COAL SEAM GAS ASSOCIATIONS IN THE HUNTLY, OHAI AND GREYMOUTH REGIONS, NEW ZEALAND.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in geology at the University of Canterbury by

Caroline I Butland

Department of Geological Sciences, University of Canterbury, Christchurch, New Zealand

June 2006

Frontispiece

Mangapiko (Waikato Basin) at dawn

Nothing in life is worthy of great anxiety

Plato

Abstract

Coal seam gas has been recognised as a new, potential energy resource in New Zealand. Exploration and assessment programmes carried out by various companies have evaluated the resource and indicated that this unconventional gas may form a part of New Zealand's future energy supply. This study has delineated some of the controls between coal properties and gas content in coal seams in selected New Zealand locations.

Four coal cores, one from Huntly (Eocene), two from Ohai (Cretaceous) and one from Greymouth (Cretaceous), have been sampled and analysed in terms of gas content and coal properties. Methods used include proximate, sulphur and calorifc value analyses; ash constituent determination; rank assessment; macroscopic analysis; mineralogical analysis; maceral analysis; and gas analyses (desorption, adsorption, gas quality and gas isotopes).

Coal cores varied in rank from sub-bituminous B-A (Huntly); sub-bituminous C-A (Ohai); and high volatile bituminous A (Greymouth). All locations contained high vitrinite content (~85 %) with overall relatively low mineral matter observed in most samples. Mineral matter consisted of both detrital grains (quartz in matrix material) and infilling pores and fractures (clays in fusinite pores; carbonates in fractures). Average gas contents were 1.6 m³/t in the Huntly core, 4.7 m³/t in the Ohai cores, and 2.35 m³/t in the Greymouth core. The Ohai core contained more gas and was more saturated than the other cores. Carbon isotopes indicated that the Ohai gas composition was more mature, containing heavier ¹³C isotopes than either the Huntly or Greymouth gas samples. This indicates the gas was derived from a mixed biogenic and thermogenic source. The Huntly and Greymouth gases appear to be derived from a biogenic (by CO₂ reduction) source.

The ash yield proved to be the dominant control on gas volume in all locations when the ash yield was above 10 %. Below 10 % the amount of gas variation is unrelated to ash yield. Although organic content had some influence on gas volume, associations were basin and /or rank dependant. In the Huntly core total gas content and structured vitrinite increased together. Although this relationship did not appear in the other cores, in the Ohai SC3 core lost gas and fusinite are associated with each other, while desmocollinite (unstructured vitrinite) correlated positively with residual gas in the Greymouth core. Although it is generally accepted that higher rank coals will have higher adsorption capacities, this was not seen in this data set. Although the lowest rank coal (Huntly) contains the lowest adsorption capacity, the highest adsorption capacity was not seen in the highest rank coal (Greymouth), but in the Ohai coal instead.

The Ohai core acted like a higher rank coal with respect to the Greymouth coal, in terms of adsorption capacity, isotopic signatures and gas volume. Two hypothesis can be used to explain these results: (1) That a thermogenically derived gas migrated from down-dip of the SC3 and SC1 drill holes and saturated the section. (2) Rank measurements (e.g. proximate analyses) have a fairly wide variance in both the Greymouth and Ohai coal cores, thus it maybe feasible that the Ohai cores may be higher rank coal than the Greymouth coal core. Although the second hypothesis may explain the adsorption capacity, isotopic signatures and the gas volume, when the data is plotted on a Suggate rank curve, the Ohai core is clearly lower rank than the Greymouth core. Thus, pending additional data, the first hypothesis is favoured.

Table of Contents

Abstracti List of Figuresiv List of Tablesv	
Chapter One: Introduction	1
1.1 Introduction	1
1.2 Objective of study	2
1.3 What is coal seam gas?	2
131 Introduction	2
132 Coal seam gas composition	4
1 4 General geology	5
141 The Waikato Region	5
142 The Ohai Region	8
1.4.3 The Greymouth Region	11
Chapter Two: Methodology	15
2.1 Macroscopic analyses	15
2.1.1 Coal type	15
2.1.2 Macroscopic point count analyses	21
2.2 Sampling	21
2.3 Coal geochemistry	28
2.3.1 Proximate and ultimate analyses	28
2.3.2 Ash constituents	29
2.3.3 Mineralogy	29
2 4 Suggate rank	30
2.4 1 Introduction	30
2.4.2 Construction of Suggate plot	31
2 5 Petrographic analyses	32
2.5.1 Introduction	32
2.5.1 Information	33
2.5.2 Coal block nellet preparation	33
2.5.3 Cour block perier preparation	35
2.5.5 Microscopic unarytical method	35
2.0 Oas uala	35
2.8.2 Adsorption analysis	38
2.8.2 Ausorption analysis 2.8.3 Saturation levels	30
2.6.5 Saturation levels	40
2.6.5 Stable isotopes	40
Chapter Three: Results	41
3.1 Coal type distribution	41
3.2 Geochemistry and Mineralogy	42
3.2.1 Proximate and ultimate analyses	42
3.2.2 Introduction to mineral matter	43
3.2.3 Ash constituents	45
3.2.4 Mineralogy	48
3.3 Rank and Suggate Rank	52

3.4 Organic petrology	53
3.4.1 Particulate mounts	53
3.4.2 Block mounts	58
3.5 Gas quantity, quality and type	65
3.5.1 Adsorption	65
3.5.2 Desorption	66
3.5.3 Gas Saturation	68
3.5.4 Gas Isotopes	68
3.5.5 Gas Quality	68
Chapter Four: Gas Associations	71
4 1 Organic Correlations	72
4.1 1 Macroscopic	72
4.1.2 Microscopic	72
4.2 Geochemical Correlations	80
4.2 Geochemical Correlations	80
4.2.1 Toximule unuryses	82
4.2.2 Ash constituents	02
4.2.5 Milleralogy	07
4.3 Saturation Correlations	92
4.4 Summary by Location	95
Chapter Five: Discussion	97
5.1 Inorganic composition	97
5.2 Organic composition	99
5.3 Saturation	100
5.4 Holding capacity and rank	101
5.5 Coal seam gas composition	102
5.6 Modelling anomalous behaviour of Ohai coal	103
Chapter Six: Conclusions	107
6.1 Conclusions	107
6.2 Implications for industry	108
6.3 Limitations and future work	109
References	
List of Appendices	119
Appendix A Abbreviations	119
Appendix B Corrections	120
Appendix C Drill hole coordinates	121
Appendix D Macroscopic results	123
Appendix E Proximate and ultimate results	129
Appendix F Ash constituent results	131
Appendix G Maceral point count results	134
Appendix H Gas results	135
Appendix I Saturation results	138
Appendix J Correlation charts	139
Appendix K Graphs of correlations	145

List of Figures

Chapter One: Introduction	
1.1 Gas in coal is mainly held in pores and cleats, with van der Waals forces.	3
1.2 Model of methane flow through coal showing desorption, diffusion and Darcy flow.	4
1.3 Geological map and stratigraphic column for the Huntly region.	7
1.4 Geological map and stratigraphic column for the Ohai region.	9
1.5 Geological map and stratigraphic column for the Greymouth region.	12
Chapter Two: Methodology	
2.1 Graphic representation of Huntly canister lengths and correlating coal types.	23
2.2 Graphic representation of Ohai SC3 canister intervals and correlating ply intervals and coal type.	24
2.3 Graphic representation of Ohai SC1 canister lengths and correlating coal types.	25
2.4 Graphic representation of Greymouth canister intervals and correlating coal types.	26
2.5 Position of selected sample in stratigraphic sequence	27
2.6 Suggate plot showing New Zealand coal band, Suggate number and the average type line.	31
2.7 Probable error in percent at the 95% confidence level, related to number of points counted.	34
2.8 Flow chart of procedure used in gas desorption measurements.	36
2.9 Photos showing the process involved in collecting samples for gas desorption.	37
2.10 Example of gas desorption equipment used.	38
Chapter Three: Results	
3.1 Average values for volatile matter, ash yield, sulphur and calorific value, in the selected cores.	42
3.2 Down hole variation of ash yield (db) and volatile matter (daf) in the selected cores	44
3.3 Mean values of ash constituents for the selected drill cores.	46
3.4 Percentage of ash constituents, by canister interval, in the Huntly drill core.	46
3.5 Percentage of ash constituents, by canister interval, in the Ohai SC3 drill core.	47
3.6 Percentage of ash constituents, by canister interval, in the Ohai SC1 drill core.	47
3.7 Percentage of ash constituents, by canister interval, in the Greymouth drill core.	48
3.8 Percentage of average XRD mineral matter in the Huntly, Ohai and Greymouth cores.	49
3.9 Percentage of XRD mineral matter in each canister, for the Huntly, Ohai and Greymouth cores.	51
3.10 ASTM rank classifications, based on volatile matter (daf), for the selected cores.	52
3.11 Suggate rank graph for Greymouth, Ohai and Huntly samples.	54
3.12 Average maceral contents in the Huntly, Ohai and Greymouth cores.	55
3.13 Huntly pie graphs showing proportion of maceral groups in each canister interval.	55
3.14 Huntly pie graphs showing proportion of vitrinite macerals in each canister interval.	56
3.15 Onal SC3 pie graphs showing proportion of material groups in each canister interval.	50
3.16 Onal SC5 pie graphs showing proportion of vitrinite macerals in each canister interval.	51
3.17 Onal SC1 pie graphs showing proportion of material groups in each canister interval.	57
3.10 Graymouth rig graphs showing proportion of maceral groups in each canister interval	58
3.19 Greymouth pie graphs showing proportion of vitrinite macerals in each canister interval	58
3.20 Oreymouth pic graphs showing proportion of vitrinite macerials in each callister interval.	59
3.22 Photos of common macerals found in block and particulate mounts: inertinite groups.	60
3.22 Photos of common macerals found in block and particulate mounts: mineral matter	61
3 24 Sketches of canisters 6 and 13 Greymouth block mounts	62
3.25 Adsorption isotherms for the selected regions.	66
3.26 Average values of total gas content in the selected cores.	67
3.27 Down hole total gas variation, in the Huntly, Ohai and Greymouth cores.	67
3.28 Gas isotopes of the Huntly, Ohai Greymouth and Powder River Basins.	69

Chapter Four: Gas associations

4.1 Vitrain and total gas relationships in the Huntly core.	73
4.2 Vitrain and total gas relationships in the Ohai core.	74
4.3 Vitrain and total gas relationships in the Greymouth core.	75
4.4 Graphs showing maceral correlations with and without mineral matter removed.	76
4.5 Main maceral and gas correlations, in the Huntly core.	78
4.6 Main maceral and gas correlations, in the Ohai SC3 core.	78
4.7 Main maceral and gas correlations, in the Ohai SC1 core.	79
4.8 Main maceral and gas correlations, in the Greymouth core.	80
4.9 Association between ash yield and total gas volume, all locations.	81
4.10 Association between ash yield and measured and residual gas, in the Ohai samples.	81
4.11 Significant correlations between gas and ash constituent data, Huntly drill core.	83
4.12 Significant correlations between gas and ash constituent data, Ohai SC3 core.	84-85
4.13 Significant correlations between gas and ash constituent data, Ohai SC1 core.	85
4.14 Significant correlations between gas and ash constituent data, Ohai SC3- main coal seam.	86-87
4.15 Significant correlations between gas and mineralogical data, in the Huntly core.	88
4.16 Significant correlations between gas and mineralogical data, in the Ohai SC3 core.	89-90
4.17 Significant correlations between gas and mineralogical data, in the Ohai SC1 core.	90
4.18 Significant correlations between gas and mineralogical data, in the Greymouth core.	91
4.19 Summary of significant correlations between proximate analyses and percent saturation.	93
4.20 Summary of significant correlations between ash constituents and percent saturation.	94
4.21 Summary of significant correlations between maceral analyses and percent saturation.	95

Chapter Five: Discussion

5.1 Geological map and simplified schematic diagram	n modeling migration of secondary
biogenic and/or thermogenic gas up-dip, in the O	hai coal field. 105

List of Tables

Chapter One: Introduction	
1.1 Stratigraphy of the Waikato coal region	6
1.2 Stratigraphy of the Ohai coal region	10
1.3 Stratigraphy of the Greymouth coal region	13
Chapter Two: Methodology	
2.1 Analyses completed on all samples	16-20
2.2 Properties of samples selected for petrological and mineralogical analyses.	28
2.3 Summary of maceral groups identified in petrographic work.	33
Chapter Three: Results	
3.1 Total of major elements plus loss on ignition, XRF analysis.	48
3.2 Mineral occurrences in selected samples, from XRD analysis.	50
3.3 Mineral percentages in selected samples, from XRD analysis.	50
3.4 Approximate rank correlations between Suggate rank and ASTM rank.	53
3.5 Average Suggate rank values, by location.	53
3.6 Percentages of maceral concentrations in selected samples.	63
3.7 Summary of Greymouth 944 block samples.	64
3.8 Langmuir coefficients for the studied areas.	65
3.9 Adsorption capacity, given as gas content (m^3/t) , for different pressures (aa).	65
3.10 Holding capacity, given as gas content (m^3/t), for different pressures (daf).	66
3.11 Variation in total gas volume, for the Huntly, Ohai and Greymouth samples.	66
3.12 Gas isotope values, for the Huntly, Ohai and Greymouth samples.	68
3.13 Gas quality data, corrected for air free, O_2 and N_2 .	68
Chapter Four: Gas associations	
4.1 Significant levels of correlation coefficients at the 95 % confidence limit.	72
4.2 Summary of correlation coefficients between gas values and other parameters.	72
4.3 Significant correlations between maceral data and gas data.	77
4.4 Significant correlations between proximate data and gas data.	80
4.5 Significant correlations between ash constituent data and gas data.	82
4.6 Significant correlations between mineralogical data and gas data.	87
4.7 Oxides present in coal samples, and possible associated minerals.	88
4.8 Summary of correlation coefficients between percent saturation and other parameters.	92

Acknowledgements

There are several people who deserve a mention, as without them this thesis would have been a lot harder to do.

Firstly, I would like to thank Tim Moore (Solid Energy) for coming up with such a great, new innovative line of research, and to providing HEAPS of valuable feedback, ideas and support. (And who listened to numerous anecdotes about my cat). I would also like to thank Tim for providing me with work, and more invaluably, with work experience. It was great to get out there and get dirty, and get drillers to lift heavy things for me! And to also realise that I actually like doing what I am doing! I would also like to thank Steve Weaver, my other supervisor, who was great support and encouragement.

Thanks to Solid Energy (in particular Grant Gillard and Carlos Galceran) who provided me with a job, experience, a work space and lots of printing and photocopying (more than they know!). Both Grant and Carlos were great for helping out with GIS stuff, and it was also lots of fun working with them for un-related thesis stuff too.

Thank you to Technology in New Zealand and Solid Energy for giving me a scholarship, and opportunities to gain experience, and also to Orion Energy who also gave me a research scholarship and helped keep down the student loan...a bit!

A big thank you to Jane Newman and Nick Moore (Newman Energy Research) who trained me up to do my petrography and kept me company while point counting. This thesis would not have been the same without you, and without the 'special' company of Jet, Titus and Spot. Also a big thank you to Nigel Newman (CRL Energy) who gave me lots of help regarding mineral matter, and more importantly was a life saver when dealing with the LTA.

A thank you too, to all the technicians, especially Rob Speirs who kept me company when grinding coal and was always there to lend a hand or help me find bits and pieces, and to Steven Brown for showing me how to prepare my XRD slides, and to Sacha for just having a chat. Also to Anekant for helping me with formatting problems and showing me his cat photos. And I must not forget the amazing Pat Roberts who was a whiz when dealing with all my queries and problems about scholarships and Canterprise.

Thanks to all my friends and office mates (Liv, Amy, Jo, Kim, Darryn, Andy, Carl, Miles, Francie, Tennille, Mitch, Scott, Joyce, Katie, Emma, Hamish, Sam and I hope I haven't forgotten anyone), my aikido mates (especially Kerry and Yuko) and my family (John, Corinna, Mum, Dad and Cleo the Cat, although she forgot me when I went back home) for helping me keep sane. Mum and Dad, thanks for sending me food parcels, especially the ones with chocolate in them.

The biggest thanks goes out to my husband Shawn. "THANKS." Without him this thesis would not have been as enjoyable. Thank you for helping me out with tedious lab work, and keeping me calm when I started to stress. Thank you for keeping me company while grinding copious amounts of coal, and putting up with me travelling a lot and being away a lot. Even though you were busy with your own study you always had time to help me when I needed it, even if it was just to keep me relaxed. I suppose I owe you one now! And thanks to Cian, for being what you are, a really cool cat.

Chapter One Introduction

1.1 Introduction

The occurrence of methane in coal seams has long been known, with gas explosions first being documented in 1810 in the United States and 1845 in France (Flores, 1998). Since the late 20th Century, there has been emphasis on coal seam gas as a potential energy source. This has lead to several countries including the United States, the United Kingdom, Canada, Australia, China and India, carrying out active exploration programmes (Hayton et al., 2004). As a result of this exploration there are many basins (mainly in the United States) which are now producing significant amounts of coal seam gas (CSG). Early CSG models emphasized the importance of thermogenic gas but in the last 5 years low rank deposits have also been shown to be economically significant, most notably with the successful development of the Powder River Basin as a CSG play (Ayers, 2002).

The overseas development of CSG plays in low rank coal deposits has lead to exploration of basins of similar rank in New Zealand. Assessment of New Zealand's CSG resources began in the 1980s (Thorburn, 1983), although it faced a slow start (Manhire and Hayton, 2003). With the recent decline of gas resources in the Maui gas field (Sherwood et al., 2003), renewed activity in CSG exploration has occurred. Currently New Zealand does not have any commercially producing CSG wells but there have been a number of companies

working on exploration and research, assessing the size and nature of potential resources (Moore and Twombly, 2006; Moore and Butland, 2005; Moore et al., 2002a; Twombly et al., 2004; Cave, 2002).

The Huntly, Ohai and Greymouth basins all contain coal measures with ranks ranging from subbituminous to bituminous. Coal seams from the Huntly, Ohai and Greymouth basins contain significant amounts of CSG. These basins have had only limited amounts of research conducted in relation to their gas content, and the relationship with other geological and coal parameters (such as maceral composition, mineral matter and proximate analyses). This study will attempt to determine controls on gas variability from these selected New Zealand CSG reservoirs, as well as establish some fundamental knowledge regarding types of mineralisation in New Zealand coals, maceral composition and the relationship to gas volume.

1.2 Objective of study

The objective of this study is to determine whether organic or inorganic composition play a more important role in controlling gas variation. Thus, three sites in New Zealand have been selected (Huntly, Greymouth and Ohai).

In order to accomplish this objective, the study has three aims:

- 1. Characterise the organic and inorganic composition using four cores, one from each of the basins except for the Ohai coalfield from which two cores were available,
- 2. Correlate the organic and inorganic composition with gas content and quantity, and
- 3. Develop a model which explains the relative contributions organic and inorganic composition have to gas content and gas variation.

The objective will be met through a combination of different analytical methodologies. Organic composition will be assessed using an optical petrographic analysis, whereas the inorganic components will be assessed using XRF, XRD, proximate (moisture, volatile matter, ash yield, fixed carbon and calorific value) analyses as well as supporting optical petrographic analysis. Gas content will be characterised using desorption and adsorption isotherms, carbon-methane isotopes and gas composition analyses. Simple statistics will be applied to look for significant correlations and associations between these parameters.

1.3 What is coal seam gas?

1.3.1 Introduction

Coal seam gas, also known as coal seam methane, coalbed methane and coal seam natural gas, develops naturally within coal beds and associated sediments as part of the burial and coalification process. Unlike

conventional reservoirs where the gas exists in a free state in the pores between sediment grains, CSG exists in a near liquid-like state, because of the physical **sorption** process (Yee et al., 1993). During coalification hydrocarbons are released along with nitrogen, carbon dioxide and water. A significant proportion of the gas is stored by physical sorption, trapped within the coal seam or associated sediments through van der Waals forces (a weak intermolecular force), onto the organic matter in coal (Fig. 1.1).

Figure 1.1: Gas in coal is mainly held in pores and cleats, with van der Waals forces.

In coal, the gas is mainly held in pores and cleats (closely spaced jointing). There have been four mechanisms proposed for the storage of gas in coal: 1) as a free gas compressed in pore spaces, 2) Condensed as a solid or liquid, 3) dissolved in the coal structure, and 4) adsorbed on the internal surfaces (Crosdale et al., 1998). Studies of gas flow show the gas in coal must diffuse through the micropore structure of the matrix, until it reaches a cleat (Gamson et al., 1996). The relationship of coal seam structure and gas flow behaviour can be demonstrated as a dual porosity model of macropores (cleats) and micropores. The gas flow through the coal can be viewed as a three-stage process (Crosdale at al., 1998, Fig. 1.2): (i) gas desorbs off the internal surfaces. This leads to (ii) gas diffusion through the coal matrix, where the gas travels through the micropores to the large pores. Unlike flow through the cleat system (stage three), which is pressure driven, flow through the matrix is concentration driven and can be modelled using Fick's law of diffusitivity. Finally (iii) free flow (Darcy's law, which groups pore size, shape, distribution and connectivity as one parameter: permeability) where gas flows through large pores out of the coal system, as a response to a pressure change. (Gamson et al., 1996; Busch et al., 2004).

Figure 1.2: Model of methane flow through coal showing desorption, diffusion and Darcy flow.

1.3.2 Coal Seam Gas Composition

Coal seam gas consists of various hydrocarbons in different proportions, as well as small quantities of nitrogen, oxygen, hydrogen and helium. CH_4 is the dominant component of coal seam gas, followed by CO_2 and heavier hydrocarbons (Rice, 1993; Clayton, 1998). There are a number of controlling factors which determine the proportions of gas in the coal seam. These include:

- 1. Thermal maturity of the coal,
- 2. H/C (elemental composition) of macerals present, and
- 3. the mechanism of gas generation (thermogenic vs. biogenic).

The carbon isotopic composition of coal seam gas has a large amount of variation. The controls over the coal seam gas isotopic variation are the same as which determine the proportion of gas in the seam: process of formation; thermal maturation, and maceral composition (Clayton, 1998; Whiticar, 1996). Whiticar et al., (1986) developed the often reproduced diagram illustrating gas generation mechanisms (see Figure 3.26). The diagram combines δ^{13} C and δ D values, and although hydrogen isotopes do not exhibit a clear maturity dependency, they provide information on depositional environment and therefore pathway of formation. As methane becomes enriched in deuterium (more positive δ D values) and the heavy isotope δ^{13} C (more positive δ^{13} C values) with increasing maturation (Rice, 1993), the source for gas generation changes from biogenic to thermogenic.

Coal seam gas generation is controlled by two distinct processes: biogenic and thermogenic generation. Biogenic gas comprises mainly methane and CO_2 which have been produced by the decomposition of organic material by micro-organisms, commonly in peat swamps. There are a number of requirements needed to produce significant proportions of gas, and these include an anoxic environment, low sulphate concentrations, low temperatures, abundant organic material, high pH values, adequate pore space and rapid sedimentation (Rice, 1993). Biogenic gas generation is available from two distinct pathways: methyl-type fermentation (primary) and CO_2 reduction (secondary). Secondary biogenic gases are different from primary biogenic gases in that the bacteria involved are introduced into the coal seams after burial and coalification. This is often from the influence of the recharge of meteoric waters moving through permeable coal beds, with the waters introducing metabolic activity of bacteria (Scott, 2002). Secondary biogenic gas can form in coals of any rank, while primary biogenic gas forms early in the burial history of lower rank coal.

Thermogenic gases form at the higher pressures and temperatures associated with increasing coalification. At ranks higher than high-volatile bituminous coals, devolatilisation occurs with coals becoming enriched in carbon and expelling volatile matter. Methane, CO_2 and water are the by products of this reaction (Rice, 1993).

Thermogenic gas generation can form without deep burial. Gurba and Weber (2001) have observed igneous activity in the Gunnedah Basin, which has produced in an increase of rank in local coal. This has lead to large areas of coal generating thermogenic gas, as the intrusion has resulted in a move towards the thermogenic gas generation window. Ayers (2002) has noted that although most coal seams are self sourcing reservoirs, many contain a mixture of different types of gas. Coal seams may contain any combination of the following: self sourced or migrated thermogenic gas; primary biogenic gas; secondary biogenic gas. Ayers (2002) compares two end member coal seam gas producing basins: the San Juan Basin and the Powder River Basin. The Powder River Basin contains low rank coal (sub-bituminous C-B) and methyl-type fermented biogenic gas. The San Juan Basin, however, is much more variable. It can be broken into four regions all containing bituminous coal, ranging from high-volatile A to low volatile bituminous coal. Each region contains a different blend of gas, with regions 1a-c containing thermogenic gas. Different gas mixtures can be a result of number of parameters, including structural history, which will determine the thermal maturation patterns of the basin, and hydrology, which promotes the migration of secondary biogenic gases into the coal seam.

1.4 General Geology

1.4.1 The Waikato Region

The Waikato coal region comprises several distinct coal areas, from Drury, 30km south of Auckland, to Mangapehi, 20km south of Te Kuiti, in the north of the North Island, New Zealand. There are thirteen coal

areas in total, and their boundaries are based on major seam discontinuities, usually at major fault zones. See Edbrooke et al. (1999) for a comprehensive delineation of the coal basins. The general geology is illustrated in Figure 1.3.

The general structural style of the Waikato coalfield is dominated by block faulting (Hall, 2003, Gillard and Trumm, 2002). This faulting has resulted in a regional north-westerly dip of 5-15° for the Tertiary sequence with vertical to steeply dipping normal faults (Gillard and Trumm, 2002). Two main fault sets dominate the region: a north-northwest trending fault set which runs parallel to the Waipa Fault (a major basement structure) active in the early Cenozoic, and a northeast to north-northeast trending fault set, originally thought to be related to the ongoing Kaikoura Orogeny. The latter set tends to offset the north trending set, which has resulted in the sector boundaries of the coalfield (Barry et al., 1994). Hall (2003) and Hall et al., (2006) demonstrated that fault displacement in the Waikato region post-dates the deposition of the coal measures, contrary to previous studies (for example Kear and Schofield, 1978; Kirk et al. 1988; Barry et al. 1994), with fault movement commencing around 36-35 Ma and continuing to approximately 30 Ma.

Waikato Coalfield stratigraphy was initially defined in 1864 by Ferdinand Hochstetter (cited in Edbrooke et al., 1994) and since then has undergone many revisions. Kear and Schofield (1959) revised the nomenclature, and subsequent publications have uniformly adopted their usage. Two major stratigraphic groups are recognised in the Waikato Coal Region (Table 1.1):

- a) The Tauranga Group: Late Miocene to Recent.
- b) The Te Kuiti Group, which contain the Waikato Coal Measures: Late Eocene to Oligiocene in age.

Table 1.1	Stratigraphy	of the	Waikato	coal region	ι.
-----------	--------------	--------	---------	-------------	----

Group	Formation	Member	Age		
Tauranga Group			Pleistocene to Recent		
		Whaingaroa Siltstone			
		Glen Massey Formation	1		
Te Kuiti Group	Mangakotuku Formation	Mangakotuku Siltstone	Miocene to Pleistocene		
	_	Pukemiro Sandstone			
		Glen Afton Claystone			
	Waikato Coal Measures		Late Eocene to Oligocene		

The Waikato Coal Measures are the basal formation of the transgressive Te Kuiti Group, and rest on an undulating erosion surface which cuts deeply weathered and indurated Mesozoic basement rocks, and grades upwards into shallow marine formations (Whaingaroa Siltstone, Glen Massey Formation) (Edbrooke et al., 1999; Kirk et al., 1988). The Waikato Coal Measures are mid-to late Eocene in age in the Huntly coalfield, and become younger in both north and south directions.

Figure 1.3:Geologic map and stratigraphic column for the Huntly region. Map uses NZMG (1949) co-ordinate system. For greater detail of stratigraphic units see Hall, (2003) and Edbrooke et al., (1994).

The coal measures were mainly deposited and preserved in a north-northwest trending valley system, 30 km by 200 km, which was coaxial with the major Mesozoic movement on the Waipa Fault (Kirk et al, 1988). The Waikato Coal Measures contain eight significant coal seams: four in the northern region and four in the southern region. Depth to seams through the region varies considerably from 2 m to 550 m + (Edbrooke, 1999). Ferm et al. (2000) have produced a pictorial guide to the classification of the coal measure sediments in the North Waikato coal region.

The Huntly coalfield extends almost 20km in a north, northwest direction from the township of Huntly, and encompasses an area of up to 140 km² (Kirk et al., 1988). The Huntly coalfield is dominated by the presence of the Kupakupa and the Renown seams, both of economic importance. The Kupakupa seam occurs at or near the base of the coal measures, and typically varies from 3 to12 m thick, although it exceeds 20 m in the Huntly region, where it converges with the overlying Renown seam. The Renown seam is less extensive and thinner than the Kupakupa seam, and seam splitting is more common. Newman et al., (1997) examined the petrography and geochemistry of the Kupakupa seam.

