa Coal Measures, the main coal measure found in the Greymouth coalfield, were deposited from 

the Late Cretaceous to Paleocene in the Paparoa trough, one of the four fault-bounded basins. 
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Formations and units in the Greymouth coalfield and adjacent areas have undergone various name and 

sequence reclassification changes in the past. Gage (1952), Nathan (1978,) and Nathan et al. (1986) all 

defined and revised the nomenclature, but the terms this study has adopted is based on works by Ward (1997) 

(Table 1.3). 

 
Table 1.3: Stratigraphy of the Greymouth coal region. 
 

Group Formation Member Age 
Brunner coal measures   Mid-Late Eocene 
 Dunollie   
 Goldlight Rewanui  
Paparoa coal measures Rewanui Waimo Paleocene to Late 
 Ford Morgan Cretaceous 
 Jay   
Greenland Group   Ordovician 
 

The Paparoa Coal Measures are mined extensively in the Greymouth coalfield. They lie unconformably on 

the mid-Cretaceous Pororari Group rocks, and concordantly beneath the Brunner Coal Measures. The basin 

extends for 60 km in a north-south trend, although the maximum width of the basin does not exceed 12 km. 

There are five main formations, with the coal horizons being the Dunollie Formation, and Rewanui and 

Morgan Members of the Rewanui Formation. The Rewanui Member contains the most extensively mined 

seam in the Paparoa Coal Measures (Ward, 1997). Coal properties of the Paparoa Coal Measures have been 

studied extensively, from petrographic analysis, palynology and mineral matter and trace element 

geochemistry (Newman, 1997; Moore, 1995, 1996; Ferm and Moore, 1997; Ward, 1997; Li, 2002; Li et al., 

2001a, 2001b, 2005; Moore et al. 2005, 2006; Moore and Butland, 2005).   

 

Newman (1985, 1987) interpreted the paleoenvironments of the Paparoa Coal Measures. Thick, extensive 

coal seams were deposited in fluviodeltaic lake margins during periods of transgression and regression of the 

lake. Syndepositional faulting confined the high energy fluvial environment and protected peat accumulation. 

In the south-west corner thick coal developed as the region was isolated from fluvial activity and exposed to 

lesser amounts of subsidence. Depositional controls were also examined by Sherwood et al. (1992), who 

concluded that the same depositional conditions controlled the Paparoa Coal Measures delineated by 

Newman (1985, 1987). Palaeotemperatures during burial and coalification were interpreted by Kamp et al. 

(1999) using fission track and vitrinite reflectance. Maximum paleotemperatures were found to exceed 85ºC 

throughout the whole coalfield, reaching a peak of 180 ºC along the axis of the former basin. 

 

Beamish et al. (1996) examined the methane sorption capacity of upper Cretaceous coals from the 

Greymouth coalfield. The adsorption isotherm suggested that the maximum sorption capacity passes through 

a minimum in the medium volatile bituminous rank. Beamish et al. (1998) contrasted methane sorption 
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properties of New Zealand and Australian coals and found that New Zealand coals had a lower adsorption 

capacity because of decreased microporosity from the presence of volatile components blocking the 

micropore structure. 

 



 
 
 

Chapter Two 
Methodology 

 
 

 
To characterise the four cores from the different locations a series of analytical techniques were adopted. 

Macroscopic analysis was carried out on all cores to determine textural character. Geochemical analyses were 

completed on all samples, and consisted of moisture, ash, volatile matter, fixed carbon, sulphur and calorific 

value (Table 2.1). Some of these data were used to construct a Suggate plot, and in turn used to differentiate 

rank and type differences. Subsplits of samples (8 for Huntly, 13 for Ohai and 10 for Greymouth) were taken 

for mineralogical analysis. Ash constituents were determined on all available samples (33 for Huntly, 27 for 

Ohai and 19 for Greymouth). Subsplits of samples were also taken for crushed particulate pellets (8 for 

Huntly, 12 for Ohai and 8 for Greymouth). In addition nine blocks for the Greymouth coal field were also 

examined to determine modes of occurrence of mineral matter. Finally, gas analyses consisted of desorption 

measurements (lost gas, residual gas, measured gas and total gas), gas isotopes, gas quality and adsorption 

isotherms (Table 2.1). 

 

2.1 Macroscopic Analyses 
2.1.1 Coal Type 
The type of coal that is produced from peat is controlled by a variety of parameters including the type of the 

original plant material, the geochemical conditions affecting the plant material during peat deposition, and the 

final level of maturation of the coal. Coal type, or the visual appearance, varies systematically within a seam    



 

Table 2.1: Analyses completed on samples- geochemical and organic 
 

ID Geochemical Analyses Organic Analyses 

Basin Drillhole 
ID Canister Moisture Ash Volatile 

Matter 
Fixed 

Carbon Sulphur Calorific 
Value XRD XRF Suggate 

rank 
Coal 
Type 

Maceral 
Point 
count 

Block 
pellet 

Huntly TW1 9 √ √ √ √ √ √   √ √ √     
Huntly TW1 10 √ √ √ √ √ √ √ √ √ √ √   
Huntly TW1 11 √ √ √ √ √ √ √ √ √ √ √   
Huntly TW1 12           √   √         
Huntly TW1 13 √ √ √ √ √ √   √ √ √     
Huntly TW1 14 √ √ √ √ √ √   √ √ √     
Huntly TW1 15 √ √ √ √ √ √   √ √ √     
Huntly TW1 16 √ √ √ √ √ √   √ √ √     
Huntly TW1 17 √ √ √ √ √ √   √ √ √     
Huntly TW1 18 √ √ √ √ √ √   √ √ √     
Huntly TW1 19 √ √ √ √ √ √ √ √ √ √ √   
Huntly TW1 20 √ √ √ √ √ √   √ √ √     
Huntly TW1 21 √ √ √ √ √ √ √ √ √ √ √   
Huntly TW1 22 √ √ √ √ √ √   √ √ √     
Huntly TW1 23           √   √         
Huntly TW1 24 √ √ √ √ √ √   √ √ √     
Huntly TW1 25 √ √ √ √ √ √   √ √ √     
Huntly TW1 26 √ √ √ √ √ √   √ √ √     
Huntly TW1 27 √ √ √ √ √ √   √ √ √     
Huntly TW1 28 √ √ √ √ √ √ √ √ √ √ √   
Huntly TW1 29 √ √ √ √ √ √   √ √ √     
Huntly TW1 30 √ √ √ √ √ √   √ √ √     
Huntly TW1 31 √ √ √ √ √ √   √ √ √     
Huntly TW1 32 √ √ √ √ √ √ √ √ √ √ √   
Huntly TW1 33 √ √ √ √ √ √   √ √ √     
Huntly TW1 34           √   √         
Huntly TW1 35 √ √ √ √ √ √   √ √ √     
Huntly TW1 36 √ √ √ √ √ √   √ √ √     
Huntly TW1 37 √ √ √ √ √ √ √ √ √ √ √   

               



  

Table 2.1 (continued): Analyses completed on samples- geochemical and organic. 
 

Huntly TW1 38 √ √ √ √ √ √   √ √ √     
Huntly TW1 39 √ √ √ √ √ √   √ √ √     
Huntly TW1 40           √   √         
Huntly TW1 41 √ √ √ √ √ √   √ √ √     
Huntly TW1 42 √ √ √ √ √ √   √ √ √     
Huntly TW1 43 √ √ √ √ √ √ √ √ √ √ √   
Huntly TW1 44 √ √ √ √ √ √   √ √ √     
Huntly TW1 45 √ √ √ √ √ √   √ √ √     

Greymouth 944 16 √ √ √ √ √ √ √ √ √ √ √   
Greymouth 944 1 √ √ √ √ √ √   √ √ √     
Greymouth 944 2 √ √ √ √ √ √   √ √ √   √ 
Greymouth 944 3 √ √ √ √ √ √   √ √ √     
Greymouth 944 4 √ √ √ √ √ √   √ √ √     
Greymouth 944 5 √ √ √ √ √ √ √ √ √ √ √ √ 
Greymouth 944 6 √ √ √ √ √ √ √ √ √ √ √ √ 
Greymouth 944 7 √ √ √ √ √ √     √ √     
Greymouth 944 8 √ √ √ √ √ √     √ √     
Greymouth 944 9 √ √ √ √ √ √   √ √ √     
Greymouth 944 10 √ √ √ √ √ √   √ √ √     
Greymouth 944 11 √ √ √ √ √ √   √ √ √     
Greymouth 944 12 √ √ √ √ √ √   √ √ √     
Greymouth 944 13 √ √ √ √ √ √ √ √ √ √ √ √ 
Greymouth 944 14 √ √ √ √ √ √     √ √     
Greymouth 944 15 √ √ √ √ √ √ √ √ √ √ √ √ 
Greymouth 944 17 √ √ √ √ √ √   √ √ √     
Greymouth 944 18 √ √ √ √ √ √   √ √ √     
Greymouth 944 19 √ √ √ √ √ √   √ √ √   √ 
Greymouth 944 20 √ √ √ √ √ √ √ √ √ √ √ √ 
Greymouth 944 21 √ √ √ √ √ √ √ √ √ √ √ √ 
Greymouth 944 22 √ √ √ √ √ √     √ √     
Greymouth 944 23 √ √ √ √ √ √     √ √   √ 
Greymouth 944 24 √ √ √ √ √ √   √ √ √     

Ohai SC3 SC3-1 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC3 SC3-2 √ √ √ √ √ √   √ √ √     

               



  
 
Table 2.1 (continued): Analyses completed on samples- geochemical and organic. 
 

Ohai SC3 SC3-3 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC3 SC3-4 √ √ √ √ √ √   √ √ √     
Ohai SC3 SC3-5 √ √ √ √ √ √   √ √ √     
Ohai SC3 SC3-6 √ √ √ √ √ √   √ √ √     
Ohai SC3 SC3-7 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC3 SC3-8 √ √ √ √ √ √   √ √ √     
Ohai SC3 SC3-9 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC3 SC3-10 √ √ √ √ √ √   √ √ √     
Ohai SC3 SC3-11 √ √ √ √ √ √   √ √ √     
Ohai SC3 SC3-12 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC3 SC3-13 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC3 SC3-14 √ √ √ √ √ √   √ √ √     
Ohai SC3 SC3-15 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC3 SC3-16 √ √ √ √ √ √   √ √ √     
Ohai SC3 SC3-17 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC3 SC3-18 √ √ √ √ √ √   √ √ √     
Ohai SC1 SC1-1 √ √ √ √ √ √   √ √ √     
Ohai SC1 SC1-2               √         
Ohai SC1 SC1-3 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC1 SC1-4             √           
Ohai SC1 SC1-5 √ √ √ √ √ √   √ √ √     
Ohai SC1 SC1-6 √ √ √ √ √ √   √ √ √     
Ohai SC1 SC1-7 √ √ √ √ √ √   √ √ √     
Ohai SC1 SC1-8 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC1 SC1-9 √ √ √ √ √ √   √ √ √     
Ohai SC1 SC1-10 √ √ √ √ √ √ √ √ √ √ √   
Ohai SC1 SC1-11 √ √ √ √ √ √ √ √ √ √ √   



Table 2.1: Analyses completed on samples- gas analyses. 

ID Gas Analyses 

Basin Drillhole ID Canister Measured 
gas 

Residual 
gas 

Lost 
gas 

Total 
gas Adsorption* Saturation Gas 

quality* 
Gas 

isotopes* 

Huntly TW1 9 √ √ √ √ √ 
Huntly TW1 10 √ √ √ √ √ 
Huntly TW1 11 √ √ √ √ √ 
Huntly TW1 12 √ √ √ √ √ 
Huntly TW1 13 √ √ √ √ √ 
Huntly TW1 14 √ √ √ √ √ 
Huntly TW1 15 √ √ √ √ √ 
Huntly TW1 16 √ √ √ √ √ 
Huntly TW1 17 √ √ √ √ √ 
Huntly TW1 18 √ √ √ √ √ 
Huntly TW1 19 √ √ √ √ √ 
Huntly TW1 20 √ √ √ √ √ 
Huntly TW1 21 √ √ √ √ √ 
Huntly TW1 22 √ √ √ √ √ 
Huntly TW1 23 √ √ √ √ √ 
Huntly TW1 24 √ √ √ √ √ 
Huntly TW1 25 √ √ √ √ √ 
Huntly TW1 26 √ √ √ √ √ 
Huntly TW1 27 √ √ √ √ √ 
Huntly TW1 28 √ √ √ √ √ 
Huntly TW1 29 √ √ √ √ √ 
Huntly TW1 30 √ √ √ √ √ 
Huntly TW1 31 √ √ √ √ √ 
Huntly TW1 32 √ √ √ √ √ 
Huntly TW1 33 √ √ √ √ √ 
Huntly TW1 34 √ √ √ √ √ 
Huntly TW1 35 √ √ √ √ √ 
Huntly TW1 36 √ √ √ √ √ 
Huntly TW1 37 √ √ √ √ √ 
Huntly TW1 38 √ √ √ √ √ 
Huntly TW1 39 √ √ √ √ √ 
Huntly TW1 40 √ √ √ √ √ 
Huntly TW1 41 √ √ √ √ √ 
Huntly TW1 42 √ √ √ √ √ 
Huntly TW1 43 √ √ √ √ √ 
Huntly TW1 44 √ √ √ √ √ 
Huntly TW1 45 √ √ √ √ 

√ 

√ 

√ √ 

Greymouth 944 16 √ √ √ √ √ 
Greymouth 944 1 √ √ √ √ √ 
Greymouth 944 2 √ √ √ √ √ 
Greymouth 944 3 √ √ √ √ √ 
Greymouth 944 4 √ √ √ √ √ 
Greymouth 944 5 √ √ √ √ √ 
Greymouth 944 6 √ √ √ √ √ 
Greymouth 944 7 √ √ √ √ 

√ 

√ 

√ √ 

           



  
 
Table 2.1 (continued): Analyses completed on samples- gas analyses.     
     
Greymouth 944 8 √ √ √ √ √ 
Greymouth 944 9 √ √ √ √ √ 
Greymouth 944 10 √ √ √ √ √ 
Greymouth 944 11 √ √ √ √ √ 
Greymouth 944 12 √ √ √ √ √ 
Greymouth 944 13 √ √ √ √ √ 
Greymouth 944 14 √ √ √ √ √ 
Greymouth 944 15 √ √ √ √ √ 
Greymouth 944 17 √ √ √ √ √ 
Greymouth 944 18 √ √ √ √ √ 
Greymouth 944 19 √ √ √ √ √ 
Greymouth 944 20 √ √ √ √ √ 
Greymouth 944 21 √ √ √ √ √ 
Greymouth 944 22 √ √ √ √ √ 
Greymouth 944 23 √ √ √ √ √ 
Greymouth 944 24 √ √ √ √ 

√ 

√ 

√ √ 

Ohai SC3 SC3-1 √ √ √ √ √ 
Ohai SC3 SC3-2 √ √ √ √ √ 
Ohai SC3 SC3-3 √ √ √ √ √ 
Ohai SC3 SC3-4 √ √ √ √ √ 
Ohai SC3 SC3-5 √ √ √ √ √ 
Ohai SC3 SC3-6 √ √ √ √ √ 
Ohai SC3 SC3-7 √ √ √ √ √ 
Ohai SC3 SC3-8 √ √ √ √ √ 
Ohai SC3 SC3-9 √ √ √ √ √ 
Ohai SC3 SC3-10 √ √ √ √ √ 
Ohai SC3 SC3-11 √ √ √ √ √ 
Ohai SC3 SC3-12 √ √ √ √ √ 
Ohai SC3 SC3-13 √ √ √ √ √ 
Ohai SC3 SC3-14 √ √ √ √ √ 
Ohai SC3 SC3-15 √ √ √ √ √ 
Ohai SC3 SC3-16 √ √ √ √ √ 
Ohai SC3 SC3-17 √ √ √ √ √ 
Ohai SC3 SC3-18 √ √ √ √ √ 
Ohai SC1 SC1-1 √ √ √ √ √ 
Ohai SC1 SC1-2 √ √ √ √ √ 
Ohai SC1 SC1-3 √ √ √ √ √ 
Ohai SC1 SC1-4 √ √ √ √ √ 
Ohai SC1 SC1-5 √ √ √ √ √ 
Ohai SC1 SC1-6 √ √ √ √ √ 
Ohai SC1 SC1-7 √ √ √ √ √ 
Ohai SC1 SC1-8 √ √ √ √ √ 
Ohai SC1 SC1-9 √ √ √ √ √ 
Ohai SC1 SC1-10 √ √ √ √ √ 
Ohai SC1 SC1-11 √ √ √ √ 

√ 

√ 

√ √ 

 
* Data on composite intervals or represents entire hole. 



Coal Seam Gas Associations in New Zealand                                                                                                 21 

(Esterle and Ferm, 1986; Moore, 1996). Macroscopic analysis of coal core is conducted to quantify its visual 

character. The visual character of coal gives clues to how it may behave in regards to gas flow properties. 

 

There are a number of different macroscopic classification schemes for coal. The earliest scheme was defined 

by Stopes (1919) who described vitrain, clarain, fusain and durain. Since this initial classification, there have 

been a number of other classification schemes which are beyond the scope of this study to discuss. However 

the reader is directed to Davis (1978), Taylor et al. (1998), and Schopf (1960) among others. This study uses 

the classification scheme described in Shearer and Moore (1994) and Moore et al. (1993, 2006). This 

methodology divides the coal into two broad categories: matrix and plant parts (i.e. vitrain). The matrix is 

described on the basis of its lustre (dull or bright) and the proportion and size of the vitrain bands (≥ 1 mm). 

  

2.1.2 Macroscopic Point Count Analyses 

A macroscopic point count quantifies the amount and size (if measured) of vitrain in the coal seam. A point 

count is representative of the coal core, because only a portion of the core is counted. All four drill cores in 

this study were macroscopically point counted. 

 

Drill cores were split roughly in half, mostly along cleat boundaries using a hammer or chisel. A standard 

string is used, with points divided out every 1 cm. The string is laid over the split core, and material (matrix 

versus vitrain) that lies beneath a marked point is recorded. When vitrain was counted, the thickness 

perpendicular to bedding was also recorded (in millimetres).  

 

Point counts are made on an entire coal core, and tallied by either canister interval (~ 50 cm) or by ply 

interval (coal type). Coal type boundaries may cross canister boundaries. After coal types are tallied, each 

canister is assigned a coal type based on the point count. The coal types assigned are as follows (see also 

Ferm et al., 2000). 

 

- Bright lustre, non-banded 

- Vitrain is greater than 20 %, by volume 

- Vitrain is less than 20%, by volume 

- Dull lustre coal 

- Carbonaceous mudstone 

 

2.2 Sampling 
Each drill site used slightly different methods in recording coal intervals and plies. Figures 2.1 to 2.4 

illustrate the different numbering systems used in each drill hole. 
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The Huntly core used a straightforward system, numbering the canisters from 9 to 45, in numerical order, for 

both proximate and gas analyses. 

 

The Ohai core used two systems. Gas data were analysed with the coal in canister intervals of approximately 

0.50 m in thickness. The canister intervals were numbered from X1 to X34 for the SC3 drill hole, and A1 to 

A19 for the SC1 drill hole. These were not always in numerical order. Some of these canister intervals were 

then combined to produce ply intervals, from SC3-1 to SC3-18 for the SC3 drill hole, and from SC1-1 to 

SC1-11 for the SC1 drill hole. Proximate analyses were undertaken on ply intervals. 

 

The Greymouth core also used two numbering systems. Gas data were analysed with the coal in canister 

intervals of approximately 0.50 m. These canister intervals were numbered from 1 to 24. Some of these 

intervals were then split because of differences in coal type, creating a new system from 1 to 27. Proximate 

analyses were undertaken on the intervals from 1 to 27, however these intervals vary slightly from the coal 

type intervals. 

 
Because the four drill cores contain a large number of canister and ply intervals, it was not feasible to test and 

sample each interval for petrological composites and mineralogy, because of time and funding constraints. To 

overcome this problem a selected number of samples were chosen. They were selected to represent the main 

geochemical and coal type signatures found within each core, as well as to represent the variability present in 

each core. The criteria for selecting these samples were: 

  

1. Suggate plot position: samples that occur along isorank lines, and samples that had wide spread along 

the average type line,  

2. Stratigraphic position: a spread of samples from throughout the drill core, 

3. Coal type: a sample of all different coal types present, 

4. Ash content: a range of both high and low ash yields, 

5. Gas content: a range of both high and low total gas volumes. 

 

The selected samples for petrological and mineralogical analysis are illustrated in Table 2.2, along with their 

defining characteristics. Figure 2.5 illustrates the selected samples in a stratigraphic position, along with coal 

type. Selected samples for the Huntly core are canisters 10, 11, 19, 21, 28, 32, 37, 43; for the Ohai SC3 core 

are SC3-1, SC3-3, SC3-7, SC3-9, SC3-12, SC3-13, SC3-15, SC3-15; for the Ohai SC1 core are SC1-3, SC1-

8, SC1-10, SC1-11; and for the Greymouth core 16, 5, 6, 13, 15, 20, 21. 
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Table 2.2: Properties of samples selected for petrological and mineralogical analysis. 
 

Location Coal type 
Ash 

content 
(aa) 

VM 
(dmmSf) 

CV 
(dmmSf) 

Position 
in strat 

column* 

Outlier/ 
middle 

of 
group* 

Measured 
gas m3/t 

Total 
gas 
m3/t 

Huntly         
10 BNB 3.8% 42.2 30.2 T R 1.1 1.4 
11 B<20 2.9% 47.7 30.8 T R 1.0 1.3 
19 B<20 1.6% 45.0 30.2 MT R 0.6 1.4 
21 BNB 3.0% 44.6 30.3 MT R 0.9 1.3 
28 B<20 3.4% 41.2 29.8 M R 1.0 1.4 
32 B>20 2.1% 44.9 30.6 M R 1.0 1.7 
37 B<20 1.5% 41.8 29.9 MB R 1.2 1.9 
43 B>20 1.2% 43.5 31.2 B R 0.5 1.7 

Ohai SC3         
SC3-1 BNB/dull 14.4% 42.23 32.10 T O 3.2 4.4 
SC3-3 B>20 1.8% 45.13 31.95 T O 3.9 4.7 
SC3-7 B<20/B>20 1.6% 43.04 31.66 M R 4.1 4.9 
SC3-9 B>20/BNB 1.3% 42.85 31.56 M R 4.5 5.3 
SC3-12 B>20 1.2% 43.45 31.46 M R 3.6 4.5 
SC3-13 B>20/B<20 1.5% 43.95 31.58 B R 4.6 5.5 
SC3-15 B>20 1.5% 44.00 31.55 B R 4.8 5.7 
SC3-17 B<20 2.1% 42.09 31.61 B R 4.9 5.8 

Ohai SC1         
SC1-3 B<20 4.5% 43.46 31.81 T R 3.2 4.3 
SC1-8 B>20 13.1% 41.22 32.26 M O 4.3 5.0 
SC1-10 B>20/B<20 4.9% 43.51 32.13 B R 5.4 6.3 
SC1-11 B<20/dull 12.4% 47.12 33.07 B O 5.0 5.6 

Greymouth         
16 dull 2.3% 40.83 33.49 T O 2.89 3.70 
5 B<20 2.5% 43.11 34.14 MT R 2.12 3.21 
6 B<20/Dull 0.7% 44.78 33.97 MT O 1.37 2.21 

13 B>20 4.3% 42.93 34.2 MB R 1.81 2.32 
15 B<20 5.3% 43.52 34.32 MB R 1.13 1.77 
20 Dull 7.0% 42.08 33.96 B R 1.03 1.57 
21 B>20 13.6% 42.99 34.33 B R 1.85 2.32 

         
* T = Top; MT = Mid top; M = Middle; MB = Mid bottom; B = Base; O = Outlier; R = Representative. 

 

 

2.3 Coal Geochemistry  
2.3.1 Proximate analyses 

Proximate analyses were conducted to give an indication of changes of geochemistry within and between coal 

cores. In this study proximate analyses were performed: moisture, volatile matter, ash, fixed carbon. In 

addition both sulphur and calorific value analyses were also carried out. These analyses were determined 
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using ASTM D3173 for moisture (American Standards for Testing and Materials [ASTM], 2003), ASTM 

3175 for volatile matter (ASTM, 2002), ASTM D3174 for ash yield (ASTM, 2004a), ASTM D4239 for 

sulphur (ASTM, 2004b) and ASTM D5865 for calorific value (ASTM, 2004c). Corrections were applied to 

compensate for non-organic impurities so that one coal can be compared directly with another coal (Ward, 

1984, Appendix B). 

  
2.3.2 Ash Constituents 
Ash constituents were determined using X-Ray fluorescence (XRF) analysis. The procedure follows the 

ASTM D4326-01 standard (ASTM, 2004d), where the coal is first combusted at 815°C to a constant weight. 

The residual ash is then fused with lithium tetraborate to form a pellet which is irradiated by a high energy X-

ray beam. The X-rays of the atom which are fluoresced upon absorption of the incident rays are dispersed, 

and the intensities are measured at selected wavelengths. All elements are determined as the element, and 

reported as the oxide (G. Murray, pers. comm., CRL energy Ltd, 2005) 

 

2.3.3 Mineralogy  
In order to determine the mineralogy within and between the coal core, 27 samples were selected for X-Ray 

diffractometry (XRD) analysis (see Table 2.2). As XRD analysis requires a powder residue of the mineral 

matter, coal samples were oxidised using a low temperature asher (LTA). The LTA 302 Low Temperature 

Ashing machine was used following similar operating conditions to those described by Newman (1988). The 

LTA has two vacuum chambers and each chamber held between one and two samples simultaneously, with 

oxidation taking between 14-48 hours to complete. The temperature in the ashing chambers was 

approximately 170°C. 

 

Samples were ground to -1mm then powdered using a ring mill, before being placed in the LTA. The amount 

of powder was determined using the ash yield from the proximate analyses and the relationship of 1% ash 

equating to 0.01 grams of ash residue.   

 

The slides of residual ash from the LTA were analysed for mineral occurrences on a Philips PW 1720 X-Ray 

diffractometer (XRD) in the Department of Geological Sciences, University of Canterbury. Because of the 

uncertainty of soluble minerals present in the samples, a pre-XRD preparation trial was undertaken using 

both alcohol and distilled water in the preparation process. Soluble material in the LTA residue can lead to 

synthetic compounds forming during or after oxidation of coal samples in the LTA process. This can obscure 

mineral patterns in the XRD analysis with high background noise and additional mineral peaks forming from 

the soluble compounds. (Newman, 1988; Sykes, 1985). The trial showed two additional peaks in the samples 

prepared with alcohol, whereas the water prepared sample lacked these additional peaks and had lower 
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background scatter, emphasising the mineral peaks present. Therefore, the water preparation technique was 

adopted for this study.  

 

Preparation of samples involved LTA residue being placed in an agate mortar. Distilled water was added, the 

sample was washed and left for a few minutes for the particles to settle out of suspension. Once settled, water 

was removed with a pipette, and the washing process was repeated. The slurry was then ground, and then 

transferred to a glass slide and left to dry, before being analysed.  

 

A Rietveld based interpretation method was used to determine the identity of the crystalline material (Li et 

al., 1999; Ward et al., 2001; Ward 2002). The Rietveld method calculates a profile of each mineral, which is 

generated from its crystal structure.  Mineral percentages are determined when the sum of all calculated 

patterns are fitted to the XRD profile in a mutli-mineral sample using statistical analyses (Ward et al., 2001; 

Ward 2002). The mineral matter can either occur as discrete mineral grains or bound in the organic material. 

 

2.4 Suggate Rank 
2.4.1 Introduction 
Broad chemical differences are routinely observed in coal. These differences are the result from two main 

causes: type difference (the nature of the original peat set before or directly after initial burial); and rank 

difference (the effects from the geological conditions that peat is subjected to, mainly progressive burial) 

(Suggate and Dickinson, 2004). Suggate’s rank scale, based on the type variation and the rank difference, was 

revised in 2000 and is known as Rank (Sr) or Suggate Rank. Suggate rank uses either proximate analyses of 

calorific value and volatile matter (CV-VM axes) or ultimate analyses of carbon and hydrogen (O/C and H/C 

ratios) to follow the maturation path of coal.   

 

Suggate’s diagram contains several important features (Fig. 2.6). The first is a line of progressive 

coalification of ‘average type’ coal, called the average type line. This line is based on a theoretical coal with 

an average type starting chemistry, that is, the coal is not hydrogen enriched. Killops et al. (1998) defined this 

line as the maturation path of lignin. The second important feature is the New Zealand Coal band. A coal 

band represents a distribution of analytical points for a related group of coal (often of a similar location and 

age). The band generalises the metamorphic process in the peat to meta-anthracite range, and acts as an 

analogous maturation path for the kerogens (Suggate, 1998). The New Zealand coal band is based on coals 

that are Late Cretaceous to Cenozoic in age. They have medium to high H/C ratios, and have high vitrinite-

huminite contents (87-93%), with liptinite (5-11%) exceeding inertinite content  (1-6%) (Suggate, 1998). The 

high hydrogen content in New Zealand coals, compared with an average type coal, leads to a coal band that is 

elevated from the average type line. The New Zealand coal band also shows a full range of coal ranks from 
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lignite to semi-anthracite. The final feature of a Suggate plot are the isorank lines. Suggate (2000) has 

provided isorank lines initially derived from Late Cretaceous and Tertiary coal sequences. These lines radiate 

out from the average type line on a 45° angle, and movement along this line, away from the average type line, 

represents type differences in coal. The Suggate plot representatively illustrates differences in coal that are 

both type related (movement along isorank lines) and rank related (movement along the average type line). 

  

 
 

2.4.2 Construction of Suggate Plot 
The Suggate plot was used to differentiate between type differences and rank differences, by comparing 

calorific value (Btu/lb) with volatile matter. The purpose was to isolate appropriate samples for further 

analyses (see Section 2.2).  