Two main depositional environments controlled the accumulation of sediments, and the influence that these settings exerted can be seen in two distinct, subregions of the coalfield (Edbrooke et al., 1994). The northern region was dominated by an inland alluvial plain setting and was bounded by hills and was not influenced by marine sedimentation until the marginal marine sediments of the Mangakotuku Formation were laid above the coal measures. In the southern region the coal measures accumulated in a coastal plain setting strongly influenced by marine sediments, in particular at the end of coal measure deposition.

Gas characteristics of the Waikato coalfield have also been documented (Moore nad Twombly, 2006; Twombly et al., 2004) with particular reference to four commercially producing US basins. Adsorption isotherm data have been published from the Huntly area, however associations between coal properties and gas characteristics have yet to be determined.

1.4.2 The Ohai Region

The Ohai coalfield is situated at the south of the South Island, approximately 80 km north west of Invercargill. The coalfield lies in an east-west trending fault bounded depression, known as the Ohai or Birchwood-Wairio depression, which separates the Takutimu and Longwood mountain ranges. The coalfield extends for approximately 100 km², and has been extensively mapped by the New Zealand Geological Survey (Sykes, 1988) and by Bowen (1964, Fig. 1.4).

Figure 1.4: Geologic map and stratigraphic column for the Ohai region. Map uses NZMG (1949) co-ordinate system. For greater detail of stratigraphic units see Shearer (1992).

Bowen (1964) and Bowman et al., (1987) interpreted the structural nature of the Ohai region. A north-south structural trend dominates the Ohai region. The area is further divisible into three north-south trending belts, which from west to east comprise the Tertiary sediments of the Waiau Basin; the Permo-Carboniferous volcanics and intrusives of the Taktimu-Longwood Divide; and the Triassic sediments which help form the south-west limb of the Southland Syncline. Within the Takitimu volcanics lies the fault bounded Ohai basin. The Ohai Basin, prominent because of its east-west trend and Cretaceous age sediments, contains coal measure sediments which form the north-eastern limb of a major syncline, the axis which lies 2 km south-west of the town of Birchwood. Additional folds in the coalfield trend to the north-west and follow a dominant Cretaceous structural trend (Warnes, 1990). Major faults in the area are parallel to the north-east trend of folding, whereas minor faults seem randomly orientated. Faulting and folding are believed to be contemporaneous with sedimentation (Warnes, 1990).

The stratigraphy has been defined by Bowen (1964). Two major groups are recognised (Table 1.2):

a) The Nightcaps Group of Mid Eocene to Early Oligocene (Bortonian-Whaingaroan) age. The Nightcaps Group unconformably overlies the Ohai Group.

b) The Ohai Group of Late Cretaceous (Piripauan-Haumaurian) age, which contains the Morley Coal Measures.

Group	Formation	Age		
Nightcaps Group	Orauea Mudstone	Focene		
	Beaumont Coal Measures	Locene		
Ohai Group	New Brighton Conglomerate	Late Cretacous		
	Wairo Coal Measures	Late Cletaceous		
	Basement	Triassic to Carboniferous		

Table 1.2: Stratigraphy of the Ohai coalfield, based on Bowen (1964). Source: Warnes, 1990.

The Morley Coal Measures are the most economically important formation in the Ohai coalfield. The Morley Coal Measures lie conformably above the New Brighton Conglomerate, although it has been suggested that the conformable contact may not extend through the whole of the coalfield (Bowen, 1964). Lithologies in the coal measures range from clay to boulder conglomerate. Areas contiguous to coal seams show prominent occurrences of carbonaceous mud, siltstone and sandstone. There are six coal horizons recognized but these cannot be referred to as discrete seams as they undergo splitting and thinning throughout the coalfield. These coal seams vary with a maximum thickness of 30m. The maximum indicated thickness of the coal measures is 270 m, (Sherwood et al., 1992). The estimates of Sherwood et al. (1992) are considered similar to Sykes (1988), and more accurate than Bowen (1964), as palynological age control was introduced.

The Morley Coal Measures were deposited in an intermontane basin. An alluvial environment gave rise to three interrelated depositional environments: a sandy, braided river system; a well-drained flood plain

environment; and poorly drained, peat-accumulating backswamps. Depositional models have been suggested by Sykes (1985) and Shearer (1992). Sykes (1985) incorporates sandstone and coal petrography as well as geochemistry to his interpretations. Shearer (1992) focussed on integrating sedimentology, coal chemistry, coal petrography and palynology to delineate the depositional environments for both the Morley and Beamont coal measures.

Of all the basins in New Zealand, the Ohai coalfield has had the most work conducted on it for CSG. For example, in the 1980s a New Zealand joint venture company, Southgas, formed and investigated the potential for methane extraction of deep coal from the Ohai coalfield. Preliminary data on desorption of methane were gathered and discussed in a government report (Thorburn, 1983). Isotopic composition of South Island natural gas has also been briefly studied, and determined that gas from the Ohai coalfield originated from a low-maturity microbial source (Lyon and Giggenbach, 1994). Adsorption and desorption data has been commonly collected, however only a limited amount of these data has been published (Manhire and Hayton, 2003; Pope at al., 2004; Moore and Butland, 2005).

1.4.2 The Greymouth Region

The Greymouth coalfield is situated on the West Coast of the South Island, 10 km north of the town of Greymouth (Fig. 1.5). It occupies an area of 200 km² at the southern end of the Paparoa Ranges, west of the Alpine Fault. Both the southern and the eastern margins are defined by the Grey River, whereas the western margin extends offshore into the Tasman Sea. The Greymouth coalfield was first discovered by Thomas Brunner in 1848. Gage (1952) and Nathan (1978) conducted detailed geological surveys of the Greymouth region, followed by a comprehensive basin study by Nathan et al.(1986).

The Greymouth coalfield is part of the West Coast Basin and Range tectonic unit, which is one of four that dominate all of the west coast regions of New Zealand. The West Coast Basin and Range Province is dominated by a north-northeast structural trend, which developed from Late Cenozoic block faulting. This region is tectonically unstable, and this is characterized by subsidence in small fault bounded basins. The north-northeast fault pattern has controlled sedimentation over the last 80 million years as well as the orientation of several Late Cretaceous to Pliocene sedimentary basins (Nathan, 1986). Individual faults have been reactivated in response to changing stress regimes (Laird, 1968, 1972).

Coal measure sedimentation began in the Late Cretaceous, and was restricted to four fault-bounded basins. The Paparoa Coal Measures, the main coal measure found in the Greymouth coalfield, were deposited from the Late Cretaceous to Paleocene in the Paparoa trough, one of the four fault-bounded basins.

Figure 1.5: Geologic map and stratigraphic column for the Greymouth region. Map uses NZMG 1949 co-ordinate system. For greater detail of stratigraphic units see Nathan (1986).

Formations and units in the Greymouth coalfield and adjacent areas have undergone various name and sequence reclassification changes in the past. Gage (1952), Nathan (1978,) and Nathan et al. (1986) all defined and revised the nomenclature, but the terms this study has adopted is based on works by Ward (1997) (Table 1.3).

Group	Formation	Member	Age
Brunner coal measures			Mid-Late Eocene
	Dunollie		
	Goldlight	Rewanui	
Paparoa coal measures	Rewanui	Waimo	Paleocene to Late
	Ford	Morgan	Cretaceous
	Jay		
Greenland Group			Ordovician

Table 1.3: Stratigraphy of the Greymouth coal region.

The Paparoa Coal Measures are mined extensively in the Greymouth coalfield. They lie unconformably on the mid-Cretaceous Pororari Group rocks, and concordantly beneath the Brunner Coal Measures. The basin extends for 60 km in a north-south trend, although the maximum width of the basin does not exceed 12 km. There are five main formations, with the coal horizons being the Dunollie Formation, and Rewanui and Morgan Members of the Rewanui Formation. The Rewanui Member contains the most extensively mined seam in the Paparoa Coal Measures (Ward, 1997). Coal properties of the Paparoa Coal Measures have been studied extensively, from petrographic analysis, palynology and mineral matter and trace element geochemistry (Newman, 1997; Moore, 1995, 1996; Ferm and Moore, 1997; Ward, 1997; Li, 2002; Li et al., 2001a, 2001b, 2005; Moore et al. 2005, 2006; Moore and Butland, 2005).

Newman (1985, 1987) interpreted the paleoenvironments of the Paparoa Coal Measures. Thick, extensive coal seams were deposited in fluviodeltaic lake margins during periods of transgression and regression of the lake. Syndepositional faulting confined the high energy fluvial environment and protected peat accumulation. In the south-west corner thick coal developed as the region was isolated from fluvial activity and exposed to lesser amounts of subsidence. Depositional controls were also examined by Sherwood et al. (1992), who concluded that the same depositional conditions controlled the Paparoa Coal Measures delineated by Newman (1985, 1987). Palaeotemperatures during burial and coalification were interpreted by Kamp et al. (1999) using fission track and vitrinite reflectance. Maximum paleotemperatures were found to exceed 85°C throughout the whole coalfield, reaching a peak of 180 °C along the axis of the former basin.

Beamish et al. (1996) examined the methane sorption capacity of upper Cretaceous coals from the Greymouth coalfield. The adsorption isotherm suggested that the maximum sorption capacity passes through a minimum in the medium volatile bituminous rank. Beamish et al. (1998) contrasted methane sorption

properties of New Zealand and Australian coals and found that New Zealand coals had a lower adsorption capacity because of decreased microporosity from the presence of volatile components blocking the micropore structure.

Chapter Two Methodology

To characterise the four cores from the different locations a series of analytical techniques were adopted. Macroscopic analysis was carried out on all cores to determine textural character. Geochemical analyses were completed on all samples, and consisted of moisture, ash, volatile matter, fixed carbon, sulphur and calorific value (Table 2.1). Some of these data were used to construct a Suggate plot, and in turn used to differentiate rank and type differences. Subsplits of samples (8 for Huntly, 13 for Ohai and 10 for Greymouth) were taken for mineralogical analysis. Ash constituents were determined on all available samples (33 for Huntly, 27 for Ohai and 19 for Greymouth). Subsplits of samples were also taken for crushed particulate pellets (8 for Huntly, 12 for Ohai and 8 for Greymouth). In addition nine blocks for the Greymouth coal field were also examined to determine modes of occurrence of mineral matter. Finally, gas analyses consisted of desorption measurements (lost gas, residual gas, measured gas and total gas), gas isotopes, gas quality and adsorption isotherms (Table 2.1).

2.1 Macroscopic Analyses

2.1.1 Coal Type

The type of coal that is produced from peat is controlled by a variety of parameters including the type of the original plant material, the geochemical conditions affecting the plant material during peat deposition, and the final level of maturation of the coal. Coal type, or the visual appearance, varies systematically within a seam

	ID		Geochemical Analyses						Organic Analyses					
Basin	Drillhole ID	Canister	Moisture	Ash	Volatile Matter	Fixed Carbon	Sulphur	Calorific Value	XRD	XRF	Suggate rank	Coal Type	Maceral Point count	Block pellet
Huntly	TW1	9	\checkmark	\checkmark				\checkmark			\checkmark			
Huntly	TW1	10					\checkmark			\checkmark				
Huntly	TW1	11	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		
Huntly	TW1	12								\checkmark				
Huntly	TW1	13					\checkmark			\checkmark				
Huntly	TW1	14					\checkmark							
Huntly	TW1	15	\checkmark	\checkmark			\checkmark			\checkmark				
Huntly	TW1	16	\checkmark				\checkmark			\checkmark				
Huntly	TW1	17	\checkmark				\checkmark			\checkmark				
Huntly	TW1	18	\checkmark				\checkmark			\checkmark				
Huntly	TW1	19	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark			
Huntly	TW1	20	\checkmark		\checkmark		\checkmark			\checkmark	\checkmark			
Huntly	TW1	21	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark				
Huntly	TW1	22	\checkmark		\checkmark		\checkmark			\checkmark				
Huntly	TW1	23								\checkmark				
Huntly	TW1	24	\checkmark		\checkmark		\checkmark			\checkmark				
Huntly	TW1	25	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			
Huntly	TW1	26	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			
Huntly	TW1	27	\checkmark				\checkmark			\checkmark				
Huntly	TW1	28	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	
Huntly	TW1	29	\checkmark		\checkmark		\checkmark			\checkmark				
Huntly	TW1	30	\checkmark		\checkmark		\checkmark			\checkmark				
Huntly	TW1	31	\checkmark		\checkmark		\checkmark			\checkmark	\checkmark			
Huntly	TW1	32	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark				
Huntly	TW1	33	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			
Huntly	TW1	34						\checkmark						
Huntly	TW1	35	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Huntly	TW1	36	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Huntly	TW1	37	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Table 2.1: Analyses completed on samples- geochemical and organic

Huntly	TW1	38									\checkmark	\checkmark		
Huntly	TW1	39				\checkmark					\checkmark	\checkmark		
Huntly	TW1	40												
Huntly	TW1	41									\checkmark	\checkmark		
Huntly	TW1	42	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Huntly	TW1	43									\checkmark	\checkmark		
Huntly	TW1	44				\checkmark					\checkmark	\checkmark		
Huntly	TW1	45									\checkmark	\checkmark		
Greymouth	944	16									\checkmark	\checkmark		
Greymouth	944	1				\checkmark	\checkmark					\checkmark		
Greymouth	944	2				\checkmark					\checkmark	\checkmark		\checkmark
Greymouth	944	3												
Greymouth	944	4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		
Greymouth	944	5	\checkmark											
Greymouth	944	6				\checkmark					\checkmark	\checkmark	\checkmark	\checkmark
Greymouth	944	7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		
Greymouth	944	8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark		
Greymouth	944	9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		
Greymouth	944	10		\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		
Greymouth	944	11	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Greymouth	944	12		\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		
Greymouth	944	13	\checkmark											
Greymouth	944	14		\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		
Greymouth	944	15	\checkmark											
Greymouth	944	17	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		
Greymouth	944	18	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		
Greymouth	944	19	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark
Greymouth	944	20	\checkmark											
Greymouth	944	21	\checkmark											
Greymouth	944	22									\checkmark			
Greymouth	944	23												\checkmark
Greymouth	944	24					\checkmark							
Ohai	SC3	SC3-1							\checkmark					
Ohai	SC3	SC3-2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		

Table 2.1 (continued): Analyses completed on samples- geochemical and organic.

Ohai	SC3	SC3-3		\checkmark						\checkmark				
Ohai	SC3	SC3-4				\checkmark	\checkmark							
Ohai	SC3	SC3-5												
Ohai	SC3	SC3-6		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		
Ohai	SC3	SC3-7		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		
Ohai	SC3	SC3-8												
Ohai	SC3	SC3-9												
Ohai	SC3	SC3-10		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark				
Ohai	SC3	SC3-11				\checkmark								
Ohai	SC3	SC3-12				\checkmark	\checkmark							
Ohai	SC3	SC3-13		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark				
Ohai	SC3	SC3-14				\checkmark	\checkmark							
Ohai	SC3	SC3-15												
Ohai	SC3	SC3-16		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		
Ohai	SC3	SC3-17												
Ohai	SC3	SC3-18		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark				
Ohai	SC1	SC1-1												
Ohai	SC1	SC1-2												
Ohai	SC1	SC1-3				\checkmark								
Ohai	SC1	SC1-4							\checkmark					
Ohai	SC1	SC1-5				\checkmark	\checkmark							
Ohai	SC1	SC1-6				\checkmark	\checkmark							
Ohai	SC1	SC1-7		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark				
Ohai	SC1	SC1-8												
Ohai	SC1	SC1-9												
Ohai	SC1	SC1-10												
Ohai	SC1	SC1-11	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	

Table 2.1 (continued): Analyses completed on samples- geochemical and organic.

	Gas Analyses									
Basin	Drillhole ID	Canister	Measured gas	Residual gas	Lost gas	Total gas	Adsorption*	Saturation	Gas quality*	Gas isotopes*
Huntly	TW1	9	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	10	\checkmark							
Huntly	TW1	11	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	12	\checkmark			\checkmark				
Huntly	TW1	13	\checkmark							
Huntly	TW1	14	\checkmark							
Huntly	TW1	15	\checkmark							
Huntly	TW1	16	\checkmark			\checkmark				
Huntly	TW1	17	\checkmark			\checkmark				
Huntly	TW1	18	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	19	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	20	\checkmark							
Huntly	TW1	21	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	22	\checkmark		\checkmark					
Huntly	TW1	23	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	24	\checkmark		\checkmark					
Huntly	TW1	25	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	26	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	27	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Huntly	TW1	28	\checkmark		\checkmark					
Huntly	TW1	29	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	30	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	31	\checkmark		\checkmark	\checkmark				
Huntly	TW1	32	\checkmark		\checkmark					
Huntly	TW1	33			\checkmark	\checkmark				
Huntly	TW1	34	\checkmark	\checkmark	\checkmark	\checkmark				
Huntly	TW1	35	\checkmark		\checkmark	\checkmark				
Huntly	TW1	36	\checkmark		\checkmark	\checkmark				
Huntly	TW1	37	\checkmark		\checkmark	\checkmark				
Huntly	TW1	38				\checkmark				
Huntly	TW1	39			\checkmark	\checkmark				
Huntly	TW1	40			\checkmark	\checkmark				
Huntly	TW1	41	\checkmark		\checkmark	\checkmark				
Huntly	TW1	42	\checkmark		\checkmark	\checkmark				
Huntly	TW1	43			\checkmark	\checkmark				
Huntly	TW1	44			\checkmark	\checkmark				
Huntly	TW1	45	\checkmark		\checkmark	\checkmark				
Greymouth	944	16	\checkmark		\checkmark	\checkmark				
Greymouth	944	1			\checkmark	\checkmark				
Greymouth	944	2	\checkmark	\checkmark	\checkmark	\checkmark				
Greymouth	944	3			\checkmark				1	1
Greymouth	944	4	\checkmark	\checkmark	\checkmark	\checkmark	Ň		N N	v
Greymouth	944	5	\checkmark	\checkmark	\checkmark	\checkmark]			
Greymouth	944	6	\checkmark	\checkmark	\checkmark	\checkmark]			
Greymouth	944	7	\checkmark				1		1	

Table 2.1: Analyses completed on samples- gas analyses.

Greymouth	944	8	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Greymouth	944	9	\checkmark	\checkmark	\checkmark	\checkmark				
Greymouth	944	10	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Greymouth	944	11			\checkmark	\checkmark				
Greymouth	944	12	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Greymouth	944	13	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Greymouth	944	14	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Greymouth	944	15	\checkmark	\checkmark	\checkmark	\checkmark	N	\checkmark		
Greymouth	944	17	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		Y
Greymouth	944	18	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Greymouth	944	19	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Greymouth	944	20	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Greymouth	944	21	V	V						
Greymouth	944	22	V		V			√		
Greymouth	944	23	V	V	V	V				
Greymouth	944	24	V		V					
Ohai	SC3	SC3-1	V	V	V	V		√		
Ohai	SC3	SC3-2	V			\checkmark			-	
Ohai	SC3	SC3-3	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Ohai	SC3	SC3-4	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Ohai	SC3	SC3-5	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Ohai	SC3	SC3-6	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Ohai	SC3	SC3-7	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Ohai	SC3	SC3-8	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Ohai	SC3	SC3-9	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Ohai	SC3	SC3-10	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Ohai	SC3	SC3-11	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Ohai	SC3	SC3-12		\checkmark		\checkmark		\checkmark		
Ohai	SC3	SC3-13				\checkmark				
Ohai	SC3	SC3-14				\checkmark				
Ohai	SC3	SC3-15	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark
Ohai	SC3	SC3-16						\checkmark		
Ohai	SC3	SC3-17								
Ohai	SC3	SC3-18				\checkmark				
Ohai	SC1	SC1-1	V		V	V		V		
Ohai	SC1	SC1-2	√ √	ب ا	۰ ا	Ń		V		
Ohai	SC1	SC1-3	√ √	ب ا	v v	v v		v v		
Ohai	SC1	SC1-4	1	1	ب ا	ب ا		1		
Ohai	SC1	SC1-5	N	ب ا	ب ا	ب ا		Ń		
Ohai	SC1	SC1-6	1	1	1	J.	1	1		
Ohai	SC1	SC1-7	1	1	1	1	1	1		
Ohai	SC1	SC1-8	1	1	1	1	1	1		
Ohai	SC1	SC1-0		N N	1	1	1	1		
Ohai	SC1	SC1-10	<u>v</u>	1	1	1	1	1		
	001		N	N	N	N		N		
Ohai	SC1	SC1-11	N	N	N	N		N		

Table 2.1 (continued): Analyses completed on samples- gas analyses.

* Data on composite intervals or represents entire hole.

(Esterle and Ferm, 1986; Moore, 1996). Macroscopic analysis of coal core is conducted to quantify its visual character. The visual character of coal gives clues to how it may behave in regards to gas flow properties.

There are a number of different macroscopic classification schemes for coal. The earliest scheme was defined by Stopes (1919) who described vitrain, clarain, fusain and durain. Since this initial classification, there have been a number of other classification schemes which are beyond the scope of this study to discuss. However the reader is directed to Davis (1978), Taylor et al. (1998), and Schopf (1960) among others. This study uses the classification scheme described in Shearer and Moore (1994) and Moore et al. (1993, 2006). This methodology divides the coal into two broad categories: matrix and plant parts (i.e. vitrain). The matrix is described on the basis of its lustre (dull or bright) and the proportion and size of the vitrain bands (≥ 1 mm).

2.1.2 Macroscopic Point Count Analyses

A macroscopic point count quantifies the amount and size (if measured) of vitrain in the coal seam. A point count is **representative** of the coal core, because only a portion of the core is counted. All four drill cores in this study were macroscopically point counted.

Drill cores were split roughly in half, mostly along cleat boundaries using a hammer or chisel. A standard string is used, with points divided out every 1 cm. The string is laid over the split core, and material (matrix versus vitrain) that lies beneath a marked point is recorded. When vitrain was counted, the thickness perpendicular to bedding was also recorded (in millimetres).

Point counts are made on an entire coal core, and tallied by either canister interval (~ 50 cm) or by ply interval (coal type). Coal type boundaries may cross canister boundaries. After coal types are tallied, each canister is assigned a coal type based on the point count. The coal types assigned are as follows (see also Ferm et al., 2000).

- Bright lustre, non-banded
- Vitrain is greater than 20 %, by volume
- Vitrain is less than 20%, by volume
- Dull lustre coal
- Carbonaceous mudstone

2.2 Sampling

Each drill site used slightly different methods in recording coal intervals and plies. Figures 2.1 to 2.4 illustrate the different numbering systems used in each drill hole.

The Huntly core used a straightforward system, numbering the canisters from 9 to 45, in numerical order, for both proximate and gas analyses.

The Ohai core used two systems. Gas data were analysed with the coal in canister intervals of approximately 0.50 m in thickness. The canister intervals were numbered from X1 to X34 for the SC3 drill hole, and A1 to A19 for the SC1 drill hole. These were not always in numerical order. Some of these canister intervals were then combined to produce ply intervals, from SC3-1 to SC3-18 for the SC3 drill hole, and from SC1-1 to SC1-11 for the SC1 drill hole. Proximate analyses were undertaken on ply intervals.

The Greymouth core also used two numbering systems. Gas data were analysed with the coal in canister intervals of approximately 0.50 m. These canister intervals were numbered from 1 to 24. Some of these intervals were then split because of differences in coal type, creating a new system from 1 to 27. Proximate analyses were undertaken on the intervals from 1 to 27, however these intervals vary slightly from the coal type intervals.

Because the four drill cores contain a large number of canister and ply intervals, it was not feasible to test and sample each interval for petrological composites and mineralogy, because of time and funding constraints. To overcome this problem a selected number of samples were chosen. They were selected to represent the main geochemical and coal type signatures found within each core, as well as to represent the variability present in each core. The criteria for selecting these samples were:

- 1. Suggate plot position: samples that occur along isorank lines, and samples that had wide spread along the average type line,
- 2. Stratigraphic position: a spread of samples from throughout the drill core,
- 3. Coal type: a sample of all different coal types present,
- 4. Ash content: a range of both high and low ash yields,
- 5. Gas content: a range of both high and low total gas volumes.

The selected samples for petrological and mineralogical analysis are illustrated in Table 2.2, along with their defining characteristics. Figure 2.5 illustrates the selected samples in a stratigraphic position, along with coal type. Selected samples for the Huntly core are canisters 10, 11, 19, 21, 28, 32, 37, 43; for the Ohai SC3 core are SC3-1, SC3-3, SC3-7, SC3-9, SC3-12, SC3-13, SC3-15, SC3-15; for the Ohai SC1 core are SC1-3, SC1-8, SC1-10, SC1-11; and for the Greymouth core 16, 5, 6, 13, 15, 20, 21.

Coal Seam Gas Associations in New Zealand

Figure 2.2: Graphic representation of Ohai SC3 canister intervals and correlating ply intervals and coal type. Coal types include BNB= bright, non-banded; B<20 = bright vitrain less than 20% XXX ; B>20= bright, vitrain greater than 20% IIIII ; Dull CM = carbonaceous mudstone

Coal Seam Gas Associations in New Zealand

0 10 m

Figure 2.3: Graphic representation of Ohai SC1 canister lengths and correlating coal types. Where samples remained in long term desorption, or were taken for residual gas sampling (as indicated) no coal type description was carried out.

Vertical log scale

No Coal described

BNB; bright non-banded

B<20 % vitrain

B>20 % vitrain

Dull/dirty Coal

CM; carbonaceous mudstone

Figure 2.4: Graphic representation of Greymouth canister and ply intervals and correlating coal types. Long term desorption samples were taken out from 'ply' intervals, and these were logged for coal type at a later date. Coal types include: BNB = bright, non-banded **BC** ;B<20=bright vitrain less than 20% **SC** ;B>20=bright, vitrain greater than 20% **SC** ;B>20=bright, vitr
Coal Seam Gas Associations in New Zealand

27

Location	Coal type	Ash content (aa)	VM (dmmSf)	CV (dmmSf)	Position in strat column*	Outlier/ middle of group*	Measured gas m3/t	Total gas m3/t
Huntly								
10	BNB	3.8%	42.2	30.2	Т	R	1.1	1.4
11	B<20	2.9%	47.7	30.8	Т	R	1.0	1.3
19	B<20	1.6%	45.0	30.2	MT	R	0.6	1.4
21	BNB	3.0%	44.6	30.3	MT	R	0.9	1.3
28	B<20	3.4%	41.2	29.8	М	R	1.0	1.4
32	B>20	2.1%	44.9	30.6	М	R	1.0	1.7
37	B<20	1.5%	41.8	29.9	MB	R	1.2	1.9
43	B>20	1.2%	43.5	31.2	В	R	0.5	1.7
Ohai SC3								
SC3-1	BNB/dull	14.4%	42.23	32.10	Т	0	3.2	4.4
SC3-3	B>20	1.8%	45.13	31.95	Т	0	3.9	4.7
SC3-7	B<20 /B>20	1.6%	43.04	31.66	М	R	4.1	4.9
SC3-9	B>20/BNB	1.3%	42.85	31.56	М	R	4.5	5.3
SC3-12	B>20	1.2%	43.45	31.46	М	R	3.6	4.5
SC3-13	B>20/B<20	1.5%	43.95	31.58	В	R	4.6	5.5
SC3-15	B>20	1.5%	44.00	31.55	В	R	4.8	5.7
SC3-17	B<20	2.1%	42.09	31.61	В	R	4.9	5.8
Ohai SC1								
SC1-3	B<20	4.5%	43.46	31.81	Т	R	3.2	4.3
SC1-8	B>20	13.1%	41.22	32.26	М	0	4.3	5.0
SC1-10	B>20/ B<20	4.9%	43.51	32.13	В	R	5.4	6.3
SC1-11	B<20 /dull	12.4%	47.12	33.07	В	0	5.0	5.6
Greymouth								
16	dull	2.3%	40.83	33.49	Т	0	2.89	3.70
5	B<20	2.5%	43.11	34.14	MT	R	2.12	3.21
6	B<20/Dull	0.7%	44.78	33.97	MT	0	1.37	2.21
13	B>20	4.3%	42.93	34.2	MB	R	1.81	2.32
15	B<20	5.3%	43.52	34.32	MB	R	1.13	1.77
20	Dull	7.0%	42.08	33.96	В	R	1.03	1.57
21	B>20	13.6%	42.99	34.33	В	R	1.85	2.32

Table 2.2: Properties of samples selected for petrological and mineralogical analysis.

* T = Top; MT = Mid top; M = Middle; MB = Mid bottom; B = Base; O = Outlier; R = Representative.