 

Suggate (1959) observed that New Zealand coals which had high total organic sulphur contents also had high 

volatile matter and calorific values present, compared with coals which had a low total organic sulphur 

content at a similar rank. To eliminate effects from the sulphur and mineral matter, data must be corrected to 

an organic basis independent of moisture, mineral matter and sulphur (dmmSf). Mineral matter and sulphur 

both affect the burning properties of the coal, which influences the calorific value, used to determine the 

Suggate rank. Suggate (1959) recommended a correction factor of 1.1, based on averaged data from across 

New Zealand coalfields. Correction formulas used are given below:    
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Volatile Matter (dmmSf) = 100 (VM – 0.1A -0.55S   (all dry basis) 
             100-1.1A-S 

 

 

Calorific Value (dmmSf) = 100(CV-0.095S) (all dry basis; CV in MJ/Kg) 
       100-1.1A-S 
 

Where S = sulphur and A=Ash. 

 

After data are corrected, diagrams can be produced on volatile matter and calorific value axes. The average 

type line can also be plotted on the axes to help correlate ASTM rank with Suggate rank (Sr). Preliminary 

analyses found that coals with ash yield in excess of 12% caused variation that was not purely the result of 

rank. To overcome this, only samples with ash yield less than 12% were initially plotted. Although it is 

important to minimise error influences on data, such as high ash content, ash-related anomalies do not cause 

major variance in rank. 

  

2.5 Petrographic Analysis  
2.5.1 Introduction 

Coal is composed of various microscopic components termed macerals. Stopes (1935) first defined macerals, 

as an analogy to minerals of inorganic rocks. Unlike minerals, which have specific chemical and physical 

signatures, macerals vary widely in their chemical composition and physical properties. However, studies on 

pure maceral components have helped determine standard chemical and physical properties (Stach et al., 

1982)  

 

Coal macerals are classified into three groups based on their physical appearance, chemical characteristics 

and biological affinities: 

 

1. Vitrinite 

2. Liptinite   

3. Inertinite 

 

These maceral groups are further subdivided into macerals and the macerals recognised in this study are 

summarised in Table 2.3. 
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The International Commission on Coal and Organic Petrography (ICCP) has developed standard rules for 

coal petrography that state the description of macerals shall correspond to their appearance in incident light 

using oil immersion with magnifications between 250x and 400x (Stach et al., 1982).  

 

Selected samples (as discussed in Section 2.2) were analysed petrographically using polished particulate 

mounts under reflected light using a Zeiss UMSP50 incident light microscope, at 400x magnification with oil 

immersion. Block samples were also analysed qualitatively for the Greymouth core. Block samples were not 

collected from the Huntly and Ohai cores. 

 

Table 2.3: Summary of maceral groups identified in this study. 

Maceral Group Maceral Origin 
 Telocollinite –in cell walls Stems, roots, leaves, bark, wood 
                      -in bands  

Vitrinite                      -in large areas  
 Desmocollinite  
 Vitrodetrinite  
 Sporinite Spores, pollen, cuticular material,  
 Cutinite Resin, algae 

Liptinite Resinite  
 Suberinite  
 Liptodetrinite  
 Semi-fusinite Fossil charcoal (most materials  
 Fusinite Inert during coking process) 

Inertinite Scelrotinite  
 Inertodetrinite  

 

2.5.2 Coal particulate pellet preparation. 
Coal was ground to 1mm, then subsplit to approximately 20 grams and dried in a 40°C oven for one hour, to 

remove excess moisture. The coal was then mixed with epoxy resin and hardener at a ratio of 5:1. Plastic 

moulds were lubricated with vaseline and labelled. The coal resin mix was then transferred to the plastic 

moulds, where they sat in a ~20°C room for an hour to set. The pellets were then placed back in the 40°C 

oven for at least eight hours, to finish the curing process, before being polished. 

 

2.5.3 Coal block pellet preparation 
Coal blocks were cut to approximately 4 cm x 3 cm rectangles using a diamond edged rock saw. Because the 

coal was hard, reinforcing to avoid breakage and splitting was not needed.  Samples were then dried in a 

40°C oven overnight, to remove excess moisture. Samples were then placed in a silicone block mould, and 

epoxy resin was poured into the bottom of the mould. Weights were placed on top to stop the coal from 

floating. When the resin set, a second resin pour was conducted, covering the coal and label. The pellets were 

left over night in a 20°C room to set and cure, before being polished (Pontolillo and Stanton, 1992). 
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2.5.4 Microscopic analytical method  

Macerals and inorganic material are quantified by a random sample of 500 grains following procedures set 

out in ASTM Standard D2799 (ASTM, 2005a). Maceral analyses were conducted on a total of twenty-eight 

samples across all four cores (8 from Huntly, 8 from Ohai SC3, 4 from Ohai SC1, and 8 from Greymouth). A 

grid was set up using a computer programme called ‘Digimax’, with 1mm line spacings. Every component 

that lands on the predetermined point is recorded. Unlike bulk chemistry, which consumes the whole coal and 

therefore represents the chemistry precisely, microscopic analyses (point count) can only approximate actual 

proportions as 500 grains is only a small proportion of the total sample. No grain is counted twice. 

 

Point counts are usually limited to 500 readings because the advantage of making additional counts rapidly 

decreases (Fig. 2.7). In order to obtain 500 counts, two petrographic pellets were constructed for each sample. 

 

Fourteen different macerals were identified as mentioned above, along with five major types of mineral 

matter; clays, carbonates, sulphides (pyrite), iron oxides and quartz. The telocollinite maceral was divided 

into three macerals to represent the form it was observed as: 1. in cellular material; 2. in bands 20 – 100 

microns thick; and 3. in large homogeneous areas. 

 

2.6 Gas Data 
Five types of tests or calculations were carried out on samples from each drillhole, in order to determine 

information about coal bed gas:  

1. Desorption analysis (lost, residual, measured and total gas);  

2. Adsorption analysis;  

3. Saturation calculations;  

4. Gas quality analysis;  

5. Stable isotope analysis.   

 

2.6.1 Desorption Analysis 
Desorption was measured using methods outlined in Moore et al. (2004) and Moore and Butland (2005) 

(Figs. 2.8 and 2.9).  

 

The coal sample is immediately sealed in a canister after retrieval from the drill hole, and immediately placed 

into on site water baths at reservoir temperature. The coal bed gas emission (predominantly methane) is bled 

into a manometer (Fig. 2.10). Measurements are taken every 15 minutes until gas volume reaches below 10 

ml, where the time interval is doubled. The time interval is gradually decreased until desorption is minimal. 

Ambient temperature and barometric pressure are also recorded at each reading.  Finally the sample is air 
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dried and weighed. The gas yield is calculated and expressed in cubic metres of gas per tonne of coal. This 

method fails to account for any free gas that may have escaped from open fractures before the sample was 

sealed in a canister (Bodden and Ehrlich, 1998). 

 

The measured gas is obtained by recording the volume of gas that desorbs from the coal in a set amount of 

time. Lost gas is gas that has been expelled between the end of coring and the start of the desorption 

measurements (Diamond and Schatzel, 1998). This is calculated using a trend line analysis of measured gas 

values. Residual gas is gas that remains in the coal after a critically low desorption rate is reached. This was 

originally thought to be a result of slow diffusion rates (Diamond and Schatzel, 1998). However, it has been 

suggested that it is a result of gas remaining in equilibrium under 1 atmospheric pressure, in the desorption 

canister (Levine, 1992). The residual gas can be determined by crushing the sample in a ring mill with a 

special desorption apparatus attached (Diamond et al., 2001). The total gas is determined by calculating the 

lost gas, measured gas and residual gas values in a coal interval. 
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2.6.2 Adsorption Analysis 
To measure the gas holding capacity of the coal, adsorption isotherms are used. Adsorption isotherms can be 

modelled using a variety of methods based on different theories. The extended Langmuir model (Langmuir, 

1981 in: Clarkson and Bustin 2000; Laxminarayana and Crosdale, 1999; Bromhal et al., 2005) is most 

commonly used for the prediction of gas adsorption on coal. The Langmuir parameters required for pure 

component isotherms can be used to predict adsorbed volumes for gases of a mixed composition (Clarkson 

and Bustin, 2000). The Langmuir isotherm is based on two-parameters, PL and VL, and models a multi-

component adsorption isotherm using the Langmuir equation: VA=VL*PH/(PL+PH).  The Langmuir volume, 

VL, represents the physical monolayer adsorption capacity of the coal, while the Langmuir pressure, PL, is a 

mathematical value which is equal to the pressure at half the Langmuir volume, which may yield information 

on the heterogeneity of the pores (Laxminarayana and Crosdale, 1999). PH represents the hydrostatic pressure. 

 

Methane adsorption isotherms were determined by Energy Resources Consulting Pty Ltd, formally Coalseam 

Gas Research Institute. The process involved two steps: sampling and methane isotherm determination 

(Crosdale, 2004; Crosdale, 2003a; Crosdale 2003b). In order to determine methane adsorption isotherms, a 

gravimetric technique using nine pressure steps (up to a maximum pressure of 8 MPa) was used. Analysis 

was executed as close as possible to the reservoir temperature of the coal. 
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Sampling involved core being stored at - 10°C until processed. The core was initially crushed to less than 

4mm, then sub-sampled to obtain between 200-250g of coal. The whole thickness of the coal was sampled to 

get a representative sample. The sample was then crushed to < 0.212 mm and bought to an equilibrium moist 

state. Equilibrium moisture content, ash yield and helium density were determined prior to methane 

adsorption analysis. 

 

Adsorption isotherm ‘bombs’ were weighed, evacuated, and weighed again. The equilibrium moist coal was 

placed in the bombs, and the bombs were weighed, evacuated, and weighed a second time. Helium was 

introduced into the bombs, and the bombs were weighed at helium pressures of approximately 1, 2, 3 and 4 

MPa; these data are used to calculate the free volume of the bombs and consequently the helium density of 

the coal. The bombs are evacuated and weighed again. A fixed volume of methane was introduced into the 

bomb and the pressure was monitored to the nearest 1 kPa until there was no change of pressure for a period 

of at least one hour. The bomb was weighed.  The last stage of methane introduction was repeated for each 

pressure step. 

 

The results were tabulated and presented graphically as isotherms. Isotherm results were calculated to 

standardized conditions of 20°C and 1 atmosphere (101.3 kPa) pressure, and indicate the maximum holding 

capacity of the coal. 

 

2.6.3 Saturation levels 
Saturation of the coal is calculated using a combination of desorption and adsorption data. Saturation 

indicates how much gas the coal holds relative to its maximum holding capacity. 

 
Because each location has only one adsorption isotherm, the downhole saturation content is calculated on the 

assumption that the holding capacity is constant throughout the drill hole. Two steps are involved in the 

calculation of saturation: 

1) Calculation of the adsorption gas value at a set pressure;  

2) Calculation of saturation. 

 

Step one involves the following inputs and calculations:  

a) Input sample depth, DS 

b) Calculation of hydrostatic pressure, PH (in MPa): 

i) DS  * constant 0.096 = pressure (in atm) 

 ii) pressure * constant 0.101325 = hydrostatic pressure, PH 

c) Calculation of adsorption value, VA (in m3/t) using Langmuir coefficients VL and PL, at a set pressure PH: 
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 i) VA = VL * PH / (PH + PL) 

 

Step two involves the following inputs and calculations:  

a) Calculation of saturation, as a percentage of the holding capacity VA:  

i) 1-((VA-VD)/VA) 

where VA is the adsorption value, and VD is the desorption value, that is total gas, at a specific depth. 

 
 2.6.4 Gas Quality 
Gas quality was determined from the collection of gas samples from coal filled canisters. The gas was 

analysed for CH4, CO2, C2H4, C2H6, H2, N2, and O2. Samples were collected on site, as gas canisters were 

being desorbed. Canisters used for gas quality were left unread from measured gas readings to allow gas to 

accumulate. In some cases, because of minimal gas volumes, composite gas measurements were taken from 

several canisters, to obtain high enough gas volumes to analyse gas quality. High quality Teflon bags with a 

single polypropylene fitting and shut-off value, and a rubber hose were used to collect gas samples from the 

coal core. A rubber hose was attached to the end of the canister being read, with the other end fixed to a 

Teflon bag. Gas was fed into the Teflon bag by opening the canister valve and feeding through the gas which 

had desorbed (G. Gillard, pers. comm. Solid Energy NZ Ltd, 2006). Analyses were made using a gas 

chromatograph with ppm detection limits for minor hydrocarbons, and 0.5% precision limits for N2, O2 and 

CH4. Three corrections were then applied to the raw results: removal of Ar, air (O2 and N2 using a N2/O2 

ratio) and remaining N2, all assumed to be products of air contamination (Pope, 2005). 

 

2.6.5 Stable Isotopes 
Stable Isotopes were analysed by Geological and Nuclear Sciences, in Lower Hutt, New Zealand. Sample and 

analysis proceedings are given in Lyon, (2004), but are also briefly explained here. A sample of gas was 

admitted to a gas chromatograph where CH4 was separated from CO2 and other gases. Methane was oxidized 

by reaction of CH4 with copper oxide at 800°C to form CO2 and H2O for stable isotope analysis. For δ2H 

(=δD) analysis, H2O from oxidation of CH4 was collected and transferred to a tube containing zinc. The tube 

was sealed, heated to 500°C to reduce H2O to H2 for stable isotope analysis. 

 

The isotope ratios were measured using standard mass spectrometer procedures (Lyon, 2004) and reported as 

deviations from internationally recognize standards as δ13C and δ2H values in parts per thousand (0/00 ). 

Analytical precision for δ13C is ~± 0.2 0/00, and for δ2H ~± 5 0/00. 



 
 

Chapter Three 

Results 
 

  

3.1 Coal type distribution 
  

All locations had coal with two predominant matrix lustres: bright and dull. Within each of these lustre types, 

there were variable amounts of vitrain bands ranging from essentially no bands (‘non-banded’) to greater than 

20% vitrain bands These coal types are were also found by Ferm et al. (2000) and Ferm and Moore (1997) in 

the Huntly and Greymouth coalfields respectively. The vitrain percentages were quantitatively determined 

and the results are given in Appendix C.   

 

The predominant coal types in the Huntly core were bright non-banded (24 %) and bright coal with less than 

20 % vitrain bands (54 %).  At the centre of the seam and near the base of the seam the coal type changed to 

greater than 20 % vitrain banded (Fig. 2.5). 

 

The Greymouth core is highly variable in terms of coal type (Fig. 2.5). Unlike the Huntly core which was 

predominantly coal with a bright lustre matrix, the Greymouth core has multiple dull coal/high ash layers 

throughout (these account for 34 % of the core). Bright coal with greater than 20 % vitrain is found near the 

centre and at the base of the seam. Interestingly, the Greymouth coal contains no bright, non banded material.
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Compared with the Huntly and Greymouth cores, the Ohai SC3 core contains the most banded coal (82 % of 

the core). Again, bright coal with greater than 20 % vitrain bands resided at the base of the seam, as well as 

throughout the centre of the column (Fig. 2.5). The SC1 column has dull coal (23 %) scattered throughout the 

banded material (Fig. 2.5). 

 
 
3.2 Geochemistry and Mineralogy 
3.2.1 Proximate analyses 

Proximate analyses (moisture, volatile matter, ash yield, fixed carbon), as well as sulphur and calorific value, 

are displayed in Appendix D. Figure 3.1 shows the average values for volatile matter (daf), ash yield (db), 

sulphur (daf), and calorific value (daf). Of note are the large standard deviations in the volatile matter. The 

volatile matter also shows considerable downhole variation in each of the four cores (Fig. 3.2). In order to 

assess the rank of the coal, volatile matter has been combined with calorific value to help determine true rank 

changes from coal type changes (see Chapter sections 2.4 and 3.3.) 

 

 
 
            
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           

Figure 3.1: Average values for volatile matter, ash yield, sulphur and calorific value, in the Huntly, Ohai and 
Greymouth cores.  Bars on graphs represent standard deviation of data. 
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Ash yield (db) ranges from 1.1% to 36.4% in the Huntly core samples; from 1.3% to 44.7% in the Ohai SC3 

core samples and 1.4% to 75.5% in the Greymouth core samples. However it should be noted that ash yield is 

on average low in all three areas (Appendix D).   The Ohai SC1 core has the highest ash yield, ranging from 

5.2% to 55%. This is because multiple high ash layers are present.  Average ash yields in both the Huntly and 

Ohai SC3 coals are very low when partings are removed from the dataset (3.6% and 1.8 % respectively).   

 

3.2.2 Introduction to mineral matter 
Although ash yield is commonly used to estimate the inorganic proportion in coal, because of the high 

temperatures of the technique, some minerals are volatised. However, a low temperature plasma asher (LTA) 

can be used, and this preserves mineral matter relatively untouched. Mineral matter is the term used to 

describe all the inorganic components found in coal. Mineral matter can consist of three different 

constituents: dissolved salts and other soluble material in the pore water, inorganic components dispersed 

with the organic compounds, and discrete organic particles (minerals, both crystalline and non-crystalline) 

(Ward, 2002).  This study has used a variety of methods to look at the inorganic components (petrography, 

XRF and XRD analysis). 

 

Generally clays make up approximately 60 – 80 % of total mineral matter in coals. The most common clays 

found are kaolinite, illite and sericite (white mica). Clays can occur in two forms; either as fine dispersed 

material, or as a kaolin-coal tonstein, however, no tonsteins were observed in any of the drill cores. In the 

three locations studied, kaolinite and illite are the only clays identified in this study through XRD analysis. 

Illite refers to a degraded form of muscovite / hydrous mica group of minerals, and is present in trace 

amounts in the Greymouth area. Because of the preparation method used for XRD analysis, the term illite 

will also represent muscovite (Newman, 1988). Illite was also observed by Shearer (1992) in the Morley Coal 

Measures, Ohai. Illite has been found in coals with marine roofs, while kaolinite is associated with non-

marine influenced coals (Taylor, 1998). Ohai, Greymouth and coal from the northern Waikato basin all had 

very little marine influence, which explains the dominance of kaolinite. Although coal from the southern 

Waikato subregion formed in a coastal environment and was subjected to marine influence, mineral matter is 

low and no illite was observed. The lack of illite observed may be the result of poor crystallinity of the 

mineral, which would make it impossible to be identified under XRD analysis (Newman, 1988).  

 

Clays are either detrital in origin, or form as a secondary mineral from aqueous solutions. Clays were often 

observed infilling pore spaces using optical microscopy, particularly in semi-fusinite and fusinite macerals. 

Under the microscope the clay family tend to have no surface reflection and have shallow internal reflections. 

Crystal boundaries are often present, and they appear translucent, which arises from the platyness of the 

mineral (J. Newman, pers. comm., Newman energy research, 2005).  
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Figure 3.2: Down hole variation of ash yield (db) and volatile matter (daf) in Huntly, Ohai SC3 and SC1, and Greymouth 
cores, depth from surface. 
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Quartz is the most important of the oxide minerals, and is mostly introduced at peat stage. Clastic quartz 

grains are bought into the peat by water or air. Quartz is common throughout all locations studied and is 

normally the dominant mineral, only locally exceeded by kaolinite in a few places. Under the microscope 

quartz is observed dispersed throughout the desmocollinite, and has surface reflections and deeper internal 

reflections. 

 

There tends to be two groups of carbonates, a syngenetic (early formed) group, comprising siderite and 

dolomite, and a secondary, late stage group comprising calcite and ankerite. The secondary carbonates will 

fill cracks, fractures and fissures during coalification, which was observed in all locations.   

 

3.2.3 Ash constituents 
Ash constituents are displayed in Appendix E.  Major elements are reported as the simplest oxide, except for 

Mn, which has been reported as Mn3O4, because of lab procedures (G. Murray, pers. comm., CRL Energy 

Ltd, 2006). Figure 3.3 shows the average ash constituents found in each location.   

 

Ash constituents from the Huntly core show some interesting trends. SiO2 and Al2O3 contents are high mid 

seam (SiO2 ~25-58 %; Al2O3 ~20-30 %), with SiO2 also high near the roof of the seam (~41-58 %). CaO 

steadily increases to mid seam, where levels decrease rapidly (relative to the rise in SiO2 and Al2O3). This 

increase in SiO2 and Al2O3 and decrease in CaO occurs at the same place as a high ash layer occurs. SO3 is 

relatively high throughout the seam (~15-25 %), except where it declines mid seam. Fe2O3 maintains 

relatively constant levels throughout the first half of the seam (~6 %), with concentrations decreasing mid 

seam (~3 %), then increasing at the base of the seam (~ 10%).  The small seam split which occurs around 

canister 36 is noted by a decrease in SiO2 and Al2O3, and a large rise in CaO content (Fig. 3.4).  

 

Ash constituents for the Ohai SC3 core show SiO2 levels highest in the top rider seam (~60 %), compared 

with the main coal seam. In the main coal seam the SiO2 content also decreases towards the base. However, 

Al2O3, MgO and Fe2O3 are constant throughout the main seam. CaO increases towards the base of the seam. 

CaO content is much higher in the main coal seam (~20-30 %) than in seam one (0.77-4.19 %, Fig. 3.5). SiO2 

and Al2O3 contents in the Ohai SC1 core are highest mid seam (SiO2 ~70 %; Al2O3 ~30%), while Fe2O3 levels 

fluctuate heavily (0.92-18.76 %, Fig. 3.6). 

 

High levels of SiO2 (mean value 70.21 %) dominate the Greymouth core (Fig. 3.7).  Although SiO2 

concentrations fluctuate throughout the seam, there is a general increase towards the base. K2O content is 

highest at the roof of the seam (~2 %), but peaks again mid seam (~4 %).  Fe2O3 content varies throughout 

the core, with peaks both near the roof and mid seam. TiO2 is fairly consistent through the profile in small 

quantities, whereas SO3 levels are nominal.   
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Mean ash constituents in selected New Zealand locations
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Figure 3.3: Mean values of ash constituents for Huntly, Ohai SC3, Ohai SC1 and Greymouth drill cores. 
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Figure 3.4: Percentage of ash constituents, by canister intervals (x-axis), in the Huntly drill core. 
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Ohai SC3 XRF constituents
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Figure 3.5: Percentage of ash constituents, by canister interval, in the Ohai SC3 drill core. 
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Figure 3.6: Percentage of ash constituents, by canister interval, in the Ohai SC1 drill core. 
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Greymouth 944 XRF constituents
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Figure 3.7: Percentage of ash constituents, by canister interval, in the Greymouth 944 drill core. 

 
Ash constituents do not add up to 100% in all plies (Table 3.1).  This is because there is a considerable 

portion (nearly up to 10% in some plies) of other elements present. Whole coal elemental scans using pressed 

coal pellets showed significant portions of Sr , along with smaller amounts of Zn, Ni, Cu, Ba, and Ce.   

 
 Table 3.1: Total of major elements plus loss on ignition, XRF analysis. 

Location Low (%) Mean (%) Std 
     Huntly 90.87 96.61 3.36 
     Ohai SC1 95.6 98.63 1.74 
     Ohai SC3 95.72 97.28 1.57 
     Greymouth 96.43 100.28 1.98 
 
3.2.3 Mineralogy 
Thirty-one samples were processed for X-Ray diffraction (XRD): ten samples from the Greymouth 944 coal 

core, 5 samples from The Ohai SC1 coal core, 9 samples from the Ohai SC3 coal core and 8 samples from the 

Huntly TW1 coal core. Tables 3.2 and 3.3 summarises the minerals identified and the relative quantities of 

the minerals present, along with minerals recorded from the samples in the microscopic analysis. Figure 3.8 

delineates the average mineral matter content and type found in each location, while Figure 3.9 shows the 

mineralogy in each ply. 

 

Quartz and kaolinite were the most common inorganic components found in the Huntly coal core. Quartz 

ranged from nil occurrence to 95 %, whereas kaolinite ranged from nil occurrence to 100 %. The carbonates 
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calcite and ankerite were also present in one sample, with calcite being the dominant carbonate (75%). Three 

plies showed no minerals present; in the microscopic analysis they also yielded no minerals.   

XRD Mineral Analysis, Average Values for Selected Locations
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 Figure 3.8: Percentage of average XRD mineral matter in the Huntly, Ohai and Greymouth cores. 

 
Quartz, kaolinite, calcite, ankerite, and siderite dominate the Ohai SC3 coal core. Quartz ranges from 100 % 

in one ply to just 20 % in another. Kaolinite either occurs with quartz (or in one case with quartz and calcite) 

in modest amounts (5 – 20 %), or not at all. The carbonates calcite, ankerite and siderite are present in many 

plies, and are in fact only absent from plies nearer to the roof of the seam. Their quantities range from 5 – 50 

%.  Ohai SC1 shows similar minerals present. The carbonate siderite makes an appearance in one of the plies, 

which is dominated by ankerite (40%). Apart from this ply, quartz is the dominant mineral, making up as 

much as 90 % of the mineral matter in one ply. Previous research on the Morley Coal Measures (Shearer, 

1992; Sykes, 1985) also supports the general occurrence of quartz, kaolinite, calcite and siderite. However, 

the work of Shearer (1992) and Sykes (1985) shows a generally wider assemblage of minerals. These 

additional minerals include dolomite, rutile, illite and pyrite. 

 
The most common mineral found in the Greymouth coal core was quartz, ranging from 75 – 95 %. Kaolinite 

was the second most abundant mineral, present in every sample tested, ranging from 5 – 20 %. The carbonate 

mineral siderite was present in two plies, as was the sulphide pyrite. Trace amounts of muscovite were also 

present in two plies.  Previous research on the mineral matter in the Greymouth coals (Paparoa Coal 

Measures) by Li (2002) also found the same minerals. However, Li’s (2002) work show a broader range of 

minerals present including illite and smectite from the clay family; calcite and ankerite from the carbonate 

family; and trace amounts of minerals such as gypsum, apatite, halite and sylvite. Crocoite, an unusual mode 

of occurrence for lead in coal, was also identified (Li et al., 1999, 2001a). 



  
Table 3.2: Mineral occurrences in selected samples, from XRD analysis.  Table 3.3: Mineral percentages in selected samples, from XRD analysis. 
see Fig. 2.5 for sample locations.  see Fig. 2.5 for sample locations. 
                 

Huntly Quartz Kaolinite Calcite Ankerite Siderite Pyrite Muscovite  Huntly Quartz Kaolinite Calcite Ankerite Siderite Pyrite Muscovite 

c10 √ √        c10 95 5 0 0 0 0 0 
c11 √ √        c11 45 55 0 0 0 0 0 
c19 √ √        c19 50 50 0 0 0 0 0 
c21 √  √ √      c21 10 0 75 15 0 0 0 
c28  √        c28 0 100 0 0 0 0 0 
c32          c32 0 0 0 0 0 0 0 
c37          c37 0 0 0 0 0 0 0 

c43                c43 0 0 0 0 0 0 0 

Ohai SC3                Ohai SC3               
c1  √ √        c1  95 5 0 0 0 0 0 
c3 √ √        c3 95 5 0 0 0 0 0 
c7 √  √ √ √     c7 85 0 5 5 5 0 0 
c9 √         c9 100 0 0 0 0 0 0 

c12 √  √ √ √     c12 60 0 10 15 15 0 0 
c13 √  √ √ √     c13 45 0 25 10 20 0 0 
c15 √  √ √ √     c15 70 0 15 5 10 0 0 
c17 √  √ √ √     c17 20 0 35 40 5 0 0 

c15 x28 √ √ √          c15 x28 20 30 50 0 0 0 0 
Greymouth                Greymouth               

c16 √ √   √     c16 80 15 0 0 5 0 0 
c5 √ √   √ √    c5 80 10 0 0 1 10 0 
c6 √ √        c6 95 5 0 0 0 0 0 

c6p8 √ √    √    c6p8 75 15 0 0 0 10 0 
c13 √ √    √ √  c13 85 5 0 0 0 10 1 

c13p17 √ √        c13p17 95 5 0 0 0 0 0 
c15 √ √        c15 80 20 0 0 0 0 0 
c20 √ √        c20 90 10 0 0 0 0 0 
c20 √ √        c20 95 5 0 0 0 0 0 

c21 √ √         √  c21 90 10 0 0 0 0 1 

Ohai SC1                Ohai SC1               
c3 √ √  √ √     c3 25 10 0 40 15 0 0 
c4 √ √ √       c4 85 10 5 0 0 0 0 
c8 √ √        c8 90 10 0 0 0 0 0 

c10 √ √  √      c10 55 5 0 40 0 0 0 

c11 √ √            c11 85 15 0 0 0 0 0 



   

 

 

 

 

 

 

 

 

 

 

 

 
 
             
            
            
            
            
            
            
            
            
            
            
            
            
            
Figure 3.9: Percentage of XRD mineral matter in each canister, for Huntly, Ohai and Greymouth cores. Canister/sample intervals are shown on 
the x –axis, see Fig. 2.5 for exact locations of sample intervals. 
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3.3 Rank and Suggate Rank 
Rank of a coal can be estimated using volatile matter (ASTM D388, 2005b). Using this system, the Huntly 

coal would be classed as sub-bituminous B-A, Ohai coal as sub-bituminous C-A, and Greymouth coal high 

volatile bituminous A (Fig. 3.10). In all cases in-seam variation of volatile matter, and thus “rank”, can be 

noted (Fig. 3.2). This variation is most likely a result of type changes rather than true rank differences. To 

differentiate between rank and type changes all samples were plotted using a Suggate plot (Suggate, 1959). 

The relationship between Suggate rank and ASTM rank classification is shown in Table 3.4. 

 

When plotted on a Suggate curve (Fig. 3.11) type changes spread out along isorank lines, while rank changes 

spread out along the average type line. Average Suggate rank values are given in Table 3.5. It is important to 

note that the rank from all three locations is different and distinct, as illustrated in the Suggate plot. The 

Suggate plot shows sample variation along the isorank lines. This means that variation in the volatile matter 

and calorific value are from type changes, not rank changes. Although slight variation is also seen along the 

average type line, especially in the Greymouth core, these rank differences do not cross into the Ohai rank 

range. Hence, we have three distinct ranked coals.  

 
 
            
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           

 
Figure 3.10: American Society for Testing and Materials (ASTM) rank classification, based on volatile matter 

(daf), for Huntly, Ohai and Greymouth cores. 
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Table 3.4; Approximate rank correlations between Suggate rank and ASTMa rank. 

 
ASTM Rank Suggate Rank 
Lignite B and A 0.5 – 4.0 
Sub-bituminous C, B and Ab 4.0 – 8.0 
High volatile bituminous Cb, B and A 7.0 – 14.0 
Medium volatile bituminous 14.0 – 15.3 
Low volatile bituminous 15.3 – 16.7 
Semi-anthracite 16.7 – 19.8 
Anthracite 19.8 – 27.0 
Meta-anthracite  > 27 

 

a Because ASTM rank classification is for industrial purposes exact correlation is not possible. 
b The ASTM classification allows overlap between sub-bituminous A and high volatile bituminous C. 
 
 
Table 3.5: Average Suggate rank values, by location. 

 
Location Suggate Rank 

          Huntly 5.7 
          Ohai SC1 8.6 
          Ohai SC3 8.3 
          Greymouth 10.5 

 

3.4 Organic petrology 
3.4.1 Particulate Mounts 
Overall, there were only a few petrographic differences between cores for all locations (Table 3.6). Total 

vitrinite content ranged from 85.6% for the Ohai SC1 core to 86.9% for the Ohai SC3 core.  Liptinites ranged 

from a high of 9.5% in Ohai SC1, to 6.6% in Ohai SC3. Total inertinite ranged from 4.7% in the Huntly core 

to 6.4% in the Ohai SC3 core.  Ohai SC1 had the highest mineral matter content (3.4%) followed by 

Greymouth (1.7%). Although all locations had similar total vitrinite contents, Huntly had the least 

telocollinite. This telocollinite contained 9.3% cell telocollinite, compared with approximately 2% found in 

the other cores (Fig. 3.12). Figures 3.13 to 3.20 show the maceral composition for each sample studied in 

each location. Main differences between locations are described below. Figures 3.21 to 3.23 show 

photomicrographs of macerals and mineral matter viewed under the microscope. 

 

Samples from the Huntly core had high concentrations of cell telocollinite, especially in samples TW1 c19, 

c28, c32 and c37. There was an average of nearly 10% cell telocollinite, compared with under 3% in both 

Greymouth and Ohai cores. Large telocollinite was low in the Huntly area, relative to the other locations 

studied. Huntly had only 12% large telocollinite, while all other regions contained on average over ~20% of 

large telocollinite. 
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Figure 3.12: Average maceral contents in the Huntly, Ohai and Greymouth cores. 

 

 

 

 
 
  

 
  

 
 

 
 

 
  

           
           
           
           
           
           
           
           
           
           
           
           
           

           
 
           
Figure 3.13: Huntly pie graphs showing proportion of maceral groups in each canister interval.   
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Figure 3.14: Huntly pie graphs showing proportion of vitrinite macerals in each canister interval 
 
  

Samples from the Ohai SC1 core had higher mineral matter concentrations than all of the other areas, 

whereas SC3 had very low mineral matter content. Both Ohai locations showed high inertinites. SC1 had a 

high large telocollinite content (~32%). The maceral composition in SC3 was consistent throughout all the 

samples, both in terms of main maceral groups and in the vitrinite macerals. The biggest variable in SC3 was 

the amount of desmocollinite compared to large telocollinite, although desmocollinite was always the more 

dominant vitrinite maceral. 

 

The Greymouth core showed a lot of variety in terms of maceral composition. Samples c15, c20 and c21 had 

high mineral matter content. Sample c21 also lacked inertinite. Most samples had high desmocollinite 

concentrations, excluding c16, c20 and c21. Samples c16 and c20 had low values of vitrodetrinite. 

 

 
 
            
           
           
           
           
           
           
           
           
           
           
           
Figure 3.15: Ohai SC3 pie graphs showing proportion of maceral groups in each canister interval.   
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Figure 3.16: Ohai SC3 pie graphs showing proportion of proportion of vitrinite macerals in each canister 
interval  
 

 
  

 
 

 
 

 
     

           
           
           
           
           
           
           
Figure 3.17: Ohai SC1 pie graphs showing proportion of maceral groups in each canister interval.   
 
           
           
           
           
           
           

 
 
 
 
 
 
 
 

Figure 3.18: Ohai SC1 pie graphs showing proportion of proportion of vitrinite macerals in each canister 
interval  
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Figure 3.19: Greymouth pie graphs showing proportion of maceral groups in each canister interval.   
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           

Figure 3.20: Ohai SC1 pie graphs showing proportion of proportion of vitrinite macerals in each canister 
interval  

  
 

3.4.2 Block Mounts 
Petrographic observations of the Greymouth block samples were described qualitatively to identify mineral 

matter present, and modes of occurrence (Table 3.7).  Mineral matter was observed both infilling pore spaces 

and fractures (clays, carbonates and occasional pyrite) as well as detrital grains dispersed in the matrix 

(quartz, and occasional clay and pyrite). 
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Table 3.6: Percentages of maceral concentrations in selected samples. 

Vitrinite Liptinite Inertinite Mineral matter Total Total  Total Total  
Sample C Tell B Tell L Tell Des V-d Spor Cu Res L-d Sub Fl S-Fus Fus I-d Scel Pyr Qtz clay Cbn Fe-O Vit Lip Int MM
944 c5 3 17 17 45 5 1 3 1 2 0 0 1 1 2 1 0 0 0 0 0 87 7 6 0

944 c6 p8 A 6 12 21 42 3 1 4 0 2 0 0 2 1 2 2 0 1 0 0 0 85 8 7 1
944 c6 p8 B 3 18 13 47 6 0 2 0 4 0 0 2 1 2 1 0 0 0 0 0 87 7 5 1

944 c13 1 12 22 48 4 1 0 1 4 0 0 2 1 3 0 0 1 0 0 0 87 6 6 1
944 c15 1 13 22 42 4 1 2 2 2 3 0 1 1 2 0 0 2 1 0 0 83 10 4 3
944 c16 3 10 44 26 1 1 1 1 3 5 0 1 1 3 0 0 0 0 0 0 83 11 5 1
944 c20 3 9 39 31 2 1 1 2 3 1 0 1 2 1 1 0 2 0 0 0 84 8 6 2
944 c21 2 9 35 36 4 2 1 1 2 2 0 1 0 0 1 0 3 1 0 0 85 8 2 5
mean= 2.8 12.4 26.6 39.7 3.7 1.0 1.6 1.1 2.7 1.5 0.0 1.2 1.1 1.8 0.9 0.0 1.2 0.3 0.1 0.0 85.3 8.0 5.1 1.7
stddev= 1.4 3.3 10.3 7.6 1.5 0.4 1.0 0.6 0.9 1.5 0.1 0.5 0.5 0.8 0.5 0.1 1.1 0.3 0.1 0.1 1.7 1.5 1.3 1.4
TW1 c10 7 13 16 41 8 1 1 1 5 0 0 1 0 3 1 0 0 1 0 0 85 8 6 1
TW1 c11 5 15 10 44 5 1 1 3 10 1 0 1 0 1 2 0 0 0 0 1 79 15 5 1
TW1 c19 9 12 6 43 9 1 0 2 9 0 0 1 0 3 3 0 0 0 1 0 79 12 7 1
TW1 c21 5 6 20 54 4 1 0 1 3 1 0 0 0 3 1 0 0 0 1 0 88 6 5 1
TW1 c28 12 19 8 44 9 1 0 1 2 0 0 0 0 2 0 0 0 1 0 0 92 4 2 1
TW1 c32 12 13 18 40 6 1 1 1 5 0 0 0 0 3 2 0 0 0 0 0 87 8 4 1
TW1 c37 20 8 8 41 10 1 3 0 4 0 0 0 0 4 1 0 0 0 0 0 86 8 5 0
TW1 c43 6 17 18 38 8 1 3 0 4 1 0 0 0 2 2 0 0 0 0 0 87 9 4 0
mean= 9.3 12.9 12.9 43.2 7.2 0.9 1.2 1.1 5.1 0.5 0.1 0.4 0.1 2.6 1.6 0.0 0.1 0.4 0.3 0.2 85.6 8.8 4.7 1.0
stddev= 4.7 4.0 5.2 4.4 2.0 0.2 1.1 0.9 2.5 0.3 0.1 0.5 0.1 0.8 0.8 0.1 0.1 0.4 0.3 0.3 4.2 3.3 1.3 0.4
SC3-1 4 24 23 27 1 2 2 1 3 3 0 3 1 1 0 0 3 1 0 0 79 12 5 4
SC3-3 3 24 15 41 6 0 2 0 2 1 0 1 2 1 0 0 0 0 0 0 89 6 5 0
SC3-7 2 20 22 39 3 1 3 0 1 2 0 2 2 3 1 0 0 0 0 0 84 7 8 0
SC3-9 3 25 16 44 3 0 2 0 1 1 0 1 1 2 1 0 0 0 0 0 91 4 5 0

SC3-12 3 19 16 45 4 1 1 0 3 1 0 1 1 3 2 0 0 0 0 0 88 6 6 0
SC3-13 3 21 20 38 4 0 1 0 3 4 0 1 1 1 2 0 0 0 0 0 86 8 5 0
SC3-15 2 21 23 37 3 2 1 0 1 1 0 3 2 3 0 0 0 1 0 0 86 6 7 1
SC3-17 1 18 22 43 2 1 0 0 2 1 0 3 2 3 1 0 0 0 0 0 86 4 9 1
mean= 2.7 21.5 19.6 39.2 3.3 1.0 1.6 0.2 2.0 1.8 0.0 1.8 1.5 2.1 0.9 0.0 0.5 0.2 0.1 0.0 86.2 6.6 6.3 0.9
stddev= 0.8 2.4 3.1 5.2 1.3 0.7 0.9 0.3 0.8 1.2 0.0 0.9 0.5 0.8 0.5 0.0 1.0 0.3 0.1 0.0 3.4 2.4 1.5 1.2
SC1-3 1 15 39 30 3 1 1 1 3 2 0 1 1 1 1 0 0 0 0 0 88 8 4 1
SC1-8 1 18 50 13 1 1 1 4 4 3 0 1 1 1 1 0 2 1 0 0 82 12 3 3

SC1-10 2 11 29 40 3 1 0 0 3 1 0 2 3 2 1 0 0 0 1 0 86 5 8 1
SC1-11 4 23 9 38 3 0 3 1 4 3 0 1 1 0 1 0 2 7 0 0 76 12 4 8
mean= 2.0 16.8 31.6 30.1 2.2 1.0 1.3 1.3 3.6 1.9 0.0 1.1 1.5 1.0 1.0 0.0 1.0 2.0 0.2 0.1 82.8 9.2 4.7 3.4
stddev= 1.2 4.2 15.0 10.7 0.8 0.4 1.2 1.4 0.7 0.9 0.0 0.4 1.0 0.7 0.2 0.0 0.7 2.7 0.3 0.1 4.3 2.8 1.8 3.0  

 



   

Table 3.7: Summary of Greymouth Block samples 

ID Description Dominant 
Mineralisation 

Dominant 
mode of 

occurrence 

Coal 
type Ash % Measured 

gas (m3/t) 

Residual 
gas 

(m3/t) 

Lost gas 
(m3/t) 

Total 
gas 

(m3/t) 

2 

Canister two contains a large (2 cm in hand specimen) vitrain band. The band of 
telocollinite is homogeneous, but not featureless, with arrays of pre-existing material 
running N-S in the sample. There are also fracture systems present, with only one 
fracture mineralised. Desmocollinite has a dissolved appearance, with very little maceral 
matter in the desmocollinite. Small portions of pyrite are present, and clay is abundant, 
filling in remnants of cell wall material.   

Clays Infilling 
pores B<20 25.9 1.83 0.26 0.05 2.14 

5 

Canister five is heavily banded, with telocollinite being the dominant maceral. The 
telocollinite is heterogeneous, with smaller pieces of inertodetrinite and liptodetrinite 
scattered throughout. The desmocollinite has liptinites scattered throughout, but 
inertinites are scarce. Liptonites are predominantly sporinites, resinites and long bands of 
cutinites that can be followed for a distance. Clays are seen to be infilling some fractures, 
and are also observed infilling pore spaces in a large piece of fusinite. Scelrotinite does 
not have pores infilled with clay. Detrital quartz is also observed. 

Clays 
Infilling 

pores and 
fractures 

B<20 2.5 2.12 1.04 0.05 3.21 

6 

Canister six contains bands. Telocollinite is homogeneous and structureless. 
Desmocollinite contains Sporinite and bands of Cutinite, all aligned in a single orientation. 
Semi-fusinite does not have many intact spore spaces. A few pore spaces are infilled 
with clay, but many are not. Detrital quartz grains are present. One quartz grain was 
observed with pyrite mineralised on the quartz grain boundaries (see Fig 3.24). fractures 
are also present, with slight mineralisation  (slight surface reflections present) in zones 
along the fracture. 

Clays Detrital B<20 0.7 1.37 0.77 0.07 2.21 

13 

Canister thirteen contains multiple thick bands of homogeneous telocollinite. The 
desmocollinite contains abundant pieces if inertodetrinite, as well as liptodetrinites, 
Sporinite and Cutinite. Cutinite bands can be followed for some distance, and show 
orientation, although smaller desmocollinite components are not as obviously aligned. 
The desmocollinite has a greater abundance of the inertinite group compared with other 
block mounts. Pore spaces in semi-fusinite and fusinites show both mineralisation and 
free pore spaces. A large fusinite field was observed, with clay mineralisation in some of 
the pore spaces, and pyrite mineralisation around broken fragments of fusinite (Fig 3.24).  

Clays and 
pyrite 

Infilling 
pores B>20 4.3 1.81 0.45 0.06 2.31 

15 

 Canister fifteen contains bands of homogeneous, structureless telocollinite. 
Desmocollinite contains liptodetrinites, sporinites, cutinites, ineryo0detrinites, fusinites 
and semi-fusinites. Pore spaces in fusinites and semi-fusinites are predominantly 
mineralised, as are fractures. Often the whole length of the fracture is not mineralised; it 
is possible that parts of the fracture are new due to the drying out process, and 
developed along the previous fracture lines / planes of weakness. Where fractures bisect 
fusinites or semifusinites pore spaces and the fracture zones are mineralised 

Clays and 
carbonates 

Infilling 
pores and 
fractures 

B<20 5.3 1.13 0.60 0.04 1.77 

19 

Canister nineteen is banded with hetrogeneous telocollinite, with remnants of structure 
observed in the mid section, possibly old pore spaces.  Smaller telocollinite bands are 
also found dispersed throughout the desmocollinite. The desmocollinite has a moderate 
amount of liptinites and inertinites, as well as moderate amounts of resinites (including 
fluorinite) not observed in other samples. The desmocolloinite also contains moderate 
amounts of detrital quartz grains. Although there is a slight infilling of pore spaces, and 
slight mineralization of fracture systems, the mineral matter is dominated by detrital 
quartz grains.  Fig 3.24 shows a detrital pyrite fragment surrounded by quartz grains. The 
structure around the pyrite suggests that the pyrite was early forming, as the 
desmocollinite and telocollinite form an augen-like  lens around the grain. 

Quartz Detrital Dull 15.6 1.96 0.54 0.07 2.57 

20 
Canister twenty has the same appearance and characteristics of canister nineteen. It is 
dominated with detrital quartz grains, however mineralisation is also apparent in 
fractures, and clays infill pore spaces in fusinite grains. 

Quartz Detrital dull 7.0 1.03 0.45 0.09 1.57 

21 
Canister twenty-one contains a thick, 1 cm (in hand specimen) band of homogeneous, 
structureless telocollinite.  The desmocollinite is similar to the desmocollinite found in 
canisters nineteen and twenty, although there is not as much macerals from the inertinite 
group present. Clay was observed occasionally infilling pore spaces. 

Quartz Detrital B>20 13.6 1.85 0.43 0.04 2.32 

23 
Banded telocollinite is present, with multiple, small scale bands present throughout the 
desmocollinite.  Large fusinite and semi-fusinite macerals wre present, with a slight 
infilling of pore spaces with clay. Detrital quartz grains are also present. This sample 
showed a strong orientation, with sporinites, cutinites, liptodetrinites, semi-fusinites and 
fusinites all aligned in a single direction. 

Quartz Detrital B>20 4.0 1.56 0.41 0.05 2.02 
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3.5 Gas quantity, quality and type 
3.5.1 Adsorption 
Isotherm results are calculated to standardised conditions of 20°C and 1 atmospheric pressure. Graphs are 

calculated using the Langmuir equation VA = VL*PH/(PH + PL), where PH is the hydrostatic pressure, and VL 

and PL are the Langmuir coefficients. The graph is calculated using dry ash free (daf) Langmuir coefficients, 

to eliminate the effect of the ash yield when comparing the holding capacities. The isotherms do not reflect 

the assumed trend of increasing holding capacities with an increase in coal rank, as the Ohai isotherms 

contain a higher holding capacity than the higher ranked Greymouth isotherm.  

 
Table 3.8: Langmuir coefficients for the studied areas 

Location Analysis temp 
(°C) 

PL VL 

aa 4.10 aa 10.59 Huntly 23.8 
daf 4.10 daf 12.46 
aa 3.73 aa 11.15 Ohai 24 
daf 3.73 daf 14.47 
aa 7.45 aa 20.63 Greymouth 25 
daf 7.45 daf 24.67 

 

The Langmuir coefficients VL (volume) and PL (pressure) are shown in Table 3.8 for both as received (aa) 

and dry ash free (daf). Tables 3.9 and 3.10 summarise the holding capacity for each location at three different 

pressures; 2 MPa, 4 MPa and 8 MPa (both aa and daf). The pressure is a hydrostatic pressure, which is 

approximately proportional to depth in New Zealand. Hence, 4 MPa is equivalent to 400 m depth. Adsorption 

isotherms show the Greymouth isotherm nearly 50% greater than the Huntly isotherm at 2 MPa, whereas both 

Ohai isotherms act independently of each other. Ohai A is more than twice as high as the Greymouth 

isotherm, while the Ohai B isotherm is just above the Huntly curve. However, at 8 MPa, both Ohai isotherms 

show greater holding capacity than both the Greymouth and the Huntly isotherms. At this pressure all 

isotherms have levelled out towards an asymptote, with only 1 m3/t of methane between Ohai B, Greymouth 

and Huntly, respectively. Ohai A holds approximately 3 m3/t more gas than Ohai B (Fig. 3.25). 

 
       Table 3.9: Adsorption capacity, given as gas content (m3/t), for different pressures (as analysed). 

Pressure Location 
2 MPa 4 MPa 8 MPa 

Huntly 3.47 5.23 7.00 
Ohai A 3.89 5.77 7.60 
Ohai B 4.37 7.21 10.68 

Greymouth 3.80 6.02 8.50 
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     Table 3.10: Adsorption capacity, given as gas content (m3/t), for different pressures (dry, ash free). 

Pressure Location 
2 MPa 4 MPa 8 MPa 

Huntly 4.08 6.15 8.23 
Ohai A 5.05 7.49 9.87 
Ohai B 12.02 13.21 13.89 

Greymouth 7.08 8.58 9.60 
 
            
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           

Figure 3.25: Adsorption isotherms for the studied regions, New Zealand. All have been calculated using daf 
(dry, ash free) Langmuir coefficients to eliminate ash influence, for comparison. 

 
3.5.2 Desorption  
Gas volumes (m3/ton of coal) for each location are given in Appendix G. Total gas comprises lost, measured 

and residual proportions. The average total gas values for the Huntly, Ohai and Greymouth cores are 1.6 

m3/ton (std = 0.24, n = 37); 4.7 m3/ton (std = 0.89, n = 29); 2.35 m3/ton (std = 0.75, n = 24) respectively (Fig.  

3.26). 

 

Total gas measurements plotted against depth are depicted in Figure 3.27.  All locations show significant 

downhole variation in gas content (Table 3.11). Huntly contains 57% of variation in gas volume, Ohai 

contains 48% variation, while Greymouth shows the largest range, with 82% variation in total gas volume. 

 
    Table 3.11: Variation in total gas volumes, for the Huntly, Ohai and Greymouth samples. 

Location Gas Variation Lowest Desorption 
(m3/t) 

Highest Desorption 
(m3/t) 

Huntly 57% 0.9 2.1 
Ohai 48% 3.0 5.8 

Greymouth 82% 0.7 3.7 
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Figure 3.26: Average values, with standard deviation bars, of total gas content (m3/t) in the studied locations, 
New Zealand. 

 
 
            
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           

Figure 3.27: Down-hole total gas variation, in the Huntly, Ohai and Greymouth cores. Depths are from surface. 

 ave = 2.35 
std = 0.75 
n = 24  

ave = 1.6 
std = 0.24 
n = 37  

ave = 4.7 
std = 0.89 
n = 29  
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3.5.3 Gas Saturation 
Gas saturation data are given in Appendix I. The Huntly core has a saturation yield ranging from 18.3 - 

42.7%; the Ohai SC1 core ranges from 55.8 – 98.8%; the Ohai SC3 core has saturation yield ranging from 

47.7 – 90.8%; the Greymouth from 12.7 – 70.2%. The Ohai cores contain the highest saturated coals. They 

also contain the highest desorbed gas volumes, a function of the high saturation content.   

 

3.5.4 Gas Isotopes 
Isotopic signatures of δD and δ13C were determined from various sources (Table 3.12, Fig. 3.28). Huntly 

contains the lightest δ13C and δD values, pointing to a secondary biogenically sourced gas, from CO2 

reduction. Greymouth has heavier δ13C and δD isotopes, as expected from a higher ranked coal, and these 

also fall into a CO2 reduced, biogenic gas source.  As the Ohai coal falls mid way in between the Huntly and 

the Greymouth coal, in terms of thermal maturity or rank, one would expect the isotopic signatures to also 

fall in between the Huntly and Greymouth gas isotopes. However, this is not the case, the gas isotopes from 

the Ohai core are more mature, and plot as heavier δ13C and δD values. The source of the Ohai gas plots from 

a biogenic / transitional (that is, trending towards thermogenic) origin. 

 
Table 3.12: Gas isotope values, for the Huntly, Ohia and Greymouth samples. Greymouth and Huntly values are from 
unpublished Solid Energy NZ Ltd. data or laboratory. 
Location δD (per mil) δ13C (per mil) References 
Ohai -206.0 -58.70 Lyon and Giggenbach, 1994 
Greymouth 944 -210.0 -63.40 GNS Science 
Greymouth 944 -246.0 -61.60 GNS Science 
Greymouth (other) -230.0 -59.30 GNS Science 
Huntly TW1 -225.0 -65.50 GNS Science 
Huntly (other) -216.0 -65.70 Rafter, Canada  
Huntly (other) -204.0 -67.60 Rafter, Canada  
Huntly (other) -209.7 -65.88 Geoscience Australia 
Huntly (other) -210.6 -65.77 Geoscience Australia 
Huntly (other) -206.4 -65.71 Geoscience Australia 
Huntly (other) -206.5 -65.50 Geoscience Australia 

 
3.5.5 Gas Quality 
Gas quality analyses are shown in Table 3.13 reported with O2, N2 and air free corrections. The Huntly core 

has 96.4 % CH4, the Ohai cores have 92.79 and 95.59 % CH4, and Greymouth has the lowest CH4 content, of 

89.16%. 
Table 3.13: Gas quality data, corrected for free air, O2 and N2.( n=1 for Huntly and Greymouth; n=2 for Ohai). 

Location Gas Huntly Ohai Greymouth 
CH4 % 96.40 92.79 95.59 89.16 
CO2 % 3.54 6.63 4.01 6.88 
C2H4 ppm 0.00 0.00 0.00 0.00 
C2H6 ppm 611.41 2661.65 3683.88 0.04 
H2 % 0.00 3154.48 340.08 0.00 
O2 % 0.00 0.00 0.00 0.00 
N2 % 0.00 0.00 0.00 0.00 



    

 
 

Figure 3.28: Gas isotopes of Huntly, Ohai, Greymouth and the Powder River Basin (PRB). The PRB is included as an example of a biogenic by fermentation 
sourced gas, which shows a different pathway of gas formation from biogenic by CO2 reduction sourced gas. Sources of data are included in Table 3.12, except  
for PRB, which is sourced from Gorody (1999). 



 
 

Chapter Four 

Gas Associations   
 
 

 
To determine associations and correlations of gas volume with organic and inorganic components, correlation 

charts were produced (Appendix J). Because of the large dataset involved, coefficients above the significant 

correlation coefficient at the 95% confidence limit (~ R2 > 0.50) were focussed on (Table 4.1). Summary 

tables of variables with high correlation coefficients (~ R2 >0.5) were produced, then graphed (Appendix K). 

Some of the associations proved false, artefacts from clustering of data and outlying points. Table 4.2 

summarises the minimum and maximum correlation coefficients, and how many coefficients were above the 

significant correlation coefficient. 
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Table 4.1: Significant levels of correlation coefficients, at the 95 % confidence level. n = number of samples, df = 
degrees of freedom. 
 

Analysis Type 
Proximate Maceral XRF XRD Location 

n (df) 5 % n (df) 5 % n (df) 5 % n (df) 5 % 
Huntly 33 (31) 0.344 8 (6) 0.707 33 (31) 0.344 8 (6) 0.707 
Ohai SC1 9 (7) 0.666 4 (2) 0.95 9 (7) 0.666 5 (3) 0.878 
Ohai SC3 18 (16) 0.468 8 (6) 0.707 18 (16) 0.468 8 (6) 0.707 
Greymouth 23 (21) 0.413 8 (6) 0.707 19 (17) 0.456 10 (8) 0.632 
Average 0.47275 0.76775 0.4835 0.731 
 
Table 4.2: Summary of correlation coefficients between proximate, XRD, XRD, maceral analyses and gas values. MG = 
measured gas; RG = residual gas; LG = lost gas; TG = total gas. 
 

Analysis Location min R2 min parameter max R2 max parameter 
% above 

significant 
R2 value 

Huntly 0.03 moisture / MG -0.56 ash / TG 20.8 
Ohai SC1 - VM / LG 0.90 CV / MG 29.0 
Ohai SC3 - CV / RG -0.80 moisture / RG 33.3 

Proximate 

Greymouth -0.01 Suggate rank / LG -0.62 ash / TG 58.0 
Huntly -0.04 ankerite / MG -0.52 kaolinite / TG - 

Ohai SC1 -  0.84 quartz / LG - 
Ohai SC3 -0.11 quartz / LG 0.75 kaolinite  / RG 10.0 XRD 

Greymouth -0.04 muscovite / TG 0.97 siderite / LG 15.0 
Huntly -  0.54 Fe2O3 / TG 18.0 

Ohai SC1 0.03 SiO2 / LG 0.77 TiO2 / TG 11.4 
Ohai SC3 - Mn3O4 / LG -0.91 Na2O / RG 61.0 

XRF 

Greymouth 0.05 Na2O / LG 0.99 P2O5 / LG 11.4 
Huntly - Sporinite / LG 0.86 cutinite / TG 5.2 

Ohai SC1 0.03 band telocollinite / MG -0.99 band telocollinite / LG 4.5 
Ohai SC3 -0.01 vitrodetrinite / MG -0.90 fusinite / LG 7.1 Maceral 

Greymouth -0.03 inertodetrinite / RG 0.82 band telocollinite / RG 7.3 
 
4.1 Organic Correlations 
4.1.1 Macroscopic 
There were no correlations of gas with either the percent or size of vitrain bands (Figs. 4.1 to 4.3). However, 

vitrain band proportion combined with microscopic data (structured vitrinites: large telocollinite and total 

telocollinite) gave significant correlations in the Huntly coalfield, as discussed below. 

 

4.1.2 Microscopic 
Organic petrology data were initially treated in two ways when comparing with gas content. Firstly, as only 

organic material (i.e. maceral data all sums to 100%) and secondly, as a function of whole coal, where the 

proportion of mineral matter is also incorporated. It was found that in all cases, that there was little difference 

between these two data treatments. Figure 4.4 shows a typical maceral component and its relationship to gas 

both with and without mineral matter incorporated. Therefore, it was thought prudent to use the organic 

petrography results that take into account mineral matter as that best reflects the in situ conditions. 
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Figure 4.1: Vitrain and total gas relationships in the Huntly core. Graph A shows both the down hole variation 
of total gas content and vitrain content, with depth from surface. Graph B shows the association of total gas 

and vitrain yield. 
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Figure 4.2: Vitrain and total gas relationships in the Ohai core. Graphs A show both the down hole variation of 
total gas content and vitrain content, with depth from surface. Graphs B show the association of total gas and 

vitrain yield. 
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Figure 4.3: Vitrain and total gas relationships in the Greymouth core. Graph A shows both the down hole 
variation of total gas content and vitrain content with depth from surface. Graph B shows the association of 

total gas and vitrain yield. 
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Figure 4.4:  Graphs A show maceral correlations with mineral matter removed, while graphs B show maceral 
correlations with mineral matter incorporated into the maceral content. 

 
In the Huntly and Ohai SC3 coal cores there were only a few correlations with maceral data., whereas in 

other locations had multiple correlations between macerals and gas content; for example, Ohai SC1 had 

strong correlations with lost gas, total gas and measured gas. Overall, however, there were only a few strong, 

statistically significant associations. None of the associations found in one location was found in subsequent 

locations; all correlations were either bound by basin or rank. A selection of significant associations are 

represented in Table 4.3, based on the preliminary correlation tables.  

 

Initial analysis of the data indicate that samples from the Huntly core had only four relatively weak 

associations: calorific value and measured gas; ash and total gas; calorific value and total gas; and fixed 

carbon and total gas.  However, when maceral data were combined with vitrain %, a strong positive 

association with structured vitrinite and total gas content is present. Both vitrain % plus large telocollinite 

and vitrain % plus total telocollinite yield significant correlations. Although this is not present in the other 

New Zealand locations, it is present in the Powder River Basin, where structured vitrain and total gas yield a 

very strong positive correlation, ~ R2 = 0.9 (Moore et al, 2002b)  (Fig. 4.5). 

A B 
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Table 4.3: Significant correlations between maceral data and gas data. (R2 ~>0.50). 
 