2.3 Coal Geochemistry

2.3.1 Proximate analyses

Proximate analyses were conducted to give an indication of changes of geochemistry within and between coal cores. In this study proximate analyses were performed: moisture, volatile matter, ash, fixed carbon. In addition both sulphur and calorific value analyses were also carried out. These analyses were determined

using ASTM D3173 for moisture (American Standards for Testing and Materials [ASTM], 2003), ASTM 3175 for volatile matter (ASTM, 2002), ASTM D3174 for ash yield (ASTM, 2004a), ASTM D4239 for sulphur (ASTM, 2004b) and ASTM D5865 for calorific value (ASTM, 2004c). Corrections were applied to compensate for non-organic impurities so that one coal can be compared directly with another coal (Ward, 1984, Appendix B).

2.3.2 Ash Constituents

Ash constituents were determined using X-Ray fluorescence (XRF) analysis. The procedure follows the ASTM D4326-01 standard (ASTM, 2004d), where the coal is first combusted at 815°C to a constant weight. The residual ash is then fused with lithium tetraborate to form a pellet which is irradiated by a high energy X-ray beam. The X-rays of the atom which are fluoresced upon absorption of the incident rays are dispersed, and the intensities are measured at selected wavelengths. All elements are determined as the element, and reported as the oxide (G. Murray, pers. comm., CRL energy Ltd, 2005)

2.3.3 Mineralogy

In order to determine the mineralogy within and between the coal core, 27 samples were selected for X-Ray diffractometry (XRD) analysis (see Table 2.2). As XRD analysis requires a powder residue of the mineral matter, coal samples were oxidised using a low temperature asher (LTA). The LTA 302 Low Temperature Ashing machine was used following similar operating conditions to those described by Newman (1988). The LTA has two vacuum chambers and each chamber held between one and two samples simultaneously, with oxidation taking between 14-48 hours to complete. The temperature in the ashing chambers was approximately 170°C.

Samples were ground to -1mm then powdered using a ring mill, before being placed in the LTA. The amount of powder was determined using the ash yield from the proximate analyses and the relationship of 1% ash equating to 0.01 grams of ash residue.

The slides of residual ash from the LTA were analysed for mineral occurrences on a Philips PW 1720 X-Ray diffractometer (XRD) in the Department of Geological Sciences, University of Canterbury. Because of the uncertainty of soluble minerals present in the samples, a pre-XRD preparation trial was undertaken using both alcohol and distilled water in the preparation process. Soluble material in the LTA residue can lead to synthetic compounds forming during or after oxidation of coal samples in the LTA process. This can obscure mineral patterns in the XRD analysis with high background noise and additional mineral peaks forming from the soluble compounds. (Newman, 1988; Sykes, 1985). The trial showed two additional peaks in the samples prepared with alcohol, whereas the water prepared sample lacked these additional peaks and had lower

background scatter, emphasising the mineral peaks present. Therefore, the water preparation technique was adopted for this study.

Preparation of samples involved LTA residue being placed in an agate mortar. Distilled water was added, the sample was washed and left for a few minutes for the particles to settle out of suspension. Once settled, water was removed with a pipette, and the washing process was repeated. The slurry was then ground, and then transferred to a glass slide and left to dry, before being analysed.

A Rietveld based interpretation method was used to determine the identity of the crystalline material (Li et al., 1999; Ward et al., 2001; Ward 2002). The Rietveld method calculates a profile of each mineral, which is generated from its crystal structure. Mineral percentages are determined when the sum of all calculated patterns are fitted to the XRD profile in a multi-mineral sample using statistical analyses (Ward et al., 2001; Ward 2002). The mineral matter can either occur as discrete mineral grains or bound in the organic material.

2.4 Suggate Rank

2.4.1 Introduction

Broad chemical differences are routinely observed in coal. These differences are the result from two main causes: type difference (the nature of the original peat set before or directly after initial burial); and rank difference (the effects from the geological conditions that peat is subjected to, mainly progressive burial) (Suggate and Dickinson, 2004). Suggate's rank scale, based on the type variation and the rank difference, was revised in 2000 and is known as Rank (S_r) or Suggate Rank. Suggate rank uses either proximate analyses of calorific value and volatile matter (CV-VM axes) or ultimate analyses of carbon and hydrogen (O/C and H/C ratios) to follow the maturation path of coal.

Suggate's diagram contains several important features (Fig. 2.6). The first is a line of progressive coalification of 'average type' coal, called the average type line. This line is based on a theoretical coal with an average type starting chemistry, that is, the coal is not hydrogen enriched. Killops et al. (1998) defined this line as the maturation path of lignin. The second important feature is the New Zealand Coal band. A coal band represents a distribution of analytical points for a related group of coal (often of a similar location and age). The band generalises the metamorphic process in the peat to meta-anthracite range, and acts as an analogous maturation path for the kerogens (Suggate, 1998). The New Zealand coal band is based on coals that are Late Cretaceous to Cenozoic in age. They have medium to high H/C ratios, and have high vitrinite-huminite contents (87-93%), with liptinite (5-11%) exceeding inertinite content (1-6%) (Suggate, 1998). The high hydrogen content in New Zealand coals, compared with an average type coal, leads to a coal band that is elevated from the average type line. The New Zealand coal band also shows a full range of coal ranks from

lignite to semi-anthracite. The final feature of a Suggate plot are the isorank lines. Suggate (2000) has provided isorank lines initially derived from Late Cretaceous and Tertiary coal sequences. These lines radiate out from the average type line on a 45° angle, and movement along this line, away from the average type line, represents type differences in coal. The Suggate plot representatively illustrates differences in coal that are both type related (movement along isorank lines) and rank related (movement along the average type line).

Figure 2.6: Suggate plot showing the New Zealand coal band, Suggate number and the average type line; a line of progressive coalification for an 'average' type coal.

2.4.2 Construction of Suggate Plot

The Suggate plot was used to differentiate between type differences and rank differences, by comparing calorific value (Btu/lb) with volatile matter. The purpose was to isolate appropriate samples for further analyses (see Section 2.2).

Suggate (1959) observed that New Zealand coals which had high total organic sulphur contents also had high volatile matter and calorific values present, compared with coals which had a low total organic sulphur content at a similar rank. To eliminate effects from the sulphur and mineral matter, data must be corrected to an organic basis independent of moisture, mineral matter and sulphur (dmmSf). Mineral matter and sulphur both affect the burning properties of the coal, which influences the calorific value, used to determine the Suggate rank. Suggate (1959) recommended a correction factor of 1.1, based on averaged data from across New Zealand coalfields. Correction formulas used are given below:

Volatile Matter (dmmSf) = $\frac{100 (VM - 0.1A - 0.55S)}{100 - 1.1A - S}$ (all dry basis)

Calorific Value (dmmSf) = $\frac{100(CV-0.095S)}{100-1.1A-S}$ (all dry basis; CV in MJ/Kg)

Where S = sulphur and A=Ash.

After data are corrected, diagrams can be produced on volatile matter and calorific value axes. The average type line can also be plotted on the axes to help correlate ASTM rank with Suggate rank (S_r). Preliminary analyses found that coals with ash yield in excess of 12% caused variation that was not purely the result of rank. To overcome this, only samples with ash yield less than 12% were initially plotted. Although it is important to minimise error influences on data, such as high ash content, ash-related anomalies do not cause major variance in rank.

2.5 Petrographic Analysis

2.5.1 Introduction

Coal is composed of various microscopic components termed macerals. Stopes (1935) first defined macerals, as an analogy to minerals of inorganic rocks. Unlike minerals, which have specific chemical and physical signatures, macerals vary widely in their chemical composition and physical properties. However, studies on pure maceral components have helped determine standard chemical and physical properties (Stach et al., 1982)

Coal macerals are classified into three groups based on their physical appearance, chemical characteristics and biological affinities:

- 1. Vitrinite
- 2. Liptinite
- 3. Inertinite

These maceral groups are further subdivided into macerals and the macerals recognised in this study are summarised in Table 2.3.

The International Commission on Coal and Organic Petrography (ICCP) has developed standard rules for coal petrography that state the description of macerals shall correspond to their appearance in incident light using oil immersion with magnifications between 250x and 400x (Stach et al., 1982).

Selected samples (as discussed in Section 2.2) were analysed petrographically using polished particulate mounts under reflected light using a Zeiss UMSP50 incident light microscope, at 400x magnification with oil immersion. Block samples were also analysed qualitatively for the Greymouth core. Block samples were not collected from the Huntly and Ohai cores.

Maceral Group	Maceral	Origin	
	Telocollinite –in cell walls	Stems, roots, leaves, bark, wood	
	-in bands		
Vitrinite	-in large areas		
	Desmocollinite		
	Vitrodetrinite		
	Sporinite	Spores, pollen, cuticular material,	
	Cutinite	Resin, algae	
Liptinite	Resinite		
	Suberinite		
	Liptodetrinite		
	Semi-fusinite	Fossil charcoal (most materials	
	Fusinite	Inert during coking process)	
Inertinite	Scelrotinite		
	Inertodetrinite		

Table 2.3: Summary of maceral groups identified in this study.

2.5.2 Coal particulate pellet preparation.

Coal was ground to 1mm, then subsplit to approximately 20 grams and dried in a 40°C oven for one hour, to remove excess moisture. The coal was then mixed with epoxy resin and hardener at a ratio of 5:1. Plastic moulds were lubricated with vaseline and labelled. The coal resin mix was then transferred to the plastic moulds, where they sat in a ~20°C room for an hour to set. The pellets were then placed back in the 40°C oven for at least eight hours, to finish the curing process, before being polished.

2.5.3 Coal block pellet preparation

Coal blocks were cut to approximately 4 cm x 3 cm rectangles using a diamond edged rock saw. Because the coal was hard, reinforcing to avoid breakage and splitting was not needed. Samples were then dried in a 40°C oven overnight, to remove excess moisture. Samples were then placed in a silicone block mould, and epoxy resin was poured into the bottom of the mould. Weights were placed on top to stop the coal from floating. When the resin set, a second resin pour was conducted, covering the coal and label. The pellets were left over night in a 20°C room to set and cure, before being polished (Pontolillo and Stanton, 1992).

Figure 2.7: Curves illustrating the probable error in percent at the 95 % confidence level, related to the number of points counted. The uncertainty for 500 counts is listed below in the table. Source: J. Newman, pers. comm. Newman energy research, 2005.

VOLUME PERCENT OF COMPONENT	'UNCERTAINTY' VALUE, 500 COUNTS
2% or 98%	±1%
5% or 95%	±2%
10% or 90%	±3%
20% or 80%	±4%
40% or 60%	±4.5%
50%	+4.5%

2.5.4 Microscopic analytical method

Macerals and inorganic material are quantified by a random sample of 500 grains following procedures set out in ASTM Standard D2799 (ASTM, 2005a). Maceral analyses were conducted on a total of twenty-eight samples across all four cores (8 from Huntly, 8 from Ohai SC3, 4 from Ohai SC1, and 8 from Greymouth). A grid was set up using a computer programme called 'Digimax', with 1mm line spacings. Every component that lands on the predetermined point is recorded. Unlike bulk chemistry, which consumes the whole coal and therefore represents the chemistry precisely, microscopic analyses (point count) can only approximate actual proportions as 500 grains is only a small proportion of the total sample. No grain is counted twice.

Point counts are usually limited to 500 readings because the advantage of making additional counts rapidly decreases (Fig. 2.7). In order to obtain 500 counts, two petrographic pellets were constructed for each sample.

Fourteen different macerals were identified as mentioned above, along with five major types of mineral matter; clays, carbonates, sulphides (pyrite), iron oxides and quartz. The telocollinite maceral was divided into three macerals to represent the form it was observed as: 1. in cellular material; 2. in bands 20 - 100 microns thick; and 3. in large homogeneous areas.

2.6 Gas Data

Five types of tests or calculations were carried out on samples from each drillhole, in order to determine information about coal bed gas:

- 1. Desorption analysis (lost, residual, measured and total gas);
- 2. Adsorption analysis;
- 3. Saturation calculations;
- 4. Gas quality analysis;
- 5. Stable isotope analysis.

2.6.1 Desorption Analysis

Desorption was measured using methods outlined in Moore et al. (2004) and Moore and Butland (2005) (Figs. 2.8 and 2.9).

The coal sample is immediately sealed in a canister after retrieval from the drill hole, and immediately placed into on site water baths at reservoir temperature. The coal bed gas emission (predominantly methane) is bled into a manometer (Fig. 2.10). Measurements are taken every 15 minutes until gas volume reaches below 10 ml, where the time interval is doubled. The time interval is gradually decreased until desorption is minimal. Ambient temperature and barometric pressure are also recorded at each reading. Finally the sample is air

dried and weighed. The gas yield is calculated and expressed in cubic metres of gas per tonne of coal. This method fails to account for any free gas that may have escaped from open fractures before the sample was sealed in a canister (Bodden and Ehrlich, 1998).

The measured gas is obtained by recording the volume of gas that desorbs from the coal in a set amount of time. Lost gas is gas that has been expelled between the end of coring and the start of the desorption measurements (Diamond and Schatzel, 1998). This is calculated using a trend line analysis of measured gas values. Residual gas is gas that remains in the coal after a critically low desorption rate is reached. This was originally thought to be a result of slow diffusion rates (Diamond and Schatzel, 1998). However, it has been suggested that it is a result of gas remaining in equilibrium under 1 atmospheric pressure, in the desorption canister (Levine, 1992). The residual gas can be determined by crushing the sample in a ring mill with a special desorption apparatus attached (Diamond et al., 2001). The total gas is determined by calculating the lost gas, measured gas and residual gas values in a coal interval.

Figure 2.8: Flow chart of procedure used in gas desorption measurements.

A

T

Figures 2.9 A-F: The process involved in collecting samples for gas desorption. A: Drill rig in action, Huntly; B: Core run emerges from sub-surface; C: Description of core; D: Canisters used for gas desorption; E: Apparatus used for gas desorption; F: Canisters desorbing in water bath, which is kept at reservoir temperature.

Figure 2.10: Example of gas desorption equipment used. Modified from Diamond and Schatzel (1998).

2.6.2 Adsorption Analysis

To measure the gas holding capacity of the coal, adsorption isotherms are used. Adsorption isotherms can be modelled using a variety of methods based on different theories. The extended Langmuir model (Langmuir, 1981 in: Clarkson and Bustin 2000; Laxminarayana and Crosdale, 1999; Bromhal et al., 2005) is most commonly used for the prediction of gas adsorption on coal. The Langmuir parameters required for pure component isotherms can be used to predict adsorbed volumes for gases of a mixed composition (Clarkson and Bustin, 2000). The Langmuir isotherm is based on two-parameters, P_L and V_L, and models a multicomponent adsorption isotherm using the Langmuir equation: $V_A=V_L*P_H/(P_L+P_H)$. The Langmuir volume, V_L , represents the physical monolayer adsorption capacity of the coal, while the Langmuir pressure, P_L, is a mathematical value which is equal to the pressure at half the Langmuir volume, which may yield information on the heterogeneity of the pores (Laxminarayana and Crosdale, 1999). P_H represents the hydrostatic pressure.

Methane adsorption isotherms were determined by Energy Resources Consulting Pty Ltd, formally Coalseam Gas Research Institute. The process involved two steps: sampling and methane isotherm determination (Crosdale, 2004; Crosdale, 2003a; Crosdale 2003b). In order to determine methane adsorption isotherms, a gravimetric technique using nine pressure steps (up to a maximum pressure of 8 MPa) was used. Analysis was executed as close as possible to the reservoir temperature of the coal.

Sampling involved core being stored at - 10° C until processed. The core was initially crushed to less than 4mm, then sub-sampled to obtain between 200-250g of coal. The whole thickness of the coal was sampled to get a representative sample. The sample was then crushed to < 0.212 mm and bought to an equilibrium moist state. Equilibrium moisture content, ash yield and helium density were determined prior to methane adsorption analysis.

Adsorption isotherm 'bombs' were weighed, evacuated, and weighed again. The equilibrium moist coal was placed in the bombs, and the bombs were weighed, evacuated, and weighed a second time. Helium was introduced into the bombs, and the bombs were weighed at helium pressures of approximately 1, 2, 3 and 4 MPa; these data are used to calculate the free volume of the bombs and consequently the helium density of the coal. The bombs are evacuated and weighed again. A fixed volume of methane was introduced into the bomb and the pressure was monitored to the nearest 1 kPa until there was no change of pressure for a period of at least one hour. The bomb was weighed. The last stage of methane introduction was repeated for each pressure step.

The results were tabulated and presented graphically as isotherms. Isotherm results were calculated to standardized conditions of 20°C and 1 atmosphere (101.3 kPa) pressure, and indicate the maximum holding capacity of the coal.

2.6.3 Saturation levels

Saturation of the coal is calculated using a combination of desorption and adsorption data. Saturation indicates how much gas the coal holds relative to its maximum holding capacity.

Because each location has only one adsorption isotherm, the downhole saturation content is calculated on the assumption that the holding capacity is constant throughout the drill hole. Two steps are involved in the calculation of saturation:

- 1) Calculation of the adsorption gas value at a set pressure;
- 2) Calculation of saturation.

Step one involves the following inputs and calculations:

a) Input sample depth, D_S

b) Calculation of hydrostatic pressure, P_H (in MPa):

i) D_S * constant 0.096 = pressure (in atm)

ii) pressure * constant 0.101325 = hydrostatic pressure, P_H

c) Calculation of adsorption value, V_A (in m³/t) using Langmuir coefficients V_L and P_L , at a set pressure P_H :

i) $V_A = V_L * P_H / (P_H + P_L)$

Step two involves the following inputs and calculations:

a) Calculation of saturation, as a percentage of the holding capacity V_A:

i) $1 - ((V_A - V_D)/V_A)$

where V_A is the adsorption value, and V_D is the desorption value, that is total gas, at a specific depth.

2.6.4 Gas Quality

Gas quality was determined from the collection of gas samples from coal filled canisters. The gas was analysed for CH₄, CO₂, C₂H₄, C₂H₆, H₂, N₂, and O₂. Samples were collected on site, as gas canisters were being desorbed. Canisters used for gas quality were left unread from measured gas readings to allow gas to accumulate. In some cases, because of minimal gas volumes, composite gas measurements were taken from several canisters, to obtain high enough gas volumes to analyse gas quality. High quality Teflon bags with a single polypropylene fitting and shut-off value, and a rubber hose were used to collect gas samples from the coal core. A rubber hose was attached to the end of the canister being read, with the other end fixed to a Teflon bag. Gas was fed into the Teflon bag by opening the canister valve and feeding through the gas which had desorbed (G. Gillard, pers. comm. Solid Energy NZ Ltd, 2006). Analyses were made using a gas chromatograph with ppm detection limits for minor hydrocarbons, and 0.5% precision limits for N₂, O₂ and CH₄. Three corrections were then applied to the raw results: removal of Ar, air (O₂ and N₂ using a N₂/O₂ ratio) and remaining N₂, all assumed to be products of air contamination (Pope, 2005).

2.6.5 Stable Isotopes

Stable Isotopes were analysed by Geological and Nuclear Sciences, in Lower Hutt, New Zealand. Sample and analysis proceedings are given in Lyon, (2004), but are also briefly explained here. A sample of gas was admitted to a gas chromatograph where CH₄ was separated from CO₂ and other gases. Methane was oxidized by reaction of CH₄ with copper oxide at 800°C to form CO₂ and H₂O for stable isotope analysis. For δ^2 H (= δ D) analysis, H₂O from oxidation of CH₄ was collected and transferred to a tube containing zinc. The tube was sealed, heated to 500°C to reduce H₂O to H₂ for stable isotope analysis.

The isotope ratios were measured using standard mass spectrometer procedures (Lyon, 2004) and reported as deviations from internationally recognize standards as $\delta^{13}C$ and $\delta^{2}H$ values in parts per thousand ($^{0}/_{00}$). Analytical precision for $\delta^{13}C$ is $\sim \pm 0.2 \ ^{0}/_{00}$ and for $\delta^{2}H \sim \pm 5 \ ^{0}/_{00}$.

Chapter Three Results

3.1 Coal type distribution

All locations had coal with two predominant matrix lustres: bright and dull. Within each of these lustre types, there were variable amounts of vitrain bands ranging from essentially no bands ('non-banded') to greater than 20% vitrain bands These coal types are were also found by Ferm et al. (2000) and Ferm and Moore (1997) in the Huntly and Greymouth coalfields respectively. The vitrain percentages were quantitatively determined and the results are given in Appendix C.

The predominant coal types in the Huntly core were bright non-banded (24 %) and bright coal with less than 20 % vitrain bands (54 %). At the centre of the seam and near the base of the seam the coal type changed to greater than 20 % vitrain banded (Fig. 2.5).

The Greymouth core is highly variable in terms of coal type (Fig. 2.5). Unlike the Huntly core which was predominantly coal with a bright lustre matrix, the Greymouth core has multiple dull coal/high ash layers throughout (these account for 34 % of the core). Bright coal with greater than 20 % vitrain is found near the centre and at the base of the seam. Interestingly, the Greymouth coal contains no bright, non banded material.

Compared with the Huntly and Greymouth cores, the Ohai SC3 core contains the most banded coal (82 % of the core). Again, bright coal with greater than 20 % vitrain bands resided at the base of the seam, as well as throughout the centre of the column (Fig. 2.5). The SC1 column has dull coal (23 %) scattered throughout the banded material (Fig. 2.5).

3.2 Geochemistry and Mineralogy

3.2.1 Proximate analyses

Proximate analyses (moisture, volatile matter, ash yield, fixed carbon), as well as sulphur and calorific value, are displayed in Appendix D. Figure 3.1 shows the average values for volatile matter (daf), ash yield (db), sulphur (daf), and calorific value (daf). Of note are the large standard deviations in the volatile matter. The volatile matter also shows considerable downhole variation in each of the four cores (Fig. 3.2). In order to assess the rank of the coal, volatile matter has been combined with calorific value to help determine true rank changes from coal type changes (see Chapter sections 2.4 and 3.3.)

Figure 3.1: Average values for volatile matter, ash yield, sulphur and calorific value, in the Huntly, Ohai and Greymouth cores. Bars on graphs represent standard deviation of data.

43

Ash yield (db) ranges from 1.1% to 36.4% in the Huntly core samples; from 1.3% to 44.7% in the Ohai SC3 core samples and 1.4% to 75.5% in the Greymouth core samples. However it should be noted that ash yield is on average low in all three areas (Appendix D). The Ohai SC1 core has the highest ash yield, ranging from 5.2% to 55%. This is because multiple high ash layers are present. Average ash yields in both the Huntly and Ohai SC3 coals are very low when partings are removed from the dataset (3.6% and 1.8% respectively).

3.2.2 Introduction to mineral matter

Although ash yield is commonly used to estimate the inorganic proportion in coal, because of the high temperatures of the technique, some minerals are volatised. However, a low temperature plasma asher (LTA) can be used, and this preserves mineral matter relatively untouched. Mineral matter is the term used to describe all the inorganic components found in coal. Mineral matter can consist of three different constituents: dissolved salts and other soluble material in the pore water, inorganic components dispersed with the organic compounds, and discrete organic particles (minerals, both crystalline and non-crystalline) (Ward, 2002). This study has used a variety of methods to look at the inorganic components (petrography, XRF and XRD analysis).

Generally clays make up approximately 60 - 80 % of total mineral matter in coals. The most common clays found are kaolinite, illite and sericite (white mica). Clays can occur in two forms; either as fine dispersed material, or as a kaolin-coal tonstein, however, no tonsteins were observed in any of the drill cores. In the three locations studied, kaolinite and illite are the only clays identified in this study through XRD analysis. Illite refers to a degraded form of muscovite / hydrous mica group of minerals, and is present in trace amounts in the Greymouth area. Because of the preparation method used for XRD analysis, the term illite will also represent muscovite (Newman, 1988). Illite was also observed by Shearer (1992) in the Morley Coal Measures, Ohai. Illite has been found in coals with marine roofs, while kaolinite is associated with non-marine influenced coals (Taylor, 1998). Ohai, Greymouth and coal from the northern Waikato basin all had very little marine influence, which explains the dominance of kaolinite. Although coal from the southern Waikato subregion formed in a coastal environment and was subjected to marine influence, mineral matter is low and no illite was observed. The lack of illite observed may be the result of poor crystallinity of the mineral, which would make it impossible to be identified under XRD analysis (Newman, 1988).

Clays are either detrital in origin, or form as a secondary mineral from aqueous solutions. Clays were often observed infilling pore spaces using optical microscopy, particularly in semi-fusinite and fusinite macerals. Under the microscope the clay family tend to have no surface reflection and have shallow internal reflections. Crystal boundaries are often present, and they appear translucent, which arises from the platyness of the mineral (J. Newman, pers. comm., Newman energy research, 2005).

Figure 3.2: Down hole variation of ash yield (db) and volatile matter (daf) in Huntly, Ohai SC3 and SC1, and Greymouth cores, depth from surface.

Quartz is the most important of the oxide minerals, and is mostly introduced at peat stage. Clastic quartz grains are bought into the peat by water or air. Quartz is common throughout all locations studied and is normally the dominant mineral, only locally exceeded by kaolinite in a few places. Under the microscope quartz is observed dispersed throughout the desmocollinite, and has surface reflections and deeper internal reflections.

There tends to be two groups of carbonates, a syngenetic (early formed) group, comprising siderite and dolomite, and a secondary, late stage group comprising calcite and ankerite. The secondary carbonates will fill cracks, fractures and fissures during coalification, which was observed in all locations.

3.2.3 Ash constituents

Ash constituents are displayed in Appendix E. Major elements are reported as the simplest oxide, except for Mn, which has been reported as Mn_3O_4 , because of lab procedures (G. Murray, pers. comm., CRL Energy Ltd, 2006). Figure 3.3 shows the average ash constituents found in each location.

Ash constituents from the Huntly core show some interesting trends. SiO₂ and Al₂O₃ contents are high mid seam (SiO₂ ~25-58 %; Al₂O₃ ~20-30 %), with SiO₂ also high near the roof of the seam (~41-58 %). CaO steadily increases to mid seam, where levels decrease rapidly (relative to the rise in SiO₂ and Al₂O₃). This increase in SiO₂ and Al₂O₃ and decrease in CaO occurs at the same place as a high ash layer occurs. SO₃ is relatively high throughout the seam (~15-25 %), except where it declines mid seam. Fe₂O₃ maintains relatively constant levels throughout the first half of the seam (~6 %), with concentrations decreasing mid seam (~3 %), then increasing at the base of the seam (~ 10%). The small seam split which occurs around canister 36 is noted by a decrease in SiO₂ and Al₂O₃, and a large rise in CaO content (Fig. 3.4).

Ash constituents for the Ohai SC3 core show SiO₂ levels highest in the top rider seam (~60 %), compared with the main coal seam. In the main coal seam the SiO₂ content also decreases towards the base. However, Al₂O₃, MgO and Fe₂O₃ are constant throughout the main seam. CaO increases towards the base of the seam. CaO content is much higher in the main coal seam (~20-30 %) than in seam one (0.77-4.19 %, Fig. 3.5). SiO₂ and Al₂O₃ contents in the Ohai SC1 core are highest mid seam (SiO₂ ~70 %; Al₂O₃ ~30%), while Fe₂O₃ levels fluctuate heavily (0.92-18.76 %, Fig. 3.6).

High levels of SiO₂ (mean value 70.21 %) dominate the Greymouth core (Fig. 3.7). Although SiO₂ concentrations fluctuate throughout the seam, there is a general increase towards the base. K₂O content is highest at the roof of the seam (~2 %), but peaks again mid seam (~4 %). Fe₂O₃ content varies throughout the core, with peaks both near the roof and mid seam. TiO₂ is fairly consistent through the profile in small quantities, whereas SO₃ levels are nominal.

Figure 3.3: Mean values of ash constituents for Huntly, Ohai SC3, Ohai SC1 and Greymouth drill cores.

Figure 3.4: Percentage of ash constituents, by canister intervals (x-axis), in the Huntly drill core.

Ohai SC3 XRF constituents

Figure 3.5: Percentage of ash constituents, by canister interval, in the Ohai SC3 drill core.

Ohai SC1 XRF constituents

Figure 3.6: Percentage of ash constituents, by canister interval, in the Ohai SC1 drill core.

Figure 3.7: Percentage of ash constituents, by canister interval, in the Greymouth 944 drill core.

Ash constituents do not add up to 100% in all plies (Table 3.1). This is because there is a considerable portion (nearly up to 10% in some plies) of other elements present. Whole coal elemental scans using pressed coal pellets showed significant portions of Sr, along with smaller amounts of Zn, Ni, Cu, Ba, and Ce.

Location	Low (%)	Mean (%)	Std
Huntly	90.87	96.61	3.36
Ohai SC1	95.6	98.63	1.74
Ohai SC3	95.72	97.28	1.57
Greymouth	96.43	100.28	1.98

Table 3.1: Total of major elements plus loss on ignition, XRF analysis.