Location Measured gas Residual gas Lost gas Total gas 
fusinite semi-fusinite semi-fusinite cell telocollinite 
 fusinite fusinite desmocollinite 
 iron-oxide iron-oxide cutinite 
 total mineral matter  resinite 
   semi-fusinite 
   quartz 

Huntly 

   total mineral matter 
Resinite desmocollinite cell telocollinite cutinite 
lipto-detrinite sporinite lipto-detrinite resinite 
quartz resinite fusinite lipto-detrinite 
total liptinite semi-fusinite  quartz 
total mineral matter quartz  total liptinite 
 clay  total mineral matter 
 total vitrinite   
 total liptinite   

Ohai SC3 

 total mineral matter   
cell telocollinite sporinite cell telocollinite desmocollinite 
large telocollinite scelrotinite band telocollinite fusinite 
fusinite quartz sporinite scelrotinite 
scelrotinite total vitrinite cutinite carbonate 
iron-oxide  lipto-detrinite iron-oxide 
total inertinite  Suberinite  
  semi-fusinite  
  fusinite  
  inerto-detrinite  
  quartz  
  clay  
  carbonate  
  total vitrinite  
  total liptinite  
  total inertinite  

Ohai SC1 

  total mineral matter  
suberinite band telocollinite large telocollinite inerto-detrinite 
fusinite large telocollinite desmocollinite pyrite 
inerto-detrinite desmocollinite vitro-detrinite carbonate 
pyrite vitro-detrinite suberinite iron-oxide 
carbonate cutinite inerto-detrinite  
iron-oxide suberinite pyrite  
 pyrite iron-oxide  
 iron-oxide total liptinite  
 total vitrinite   

Greymouth 

 total mineral matter   
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Figure 4.5: Main maceral correlation in the Huntly drill core. The Powder River basin is used to compare a 

similar relationship (vitrain and total gas). 
 

Only one of the Ohai SC3 graphs proved to have any genuine correlations. All other correlation coefficients 

were artefacts of outliers and clustering data points. Fusinite correlated strongly with lost gas, with an R2 = -

0.8122 (Fig. 4.6). The relationship could be a result of gas being trapped in pore spaces in the fusinite 

maceral. Ohai SC1 also showed the majority of significant correlations from the Ohai SC1 samples were with 

lost gas (Fig. 4.7). Both the inertinite and liptinite groups had strong relationships with lost gas; the inertinite 

group increasing as lost gas increases (opposite to what was found in Ohai SC3), while the majority of the 

liptinites decreased with increasing lost gas values.   
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Figure 4.6: Main maceral correlation in the Ohai SC3 drill core. 
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Figure 4.7: Main maceral correlation in the Ohai SC1 drill core. 
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Samples from the Greymouth core showed an interesting association with residual gas (Fig. 4.8). Structured 

vitrinite (large telocollinite) correlated positively with residual gas, whereas unstructured vitrinite 

(desmocollinite) had an inverse correlation.  More residual gas may be trapped in the matrix material, 

whereas the gas may not be stored efficiently in the structured vitrinite as it can simply desorb off, if there is 

not a sufficient seal in the coal.  

 
           
          
          
          
          
          
          
          
          
          
          
          
          

Figure 4.8: Main maceral correlation in the Greymouth drill core 

 
4.2 Geochemical Correlations 
4.2.1 Proximate analyses 
Proximate and calorific value analyses are reported on a dry ash free (daf) basis, except for ash (dry basis) 

and inherent moisture (as analysed basis). There were no statistically significant associations between gas 

content and most proximate and calorific value analyses. There were some apparent relationships as indicated 

by correlation coefficients (Table 4.4), but under additional scrutiny these proved to be related to ash yield. 

Ash yield showed the most consistent association in all locations studied, when correlated with total gas 

volume.  

 
Table 4.4: Significant correlations between proximate data and gas data. (R2 ~>0.50). 
 

Location Measured gas Residual gas Lost gas Total gas 
Huntly    ash 

moisture ash ash moisture Ohai SC3 ash   ash 
ash   ash 
volatile matter   volatile matter 
fixed carbon   fixed carbon 
calorific value   calorific value 

Ohai SC1 

Suggate number   Suggate number 
moisture Suggate rank  moisture 
ash   ash 
volatile matter   volatile matter 
fixed carbon   fixed carbon 
calorific value   calorific value 

Greymouth 

   Suggate rank 
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The inverse relationship between gas content and ash yield is shown in Figure 4.9.  Although all drill cores 

showed strong correlations between ash yield and gas content, the relationship between ash and gas is not as 

clear for Ohai SC3 and Huntly cores because samples from Ohai SC3 and Huntly drill core contain a 

predominantly low ash yield. Ohai also showed strong negative correlations between ash yield and both 

measured and residual gas (Fig. 4.10).  
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Figure 4.9: The association between ash yield and total gas volume, in all the selected cores. 
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Figure 4.10: The association between ash yield and measured and residual gas volume, in the Ohai samples. 
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4.2.2 Ash constituents 
Ash constituents had a large range of correlations with gas data (Appendix J). In some cores, especially Ohai 

SC3, correlations were strong. This was expected as the ash yield is the main controlling factor in the amount 

of gas present. However, in other locations, for example Greymouth, there were only a few correlations. 

Table 4.5 shows a list of all significant correlations. 

 
 
Table 4.5: Significant correlations between  ash constituent data and gas data. (R2 ~>0.50). 
 

Location Measured gas Residual gas Lost gas Total gas 
   SiO2 
   Al2O3 
   Fe2O3 

Huntly 

   MgO 
SiO2 SiO2   
CaO Na2O   
MgO SO3   
K2O Fe2O3   

Ohai SC3 

Fe2O3    
Al2O3   Al2O3 Ohai SC1 TiO2   TiO2 
  Mn3O4  Greymouth   P2O5  

 

 

Although correlation coefficients for the Huntly core contained low R2 values, when plotted trends appeared 

real (Fig. 4.11).  Genuine trends are also seen in Ohai SC3 and SC1 (Figs. 4.12 and 4.13). However, when 

further investigating Ohai SC3, it was observed that strong correlation coefficients are only present when 

analysing the whole drill core. If the Ohai SC3 rider seam is removed from the dataset, there are few 

significant correlations, and they are similar with Huntly correlation coefficients (Fig. 4.14). Combined data 

from the rider seam and the main seam in the Ohai SC3 drill core has given a false impression of correlations 

being stronger than they actually are for a single seam intersection. Data for the Ohai SC1 core could not be 

separated into a main coal seam and a rider seam, as was done in the Ohai SC3 core, because the Ohai SC1 

core did not contain a single, thick seam. There were no strong correlation coefficients in the Greymouth 

core. Both correlation coefficients appeared strong because of a few outlying samples increasing the R2 value. 
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Figure 4.11: Significant correlations between gas data and ash constituents, Huntly drill core. 
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Figure 4.12: Significant correlations between gas data and ash constituents, Ohai SC3 drill core. 
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Figure 4.12 (continued): Significant correlations between gas data and ash constituents, Ohai SC3 drill core. 
 
           
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

 
 
 
 

Figure 4.13: Significant correlations between gas data and ash constituents, Ohai SC1 drill core. 
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 Figure 4.14: Significant correlations between gas data and ash constituents, Ohai SC3 drill core – main seam. 
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Figure 4.14 (continued): Significant correlations between gas data and ash constituents, Ohai SC3 drill core – 
main coal seam. 

4.2.3 Mineralogy 
Correlation coefficients for mineral matter and gas data ranged from very low R2 values (0.00 ankerite and 

measured gas in Ohai SC1 core) to high R2 values (0.97 siderite with lost gas in the Greymouth core) 

(Appendix J). Correlations would be expected to be similar to ash constituent correlations, because of the 

intimate relationship with ash constituents. However, as mineralogical results are less precise, as a result of 

analyses being on a spot basis (where the X-ray beam hits a single spot on the glass slide) not on whole coal, 

ash constituent correlations will be more representative of what inorganic components are in the coal. Table 

4.6 shows a list of all significant correlations. 
 
Table 4.6: Significant correlations between mineralogical data and gas data. (R2 ~>0.50). 
 

Location Measured gas Residual gas Lost gas Total gas 
   quartz Huntly    kaolinite 
quartz siderite siderite quartz 
kaolinite   kaolinite 
calcite   calcite Ohai SC3 

ankerite   ankerite 
 quartz quartz  
 siderite kaolinite  
  ankerite  Ohai SC1 

  siderite  
quartz pyrite siderite quartz Greymouth siderite   siderite 

 

Ash constituent data can be used to infer what minerals are present, and in what abundance, although certain 

oxides form a major part of multiple minerals. Table 4.7 summarises the oxides present, and possible 

minerals that may be present, based on XRD analyses for the Greymouth, Ohai and Huntly core samples (Li 

et al., 1999; Li, 2002; Shearer, 1992; Newman, 1988; this study). 
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Table 4.7: Oxides present in coal samples, and possible associated minerals, based on XRD studies (Li et al., 1999; Li, 
2002; Shearer, 1992; Newman, 1998; this study.)        
 

Oxides present Possible minerals present (from various XRD analyses) 
SiO2 quartz; kaolinite; muscovite; illite 
Al2O3 kaolinite; muscovite; illite 
Fe2O3 siderite; ankerite; dolomite 
CaO calcite; ankerite; apatite; salt (gypsum) 
MgO calcite; ankerite; dolomite 
Na2O salt (halite); “ankerite” Mg replacement 
K2O “ankerite” Mg replacement; muscovite; illite 
TiO2 rutile; illmenite; mica 
Mn3O4 ankerite; pyrite 
SO3 pyrite; sulphur from coal 
P2O5 apatite 

 

Although Huntly correlations are weak (R2 values of -0.2272 and 0.2662), they appear to be genuine, with no 

clustering of samples and outliers skewing data (Fig. 4.15).  
 
           
          
          
          
          
          
          
          
          
          
          
          
          

Figure 4.15: Main significant correlations with gas and mineralogical data, in the Huntly core. The main 
correlations were found between quartz and kaolinite and total gas volumes. 

 
Genuine trends are also seen in Ohai SC3, where some correlation coefficients are stronger, for example 

calcite with total gas R2 = 0.5105, showing a greater affinity between mineral matter and gas volume (Fig. 

4.16).   Ohai SC1 has a mixture of genuine trends with lost gas and quartz, ankerite and siderite (R2 values 

0.8411, -0.6205 and -0.7559 respectively.) However, coefficients with residual gas show a clustering of 

points with an outlier skewing data to create stronger R2 values (Fig.  4.17). Samples from the Ohai SC1 core 

are few (n = 5), so, overall, the results are considered inconclusive. Correlation coefficients from the 

Greymouth samples are similar to correlations seen for the Ohai SC1 samples; that is, there are some genuine 

correlations, while others are an artefact of outlier samples (for example, siderite and lost gas, R2 = 0.9365; 

siderite and total gas, R2 = 0.6512; pyrite and residual gas, R2 = 0.3579, Fig. 4.18). Correlations with siderite 

were strong, although only two samples contained siderite, indicating there may be a direct link with the 

occurrence of siderite with increased gas volumes. Again, a greater number of samples would yield more 

information to whether these correlations hold true.   
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Figure 4.16: Significant correlations with gas and mineralogical data, Ohai SC3, based from correlation 
coefficient chart. Some correlations (for example kaolinte and total gas; siderite and lost gas; kaolinite and 
measured gas are a function of clustering points.  
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  Figure 4.16 (continued): Significant correlations with gas and mineralogical data, Ohai SC3. See page 88 for 
full description. 

 
 
     

 

      
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
Figure 4.17: Significant correlations with gas and mineralogical data, Ohai SC1, based from correlation coefficient chart. 
Some correlations (for example siderite and total gas; siderite and lost gas; ankerite and lost gas are a function of 
clustering points. 
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Figure 4.18: Significant correlations with gas and mineralogical data, Greymouth, based from correlation 
coefficient chart. Some correlations (for example siderite and measured gas; siderite and lost gas; pyrite and 
residual gas; siderite and total gas) are a function of clustering points.  
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4.3 Saturation Correlations 
The degree to which coal samples were saturated with gas was compared with proximate, maceral, ash 

constituent, and mineralogical analyses. Proximate analyses used a dry, ash free (daf) correction, except for 

inherent moisture (as analysed [aa]) and ash (dry basis [db]). Table 4.8 summarises the range of correlation 

coefficients with each type of analysis, and the percentage of correlation coefficients that were below the 

significant correlation coefficients expressed in Table 4.1. Many of the correlations show wide scatter in the 

data points (the Huntly saturation data and ash constituent correlations, for example) or outlying values 

increasing the correlation coefficient (mineralogical correlations with Ohai SC1 and Huntly saturation data). 

Again, there were no consistent associations between basins.   

 
Table 4.8: Summary of correlation coefficients between percent saturation and other parameters. 
 

Analysis Location min R2 min parameter max R2 max parameter 
% of data 

under 
significant 
R2 value 

Huntly 0.23 moisture -0.56 ash 40 
Ohai SC1 -0.23 moisture 0.79 calorific value 60 
Ohai SC3 -0.01 calorific value -0.62 ash 60 

Proximate 

Greymouth 0.63 calorific value -0.69 ash 0 
Huntly -0.39 calcite, ankerite -0.52 kaolinite 100 
Ohai SC1 0.01 ankerite -0.78 siderite 100 
Ohai SC3 0.10 siderite 0.72 calcite 20 XRD 

Greymouth 0.00 muscovite 0.81 siderite 80 
Huntly 0.01 Mn3O4 0.54 Fe2O3 45 
Ohai SC1 -0.08 K2O -0.81 TiO2 73 
Ohai SC3 -0.02 P2O5 0.73 CaO 27 XRF 

Greymouth 0.14 TiO2 -0.46 K2O 82 
Huntly 0.00 large telocollinite 0.86 cutinite 94 
Ohai SC1 0.17 cutinite 0.94 fusinite 94 
Ohai SC3 0.02 suberinite -0.65 cutinite 100 

Maceral 

Greymouth -0.01 total inertinite 0.59 inertodetrinite 100 
 

Samples from the Greymouth core showed a strong affiliation between proximate analyses and the saturation 

yield (Figs. 4.19). These samples had strong positive correlations between moisture, fixed carbon and volatile 

matter and % saturation, and strong negative correlations between ash and calorific value and saturation 

yield. Samples from the Ohai and Huntly cores also had a few significant correlations between the % 

saturation and ash yield (in both areas), and moisture, volatile matter, fixed carbon and calorific value (Figs. 

4.19).   

 

There were only a few correlations with % saturation and mineralogy, and these were artefacts of clustering 

(for example, Greymouth and Ohai SC1 samples: siderite and % saturation), or subject to wide scatter in data 

points (for example, Huntly and Ohai SC3 samples: Kaolinite, quartz and calcite and saturation yield).  
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Figure 4.19: Summary of significant correlations 
between proximate analyses and percent saturation. 
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The Ohai cores contained many strong correlations between ash constituents and % saturation (Fig. 4.20). 

Al2O3 and TiO2 had strong negative correlations with % saturation in both Ohai SC1 and SC3 samples. CaO 

and Na2O3 had strong positive correlations with saturation in Ohai SC1 samples, while Fe2O3, and MgO all 

had high positive correlation coefficients with saturation in Ohai SC3 samples. SiO2 had a high negative 

correlation with saturation in Ohai SC3 samples. There were only a few correlations in the Huntly drill core,  

and these both had a wide scatter in data points. Samples from Greymouth did not contain any correlations 

between ash constituents and % saturation. 

 

Maceral correlations were strongest with % saturation in the Huntly core (especially with the liptinites 

cutinite and resinite, Fig. 4.21). Desmocollinite and cell telocollinite also strongly correlated with the % 

saturation in Huntly samples. The Ohai SC3 core contained strong correlations between % saturation and 

cutinite, resinite and liptodetrinite. The Ohai SC1 core showed a strong correlation between fusinite and % 

saturation, (R2 = 0.988, Fig. 4.21). Samples from Greymouth also had some strong correlations between 

inertinites (fusinite and inertodetrinite) and % saturation. The main trend with maceral and saturation 

correlations were that liptinites and inertinites were closely associated with saturation yield. However, when 

looking at gas data (measured, residual, lost and total) vitrinites were more closely associated with gas 

content. 

 
 
     

 
      

           
           
           
           
           
         
          
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
Figure 4.20: Summary of significant correlations between ash constituents and percent saturation. 
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Figure 4.21: Summary of significant correlations between maceral analyses and percent saturation. 
 
4.4 Summary by Location 
A brief summary is given, by location, of all the relevant above-mentioned correlations. These are further 

discussed in Chapter 5. There was only one association that was found in all basins: ash yield with total gas 

content. Although the organic chemistry was related to gas content in each location, different macerals were 

associated with different types of gas volume. It is unknown if this is an effect of rank, or of a more localised 

nature, such as depositional environment. 

 

Relevant gas associations found in the Huntly drill core were related to two facets: macerals and 

geochemistry. The following correlations were found: 

- Structured vitrinite coupled with vitrain % (that is, vitrain % and large telocollinite, and vitrain % and 

total telocollinite) yielded strong positive correlations with the total gas content. It is thought that 

structured vitrinites allow gas flow through the woody material, resulting in elevated total gas 

readings (Moore et al., 2002b).  

-  The ash yield correlated negatively with the total gas volume (see Chapter 5). 

- The % saturation correlated negatively with the ash yield. 

- The % saturated correlated well with macerals in the Huntly drill core. Both cutinite and resinite had 

strong associations. 
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The two Ohai drill cores’ contained the following relevant correlations: 

- Any maceral correlations were only associated with lost gas.  

- Ohai SC3 samples had a very strong negative correlation with fusinite and lost gas, possibly a result 

of gas being trapped in pore spaces in the fusinite maceral.  

- Ohai SC1 samples also showed macerals from the inertinite group correlating with lost gas. 

However, in the SC1 drill core the samples correlated positively. Liptinites also correlated positively 

with lost gas in the SC1 drill core. The low number of samples in the SC1 drill core make it hard to 

assess the accuracy of the correlations, however it is clear that in both SC1 and SC3 there are 

associations with the inertinite group and lost gas.  

- The ash yield is negatively associated with total gas volumes in both SC3 and SC1 drill cores. Ohai 

SC3 samples also showed the ash yield correlating with both measured (negative) and residual 

(positive) gas volumes.  

- The minerals calcite and kaolinite also show some strong correlations in the SC3 drill core (direct 

and inverse, respectively).  It is expected that mineral matter should be related to the gas volume, to 

some degree, because of the intimate relation of mineral matter and ash. 

- The % saturation correlated negatively with the ash yield. 

- The Ohai samples had significant correlations between ash constituents and the % saturation. 

- The % saturation correlated strongly with cutinite, resinite and liptodetrinite in the SC3 samples, and 

with fusinite in the SC1 samples. 

 

Correlations in the Greymouth drill core were also related to two distinct facets: organic petrology and 

geochemistry.  

- Total vitrinite correlated with gas volume.  

- Large telocollinite correlated positively with residual gas. 

- Desmocollinite was associated negatively with residual gas. 

- Maceral relationships with residual gas volumes in the Greymouth core may be a result of residual 

gas being trapped in the matrix material. In more structured vitrinite the residual gas can desorb off 

quickly, leading to a negative correlation. 

- The ash yield is negatively correlated with total gas volume. 

- The % saturation had strong positive correlations with moisture, fixed carbon, volatile matter, and 

negative correlations with calorific value and the ash yield. 

- The % saturation correlated strongly with fusinite and inertodetrinite. 

 



 
 
 

Chapter Five 
Discussion 

 
 

 
This study has identified a number of associations between gas content and coal properties in New Zealand 

coals. The ash yield had the strongest correlation with respect to gas variation, in all areas studied. However, 

when the ash yield is less than 10 %, this relationship breaks down and there is no relationship between the 

two parameters. Some of the variation seen in samples with less than 10% ash yield can be calculated to the 

organic components of coal, but these are site specific, possibly a function of the rank of the coal. The 

thermal maturity of the coal is known to influence methane the holding capacity (Hildenbrand et al., 2006; 

Levy et al., 1997; Laxminarayana and Crosdale, 2002.; Scott, 2002; Bustin and Clarkson, 1998; Hacquebard, 

2002; Creedy, 1988), but the samples studied do not follow the generalised trend. This is because the Ohai 

samples behave as a more thermally mature coal than the higher rank (relative to Ohai) Greymouth samples, 

in relation to gas volume, methane adsorption capacity, and also gas composition.  

 

This chapter is organised into six sections, the first five discuss the relationships identified above, and their 

importance to coal seam gas and the sixth discusses the specific ‘problems’ with the Ohai coal samples. 

  

5.1 Inorganic Composition 
The ash yield was the most dominant factor controlling the gas volume and there is an inverse relationship 

between these two parameters. Ash yield is the non-combustible inorganic residue that remains after a coal is 

burnt. Because it is generally accepted that gas adheres to the organic components of coal, more inorganic 
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matter in the coal reduces the amount of organics present, thus reducing the sites for gas to adhere (Yee et al., 

1993; Crosdale et al., 1998; Scott, 2002).  

 

All locations show relatively strong negative correlations with ash yield and total gas volume. Ohai samples 

also show strong negative correlations between ash yield with both measured and residual gas. The 

Greymouth core has the strongest correlation, whereas the Huntly core has the weakest correlation. All three 

locations (Fig 4.9) show that this relationship holds true when there is greater than 10 % ash. In samples with 

less than 10 % ash the association between total gas content and ash yield breaks down. There may be one or 

more parameters controlling desorbed gas volume in circumstances where the ash yield is less than 10 %.   

 

It is interesting to note that the Huntly TW1 coal core has very few high ash layers which the above 

mentioned association (ash yield and total gas) is based on. By introducing higher ash layers into the coal 

seam one would expect to see the trend strengthened and a higher correlation coefficient produced. Recent 

gas exploration work in the Huntly area by Solid Energy Ltd has lead to five additional drill holes with both 

gas data (desorption, adsorption) and proximate analyses conducted.  Initial analysis of the dataset (T. Mares, 

pers. comm., University of Canterbury, 2006) has shown that the relationship with ash yield and gas content 

does not exist in the new Huntly drill holes. 

 

Limited general research has been conducted in terms of ash yield, mineral matter and gas content. Crosdale 

et al, (1998) stated that mineral matter is effectively not adsorbent to coal seam gases (in particular CH4), and 

acts as a dilutant. Scott (2002) also recognised that gas is adsorbed onto the organic layers of coal, and not the 

ash layers. This lead to the conclusion that when comparing adsorption isotherms from different locations, the 

gas volume measurements should be corrected to an ash-free basis (daf) to eliminate the effects of mineral 

matter and ash variability.  Yee et al. (1993) pointed out that as early as 1965 a French geologist, Gunther, 

recognised that mineral matter acted as an inert diluent with respect to gas sorption. He explained that it 

caused a reduction in the gas volume by displacing the organic material that can adsorb gas. Yee et al. (1993) 

also reports a linear relationship where gas volume increases with a reduction in the amount of ash and 

moisture present. Gurba et al. (2001) looked at the effect of mineralisation of gas drainage in the southern 

coalfield of New South Wales, Australia. They found that microcleat mineralisation may play a major role in 

blocking gas drainage. They observed both mylonites, or crushed, powdery zones, in cleats and siderite 

nodules blocking micropores in maceral cells.  Clarkson and Bustin (1996) found that an increase in mineral 

matter also affects the CO2 micropore adsorption capacities, as well as methane adsorption capacities.  
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 5.2 Organic Composition 
All three locations studied show similar overall maceral compositions, although they are three different ranks. 

When comparing the maceral composition with gas content data, very few significant correlations were 

actually apparent. Of the associations that are seen, they are restricted to individual basins and locations. This 

is most probably a function of rank. Both Hildenbrand et al (2005), and  Laxminarayana and Crosdale (1999) 

have also found that the degree of influence of maceral composition seems to be rank dependent. 

Laxminarayana and Crosdale (1999) found that coal from the Bowen and Sydney basin’s high volatile 

bituminous coals showed an increase in the adsorption capacity with an increase in vitrinite content. 

However, ranks higher than medium to low volatile bituminous coals showed little influence of vitrinite 

content over adsorption capacity. 
 

Within locations (that is, within rank) some associations can be seen. For example, in the Greymouth drill 

core a strong positive association exists between residual gas and the concentration of desmocollinite. This 

suggests that a significant amount of gas is retained in the finer fractions of the coal. Conversely, when there 

is more structured vitrinites (that is, telocollinite) the residual gas volume is significantly lower. It is well 

known that telocollinites are more porous (Taylor et al., 1998), and thus should be able to release gas more 

readily. Desmocollinite is finer grained with less porosity (Taylor et al., 1998), and thus would be expected to 

hold more gas. The type of vitrinite has importance to CSG fields because it may relay information on gas 

flow rates. If coal is from an area that contains higher desmocollinite contents, rates of gas diffusion to the 

cleats will be slower than coals containing the more porous telocollinite maceral. The slower rates of 

diffusion results in lower gas flow rates. 

 

The Ohai SC3 core showed a strong inverse relationship with lost gas and fusinite. That is, the more fusinite, 

the less lost gas. This suggests that when an interval of coal has higher fusinite content, which is more porous 

than other macerals, potential lost gas is actually stored in the pore spaces, leading to a lower proportion of 

lost gas. Walker et al., (2001) found that inertinite-rich coals in the northern Bowen Basin were associated 

with lower gas volumes, and less efficient gas drainage, retaining gas within pore spaces. This is consistent 

with the association seen in Ohai SC3, with lower levels of lost gas associated with high fusinite content. 

 

In the Ohai SC1 core the inverse association was found: inertinites showed strong positive relationships with 

lost gas. That is, the more inertinites, the more lost gas. However, although the opposite trend is seen in Ohai 

SC1, because of the relatively few data points, this association is inconclusive. Another strong maceral 

relationship is seen in the Ohai SC1 core: liptinites showed a strong negative relationship with lost gas. 

Walker et al., (2001) also determined that there was a negative correlation with gas volume and liptinite 

content in northern Bowen Basin coals. The association was attributed to the cracking of liptinites and 
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bitumens, producing gas at an early stage in the coalification process. The association in Bowen Basin coals 

is supported by research carried out by Glickson et al., (1999) who then went on to demonstrate that up to 

95% of methane in some Bowen Basin coals may have been sourced from their bitumen. This type of study 

has not been carried out in New Zealand and data in this study neither supports nor contradicts the 

relationships seen by Walker et al., (2001) and Glickson et al., (1999).   

  

Huntly samples showed associations with gas content to both vitrain and telocollinite abundance. An increase 

in total gas content was synonymous with an increase in structured vitrinite. This trend, although not present 

in the other New Zealand basins, has been identified in the Powder River basin (Moore et al. 2002b). Vitrinite 

is the maceral that is readily identified with higher gas contents, as the wood structure is thought to allow 

better methane flow (Moore et al. 2002b). 

 

Although maceral composition seems to exert some influence in both adsorption capacity and gas content, the 

degree of influence is variable between basins. Most likely, the degree of maturation (i.e. rank) is 

overprinting and influencing the relationships between gas and organic content. Thus, although some 

conclusions can be drawn between the associations of macerals and gas content, these associations have to be 

treated separately between different basins and certainly between different coal ranks. 

 

5.3 Saturation 
Because of the limited adsorption samples, this study could only make approximate correlations with the 

percent saturation, as saturation values are all estimated using the method described in Chapter 2.6.3. Many 

associations were seen between percent saturation and proximate, ash constituents, mineralogical and maceral 

analyses (see Chapter 4.3).   

 

Coal composition correlated with the percent saturation. When looking at associations between macerals and 

gas content, the vitrinite group of macerals held the greatest influence on gas content. In particular, the 

percent saturation correlated strongly with macerals from the liptinite and inertinite groups. The majority of 

inertinites had a positive correlation with percent saturation, while most liptinites correlated negatively with 

the percent saturation, in all locations. Higher saturation, which is concordant with higher gas levels, may 

occur as gas stored in pore spaces in inertinite macerals. However, association between the liptinites and the 

percent saturation can not be explained. Previous research on the controls of coal seam gas saturation is 

sparse.   

 

Bustin and Clarkson (1998) attempted to address saturation in coal seam gas reservoirs. Their study had only 

11 calculated saturation values, because of a lack of adsorption samples. All other saturation data in their 
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study were estimated using the adsorption data. They found that their samples, from the Sydney Basin 

Australia, were all under-saturated, and showed variation on the order of 2 – 85 % saturated. Although Bustin 

and Clarkson (1998) state that the percent saturation should vary with coal composition, they give no 

examples of the roles maceral composition play on saturation. They do, however, relate the main cause of 

saturation with gas leakage as saturation was inversely correlated with permeability.  

 

5.4 Holding capacity and rank 
Previous research has demonstrated strong associations, from a number of basins, between the thermal 

maturity of the coal (rank) and adsorption isotherms, or holding capacity (Hildenbrand et al., 2006; Levy et 

al., 1997; Laxminarayana and Crosdale, 2002.; Scott, 2002; Bustin and Clarkson, 1998; Hacquebard, 2002; 

Creedy, 1988). However, adsorption isotherms for the Huntly, Ohai and Greymouth cores fail to follow the 

trend of increasing methane holding capacity with rank.  At a pressure of 2 MPa the Huntly coal core has the 

capacity to hold 4.08 m3/t, Ohai 12.02 m3/t, and Greymouth 7.08 m3/t (all daf). These data show that even 

with increasing pressure the Ohai coal core continues to have a substantially higher adsorption capacity than 

the Greymouth core which is of a higher rank.  

 

On initial interpretation, when holding capacity is examined on an as received basis, the Huntly, Ohai and 

Greymouth samples show a weak influence of rank on the holding capacity. Nevertheless, when examined on 

a dry, ash free basis, to remove the influence of mineral matter and moisture (Scott, 2002), we see that rank in 

this case is no longer the primary control on adsorption capacity. The reason for this is unclear. However, this 

is not the only manner which the Ohai coal samples behave in a more thermally mature way, with respect to 

Greymouth coal samples (see Section 5.5).  

 

There have been other studies which have also found that rank and adsorption capacity are not always related. 

Scott (2002) found that methane sorption capacity was rank dependant only after a certain thermal maturity 

had been met. The study showed that methane adsorption capacity initially decreased with rank until the 

high-volatile A bituminous rank, then subsequently increased with progressive coalification. Bustin and 

Clarkson (1998) state that although rank and adsorption capacity have shown strong associations together in 

certain basins, that there is in fact little or no actual correlation between coal rank and methane adsorption 

capacity as is commonly assumed.  
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5.5 Coal seam gas composition 
Review of the isotopic gas composition in the studied New Zealand basins shows some interesting results. 

The role of rank plays an important part, in both terms of adsorption capacity and isotopic gas composition. 