3.2.3 Mineralogy

Thirty-one samples were processed for X-Ray diffraction (XRD): ten samples from the Greymouth 944 coal core, 5 samples from The Ohai SC1 coal core, 9 samples from the Ohai SC3 coal core and 8 samples from the Huntly TW1 coal core. Tables 3.2 and 3.3 summarises the minerals identified and the relative quantities of the minerals present, along with minerals recorded from the samples in the microscopic analysis. Figure 3.8 delineates the average mineral matter content and type found in each location, while Figure 3.9 shows the mineralogy in each ply.

Quartz and kaolinite were the most common inorganic components found in the Huntly coal core. Quartz ranged from nil occurrence to 95 %, whereas kaolinite ranged from nil occurrence to 100 %. The carbonates

calcite and ankerite were also present in one sample, with calcite being the dominant carbonate (75%). Three plies showed no minerals present; in the microscopic analysis they also yielded no minerals.

XRD Mineral Analysis, Average Values for Selected Locations

Figure 3.8: Percentage of average XRD mineral matter in the Huntly, Ohai and Greymouth cores.

Quartz, kaolinite, calcite, ankerite, and siderite dominate the Ohai SC3 coal core. Quartz ranges from 100 % in one ply to just 20 % in another. Kaolinite either occurs with quartz (or in one case with quartz and calcite) in modest amounts (5 - 20 %), or not at all. The carbonates calcite, ankerite and siderite are present in many plies, and are in fact only absent from plies nearer to the roof of the seam. Their quantities range from 5 - 50 %. Ohai SC1 shows similar minerals present. The carbonate siderite makes an appearance in one of the plies, which is dominated by ankerite (40%). Apart from this ply, quartz is the dominant mineral, making up as much as 90 % of the mineral matter in one ply. Previous research on the Morley Coal Measures (Shearer, 1992; Sykes, 1985) also supports the general occurrence of quartz, kaolinite, calcite and siderite. However, the work of Shearer (1992) and Sykes (1985) shows a generally wider assemblage of minerals. These additional minerals include dolomite, rutile, illite and pyrite.

The most common mineral found in the Greymouth coal core was quartz, ranging from 75 - 95 %. Kaolinite was the second most abundant mineral, present in every sample tested, ranging from 5 - 20 %. The carbonate mineral siderite was present in two plies, as was the sulphide pyrite. Trace amounts of muscovite were also present in two plies. Previous research on the mineral matter in the Greymouth coals (Paparoa Coal Measures) by Li (2002) also found the same minerals. However, Li's (2002) work show a broader range of minerals present including illite and smectite from the clay family; calcite and ankerite from the carbonate family; and trace amounts of minerals such as gypsum, apatite, halite and sylvite. Crocoite, an unusual mode of occurrence for lead in coal, was also identified (Li et al., 1999, 2001a).

Table 3.2: Mineral occurrences in selected samples, from XRD analysis. see Fig. 2.5 for sample locations.

Huntly	Quartz	Kaolinite	Calcite	Ankerite	Siderite	Pyrite	Muscovite
c10	\checkmark	\checkmark					
c11	\checkmark	\checkmark					
c19	\checkmark	\checkmark					
c21	\checkmark		\checkmark	\checkmark			
c28		\checkmark					
c32							
c37							
c43							
Ohai SC3							
c1	\checkmark	\checkmark					
c3	\checkmark	\checkmark					
c7	\checkmark		\checkmark	\checkmark	\checkmark		
c9	\checkmark						
c12	\checkmark		\checkmark	\checkmark	\checkmark		
c13	\checkmark		\checkmark	\checkmark	\checkmark		
c15	\checkmark		\checkmark	\checkmark	\checkmark		
c17	\checkmark		\checkmark	\checkmark	\checkmark		
c15 x28	\checkmark	\checkmark	\checkmark				
Greymouth							
c16	\checkmark	\checkmark			\checkmark		
c5	\checkmark	\checkmark			\checkmark	\checkmark	
c6	\checkmark	\checkmark					
c6p8	\checkmark	\checkmark				\checkmark	
c13	\checkmark	\checkmark				\checkmark	\checkmark
c13p17	\checkmark	\checkmark					
c15	\checkmark	\checkmark					
c20	\checkmark	\checkmark					
c20	\checkmark	\checkmark					
c21	\checkmark	\checkmark					\checkmark
Ohai SC1							
c3	\checkmark	\checkmark		\checkmark	\checkmark		
c4	\checkmark	\checkmark	\checkmark				
c8	\checkmark	\checkmark					
c10	\checkmark	\checkmark		\checkmark			
c11	\checkmark	\checkmark					

Table 3.3: Mineral percentages in selected samples, from XRD and	alysis.
see Fig. 2.5 for sample locations.	

Huntly	Quartz	Kaolinite	Calcite	Ankerite	Siderite	Pyrite	Muscovite
c10	95	5	0	0	0	0	0
c11	45	55	0	0	0	0	0
c19	50	50	0	0	0	0	0
c21	10	0	75	15	0	0	0
c28	0	100	0	0	0	0	0
c32	0	0	0	0	0	0	0
c37	0	0	0	0	0	0	0
c43	0	0	0	0	0	0	0
Ohai SC3							
c1	95	5	0	0	0	0	0
c3	95	5	0	0	0	0	0
с7	85	0	5	5	5	0	0
c9	100	0	0	0	0	0	0
c12	60	0	10	15	15	0	0
c13	45	0	25	10	20	0	0
c15	70	0	15	5	10	0	0
c17	20	0	35	40	5	0	0
c15 x28	20	30	50	0	0	0	0
Greymouth							
c16	80	15	0	0	5	0	0
c5	80	10	0	0	1	10	0
c6	95	5	0	0	0	0	0
c6p8	75	15	0	0	0	10	0
c13	85	5	0	0	0	10	1
c13p17	95	5	0	0	0	0	0
c15	80	20	0	0	0	0	0
c20	90	10	0	0	0	0	0
c20	95	5	0	0	0	0	0
c21	90	10	0	0	0	0	1
Ohai SC1							
c3	25	10	0	40	15	0	0
c4	85	10	5	0	0	0	0
c8	90	10	0	0	0	0	0
c10	55	5	0	40	0	0	0
c11	85	15	0	0	0	0	0

XRD Mineral Analysis, Ohai SC3 Values

XRD Mineral Analysis, Ohai SC1 Values

XRD Mineral Analysis, Greymouth Values

3.3 Rank and Suggate Rank

Rank of a coal can be estimated using volatile matter (ASTM D388, 2005b). Using this system, the Huntly coal would be classed as sub-bituminous B-A, Ohai coal as sub-bituminous C-A, and Greymouth coal high volatile bituminous A (Fig. 3.10). In all cases in-seam variation of volatile matter, and thus "rank", can be noted (Fig. 3.2). This variation is most likely a result of type changes rather than true rank differences. To differentiate between rank and type changes all samples were plotted using a Suggate plot (Suggate, 1959). The relationship between Suggate rank and ASTM rank classification is shown in Table 3.4.

When plotted on a Suggate curve (Fig. 3.11) type changes spread out along isorank lines, while rank changes spread out along the **average type line**. Average Suggate rank values are given in Table 3.5. It is important to note that the rank from all three locations is different and distinct, as illustrated in the Suggate plot. The Suggate plot shows sample variation along the isorank lines. This means that variation in the volatile matter and calorific value are from type changes, not rank changes. Although slight variation is also seen along the average type line, especially in the Greymouth core, these rank differences do not cross into the Ohai rank range. Hence, we have three distinct ranked coals.

Coal Rank (ASTM)

Figure 3.10: American Society for Testing and Materials (ASTM) rank classification, based on volatile matter (daf), for Huntly, Ohai and Greymouth cores.

Table 3.4; Approximate rank correlations between Suggate rank and ASTM^a rank.

ASTM Rank	Suggate Rank
Lignite B and A	0.5 - 4.0
Sub-bituminous C, B and A ^b	4.0-8.0
High volatile bituminous C ^b , B and A	7.0 – 14.0
Medium volatile bituminous	14.0 – 15.3
Low volatile bituminous	15.3 – 16.7
Semi-anthracite	16.7 – 19.8
Anthracite	19.8 – 27.0
Meta-anthracite	> 27

^a Because ASTM rank classification is for industrial purposes exact correlation is not possible.

^b The ASTM classification allows overlap between sub-bituminous A and high volatile bituminous C.

Table 3.5: Average Suggate rank values, by location.

Location	Suggate Rank
Huntly	5.7
Ohai SC1	8.6
Ohai SC3	8.3
Greymouth	10.5

3.4 Organic petrology

3.4.1 Particulate Mounts

Overall, there were only a few petrographic differences between cores for all locations (Table 3.6). Total vitrinite content ranged from 85.6% for the Ohai SC1 core to 86.9% for the Ohai SC3 core. Liptinites ranged from a high of 9.5% in Ohai SC1, to 6.6% in Ohai SC3. Total inertinite ranged from 4.7% in the Huntly core to 6.4% in the Ohai SC3 core. Ohai SC1 had the highest mineral matter content (3.4%) followed by Greymouth (1.7%). Although all locations had similar total vitrinite contents, Huntly had the least telocollinite. This telocollinite contained 9.3% cell telocollinite, compared with approximately 2% found in the other cores (Fig. 3.12). Figures 3.13 to 3.20 show the maceral composition for each sample studied in each location. Main differences between locations are described below. Figures 3.21 to 3.23 show photomicrographs of macerals and mineral matter viewed under the microscope.

Samples from the Huntly core had high concentrations of cell telocollinite, especially in samples TW1 c19, c28, c32 and c37. There was an average of nearly 10% cell telocollinite, compared with under 3% in both Greymouth and Ohai cores. Large telocollinite was low in the Huntly area, relative to the other locations studied. Huntly had only 12% large telocollinite, while all other regions contained on average over ~20% of large telocollinite.

Figure 3.11: Suggate rank graph for Greymouth, Ohai and Huntly samples. Suggate rank is determined by the volatile matter (dmmSf) on the y-axis and the calorific value (dmmSf) on the x-axis. Rank variation occurs along the average type line, while coal type variation occurs along the isorank lines. Samples selected for petrographic and mineralogical analysis are outlined in the top figure.

Maceral Summary Chart

Figure 3.12: Average maceral contents in the Huntly, Ohai and Greymouth cores.

Figure 3.13: Huntly pie graphs showing proportion of maceral groups in each canister interval.

Figure 3.14: Huntly pie graphs showing proportion of vitrinite macerals in each canister interval

Samples from the Ohai SC1 core had higher mineral matter concentrations than all of the other areas, whereas SC3 had very low mineral matter content. Both Ohai locations showed high inertinites. SC1 had a high large telocollinite content (~32%). The maceral composition in SC3 was consistent throughout all the samples, both in terms of main maceral groups and in the vitrinite macerals. The biggest variable in SC3 was the amount of desmocollinite compared to large telocollinite, although desmocollinite was always the more dominant vitrinite maceral.

The Greymouth core showed a lot of variety in terms of maceral composition. Samples c15, c20 and c21 had high mineral matter content. Sample c21 also lacked inertinite. Most samples had high desmocollinite concentrations, excluding c16, c20 and c21. Samples c16 and c20 had low values of vitrodetrinite.

Figure 3.15: Ohai SC3 pie graphs showing proportion of maceral groups in each canister interval.

Figure 3.16: Ohai SC3 pie graphs showing proportion of proportion of vitrinite macerals in each canister interval

Figure 3.17: Ohai SC1 pie graphs showing proportion of maceral groups in each canister interval.

Figure 3.18: Ohai SC1 pie graphs showing proportion of proportion of vitrinite macerals in each canister interval

Figure 3.19: Greymouth pie graphs showing proportion of maceral groups in each canister interval.

Figure 3.20: Ohai SC1 pie graphs showing proportion of proportion of vitrinite macerals in each canister interval

3.4.2 Block Mounts

Petrographic observations of the Greymouth block samples were described qualitatively to identify mineral matter present, and modes of occurrence (Table 3.7). Mineral matter was observed both infilling pore spaces and fractures (clays, carbonates and occasional pyrite) as well as detrived grains dispersed in the matrix (quartz, and occasional clay and pyrite).

Figure 3.21: Examples of common macerals found in block and particulate mounts, in petrographic study of Huntly, Ohai and Greymouth samples. This figure concentrates on macerals of the vitrinite and liptinite groups. (A) Ohai sample SC1-8; (B) Ohai sample SC3-17; (C) Huntly sample TW1-19; (D) Ohai sample SC3-13; (E) Huntly sample TW1-11; (F) Greymouth sample 944-23, (Table 3.7).

Figure 3.22: Examples of common macerals found in block and particulate mounts, in petrographic study of Huntly, Ohai and Greymouth samples. This figure concentrates on macerals of the inertinite groups. (A) Ohai sample SC3-15; (B) Greymouth sample 944-15; (C) Greymouth sample 944-20; (D) Huntly sample TW1-19; (E) Huntly sample TW1-11.

10 microns

Desmocollinite

Figure 3.23: Examples of common macerals found in block and particulate mounts, in petrographic study of Huntly, Ohai and Greymouth samples. This figure concentrates on the modes of occurance of mineral matter. (A) Greymouth sample 944-13; (B) Greymouth sample 944-20; (C) Greymouth sample 944-13; (D) Greymouth sample 944-13; (E) Greymouth sample 944-15; (F) Greymouth sample 944-15.

Figure 3.24: Sketches of canister 6, canister 13 and canister block mounts. See Table 3.7 for explanations.
			Vitrinit	е				Liptin	ite				Inerti	nite			Miner	al mat	ter		Total	Total	Total	Total
Sample	C Tell	B Tell	L Tell	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	Pyr	Qtz	clay	Cbn	Fe-O	Vit	Lip	Int	ММ
944 c5	3	17	17	45	5	1	3	1	2	0	0	1	1	2	1	0	0	0	0	0	87	7	6	0
944 c6 p8 A	6	12	21	42	3	1	4	0	2	0	0	2	1	2	2	0	1	0	0	0	85	8	7	1
944 c6 p8 B	3	18	13	47	6	0	2	0	4	0	0	2	1	2	1	0	0	0	0	0	87	7	5	1
944 c13	1	12	22	48	4	1	0	1	4	0	0	2	1	3	0	0	1	0	0	0	87	6	6	1
944 c15	1	13	22	42	4	1	2	2	2	3	0	1	1	2	0	0	2	1	0	0	83	10	4	3
944 c16	3	10	44	26	1	1	1	1	3	5	0	1	1	3	0	0	0	0	0	0	83	11	5	1
944 c20	3	9	39	31	2	1	1	2	3	1	0	1	2	1	1	0	2	0	0	0	84	8	6	2
944 c21	2	9	35	36	4	2	1	1	2	2	0	1	0	0	1	0	3	1	0	0	85	8	2	5
mean=	2.8	12.4	26.6	39.7	3.7	1.0	1.6	1.1	2.7	1.5	0.0	1.2	1.1	1.8	0.9	0.0	1.2	0.3	0.1	0.0	85.3	8.0	5.1	1.7
stddev=	1.4	3.3	10.3	7.6	1.5	0.4	1.0	0.6	0.9	1.5	0.1	0.5	0.5	0.8	0.5	0.1	1.1	0.3	0.1	0.1	1.7	1.5	1.3	1.4
TW1 c10	7	13	16	41	8	1	1	1	5	0	0	1	0	3	1	0	0	1	0	0	85	8	6	1
TW1 c11	5	15	10	44	5	1	1	3	10	1	0	1	0	1	2	0	0	0	0	1	79	15	5	1
TW1 c19	9	12	6	43	9	1	0	2	9	0	0	1	0	3	3	0	0	0	1	0	79	12	7	1
TW1 c21	5	6	20	54	4	1	0	1	3	1	0	0	0	3	1	0	0	0	1	0	88	6	5	1
TW1 c28	12	19	8	44	9	1	0	1	2	0	0	0	0	2	0	0	0	1	0	0	92	4	2	1
TW1 c32	12	13	18	40	6	1	1	1	5	0	0	0	0	3	2	0	0	0	0	0	87	8	4	1
TW1 c37	20	8	8	41	10	1	3	0	4	0	0	0	0	4	1	0	0	0	0	0	86	8	5	0
TW1 c43	6	17	18	38	8	1	3	0	4	1	0	0	0	2	2	0	0	0	0	0	87	9	4	0
mean=	9.3	12.9	12.9	43.2	7.2	0.9	1.2	1.1	5.1	0.5	0.1	0.4	0.1	2.6	1.6	0.0	0.1	0.4	0.3	0.2	85.6	8.8	4.7	1.0
stddev=	4.7	4.0	5.2	4.4	2.0	0.2	1.1	0.9	2.5	0.3	0.1	0.5	0.1	0.8	0.8	0.1	0.1	0.4	0.3	0.3	4.2	3.3	1.3	0.4
SC3-1	4	24	23	27	1	2	2	1	3	3	0	3	1	1	0	0	3	1	0	0	79	12	5	4
SC3-3	3	24	15	41	6	0	2	0	2	1	0	1	2	1	0	0	0	0	0	0	89	6	5	0
SC3-7	2	20	22	39	3	1	3	0	1	2	0	2	2	3	1	0	0	0	0	0	84	7	8	0
SC3-9	3	25	16	44	3	0	2	0	1	1	0	1	1	2	1	0	0	0	0	0	91	4	5	0
SC3-12	3	19	16	45	4	1	1	0	3	1	0	1	1	3	2	0	0	0	0	0	88	6	6	0
SC3-13	3	21	20	38	4	0	1	0	3	4	0	1	1	1	2	0	0	0	0	0	86	8	5	0
SC3-15	2	21	23	37	3	2	1	0	1	1	0	3	2	3	0	0	0	1	0	0	86	6	7	1
SC3-17	1	18	22	43	2	1	0	0	2	1	0	3	2	3	1	0	0	0	0	0	86	4	9	1
mean=	2.7	21.5	19.6	39.2	3.3	1.0	1.6	0.2	2.0	1.8	0.0	1.8	1.5	2.1	0.9	0.0	0.5	0.2	0.1	0.0	86.2	6.6	6.3	0.9
stddev=	0.8	2.4	3.1	5.2	1.3	0.7	0.9	0.3	0.8	1.2	0.0	0.9	0.5	0.8	0.5	0.0	1.0	0.3	0.1	0.0	3.4	2.4	1.5	1.2
SC1-3	1	15	39	30	3	1	1	1	3	2	0	1	1	1	1	0	0	0	0	0	88	8	4	1
SC1-8	1	18	50	13	1	1	1	4	4	3	0	1	1	1	1	0	2	1	0	0	82	12	3	3
SC1-10	2	11	29	40	3	1	0	0	3	1	0	2	3	2	1	0	0	0	1	0	86	5	8	1
SC1-11	4	23	9	38	3	0	3	1	4	3	0	1	1	0	1	0	2	7	0	0	76	12	4	8
mean=	2.0	16.8	31.6	30.1	2.2	1.0	1.3	1.3	3.6	1.9	0.0	1.1	1.5	1.0	1.0	0.0	1.0	2.0	0.2	0.1	82.8	9.2	4.7	3.4
stddev=	1.2	4.2	15.0	10.7	0.8	0.4	1.2	1.4	0.7	0.9	0.0	0.4	1.0	0.7	0.2	0.0	0.7	2.7	0.3	0.1	4.3	2.8	1.8	3.0

Table 3.6: Percentages of maceral concentrations in selected samples.

Table 3.7: Summary of Greymouth Block samples

ID	Description	Dominant Mineralisation	Dominant mode of occurrence	Coal type	Ash %	Measured gas (m³/t)	Residual gas (m ³ /t)	Lost gas (m³/t)	Total gas (m ³ /t)
2	Canister two contains a large (2 cm in hand specimen) vitrain band. The band of telocollinite is homogeneous, but not featureless, with arrays of pre-existing material running N-S in the sample. There are also fracture systems present, with only one fracture mineralised. Desmocollinite has a dissolved appearance, with very little maceral matter in the desmocollinite. Small portions of pyrite are present, and clay is abundant, filling in remnants of cell wall material.	Clays	Infilling pores	B<20	25.9	1.83	0.26	0.05	2.14
5	Canister five is heavily banded, with telocollinite being the dominant maceral. The telocollinite is heterogeneous, with smaller pieces of inertodetrinite and liptodetrinite scattered throughout. The desmocollinite has liptinites scattered throughout, but inertinites are scarce. Liptonites are predominantly sporinites, resinites and long bands of cutinites that can be followed for a distance. Clays are seen to be infilling some fractures, and are also observed infilling pore spaces in a large piece of fusitie. Scaltorinite does not have pores infilled with clay. Detrital quartz is also observed.	Clays	Infilling pores and fractures	B<20	2.5	2.12	1.04	0.05	3.21
6	Canister six contains bands. Telocollinite is homogeneous and structureless. Desmocollinite contains Sporinite and bands of Cutinite, all aligned in a single orientation. Semi-fusinite does not have many intact spore spaces. A few pore spaces are infilled with clay, but many are not. Detrital quartz grains are present. One quartz grain was observed with pyrite mineralised on the quartz grain boundaries (see Fig 3.24). fractures are also present, with slight mineralisation (slight surface reflections present) in zones along the fracture.	Clays	Detrital	B<20	0.7	1.37	0.77	0.07	2.21
13	Canister thirteen contains multiple thick bands of homogeneous telocollinite. The desmocollinite contains abundant pieces if inertodetrinite, as well as liptodetrinites, Sporinite and Cutinite. Cutinite bands can be followed for some distance, and show orientation, although smaller desmocollinite components are not as obviously aligned. The desmocollinite has a greater abundance of the inertinite group compared with other block mounts. Pore spaces in semi-fusinite and fusinites show both mineralisation and free pore spaces. A large fusinite field was observed, with clay mineralisation in some of the pore spaces, and pyrite mineralisation around broken fragments of fusinite (Fig 3.24).	Clays and pyrite	Infilling pores	B>20	4.3	1.81	0.45	0.06	2.31
15	Canister fifteen contains bands of homogeneous, structureless telocollinite. Desmocollinite contains liptodetrinites, sporinites, cutinites, ineryo0detrinites, fusinites and semi-fusinites. Pore spaces in fusinites and semi-fusinites are predominantly mineralised, as are fractures. Often the whole length of the fracture is not mineralised; it is possible that parts of the fracture are new due to the drying out process, and developed along the previous fracture lines / planes of weakness. Where fractures bisect fusinites or semifusinites pore spaces and the fracture zones are mineralised	Clays and carbonates	Infilling pores and fractures	B<20	5.3	1.13	0.60	0.04	1.77
19	Canister nineteen is banded with hetrogeneous telocollinite, with remnants of structure observed in the mid section, possibly old pore spaces. Smaller telocollinite bands are also found dispersed throughout the desmocollinite. The desmocollinite has a moderate amount of liptinites and inertinites, as well as moderate amounts of resinites (including fluorinite) not observed in other samples. The desmocolloinite also contains moderate amounts of detrital quartz grains. Although there is a slight infilling of pore spaces, and slight mineralization of fracture systems, the mineral matter is dominated by detrital quartz grains. Fig 3.24 shows a detrital pyrite fragment surrounded by quartz grains. The structure around the pyrite suggests that the pyrite was early forming, as the desmocollinite and telocollinite form an augen-like lens around the grain.	Quartz	Detrital	Dull	15.6	1.96	0.54	0.07	2.57
20	Canister twenty has the same appearance and characteristics of canister nineteen. It is dominated with detrital quartz grains, however mineralisation is also apparent in fractures, and clavs infill pore spaces in fusinite grains.	Quartz	Detrital	dull	7.0	1.03	0.45	0.09	1.57
21	Canister twenty-one contains a thick, 1 cm (in hand specimen) band of homogeneous, structureless telocollinite. The desmocollinite is similar to the desmocollinite found in canisters nineteen and twenty, although there is not as much macerals from the inertinite group present. Clay was observed occasionally infilling pore spaces.	Quartz	Detrital	B>20	13.6	1.85	0.43	0.04	2.32
23	Banded telocollinite is present, with multiple, small scale bands present throughout the desmocollinite. Large fusinite and semi-fusinite macerals wre present, with a slight infilling of pore spaces with clay. Detrital quartz grains are also present. This sample showed a strong orientation, with sporinites, cutinites, liptodetrinites, semi-fusinites and fusinites all aligned in a single direction.	Quartz	Detrital	B>20	4.0	1.56	0.41	0.05	2.02

3.5 Gas quantity, quality and type

3.5.1 Adsorption

Isotherm results are calculated to standardised conditions of 20°C and 1 atmospheric pressure. Graphs are calculated using the Langmuir equation $V_A = V_{L*}P_H/(P_H + P_L)$, where P_H is the hydrostatic pressure, and V_L and P_L are the Langmuir coefficients. The graph is calculated using dry ash free (daf) Langmuir coefficients, to eliminate the effect of the ash yield when comparing the holding capacities. The isotherms do not reflect the assumed trend of increasing holding capacities with an increase in coal rank, as the Ohai isotherms contain a higher holding capacity than the higher ranked Greymouth isotherm.

Location	Analysis temp (°C)	PL			VL
Huntly	23.8	aa	4.10	aa	10.59
		daf	4.10	daf	12.46
Ohai	24	aa	3.73	aa	11.15
		daf	3.73	daf	14.47
Greymouth	25	aa	7.45	aa	20.63
		daf	7.45	daf	24.67

Table 3.8: Langmuir coefficients for the studied areas

The Langmuir coefficients V_L (volume) and P_L (pressure) are shown in Table 3.8 for both as received (aa) and dry ash free (daf). Tables 3.9 and 3.10 summarise the holding capacity for each location at three different pressures; 2 MPa, 4 MPa and 8 MPa (both aa and daf). The pressure is a hydrostatic pressure, which is approximately proportional to depth in New Zealand. Hence, 4 MPa is equivalent to 400 m depth. Adsorption isotherms show the Greymouth isotherm nearly 50% greater than the Huntly isotherm at 2 MPa, whereas both Ohai isotherms act independently of each other. Ohai A is more than twice as high as the Greymouth isotherms show greater holding capacity than both the Greymouth and the Huntly isotherms. At this pressure all isotherms have levelled out towards an asymptote, with only 1 m³/t of methane between Ohai B, Greymouth and Huntly, respectively. Ohai A holds approximately 3 m³/t more gas than Ohai B (Fig. 3.25).

Table 3	3.9: Ac	dsorption	capacity,	given as	gas content	(m^{3}/t) ,	for different	pressures	(as anal	(ysed)
		1	1 2/	0	0	· //		1	`	<i>,</i>

Location		Pressure								
	2 MPa	4 MPa	8 MPa							
Huntly	3.47	5.23	7.00							
Ohai A	3.89	5.77	7.60							
Ohai B	4.37	7.21	10.68							
Greymouth	3.80	6.02	8.50							

Location		Pressure								
	2 MPa	4 MPa	8 MPa							
Huntly	4.08	6.15	8.23							
Ohai A	5.05	7.49	9.87							
Ohai B	12.02	13.21	13.89							
Greymouth	7.08	8.58	9.60							

Table 3.10: Adsorption capacity, given as gas content (m³/t), for different pressures (dry, ash free).

Adsorption isotherms for selected New Zealand coals (daf)

Figure 3.25: Adsorption isotherms for the studied regions, New Zealand. All have been calculated using daf (dry, ash free) Langmuir coefficients to eliminate ash influence, for comparison.

3.5.2 Desorption

Gas volumes (m³/ton of coal) for each location are given in Appendix G. Total gas comprises lost, measured and residual proportions. The average total gas values for the Huntly, Ohai and Greymouth cores are 1.6 m³/ton (std = 0.24, n = 37); 4.7 m³/ton (std = 0.89, n = 29); 2.35 m³/ton (std = 0.75, n = 24) respectively (Fig. 3.26).

Total gas measurements plotted against depth are depicted in Figure 3.27. All locations show significant downhole variation in gas content (Table 3.11). Huntly contains 57% of variation in gas volume, Ohai contains 48% variation, while Greymouth shows the largest range, with 82% variation in total gas volume.

Location	Gas Variation	Lowest Desorption (m ³ /t)	Highest Desorption (m ³ /t)
Huntly	57%	0.9	2.1
Ohai	48%	3.0	5.8
Greymouth	82%	0.7	3.7

Table 3.11: Variation in total gas volumes, for the Huntly, Ohai and Greymouth samples.

Figure 3.26: Average values, with standard deviation bars, of total gas content (m3/t) in the studied locations, New Zealand.

Figure 3.27: Down-hole total gas variation, in the Huntly, Ohai and Greymouth cores. Depths are from surface.

3.5.3 Gas Saturation

Gas saturation data are given in Appendix I. The Huntly core has a saturation yield ranging from 18.3 - 42.7%; the Ohai SC1 core ranges from 55.8 - 98.8%; the Ohai SC3 core has saturation yield ranging from 47.7 - 90.8%; the Greymouth from 12.7 - 70.2%. The Ohai cores contain the highest saturated coals. They also contain the highest desorbed gas volumes, a function of the high saturation content.