Greymouth, being the highest rank coal in the study, should have both the highest adsorption capacity and the 

most isotopically mature gas signature. Huntly, being the lowest rank coal, should have the least capacity to 

hold gas and the most isotopically light δ13C values.  While Huntly follows this trend, when comparing the 

Ohai and Greymouth coals we see that Greymouth fails to hold the greatest adsorption capacity, and actual 

gas values are much lower than the Ohai coal cores. The gas values can be explained in terms of saturation, 

the Ohai coal core being many degrees more saturated than the Greymouth coal core. In terms of isotopic 

composition, however, things are not so straightforward. Greymouth has lighter δ13C values than the Ohai 

coal core, that is, the Ohai coal core trends towards a mixed, or more thermogenically rich, source. As 

thermogenically derived gases are a function of maturity, it seems counterintuitive that the lower rank coal 

has the more thermally derived gas. Two important considerations arise from this situation: Why does Ohai 

have a more isotopically mature gas source? And is the isotopic gas composition controlling the saturation in 

the coals (that is, a more mature composition leads to a higher degree of saturation)?  These issues are 

discussed below. 

 

Boreham et al. (1998) replicated gas generation using an open system pyrolysis procedure on Bowen Basin 

coals. During pyrolysis of bitumen isolated from the coal in early stages of maturation, a13C depletion in CO2 

was observed (instead of the 13C enrichment associated with maturation and rank). It is possible over the 

narrow maturation range of the Greymouth and Ohai coals that this has occurred, however, although 

demonstrated in a laboratory exercise, it is most unlikely to have happened in the Greymouth Coalfield as this 

in not often reproduced in natural environments. Another possibility is the floral differences in the organic 

matter. The Ohai organic matter might be heavier in carbon by a few ppm as a result of a kerogen III-like 

origin dominated by land plants (Whiticar, 1996). Again, this explanation does not take into account why the 

Ohai coal is higher saturated. Additionally, because the Ohai and Greymouth coalfields are both Cretaceous, 

pollen data indicate they formed from similar plant material (Moore et al., 2006; Shearer and Moore, 1994; 

Ward, 1996b; Ward, 1997; Ward et al., 1995; Warnes, 1988).     

 

A better explanation for Ohai’s higher saturation and more mature gas isotopes can be derived from 

geological/stratigraphic considerations.  Coal seams can contain a variety of gas sources, from self-sourced to 

migrated biogenic and thermogenic gases. It is possible that thermogenic and/or slightly more isotopically 

mature secondary biogenic gases from down-dip of the seam migrated into the coal seam gas reservoir from 

where the cores SC1 and SC3 were drilled. This would be the simplest way to account for the slightly more 

mature isotopic signatures of the gas seen in the Ohai samples. An alternative hypothesis would be that 
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Greymouth has lost gas over time, and that the gas reservoir has not been replenished. Hildebrand et al., 

(2006) point out that present day gas content is controlled by the gas generation history. Coal seams which 

have lost storage capacity during geologic time will stay under-saturated if not replenished by late stage 

(secondary biogenic) gas. This explanation takes into account both the isotopic composition and the 

saturation of the coal. It is further reiterated by Scott (2002) who firstly points out that gas content can be 

enhanced by generation of secondary biogenic gases, or by diffusion and long distance migration of 

thermogenic and secondary biogenic gases. If there is an active, dynamic flow regime present, combined with 

high permeability, secondary biogenic gas migration can occur. Migration of gases (secondary biogenic and 

thermogenic) can result in abnormally high gas contents in lower rank coals, or lead to coals that are saturated 

or oversaturated with respect to methane (Scott, 2002). The San Juan Basin is an example of a basin that 

shows migration and re-saturation of coal seam gases. The San Juan Basin’s lower rank coals contain a higher 

gas content than the higher rank coals, which indicates migration of secondary biogenic and thermogenic 

gases, as the coals themselves have not yet reached thermal maturity to produce thermogenic gas (Scott, 

2002).  

 

From examining previous research and case studies, it could be hypothesised that either thermogenic gas or 

more isotopically mature secondary biogenic gas migrated into the coal seam gas reservoir in the Ohai 

coalfield where SC1 and SC3 were drilled. Migrating gases may have re-saturated the coal seams in these 

cores, leading to greater gas contents than what is seen in the Greymouth core, although the Greymouth 

coalfield still has a greater capacity to hold gas (Fig.  5.1). 

 

5.6 Modelling anomalous behaviour of Ohai coal 
The Ohai coal cores have demonstrated a number of anomalous properties in relationship to gas associations, 

as discussed in Sections 5.4 and 5.5. To summarise these are: 

 

1. The Ohai coal has a greater holding capacity than the Greymouth coal. It has been commonly 

assumed that the higher rank the coal, the greater the holding capacity, yet this is not the case. 

2. The Ohai coal has heavier δ13C and δD isotopes, compared with the Greymouth and Huntly coals. 

More mature isotopes points to a transitional-thermogenic gas origin. The common trend is that more 

mature coals have heavier isotopes because of the higher temperatures and pressures during 

coalification, creating a thermogenic derived coal gas. 

3. The Ohai coal has a higher gas content, but this can be explained by it higher saturation levels. 

 

Two hypotheses have been generated to help explain the anomalous behaviour exhibited by the Ohai coal 

cores:    
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1. The isotopic signatures can be explained by secondary biogenic / thermogenic gas migrating into the 

gas reservoir and re-saturating the coal, as described above. However, this does not explain why the 

Ohai core has a higher adsorption capacity. 

2. A simpler explanation would be that the Ohai coal is the higher rank coal. When looking at the 

ASTM rank classifications, the volatile matter is very similar for the Ohai and Greymouth coals. 

When examining the range of volatile matter, standard deviations show large spread in the datasets, 

easily putting the Ohai coal as a more thermally mature coal. If the Ohai coal were of higher rank, it 

would explain both the higher adsorption capacity and the more mature isotopes with gas coming 

from a mixed origin. Contrasting with this, when looking at the Suggate plot, we can see three 

distinct ranks, where Huntly is the lowest and Greymouth is the highest. 

 

To test the hypotheses, more Ohai samples would be needed. Coal samples could be tested for Ro max, to 

help determine another independent rank classification. Gas samples from down-dip of the Ohai core samples 

could be tested for gas composition; a more mature isotopic signature may indicate that thermogenic gas has 

migrated up into the reservoir, enriching and re-saturating the samples found at Ohai SC1 and SC3. 
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Chapter Six 
Conclusions 

 
 

 
6.1 Conclusions 
In summary, the main findings of this study are: 

 

1. The ash yield was the dominant control on the gas volume, within any single seam intersection.  This 

relationship was strongly evident in both Ohai and Greymouth, and also weakly evident in Huntly, although 

further investigation is needed to confirm or deny this in the Huntly coalfield. However, this association is only 

valid for ash yields above 10 %. When the ash yield falls below 10 %, the gas variation can no longer be 

explained by a correlation with the ash yield.  

 

2. Organic content has some control on gas volume, but is basin and/or rank dependant.  Huntly showed a strong 

correlation of structured vitrinites (vitrain and telocollinite) increasing alongside an increase in the total gas 

volume. Ohai had a decrease of fusinite with increasing lost gas volumes, whereas Greymouth showed an 

increase of desmocollinite with an increase of residual gas; this was supported with the converse relationship, 

increasing residual gas content with decreased proportions of telocollinite. These changing relationships may be 

functions of many parameters, including rank, local geological conditions and local mineralisation. 

 

3. Rank does not appear to control the maximum gas holding capacity in the three basins examined. In addition, 

actual gas present is not a function of rank. 
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4. Ohai coal has the most isotopically mature CH4 values, trending towards a more thermogenically sourced gas, 

although Greymouth has the highest rank coal (therefore should be the most isotopically mature). Ohai also is 

the most saturated, and consequently has the highest gas volume. This could be a result of the migration of more 

isotopically mature secondary biogenic or thermogenic gases into the Ohai gas reservoir from down-dip, re-

hydrating, or saturating the coals with respect to methane. Another possibility is that the Ohai coal is actually at 

a similar, or slightly higher rank than the Greymouth coal. This is seen in the large variation of volatile matter 

content (ASTM rank) in each location, however, it is not supported by Suggate rank. 

 

6.2 Implications for industry 
A successful CSG exploration programme involves a number of phases, as defined in Hayton et al., (2004). The 

assessment phase includes a preliminary appraisal, exploratory drilling and analysis and preliminary modelling 

all which help subsequent drilling and pilot well development. During this phase it is important to locate and 

define parameters that will enhance CSG development. Parameters used to model a CSG reservoir include coal 

seam geometry, coal thickness, coal depth and coal quality. Gas data, such as desorption, adsorption and 

saturation data, must also be taken into account when modelling the reservoir, as well as factors such as coal 

permeability; well spacing and completion type. This study has helped define some of the controlling 

characteristics for these key parameters. Additional information related to CSG will help isolate areas within 

proposed gas plays that may better meet exploration and production needs, and also help predict variations in gas 

volume and content. 

 

An aspect to consider when assessing a basin for CSG is ash yield. As has been shown, low ash coals will 

contain higher gas volumes than their high ash counterparts. In multiple seam basins, high ash seams or layers 

can be avoided.  

 

Areas of higher saturation should be targeted for their high gas volume, and pressure. Although more work has 

to be completed in terms of controlling factors of percent saturation, basin geology and gas isotope composition 

may help delineate areas of higher saturation. Areas where it is possible for secondary biogenic or thermogenic 

gas to migrate into the CSG reservoir may re-saturate or over-saturate the coal, relative to areas where there has 

been no migration of gas. Studies have also shown that there may be different origins of gas in one basin (Ayers, 

2002). 

 

This study has also shown that different basins and/or different rank coals can have different influences which 

control the gas content and its variation. Although structured vitrinite is strongly associated with higher total gas 

volumes in the Huntly coal field, other macerals have stronger influences in the other regions. Unless these 

macerals have been determined prior to assessment, it is important not to assume that relationships that have 
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worked elsewhere will also apply. However, once maceral relationships have been determined they may be a 

good predictor of gas volume. Another assumption that should not be relied on is that higher rank coals will have 

more gas, and a greater holding capacity. Again, specific differences between basins may increase gas content, 

as seen in the Ohai region. 

 

It is important when planning a CSG exploration programme that proper sampling is undertaken, in order to 

complete a fully comprehensive model that can target the most appropriate areas to make a commercially 

successful resource.  

 
  
6.3 Limitations and future work 
This work has contributed to the basic understanding of the relationship between coal properties (proximate, 

maceral and mineralogical) and gas content. The biggest limitation to this study was the relatively small data per 

basin. A greater number of samples would  have yielded a larger and more statistically valid database. 

Additional samples from adjacent drill holes in the basins may give more information into what factors control 

the gas content laterally as well as vertically. Additional adsorption samples would enable a more in depth study 

of the gas holding capacity of coal, and what factors control this. There is, in fact, a large scope for future work. 

Some key areas to address would be: 

 

1. More in depth study of desorption: Could differences in gas volume be related to the palynology and not 

maceral content that are controlling the gas content? Is anything controlling the desorption rate? An 

attempt was made to look at this, but no associations were found with desorption rate and coal type or 

ash yield, as found by Laxminarayana and Crosdale (1999). 

2. A fuller study of adsorption capacity: How does the holding capacity vary in a vertical section? Is this 

controlled by maceral composition, as many studies (see Chapter five) suggest, or another factor? Are 

trends bound by basin or by rank? 

3. Controls of permeability and gas flow: What affects the lateral continuity of gas content? 

4. Isotopic signatures of methane and carbon dioxide: Where is the gas sourced from? Does maturity of gas 

affect the saturation and gas volume? 
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Appendix A: Common abbreviations used 
 
Corrections 
aa  as analysed 
db  dry basis 
daf  dry, ash free 
dmmf  dry, mineral matter free 
dmmSf  dry, mineral matter sulphur free 
 
Parameters 
VA  adsorption volume 
VD  desorption volume 
VL  volume Langmuir coefficient 
PL  pressure Langmuir coefficient 
PH  hydrostatic pressure 
DS  depth (of sample) 
 
Units 
MPa  Mega pascals  
m3/t  cubic meters per tonne 
 
Other 
ISO  International Organisation for Standardisation 
ASTM  American Society for Testing and Materials 
DH  drillhole 
CSG  coal seam gas 
XRF  x-ray fluorescence 
XRD  x-ray diffractometer 
LTA  low temperature ash 
VM  volatile matter 
FC  fixed carbon 
CV  calorific value 
M  moisture 
S  sulphur  
A  ash 
SR  Suggate rank 
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Appendix B: Corrections 
Most coal analyses are carried out and initially reported as air dried samples. These often need to be corrected 

to different standards using a number of different formulas. (Newman, pers. comm., 2005).  

a) Air dried coal has had the adventitious moisture removed, but still contains the inherent moisture. 

 
b) To correct to a dry basis (db), the moisture is removed from the samples:  

Xdb = X * 100   
          100-M 
 

c) To correct to dry, ash free (daf), both ash and moisture are removed: 

Xdaf = X * 100 
         100-A-M 
 

d) Because mineral matter and ash are not identical, we can use a general ratio of MM:A when ash 

constituent data is not available.  Usually mineral matter is greater than the ash yield and Suggate (1959) 

developed a general ratio of 1.1:1 for New Zealand coals. Using this, we can correct to a dry, mineral matter 

free basis (dmmf): 

 Xdmmf=100(VM-0.1A)  (from dry basis) 
                100-1.1A 
Where A = Ash %, M= Moisture and X = variable (such as Volatile Matter or Fixed Carbon). 

 
e) To analyse Suggate rank, we correct to a dry, mineral matter sulphur free basis (dmmSf). Suggate’s (1959) 

correction for sulphur assumes that sulphur is a contaminant and corrects to a sulphur free standard. 

However, in New Zealand coal approximately half the sulphur is organically derived. Sulphur corrections 

have been amended to include only sulphur lost during the analysis. These corrections are discussed in 

Chapter 2.4.2. 
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Appendix C Drill hole Coordinates 
 
Drill hole Greymouth 944 
New Zealand Map Grid: 2366952.28 E / 5868246.76 N  

 
 
Drill hole Huntly TW1 
New Zealand Map Grid: 2699554.83 E / 6407858.42 N 
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Drill holes Ohai SC1 and SC3 
New Zealand map grid: 
SC1 2116032.74 E / 5461962.94 N 
SC3 2117238.947 E / 5462185.587 N 
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Appendix D: Macroscopic Results 
 
Table 1 Ohai macroscopic descriptions 
 

attrital fusain vitrain %Attrital %Vitrain %Fusain
X1 319.10 319.60 0.50 BNB broken
X2 319.60 319.85 0.25 BNB broken
X2 319.85 320.10 0.25 Dirty Coal semibroken

X11 320.10 320.35 0.25 Dirty Coal semibroken
X11 320.35 320.60 0.25 CM broken
X4 333.10 333.40 0.30 10 0 4 71% 0% 29% 1.0 B<20
X5 333.65 334.15 0.50 13 0 10 57% 0% 43% 1.0 B<20
X6 334.15 334.65 0.50 18 0 6 75% 0% 25% 1.5 B<20
X7 334.65 335.15 0.50 13 1 9 57% 4% 39% 1.5 B<20
X8 335.15 335.65 0.50 12 0 6 67% 0% 33% 1.5 B<20
X9 335.65 336.15 0.50 19 0 10 66% 0% 34% 0.8 B<20

X10 336.15 336.65 0.50 16 0 8 67% 0% 33% 2.0 B<20
X12 336.65 337.15 0.50 17 0 6 74% 0% 26% 1.0 B>20
X13 337.15 337.55 0.40 16 2 5 70% 9% 22% 1.5 B<20
X14 338.85 339.15 0.30 10 1 3 71% 7% 21% 1.4 B<20
X15 339.15 339.75 0.60 11 0 9 55% 0% 45% 2.0 B<20
X16 339.75 340.35 0.60 11 0 2 85% 0% 15% 2.5 B<20
X17 340.35 340.95 0.60 18 0 3 86% 0% 14% 2.0 BNB
X18 340.95 341.55 0.60 17 0 7 71% 0% 29% 2.0 B<20
X19 341.55 342.15 0.60 9 0 16 36% 0% 64% 1.2 B>20
X20 342.15 342.50 0.35 6 0 7 46% 0% 54% 2.2 B<20
X21 342.50 343.00 0.50 17 0 7 71% 0% 29% 3.4 B<20
X22 343.00 343.50 0.50 16 0 5 76% 0% 24% 2.3 B<20
X23 343.50 344.00 0.50 14 0 8 64% 0% 36% 3.5 B<20
X24 344.00 344.50 0.50 12 0 4 75% 0% 25% 3.0 B<20
X25 344.50 345.00 0.50 13 0 10 57% 0% 43% 1.5 B>20
X26 345.36 345.70 0.34 6 0 3 67% 0% 33% 2.0 B<20
X27 345.70 346.20 0.50 7 0 7 50% 0% 50% 1.5 B>20
X28 346.20 346.70 0.50 16 0 3 84% 0% 16% 1.9 B<20
X29 346.70 347.20 0.50 4 0 4 50% 0% 50% 1.0 B<20
X30 347.20 347.70 0.50 12 0 14 46% 0% 54% 2.0 B>20
X31 347.70 348.20 0.50 8 0 13 38% 0% 62% - B>20
X32 348.20 348.50 0.30 7 0 15 32% 0% 68% 1.4 B>20
X33 348.76 349.26 0.50 12 0 11 52% 0% 48% 1.2 B>20
X34 349.26 349.76 0.50 13 0 5 72% 0% 28% 1.2 B>20

Cleat 
(cm) Coal Type Commentscounts percentagesCanister From (m) To (m) Thickness 

(m)
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Table 2 Ohai SC1 macroscopic descriptions 
 

attrital fusain vitrain %Attrital %Vitrain %Fusain
A1 254.90 255.25 0.35 CM
A1 255.25 255.40 0.15 Dirty Coal
A3 268.38 268.88 0.50 Isotherm sample
A5 338.95 339.55 0.60 13 0 13 50% 50% 0% 2.0 B<20
A2 339.55 340.05 0.50 15 0 7 68% 32% 0% 0.9 B<20
A7 340.15 340.75 0.60 4 0 2 67% 33% 0% B<20 Residual sample?
A4 340.75 341.35 0.60 Residual sample?

A11 356.12 356.42 0.30 3 0 5 38% 63% 0% 1.0 B>20
A11 356.42 356.60 0.18 Dirty Coal
A10 356.60 356.94 0.34 Dirty Coal
A10 356.94 357.10 0.16 2 0 3 40% 60% 0% B<20
A9 357.10 357.34 0.24 3 0 3 50% 50% 0% 1.0 B>20 Residual sample
A9 357.34 357.50 0.16 Dirty Coal
A9 357.50 357.60 0.10 Residual sample
A8 358.20 358.45 0.25 4 0 4 50% 50% 0% 1.2 B>20
A8 358.45 358.55 0.10 Dirty Coal
A8 358.55 358.70 0.15 B<20

A13 367.20 367.70 0.50 4 0 18 18% 82% 0% 1.2 B>20
A15 399.73 399.96 0.23 1.5 Dirty Coal
A15 399.96 400.06 0.10 4 0 5 44% 56% 0% B>20
A15 400.06 400.23 0.17 Dirty Coal
A14 400.70 401.20 0.50 7 0 8 47% 53% 0% 1.5 B>20 Residual sample
A19 414.20 414.48 0.28 8 0 7 53% 47% 0% 1.5 B>20
A18 414.48 414.98 0.50 10 0 8 56% 44% 0% 1.5 B<20 Residual sample
A17 414.98 415.49 0.51 20 0 8 71% 29% 0% B<20
A16 415.49 415.82 0.33 13 0 4 76% 24% 0% B<20
A16 415.82 416.04 0.22 Dirty Coal

Cleat 
(cm) Coal Type Commentscounts percentagesCanister From (m) To (m) Thickness 

(m)
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Table 3 Greymouth 944 macroscopic descriptions 
 

attrital fusain vitrain attrital fusain vitrain
16 309.55 309.85 0.30 11 0 0 100% 0% 0% - - Dull
1 309.85 310.35 0.50 - - HAC & CM
2 334.74 335.10 0.36 10 0 2 83% 0% 17% 3,2 1 B<20%
3 335.10 335.50 0.40 - - Dull
4 341.10 341.50 0.40 19 1 9 65% 3% 31% 5,2,1,3,7,5,3,1,3 1 B<20%

5 341.50 342.00 0.50 10 0 5 67% 0% 33% 2,3,1,1,1 0.7 B<20%
6 342.00 342.28 0.28 9 0 3 75% 0% 25% 1,3,5 - B<20%
6 342.28 342.50 0.22 - - Dull
7 343.10 343.60 0.50 - - Dull
8 343.60 344.10 0.50 11 1 3 73% 7% 20% 1,2,5 3+ B<20%
9 344.10 344.62 0.52 - - Dull
9 344.62 344.70 0.08 - - CM
10 344.85 345.35 0.50 - - Dull
11 345.35 345.85 0.50 - - Dull

12 345.85 345.98 0.13 - - Dull
12 345.98 346.35 0.37 11 1 6 61% 6% 33% 2,1,2,1,1,7 3+ B>20%
13 346.35 347.00 0.65 12 0 8 60% 0% 40% 1,10,5,5,5,3,2,2 2 B>20%
14 347.10 347.60 0.50 10 0 7 59% 0% 41% 5,2,1,2,5,5,1 1 B>20%
15 347.60 348.10 0.50 18 0 4 82% 0% 18% 3,15,3,2 3+ B<20%
17 348.10 348.60 0.50 20 1 6 74% 4% 22% 1,2,2,1,1,1 1 B<20%
18 348.60 349.10 0.50 22 0 6 79% 0% 21% 5,1,10,2,2,2 1 B<20%
19 349.10 349.60 0.50 18 0 1 95% 0% 5% 5 3+ Dull
20 349.70 350.20 0.50 13 0 1 93% 0% 7% 2 3+ Dull
21 350.20 350.70 0.50 16 0 11 59% 0% 41% 5,2,20,2,3,10,7,12,2,1,1 3 B>20%
22 351.00 351.50 0.50 6 0 6 50% 0% 50% 5,1,2,1,3,2 3+ B>20%
23 351.50 352.00 0.50 24 0 4 86% 0% 14% 2,12,2,2 2 B<20%
24 352.00 352.27 0.27 4 0 11 27% 0% 73% 1,5,10,1,2,3,6,3,15,1,10 2 B>20%
24 352.27 352.50 0.23 - - CM & HAC

vitrain size (mm) cleat 
(cm) Coal Typecounts percentageCanister From (m) To (m) Thickness 

(m)
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Table 4 Huntly TW1 macroscopic descriptions 
 

Counts
attrital Vitrain fusain %Attrital %Vitrain % fusain

9 338.70 339.20 0.50 13 6 0 68% 32% 0% 1,1,2,0.5,1,2 10 BNB
10 339.20 339.70 0.50 17 5 1 74% 22% 4% 1,1,1,0.5, 0.5 25 BNB
11 339.70 340.20 0.50 28 10 1 72% 26% 4% 1,1,1,1,1, 0.5,0.5, 1,1,2 20 <20
12 340.20 340.70 0.50
13 340.70 341.20 0.50 18 14 0 56% 44% 0% 0.5, 3, 0.5, 2, 1,1,1,1,0.5, 1,1,1,0.5,30 10 <20
14 341.20 341.70 0.5 26 1 0 96% 4% 0% 1 20 BNB
15 341.70 341.87 0.17 Dirty Coal
15 341.87 342.20 0.33 17 3 0 85% 15% 0% 1,1,1 30 DNB
16 342.20 342.70 0.50 23 6 0 79% 21% 0% 1,1,1,1,2,0.5 15 BNB
17 342.70 343.20 0.50 24 4 0 86% 14% 0% 0.5,1,1,2 20 BNB
18 343.20 343.44 0.24 9 1 0 90% 10% 0% 2 15 BNB
18 343.44 343.55 0.11 6 3 0 67% 33% 0% 1,2,3 D<20
18 343.55 343.70 0.15 13 1 0 93% 7% 0% 1 BNB
19 343.70 344.20 0.50 15 5 0 75% 25% 0% 1,1,0.5, 0.5, 1 14 B<20
20 344.20 344.70 0.50 22 5 0 81% 19% 0% 2,1,1,0.5,25 15 BNB
21 344.70 345.20 0.50 11 2 0 85% 15% 0% 0.5,2 BNB
22 345.20 345.70 0.50 >25 B<20
23 345.70 346.20 0.50
24 346.20 346.52 0.32 B<20
24 346.52 346.63 0.11 Dirty Coal
24 346.63 346.70 0.07 B<20
25 346.70 347.20 0.50 25 B<20
26 347.20 347.70 0.50 25 B<20
27 347.70 348.20 0.50 20 5 0 80% 20% 0% 3,2,3,2,3 12 B<20
28 348.20 348.70 0.50 28 11 0 72% 28% 0% 1,1,0.5,0.5,1,2,1,2,2,2,1 11 B<20
29 348.70 349.20 0.50 21 9 0 70% 30% 0% 2,3,2,3,5,0.5,2,30,1 18 B<20
30 349.20 349.70 0.50 18 2 0 90% 10% 0% 1,0.5 10 BNB
31 349.70 350.20 0.50 23 8 2 70% 24% 6% 0.5,0.5,6,30,1,4,1,2 10 B<20
32 350.20 351.20 1.00 17 18 0 49% 51% 0% 0.5,1,2,2,1,1,3,2,0.5,1,5,2,1,3,3,8,2,3 17 B>20
33 351.20 351.70 0.50 24 16 0 60% 40% 0% 0.5,4,0.5,7,0.5,0.5,1,0.5,0.5,0.5,4,5,0.5,3,1,0.510 B>20
34 351.70 352.20 0.50
35 352.20 352.70 0.50 12 10 0 55% 45% 0% 0.5,1,2,2,1,0.5,1,0.5,0.5,2 11 B<20
36 352.70 353.39 0.69 25 15 0 63% 38% 0% 0.5,0.5,1,1,1,1,3,1,4,4,1,3,2,0.5,5 14 B<20
37 353.39 354.20 0.81 15 B<20
38 354.20 354.70 0.50 30 B<20
39 354.70 355.20 0.50 30 B<20
40 355.20 355.70 0.50
41 355.70 356.20 0.50 B<20
42 356.20 356.70 0.50 B<20
43 356.70 357.20 0.50 21 13 0 62% 38% 0% 0.5,2,0.5,4,1,1,1,2,10,2,3,4,7 20 B>20
44 357.20 357.70 0.50 7 10 0 41% 59% 0% 1,4,3,3,2,4,7,2,2,1 20 B>20
45 357.70 358.20 0.50 9 12 0 43% 57% 0% 3,1,1,4,8,1,2,1,2,3,1,3 15 B>20

Canister From (m) To (m ) Thickness 
(m )

Percentage vitrain size (m m) Cleat 
(cm ) Coal Type
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Tables 5 and 6 Greymouth and Huntly macroscopic comments 
 

16 309.55 309.85 0.30 HAC in part 9 338.70 339.20 0.50
1 309.85 310.35 0.50 too broken to log; jointed with slickensides 10 339.20 339.70 0.50
2 334.74 335.10 0.36 top broken 11 339.70 340.20 0.50
3 335.10 335.50 0.40 too broken to log 12 340.20 340.70 0.50 desorbing
4 341.10 341.50 0.40 rare pyrite & siderite;341.1-341.3m dull, 341.3-

341.5m B>20%, but overall B<20% 13 340.70 341.20 0.50
5 341.50 342.00 0.50 occasional pyrite 14 341.20 341.70 0.5
6 342.00 342.28 0.28 rare pyrite 15 341.70 341.87 0.17
6 342.28 342.50 0.22 too broken to log 15 341.87 342.20 0.33 Clayey Coal
7 343.10 343.60 0.50 too broken to log 16 342.20 342.70 0.50
8 343.60 344.10 0.50 long term canister 17 342.70 343.20 0.50
9 344.10 344.62 0.52 too broken to log 18 343.20 343.44 0.24
9 344.62 344.70 0.08 18 343.44 343.55 0.11 Dull apperance, Possibly Fusain

10 344.85 345.35 0.50 HAC; too broken to log 18 343.55 343.70 0.15
11 345.35 345.85 0.50 HAC; rare pyrite, resin and MS blebs; too broken 

to log 19 343.70 344.20 0.50
12 345.85 345.98 0.13 HAC; siderite nodule; too broken to log 20 344.20 344.70 0.50 0.1 - .16 weird fracture. Fusain?
12 345.98 346.35 0.37 abundant pyrite; rare siderite 21 344.70 345.20 0.50 Broken
13 346.35 347.00 0.65 occasional pyrite 22 345.20 345.70 0.50 Highly Broken
14 347.10 347.60 0.50 long term canister 23 345.70 346.20 0.50 desorbing
15 347.60 348.10 0.50 24 346.20 346.52 0.32 Highly Broken
17 348.10 348.60 0.50 24 346.52 346.63 0.11 Highly Broken
18 348.60 349.10 0.50 rare pyrite 24 346.63 346.70 0.07 Highly Broken
19 349.10 349.60 0.50 CM band 349.21-349.26m 25 346.70 347.20 0.50 Highly Broken
20 349.70 350.20 0.50 26 347.20 347.70 0.50 Highly Broken
21 350.20 350.70 0.50 rare resin & siderite nodule 27 347.70 348.20 0.50 @ 0.25 - 1cm brown clay layer
22 351.00 351.50 0.50 long term canister 28 348.20 348.70 0.50
23 351.50 352.00 0.50 rare resin 29 348.70 349.20 0.50
24 352.00 352.27 0.27 rare resin 30 349.20 349.70 0.50 Upper 5cm dull with fusain.
24 352.27 352.50 0.23 rare resin & MS blebs 31 349.70 350.20 0.50

32 350.20 351.20 1.00 Some Ca. Cleat.
33 351.20 351.70 0.50
34 351.70 352.20 0.50 desorbing
35 352.20 352.70 0.50 Ca on cleat
36 352.70 353.39 0.69 Ca on cleat.
37 353.39 354.20 0.81 Highly broken *
38 354.20 354.70 0.50 Highly broken *
39 354.70 355.20 0.50 Highly broken *
40 355.20 355.70 0.50 desorbing
41 355.70 356.20 0.50 Highly broken *
42 356.20 356.70 0.50 Highly broken *
43 356.70 357.20 0.50
44 357.20 357.70 0.50 Isotherm sample from base
45 357.70 358.20 0.50

* Bedding plane fracture.

To (m) Thickness 
(m) Comments

Huntly

comments

Greymouth

Canister From (m)Canister From (m) To (m) Thickness 
(m)
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Appendix E: Proximate Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix E: Proximate and ultimate results and corrections
Sample details

Basin Drill hole # Canister From To Thickness Midpoint
Inherent 
Moisture Ash %

Volatile 
Matter %

Fixed 
Carbon % Sulphur %

Calorific 
value Ash (db) %

Volatile 
Matter (db) 
%

Fixed 
Carbon (db) 
%

Sulphur (db) 
%

Calorific 
value

Volatile 
Matter

Calorific 
value

Volatile 
Matter Fixed carbon

Calorific 
value

Volatile 
Matter Calorific value

Measured 
gas m3/t

Residual gas 
m3/t

Lost gas 
m3/t

Total gas 
m3/t

Suggate 
number

Huntly TW1 9 338.70 339.20 0.50 338.95 11.6 5.5 36.5 46.4 0.30 24.98 6.2 41.3 52.5 0.35 28.3 43.6 30.4 44.0 56.0 30.1 43.7 30.3 1.1 0.27 0.04 1.4 6.0
Huntly TW1 10 339.20 339.70 0.50 339.45 12.9 3.8 35.4 47.9 0.30 25.02 4.4 40.6 55.0 0.34 28.7 42.2 30.2 42.5 57.5 30.0 42.2 30.2 1.1 0.21 0.05 1.4 6.0
Huntly TW1 11 339.70 340.20 0.50 339.95 9.2 2.9 42.0 45.9 0.30 26.90 3.2 46.3 50.5 0.33 29.6 47.7 30.8 47.8 52.2 30.6 47.7 30.7 1.0 0.22 0.05 1.3 5.6
Huntly TW1 12 340.20 340.70 0.50 340.45 28.18 28.2 28.2 0.0 0.0 28.2 28.2 1.3 0.54 0.05 1.9
Huntly TW1 13 340.70 341.20 0.50 340.95 12.6 2.8 37.8 46.7 0.28 25.37 3.3 43.3 53.4 0.33 29.0 44.6 30.2 44.8 55.2 30.0 44.6 30.1 1.1 0.25 0.06 1.4 5.4
Huntly TW1 14 341.20 341.70 0.50 341.45 11.1 3.0 41.3 44.5 0.38 26.91 3.4 46.5 50.1 0.43 30.3 47.9 31.5 48.1 51.9 31.3 47.9 31.4 1.1 0.20 0.06 1.4 5.9
Huntly TW1 15 341.70 342.20 0.50 341.95 14.0 2.7 36.2 47.1 0.25 25.03 3.1 42.1 54.8 0.29 29.1 43.3 30.2 43.5 56.6 30.0 43.3 30.1 0.9 0.22 0.04 1.1 5.6
Huntly TW1 16 342.20 342.70 0.50 342.45 12.0 1.8 38.3 47.9 0.23 26.34 2.1 43.5 54.4 0.26 29.9 44.3 30.7 44.4 55.5 30.6 44.3 30.6 0.7 0.74 0.03 1.5 5.9
Huntly TW1 17 342.70 343.20 0.50 342.95 12.1 1.7 37.6 48.6 0.21 25.74 1.9 42.8 55.3 0.24 29.3 43.5 30.0 43.6 56.4 29.8 43.5 29.9 0.6 0.96 0.02 1.5 5.5
Huntly TW1 18 343.20 343.70 0.50 343.45 12.3 3.9 35.0 48.8 0.20 24.68 4.4 39.9 55.6 0.23 28.1 41.5 29.6 41.8 58.2 29.4 41.5 29.6 0.8 0.81 0.04 1.7 5.8
Huntly TW1 19 343.70 344.20 0.50 343.95 12.1 1.6 38.9 47.4 0.21 25.94 1.9 44.3 53.9 0.24 29.5 45.0 30.2 45.1 54.9 30.1 45.0 30.1 0.6 0.86 0.02 1.4 5.3
Huntly TW1 20 344.20 344.70 0.50 344.45 13.9 1.7 35.9 48.5 0.22 25.30 2.0 41.7 56.3 0.25 29.4 42.4 30.1 42.6 57.5 30.0 42.4 30.0 0.8 0.78 0.03 1.6 5.7
Huntly TW1 21 344.70 345.20 0.50 344.95 12.6 3.0 37.8 46.6 0.22 25.48 3.4 43.3 53.3 0.25 29.1 44.6 30.3 44.8 55.2 30.2 44.6 30.3 0.9 0.37 0.03 1.3 5.5
Huntly TW1 22 345.20 345.70 0.50 345.45 12.6 9.0 37.1 41.3 0.19 21.82 10.3 42.4 47.3 0.22 25.0 46.6 28.2 47.3 52.7 27.8 46.7 28.2 1.1 0.36 0.06 1.5 3.4
Huntly TW1 23 345.70 346.20 0.50 345.95 25.17 25.2 25.2 0.0 0.0 25.2 25.2 1.6 0.20 0.08 1.9
Huntly TW1 24 346.20 346.70 0.50 346.45 8.4 33.4 29.2 29.0 0.21 16.55 36.4 31.9 31.7 0.23 18.1 47.1 30.2 50.2 49.9 28.4 47.1 30.1 0.7 0.13 0.05 0.9 6.2
Huntly TW1 25 346.70 347.20 0.50 346.95 10.9 10.7 36.0 42.4 0.29 23.49 12.0 40.4 47.6 0.32 26.4 45.2 30.5 45.9 54.1 30.0 45.2 30.4 1.0 0.45 0.06 1.5 5.9
Huntly TW1 26 347.20 347.70 0.50 347.45 12.7 5.2 35.4 46.7 0.24 24.54 6.0 40.6 53.5 0.28 28.1 42.8 30.2 43.2 56.9 29.9 42.8 30.1 1.2 0.34 0.11 1.7 5.9
Huntly TW1 27 347.70 348.20 0.50 347.95 12.7 6.2 35.4 45.7 0.25 24.66 7.1 40.5 52.4 0.29 28.3 43.1 30.7 43.6 56.4 30.4 43.2 30.6 0.6 0.97 0.02 1.6 6.3
Huntly TW1 28 348.20 348.70 0.50 348.45 15.5 3.4 33.6 47.5 0.25 23.99 4.0 39.8 56.2 0.30 28.4 41.2 29.8 41.4 58.5 29.6 41.2 29.7 1.0 0.37 0.03 1.4 5.6
Huntly TW1 29 348.70 349.20 0.50 348.95 12.8 5.0 36.1 46.1 0.23 24.17 5.7 41.4 52.9 0.26 27.7 43.6 29.6 43.9 56.1 29.4 43.6 29.6 0.9 0.88 0.02 1.8 5.2
Huntly TW1 30 349.20 349.70 0.50 349.45 13.5 3.8 35.9 46.8 0.22 24.13 4.4 41.5 54.1 0.26 27.9 43.1 29.3 43.4 56.6 29.2 43.1 29.3 1.1 0.50 0.04 1.7 5.0
Huntly TW1 31 349.70 350.20 0.50 349.95 13.8 1.6 36.5 48.0 0.24 25.48 1.9 42.4 55.7 0.28 29.6 43.1 30.3 43.2 56.8 30.1 43.1 30.2 0.9 0.83 0.03 1.8 5.7
Huntly TW1 32 350.20 351.20 1.00 350.70 12.8 2.1 38.4 46.8 0.26 25.97 2.4 44.0 53.7 0.29 29.8 44.9 30.6 45.1 55.0 30.5 44.9 30.6 1.0 0.63 0.03 1.7 5.7
Huntly TW1 33 351.20 351.70 0.50 351.45 11.2 1.4 39.7 47.7 0.27 26.75 1.6 44.7 53.7 0.31 30.1 45.3 30.7 45.4 54.6 30.6 45.3 30.7 0.7 0.84 0.02 1.6 5.8
Huntly TW1 34 351.70 352.20 0.50 351.95 25.88 25.9 25.9 0.0 0.0 25.9 25.9 1.2 0.66 0.02 1.9
Huntly TW1 35 352.20 352.70 0.50 352.45 11.1 4.7 38.1 46.1 0.25 24.68 5.3 42.9 51.8 0.28 27.8 45.0 29.5 45.3 54.7 29.3 45.0 29.5 0.6 1.07 0.02 1.7 5.0
Huntly TW1 36 352.70 353.39 0.69 353.05 12.3 1.4 36.5 49.7 0.23 26.00 1.6 41.6 56.7 0.26 29.6 42.2 30.2 42.3 57.6 30.1 42.2 30.2 0.6 1.06 0.02 1.7 6.0
Huntly TW1 37 353.39 354.20 0.81 353.80 11.2 1.5 36.6 50.7 0.24 25.99 1.7 41.2 57.1 0.27 29.3 41.8 29.9 41.9 58.1 29.8 41.8 29.8 1.2 0.61 0.05 1.9 5.9
Huntly TW1 38 354.20 354.70 0.50 354.45 12.1 1.0 38.0 48.9 0.29 26.81 1.2 43.2 55.6 0.33 30.5 43.6 31.0 43.7 56.3 30.9 43.7 30.9 1.3 0.54 0.05 1.9 6.3
Huntly TW1 39 354.70 355.20 0.50 354.95 11.4 1.0 37.9 49.7 0.28 26.80 1.1 42.8 56.1 0.32 30.2 43.2 30.7 43.3 56.7 30.6 43.2 30.6 1.4 0.28 0.06 1.7 6.3
Huntly TW1 40 355.20 355.70 0.50 355.45 26.68 26.7 26.7 0.0 0.0 26.7 26.7 1.6 0.26 0.06 1.9
Huntly TW1 41 355.70 356.20 0.50 355.95 12.3 1.1 36.7 49.7 0.27 26.12 1.3 41.9 56.7 0.31 29.8 42.4 30.3 42.5 57.5 30.2 42.4 30.2 1.2 0.35 0.05 1.6 6.0
Huntly TW1 42 356.20 356.70 0.50 356.45 12.1 2.3 36.6 49.0 0.24 25.49 2.7 41.6 55.7 0.28 29.0 42.6 29.9 42.7 57.2 29.8 42.6 29.9 1.2 0.77 0.08 2.1 5.7
Huntly TW1 43 356.70 357.20 0.50 356.95 12.2 1.2 37.8 48.9 0.25 26.94 1.3 43.0 55.7 0.28 30.7 43.5 31.2 43.6 56.4 31.1 43.5 31.1 0.5 1.13 0.02 1.7 6.5
Huntly TW1 44 357.20 357.70 0.50 357.45 12.2 1.0 41.7 45.1 0.23 27.91 1.1 47.5 51.4 0.26 31.8 48.0 32.2 48.0 52.0 32.1 48.0 32.2 0.9 0.94 0.03 1.8 6.3
Huntly TW1 45 357.70 358.20 0.50 357.95 12.5 1.7 37.4 48.5 0.25 26.55 1.9 42.7 55.4 0.28 30.3 43.4 31.1 43.5 56.5 30.9 43.4 31.0 0.8 0.83 0.03 1.7 6.4
Greymouth 944 16 309.55 309.85 0.30 309.70 8.7 2.3 36.5 52.5 0.23 29.7 2.5 40.0 57.5 0.25 32.5 40.8 33.5 41.0 59.0 33.3 40.9 33.4 2.89 0.26 0.55 3.70 10.6
Greymouth 944 1 309.85 310.35 0.50 310.10 1.7 74.2 13.4 10.6 0.06 6.1 75.5 13.7 10.8 0.06 6.2 36.0 36.7 55.8 44.2 25.3 36.1 36.6 0.53 0.07 0.07 0.67 13.4
Greymouth 944 2 334.74 335.10 0.36 334.92 6.7 25.9 29.1 38.3 0.22 22.4 27.8 31.2 41.1 0.24 24.0 40.9 34.6 43.2 56.8 33.2 40.9 34.5 1.83 0.26 0.05 2.14 11.5
Greymouth 944 3 335.10 335.50 0.40 335.30 7.4 8.7 36.2 47.7 0.26 28.3 9.4 39.1 51.5 0.28 30.6 42.5 34.2 43.1 56.9 33.7 42.6 34.1 2.36 0.35 0.40 2.78 10.8
Greymouth 944 4 341.00 341.50 0.50 341.25 7.7 1.3 40.0 51.0 0.41 30.9 1.4 43.3 55.3 0.44 33.4 43.8 34.1 44.0 56.0 33.9 43.9 34.0 1.79 0.58 0.02 2.39 10.4
Greymouth 944 5 341.50 342.00 0.50 341.75 8.1 2.5 38.7 50.7 0.29 30.4 2.7 42.1 55.2 0.32 33.0 43.1 34.1 43.3 56.7 34.0 43.1 34.1 2.12 1.04 0.05 3.21 10.6
Greymouth 944 6 342.00 342.50 0.50 342.25 7.4 0.7 41.2 50.7 0.33 31.1 0.8 44.5 54.7 0.36 33.6 44.8 34.0 44.8 55.2 33.9 44.8 33.9 1.37 0.77 0.07 2.21 10.1
Greymouth 944 7 343.10 343.60 0.50 343.35 7.5 0.8 41.1 50.6 0.29 31.4 0.8 44.4 54.7 0.31 34.0 44.7 34.3 44.8 55.2 34.2 44.8 34.3 2.54 0.58 0.07 3.19 10.4
Greymouth 944 8 343.60 344.10 0.50 343.85 8.2 1.3 37.6 52.9 0.36 30.6 1.4 41.0 57.6 0.39 33.4 41.4 34.0 41.5 58.5 33.8 41.5 33.9 2.85 0.20 0.08 3.13 10.9
Greymouth 944 9 344.10 344.70 0.60 344.40 6.9 20.4 32.3 40.4 0.23 24.5 21.9 34.7 43.4 0.25 26.3 42.8 34.8 44.4 55.6 33.7 42.8 34.7 2.74 0.60 0.08 3.42 11.2
Greymouth 944 10 344.85 345.35 0.50 345.10 5.0 40.3 26.0 28.7 0.17 18.0 42.4 27.4 30.2 0.18 18.9 43.3 35.6 47.5 52.5 32.9 43.4 35.5 1.47 0.19 0.03 1.69 11.6
Greymouth 944 11 345.35 345.85 0.50 345.60 2.3 68.2 15.1 14.4 0.19 8.7 69.8 15.5 14.7 0.19 8.9 36.4 38.7 51.2 48.8 29.6 36.5 38.4 0.87 0.10 0.05 1.02 13.8
Greymouth 944 12 345.85 346.35 0.50 346.10 4.6 44.0 25.8 25.5 0.35 15.7 46.2 27.1 26.8 0.37 16.4 45.6 33.5 50.3 49.7 30.5 45.6 33.4 1.44 0.67 0.07 2.18 9.5
Greymouth 944 13 346.35 347.00 0.65 346.68 8.1 4.3 37.9 49.7 0.66 29.7 4.7 41.2 54.1 0.72 32.3 42.9 34.2 43.3 56.7 33.8 43.0 34.0 1.81 0.45 0.06 2.32 10.7
Greymouth 944 14 347.10 347.60 0.50 347.35 9.0 2.5 36.3 52.2 0.28 28.4 2.7 39.9 57.4 0.31 31.2 40.8 32.3 41.0 59.0 32.1 40.8 32.2 2.42 0.22 0.08 2.72 9.5
Greymouth 944 15 347.60 348.10 0.50 347.85 8.8 5.3 37.7 48.2 0.28 29.2 5.8 41.3 52.9 0.31 32.1 43.5 34.3 43.9 56.1 34.0 43.5 34.2 1.13 0.60 0.04 1.77 10.7
Greymouth 944 17 348.10 348.60 0.50 348.35 9.7 2.5 36.8 51.0 0.28 29.6 2.8 40.8 56.5 0.31 32.8 41.7 33.9 41.9 58.1 33.8 41.7 33.9 2.58 0.41 0.07 3.06 10.8
Greymouth 944 18 348.60 349.10 0.50 348.85 9.0 3.1 37.3 50.6 0.28 29.7 3.4 41.0 55.6 0.31 32.6 42.2 34.0 42.4 57.6 33.8 42.2 33.9 2.35 0.24 0.11 2.70 10.7
Greymouth 944 19 349.10 349.60 0.50 349.35 7.1 15.6 35.2 42.2 0.25 26.1 16.8 37.8 45.4 0.27 28.1 44.3 34.5 45.5 54.5 33.7 44.3 34.4 1.96 0.54 0.07 2.57 10.6
Greymouth 944 20 349.70 350.20 0.50 349.95 8.7 7.0 35.9 48.4 0.28 28.3 7.7 39.3 53.0 0.31 31.0 42.1 34.0 42.6 57.4 33.6 42.1 33.9 1.03 0.45 0.09 1.57 10.7
Greymouth 944 21 350.20 350.70 0.50 350.45 8.0 13.6 34.5 43.9 0.27 26.4 14.8 37.5 47.7 0.29 28.7 43.0 34.3 44.0 56.0 33.6 43.0 34.2 1.85 0.43 0.04 2.32 10.8
Greymouth 944 22 351.00 351.50 0.50 351.25 9.1 2.7 36.8 51.4 0.34 29.7 3.0 40.5 56.5 0.37 32.7 41.5 33.9 41.7 58.3 33.7 41.5 33.8 2.65 0.28 0.06 2.98 10.8
Greymouth 944 23 351.50 352.00 0.50 351.75 8.0 4.0 38.3 49.7 0.33 29.5 4.3 41.6 54.0 0.36 32.0 43.2 33.7 43.5 56.5 33.5 43.3 33.6 1.56 0.41 0.05 2.02 10.2
Greymouth 944 24 352.00 352.50 0.50 352.25 5.9 36.8 25.4 31.9 0.23 18.7 39.1 27.0 33.9 0.25 19.9 40.4 34.9 44.3 55.7 32.6 40.5 34.8 1.07 0.52 0.04 1.63 11.8
Ohai SC3 SC3-1 319.10 320.20 1.1 319.65 9.0 14.4 33.2 43.4 0.22 24.1 15.8 36.5 47.7 0.24 26.5 42.2 32.1 43.3 56.7 31.4 42.3 32.0 3.2 0.77 0.45 4.4 9.0
Ohai SC3 SC3-2 320.15 320.75 0.6 320.45 6.2 41.9 25.0 26.9 0.18 15.1 44.7 26.7 28.7 0.19 16.1 43.6 31.7 48.2 51.8 29.1 43.6 31.6 1.6 0.77 0.64 3.0 8.3
Ohai SC3 SC3-3 333.10 334.00 0.9 333.55 8.7 1.8 40.5 49.0 0.25 28.5 2.0 44.4 53.7 0.27 31.2 45.1 31.9 45.3 54.7 31.8 45.1 31.9 3.9 0.55 0.24 4.7 8.1
Ohai SC3 SC3-4 333.65 334.65 1.0 334.15 9.5 1.8 39.5 49.2 0.21 28.2 2.0 43.6 54.4 0.23 31.1 44.4 31.9 44.5 55.5 31.7 44.4 31.8 3.8 0.55 0.27 4.6 8.2
Ohai SC3 SC3-5 334.65 335.65 1.0 335.15 9.3 1.8 38.4 50.5 0.18 18.1 2.0 42.3 55.7 0.20 19.9 43.1 20.4 43.2 56.8 20.3 43.1 20.4 4.1 0.55 0.30 4.9
Ohai SC3 SC3-6 335.65 336.65 1.0 336.15 8.8 1.8 39.0 50.4 0.19 28.2 2.0 42.8 55.3 0.21 30.9 43.5 31.7 43.6 56.4 31.6 43.5 31.6 4.0 0.55 0.32 4.8 8.3
Ohai SC3 SC3-7 336.65 337.55 0.9 337.10 9.2 1.6 38.5 50.7 0.20 28.2 1.8 42.4 55.8 0.22 31.0 43.0 31.7 43.2 56.8 31.6 43.1 31.6 4.1 0.55 0.29 4.9 8.4
Ohai SC3 SC3-8 339.35 340.15 0.8 339.75 10.2 1.4 38.4 50.0 0.20 28.0 1.6 42.8 55.7 0.22 31.2 43.3 31.8 43.4 56.6 31.7 43.3 31.7 4.3 0.40 0.42 5.1 8.4
Ohai SC3 SC3-9 340.15 341.15 1.0 340.65 10.7 1.3 37.8 50.2 0.20 27.7 1.5 42.3 56.2 0.22 31.0 42.9 31.6 43.0 57.0 31.5 42.9 31.5 4.5 0.40 0.40 5.3 8.3
Ohai SC3 SC3-10 341.15 342.15 1.0 341.65 10.6 1.4 37.9 50.1 0.20 27.7 1.6 42.4 56.0 0.22 31.0 43.0 31.6 43.1 56.9 31.5 43.0 31.5 3.1 0.40 0.38 3.9 8.3
Ohai SC3 SC3-11 342.15 343.00 0.9 342.58 10.7 1.5 37.0 50.8 0.17 27.6 1.7 41.4 56.9 0.19 30.9 42.0 31.5 42.1 57.9 31.4 42.0 31.4 2.7 0.40 0.58 3.7 8.5
Ohai SC3 SC3-12 343.00 344.00 1.0 343.50 10.6 1.2 38.4 49.8 0.17 27.7 1.3 43.0 55.7 0.19 31.0 43.4 31.5 43.5 56.5 31.4 43.5 31.4 3.6 0.40 0.44 4.5 8.1
Ohai SC3 SC3-13 344.00 345.00 1.0 344.50 10.2 1.5 38.9 49.5 0.16 27.8 1.7 43.3 55.1 0.18 31.0 43.9 31.6 44.1 56.0 31.5 44.0 31.5 4.6 0.40 0.47 5.5 8.1
Ohai SC3 SC3-14 345.36 346.20 0.8 345.78 10.2 1.8 39.4 48.6 0.16 27.8 2.0 43.9 54.1 0.18 31.0 44.6 31.7 44.8 55.2 31.6 44.7 31.7 4.9 0.40 0.48 5.8 8.0
Ohai SC3 SC3-15 346.20 347.00 0.8 346.60 10.3 1.5 38.9 49.3 0.17 27.7 1.7 43.4 55.0 0.19 30.9 44.0 31.5 44.1 55.9 31.5 44.0 31.5 4.8 0.45 0.42 5.7 8.0
Ohai SC3 SC3-16 347.00 348.00 1.0 347.50 10.2 1.7 37.5 50.6 0.15 27.7 1.9 41.8 56.3 0.17 30.9 42.4 31.6 42.6 57.4 31.5 42.5 31.5 5.0 0.54 0.27 5.8 8.4
Ohai SC3 SC3-17 348.00 348.50 0.5 348.25 10.3 2.1 37.0 50.6 0.14 27.6 2.3 41.2 56.4 0.16 30.8 42.1 31.6 42.2 57.8 31.5 42.1 31.6 4.9 0.54 0.31 5.8 8.6
Ohai SC3 SC3-18 348.76 349.76 1.0 349.26 10.5 2.4 38.4 48.7 0.18 57.3 2.7 42.9 54.4 0.20 64.1 43.9 66.1 44.1 55.9 65.8 43.9 66.0 3.9 0.54 0.25 4.7
Ohai SC1 SC1-1 254.90 255.40 0.5 255.15 6.4 51.5 22.6 19.5 0.16 11.9 55.0 24.1 20.8 0.17 12.7 47.2 32.3 53.7 46.3 28.3 47.2 32.2 1.6 0.51 0.47 2.6 8.0
Ohai SC1 SC1-2 3.9 0.51 0.36 4.8
Ohai SC1 SC1-3 338.95 340.05 1.1 339.50 9.4 4.5 37.7 48.4 0.40 27.2 5.0 41.6 53.4 0.44 30.0 43.5 31.8 43.8 56.2 31.5 43.5 31.7 3.2 0.51 0.53 4.3 8.4
Ohai SC1 SC1-4 3.7 0.51 0.44 4.6
Ohai SC1 SC1-5 356.12 357.10 1.0 356.61 6.8 29.9 30.1 33.2 0.19 19.4 32.1 32.3 35.6 0.20 20.8 44.9 32.2 47.6 52.4 30.6 45.0 32.1 3.1 0.18 0.70 4.0 8.4
Ohai SC1 SC1-6 357.10 357.60 0.5 357.35 6.9 22.9 33.1 37.1 0.20 21.4 24.6 35.6 39.8 0.21 23.0 45.4 31.6 47.2 52.8 30.5 45.4 31.6 3.4 0.18 0.79 4.4 7.8
Ohai SC1 SC1-7 358.20 358.70 0.5 358.45 6.7 29.4 31.1 32.8 0.20 19.3 31.5 33.3 35.2 0.21 20.6 46.2 31.7 48.7 51.3 30.1 46.2 31.6 3.2 0.18 0.85 4.2 7.6
Ohai SC1 SC1-8 367.20 367.70 0.5 367.45 9.0 13.1 32.9 45.0 0.22 24.7 14.4 36.2 49.5 0.24 27.1 41.2 32.3 42.2 57.8 31.7 41.2 32.2 4.3 0.18 0.44 5.0 9.4
Ohai SC1 SC1-9 399.73 401.20 1.5 400.47 5.1 35.4 26.8 32.7 0.22 18.5 37.3 28.2 34.5 0.23 19.5 41.5 33.1 45.0 55.0 31.0 41.6 33.0 4.3 0.18 0.72 5.2 10.1
Ohai SC1 SC1-10 414.20 414.98 0.8 414.59 6.6 4.9 38.8 49.7 0.24 28.2 5.2 41.5 53.2 0.26 30.2 43.5 32.1 43.8 56.2 31.9 43.5 32.1 5.4 0.24 0.66 6.3 8.7
Ohai SC1 SC1-11 414.98 416.14 1.2 415.56 5.6 12.4 39.3 42.7 0.27 26.6 13.1 41.6 45.2 0.29 28.2 47.1 33.1 47.9 52.1 32.5 47.1 33.0 5.0 0.24 0.33 5.6 8.7

Gas Data
dry, mineral matter free 

(dmmf)Proximate Analysis, As-recieved Proximate Analysis, Dry basis (db) dmmSf dry, ash free (daf)
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Appendix F: Ash Constituent Results 
 
Table 1 Huntly ash constituent data 
 

Interval Midpoint SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 Mn3O4 SO3 P2O5
Loss on 
Ignition Total

Total with 
loss of 
Ignition

% % % % % % % % % % % % %
TW1 C9 338.95 58.70 15.07 2.90 8.23 1.43 2.85 0.78 0.90 0.01 6.05 0.05 0.42 96.97 97.39

TW1 C10 339.45 41.23 14.75 6.74 13.24 2.31 4.30 0.44 2.45 0.01 11.64 0.04 0.61 97.15 97.76
TW1 C11 339.95 18.82 21.25 5.80 21.37 2.84 5.56 0.26 5.17 0.01 15.08 0.05 1.04 96.21 97.25
TW1 C12 340.45 7.61 25.86 7.12 27.31 3.86 6.81 0.25 1.55 0.01 14.65 0.06 1.13 95.09 96.22
TW1 C13 340.95 10.23 23.75 6.03 29.22 2.94 5.46 0.22 2.93 0.01 14.80 0.09 2.58 95.68 98.26
TW1 C14 341.45 15.36 22.08 4.94 22.39 2.63 4.93 0.58 6.91 0.01 16.23 0.07 1.38 96.13 97.51
TW1 C15 341.95 9.51 17.47 5.89 34.45 4.89 6.39 0.25 0.24 0.01 15.56 0.07 2.09 94.73 96.82
TW1 C16 342.45 4.71 13.89 7.05 33.89 6.13 8.41 0.31 0.35 0.01 19.80 0.04 1.60 94.59 96.19
TW1 C17 342.95 2.39 11.83 6.22 34.91 5.86 9.19 0.28 0.30 0.01 21.14 0.03 1.99 92.16 94.15
TW1 C18 343.45 4.78 3.98 8.76 51.90 16.58 3.37 0.24 0.31 0.01 8.40 0.01 4.95 98.34 103.29
TW1 C19 343.95 4.28 12.34 7.88 35.25 6.52 7.92 0.73 0.47 0.01 19.20 0.06 2.19 94.66 96.85
TW1 C20 344.45 1.03 17.04 7.64 33.22 6.58 8.08 0.21 0.28 <0.01 19.29 0.03 1.80 93.40 95.20
TW1 C21 344.95 5.20 13.22 4.94 46.54 5.57 5.79 0.21 0.47 0.02 13.63 0.03 2.19 95.62 97.81
TW1 C22 345.45 3.68 4.68 4.94 74.69 5.64 1.24 0.17 0.12 0.05 4.69 0.03 4.38 99.93 104.31
TW1 C23 345.95 17.83 22.63 4.48 31.86 3.67 4.42 0.21 0.53 0.01 9.80 0.37 1.13 95.81 96.94
TW1 C24 346.45 57.10 31.79 1.23 1.60 0.47 0.62 0.48 3.47 <0.01 0.92 0.06 0.86 97.74 98.60
TW1 C25 346.95 47.73 27.55 1.94 7.29 1.57 1.98 0.32 4.66 <0.01 4.44 0.22 0.52 97.70 98.22
TW1 C26 347.45 27.95 28.85 2.88 18.41 4.74 3.50 0.37 0.69 <0.01 9.02 0.41 0.97 96.82 97.79
TW1 C27 347.95 39.96 25.95 1.98 7.83 1.38 2.45 0.33 11.20 <0.01 5.71 0.26 0.60 97.05 97.65
TW1 C28 348.45 26.73 31.51 2.58 14.01 2.55 4.70 0.17 1.95 <0.01 12.47 0.33 0.74 97.01 97.75
TW1 C29 348.95 9.30 10.76 5.48 52.83 7.64 2.06 0.14 1.51 0.02 7.84 1.29 2.03 98.87 100.90
TW1 C30 349.45 5.01 10.92 6.06 57.72 6.64 2.56 0.22 0.59 0.02 9.49 0.03 2.29 99.26 101.55
TW1 C31 349.95 3.31 25.43 3.78 27.84 4.24 7.07 0.21 1.40 <0.01 20.12 0.05 1.50 93.45 94.95
TW1 C32 350.70 1.75 16.65 4.75 30.41 4.88 5.65 0.21 12.45 0.01 18.47 0.06 1.63 95.29 96.92
TW1 C33 351.45 1.74 20.81 5.08 28.42 3.98 7.74 1.01 1.88 <0.01 23.31 0.02 1.04 94.00 95.04
TW1 C34 351.95 0.79 10.30 6.61 33.83 4.67 8.11 0.38 0.32 0.01 26.52 0.04 1.79 91.58 93.37
TW1 C35 352.45 0.96 0.94 6.77 71.01 10.99 1.00 0.09 0.06 0.03 6.54 0.01 3.72 98.40 102.12
TW1 C36 353.05 0.79 0.68 11.31 42.00 4.77 7.53 0.25 0.22 0.02 25.38 0.03 0.54 92.98 93.52
TW1 C37 353.80 4.27 1.40 12.42 33.86 6.07 7.90 0.44 0.17 0.01 25.49 0.04 0.72 92.07 92.79
TW1 C38 354.45 1.65 2.18 12.13 29.68 4.74 9.11 0.32 0.38 0.01 30.11 0.03 0.56 90.34 90.90
TW1 C39 354.95 2.37 1.86 9.08 31.54 4.46 9.13 0.33 0.29 0.01 31.82 0.03 0.49 90.92 91.41
TW1 C40 355.45 3.35 3.63 17.29 36.82 11.94 3.85 0.15 0.17 0.02 18.49 0.08 0.93 95.79 96.72
TW1 C41 355.95 3.80 2.02 9.05 32.05 5.02 8.49 0.37 0.18 0.01 30.89 0.04 0.66 91.92 92.58
TW1 C42 356.45 3.15 1.98 12.18 46.21 12.94 3.57 0.36 0.13 0.01 16.71 0.03 2.99 97.27 100.26
TW1 C43 356.95 2.54 3.79 10.80 31.45 5.20 8.52 0.35 0.49 0.01 27.01 0.05 0.71 90.21 90.92
TW1 C44 357.45 0.78 6.32 10.89 31.39 6.08 7.48 0.50 0.67 0.01 25.75 0.04 0.96 89.91 90.87
TW1 C45 357.95 7.35 24.14 3.75 22.46 1.88 6.36 0.33 10.70 0.01 15.53 0.08 0.98 92.60 93.58

mean 12.37 14.31 6.74 32.08 5.25 5.52 0.34 2.07 0.01 16.27 0.12 1.53 95.07 96.61
Std 16.36 9.84 3.50 16.09 3.33 2.58 0.19 3.24 0.01 8.16 0.22 1.09 2.72 3.36  
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Table 2 Ohai ash constituent data 
 