3.5.4 Gas Isotopes

Isotopic signatures of δD and $\delta^{13}C$ were determined from various sources (Table 3.12, Fig. 3.28). Huntly contains the lightest $\delta^{13}C$ and δD values, pointing to a secondary biogenically sourced gas, from CO₂ reduction. Greymouth has heavier $\delta^{13}C$ and δD isotopes, as expected from a higher ranked coal, and these also fall into a CO₂ reduced, biogenic gas source. As the Ohai coal falls mid way in between the Huntly and the Greymouth coal, in terms of thermal maturity or rank, one would expect the isotopic signatures to also fall in between the Huntly and Greymouth gas isotopes. However, this is not the case, the gas isotopes from the Ohai core are more mature, and plot as heavier $\delta^{13}C$ and δD values. The source of the Ohai gas plots from a biogenic / transitional (that is, trending towards thermogenic) origin.

unpublished Solid Energy NZ Ltd. data or laboratory.	Table 3.12: Gas isotope values, for the Huntly, Ohia and Greymouth samples. C	Greymouth and Huntly values are	from
	unpublished Solid Energy NZ Ltd. data or laboratory.		

Location	δD (per mil)	δ ¹³ C (per mil)	References
Ohai	-206.0	-58.70	Lyon and Giggenbach, 1994
Greymouth 944	-210.0	-63.40	GNS Science
Greymouth 944	-246.0	-61.60	GNS Science
Greymouth (other)	-230.0	-59.30	GNS Science
Huntly TW1	-225.0	-65.50	GNS Science
Huntly (other)	-216.0	-65.70	Rafter, Canada
Huntly (other)	-204.0	-67.60	Rafter, Canada
Huntly (other)	-209.7	-65.88	Geoscience Australia
Huntly (other)	-210.6	-65.77	Geoscience Australia
Huntly (other)	-206.4	-65.71	Geoscience Australia
Huntly (other)	-206.5	-65.50	Geoscience Australia

3.5.5 Gas Quality

Gas quality analyses are shown in Table 3.13 reported with O_2 , N_2 and air free corrections. The Huntly core has 96.4 % CH₄, the Ohai cores have 92.79 and 95.59 % CH₄, and Greymouth has the lowest CH₄ content, of 89.16%.

Table 3.13: Gas quality data, corrected for free air, O2 and N2.(n=1 for Huntly and Greymouth; n=2 for Ohai).

Gas			Location								
		Huntly	0	Ohai							
CH_4	%	96.40	92.79	95.59	89.16						
CO ₂	%	3.54	6.63	4.01	6.88						
C_2H_4	ppm	0.00	0.00	0.00	0.00						
C ₂ H ₆	ppm	611.41	2661.65	3683.88	0.04						
H ₂	%	0.00	3154.48	340.08	0.00						
O ₂	%	0.00	0.00	0.00	0.00						
N_2	%	0.00	0.00	0.00	0.00						

Gas Isotopes

Figure 3.28: Gas isotopes of Huntly, Ohai, Greymouth and the Powder River Basin (PRB). The PRB is included as an example of a biogenic by fermentation sourced gas, which shows a different pathway of gas formation from biogenic by CO₂ reduction sourced gas. Sources of data are included in Table 3.12, except for PRB, which is sourced from Gorody (1999).

Chapter Four Gas Associations

To determine associations and correlations of gas volume with organic and inorganic components, correlation charts were produced (Appendix J). Because of the large dataset involved, coefficients above the significant correlation coefficient at the 95% confidence limit (~ $R^2 > 0.50$) were focussed on (Table 4.1). Summary tables of variables with high correlation coefficients (~ $R^2 > 0.5$) were produced, then graphed (Appendix K). Some of the associations proved false, artefacts from clustering of data and outlying points. Table 4.2 summarises the minimum and maximum correlation coefficients, and how many coefficients were above the significant correlation coefficient.

	Analysis Type										
Location	Proxi	imate	Mac	eral	XI	RF	XRD				
	n (df)	5 %	n (df)	5 %	n (df)	5 %	n (df)	5 %			
Huntly	33 (31)	0.344	8 (6)	0.707	33 (31)	0.344	8 (6)	0.707			
Ohai SC1	9 (7)	0.666	4 (2)	0.95	9 (7)	0.666	5 (3)	0.878			
Ohai SC3	18 (16)	0.468	8 (6)	0.707	18 (16)	0.468	8 (6)	0.707			
Greymouth	23 (21)	0.413	8 (6)	0.707	19 (17)	0.456	10 (8)	0.632			
Average		0.47275		0.76775		0.4835		0.731			

Table 4.1: Significant levels of correlation coefficients, at the 95 % confidence level. n = number of samples, df = degrees of freedom.

Table 4.2: Summary of correlation coefficients between proximate, XRD, XRD, maceral analyses and gas values. MG = measured gas; RG = residual gas; LG = lost gas; TG = total gas.

Analysis	Location	min R ²	min parameter	max R ²	max parameter	% above significant R ² value
	Huntly	0.03	moisture / MG	-0.56	ash / TG	20.8
Brovimoto	Ohai SC1	-	VM / LG	0.90	CV / MG	29.0
TTOXIMALE	Ohai SC3	-	CV / RG	-0.80	moisture / RG	33.3
	Greymouth	-0.01	Suggate rank / LG	-0.62	ash / TG	58.0
XRD	Huntly	-0.04	ankerite / MG	-0.52	kaolinite / TG	-
	Ohai SC1	-		0.84	quartz / LG	-
	Ohai SC3	-0.11	quartz / LG	0.75	kaolinite / RG	10.0
	Greymouth	-0.04	muscovite / TG	0.97	siderite / LG	15.0
	Huntly	-		0.54	Fe2O3 / TG	18.0
YPE	Ohai SC1	0.03	SiO2 / LG	0.77	TiO2 / TG	11.4
	Ohai SC3	-	Mn3O4 / LG	-0.91	Na2O / RG	61.0
	Greymouth	0.05	Na2O / LG	0.99	P2O5 / LG	11.4
Maceral	Huntly	-	Sporinite / LG	0.86	cutinite / TG	5.2
	Ohai SC1	0.03	band telocollinite / MG	-0.99	band telocollinite / LG	4.5
	Ohai SC3	-0.01	vitrodetrinite / MG	-0.90	fusinite / LG	7.1
	Greymouth	-0.03	inertodetrinite / RG	0.82	band telocollinite / RG	7.3

4.1 Organic Correlations

4.1.1 Macroscopic

There were no correlations of gas with either the percent or size of vitrain bands (Figs. 4.1 to 4.3). However, vitrain band proportion combined with microscopic data (structured vitrinites: large telocollinite and total telocollinite) gave significant correlations in the Huntly coalfield, as discussed below.

4.1.2 Microscopic

Organic petrology data were initially treated in two ways when comparing with gas content. Firstly, as only organic material (i.e. maceral data all sums to 100%) and secondly, as a function of whole coal, where the proportion of mineral matter is also incorporated. It was found that in all cases, that there was little difference between these two data treatments. Figure 4.4 shows a typical maceral component and its relationship to gas both with and without mineral matter incorporated. Therefore, it was thought prudent to use the organic petrography results that take into account mineral matter as that best reflects the in situ conditions.

72

Figure 4.1: Vitrain and total gas relationships in the Huntly core. Graph A shows both the down hole variation of total gas content and vitrain content, with depth from surface. Graph B shows the association of total gas and vitrain yield.

Figure 4.2: Vitrain and total gas relationships in the Ohai core. Graphs A show both the down hole variation of total gas content and vitrain content, with depth from surface. Graphs B show the association of total gas and vitrain yield.

Figure 4.3: Vitrain and total gas relationships in the Greymouth core. Graph A shows both the down hole variation of total gas content and vitrain content with depth from surface. Graph B shows the association of total gas and vitrain yield.

Figure 4.4: Graphs A show maceral correlations with mineral matter removed, while graphs B show maceral correlations with mineral matter incorporated into the maceral content.

In the Huntly and Ohai SC3 coal cores there were only a few correlations with maceral data., whereas in other locations had multiple correlations between macerals and gas content; for example, Ohai SC1 had strong correlations with lost gas, total gas and measured gas. Overall, however, there were only a few strong, statistically significant associations. None of the associations found in one location was found in subsequent locations; all correlations were either bound by basin or rank. A selection of significant associations are represented in Table 4.3, based on the preliminary correlation tables.

Initial analysis of the data indicate that samples from the Huntly core had only four relatively weak associations: calorific value and measured gas; ash and total gas; calorific value and total gas; and fixed carbon and total gas. However, when maceral data were combined with vitrain %, a strong positive association with structured vitrinite and total gas content is present. Both vitrain % plus large telocollinite and vitrain % plus total telocollinite yield significant correlations. Although this is not present in the other New Zealand locations, it is present in the Powder River Basin, where structured vitrain and total gas yield a very strong positive correlation, ~ $R^2 = 0.9$ (Moore et al, 2002b) (Fig. 4.5).

Location	Measured gas	Residual gas	Lost gas	Total gas
	fusinite	semi-fusinite	semi-fusinite	cell telocollinite
		fusinite	fusinite	desmocollinite
		iron-oxide	iron-oxide	cutinite
Huntly		total mineral matter		resinite
				semi-fusinite
				quartz
				total mineral matter
	Resinite	desmocollinite	cell telocollinite	cutinite
	lipto-detrinite	sporinite	lipto-detrinite	resinite
	quartz	resinite	fusinite	lipto-detrinite
	total liptinite	semi-fusinite		guartz
Ohai SC3	total mineral matter	quartz		total liptinite
		clav		total mineral matter
		total vitrinite		
		total liptinite		
		total mineral matter		
	cell telocollinite	sporinite	cell telocollinite	desmocollinite
	large telocollinite	scelrotinite	band telocollinite	fusinite
	fusinite	quartz	sporinite	scelrotinite
	scelrotinite	total vitrinite	cutinite	carbonate
	iron-oxide		lipto-detrinite	iron-oxide
	total inertinite		Suberinite	
			semi-fusinite	
Ohai SC1			fusinite	
Unal SCT			inerto-detrinite	
			quartz	
			clay	
			carbonate	
			total vitrinite	
			total liptinite	
			total inertinite	
			total mineral matter	
	suberinite	band telocollinite	large telocollinite	inerto-detrinite
	fusinite	large telocollinite	desmocollinite	pyrite
	inerto-detrinite	desmocollinite	vitro-detrinite	carbonate
	pyrite	vitro-detrinite	suberinite	iron-oxide
Grovmouth	carbonate	cutinite	inerto-detrinite	
Greymouth	iron-oxide	suberinite	pyrite	
		pyrite	iron-oxide	
		iron-oxide	total liptinite	
		total vitrinite		
		total mineral matter		

Table 4.3: Significant correlations between maceral data and gas data. ($R^2 \sim >0.50$).

Figure 4.5: Main maceral correlation in the Huntly drill core. The Powder River basin is used to compare a similar relationship (vitrain and total gas).

Only one of the Ohai SC3 graphs proved to have any genuine correlations. All other correlation coefficients were artefacts of outliers and clustering data points. Fusinite correlated strongly with lost gas, with an $R^2 = -0.8122$ (Fig. 4.6). The relationship could be a result of gas being trapped in pore spaces in the fusinite maceral. Ohai SC1 also showed the majority of significant correlations from the Ohai SC1 samples were with lost gas (Fig. 4.7). Both the inertinite and liptinite groups had strong relationships with lost gas; the inertinite group increasing as lost gas increases (opposite to what was found in Ohai SC3), while the majority of the liptinites decreased with increasing lost gas values.

Figure 4.6: Main maceral correlation in the Ohai SC3 drill core.

Figure 4.7: Main maceral correlation in the Ohai SC1 drill core.

Samples from the Greymouth core showed an interesting association with residual gas (Fig. 4.8). Structured vitrinite (large telocollinite) correlated positively with residual gas, whereas unstructured vitrinite (desmocollinite) had an inverse correlation. More residual gas may be trapped in the matrix material, whereas the gas may not be stored efficiently in the structured vitrinite as it can simply desorb off, if there is not a sufficient seal in the coal.

Figure 4.8: Main maceral correlation in the Greymouth drill core

4.2 Geochemical Correlations

4.2.1 Proximate analyses

Proximate and calorific value analyses are reported on a dry ash free (daf) basis, except for ash (dry basis) and inherent moisture (as analysed basis). There were no statistically significant associations between gas content and most proximate and calorific value analyses. There were some apparent relationships as indicated by correlation coefficients (Table 4.4), but under additional scrutiny these proved to be related to ash yield. Ash yield showed the most consistent association in all locations studied, when correlated with total gas volume.

Location	Measured gas	Residual gas	Lost gas	Total gas
Huntly				ash
Ohai SC3	moisture	ash	ash	moisture
	ash			ash
Ohai SC1	ash			ash
	volatile matter			volatile matter
	fixed carbon			fixed carbon
	calorific value			calorific value
	Suggate number			Suggate number
Greymouth	moisture	Suggate rank		moisture
	ash			ash
	volatile matter			volatile matter
	fixed carbon			fixed carbon
	calorific value			calorific value
				Suggate rank

Table 4.4: Significant correlations between proximate data and gas data. ($R^2 \sim >0.50$).

The inverse relationship between gas content and ash yield is shown in Figure 4.9. Although all drill cores showed strong correlations between ash yield and gas content, the relationship between ash and gas is not as clear for Ohai SC3 and Huntly cores because samples from Ohai SC3 and Huntly drill core contain a predominantly low ash yield. Ohai also showed strong negative correlations between ash yield and both measured and residual gas (Fig. 4.10).

Residual and Measured Gas vs Ash Yield, Ohai samples

Figure 4.10: The association between ash yield and measured and residual gas volume, in the Ohai samples.

4.2.2 Ash constituents

Ash constituents had a large range of correlations with gas data (Appendix J). In some cores, especially Ohai SC3, correlations were strong. This was expected as the ash yield is the main controlling factor in the amount of gas present. However, in other locations, for example Greymouth, there were only a few correlations. Table 4.5 shows a list of all significant correlations.

Location	Measured gas	Residual gas	Lost gas	Total gas
Huntly				SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ MgO
Ohai SC3	$\begin{array}{c} \text{SiO}_2\\ \text{CaO}\\ \text{MgO}\\ \text{K}_2\text{O}\\ \text{Fe}_2\text{O}_3 \end{array}$	$\begin{array}{c} \text{SiO}_2\\ \text{Na}_2\text{O}\\ \text{SO}_3\\ \text{Fe}_2\text{O}_3 \end{array}$		
Ohai SC1	Al ₂ O ₃ TiO ₂			Al ₂ O ₃ TiO ₂
Greymouth			$\begin{array}{c} Mn_{3}O_{4} \\ P_{2}O_{5} \end{array}$	

Table 4.5: Significant correlations between ash constituent data and gas data. ($R^2 \sim >0.50$).

Although correlation coefficients for the Huntly core contained low R^2 values, when plotted trends appeared real (Fig. 4.11). Genuine trends are also seen in Ohai SC3 and SC1 (Figs. 4.12 and 4.13). However, when further investigating Ohai SC3, it was observed that strong correlation coefficients are only present when analysing the whole drill core. If the Ohai SC3 rider seam is removed from the dataset, there are few significant correlations, and they are similar with Huntly correlation coefficients (Fig. 4.14). Combined data from the rider seam and the main seam in the Ohai SC3 drill core has given a false impression of correlations being stronger than they actually are for a single seam intersection. Data for the Ohai SC1 core could not be separated into a main coal seam and a rider seam, as was done in the Ohai SC3 core, because the Ohai SC1 core did not contain a single, thick seam. There were no strong correlation coefficients in the Greymouth core. Both correlation coefficients appeared strong because of a few outlying samples increasing the R^2 value.

Figure 4.11: Significant correlations between gas data and ash constituents, Huntly drill core.

Figure 4.12: Significant correlations between gas data and ash constituents, Ohai SC3 drill core.

Figure 4.12 (continued): Significant correlations between gas data and ash constituents, Ohai SC3 drill core.

Figure 4.13: Significant correlations between gas data and ash constituents, Ohai SC1 drill core.

Figure 4.14: Significant correlations between gas data and ash constituents, Ohai SC3 drill core - main seam.

Figure 4.14 (continued): Significant correlations between gas data and ash constituents, Ohai SC3 drill core – main coal seam.

4.2.3 Mineralogy

Correlation coefficients for mineral matter and gas data ranged from very low R^2 values (0.00 ankerite and measured gas in Ohai SC1 core) to high R^2 values (0.97 siderite with lost gas in the Greymouth core) (Appendix J). Correlations would be expected to be similar to ash constituent correlations, because of the intimate relationship with ash constituents. However, as mineralogical results are less precise, as a result of analyses being on a spot basis (where the X-ray beam hits a single spot on the glass slide) not on whole coal, ash constituent correlations will be more representative of what inorganic components are in the coal. Table 4.6 shows a list of all significant correlations.

Location	Measured gas	Residual gas	Lost gas	Total gas
Huntly				quartz
				kaolinite
Ohai SC3	quartz	siderite	siderite	quartz
	kaolinite			kaolinite
	calcite			calcite
	ankerite			ankerite
Ohai SC1		quartz	quartz	
		siderite	kaolinite	
			ankerite	
			siderite	
Greymouth	quartz	pyrite	siderite	quartz
	siderite			siderite

Table 4.6: Significant correlations between mineralogical data and gas data. ($R^2 \sim >0.50$).

Ash constituent data can be used to infer what minerals are present, and in what abundance, although certain oxides form a major part of multiple minerals. Table 4.7 summarises the oxides present, and possible minerals that may be present, based on XRD analyses for the Greymouth, Ohai and Huntly core samples (Li et al., 1999; Li, 2002; Shearer, 1992; Newman, 1988; this study).

Oxides present	Possible minerals present (from various XRD analyses)
SiO ₂	quartz; kaolinite; muscovite; illite
Al ₂ O ₃	kaolinite; muscovite; illite
Fe ₂ O ₃	siderite; ankerite; dolomite
CaO	calcite; ankerite; apatite; salt (gypsum)
MgO	calcite; ankerite; dolomite
Na ₂ O	salt (halite); "ankerite" Mg replacement
K ₂ O	"ankerite" Mg replacement; muscovite; illite
TiO ₂	rutile; illmenite; mica
Mn ₃ O ₄	ankerite; pyrite
SO ₃	pyrite; sulphur from coal
P_2O_5	apatite

Table 4.7: Oxides present in coal samples, and possible associated minerals, based on XRD studies (Li et al., 1999; Li, 2002; Shearer, 1992; Newman, 1998; this study.)

Although Huntly correlations are weak (R^2 values of -0.2272 and 0.2662), they appear to be genuine, with no clustering of samples and outliers skewing data (Fig. 4.15).

Figure 4.15: Main significant correlations with gas and mineralogical data, in the Huntly core. The main correlations were found between quartz and kaolinite and total gas volumes.

Genuine trends are also seen in Ohai SC3, where some correlation coefficients are stronger, for example calcite with total gas $R^2 = 0.5105$, showing a greater affinity between mineral matter and gas volume (Fig. 4.16). Ohai SC1 has a mixture of genuine trends with lost gas and quartz, ankerite and siderite (R^2 values 0.8411, -0.6205 and -0.7559 respectively.) However, coefficients with residual gas show a clustering of points with an outlier skewing data to create stronger R^2 values (Fig. 4.17). Samples from the Ohai SC1 core are few (n = 5), so, overall, the results are considered inconclusive. Correlation coefficients from the Greymouth samples are similar to correlations seen for the Ohai SC1 samples; that is, there are some genuine correlations, while others are an artefact of outlier samples (for example, siderite and lost gas, $R^2 = 0.9365$; siderite and total gas, $R^2 = 0.6512$; pyrite and residual gas, $R^2 = 0.3579$, Fig. 4.18). Correlations with siderite were strong, although only two samples contained siderite, indicating there may be a direct link with the occurrence of siderite with increased gas volumes. Again, a greater number of samples would yield more information to whether these correlations hold true.

Figure 4.16: Significant correlations with gas and mineralogical data, Ohai SC3, based from correlation coefficient chart. Some correlations (for example kaolinte and total gas; siderite and lost gas; kaolinite and measured gas are a function of clustering points.

Figure 4.16 (continued): Significant correlations with gas and mineralogical data, Ohai SC3. See page 88 for full description.

Figure 4.17: Significant correlations with gas and mineralogical data, Ohai SC1, based from correlation coefficient chart. Some correlations (for example siderite and total gas; siderite and lost gas; ankerite and lost gas are a function of clustering points.

Figure 4.18: Significant correlations with gas and mineralogical data, Greymouth, based from correlation coefficient chart. Some correlations (for example siderite and measured gas; siderite and lost gas; pyrite and residual gas; siderite and total gas) are a function of clustering points.

4.3 Saturation Correlations

The degree to which coal samples were saturated with gas was compared with proximate, maceral, ash constituent, and mineralogical analyses. Proximate analyses used a dry, ash free (daf) correction, except for inherent moisture (as analysed [aa]) and ash (dry basis [db]). Table 4.8 summarises the range of correlation coefficients with each type of analysis, and the percentage of correlation coefficients that were **below** the significant correlation coefficients expressed in Table 4.1. Many of the correlations show wide scatter in the data points (the Huntly saturation data and ash constituent correlations, for example) or outlying values increasing the correlation coefficient (mineralogical correlations with Ohai SC1 and Huntly saturation data). Again, there were no consistent associations between basins.

Analysis	Location	min R ²	min parameter	max R ²	max parameter	% of data under significant R ² value
Proximate	Huntly	0.23	moisture	-0.56	ash	40
	Ohai SC1	-0.23	moisture	0.79	calorific value	60
	Ohai SC3	-0.01	calorific value	-0.62	ash	60
	Greymouth	0.63	calorific value	-0.69	ash	0
XRD	Huntly	-0.39	calcite, ankerite	-0.52	kaolinite	100
	Ohai SC1	0.01	ankerite	-0.78	siderite	100
	Ohai SC3	0.10	siderite	0.72	calcite	20
	Greymouth	0.00	muscovite	0.81	siderite	80
XRF	Huntly	0.01	Mn ₃ O ₄	0.54	Fe ₂ O ₃	45
	Ohai SC1	-0.08	K ₂ O	-0.81	TiO ₂	73
	Ohai SC3	-0.02	P_2O_5	0.73	CaO	27
	Greymouth	0.14	TiO ₂	-0.46	K ₂ O	82
Maceral	Huntly	0.00	large telocollinite	0.86	cutinite	94
	Ohai SC1	0.17	cutinite	0.94	fusinite	94
	Ohai SC3	0.02	suberinite	-0.65	cutinite	100
	Greymouth	-0.01	total inertinite	0.59	inertodetrinite	100

Table 4.8: Summary of correlation coefficients between percent saturation and other parameters.

Samples from the Greymouth core showed a strong affiliation between proximate analyses and the saturation yield (Figs. 4.19). These samples had strong positive correlations between moisture, fixed carbon and volatile matter and % saturation, and strong negative correlations between ash and calorific value and saturation yield. Samples from the Ohai and Huntly cores also had a few significant correlations between the % saturation and ash yield (in both areas), and moisture, volatile matter, fixed carbon and calorific value (Figs. 4.19).

There were only a few correlations with % saturation and mineralogy, and these were artefacts of clustering (for example, Greymouth and Ohai SC1 samples: siderite and % saturation), or subject to wide scatter in data points (for example, Huntly and Ohai SC3 samples: Kaolinite, quartz and calcite and saturation yield).

Ash (daf) vs Saturation, Huntly

Figure 4.19: Summary of significant correlations between proximate analyses and percent saturation.

The Ohai cores contained many strong correlations between ash constituents and % saturation (Fig. 4.20). Al_2O_3 and TiO_2 had strong negative correlations with % saturation in both Ohai SC1 and SC3 samples. CaO and Na_2O_3 had strong positive correlations with saturation in Ohai SC1 samples, while Fe₂O₃, and MgO all had high positive correlation coefficients with saturation in Ohai SC3 samples. SiO₂ had a high negative correlation with saturation in Ohai SC3 samples. SiO₂ had a high negative correlation with saturation in Ohai SC3 samples. There were only a few correlations in the Huntly drill core, and these both had a wide scatter in data points. Samples from Greymouth did not contain any correlations between ash constituents and % saturation.

Maceral correlations were strongest with % saturation in the Huntly core (especially with the liptinites cutinite and resinite, Fig. 4.21). Desmocollinite and cell telocollinite also strongly correlated with the % saturation in Huntly samples. The Ohai SC3 core contained strong correlations between % saturation and cutinite, resinite and liptodetrinite. The Ohai SC1 core showed a strong correlation between fusinite and % saturation, ($R^2 = 0.988$, Fig. 4.21). Samples from Greymouth also had some strong correlations between inertinites (fusinite and inertodetrinite) and % saturation. The main trend with maceral and saturation correlations were that liptinites and inertinites were closely associated with saturation yield. However, when looking at gas data (measured, residual, lost and total) vitrinites were more closely associated with gas content.

Figure 4.20: Summary of significant correlations between ash constituents and percent saturation.

Figure 4.21: Summary of significant correlations between maceral analyses and percent saturation.

4.4 Summary by Location

A brief summary is given, by location, of all the relevant above-mentioned correlations. These are further discussed in Chapter 5. There was only one association that was found in all basins: ash yield with total gas content. Although the organic chemistry was related to gas content in each location, different macerals were associated with different types of gas volume. It is unknown if this is an effect of rank, or of a more localised nature, such as depositional environment.

Relevant gas associations found in the Huntly drill core were related to two facets: macerals and geochemistry. The following correlations were found:

- Structured vitrinite coupled with vitrain % (that is, vitrain % and large telocollinite, and vitrain % and total telocollinite) yielded strong positive correlations with the total gas content. It is thought that structured vitrinites allow gas flow through the woody material, resulting in elevated total gas readings (Moore et al., 2002b).
- The ash yield correlated negatively with the total gas volume (see Chapter 5).
- The % saturation correlated negatively with the ash yield.
- The % saturated correlated well with macerals in the Huntly drill core. Both cutinite and resinite had strong associations.

The two Ohai drill cores' contained the following relevant correlations:

- Any maceral correlations were only associated with lost gas.
- Ohai SC3 samples had a very strong negative correlation with fusinite and lost gas, possibly a result of gas being trapped in pore spaces in the fusinite maceral.
- Ohai SC1 samples also showed macerals from the inertinite group correlating with lost gas. However, in the SC1 drill core the samples correlated positively. Liptinites also correlated positively with lost gas in the SC1 drill core. The low number of samples in the SC1 drill core make it hard to assess the accuracy of the correlations, however it is clear that in both SC1 and SC3 there are associations with the inertinite group and lost gas.
- The ash yield is negatively associated with total gas volumes in both SC3 and SC1 drill cores. Ohai SC3 samples also showed the ash yield correlating with both measured (negative) and residual (positive) gas volumes.
- The minerals calcite and kaolinite also show some strong correlations in the SC3 drill core (direct and inverse, respectively). It is expected that mineral matter should be related to the gas volume, to some degree, because of the intimate relation of mineral matter and ash.
- The % saturation correlated negatively with the ash yield.
- The Ohai samples had significant correlations between ash constituents and the % saturation.
- The % saturation correlated strongly with cutinite, resinite and liptodetrinite in the SC3 samples, and with fusinite in the SC1 samples.

Correlations in the Greymouth drill core were also related to two distinct facets: organic petrology and geochemistry.

- Total vitrinite correlated with gas volume.
- Large telocollinite correlated positively with residual gas.
- Desmocollinite was associated negatively with residual gas.
- Maceral relationships with residual gas volumes in the Greymouth core may be a result of residual gas being trapped in the matrix material. In more structured vitrinite the residual gas can desorb off quickly, leading to a negative correlation.
- The ash yield is negatively correlated with total gas volume.
- The % saturation had strong positive correlations with moisture, fixed carbon, volatile matter, and negative correlations with calorific value and the ash yield.
- The % saturation correlated strongly with fusinite and inertodetrinite.

Chapter Five Discussion

This study has identified a number of associations between gas content and coal properties in New Zealand coals. The ash yield had the strongest correlation with respect to gas variation, in all areas studied. However, when the ash yield is less than 10 %, this relationship breaks down and there is no relationship between the two parameters. Some of the variation seen in samples with less than 10% ash yield can be calculated to the organic components of coal, but these are site specific, possibly a function of the rank of the coal. The thermal maturity of the coal is known to influence methane the holding capacity (Hildenbrand et al., 2006; Levy et al., 1997; Laxminarayana and Crosdale, 2002.; Scott, 2002; Bustin and Clarkson, 1998; Hacquebard, 2002; Creedy, 1988), but the samples studied do not follow the generalised trend. This is because the Ohai samples behave as a more thermally mature coal than the higher rank (relative to Ohai) Greymouth samples, in relation to gas volume, methane adsorption capacity, and also gas composition.

This chapter is organised into six sections, the first five discuss the relationships identified above, and their importance to coal seam gas and the sixth discusses the specific 'problems' with the Ohai coal samples.

5.1 Inorganic Composition

The ash yield was the most dominant factor controlling the gas volume and there is an inverse relationship between these two parameters. Ash yield is the non-combustible inorganic residue that remains after a coal is burnt. Because it is generally accepted that gas adheres to the organic components of coal, more inorganic matter in the coal reduces the amount of organics present, thus reducing the sites for gas to adhere (Yee et al., 1993; Crosdale et al., 1998; Scott, 2002).

All locations show relatively strong negative correlations with ash yield and total gas volume. Ohai samples also show strong negative correlations between ash yield with both measured and residual gas. The Greymouth core has the strongest correlation, whereas the Huntly core has the weakest correlation. All three locations (Fig 4.9) show that this relationship holds true when there is greater than 10 % ash. In samples with less than 10 % ash the association between total gas content and ash yield breaks down. There may be one or more parameters controlling desorbed gas volume in circumstances where the ash yield is less than 10 %.

It is interesting to note that the Huntly TW1 coal core has very few high ash layers which the above mentioned association (ash yield and total gas) is based on. By introducing higher ash layers into the coal seam one would expect to see the trend strengthened and a higher correlation coefficient produced. Recent gas exploration work in the Huntly area by Solid Energy Ltd has lead to five additional drill holes with both gas data (desorption, adsorption) and proximate analyses conducted. Initial analysis of the dataset (T. Mares, pers. comm., University of Canterbury, 2006) has shown that the relationship with ash yield and gas content does not exist in the new Huntly drill holes.

Limited general research has been conducted in terms of ash yield, mineral matter and gas content. Crosdale et al, (1998) stated that mineral matter is effectively not adsorbent to coal seam gases (in particular CH_4), and acts as a dilutant. Scott (2002) also recognised that gas is adsorbed onto the organic layers of coal, and not the ash layers. This lead to the conclusion that when comparing adsorption isotherms from different locations, the gas volume measurements should be corrected to an ash-free basis (daf) to eliminate the effects of mineral matter and ash variability. Yee et al. (1993) pointed out that as early as 1965 a French geologist, Gunther, recognised that mineral matter acted as an inert diluent with respect to gas sorption. He explained that it caused a reduction in the gas volume by displacing the organic material that can adsorb gas. Yee et al. (1993) also reports a linear relationship where gas volume increases with a reduction in the amount of ash and moisture present. Gurba et al. (2001) looked at the effect of mineralisation of gas drainage in the southern coalfield of New South Wales, Australia. They found that microcleat mineralisation may play a major role in blocking gas drainage. They observed both mylonites, or crushed, powdery zones, in cleats and siderite nodules blocking micropores in maceral cells. Clarkson and Bustin (1996) found that an increase in mineral matter also affects the CO_2 micropore adsorption capacities, as well as methane adsorption capacities.

5.2 Organic Composition

All three locations studied show similar overall maceral compositions, although they are three different ranks. When comparing the maceral composition with gas content data, very few significant correlations were actually apparent. Of the associations that are seen, they are restricted to individual basins and locations. This is most probably a function of rank. Both Hildenbrand et al (2005), and Laxminarayana and Crosdale (1999) have also found that the degree of influence of maceral composition seems to be rank dependent. Laxminarayana and Crosdale (1999) found that coal from the Bowen and Sydney basin's high volatile bituminous coals showed an increase in the adsorption capacity with an increase in vitrinite content. However, ranks higher than medium to low volatile bituminous coals showed little influence of vitrinite content over adsorption capacity.

Within locations (that is, within rank) some associations can be seen. For example, in the Greymouth drill core a strong positive association exists between residual gas and the concentration of desmocollinite. This suggests that a significant amount of gas is retained in the finer fractions of the coal. Conversely, when there is more structured vitrinites (that is, telocollinite) the residual gas volume is significantly lower. It is well known that telocollinites are more porous (Taylor et al., 1998), and thus should be able to release gas more readily. Desmocollinite is finer grained with less porosity (Taylor et al., 1998), and thus would be expected to hold more gas. The type of vitrinite has importance to CSG fields because it may relay information on gas flow rates. If coal is from an area that contains higher desmocollinite contents, rates of gas diffusion to the cleats will be slower than coals containing the more porous telocollinite maceral. The slower rates of diffusion results in lower gas flow rates.

The Ohai SC3 core showed a strong inverse relationship with lost gas and fusinite. That is, the more fusinite, the less lost gas. This suggests that when an interval of coal has higher fusinite content, which is more porous than other macerals, potential lost gas is actually stored in the pore spaces, leading to a lower proportion of lost gas. Walker et al., (2001) found that inertinite-rich coals in the northern Bowen Basin were associated with lower gas volumes, and less efficient gas drainage, retaining gas within pore spaces. This is consistent with the association seen in Ohai SC3, with lower levels of lost gas associated with high fusinite content.

In the Ohai SC1 core the inverse association was found: inertinites showed strong positive relationships with lost gas. That is, the more inertinites, the more lost gas. However, although the opposite trend is seen in Ohai SC1, because of the relatively few data points, this association is inconclusive. Another strong maceral relationship is seen in the Ohai SC1 core: liptinites showed a strong negative relationship with lost gas. Walker et al., (2001) also determined that there was a negative correlation with gas volume and liptinite content in northern Bowen Basin coals. The association was attributed to the cracking of liptinites and
bitumens, producing gas at an early stage in the coalification process. The association in Bowen Basin coals is supported by research carried out by Glickson et al., (1999) who then went on to demonstrate that up to 95% of methane in some Bowen Basin coals may have been sourced from their bitumen. This type of study has not been carried out in New Zealand and data in this study neither supports nor contradicts the relationships seen by Walker et al., (2001) and Glickson et al., (1999).

Huntly samples showed associations with gas content to both vitrain and telocollinite abundance. An increase in total gas content was synonymous with an increase in structured vitrinite. This trend, although not present in the other New Zealand basins, has been identified in the Powder River basin (Moore et al. 2002b). Vitrinite is the maceral that is readily identified with higher gas contents, as the wood structure is thought to allow better methane flow (Moore et al. 2002b).

Although maceral composition seems to exert some influence in both adsorption capacity and gas content, the degree of influence is variable between basins. Most likely, the degree of maturation (i.e. rank) is overprinting and influencing the relationships between gas and organic content. Thus, although some conclusions can be drawn between the associations of macerals and gas content, these associations have to be treated separately between different basins and certainly between different coal ranks.

5.3 Saturation

Because of the limited adsorption samples, this study could only make approximate correlations with the percent saturation, as saturation values are all estimated using the method described in Chapter 2.6.3. Many associations were seen between percent saturation and proximate, ash constituents, mineralogical and maceral analyses (see Chapter 4.3).

Coal composition correlated with the percent saturation. When looking at associations between macerals and gas content, the vitrinite group of macerals held the greatest influence on gas content. In particular, the percent saturation correlated strongly with macerals from the liptinite and inertinite groups. The majority of inertinites had a positive correlation with percent saturation, while most liptinites correlated negatively with the percent saturation, in all locations. Higher saturation, which is concordant with higher gas levels, may occur as gas stored in pore spaces in inertinite macerals. However, association between the liptinites and the percent saturation can not be explained. Previous research on the controls of coal seam gas saturation is sparse.

Bustin and Clarkson (1998) attempted to address saturation in coal seam gas reservoirs. Their study had only 11 calculated saturation values, because of a lack of adsorption samples. All other saturation data in their

study were estimated using the adsorption data. They found that their samples, from the Sydney Basin Australia, were all under-saturated, and showed variation on the order of 2 - 85 % saturated. Although Bustin and Clarkson (1998) state that the percent saturation should vary with coal composition, they give no examples of the roles maceral composition play on saturation. They do, however, relate the main cause of saturation with gas leakage as saturation was inversely correlated with permeability.

5.4 Holding capacity and rank

Previous research has demonstrated strong associations, from a number of basins, between the thermal maturity of the coal (rank) and adsorption isotherms, or holding capacity (Hildenbrand et al., 2006; Levy et al., 1997; Laxminarayana and Crosdale, 2002.; Scott, 2002; Bustin and Clarkson, 1998; Hacquebard, 2002; Creedy, 1988). However, adsorption isotherms for the Huntly, Ohai and Greymouth cores fail to follow the trend of increasing methane holding capacity with rank. At a pressure of 2 MPa the Huntly coal core has the capacity to hold 4.08 m³/t, Ohai 12.02 m³/t, and Greymouth 7.08 m³/t (all daf). These data show that even with increasing pressure the Ohai coal core continues to have a substantially higher adsorption capacity than the Greymouth core which is of a higher rank.

On initial interpretation, when holding capacity is examined on an **as received** basis, the Huntly, Ohai and Greymouth samples show a weak influence of rank on the holding capacity. Nevertheless, when examined on a dry, ash free basis, to remove the influence of mineral matter and moisture (Scott, 2002), we see that rank in this case is no longer the primary control on adsorption capacity. The reason for this is unclear. However, this is not the only manner which the Ohai coal samples behave in a more thermally mature way, with respect to Greymouth coal samples (see Section 5.5).

There have been other studies which have also found that rank and adsorption capacity are not always related. Scott (2002) found that methane sorption capacity was rank dependant only after a certain thermal maturity had been met. The study showed that methane adsorption capacity initially decreased with rank until the high-volatile A bituminous rank, then subsequently increased with progressive coalification. Bustin and Clarkson (1998) state that although rank and adsorption capacity have shown strong associations together in certain basins, that there is in fact little or no actual correlation between coal rank and methane adsorption capacity as is commonly assumed.

5.5 Coal seam gas composition

Review of the isotopic gas composition in the studied New Zealand basins shows some interesting results. The role of rank plays an important part, in both terms of adsorption capacity and isotopic gas composition. Greymouth, being the highest rank coal in the study, should have both the highest adsorption capacity and the most isotopically mature gas signature. Huntly, being the lowest rank coal, should have the least capacity to hold gas and the most isotopically light δ^{13} C values. While Huntly follows this trend, when comparing the Ohai and Greymouth coals we see that Greymouth fails to hold the greatest adsorption capacity, and actual gas values are much lower than the Ohai coal cores. The gas values can be explained in terms of saturation, the Ohai coal core being many degrees more saturated than the Greymouth coal core. In terms of isotopic composition, however, things are not so straightforward. Greymouth has lighter δ^{13} C values than the Ohai coal core trends towards a mixed, or more thermogenically rich, source. As thermogenically derived gases are a function of maturity, it seems counterintuitive that the lower rank coal has the more thermally derived gas. Two important considerations arise from this situation: Why does Ohai have a more isotopically mature gas source? And is the isotopic gas composition controlling the saturation in the coals (that is, a more mature composition leads to a higher degree of saturation)? These issues are discussed below.

Boreham et al. (1998) replicated gas generation using an open system pyrolysis procedure on Bowen Basin coals. During pyrolysis of bitumen isolated from the coal in early stages of maturation, a¹³C depletion in CO₂ was observed (instead of the ¹³C enrichment associated with maturation and rank). It is possible over the narrow maturation range of the Greymouth and Ohai coals that this has occurred, however, although demonstrated in a laboratory exercise, it is most unlikely to have happened in the Greymouth Coalfield as this in not often reproduced in natural environments. Another possibility is the floral differences in the organic matter. The Ohai organic matter might be heavier in carbon by a few ppm as a result of a kerogen III-like origin dominated by land plants (Whiticar, 1996). Again, this explanation does not take into account why the Ohai coal is higher saturated. Additionally, because the Ohai and Greymouth coalfields are both Cretaceous, pollen data indicate they formed from similar plant material (Moore et al., 2006; Shearer and Moore, 1994; Ward, 1996b; Ward, 1997; Ward et al., 1995; Warnes, 1988).

A better explanation for Ohai's higher saturation and more mature gas isotopes can be derived from geological/stratigraphic considerations. Coal seams can contain a variety of gas sources, from self-sourced to migrated biogenic and thermogenic gases. It is possible that thermogenic and/or slightly more isotopically mature secondary biogenic gases from down-dip of the seam migrated into the coal seam gas reservoir from where the cores SC1 and SC3 were drilled. This would be the simplest way to account for the slightly more mature isotopic signatures of the gas seen in the Ohai samples. An alternative hypothesis would be that

Greymouth has lost gas over time, and that the gas reservoir has not been replenished. Hildebrand et al., (2006) point out that present day gas content is controlled by the gas generation history. Coal seams which have lost storage capacity during geologic time will stay under-saturated if not replenished by late stage (secondary biogenic) gas. This explanation takes into account both the isotopic composition and the saturation of the coal. It is further reiterated by Scott (2002) who firstly points out that gas content can be enhanced by generation of secondary biogenic gases, or by diffusion and long distance migration of thermogenic and secondary biogenic gases. If there is an active, dynamic flow regime present, combined with high permeability, secondary biogenic gas migration can occur. Migration of gases (secondary biogenic and thermogenic) can result in abnormally high gas contents in lower rank coals, or lead to coals that are saturated or oversaturated with respect to methane (Scott, 2002). The San Juan Basin is an example of a basin that shows migration and re-saturation of coal seam gases. The San Juan Basin's lower rank coals contain a higher gas content than the higher rank coals, which indicates migration of secondary biogenic gas (Scott, 2002).

From examining previous research and case studies, it could be hypothesised that either thermogenic gas or more isotopically mature secondary biogenic gas migrated into the coal seam gas reservoir in the Ohai coalfield where SC1 and SC3 were drilled. Migrating gases may have re-saturated the coal seams in these cores, leading to greater gas contents than what is seen in the Greymouth core, although the Greymouth coalfield still has a greater capacity to hold gas (Fig. 5.1).

5.6 Modelling anomalous behaviour of Ohai coal

The Ohai coal cores have demonstrated a number of anomalous properties in relationship to gas associations, as discussed in Sections 5.4 and 5.5. To summarise these are:

- 1. The Ohai coal has a greater holding capacity than the Greymouth coal. It has been commonly assumed that the higher rank the coal, the greater the holding capacity, yet this is not the case.
- The Ohai coal has heavier δ¹³C and δD isotopes, compared with the Greymouth and Huntly coals. More mature isotopes points to a transitional-thermogenic gas origin. The common trend is that more mature coals have heavier isotopes because of the higher temperatures and pressures during coalification, creating a thermogenic derived coal gas.
- 3. The Ohai coal has a higher gas content, but this can be explained by it higher saturation levels.

Two hypotheses have been generated to help explain the anomalous behaviour exhibited by the Ohai coal cores:

- The isotopic signatures can be explained by secondary biogenic / thermogenic gas migrating into the gas reservoir and re-saturating the coal, as described above. However, this does not explain why the Ohai core has a higher adsorption capacity.
- 2. A simpler explanation would be that the Ohai coal is **the higher rank coal.** When looking at the ASTM rank classifications, the volatile matter is very similar for the Ohai and Greymouth coals. When examining the range of volatile matter, standard deviations show large spread in the datasets, easily putting the Ohai coal as a more thermally mature coal. If the Ohai coal were of higher rank, it would explain both the higher adsorption capacity and the more mature isotopes with gas coming from a mixed origin. Contrasting with this, when looking at the Suggate plot, we can see three distinct ranks, where Huntly is the lowest and Greymouth is the highest.

To test the hypotheses, more Ohai samples would be needed. Coal samples could be tested for Ro max, to help determine another independent rank classification. Gas samples from down-dip of the Ohai core samples could be tested for gas composition; a more mature isotopic signature may indicate that thermogenic gas has migrated up into the reservoir, enriching and re-saturating the samples found at Ohai SC1 and SC3.

Source: Warnes, 1990

Chapter Six Conclusions

6.1 Conclusions

In summary, the main findings of this study are:

1. The ash yield was the dominant control on the gas volume, within any single seam intersection. This relationship was strongly evident in both Ohai and Greymouth, and also weakly evident in Huntly, although further investigation is needed to confirm or deny this in the Huntly coalfield. However, this association is only valid for ash yields **above** 10 %. When the ash yield falls below 10 %, the gas variation can no longer be explained by a correlation with the ash yield.

2. Organic content has some control on gas volume, but is basin and/or rank dependant. Huntly showed a strong correlation of structured vitrinites (vitrain and telocollinite) increasing alongside an increase in the total gas volume. Ohai had a decrease of fusinite with increasing lost gas volumes, whereas Greymouth showed an increase of desmocollinite with an increase of residual gas; this was supported with the converse relationship, increasing residual gas content with decreased proportions of telocollinite. These changing relationships may be functions of many parameters, including rank, local geological conditions and local mineralisation.

3. Rank does **not** appear to control the maximum gas holding capacity in the three basins examined. In addition, actual gas present is **not** a function of rank.

4. Ohai coal has the most isotopically mature CH_4 values, trending towards a more thermogenically sourced gas, although Greymouth has the highest rank coal (therefore should be the most isotopically mature). Ohai also is the most saturated, and consequently has the highest gas volume. This could be a result of the migration of more isotopically mature secondary biogenic or thermogenic gases into the Ohai gas reservoir from down-dip, rehydrating, or saturating the coals with respect to methane. Another possibility is that the Ohai coal is actually at a similar, or slightly higher rank than the Greymouth coal. This is seen in the large variation of volatile matter content (ASTM rank) in each location, however, it is not supported by Suggate rank.

6.2 Implications for industry

A successful CSG exploration programme involves a number of phases, as defined in Hayton et al., (2004). The assessment phase includes a preliminary appraisal, exploratory drilling and analysis and preliminary modelling all which help subsequent drilling and pilot well development. During this phase it is important to locate and define parameters that will enhance CSG development. Parameters used to model a CSG reservoir include coal seam geometry, coal thickness, coal depth and coal quality. Gas data, such as desorption, adsorption and saturation data, must also be taken into account when modelling the reservoir, as well as factors such as coal permeability; well spacing and completion type. This study has helped define some of the controlling characteristics for these key parameters. Additional information related to CSG will help isolate areas within proposed gas plays that may better meet exploration and production needs, and also help predict variations in gas volume and content.

An aspect to consider when assessing a basin for CSG is ash yield. As has been shown, low ash coals will contain higher gas volumes than their high ash counterparts. In multiple seam basins, high ash seams or layers can be avoided.

Areas of higher saturation should be targeted for their high gas volume, and pressure. Although more work has to be completed in terms of controlling factors of percent saturation, basin geology and gas isotope composition may help delineate areas of higher saturation. Areas where it is possible for secondary biogenic or thermogenic gas to migrate into the CSG reservoir may re-saturate or over-saturate the coal, relative to areas where there has been no migration of gas. Studies have also shown that there may be different origins of gas in one basin (Ayers, 2002).

This study has also shown that different basins and/or different rank coals can have different influences which control the gas content and its variation. Although structured vitrinite is strongly associated with higher total gas volumes in the Huntly coal field, other macerals have stronger influences in the other regions. Unless these macerals have been determined prior to assessment, it is important not to assume that relationships that have

worked elsewhere will also apply. However, once maceral relationships have been determined they may be a good predictor of gas volume. Another assumption that should not be relied on is that higher rank coals will have more gas, and a greater holding capacity. Again, specific differences between basins may increase gas content, as seen in the Ohai region.

It is important when planning a CSG exploration programme that proper sampling is undertaken, in order to complete a fully comprehensive model that can target the most appropriate areas to make a commercially successful resource.

6.3 Limitations and future work

This work has contributed to the basic understanding of the relationship between coal properties (proximate, maceral and mineralogical) and gas content. The biggest limitation to this study was the relatively small data per basin. A greater number of samples would have yielded a larger and more statistically valid database. Additional samples from adjacent drill holes in the basins may give more information into what factors control the gas content laterally as well as vertically. Additional adsorption samples would enable a more in depth study of the gas holding capacity of coal, and what factors control this. There is, in fact, a large scope for future work. Some key areas to address would be:

- More in depth study of desorption: Could differences in gas volume be related to the palynology and not maceral content that are controlling the gas content? Is anything controlling the desorption rate? An attempt was made to look at this, but no associations were found with desorption rate and coal type or ash yield, as found by Laxminarayana and Crosdale (1999).
- 2. A fuller study of adsorption capacity: How does the holding capacity vary in a vertical section? Is this controlled by maceral composition, as many studies (see Chapter five) suggest, or another factor? Are trends bound by basin or by rank?
- 3. Controls of permeability and gas flow: What affects the lateral continuity of gas content?
- 4. Isotopic signatures of methane and carbon dioxide: Where is the gas sourced from? Does maturity of gas affect the saturation and gas volume?

References

- American Society for Testing and Materials (ASTM), 2002. D3175 Standard test method for volatile matter in the analysis sample of coal and coke. Annual Book of ASTM Standards: Section 5, petroleum products, lubricants and fossil fuels, vol 05.06(Gaseous fuels; coal and coke).
- American Society for Testing and Materials (ASTM), 2003. D3173 Standard test method for moisture in the analysis sample of coal and coke. Annual Book of ASTM Standards: Section 5, petroleum products, lubricants and fossil fuels, vol 05.06(Gaseous fuels; coal and coke).
- American Society for Testing and Materials (ASTM), 2004a. D3174 Standard test method for ash in the analysis sample of coal and coke. Annual Book of ASTM Standards: Section 5, petroleum products, lubricants and fossil fuels, vol 05.06(Gaseous fuels; coal and coke).
- American Society for Testing and Materials (ASTM), 2004b. D4239 Standard test method for sulphur in the analysis sample of coal and coke using high temperature tube furnace combustion methods. Annual Book of ASTM Standards: Section 5, petroleum products, lubricants and fossil fuels, vol 05.06(Gaseous fuels; coal and coke).
- American Society for Testing and Materials (ASTM), 2004c. D5865 Standard test method for gross calorific value of coal and coke. Annual Book of ASTM Standards: Section 5, petroleum products, lubricants and fossil fuels, vol 05.06(Gaseous fuels; coal and coke).
- American Society for Testing and Materials (ASTM), 2004d. D4326 Standard test method for major and minor elements in coal and coke ash by X-Ray fluorescence. Annual Book of ASTM Standards: Section 5, petroleum products, lubricants and fossil fuels, vol 05.06(Gaseous fuels; coal and coke).
- American Society for Testing and Materials (ASTM), 2005a. D2799-05a Standard test method for microscopical determination of the maceral composition of coal. Annual Book of ASTM Standards: Section 5, petroleum products, lubricants and fossil fuels, vol 05.06(Gaseous fuels; coal and coke).
- American Society for Testing and Materials (ASTM), 2005b. D388 Standard classification of coal by rank. Annual Book of ASTM Standards: Section 5, petroleum products, lubricants and fossil fuels, vol 05.06(Gaseous fuels; coal and coke).
- Ayers, W.B., 2002. Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River Basins. AAPG Bulletin, 86(11): 1853-1890.
- Barry, J.M., Duff, S.W. and MacFarlan, D.A.B., 1994. Coal resources of New Zealand, No. 16, Energy and resources division, Ministry of Commerce.
- Beamish, B.B., Crosdale, P.J. and Moore, T.A., 1996. Methane sorption capacity of upper Cretaceous coals from the Greymouth coalfield, New Zealand, Mesozoic geology of the eastern Australian plate conference, Brisbane, Australia.

- Beamish, B.B., Laxminarayana, C. and Crosdale, P.J., 1998. Contrasts in methane sorption properties between New Zealand and Australian coals, 1st Australasian coal operators conference, Wollongong, Australia.
- Bodden, W.R. and Ehrlich, R., 1998. Permeability of coals and characteristics of desorption tests: Implications for coalbed methane production. International Journal of Coal Geology, 35: 333-347.
- Boreham, C.J., Golding, S.D. and Glikson, M., 1998. Factors controlling the origin of gas in Australian Bowen Basin coals. Organic geochemistry, 29(1-3): 347-362.
- Bowen, F.E., 1964. Geology of the Ohai coalfield. New Zealand Geological Survey Bulletin 51, Wellington.
- Bowman, R.G., Brodie, C.G. and Garlick, P.R., 1987. Ohai Coalfield, Coal Resource Assessment, Eastern Ohai Coalfield Area, Resource Management and Mining Group, Ministry of Energy, 127 pp.
- Bromhal, G.S., Sams, W.N., Jikich, S., Ertekin, T. and Smith, D.H., 2005. Simulation of CO2 sequestration in coal beds: The effects of sorption isotherms. Chemical geology, 217: 201-211.
- Busch, A., Gensterblum, Y., Krooss, B. and Littke, R., 2004. Methane and carbon dioxide adsorption diffusion experiments on coal: upscaling and modeling. International Journal of Coal Geology, 60: 151-168.
- Bustin, R.M. and Clarkson, C.R., 1998. Geological controls on coalbed methane reservoir capacity and gas content. International Journal of Coal Geology, 38: 3-26.
- Cave, M., 2002. Turning a coalbed methane project into a co-producing hydrocarbon project, 2002 New Zealand Petroleum Conference Proceedings.
- Clarkson, C.R. and Bustin, R.M., 1996. Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin. Fuel, 75: 1483-1498.
- Clarkson, C.R. and Bustin, R.M., 2000. Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane. International Journal of Coal Geology, 42: 241-271.
- Clayton, J.L., 1998. Geochemistry of coalbed gas-A review. International Journal of Coal Geology, 35: 159-173.
- Creedy, D.P., 1988. Geological controls on the formation and distribution of gas in British coal measure strata. International Journal of Coal Geology, 10(1-31).
- Crosdale, Beamish and Valix, 1998. Coalbed methane sorption related to coal composition. International Journal of Coal Geology, 35: 147-158.
- Crosdale, P.J., 2003a. Methane adsorption isotherms, Huntly TW1 and TW3, Coal seam gas research Institute, Townsville.
- Crosdale, P.J., 2003b. Methane and Carbon dioxide adsorption isotherms, Ohai DH SC1 and Hawkdun DH H3, Coal seam gas research institute, Townsville.
- Crosdale, P.J., 2004. Methane adsorption isotherm, Greymouth main seam DH944, can13, Energy resources consulting Pty, Ltd.

- Davis, A., 1978. Compromise in coal seam description. In: R.R. Dutcher (Editor), Field description of coal, ASTM STP 661. American Society for Testing Materials, pp. 33-40.
- Diamond, W.P. and Schatzel, S.J., 1998. Measuring the gas content of coal : A review. International Journal of Coal Geology, 35: 311-331.
- Edbrooke, S.W., 1999. Mineral Commodity Report 18- Coal, Ministry of Energy, New Zealand.
- Edbrooke, S.W., Sykes, R. and Pocknall, D.T., 1994. Geology of the Waikato Coal measures, Waikato Coal Region, New Zealand. Monograph Series, 6. Institute of Geological and Nuclear Sciences, Ltd.
- Ferm, J.C. and Moore, T.A., 1997. Guide to cored rocks in the Greymouth coalfield, CRL Report No. 97-11189, Coal Research Ltd.
- Ferm, J.C., Moore, T.A., Lindsay, P. and Campbell, R.N., 2000. A guide to cored rocks and coal in the Waikato coalfield, CRL Report no. 00-41024. CRL Energy Ltd., Lower Hutt, pp. 72.
- Flores, R.M., 1998. Coalbed methane: From hazard to resource. International Journal of Coal Geology, 35: 3-26.
- Gage, M., 1952. The Greymouth coalfield, New Zealand Geological Survey, Department of Scientific and Industrial Research Bulletin (N.S) 45.
- Gamson, P., Beamish, B. and Johnson, D., 1996. Coal microstructure and secondary mineralisation; their effect on methane recovery. In: R. Gayer and I. Harris (Editors), Coalbed Methane and Coal Geology. Geological society special publication, pp. 165 - 179.
- Gillard, G. and Trumm, D., 2002. Coalbed methane (CBM) potential of the Maramarua Coalfield, Waikato, New Zealand, CRL Energy Ltd.
- Glickson, M., Boreham, C.J. and Theide, D.S., 1999. Coal composition and mode of maturation, a determining factor in the quantifying hydrocarbon species generated. In: M. Mastalerz, M. Glikson and S.D. Golding (Editors), Coalbed Methane: Scientific, Environmental and Economic Evaluation. Kluwer Academic Publishers, Dordrecht.
- Gorody, A.W., 1999. The origin of natural gas in the Tertiary coal seams on the eastern margin of the Powder River Basin. In: W.R. Miller (Editor), Wyoming Geological Association Guidebook; coalbed methane and the Tertiary geology of the Powder River basin, Wyoming and Montana. Wyoming Geological Association, vol 50, pp 89-101.
- Gurba, L.W. and Weber, C.R., 2001. Effects of igneous intrusions on coalbed methane potential, Gunnedah Basin, Australia. International Journal of Coal Geology, 46: 113-131.
- Gurba, L.W.; Gurba, A; Ward, C.R.; Wood, J.; Filipowski, A.; and Titheridge, D, 2001. The impact of coal properties on gas drainage efficiency. In: Doyle and Moloney (Editors), Geological hazards-The impact to mining, 15-16 November 2001, pp. 215-220.
- Hacquebard, P.A., 2002. Potential coalbed methane resources in Atlantic Canada. International Journal of Coal Geology, 52: 3-28.