Interval Midpoint SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 Mn3O4 SO3 P2O5
Loss on 
Ignition Total

Total with 
Loss of 
Ignition

% % % % % % % % % % % % %
SC1

SC1-1 255.15 59.56 31.47 3.49 0.67 0.95 0.72 0.74 1.64 <0.01 0.14 0.03 0.67 99.41 100.08
SC1-3 339.50 32.74 17.59 11.17 12.63 6.39 4.03 0.25 1.17 0.06 10.40 0.81 0.45 97.24 97.70
SC1-4 340.60 40.45 24.46 2.05 4.95 1.11 7.24 0.35 5.16 <0.01 4.40 4.96 0.59 95.13 95.72
SC1-5 356.61 63.15 29.36 2.67 0.37 0.45 0.93 0.50 1.55 0.01 0.06 0.05 1.02 99.09 100.11
SC1-6 357.35 52.16 31.17 4.75 4.28 2.39 1.11 0.38 1.66 0.01 1.22 0.05 0.73 99.18 99.91
SC1-7 358.45 56.56 32.09 5.68 0.61 1.28 1.00 0.43 1.62 0.01 0.30 0.04 1.63 99.62 101.25
SC1-8 367.45 72.97 18.98 1.23 0.46 0.30 1.86 0.25 1.44 <0.01 0.07 0.02 0.67 97.58 98.25
SC1-9 400.47 71.36 19.48 1.72 0.43 0.47 1.45 1.09 1.36 <0.01 0.16 0.02 1.57 97.51 99.08
SC1-10 414.59 40.43 14.54 5.43 15.82 6.23 3.98 0.21 0.96 <0.01 8.55 0.27 0.39 96.40 96.79
SC1-11 415.51 51.77 23.92 4.21 3.83 1.43 4.16 0.73 1.15 0.01 5.44 0.19 0.55 96.84 97.39

mean 54.12 24.31 4.24 4.40 2.10 2.65 0.49 1.77 0.02 3.07 0.64 0.83 97.80 98.63
Std 13.38 6.47 2.89 5.52 2.30 2.13 0.28 1.21 0.02 3.91 1.54 0.44 1.49 1.74

SC3
SC3-1 319.60 62.64 18.42 3.07 4.19 1.06 2.79 0.38 1.11 0.01 3.44 0.03 1.05 97.10 98.14
SC3-2 320.45 61.54 29.91 2.37 0.77 0.57 0.78 0.93 1.61 <0.01 0.27 0.02 2.15 98.77 100.92
SC3-3 333.55 23.00 13.72 9.37 17.05 4.84 7.12 0.34 0.70 0.01 18.65 0.03 0.66 94.83 95.49
SC3-4 333.90 30.26 6.41 7.95 18.51 4.46 6.05 0.33 0.66 0.01 14.39 0.02 0.30 95.45 95.75
SC3-5 335.15 31.33 9.62 7.58 17.42 4.94 7.96 0.43 0.50 0.01 15.67 0.03 0.66 95.45 96.11
SC3-6 336.15 26.89 12.71 8.76 16.39 4.96 8.36 0.47 0.62 0.01 15.97 0.03 0.95 95.15 96.10
SC3-7 337.10 18.19 15.62 9.14 17.17 5.20 9.42 0.47 0.66 0.01 18.66 0.03 1.02 94.58 95.60
SC3-8 339.75 20.66 12.29 8.93 15.98 4.36 10.80 0.47 0.64 0.01 20.67 0.03 0.92 94.83 95.74
SC3-9 340.65 16.53 10.89 10.51 16.45 4.88 11.05 0.38 0.57 0.01 23.84 0.03 0.84 95.10 95.94
SC3-10 341.65 18.70 9.34 10.09 19.82 5.32 10.24 0.33 0.50 0.01 21.18 0.03 0.67 95.53 96.20
SC3-11 342.58 18.51 10.38 9.31 21.98 5.85 10.04 0.44 0.55 0.04 18.93 0.05 0.98 96.09 97.07
SC3-12 343.50 11.85 11.01 10.31 23.42 5.47 11.61 0.32 0.48 0.04 21.85 0.03 0.88 96.39 97.27
SC3-13 344.50 12.68 9.71 12.68 28.02 6.14 8.91 0.26 0.51 0.12 17.58 0.03 1.08 96.61 97.69
SC3-14 345.60 13.87 13.09 8.35 30.31 6.32 7.96 0.26 1.04 0.04 15.21 0.03 1.30 96.48 97.78
SC3-15 346.60 12.52 13.95 10.52 28.28 5.83 8.47 0.27 0.63 0.11 16.09 0.04 1.63 96.70 98.33
SC3-16 347.50 10.48 9.63 12.29 31.60 7.15 8.13 0.25 0.49 0.16 16.64 0.04 1.46 96.84 98.30
SC3-17 348.25 7.77 8.42 10.10 39.10 10.44 6.93 0.22 0.37 0.06 14.20 0.03 2.21 97.64 99.85
SC3-18 349.26 32.19 14.38 6.21 20.38 3.95 7.06 0.25 0.93 0.03 11.76 0.13 1.49 97.23 98.72

mean 23.87 12.75 8.75 20.38 5.09 7.98 0.38 0.70 0.04 15.83 0.04 1.12 96.15 97.28
Std 15.69 5.16 2.69 9.20 2.11 2.75 0.16 0.30 0.04 5.94 0.02 0.51 1.13 1.57  
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Table 3 Greymouth ash constituent data 
 

Canister Midpoint SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 Mn3O4 SO3 P2O5
Loss on 
Ignition Total

Total with 
loss of 
Ignition

% % % % % % % % % % % % %
Seam 1

16 309.70 56.96 21.78 13.00 2.45 0.44 1.09 0.68 1.03 0.11 0.38 1.34 0.29 99.26 99.55
1 309.97 67.81 21.84 2.68 0.14 1.24 0.15 4.49 0.98 0.01 <0.01 0.10 0.26 99.44 99.70

Seam 2
2 334.92 75.92 15.68 1.10 0.19 0.71 0.23 2.83 1.14 <0.01 <0.01 0.08 0.53 97.88 98.41
3 335.30 75.21 15.52 0.92 0.72 0.46 0.48 1.70 1.30 <0.01 <0.01 1.03 0.64 97.34 97.98
4 341.25 58.72 16.23 16.53 1.22 0.64 1.72 1.26 1.18 0.02 0.46 0.07 0.89 98.06 98.95
5 341.75 75.90 14.23 2.63 0.78 0.36 0.83 0.77 1.43 <0.01 0.40 0.03 2.02 97.34 99.36
6 342.25 47.23 20.72 18.76 2.66 0.84 3.54 0.72 1.09 0.02 0.06 0.06 0.73 95.70 96.43
7 343.35 Insufficient sample
8 343.85 Long Term Desorption
9 344.36 66.29 23.97 1.54 0.30 1.09 0.37 4.13 0.95 <0.01 0.00 0.02 0.37 98.68 99.05

10 345.10 70.58 19.99 1.34 0.12 1.07 0.15 4.22 1.04 <0.01 <0.01 0.01 0.61 98.53 99.14
11 345.60 71.17 18.84 1.92 0.12 1.09 0.13 4.17 0.98 <0.01 <0.01 0.01 1.04 98.43 99.47
12 345.92 69.86 12.74 9.48 0.94 1.83 0.12 2.82 0.86 0.04 0.84 0.01 1.69 99.54 101.23
13 346.55 71.31 11.39 11.83 1.54 0.37 0.70 1.64 0.98 0.01 0.03 0.06 2.09 99.86 101.95
14 347.35 Long Term Desorption
15 347.85 83.46 10.48 0.94 0.44 0.16 0.56 0.22 1.60 <0.01 0.06 0.01 1.60 97.92 99.52
17 348.35 74.71 18.58 1.44 1.66 0.20 1.09 0.50 1.33 <0.01 <0.01 0.07 1.99 99.57 101.56
18 348.85 64.66 29.02 1.22 1.63 0.24 0.98 0.29 0.78 <0.01 <0.01 0.08 4.95 98.89 103.84
19 349.43 65.41 26.33 1.36 1.74 0.20 1.32 0.27 2.76 <0.01 <0.01 0.10 2.19 99.49 101.68
20 349.95 81.22 13.71 0.98 1.48 0.13 0.45 0.24 1.20 <0.01 <0.01 0.11 1.80 99.51 101.31
21 350.45 84.40 10.62 1.10 1.28 0.15 0.32 0.68 1.12 <0.01 <0.01 0.08 2.19 99.74 101.93
22 351.25 Long Term Desorption
23 351.50 Sample omitted from XRF run in error will be analysed in next run
24 352.39 73.17 18.46 1.46 1.29 0.87 0.17 3.37 0.98 <0.01 <0.01 0.07 4.38 99.84 104.22

mean 70.21 17.90 4.75 1.09 0.64 0.76 1.84 1.20 0.04 0.28 0.18 1.59 98.69 100.28
Std 9.22 5.26 5.92 0.77 0.47 0.82 1.58 0.43 0.04 0.29 0.36 1.29 1.10 1.98

* NOTE In some canisters, the full interval was not sampled. This is the case for canisters 19 and 24, and the depths that were sampled are noted down. In canisters 7, 23, 
and the three samples that were held in long term desorption (8, 14, 22) no XRF analysis was performed.  
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Appendix G:  Microscopic Results 
 
Table 1 Petrological data for Huntly, Ohai and Greymouth point counts 
 

Sample C Tell B Tell L Tell Des V-d Spor Cu Res L-d Sub Fl S-Fus Fus I-d Scel Pyr Qtz clay Cbn Fe-O
944 c5 16 87 88 230 23 4 14 7 8 2 0 7 5 12 5 0 1 0 0 0 509

944 c6 p8 A 30 61 110 218 16 6 18 2 12 2 0 10 7 8 10 0 3 0 0 0 513
944 c6 p8 B 16 89 66 237 32 2 8 0 22 1 0 8 6 9 4 0 1 2 0 0 503

944 c13 7 65 123 272 25 3 2 5 21 2 0 11 4 15 2 1 6 1 0 0 565
944 c15 7 69 112 217 21 7 9 9 11 14 0 4 6 9 2 0 12 3 1 0 513
944 c16 14 51 226 131 6 5 5 5 15 25 0 4 4 15 2 1 2 1 0 1 513
944 c20 16 44 196 158 11 6 4 10 16 6 0 4 11 7 7 0 8 2 2 0 508
944 c21 11 46 182 189 21 8 6 7 8 11 1 4 1 2 5 0 18 5 1 0 526

TW1 c10 33 64 81 209 42 4 6 4 24 1 1 5 0 16 7 0 1 3 2 1 504
TW1 c11 23 78 50 226 25 6 3 16 50 4 0 7 0 7 10 1 0 0 0 5 511
TW1 c19 46 62 32 222 45 6 1 9 45 1 1 3 1 15 17 1 1 2 3 0 513
TW1 c21 29 34 108 294 20 4 1 7 17 4 0 2 0 17 7 0 1 0 4 0 549
TW1 c28 62 96 39 222 43 3 2 3 11 2 0 0 1 9 2 0 1 6 0 0 502
TW1 c32 60 64 91 202 29 5 5 3 23 2 1 0 0 13 8 0 0 2 2 0 510
TW1 c37 99 41 39 209 49 4 16 1 18 1 0 0 0 20 7 0 0 1 0 1 506
TW1 c43 29 85 92 194 41 4 13 1 21 5 0 0 1 10 9 0 0 1 0 0 506

SC3-1 18 119 114 138 6 11 12 5 17 15 0 16 5 4 2 0 15 5 0 0 502
SC3-3 16 119 76 206 29 2 12 1 9 7 0 5 12 6 1 0 0 0 0 0 501
SC3-7 8 99 108 194 15 4 16 1 6 9 0 8 9 17 6 0 1 0 1 0 502
SC3-9 15 127 80 221 15 1 8 0 7 3 0 5 6 10 3 0 0 1 1 0 503

SC3-12 14 97 82 226 22 6 6 1 13 3 0 4 5 13 8 0 1 0 1 0 502
SC3-13 17 105 101 191 18 1 3 2 14 22 0 5 6 7 8 0 1 0 1 0 502
SC3-15 12 107 115 184 14 10 6 0 5 7 0 13 8 13 2 0 1 3 0 0 500
SC3-17 7 89 110 214 12 6 1 0 8 6 0 15 11 13 7 0 0 1 2 0 502
SC1-3 6 76 194 151 13 7 3 3 17 8 0 6 3 5 7 0 2 0 1 0 502
SC1-8 4 89 249 64 4 4 4 19 21 13 0 3 5 3 4 0 9 7 0 0 502

SC1-10 10 58 149 202 14 7 2 2 13 3 0 8 16 11 4 0 1 1 4 1 506
SC1-11 20 115 44 189 14 2 17 3 21 15 0 5 7 2 5 0 8 33 0 1 501

Total 
Counts

Vitrinite Liptinite Inertinite Mineral matter
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Appendix H:  Gas Results 
 
Table 1 Huntly gas data 
 

Basin Drill hole # Canister From To
Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

Huntly TW1 9 338.70 339.20 1.1 0.27 0.04 1.4
Huntly TW1 10 339.20 339.70 1.1 0.21 0.05 1.4
Huntly TW1 11 339.70 340.20 1.0 0.22 0.05 1.3
Huntly TW1 12 340.20 340.70 1.3 0.54 0.05 1.9
Huntly TW1 13 340.70 341.20 1.1 0.25 0.06 1.4
Huntly TW1 14 341.20 341.70 1.1 0.20 0.06 1.4
Huntly TW1 15 341.70 342.20 0.9 0.22 0.04 1.1
Huntly TW1 16 342.20 342.70 0.7 0.74 0.03 1.5
Huntly TW1 17 342.70 343.20 0.6 0.96 0.02 1.5
Huntly TW1 18 343.20 343.70 0.8 0.81 0.04 1.7
Huntly TW1 19 343.70 344.20 0.6 0.86 0.02 1.4
Huntly TW1 20 344.20 344.70 0.8 0.78 0.03 1.6
Huntly TW1 21 344.70 345.20 0.9 0.37 0.03 1.3
Huntly TW1 22 345.20 345.70 1.1 0.36 0.06 1.5
Huntly TW1 23 345.70 346.20 1.6 0.20 0.08 1.9
Huntly TW1 24 346.20 346.70 0.7 0.13 0.05 0.9
Huntly TW1 25 346.70 347.20 1.0 0.45 0.06 1.5
Huntly TW1 26 347.20 347.70 1.2 0.34 0.11 1.7
Huntly TW1 27 347.70 348.20 0.6 0.97 0.02 1.6
Huntly TW1 28 348.20 348.70 1.0 0.37 0.03 1.4
Huntly TW1 29 348.70 349.20 0.9 0.88 0.02 1.8
Huntly TW1 30 349.20 349.70 1.1 0.50 0.04 1.7
Huntly TW1 31 349.70 350.20 0.9 0.83 0.03 1.8
Huntly TW1 32 350.20 351.20 1.0 0.63 0.03 1.7
Huntly TW1 33 351.20 351.70 0.7 0.84 0.02 1.6
Huntly TW1 34 351.70 352.20 1.2 0.66 0.02 1.9
Huntly TW1 35 352.20 352.70 0.6 1.07 0.02 1.7
Huntly TW1 36 352.70 353.39 0.6 1.06 0.02 1.7
Huntly TW1 37 353.39 354.20 1.2 0.61 0.05 1.9
Huntly TW1 38 354.20 354.70 1.3 0.54 0.05 1.9
Huntly TW1 39 354.70 355.20 1.4 0.28 0.06 1.7
Huntly TW1 40 355.20 355.70 1.6 0.26 0.06 1.9
Huntly TW1 41 355.70 356.20 1.2 0.35 0.05 1.6
Huntly TW1 42 356.20 356.70 1.2 0.77 0.08 2.1
Huntly TW1 43 356.70 357.20 0.5 1.13 0.02 1.7
Huntly TW1 44 357.20 357.70 0.9 0.94 0.03 1.8
Huntly TW1 45 357.70 358.20 0.8 0.83 0.03 1.7

mean 1.0 0.6 0.0 1.6
Std 0.3 0.3 0.0 0.2

Gas DataSample details
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Table 2 Ohai gas data 
 

Basin Drill hole # Canister From To
Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

Ohai SC3 SC3-1 319.10 320.20 3.2 0.77 0.45 4.4
Ohai SC3 SC3-2 320.15 320.75 1.6 0.77 0.64 3.0
Ohai SC3 SC3-3 333.10 334.00 3.9 0.55 0.24 4.7
Ohai SC3 SC3-4 333.65 334.65 3.8 0.55 0.27 4.6
Ohai SC3 SC3-5 334.65 335.65 4.1 0.55 0.30 4.9
Ohai SC3 SC3-6 335.65 336.65 4.0 0.55 0.32 4.8
Ohai SC3 SC3-7 336.65 337.55 4.1 0.55 0.29 4.9
Ohai SC3 SC3-8 339.35 340.15 4.3 0.40 0.42 5.1
Ohai SC3 SC3-9 340.15 341.15 4.5 0.40 0.40 5.3
Ohai SC3 SC3-10 341.15 342.15 3.1 0.40 0.38 3.9
Ohai SC3 SC3-11 342.15 343.00 2.7 0.40 0.58 3.7
Ohai SC3 SC3-12 343.00 344.00 3.6 0.40 0.44 4.5
Ohai SC3 SC3-13 344.00 345.00 4.6 0.40 0.47 5.5
Ohai SC3 SC3-14 345.36 346.20 4.9 0.40 0.48 5.8
Ohai SC3 SC3-15 346.20 347.00 4.8 0.45 0.42 5.7
Ohai SC3 SC3-16 347.00 348.00 5.0 0.54 0.27 5.8
Ohai SC3 SC3-17 348.00 348.50 4.9 0.54 0.31 5.8
Ohai SC3 SC3-18 348.76 349.76 3.9 0.54 0.25 4.7

mean 3.9 0.5 0.4 4.8
Std 0.9 0.1 0.1 0.8

Ohai SC1 SC1-1 254.90 255.40 1.6 0.51 0.47 2.6
Ohai SC1 SC1-2 3.9 0.51 0.36 4.8
Ohai SC1 SC1-3 338.95 340.05 3.2 0.51 0.53 4.3
Ohai SC1 SC1-4 3.7 0.51 0.44 4.6
Ohai SC1 SC1-5 356.12 357.10 3.1 0.18 0.70 4.0
Ohai SC1 SC1-6 357.10 357.60 3.4 0.18 0.79 4.4
Ohai SC1 SC1-7 358.20 358.70 3.2 0.18 0.85 4.2
Ohai SC1 SC1-8 367.20 367.70 4.3 0.18 0.44 5.0
Ohai SC1 SC1-9 399.73 401.20 4.3 0.18 0.72 5.2
Ohai SC1 SC1-10 414.20 414.98 5.4 0.24 0.66 6.3
Ohai SC1 SC1-11 414.98 416.14 5.0 0.24 0.33 5.6

mean 3.7 0.3 0.6 4.6
Std 1.0 0.2 0.2 1.0

Gas DataSample details
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Table 3 Greymouth gas data 
 

Basin Drill hole # Canister From To
Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

Greymouth 944 16 309.55 309.85 2.89 0.26 0.55 3.70
Greymouth 944 1 309.85 310.35 0.53 0.07 0.07 0.67
Greymouth 944 2 334.74 335.10 1.83 0.26 0.05 2.14
Greymouth 944 3 335.10 335.50 2.36 0.35 0.40 2.78
Greymouth 944 4 341.00 341.50 1.79 0.58 0.02 2.39
Greymouth 944 5 341.50 342.00 2.12 1.04 0.05 3.21
Greymouth 944 6 342.00 342.50 1.37 0.77 0.07 2.21
Greymouth 944 7 343.10 343.60 2.54 0.58 0.07 3.19
Greymouth 944 8 343.60 344.10 2.85 0.20 0.08 3.13
Greymouth 944 9 344.10 344.70 2.74 0.60 0.08 3.42
Greymouth 944 10 344.85 345.35 1.47 0.19 0.03 1.69
Greymouth 944 11 345.35 345.85 0.87 0.10 0.05 1.02
Greymouth 944 12 345.85 346.35 1.44 0.67 0.07 2.18
Greymouth 944 13 346.35 347.00 1.81 0.45 0.06 2.32
Greymouth 944 14 347.10 347.60 2.42 0.22 0.08 2.72
Greymouth 944 15 347.60 348.10 1.13 0.60 0.04 1.77
Greymouth 944 17 348.10 348.60 2.58 0.41 0.07 3.06
Greymouth 944 18 348.60 349.10 2.35 0.24 0.11 2.70
Greymouth 944 19 349.10 349.60 1.96 0.54 0.07 2.57
Greymouth 944 20 349.70 350.20 1.03 0.45 0.09 1.57
Greymouth 944 21 350.20 350.70 1.85 0.43 0.04 2.32
Greymouth 944 22 351.00 351.50 2.65 0.28 0.06 2.98
Greymouth 944 23 351.50 352.00 1.56 0.41 0.05 2.02
Greymouth 944 24 352.00 352.50 1.07 0.52 0.04 1.63

mean 1.9 0.4 0.1 2.4
Std 0.7 0.2 0.1 0.8

Gas DataSample details
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Appendix I: Saturation Results 
 

Huntly Ohai SC1 Ohai SC3 Greymouth 
Interval Satn % Interval Satn % Interval Satn % Interval Satn % 

9 28.0 SC1-1 55.8 SC3-1 68.9 16 70.2 
10 29.0 SC1-2 75.0 SC3-2 47.7 1 12.7 
11 26.9 SC1-3 67.5 SC3-3 73.9 2 40.6 
12 39.1 SC1-4 72.5 SC3-4 72.8 3 52.8 
13 28.5 SC1-5 62.9 SC3-5 77.5 4 45.4 
14 28.4 SC1-6 69.0 SC3-6 76.1 5 60.9 
15 23.6 SC1-7 66.6 SC3-7 77.4 6 41.9 
16 31.2 SC1-8 78.1 SC3-8 80.5 7 60.5 
17 31.7 SC1-9 81.2 SC3-9 83.5 8 59.4 
18 34.1 SC1-10 98.8 SC3-10 61.6 9 64.9 
19 29.6 SC1-11 87.9 SC3-11 58.6 10 32.1 
20 33.3 - - SC3-12 70.2 11 19.4 
21 26.9 - - SC3-13 86.3 12 41.4 
22 30.7 - - SC3-14 90.7 13 44.0 
23 39.2 - - SC3-15 90.0 14 51.6 
24 18.3 - - SC3-16 90.8 15 33.6 
25 31.1 - - SC3-17 90.7 17 58.1 
26 34.6 - - SC3-18 74.0 18 51.2 
27 33.1 - - - - 19 48.8 
28 28.3 - - - - 20 29.8 
29 36.7 - - - - 21 44.0 
30 34.0 - - - - 22 38.3 
31 36.0 - - - - 23 38.3 
32 34.8 - - - - 24 30.9 
33 32.5 - - - - - - 
34 38.4 - - - - - - 
35 35.2 - - - - - - 
36 34.8 - - - - - - 
37 38.8 - - - - - - 
38 38.1 - - - - - - 
39 35.1 - - - - - - 
40 38.6 - - - - - - 
41 32.1 - - - - - - 
42 42.7 - - - - - - 
43 34.9 - - - - - - 
44 37.4 - - - - - - 
45 35.0 - - - - - - 
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Appendix J: Correlation Charts 
 

Table 1 Charts showing correlation coefficients for vitrain % and gas volume 
 

Huntly Vitrain % Measured 
gas

Residual 
gas Lost gas Total gas

Vitrain % 1.00
Measured gas -0.11 1.00
Residual gas 0.30 -0.85 1.00

Lost gas -0.28 0.81 -0.81 1.00
Total gas 0.40 -0.37 0.81 -0.50 1.00

Greymouth Vitrain % Measured 
gas

Residual 
gas Lost gas Total gas

Vitrain % 1.00
Measured gas -0.30 1.00
Residual gas 0.17 -0.45 1.00

Lost gas -0.44 0.49 -0.30 1.00
Total gas -0.33 0.93 -0.14 0.58 1.00

Ohai SC3 Vitrain % Measured 
gas

Residual 
gas Lost gas Total gas

Vitrain % 1.00
Measured gas -0.12 1.00
Residual gas 0.19 0.02 1.00

Lost gas -0.11 0.08 -0.85 1.00
Total gas -0.11 1.00 0.00 0.12 1.00

Ohai SC1 Vitrain % Measured 
gas

Residual 
gas Lost gas Total gas

Vitrain % 1.00
Measured gas 0.02 1.00
Residual gas -0.46 -0.31 1.00

Lost gas 0.40 -0.22 -0.44 1.00
Total gas 0.03 0.99 -0.28 -0.14 1.00  
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Table 2 Charts showing correlation coefficients for proximate and ultimate analyses and gas volume 
 

Huntly TW1
Inherent 

Moisture (aa) Ash (db) %
Volatile Matter 

(daf)
Fixed carbon 

(daf)
Calorific 

value (daf)
Suggate 
number

Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

Moisture (aa) 1.00
Ash (db) % -0.49 1.00

Volatile Matter (daf) -0.65 0.55 1.00
Fixed carbon (daf) 0.66 -0.55 -1.00 1.00

Calorific value (daf) -0.01 -0.55 0.02 -0.02 1.00
Suggate number -0.19 -0.05 -0.16 0.16 0.68 1.00

Measured gas m3/t 0.03 -0.12 -0.12 0.12 -0.48 -0.04 1.00
Residual gas m3/t 0.16 -0.35 -0.26 0.26 0.28 0.10 -0.66 1.00

Lost gas m3/t -0.13 0.20 0.04 -0.04 -0.27 -0.04 0.72 -0.64 1.00
Total gas m3/t 0.23 -0.56 -0.46 0.46 -0.22 0.10 0.37 0.45 0.11 1.00

Greymouth
Inherent 

Moisture (aa) Ash (db) %
Volatile Matter 

(daf)
Fixed carbon 

(daf)
Calorific 

value (daf)
Suggate 
number

Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

Moisture (aa) 1.00
Ash (db) % -0.95 1.00

Volatile Matter (daf) -0.94 0.89 1.00
Fixed carbon (daf) 0.94 -0.89 -1.00 1.00

Calorific value (daf) 0.83 -0.85 -0.86 0.86 1.00
Suggate number -0.73 0.77 0.63 -0.63 -0.63 1.00

Measured gas m3/t 0.59 -0.62 -0.64 0.64 0.56 -0.48 1.00
Residual gas m3/t 0.30 -0.39 -0.19 0.19 0.45 -0.50 0.05 1.00

Lost gas m3/t 0.17 -0.18 -0.25 0.25 0.08 -0.11 0.43 -0.20 1.00
Total gas m3/t 0.64 -0.69 -0.66 0.66 0.63 -0.59 0.95 0.32 0.43 1.00

Ohai SC3
Inherent 

Moisture (aa) Ash (db) %
Volatile Matter 

(daf)
Fixed carbon 

(daf)
Calorific 

value (daf)
Suggate 
number

Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

Moisture (aa) 1.00
Ash (db) % -0.82 1.00

Volatile Matter (daf) -0.77 0.75 1.00
Fixed carbon (daf) 0.77 -0.75 -1.00 1.00

Calorific value (daf) 0.24 -0.09 0.04 -0.04 1.00
Suggate number -0.08 0.19 -0.39 0.39 0.00 1.00

Measured gas m3/t 0.58 -0.71 -0.46 0.47 0.03 -0.23 1.00
Residual gas m3/t -0.80 0.72 0.45 -0.46 0.00 0.53 -0.47 1.00

Lost gas m3/t -0.22 0.57 0.34 -0.33 -0.27 -0.01 -0.52 0.00 1.00
Total gas m3/t 0.51 -0.62 -0.41 0.41 -0.01 -0.19 0.99 -0.39 -0.44 1.00

Ohai SC1
Inherent 

Moisture (aa) Ash (db) %
Volatile Matter 

(daf)
Fixed carbon 

(daf)
Calorific 

value (daf)
Suggate 
number

Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

Moisture (aa) 1.00
Ash (db) % -0.48 1.00

Volatile Matter (daf) -0.47 0.78 1.00
Fixed carbon (daf) 0.47 -0.78 -1.00 1.00

Calorific value (daf) 0.15 -0.88 -0.78 0.78 1.00
Suggate number -0.12 -0.16 -0.58 0.58 0.48 1.00