- Hall, S., 2003. Controls on deposition of coal and clastic sediment in the Waikato Coal Measures, Masters Thesis, The University of Canterbury, Christchurch, 119 pp.
- Hall, S.L., Nicol, A., Moore, T.A. and Bassett, K., 2006. Timing of normal faulting in the Waikato Coal Measures, New Zealand, and its implications for coal seam geometry. New Zealand Journal of Geology and Geophysics, 49: 101-113.
- Hayton, S., Manhire, D., Pope, S. and Nelson, C., 2004. Coal seam gas exploration technologies in New Zealand, 2004 New Zealand Petroleum Conference Proceedings, pp. 1-4.
- Hildenbrand, A., Krooss, B., Busch, A. and Gaschnitz, R., 2006. Evolution of methane sorption capacity of coal seams as a function of burial history - a case study from the Campine Basin, NE Belgium. International Journal of Coal Geology, 66(3): 179-203.
- Kamp, P.J.J., Whitehouse, I.W.S. and Newman, J., 1999. Constraints on the thermal and tectonic evolution of Greymouth coalfield. New Zealand Journal of Geology and Geophysics, 42: 447-467.
- Kear, D and Schofield, J.C., 1978. Geology of the Ngaruawahia Subdivision. New Zealand Geological Survey Bulletin 88.
- Kear, D. and Schofield, J.C., 1959. Te Kuiti Group. New Zealand Journal of Geology and Geophysics, 2: 685-717.
- Killops, S.D., Funnell, R.H., Suggate, R.P., Sykes, R., Peters, K.E., Walters, C., Woolhouse, A.D., Weston, R.J. and Boudou, J.-P.et al., 1998. Predicting generation and expulsion of paraffinic oil from vitriniterich coals. Organic geochemistry, 29: 1-21.
- Kirk, P.A., Sherwood, A.M. and Edbrook, S.W., 1988. Waikato Coal Region: a summary of geology and resources., New Zealand Geological Survey, 34.
- Laird, M.G., 1968. The Paparoa tectonic zone. New Zealand Journal of Geology and Geophysics, 11(2): 435-454.
- Laird, M.G., 1972. Sedimentology of the Greenland Group in the Paparoa Range, West Coast, South Island, New Zealand. New Zealand Journal of Geology and Geophysics, 15(3): 372-393.
- Laxminarayana, L. and Crosdale, P.J., 1999. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. International Journal of Coal Geology, 40: 309-325.
- Laxminarayana, L. and Crosdale, P.J., 2002. Controls of methane sorption capacity of Indian coals. AAPG Bulletin, 86(2): 201-212.
- Levine, J., 1992. Oversimplifications can lead to faulty coalbed gas reservoir analysis. Oil gas journal, 90(47): 63-69.
- Levy, J.H., Day, S.J. and Killingley, J.S., 1997. Methane capacities of Bowen basin coals related to coal properties. Fuel, 76(9): 813 819.
- Li, Z. Clemens, A.H; Moore, T.A; Gong, D; Weaver, S.D. and Eby, N, 2005. Partitioning behaviour of trace elements in a stoker-fired combustion unit: An example of using bituminous coals from the Greymouth coalfield (Cretaceous), New Zealand. International Journal of Coal Geology, 63: 98-116.

- Li, Z., 2002. Mineralogy and Trace Elements of the Cretaceous Greymouth Coals and their combustion products. Doctor of Philosophy Thesis, University of Canterbury, Christchurch.
- Li, Z., Moore, T.A. and Weaver, S.D., 1999. Mineralogy and geochemistry of Cretaceous Main Seam coal, Greymouth, West Coast, New Zealand., Proceedings of a New Zealand Energy Road Map - Vision for 2020 and 8th New Zealand Coal Conference., Wellington, pp. 183-199.
- Li, Z., Moore, T.A. and Weaver, S.D., 2001b. Leaching of inorganics in the cretaceous Greymouth coal beds, South Island, New Zealand. International Journal of Coal Geology, 47: 235-253.
- Li, Z., Moore, T.A., Weaver, S.D. and Finkelman, R.B., 2001a. Crocoite: an unusual mode of occurrence for lead in coal. International Journal of Coal Geology, 45: 289-293.
- Lyon, G.L. and Giggenback, W.F., 1994. The isotopic and chemical composition of natural gases from the South Island, New Zealand. 1994 New Zealand Petroleum Conference. Ministry of Commerce.: pp 361-369.
- Lyon, G.L., 2004. Analysis of coal gas for Desmond Gong, CRL, Stable Isotope Laboratory, Institute of Geological and Nuclear Sciences, Lower Hutt.
- Manhire, D. and Hayton, S., 2003. Coal seam gas in New Zealand: Perspective from New Zealand's most active CSG explorers. AusIMM Annual Conference Proceedings, Greymouth.
- Moore, N.A., 1996. Palynology and Coal Petrography of Rewanui Member Seams in the Rapahoe Sector, Greymouth Coalfield. Masters Thesis, University of Canterbury, Christchurch.
- Moore, T. A., Gillard, G.R., Boyd, R., Flores, R.M., Stricker, G.D. and Galceran, C.M. 2004. A mighty wind: Determining the methane content of New Zealand coal seams. In: T.A. Moore (Editor), The Society for Organic Petrology. The Society for Organic Petrology, 21st Annual Meeting., Sydney, Australia, pp. 114-116.
- Moore, T.A. and Butland, C.I., 2005. Coal seam gas in New Zealand as a model for Indonesia. In: S. Prihatmoko, S. Digdowirogo, C. Nas, T.v. Leeuwen and H. Widjajanto (Editors), Indonesian mineral and coal discoveries. Indonesian association of geologists, Bogor, Indonesia, pp. 192-200.
- Moore, T.A. and Twombly, 2006, Cracking the CSG code with the three Rs : Reasoned, rigorous and responsive development, Proc. 2006 New Zealand Petroleum Conference, 6-9 March 2006, Auckland, New Zealand.
- Moore, T.A., 1995. Developing models for spatial prediction of mining and utilisation potentials in coal seams: an example from the Greymouth coalfield, Proceedings from the 6th New Zealand Coal Conference, pp. 385-402.
- Moore, T.A., Flores, R.M., Stanton, R.W. and Stricker, G.D., 2002b. The role of macroscopic texture in determining coalbed methane variability in the Anderson-Wyodek coal seam, Powder River Basin, Wyoming. In: C.R. Robison (Editor), 18th Annual meeting of The Society for Organic Petrology., Houston, Texas, pp. 85-88.

- Moore, T.A., Li, Z. and Moore, N.A., 2006. Controls on the formation of an anomalously thick Cretaceousage coal mire. In: S. Greb and W. DiMichele (Editors), Wetlands through time. Geological Society of America Special Paper 399, Boulder, Colorado.
- Moore, T.A., Li, Z., Nelson, C., Finkelman, R.B. and Boyd, R., 2005. Concentration of trace elements in coal beds. In: T.A. Moore, A. Black, J.S. Centeno, J.S. Harding and D.A. Trumm (Editors), Metal contaminants in New Zealand. Resolutionz press Ltd., Christchurch, pp. 81-113.
- Moore, T.A., Manhire, D. and Flores, R.M., 2002a. Coalbed methane opportunities in New Zealand: Similarities with the Powder River Basin coalbed methane paradigm, AusIMM Conference, Auckland, pp. 381-385.
- Moore, T.A., Shearer, J.C. and Esterle, J.S., 1993. Quantitative macroscopic textural analysis. The Society of Organic Petrology Newsletter, 9(4): 13-16.
- Nathan, S., 1978. Geological map of New Zealand. 1:63360 Sheet S44 Greymouth. Wellington New Zealand Geological Survey, 36pp.
- Nathan, S.; Anderson, H.J.; Cook, R.A.; Herzer, R.H.; Hoskins, R.H. and Raine, J.I, 1986. Cretaceous and Cenozoic sedimentary basins of the West Coast Region, South Island, New Zealand. New Zealand Geological Survey Basin Studies, 1.
- Newman, J., 1985. Paleoenvironments, coal properties and their interrelationship between Paparoa and selected Brunner coal measures on the West coast of the South Island. Ph.D Thesis, The University of Canterbury, Christchurch.
- Newman, J., 1997. New approaches to detection and correction of suppressed vitrinite reflectance. AAPEA Journal, 37(1): 524-535.
- Newman, N.A., 1988. Mineral Matter in the coals of the West Coast, South Island, New Zealand. Doctor of Philosophy Thesis, University of Canterbury, Christchurch.
- Newman, N.A., Moore, T.A. and Esterle, J.S., 1997. Geochemistry and petrography of the Taupiri and Kupakua coal seams, Waikato Coal Measures (Eocene), New Zealand. International Journal of Coal Geology, 33: 103-133.
- Pontolillo, J. and Stanton, R.W., 1992. Coal Petrographic laboratory procedures and safety manual II, Openfile report 94-631, US Department of Interior Geological Survey.
- Pope, J., 2005. CSG Analyses from specialized gas sample canisters, CRL Energy Ltd., Christchurch.
- Pope, S.J., Manhire, D., Pope, J.G., Taulis, M.E. and Hayton, S., 2004. Developments in coal seam gas exploration, NZ Minerals Conference.
- Rice, D.D., 1993. Composition and Origins of Coalbed Gas. AAPG Special Publication, Studies in Geology, 38(7): 159-184.
- Schopf, J.M., 1960. Field Description and Sampling of Coal Beds. Geological Survey Bulletin 1111-B, Washington, 25-67 pp.

- Scott, A.R., 2002. Hydrogeologic factors affecting gas content distribution in coal beds. International Journal of Coal Geology, 50: 363-387.
- Shearer, J.C. and Moore, T.A., 1994. Botanical control on banding character in two New Zealand coal beds. Palaeogeography, palaeoclimatology, Palaeoecology, 110: 11 - 27.
- Shearer, J.C. and Moore, T.A., 1994. Grain-size and botanical analysis of two coal beds from the South Island of New Zealand. Review of Palaeobotany and Palynology, 80: 85 114.
- Shearer, J.C., 1992. Sedimentology, Coal Chemistry and Petrography of the Cretaceous Morley Coal Measures and Eocene Beaumont Coal Measures, Ohai Coalfield, Southland, New Zealand. Doctor of Philosophy Thesis, University of Canterbury, Christchurch.
- Sherwood, A., Stagpoole, V., Funnel, R. and Darby, D., 2003. Northern Taranaki graben described as promising area in New Zealand. Oil and Gas Journal, Oct 13.
- Sherwood, A.M., Lindquist, J.K., Newman, J. and Sykes, R., 1992. Depositional controls on Cretaceous coals and coal measures in New Zealand. In: P.J. McCabe and J.T. Parrish (Editors), Controls on the distribution and quality of Cretaceous coals. Geological society of America special paper, pp. 325-346.
- Stach, E.; Mackowsky M-Th; Teichmuller, M; Taylor, G.H.; Chandra, D.; Teichmuller, R, 1982. Stach's Textbook of Coal Petrology. Gebrüder Borntraeger, Stuttgart, 535 pp.
- Stopes, M.C., 1919. On the four visible ingredients in banded bituminous coal. Proceedings of the Royal Society, Series B, 90: 470-487.
- Stopes, M.C., 1935. On the petrology of banded bituminous coals. Fuels in science and practice, 14(1): 4-13.
- Suggate, R.P. and Dickinson, W.W., 2004. Carbon NMR of coals: the effect of coal type and rank. International Journal of Coal Geology, 57: 1-22.
- Suggate, R.P., 1959. New Zealand Coals: Their geological setting and its influence on their properties. New Zealand department of scientific and industrial research, Bulletin 134.
- Suggate, R.P., 1998. Analytical variation in Australian coals related to coal type and rank. International Journal of Coal Geology, 37: 179-206.
- Suggate, R.P., 2000. The Rank (S_r) scale: its basis and applicability as a maturity index for all coals. New Zealand Journal of Geology and Geophysics, 43: 521-553.
- Sykes, R., 1985. Paleoenvironmental and tectonic controls on coal measure characteristics, Ohai coalfield, Southland. Masters Thesis, University of Canterbury, Christchurch.
- Sykes, R., 1988. The Morley Coal Measures, Ohai Coalfield, Southland. 170, Ministry of Energy, New Zealand Energy Research and Development committee.
- Taylor, G.H. Teichmuller, M; Davis, A.; Diessel, C.F.K.; Littke, R. and Robert, P, 1998. Organic Petrology. Gebruder Borntraeger, Stuttgart, 704 pp.
- Thorburn, D.F., 1983. Methane from coal Ohai coalfield, Southland, New Zealand, 2954. Ministry of Economic Development, Wellington.

- Twombly, G., Stepanek, S.H. and Moore, T.A., 2004. Coalbed methane potential in the Waikato Coalfield of New Zealand: A comparison with developed basins in the United States., 2004 New Zealand Petroleum Conference Proceedings.
- Walker, R., Glikson, M. and Mastalerz, M., 2001. Relations between coal petrology and gas content in the Upper Newlands Seam, central Queensland, Australia. International Journal of Coal Geology, 46: 83-92.
- Ward, C.R., 2002. Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology, 50: 135-168.
- Ward, C.R., Taylor, J.C., Matulis, C.E. and Dale, L.S., 2001. Quantification of mineral matter in the Argonne Premium coals using interactive Rietveld-based X-ray diffraction. International Journal of Coal Geology, 46: 67-82.
- Ward, S.D., 1996b. Application of lithostratigraphic and chronostratigraphic analysis to seam modeling in the Rapahoe sector, western greymouth Coalfield., 29th Annual Conference of the Australasian Institute of Mining and Metallurgy, Greymouth, New Zealand, pp. 173-199.
- Ward, S.D., 1997. Lithostratigraphy, palynostratigraphy and basin analysis of the Late Cretaceous to early Tertiary Paparoa Group, Greymouth Coalfield, New Zealand. PhD Thesis, The University of Canterbury, Christchurch, 404 pp.
- Ward, S.D., Moore, T.A. and Newman, J., 1995. Floral assemblage of the "D" coal seam (Cretaceous): Implications for banding characteristics in New Zealand coal seams. New Zealand Journal of Geology and Geophysics, 38(3): 283-297.
- Warnes, M.D., 1990. The Palynology of the Morley Coal Measures, Ohai Coalfield. 1, Ministry of Commerce, Energy and Resources Division.
- Whiticar, M.J., 1996. Stable isotope geochemistry of coals, humic kerogens and related natural gases. International Journal of Coal Geology, 32: 191-215.
- Whiticar, M.J., Faber, E. and Schoell, M., 1986. Biogenic methane formation in marine and freshwater environments, CO2 reduction vs. acetate fermentation. Geochim. Cosmochim. Acta, 50: 693-709.
- Yee, D., Seidle, J.P. and Hanson, W.B., 1993. Gas Sorption on Coal and Measurement of Gas Content. AAPG Special Publication, Studies in Geology, 38(9): 203-218.

Appendix A: Common abbreviations used

Corrections

aa	as analysed
db	dry basis
daf	dry, ash free
dmmf	dry, mineral matter free
dmmSf	dry, mineral matter sulphur free

Parameters

V _A	adsorption volume
VD	desorption volume
VL	volume Langmuir coefficient
PL	pressure Langmuir coefficient
P _H	hydrostatic pressure
Ds	depth (of sample)

Units

MPa	Mega pascals
m^3/t	cubic meters per tonne

Other

ISO	International Organisation for Standardisation
ASTM	American Society for Testing and Materials
DH	drillhole
CSG	coal seam gas
XRF	x-ray fluorescence
XRD	x-ray diffractometer
LTA	low temperature ash
VM	volatile matter
FC	fixed carbon
CV	calorific value
Μ	moisture
S	sulphur
А	ash
S _R	Suggate rank

Appendix B: Corrections

Most coal analyses are carried out and initially reported as air dried samples. These often need to be corrected to different standards using a number of different formulas. (Newman, pers. comm., 2005).

a) Air dried coal has had the adventitious moisture removed, but still contains the inherent moisture.

b) To correct to a dry basis (db), the moisture is removed from the samples:

$$X_{db} = \frac{X * 100}{100 - M}$$

c) To correct to dry, ash free (daf), both ash and moisture are removed:

$$X_{daf} = \frac{X * 100}{100\text{-}A\text{-}M}$$

d) Because mineral matter and ash are not identical, we can use a general ratio of MM:A when ash constituent data is not available. Usually mineral matter is greater than the ash yield and Suggate (1959) developed a general ratio of 1.1:1 for New Zealand coals. Using this, we can correct to a dry, mineral matter free basis (dmmf):

 $X_{dmmf} = \frac{100(VM-0.1A)}{100-1.1A}$ (from dry basis)

Where A = Ash %, M= Moisture and X = variable (such as Volatile Matter or Fixed Carbon).

e) To analyse Suggate rank, we correct to a dry, mineral matter sulphur free basis (dmmSf). Suggate's (1959) correction for sulphur assumes that sulphur is a contaminant and corrects to a sulphur free standard. However, in New Zealand coal approximately half the sulphur is organically derived. Sulphur corrections have been amended to include only sulphur lost during the analysis. These corrections are discussed in Chapter 2.4.2.

Appendix C Drill hole Coordinates

Drill hole Greymouth 944

New Zealand Map Grid: 2366952.28 E / 5868246.76 N

Drill hole Huntly TW1 New Zealand Map Grid: 2699554.83 E / 6407858.42 N

Drill holes Ohai SC1 and SC3 New Zealand map grid: SC1 2116032.74 E / 5461962.94 N SC3 2117238.947 E / 5462185.587 N

Appendix D: Macroscopic Results

Table 1 Ohai macroscopic descriptions

Continton	F nom (m)	T a (m)	Thickness		counts		percentages			Cleat		Commonto
Canister	From (m)	10 (m)	(m)	attrital	fusain	vitrain	%Attrital	%Vitrain	%Fusain	(cm)	CoarType	Comments
X1	319.10	319.60	0.50								BNB	broken
X2	319.60	319.85	0.25								BNB	broken
X2	319.85	320.10	0.25								Dirty Coal	semibroken
X11	320.10	320.35	0.25								Dirty Coal	semibroken
X11	320.35	320.60	0.25								CM	broken
X4	333.10	333.40	0.30	10	0	4	71%	0%	29%	1.0	B<20	
X5	333.65	334.15	0.50	13	0	10	57%	0%	43%	1.0	B<20	
X6	334.15	334.65	0.50	18	0	6	75%	0%	25%	1.5	B<20	
X7	334.65	335.15	0.50	13	1	9	57%	4%	39%	1.5	B<20	
X8	335.15	335.65	0.50	12	0	6	67%	0%	33%	1.5	B<20	
X9	335.65	336.15	0.50	19	0	10	66%	0%	34%	0.8	B<20	
X10	336.15	336.65	0.50	16	0	8	67%	0%	33%	2.0	B<20	
X12	336.65	337.15	0.50	17	0	6	74%	0%	26%	1.0	B>20	
X13	337.15	337.55	0.40	16	2	5	70%	9%	22%	1.5	B<20	
X14	338.85	339.15	0.30	10	1	3	71%	7%	21%	1.4	B<20	
X15	339.15	339.75	0.60	11	0	9	55%	0%	45%	2.0	B<20	
X16	339.75	340.35	0.60	11	0	2	85%	0%	15%	2.5	B<20	
X17	340.35	340.95	0.60	18	0	3	86%	0%	14%	2.0	BNB	
X18	340.95	341.55	0.60	17	0	7	71%	0%	29%	2.0	B<20	
X19	341.55	342.15	0.60	9	0	16	36%	0%	64%	1.2	B>20	
X20	342.15	342.50	0.35	6	0	7	46%	0%	54%	2.2	B<20	
X21	342.50	343.00	0.50	17	0	7	71%	0%	29%	3.4	B<20	
X22	343.00	343.50	0.50	16	0	5	76%	0%	24%	2.3	B<20	
X23	343.50	344.00	0.50	14	0	8	64%	0%	36%	3.5	B<20	
X24	344.00	344.50	0.50	12	0	4	75%	0%	25%	3.0	B<20	
X25	344.50	345.00	0.50	13	0	10	57%	0%	43%	1.5	B>20	
X26	345.36	345.70	0.34	6	0	3	67%	0%	33%	2.0	B<20	
X27	345.70	346.20	0.50	7	0	7	50%	0%	50%	1.5	B>20	
X28	346.20	346.70	0.50	16	0	3	84%	0%	16%	1.9	B<20	
X29	346.70	347.20	0.50	4	0	4	50%	0%	50%	1.0	B<20	
X30	347.20	347.70	0.50	12	0	14	46%	0%	54%	2.0	B>20	
X31	347.70	348.20	0.50	8	0	13	38%	0%	62%	-	B>20	
X32	348.20	348.50	0.30	7	0	15	32%	0%	68%	1.4	B>20	
X33	348.76	349.26	0.50	12	0	11	52%	0%	48%	1.2	B>20	
X34	349.26	349.76	0.50	13	0	5	72%	0%	28%	1.2	B>20	

Table 2 Ohai SC1 macroscopic descriptions

Conjeter	Erom (m)	To (m)	Thickness		counts			percentage	S	Cleat		Commonto
Canister	From (m)	10 (m)	(m)	attrital	fusain	vitrain	%Attrital	%Vitrain	%Fusain	(cm)	CoarType	Comments
A1	254.90	255.25	0.35								СМ	
A1	255.25	255.40	0.15								Dirty Coal	
A3	268.38	268.88	0.50									Isotherm sample
A5	338.95	339.55	0.60	13	0	13	50%	50%	0%	2.0	B<20	
A2	339.55	340.05	0.50	15	0	7	68%	32%	0%	0.9	B<20	
A7	340.15	340.75	0.60	4	0	2	67%	33%	0%		B<20	Residual sample?
A4	340.75	341.35	0.60									Residual sample?
A11	356.12	356.42	0.30	3	0	5	38%	63%	0%	1.0	B>20	
A11	356.42	356.60	0.18								Dirty Coal	
A10	356.60	356.94	0.34								Dirty Coal	
A10	356.94	357.10	0.16	2	0	3	40%	60%	0%		B<20	
A9	357.10	357.34	0.24	3	0	3	50%	50%	0%	1.0	B>20	Residual sample
A9	357.34	357.50	0.16								Dirty Coal	
A9	357.50	357.60	0.10									Residual sample
A8	358.20	358.45	0.25	4	0	4	50%	50%	0%	1.2	B>20	
A8	358.45	358.55	0.10								Dirty Coal	
A8	358.55	358.70	0.15								B<20	
A13	367.20	367.70	0.50	4	0	18	18%	82%	0%	1.2	B>20	
A15	399.73	399.96	0.23							1.5	Dirty Coal	
A15	399.96	400.06	0.10	4	0	5	44%	56%	0%		B>20	
A15	400.06	400.23	0.17								Dirty Coal	
A14	400.70	401.20	0.50	7	0	8	47%	53%	0%	1.5	B>20	Residual sample
A19	414.20	414.48	0.28	8	0	7	53%	47%	0%	1.5	B>20	
A18	414.48	414.98	0.50	10	0	8	56%	44%	0%	1.5	B<20	Residual sample
A17	414.98	415.49	0.51	20	0	8	71%	29%	0%		B<20	
A16	415.49	415.82	0.33	13	0	4	76%	24%	0%		B<20	
A16	415.82	416.04	0.22								Dirty Coal	

Table 3 Greymouth 944 macroscopic descriptions

Conjeter	Thickness counts percentage					9	vitroin cize (mm)	cleat				
Canister	From (m)	10 (m)	(m)	attrital	fusain	vitrain	attrital	fusain	vitrain	vitrain size (mm)	(cm)	Coal Type
16	309.55	309.85	0.30	11	0	0	100%	0%	0%	-	-	Dull
1	309.85	310.35	0.50							-	-	HAC & CM
2	334.74	335.10	0.36	10	0	2	83%	0%	17%	3,2	1	B<20%
3	335.10	335.50	0.40							-	-	Dull
4	341.10	341.50	0.40	19	1	9	65%	3%	31%	5,2,1,3,7,5,3,1,3	1	B<20%
5	341.50	342.00	0.50	10	0	5	67%	0%	33%	2,3,1,1,1	0.7	B<20%
6	342.00	342.28	0.28	9	0	3	75%	0%	25%	1,3,5	-	B<20%
6	342.28	342.50	0.22							-	-	Dull
7	343.10	343.60	0.50							-	-	Dull
8	343.60	344.10	0.50	11	1	3	73%	7%	20%	1,2,5	3+	B<20%
9	344.10	344.62	0.52							-	-	Dull
9	344.62	344.70	0.08							-	-	CM
10	344.85	345.35	0.50							-	-	Dull
11	345.35	345.85	0.50							-	-	Dull
12	345.85	345.98	0.13							-	-	Dull
12	345.98	346.35	0.37	11	1	6	61%	6%	33%	2,1,2,1,1,7	3+	B>20%
13	346.35	347.00	0.65	12	0	8	60%	0%	40%	1,10,5,5,5,3,2,2	2	B>20%
14	347.10	347.60	0.50	10	0	7	59%	0%	41%	5,2,1,2,5,5,1	1	B>20%
15	347.60	348.10	0.50	18	0	4	82%	0%	18%	3,15,3,2	3+	B<20%
17	348.10	348.60	0.50	20	1	6	74%	4%	22%	1,2,2,1,1,1	1	B<20%
18	348.60	349.10	0.50	22	0	6	79%	0%	21%	5,1,10,2,2,2	1	B<20%
19	349.10	349.60	0.50	18	0	1	95%	0%	5%	5	3+	Dull
20	349.70	350.20	0.50	13	0	1	93%	0%	7%	2	3+	Dull
21	350.20	350.70	0.50	16	0	11	59%	0%	41%	5,2,20,2,3,10,7,12,2,1,1	3	B>20%
22	351.00	351.50	0.50	6	0	6	50%	0%	50%	5,1,2,1,3,2	3+	B>20%
23	351.50	352.00	0.50	24	0	4	86%	0%	14%	2,12,2,2	2	B<20%
24	352.00	352.27	0.27	4	0	11	27%	0%	73%	1,5,10,1,2,3,6,3,15,1,10	2	B>20%
24	352.27	352.50	0.23							-	-	CM & HAC