Measured gas m3/t -0.14 -0.72 -0.70 0.70 0.90 0.54 1.00
Residual gas m3/t 0.33 0.11 0.33 -0.33 -0.36 -0.26 -0.41 1.00

Lost gas m3/t -0.19 0.21 0.00 0.00 -0.27 -0.27 -0.14 -0.59 1.00
Total gas m3/t -0.14 -0.74 -0.71 0.71 0.88 0.51 0.99 -0.39 -0.06 1.00  
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Table 3 Charts showing correlation coefficients for ash constituents and gas volume 
 

Huntly SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % TiO2 % Mn3O4 % SO3 % P2O5 %
Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

SiO2 % 1.00
Al2O3 % 0.57 1.00
Fe2O3 % -0.59 -0.79 1.00

CaO % -0.70 -0.66 0.37 1.00
MgO % -0.54 -0.63 0.60 0.69 1.00
Na2O % -0.56 -0.25 0.41 -0.08 -0.08 1.00

K2O % 0.26 0.10 -0.09 -0.41 -0.29 0.19 1.00
TiO2 % 0.28 0.48 -0.45 -0.43 -0.43 -0.20 0.03 1.00

Mn3O4 % -0.21 -0.35 0.04 0.72 0.25 -0.44 -0.37 -0.20 1.00
SO3 % -0.64 -0.49 0.62 0.04 0.07 0.91 0.16 -0.24 -0.32 1.00

P2O5 % 0.17 0.21 -0.25 0.01 -0.03 -0.33 -0.21 0.06 0.05 -0.32 1.00
Measured gas m3/t 0.02 -0.04 0.23 -0.04 0.02 -0.07 -0.16 -0.13 -0.02 0.07 0.06 1.00
Residual gas m3/t -0.45 -0.33 0.22 0.32 0.35 0.26 0.00 0.00 0.03 0.25 0.04 -0.66 1.00

Lost gas m3/t 0.26 0.16 0.01 -0.15 0.00 -0.28 -0.09 -0.11 -0.02 -0.20 0.08 0.72 -0.64 1.00
Total gas m3/t -0.52 -0.44 0.54 0.34 0.46 0.22 -0.20 -0.15 0.01 0.38 0.12 0.37 0.45 0.11 1.00

Ohai SC3 SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % TiO2 % Mn3O4 % SO3 % P2O5 %
Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

SiO2 % 1.00
Al2O3 % 0.72 1.00
Fe2O3 % -0.93 -0.74 1.00

CaO % -0.86 -0.67 0.76 1.00
MgO % -0.88 -0.71 0.78 0.94 1.00
Na2O % -0.82 -0.68 0.79 0.48 0.53 1.00

K2O % 0.64 0.77 -0.62 -0.76 -0.66 -0.46 1.00
TiO2 % 0.79 0.89 -0.84 -0.65 -0.75 -0.78 0.64 1.00

Mn3O4 % -0.49 -0.26 0.59 0.68 0.52 0.13 -0.46 -0.32 1.00
SO3 % -0.83 -0.73 0.83 0.48 0.56 0.96 -0.48 -0.81 0.10 1.00

P2O5 % -0.01 0.00 -0.12 0.12 -0.01 0.06 -0.25 0.08 0.06 -0.05 1.00
Measured gas m3/t -0.71 -0.61 0.68 0.76 0.71 0.46 -0.76 -0.57 0.52 0.49 0.02 1.00
Residual gas m3/t 0.84 0.67 -0.78 -0.60 -0.57 -0.91 0.51 0.65 -0.23 -0.88 -0.07 -0.47 1.00

Lost gas m3/t 0.28 0.51 -0.29 -0.28 -0.34 -0.18 0.53 0.47 0.00 -0.30 -0.22 -0.52 0.00 1.00
Total gas m3/t -0.48 -0.42 0.47 0.60 0.56 0.18 -0.58 -0.35 0.47 0.22 0.00 0.89 -0.24 -0.42 1.00

Ohai SC1 SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % TiO2 % Mn3O4 % SO3 % P2O5 %
Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

SiO2 % 1.00
Al2O3 % 0.25 1.00
Fe2O3 % -0.91 -0.18 1.00

CaO % -0.87 -0.63 0.70 1.00
MgO % -0.92 -0.55 0.82 0.98 1.00
Na2O % -0.68 -0.73 0.53 0.78 0.71 1.00

K2O % 0.50 0.20 -0.46 -0.55 -0.57 -0.29 1.00
TiO2 % 0.54 0.86 -0.35 -0.78 -0.67 -0.93 0.18 1.00

Mn3O4 % -0.65 -0.35 0.85 0.53 0.65 0.47 -0.33 -0.32 1.00
SO3 % -0.89 -0.64 0.78 0.93 0.92 0.91 -0.43 -0.84 0.68 1.00

P2O5 % -0.82 -0.51 0.90 0.75 0.83 0.72 -0.40 -0.59 0.94 0.89 1.00
Measured gas m3/t -0.10 -0.69 -0.11 0.41 0.26 0.65 -0.13 -0.75 -0.16 0.40 0.08 1.00
Residual gas m3/t -0.50 -0.06 0.58 0.33 0.43 0.24 -0.04 -0.12 0.65 0.44 0.61 -0.54 1.00

Lost gas m3/t 0.03 0.32 0.04 -0.05 0.02 -0.49 -0.07 0.38 -0.15 -0.28 -0.23 -0.14 -0.43 1.00
Total gas m3/t -0.17 -0.71 -0.03 0.48 0.34 0.66 -0.16 -0.77 -0.12 0.45 0.13 0.99 -0.52 -0.05 1.00

Greymouth SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % TiO2 % Mn3O4 % SO3 % P2O5 %
Measured 
gas m3/t

Residual 
gas m3/t

Lost gas 
m3/t

Total gas 
m3/t

SiO2 % 1.00
Al2O3 % -0.60 1.00
Fe2O3 % -0.74 -0.06 1.00

CaO % -0.50 0.19 0.57 1.00
MgO % -0.30 0.09 0.19 -0.41 1.00
Na2O % -0.72 0.25 0.70 0.72 -0.22 1.00

K2O % -0.03 0.13 -0.18 -0.69 0.80 -0.51 1.00
TiO2 % 0.09 0.11 -0.20 0.14 -0.44 0.20 -0.42 1.00

Mn3O4 % -0.45 0.11 0.51 0.46 0.11 0.16 -0.15 -0.16 1.00
SO3 % -0.23 -0.25 0.50 0.12 0.41 0.06 -0.07 -0.14 0.53 1.00

P2O5 % -0.21 0.10 0.18 0.31 -0.18 0.05 -0.19 -0.02 0.71 0.12 1.00
Measured gas m3/t -0.19 0.27 0.06 0.33 -0.35 0.17 -0.36 0.08 0.36 0.10 0.48 1.00
Residual gas m3/t -0.06 -0.29 0.29 0.28 -0.10 0.41 -0.41 0.27 -0.07 0.43 -0.24 0.16 1.00

Lost gas m3/t -0.24 0.16 0.17 0.34 -0.15 0.05 -0.19 -0.06 0.74 0.13 0.99 0.51 -0.23 1.00
Total gas m3/t -0.23 0.18 0.18 0.44 -0.34 0.29 -0.46 0.14 0.41 0.25 0.45 0.96 0.41 0.48 1.00  
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Table 4 Charts showing correlation coefficients for mineralogy and gas volume 
 

Huntly Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured 
gas  

Residual 
gas  Lost gas  Total gas  

Quartz 1.00
Kaolinite 0.02 1.00

Calicite -0.17 -0.28 1.00
Ankerite -0.17 -0.28 1.00 1.00
Siderite - - - - 1.00

Pyrite - - - - - 1.00
Muscavite - - - - - - 1.00

Measured gas  0.11 -0.10 -0.04 -0.04 - - - 1.00
Residual gas  -0.42 -0.26 -0.22 -0.22 - - - -0.74 1.00

Lost gas 0.50 -0.10 -0.13 -0.13 - - - 0.90 -0.79 1.00
Total gas  -0.48 -0.52 -0.39 -0.39 - - - 0.10 0.59 -0.07 1.00

Ohai SC3 Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured 
gas  

Residual 
gas  Lost gas  Total gas  

Quartz 1.00
Kaolinite 0.52 1.00

Calicite -0.98 -0.53 1.00
Ankerite -0.91 -0.43 0.86 1.00
Siderite -0.60 -0.56 0.56 0.26 1.00

Pyrite - - - - - 1.00
Muscavite - - - - - - 1.00

Measured gas  -0.54 -0.67 0.67 0.45 0.27 - - 1.00
Residual gas  0.29 0.75 -0.28 -0.12 -0.60 - - -0.58 1.00

Lost gas  -0.11 -0.23 0.11 -0.13 0.55 - - -0.09 -0.18 1.00
Total gas  -0.57 -0.63 0.71 0.46 0.26 - - 0.98 -0.47 0.02 1.00

Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured 
gas  

Residual 
gas  Lost gas  Total gas  

Quartz 1.00
Kaolinite -0.78 1.00

Calicite - - 1.00
Ankerite - - - 1.00
Siderite -0.37 0.33 - - 1.00

Pyrite -0.60 0.00 - - -0.12 1.00
Muscavite 0.07 -0.25 - - -0.20 0.22 1.00

Measured gas  -0.45 0.35 - - 0.80 0.07 0.12 1.00
Residual gas  -0.23 -0.09 - - -0.29 0.60 -0.25 -0.17 1.00

Lost gas  -0.28 0.31 - - 0.97 -0.24 -0.22 0.68 -0.46 1.00
Total gas  -0.53 0.34 - - 0.81 0.22 -0.04 0.95 0.10 0.65 1.00

Ohai SC1 Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured 
gas  

Residual 
gas  Lost gas  Total gas  

Quartz 1.00
Kaolinite 0.41 1.00

Calicite - - 1.00
Ankerite -0.91 -0.71 - 1.00
Siderite -0.86 0.00 - 0.58 1.00

Pyrite - - - - - 1.00
Muscavite - - - - - - 1.00

Measured gas  -0.12 -0.23 - 0.00 0.36 - - 1.00
Residual gas  -0.86 0.00 - 0.58 1.00 - - 0.36 1.00

Lost gas  0.86 0.60 - -0.80 -0.78 - - -0.58 -0.78 1.00
Total gas  -0.05 -0.12 - -0.10 0.34 - - 0.99 0.34 -0.50 1.00



143 

Table 5 Charts showing correlation coefficients for organic petrology and gas volume 
 

Greymouth Cell Tel Band Te l Large Tel Des V-d Spor Cu Res L-d Sub Fl S-Fus Fus I-d Scel S Qtz
Cell Te l 1.00

Band Te l 0.10 1.00
Large  Te l -0 .11 -0.85 1.00

Des -0 .04 0.70 -0.96 1.00
V-d -0 .17 0.74 -0.87 0.86 1.00

Spor 0.03 -0.62 0.51 -0.51 -0.49 1.00
Cu 0.75 0.46 -0.48 0.32 0.14 0.12 1.00

Res -0 .44 -0.44 0.47 -0.41 -0.42 0.60 -0.28 1.00
L-d -0 .07 0.17 -0.16 0.17 0.24 -0.73 -0.44 -0.51 1.00

Sub -0 .30 -0.46 0.73 -0.78 -0.66 0.44 -0.32 0.32 -0.21 1.00
Fl -0 .21 -0.42 0.29 -0.19 0.07 0.54 -0.18 0.15 -0.48 0.14 1.00

S-Fus 0.39 0.43 -0.68 0.74 0.45 -0.63 0.36 -0.70 0.37 -0.73 -0.37 1.00
Fus 0.41 0.03 0.00 -0.11 -0.21 -0.03 0.15 0.21 0.30 -0.26 -0.62 0.00 1.00

I-d -0 .13 0.30 -0.07 0.05 -0.16 -0.63 -0.10 -0.19 0.36 0.18 -0.74 0.29 0.01 1.00
Scel 0.88 -0.11 -0.06 -0.01 -0.14 0.27 0.63 -0.13 -0.22 -0.46 0.04 0.27 0.48 -0.48 1.00

S -0 .35 -0.30 0.38 -0.26 -0.39 -0.35 -0.54 -0.14 0.36 0.45 -0.22 0.10 -0.35 0.72 -0.58 1.00
Qtz -0 .46 -0.56 0.33 -0.20 -0.05 0.76 -0.33 0.55 -0.45 0.23 0.77 -0.55 -0.29 -0.73 -0.09 -0.27 1.00

clay -0 .50 -0.36 0.27 -0.21 0.14 0.54 -0.44 0.33 -0.19 0.28 0.77 -0.62 -0.32 -0.73 -0.24 -0.29 0.88
Cbn -0 .21 -0.54 0.47 -0.43 -0.30 0.61 -0.35 0.76 -0.16 0.12 0.25 -0.66 0.48 -0.58 0.17 -0.41 0.64

Fe-O -0 .03 -0.28 0.64 -0.71 -0.65 -0.02 -0.24 -0.07 0.08 0.83 -0.14 -0.35 -0.20 0.54 -0.37 0.70 -0.29
 Tota l V it 0.00 0.61 -0.67 0.73 0.76 -0.73 0.09 -0.54 0.27 -0.72 0.02 0.67 -0.30 0.13 -0.03 -0.03 -0.38
Total L ip -0 .04 -0.40 0.65 -0.77 -0.71 0.57 -0.04 0.38 -0.28 0.91 -0.04 -0.72 0.08 0.08 -0.18 0.17 0.18
Tota l In t 0.60 0.31 -0.33 0.27 -0.06 -0.52 0.40 -0.35 0.40 -0.47 -0.82 0.67 0.62 0.51 0.43 0.08 -0.81

Total M M -0 .50 -0.59 0.41 -0.29 -0.09 0.74 -0.42 0.56 -0.38 0.31 0.76 -0.63 -0.28 -0.71 -0.16 -0.22 0.99
M easured  gas -0 .12 -0.09 0.39 -0.38 -0.36 -0.17 -0.14 -0.13 -0.16 0.54 0.10 -0.12 -0.60 0.54 -0.41 0.68 -0.29

Residual gas 0.42 0.82 -0.81 0.68 0.59 -0.29 0.77 -0.24 -0.21 -0.67 -0.27 0.47 0.17 0.00 0.38 -0.60 -0.42
Lost gas 0.02 -0.29 0.65 -0.72 -0.67 -0.05 -0.25 -0.08 0.14 0.79 -0.19 -0.33 -0.13 0.55 -0.32 0.69 -0.33

Total gas  0.05 0.14 0.21 -0.27 -0.26 -0.26 0.09 -0.22 -0.18 0.43 -0.05 -0.02 -0.49 0.60 -0.29 0.55 -0.48

Huntly Cell Tel Band Te l Large Tel Des V-d Spor Cu Res L-d Sub Fl S-Fus Fus I-d Scel S Qtz
Cell Te l 1.00

Band Te l -0 .19 1.00
Large  Te l -0 .48 -0.22 1.00

Des -0 .30 -0.49 0.12 1.00
V-d 0.58 0.27 -0.55 -0.61 1.00

Spor -0 .25 -0.04 -0.27 -0.17 -0.20 1.00
Cu 0.49 -0.08 0.04 -0.59 0.52 -0.25 1.00

Res -0 .53 0.03 -0.27 0.37 -0.51 0.72 -0.59 1.00
L-d -0 .39 0.09 -0.37 -0.09 -0.15 0.94 -0.30 0.84 1.00

Sub -0 .62 0.24 0.49 0.16 -0.55 -0.03 0.03 0.21 0.04 1.00
Fl -0 .04 -0.08 0.07 -0.32 0.15 0.40 -0.27 -0.02 0.27 -0.60 1.00

S-Fus -0 .59 0.02 -0.13 0.19 -0.30 0.56 -0.40 0.83 0.74 0.04 0.18 1.00
Fus -0 .05 0.61 -0.32 -0.23 0.48 -0.11 -0.08 -0.19 -0.03 0.12 -0.08 -0.35 1.00

I-d 0.52 -0.81 0.01 0.10 0.31 -0.19 0.36 -0.44 -0.30 -0.62 0.27 -0.24 -0.37 1.00
Scel -0 .24 -0.16 -0.23 -0.15 0.07 0.84 -0.13 0.44 0.79 -0.08 0.46 0.35 0.19 0.08 1.00

S -0 .32 0.12 -0.54 0.07 -0.11 0.87 -0.42 0.86 0.95 0.01 0.14 0.66 0.14 -0.33 0.75 1.00
Qtz -0 .21 -0.05 -0.12 0.51 0.09 -0.28 -0.63 0.03 -0.15 -0.39 0.27 0.15 0.28 0.17 -0.05 0.00 1.00

clay 0.29 0.58 -0.32 -0.21 0.50 -0.47 -0.21 -0.37 -0.40 -0.45 0.19 -0.28 0.48 -0.17 -0.45 -0.28 0.51
Cbn -0 .31 -0.61 0.36 0.55 -0.40 0.15 -0.56 0.12 0.06 -0.22 0.54 0.12 -0.19 0.42 0.35 0.06 0.56

Fe-O -0 .27 0.14 -0.26 0.02 -0.30 0.52 -0.06 0.77 0.65 0.24 -0.26 0.77 -0.42 -0.41 0.11 0.58 -0.38
 Tota l V it 0.32 0.09 0.35 0.09 0.07 -0.92 0.16 -0.76 -0.97 0.04 -0.29 -0.75 0.12 0.09 -0.83 -0.90 0.15
Total L ip -0 .36 0.07 -0.31 -0.16 -0.15 0.91 -0.10 0.79 0.97 0.16 0.12 0.71 -0.09 -0.30 0.74 0.89 -0.35
Tota l In t -0 .05 -0.55 -0.21 0.03 0.15 0.60 -0.02 0.30 0.58 -0.42 0.51 0.43 -0.18 0.56 0.81 0.52 0.15

Total M M -0 .26 0.21 -0.36 0.32 -0.06 0.19 -0.81 0.51 0.33 -0.43 0.41 0.56 0.06 -0.19 0.06 0.42 0.74
M easured  gas 0.43 -0.26 -0.07 0.05 -0.06 -0.23 0.17 -0.04 -0.24 -0.39 -0.06 0.16 -0.77 0.30 -0.57 -0.31 -0.14

Residual gas 0.12 0.11 0.06 -0.47 0.37 0.10 0.44 -0.42 -0.02 0.21 0.04 -0.57 0.60 0.05 0.45 -0.03 -0.32
Lost gas 0.18 -0.23 -0.12 0.02 -0.01 0.00 0.11 0.20 0.08 -0.40 0.08 0.52 -0.76 0.27 -0.30 -0.04 -0.04

Total gas  0.70 -0.16 0.01 -0.65 0.49 -0.11 0.86 -0.67 -0.31 -0.17 0.00 -0.64 -0.04 0.44 0.00 -0.41 -0.64
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O hai SC3 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fl S-Fus Fus I-d Scel S Qtz
Cell Tel 1.00

Band Tel 0.71 1.00
Large Tel -0.36 -0.38 1.00

Des -0.36 -0.27 -0.66 1.00
V-d 0.16 0.05 -0.77 0.60 1.00

Spor -0.07 -0.15 0.67 -0.61 -0.59 1.00
Cu 0.10 0.41 -0.08 -0.35 0.06 0.04 1.00

Res 0.59 0.28 0.29 -0.83 -0.40 0.39 0.34 1.00
L-d 0.67 0.11 0.00 -0.47 -0.15 0.18 -0.07 0.84 1.00

Sub 0.42 0.03 0.42 -0.63 -0.24 -0.03 -0.05 0.63 0.58 1.00
Fl - - - - - - - - - - 1.00

S-Fus -0.28 -0.18 0.82 -0.62 -0.77 0.80 -0.09 0.31 0.04 0.11 - 1.00
Fus -0.52 -0.21 -0.03 0.26 0.38 -0.20 0.07 -0.46 -0.57 -0.25 - 0.11 1.00

I-d -0.86 -0.64 0.18 0.48 -0.03 0.02 -0.01 -0.66 -0.68 -0.50 - -0.03 0.19 1.00
Scel -0.35 -0.77 0.06 0.40 0.01 -0.26 -0.48 -0.15 0.19 0.17 - -0.25 -0.21 0.43 1.00

S - - - - - - - - - - - - - - - 1.00
Qtz 0.46 0.31 0.42 -0.87 -0.62 0.64 0.33 0.92 0.68 0.41 - 0.56 -0.45 -0.55 -0.32 - 1.00

clay 0.27 0.33 0.59 -0.81 -0.73 0.82 0.11 0.58 0.29 0.18 - 0.78 -0.33 -0.38 -0.54 - 0.82
Cbn -0.61 -0.64 0.01 0.57 -0.13 -0.35 -0.52 -0.42 -0.15 -0.16 - -0.05 0.11 0.49 0.78 - -0.44

Fe-O - - - - - - - - - - - - - - - - -
 Total Vit -0.09 0.12 -0.74 0.89 0.67 -0.69 -0.27 -0.82 -0.54 -0.55 - -0.70 0.25 0.24 0.05 - -0.86
Total Lip 0.52 0.20 0.41 -0.88 -0.37 0.40 0.39 0.96 0.75 0.73 - 0.31 -0.40 -0.55 -0.13 - 0.86
Total Int -0.93 -0.80 0.61 0.11 -0.36 0.34 -0.21 -0.37 -0.46 -0.22 - 0.54 0.43 0.73 0.37 - -0.22

Total M M 0.38 0.27 0.51 -0.87 -0.72 0.70 0.23 0.86 0.61 0.36 - 0.67 -0.45 -0.50 -0.33 - 0.99
M easured gas -0.49 -0.30 0.18 0.42 -0.01 -0.28 -0.62 -0.75 -0.65 -0.08 - 0.04 0.36 0.40 0.21 - -0.69

Residual gas 0.09 0.17 0.45 -0.77 -0.48 0.56 0.49 0.73 0.37 0.24 - 0.68 0.12 -0.39 -0.43 - 0.82
Lost gas 0.50 0.09 0.24 -0.33 -0.43 0.31 -0.38 0.39 0.54 0.41 - 0.06 -0.90 -0.25 0.23 - 0.40

Total gas  -0.45 -0.28 0.34 0.25 -0.19 -0.14 -0.64 -0.62 -0.56 0.03 - 0.21 0.29 0.32 0.17 - -0.53

O hai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fl S-Fus Fus I-d Scel S Qtz
Cell Tel 1.00

Band Tel 0.61 1.00
Large Tel -0.99 -0.49 1.00

Des 0.68 -0.12 -0.79 1.00
V-d 0.62 -0.09 -0.74 0.97 1.00

Spor -0.62 -0.94 0.48 0.15 0.21 1.00
Cu 0.89 0.90 -0.82 0.30 0.29 -0.87 1.00

Res -0.55 0.17 0.68 -0.95 -1.00 -0.30 -0.20 1.00
L-d 0.20 0.90 -0.06 -0.55 -0.51 -0.85 0.62 0.56 1.00

Sub 0.36 0.95 -0.21 -0.41 -0.38 -0.91 0.74 0.44 0.99 1.00
Fl - - - - - - - - - - 1.00

S-Fus 0.18 -0.64 -0.33 0.84 0.81 0.65 -0.27 -0.84 -0.92 -0.84 - 1.00
Fus 0.23 -0.52 -0.28 0.58 0.38 0.27 -0.17 -0.37 -0.71 -0.65 - 0.70 1.00

I-d -0.22 -0.90 0.09 0.47 0.38 0.77 -0.63 -0.42 -0.97 -0.97 - 0.85 0.82 1.00
Scel -0.06 0.06 -0.03 0.14 0.39 0.29 0.01 -0.43 0.02 0.01 - 0.11 -0.63 -0.24 1.00

S - - - - - - - - - - - - - - - 1.00
Qtz 0.21 0.82 -0.04 -0.57 -0.61 -0.90 0.58 0.68 0.94 0.93 - -0.90 -0.45 -0.83 -0.33 - 1.00

clay 0.87 0.91 -0.78 0.24 0.20 -0.92 0.99 -0.11 0.65 0.76 - -0.32 -0.13 -0.63 -0.11 - 0.65
Cbn -0.11 -0.84 -0.02 0.56 0.45 0.71 -0.54 -0.49 -0.97 -0.94 - 0.88 0.86 0.99 -0.26 - -0.82

Fe-O 0.81 0.10 -0.84 0.82 0.65 -0.25 0.50 -0.60 -0.30 -0.15 - 0.55 0.75 0.35 -0.41 - -0.14
 Total Vit -0.73 -0.88 0.60 -0.02 0.08 0.98 -0.90 -0.17 -0.72 -0.81 - 0.49 0.09 0.64 0.37 - -0.81
Total Lip 0.19 0.86 -0.03 -0.59 -0.59 -0.88 0.59 0.65 0.98 0.97 - -0.93 -0.60 -0.92 -0.16 - 0.98
Total Int 0.07 -0.74 -0.19 0.68 0.56 0.61 -0.39 -0.59 -0.93 -0.88 - 0.92 0.91 0.96 -0.27 - -0.78

Total M M 0.84 0.90 -0.73 0.17 0.10 -0.95 0.97 -0.01 0.68 0.78 - -0.38 -0.10 -0.63 -0.22 - 0.71
M easured gas 0.55 0.03 -0.52 0.44 0.20 -0.32 0.31 -0.14 -0.20 -0.10 - 0.29 0.82 0.36 -0.82 - 0.10

Residual gas -0.23 -0.24 0.11 0.19 0.42 0.56 -0.25 -0.48 -0.26 -0.28 - 0.32 -0.44 0.04 0.95 - -0.58
Lost gas -0.50 -0.99 0.38 0.25 0.21 0.93 -0.84 -0.28 -0.95 -0.98 - 0.74 0.59 0.94 -0.06 - -0.87

Total gas  0.49 -0.17 -0.49 0.56 0.33 -0.10 0.16 -0.29 -0.42 -0.32 - 0.49 0.93 0.55 -0.74 - -0.13  
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Appendix K: Graphs of correlations (from correlation charts) 

Figure 1: Ohai SC3 significant correlations with gas and proximate data, based on correlation chart.

Moisture (aa) vs Measured gas, Ohai SC3

R2 = 0.479

5

7

9

11

1 2 3 4 5 6

Measured gas, m3/t
M

oi
st

ur
e 

%

Ash (db) vs Measured gas, Ohai SC3

R2 = 0.6618

0

10

20

30

40

50

1 2 3 4 5 6

Measured gas, m3/t

A
sh

 %

Ash (db) vs Residual gas, Ohai SC3

R2 = 0.7318

0

10

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0

Residual gas, m3/t

A
sh

 %
Ash (db) vs Lost gas, Ohai SC3

R2 = 0.3249

0

10

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0

Lost gas, m3/t

A
sh

 %

Ash (db) vs Total gas, Ohai SC3

R2 = 0.4615

0

10

20

30

40

50

2 3 4 5 6

Total gas, m3/t

A
sh

 %

Moisture (aa) vs Total gas, Ohai SC3

R2 = 0.3405

0

5

10

15

20

2 3 4 5 6

Total gas, m3/t

A
sh

 %

 



146 

Figure 2: Ohai SC1 significant correlations with gas and proximate data, based on correlation chart.
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Figure 3: Greymouth 944 significant correlations with gas and proximate data, based on correlation chart.
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Figure 4: Huntly TW1 significant correlations with gas and proximate data, based on correlation chart.
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Figure 5: Ohai SC3 significant correlations with gas and XRF data, based on correlation
chart.
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Figure 6: Ohai SC3 mainseam significant correlations with gas and XRF data, 
based on correlation chart.
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Figure 7: Ohai SC1 significant correlations with gas and XRF data, based on correlation chart.
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Figure 8: Greymouth 944 significant correlations with gas and XRF data, based on correlation 
chart.

Mn3O4 % vs Lost gas

R2 = 0.5407

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Lost gas m3/t

M
n 3

O
4 %

P2O5 % vs Lost gas

R2 = 0.974

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Lost gas m3/t

P 2
O

5 %

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



153 

Figure 9: Huntly TW1 significant correlations with gas and XRF data, based on correlation 
chart.
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Figure 10: Ohai SC3 significant correlations with gas and XRD data, based on correlation 
chart.
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Figure 11: Ohai SC1 significant correlations with gas and XRD data, based on correlation chart.
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Figure 12: Greymouth 944 significant correlations with gas and XRD data, based on correlation chart.

Siderite vs Measured gas, Greymouth 944 

R2 = 0.6438

0

1

2

3

4

5

6

1 1.5 2 2.5 3

Measured gas, m3/t
Si

de
rit

e 
%

Quartz vs Measured gas, Greymouth 944 

R2 = 0.2112

60

70

80

90

100

1 1.5 2 2.5 3

Measured gas, m3/t

Q
ua

rt
z 

%

Pyrite vs Residual gas, Greymouth 944 

R2 = 0.3579

0

2

4

6

8

10

0.2 0.4 0.6 0.8 1.0 1.2

Residual gas, m3/t

Py
rit

e 
%

Siderite vs Lost gas, Greymouth 944 

R2 = 0.9365

0

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Lost gas, m3/t

Si
de

rit
e 

%

Quartz vs Total gas, Greymouth 944 

R2 = 0.2952

70

80

90

100

1.5 2.0 2.5 3.0 3.5 4.0

Total gas, m3/t

Q
ua

rt
z 

%

Siderite vs Total gas, Greymouth 944 

R2 = 0.6512

0

1

2

3

4

5

6

1.5 2.0 2.5 3.0 3.5 4.0

Total gas, m3/t

Si
de

rit
e 

%

 



157 

Figure 13: Huntly TW1 significant correlations with gas and XRD data, based on correlation chart.
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Figure 14: Ohai SC3 significant correlations with gas and maceral data, based on correlation  charts.
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Figure 15: Ohai SC3 significant correlations with gas and maceral data, based on correlation  charts., continued.
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Figure 16: Ohai SC1 significant correlations
with gas and maceral data, based on  
correlation charts.
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Figure 17:Greymouth 944 significant correlations with gas and maceral data, based on correlation  chart.
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Figure 18:Greymouth 944 significant correlations with gas and maceral data, based on correlation chart, continued.
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Figure 19: Huntly significant correlations with gas and maceral data, based on correlation  charts.
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