Table 4 Huntly TW1 macroscopic descriptions

Conjeter	Erom (m)	To (m)	Thickness		Counts		Percentage			vitroin cizo (mm)	Cleat	Coal Type		
Callister	FIOIII (III)	10 (11)	(m)	attrital	Vitrain	fusain	%Attrital	%Vitrain	% fusain	vitralii size (iiiii)	(cm)	Coal Type		
9	338.70	339.20	0.50	13	6	0	68%	32%	0%	1,1,2,0.5,1,2	10	BNB		
10	339.20	339.70	0.50	17	5	1	74%	22%	4%	1,1,1,0.5, 0.5	25	BNB		
11	339.70	340.20	0.50	28	10	1	72%	26%	4%	1,1,1,1,1, 0.5,0.5, 1,1,2	20	<20		
12	340.20	340.70	0.50											
13	340.70	341.20	0.50	18	14	0	56%	44%	0%	0.5, 3, 0.5, 2, 1,1,1,1,0.5, 1,1,1,0.5,30	10	<20		
14	341.20	341.70	0.5	26	1	0	96%	4%	0%	1	20	BNB		
15	341.70	341.87	0.17									Dirty Coal		
15	341.87	342.20	0.33	17	3	0	85%	15%	0%	1,1,1	30	DNB		
16	342.20	342.70	0.50	23	6	0	79%	21%	0%	1,1,1,1,2,0.5	15	BNB		
17	342.70	343.20	0.50	24	4	0	86%	14%	0%	0.5,1,1,2	20	BNB		
18	343.20	343.44	0.24	9	1	0	90%	10%	0%	2	15	BNB		
18	343.44	343.55	0.11	6	3	0	67%	33%	0%	1,2,3		D<20		
18	343.55	343.70	0.15	13	1	0	93%	7%	0%	1		BNB		
19	343.70	344.20	0.50	15	5	0	75%	25%	0%	1,1,0.5, 0.5, 1	14	B<20		
20	344.20	344.70	0.50	22	5	0	81%	19%	0%	2,1,1,0.5,25	15	BNB		
21	344.70	345.20	0.50	11	2	0	85%	15%	0%	0.5,2		BNB		
22	345.20	345.70	0.50								>25	B<20		
23	345.70	346.20	0.50											
24	346.20	346.52	0.32									B<20		
24	346.52	346.63	0.11									Dirty Coal		
24	346.63	346.70	0.07									B<20		
25	346.70	347.20	0.50								25	B<20		
26	347.20	347.70	0.50								25	B<20		
27	347.70	348.20	0.50	20	5	0	80%	20%	0%	3,2,3,2,3	12	B<20		
28	348.20	348.70	0.50	28	11	0	72%	28%	0%	1,1,0.5,0.5,1,2,1,2,2,2,1	11	B<20		
29	348.70	349.20	0.50	21	9	0	70%	30%	0%	2,3,2,3,5,0.5,2,30,1	18	B<20		
30	349.20	349.70	0.50	18	2	0	90%	10%	0%	1,0.5	10	BNB		
31	349.70	350.20	0.50	23	8	2	70%	24%	6%	0.5,0.5,6,30,1,4,1,2	10	B<20		
32	350.20	351.20	1.00	17	18	0	49%	51%	0%	0.5,1,2,2,1,1,3,2,0.5,1,5,2,1,3,3,8,2,3	17	B>20		
33	351.20	351.70	0.50	24	16	0	60%	40%	0%	0.5,4,0.5,7,0.5,0.5,1,0.5,0.5,0.5,4,5,0.5,3	10	B>20		
34	351.70	352.20	0.50									_		
35	352.20	352.70	0.50	12	10	0	55%	45%	0%	0.5,1,2,2,1,0.5,1,0.5,0.5,2	11	B<20		
36	352.70	353.39	0.69	25	15	0	63%	38%	0%	0.5,0.5,1,1,1,1,3,1,4,4,1,3,2,0.5,5	14	B<20		
37	353.39	354.20	0.81								15	B<20		
38	354.20	354.70	0.50								30	B<20		
39	354.70	355.20	0.50								30	B<20		
40	355.20	355.70	0.50									D 00		
41	355.70	356.20	0.50									B<20		
42	356.20	356.70	0.50									B<20		
43	356.70	357.20	0.50	21	13	0	62%	38%	0%	0.5,2,0.5,4,1,1,1,2,10,2,3,4,7	20	B>20		
44	357.20	357.70	0.50	7	10	0	41%	59%	0%	1,4,3,3,2,4,7,2,2,1	20	B>20		
45	357.70	358.20	0.50	9	12	0	43%	57%	0%	3,1,1,4,8,1,2,1,2,3,1,3	15	B>20		

Tables 5 and 6 Oreymouth and Tunity macroscopic comments
--

			Gre	ymouth				Huntly
Canister	From (m)	To (m)	Thickness (m)	comments	Canister	From (m)	To (m)	Thickness (m)
16	309.55	309.85	0.30	HAC in part	9	338.70	339.20	0.50
1	309.85	310.35	0.50	too broken to log; jointed with slickensides	10	339.20	339.70	0.50
2	334.74	335.10	0.36	top broken	11	339.70	340.20	0.50
3	335.10	335.50	0.40	too broken to log	12	340.20	340.70	0.50
4	341.10	341.50	0.40	rare pyrite & siderite;341.1-341.3m dull, 341.3- 341.5m B>20%, but overall B<20%	13	340.70	341.20	0.50
5	341.50	342.00	0.50	occasional pyrite	14	341.20	341.70	0.5
6	342.00	342.28	0.28	rare pyrite	15	341.70	341.87	0.17
6	342.28	342.50	0.22	too broken to log	15	341.87	342.20	0.33
7	343.10	343.60	0.50	too broken to log	16	342.20	342.70	0.50
8	343.60	344.10	0.50	long term canister	17	342.70	343.20	0.50
9	344.10	344.62	0.52	too broken to log	18	343.20	343.44	0.24
9	344.62	344.70	0.08		18	343.44	343.55	0.11
10	344.85	345.35	0.50	HAC; too broken to log	18	343.55	343.70	0.15
11	345.35	345.85	0.50	HAC; rare pyrite, resin and MS blebs; too broken to log	19	343.70	344.20	0.50
12	345.85	345.98	0.13	HAC; siderite nodule; too broken to log	20	344.20	344.70	0.50
12	345.98	346.35	0.37	abundant pyrite: rare siderite	21	344.70	345.20	0.50
13	346.35	347.00	0.65	occasional pyrite	22	345.20	345.70	0.50
14	347.10	347.60	0.50	long term canister	23	345.70	346.20	0.50
15	347.60	348.10	0.50		24	346.20	346.52	0.32
17	348.10	348.60	0.50		24	346.52	346.63	0.11
18	348.60	349.10	0.50	rare pyrite	24	346.63	346.70	0.07
19	349.10	349.60	0.50	CM band 349.21-349.26m	25	346.70	347.20	0.50
20	349.70	350.20	0.50		26	347.20	347.70	0.50
21	350.20	350.70	0.50	rare resin & siderite nodule	27	347.70	348.20	0.50
22	351.00	351.50	0.50	long term canister	28	348.20	348.70	0.50
23	351.50	352.00	0.50	rare resin	29	348.70	349.20	0.50
24	352.00	352.27	0.27	rare resin	30	349.20	349.70	0.50
24	352.27	352.50	0.23	rare resin & MS blebs	31	349.70	350.20	0.50
					32	350.20	351 20	1.00

0	Enclose (s. S.	T = ()	INICKNESS	A							
Canister	From (m)	1 o (m)	(m)	Comments							
9	338.70	339.20	0.50								
10	339.20	339.70	0.50								
11	339.70	340.20	0.50								
12	340.20	340.70	0.50	desorbing							
13	340.70	341.20	0.50								
14	341.20	341.70	0.5								
15	341.70	341.87	0.17								
15	341.87	342.20	0.33	Clayey Coal							
16	342.20	342.70	0.50								
17	342.70	343.20	0.50								
18	343.20	343.44	0.24								
18	343.44	343.55	0.11	Dull apperance, Possibly Fusain							
18	343.55	343.70	0.15								
19	343.70	344.20	0.50								
20	344.20	344.70	0.50	0.116 weird fracture. Fusain?							
21	344.70	345.20	0.50	Broken							
22	345.20	345.70	0.50	Highly Broken							
23	345.70	346.20	0.50	desorbing							
24	346.20	346.52	0.32	Highly Broken							
24	346.52	346.63	0.11	Highly Broken							
24	346.63	346.70	0.07	Highly Broken							
25	346.70	347.20	0.50	Highly Broken							
26	347.20	347.70	0.50	Highly Broken							
27	347.70	348.20	0.50	@ 0.25 - 1cm brown clay layer							
28	348.20	348.70	0.50								
29	348.70	349.20	0.50								
30	349.20	349.70	0.50	Upper 5cm dull with fusain.							
31	349.70	350.20	0.50								
32	350.20	351.20	1.00	Some Ca. Cleat.							
33	351.20	351.70	0.50								
34	351.70	352.20	0.50	desorbing							
35	352.20	352.70	0.50	Ca on cleat							
36	352.70	353.39	0.69	Ca on cleat.							
37	353.39	354.20	0.81	Highly broken *							
38	354.20	354.70	0.50	Highly broken *							
39	354.70	355.20	0.50	Highly broken *							
40	355.20	355.70	0.50	desorbing							
41	355.70	356.20	0.50	Highly broken *							
42	356.20	356.70	0.50	Highly broken *							
43	356.70	357.20	0.50								
44	357.20	357.70	0.50	Isotherm sample from base							
45	357.70	358.20	0.50								

* Bedding plane fracture.

Appendix E: Proximate Results

Appendix E: Proximate and ultimate results and corrections

Sample details	X E: FI	oximate	e and un	imate re	esuits a		ections		Proximate Ana	alysis, As-recie	ved		Proximate Analysis, Dry basis (db)			dmmSf dry, ash free (daf)					dry, mine	eral matter free (dmmf)		Ga	is Data				
Basin	Drill bolo #	Canister	From	То	Thickness	Midpoint	Inherent Moisture	Ash %	Volatile Matter %	Fixed Carbon %	Sulphur %	Calorific	Ash (db) %	Volatile Matter (db) %	Fixed Carbon (db)) Sulphur (db)	Calorific	Volatile Matter	Calorific	Volatile Matter	Fixed carbon	Calorific	Volatile Matter	Calorific value	Measured	Residual ga	is Lost gas	Total gas m3/t	Suggate
Huntly	TW1 TW1	9 10	338.70 339.20	339.20 339.70	0.50 0.50	338.95 339.45	11.6 12.9	5.5	36.5 35.4	46.4	0.30	24.98 25.02	6.2 4.4	41.3	52.5 55.0	0.35	28.3 28.7	43.6 42.2	30.4 30.2	44.0 42.5	56.0	30.1	43.7 42.2	30.3 30.2	1.1 1 1	0.27	0.04	1.4	6.0
Huntly	TW1	11	339.70	340.20	0.50	339.95	9.2	2.9	42.0	45.9	0.30	26.90	3.2	46.3	50.5	0.33	29.6	47.7	30.8	47.8	52.2	30.6	47.7	30.7	1.0	0.21	0.05	1.3	5.6
Huntly	TW1	13	340.20	341.20	0.50	340.45	12.6	2.8	37.8	46.7	0.28	25.37	3.3	43.3	53.4	0.33	29.0	44.6	30.2	44.8	55.2	30.0	44.6	30.1	1.1	0.25	0.06	1.5	5.4
Huntly Huntly	TW1 TW1	14 15	341.20 341.70	341.70 342.20	0.50 0.50	341.45 341.95	11.1 14.0	3.0 2.7	41.3 36.2	44.5 47.1	0.38 0.25	26.91 25.03	3.4 3.1	46.5 42.1	50.1 54.8	0.43 0.29	30.3 29.1	47.9 43.3	31.5 30.2	48.1 43.5	51.9 56.6	31.3 30.0	47.9 43.3	31.4 30.1	1.1 0.9	0.20 0.22	0.06 0.04	1.4 1.1	5.9 5.6
Huntly Huntly	TW1 TW1	16 17	342.20 342.70	342.70 343.20	0.50 0.50	342.45 342.95	12.0 12.1	1.8 1.7	38.3 37.6	47.9 48.6	0.23 0.21	26.34 25.74	2.1 1.9	43.5 42.8	54.4 55.3	0.26 0.24	29.9 29.3	44.3 43.5	30.7 30.0	44.4 43.6	55.5 56.4	30.6 29.8	44.3 43.5	30.6 29.9	0.7 0.6	0.74 0.96	0.03 0.02	1.5 1.5	5.9 5.5
Huntly	TW1	18	343.20	343.70	0.50	343.45	12.3	3.9	35.0	48.8	0.20	24.68	4.4	39.9	55.6	0.23	28.1	41.5	29.6	41.8	58.2	29.4	41.5	29.6	0.8	0.81	0.04	1.7	5.8
Huntly	TW1	20	344.20	344.70	0.50	344.45	13.9	1.7	35.9	48.5	0.22	25.30	2.0	41.7	56.3	0.24	29.4	42.4	30.1	42.6	57.5	30.0	42.4	30.0	0.8	0.78	0.02	1.6	5.7
Huntly Huntly	TW1 TW1	21 22	344.70 345.20	345.20 345.70	0.50 0.50	344.95 345.45	12.6 12.6	3.0 9.0	37.8 37.1	46.6 41.3	0.22 0.19	25.48 21.82	3.4 10.3	43.3 42.4	53.3 47.3	0.25	29.1 25.0	44.6 46.6	30.3 28.2	44.8 47.3	55.2 52.7	30.2 27.8	44.6 46.7	30.3 28.2	0.9	0.37	0.03	1.3 1.5	5.5 3.4
Huntly Huntly	TW1 TW1	23 24	345.70 346.20	346.20 346.70	0.50 0.50	345.95 346.45	8.4	33.4	29.2	29.0	0.21	25.17 16.55	36.4	31.9	31.7	0.23	25.2 18.1	47.1	25.2 30.2	0.0 50.2	0.0 49.9	25.2 28.4	47.1	25.2 30.1	1.6 0.7	0.20 0.13	0.08 0.05	1.9 0.9	6.2
Huntly	TW1 TW1	25 26	346.70 347 20	347.20 347.70	0.50 0.50	346.95 347 45	10.9 12 7	10.7 5.2	36.0 35.4	42.4 46.7	0.29	23.49 24 54	12.0 6.0	40.4 40.6	47.6 53.5	0.32	26.4 28.1	45.2 42.8	30.5 30.2	45.9 43.2	54.1 56 9	30.0 29.9	45.2 42.8	30.4 30.1	1.0	0.45	0.06	1.5 1 7	5.9 5.9
Huntly	TW1	27	347.70	348.20	0.50	347.95	12.7	6.2	35.4	45.7	0.25	24.66	7.1	40.5	52.4	0.29	28.3	43.1	30.7	43.6	56.4	30.4	43.2	30.6	0.6	0.97	0.02	1.6	6.3
Huntly	TW1	20 29	348.20 348.70	349.20	0.50	348.95	12.8	5.4 5.0	36.1	46.1	0.23	23.99	4.0 5.7	41.4	56.2	0.30	26.4	43.6	29.6	41.4	56.1	29.0	43.6	29.7	0.9	0.88	0.03	1.4	5.0
Huntly Huntly	TW1 TW1	30 31	349.20 349.70	349.70 350.20	0.50 0.50	349.45 349.95	13.5 13.8	3.8 1.6	35.9 36.5	46.8 48.0	0.22 0.24	24.13 25.48	4.4 1.9	41.5 42.4	54.1 55.7	0.26 0.28	27.9 29.6	43.1 43.1	29.3 30.3	43.4 43.2	56.6 56.8	29.2 30.1	43.1 43.1	29.3 30.2	1.1 0.9	0.50 0.83	0.04 0.03	1.7 1.8	5.0 5.7
Huntly Huntly	TW1 TW1	32 33	350.20 351.20	351.20 351.70	1.00 0.50	350.70 351.45	12.8 11.2	2.1 1.4	38.4 39.7	46.8 47.7	0.26 0.27	25.97 26.75	2.4 1.6	44.0 44.7	53.7 53.7	0.29 0.31	29.8 30.1	44.9 45.3	30.6 30.7	45.1 45.4	55.0 54.6	30.5 30.6	44.9 45.3	30.6 30.7	1.0 0.7	0.63 0.84	0.03 0.02	1.7 1.6	5.7 5.8
Huntly	TW1	34 35	351.70	352.20	0.50	351.95	11 1	47	38.1	46.1	0.25	25.88 24.68	53	42.9	51.8	0.28	25.9 27.8	45.0	25.9	0.0	0.0	25.9	45.0	25.9	1.2	0.66	0.02	1.9 1 7	5.0
Huntly	TW1	36	352.20	353.39	0.69	353.05	12.3	1.4	36.5	49.7	0.23	26.00	1.6	41.6	56.7	0.26	29.6	42.2	30.2	42.3	57.6	30.1	42.2	30.2	0.6	1.06	0.02	1.7	6.0
Huntly Huntly	TW1 TW1	37 38	353.39 354.20	354.20 354.70	0.81 0.50	353.80 354.45	11.2 12.1	1.5 1.0	36.6 38.0	50.7 48.9	0.24 0.29	25.99 26.81	1.7 1.2	41.2 43.2	57.1 55.6	0.27	29.3 30.5	41.8 43.6	29.9 31.0	41.9 43.7	58.1 56.3	29.8 30.9	41.8 43.7	29.8 30.9	1.2 1.3	0.61 0.54	0.05	1.9 1.9	5.9 6.3
Huntly Huntly	TW1 TW1	39 40	354.70 355.20	355.20 355.70	0.50 0.50	354.95 355.45	11.4	1.0	37.9	49.7	0.28	26.80 26.68	1.1	42.8	56.1	0.32	30.2 26.7	43.2	30.7 26.7	43.3 0.0	56.7 0.0	30.6 26.7	43.2	30.6 26.7	1.4 1.6	0.28 0.26	0.06 0.06	1.7 1.9	6.3
Huntly Huntly	TW1 TW1	41 42	355.70 356.20	356.20 356.70	0.50 0.50	355.95 356.45	12.3 12.1	1.1 2.3	36.7 36.6	49.7 49.0	0.27 0.24	26.12 25.49	1.3 2.7	41.9 41.6	56.7 55.7	0.31 0.28	29.8 29.0	42.4 42.6	30.3 29.9	42.5 42.7	57.5 57.2	30.2 29.8	42.4 42.6	30.2 29.9	1.2 1.2	0.35 0.77	0.05 0.08	1.6 2.1	6.0 5.7
Huntly	TW1	43	356.70	357.20	0.50	356.95	12.2	1.2	37.8	48.9	0.25	26.94	1.3	43.0	55.7	0.28	30.7	43.5	31.2	43.6	56.4	31.1	43.5	31.1	0.5	1.13	0.02	1.7	6.5
Huntly	TW1	44	357.70	358.20	0.50	357.95	12.2	1.7	37.4	48.5	0.25	26.55	1.9	42.7	55.4	0.28	30.3	43.4	31.1	43.5	56.5	30.9	43.4	31.0	0.9	0.83	0.03	1.7	6.4
Greymouth Greymouth	944 944	16 1	309.55 309.85	309.85 310.35	0.30 0.50	309.70 310.10	8.7 1.7	2.3 74.2	36.5 13.4	52.5 10.6	0.23 0.06	29.7 6.1	2.5 75.5	40.0 13.7	57.5 10.8	0.25 0.06	32.5 6.2	40.8 36.0	33.5 36.7	41.0 55.8	59.0 44.2	33.3 25.3	40.9 36.1	33.4 36.6	2.89 0.53	0.26 0.07	0.55 0.07	3.70 0.67	10.6 13.4
Greymouth Grevmouth	944 944	2 3	334.74 335.10	335.10 335.50	0.36 0.40	334.92 335.30	6.7 7.4	25.9 8.7	29.1 36.2	38.3 47.7	0.22 0.26	22.4 28.3	27.8 9.4	31.2 39.1	41.1 51.5	0.24 0.28	24.0 30.6	40.9 42.5	34.6 34.2	43.2 43.1	56.8 56.9	33.2 33.7	40.9 42.6	34.5 34.1	1.83 2.36	0.26 0.35	0.05 0.40	2.14 2.78	11.5 10.8
Greymouth	944 944	4	341.00 341.50	341.50 342.00	0.50	341.25 341.75	7.7	1.3 2.5	40.0 38.7	51.0 50.7	0.41	30.9 30.4	1.4 2.7	43.3 42 1	55.3 55.2	0.44	33.4 33.0	43.8 43.1	34.1 34.1	44.0 43.3	56.0 56.7	33.9 34.0	43.9 43.1	34.0 34.1	1.79	0.58	0.02	2.39	10.4 10.6
Greymouth	944	6	342.00	342.50	0.50	342.25	7.4	0.7	41.2	50.7	0.33	31.1	0.8	44.5	54.7	0.36	33.6	44.8	34.0	44.8	55.2	33.9	44.8	33.9	1.37	0.77	0.07	2.21	10.1
Greymouth	944 944	8	343.10 343.60	343.60 344.10	0.50	343.35 343.85	7.5 8.2	0.8 1.3	37.6	50.6 52.9	0.29	31.4 30.6	1.4	44.4 41.0	54.7 57.6	0.31	34.0 33.4	44.7	34.3 34.0	44.8	55.2 58.5	34.2 33.8	44.8 41.5	34.3 33.9	2.54	0.58	0.07	3.19	10.4
Greymouth Greymouth	944 944	9 10	344.10 344.85	344.70 345.35	0.60 0.50	344.40 345.10	6.9 5.0	20.4 40.3	32.3 26.0	40.4 28.7	0.23 0.17	24.5 18.0	21.9 42.4	34.7 27.4	43.4 30.2	0.25 0.18	26.3 18.9	42.8 43.3	34.8 35.6	44.4 47.5	55.6 52.5	33.7 32.9	42.8 43.4	34.7 35.5	2.74 1.47	0.60 0.19	0.08 0.03	3.42 1.69	11.2 11.6
Greymouth	944 944	11 12	345.35 345.85	345.85 346.35	0.50 0.50	345.60 346 10	2.3	68.2 44 0	15.1 25.8	14.4 25.5	0.19 0.35	8.7 15.7	69.8 46.2	15.5 27 1	14.7 26.8	0.19	8.9 16.4	36.4 45.6	38.7 33.5	51.2 50.3	48.8 49 7	29.6 30.5	36.5 45.6	38.4 33.4	0.87	0.10	0.05	1.02 2.18	13.8 9.5
Greymouth	944	13	346.35	347.00	0.65	346.68	8.1	4.3	37.9	49.7	0.66	29.7	4.7	41.2	54.1	0.72	32.3	42.9	34.2	43.3	56.7	33.8	43.0	34.0	1.81	0.45	0.06	2.32	10.7
Greymouth	944 944	14 15	347.10 347.60	347.60 348.10	0.50 0.50	347.35 347.85	9.0 8.8	2.5 5.3	36.3 37.7	52.2 48.2	0.28 0.28	28.4 29.2	2.7 5.8	39.9 41.3	57.4 52.9	0.31 0.31	31.2 32.1	40.8 43.5	32.3 34.3	41.0 43.9	59.0 56.1	32.1 34.0	40.8 43.5	32.2 34.2	1.13	0.22 0.60	0.08 0.04	2.72	9.5 10.7
Greymouth Greymouth	944 944	17 18	348.10 348.60	348.60 349 10	0.50 0.50	348.35 348 85	9.7 9.0	2.5 3 1	36.8 37.3	51.0 50.6	0.28 0.28	29.6 29.7	2.8 3.4	40.8 41 0	56.5 55.6	0.31 0.31	32.8 32.6	41.7 42.2	33.9 34 0	41.9 42 4	58.1 57.6	33.8 33.8	41.7 42.2	33.9 33.9	2.58	0.41 0.24	0.07 0.11	3.06 2.70	10.8 10.7
Greymouth	944	19	349.10	349.60	0.50	349.35	7.1	15.6	35.2	42.2	0.25	26.1	16.8	37.8	45.4	0.27	28.1	44.3	34.5	45.5	54.5	33.7	44.3	34.4	1.96	0.54	0.07	2.57	10.6
Greymouth	944 944	20	349.70 350.20	350.20 350.70	0.50	349.95 350.45	8.7	13.6	35.9 34.5	48.4 43.9	0.28	28.3	14.8	39.3 37.5	53.0 47.7	0.31	28.7	42.1	34.0 34.3	42.6	57.4 56.0	33.6 33.6	42.1	33.9 34.2	1.85	0.45	0.09	2.32	10.7
Greymouth Grevmouth	944 944	22 23	351.00 351.50	351.50 352.00	0.50 0.50	351.25 351.75	9.1 8.0	2.7 4.0	36.8 38.3	51.4 49.7	0.34 0.33	29.7 29.5	3.0 4.3	40.5 41.6	56.5 54.0	0.37 0.36	32.7 32.0	41.5 43.2	33.9 33.7	41.7 43.5	58.3 56.5	33.7 33.5	41.5 43.3	33.8 33.6	2.65 1.56	0.28 0.41	0.06 0.05	2.98 2.02	10.8 10.2
Greymouth	944 SC3	24 SC3-1	352.00	352.50	0.50	352.25	5.9	36.8	25.4	31.9 43.4	0.23	18.7 24 1	39.1 15.8	27.0 36.5	33.9 47 7	0.25	19.9 26 5	40.4	34.9 32.1	44.3	55.7 56 7	32.6 31.4	40.5	34.8	1.07	0.52	0.04	1.63	11.8
Ohai	SC3	SC3-2	320.15	320.20	0.6	320.45	6.2	41.9	25.0	26.9	0.18	15.1	44.7	26.7	28.7	0.19	16.1	43.6	31.7	48.2	51.8	29.1	43.6	31.6	1.6	0.77	0.64	3.0	8.3
Ohai Ohai	SC3 SC3	SC3-3 SC3-4	333.10 333.65	334.00 334.65	0.9 1.0	333.55 334.15	8.7 9.5	1.8 1.8	40.5 39.5	49.0 49.2	0.25 0.21	28.5 28.2	2.0 2.0	44.4 43.6	53.7 54.4	0.27 0.23	31.2 31.1	45.1 44.4	31.9 31.9	45.3 44.5	54.7 55.5	31.8 31.7	45.1 44.4	31.9 31.8	3.9 3.8	0.55 0.55	0.24 0.27	4.7 4.6	8.1 8.2
Ohai Ohai	SC3 SC3	SC3-5 SC3-6	334.65 335.65	335.65 336.65	1.0 1.0	335.15 336.15	9.3 8.8	1.8 1.8	38.4 39.0	50.5 50.4	0.18 0.19	18.1 28.2	2.0 2.0	42.3 42.8	55.7 55.3	0.20 0.21	19.9 30.9	43.1 43.5	20.4 31.7	43.2 43.6	56.8 56.4	20.3 31.6	43.1 43.5	20.4 31.6	4.1 4.0	0.55 0.55	0.30 0.32	4.9 4.8	8.3
Ohai	SC3	SC3-7	336.65	337.55	0.9	337.10	9.2	1.6	38.5	50.7	0.20	28.2	1.8	42.4	55.8	0.22	31.0	43.0	31.7	43.2	56.8	31.6	43.1	31.6	4.1	0.55	0.29	4.9	8.4
Ohai	SC3	SC3-9	340.15	340.15 341.15	1.0	340.65	10.2	1.4	36.4 37.8	50.0	0.20	28.0	1.5	42.8	56.2	0.22	31.2	43.3	31.6	43.0	56.6 57.0	31.7	43.3	31.7	4.5	0.40	0.42	5.3	8.3
Ohai Ohai	SC3 SC3	SC3-10 SC3-11	341.15 342.15	342.15 343.00	1.0 0.9	341.65 342.58	10.6 10.7	1.4 1.5	37.9 37.0	50.1 50.8	0.20 0.17	27.7 27.6	1.6 1.7	42.4 41.4	56.0 56.9	0.22 0.19	31.0 30.9	43.0 42.0	31.6 31.5	43.1 42.1	56.9 57.9	31.5 31.4	43.0 42.0	31.5 31.4	3.1 2.7	0.40 0.40	0.38 0.58	3.9 3.7	8.3 8.5
Ohai Ohai	SC3	SC3-12	343.00 344.00	344.00 345.00	1.0 1.0	343.50 344 50	10.6	1.2 1.5	38.4 38.9	49.8 49.5	0.17	27.7 27.8	1.3 1.7	43.0 43.3	55.7 55 1	0.19	31.0 31.0	43.4 43.9	31.5 31.6	43.5 44 1	56.5 56.0	31.4 31.5	43.5 44.0	31.4 31.5	3.6	0.40	0.44	4.5 5.5	8.1 8.1
Ohai	SC3	SC3-14	345.36	346.20	0.8	345.78	10.2	1.8	39.4	48.6	0.16	27.8	2.0	43.9	54.1	0.18	31.0	44.6	31.7	44.8	55.2	31.6	44.7	31.7	4.9	0.40	0.48	5.8	8.0
Ohai Ohai	SC3 SC3	SC3-15 SC3-16	346.20 347.00	347.00 348.00	0.8 1.0	346.60 347.50	10.3 10.2	1.5 1.7	38.9 37.5	49.3 50.6	0.17 0.15	27.7 27.7	1.7 1.9	43.4 41.8	55.0 56.3	0.19 0.17	30.9 30.9	44.0 42.4	31.5 31.6	44.1 42.6	55.9 57.4	31.5 31.5	44.0 42.5	31.5 31.5	4.8 5.0	0.45 0.54	0.42 0.27	5.7 5.8	8.0 8.4
Ohai Ohai	SC3 SC3	SC3-17 SC3-18	348.00 348 76	348.50 349 76	0.5 1.0	348.25 349 26	10.3 10.5	2.1 2.4	37.0 38.4	50.6 48.7	0.14 0.18	27.6 57.3	2.3 2.7	41.2 42.9	56.4 54 4	0.16 0.20	30.8 64.1	42.1 43.9	31.6 66.1	42.2 44 1	57.8 55.9	31.5 65.8	42.1 43.9	31.6 66.0	4.9 3.9	0.54	0.31	5.8 4.7	8.6
Ohai	SC1	SC1-1	254.90	255.40	0.5	255.15	6.4	51.5	22.6	19.5	0.16	11.9	55.0	24.1	20.8	0.17	12.7	47.2	32.3	53.7	46.3	28.3	47.2	32.2	1.6	0.51	0.47	2.6	8.0
Ohai	SC1 SC1	SC1-2 SC1-3	338.95	340.05	1.1	339.50	9.4	4.5	37.7	48.4	0.40	27.2	5.0	41.6	53.4	0.44	30.0	43.5	31.8	43.8	56.2	31.5	43.5	31.7	3.9 3.2	0.51	0.36	4.8 4.3	8.4
Ohai Ohai	SC1 SC1	SC1-4 SC1-5	356.12	357.10	1.0	356.61	6.8	29.9	30.1	33.2	0.19	19.4	32.1	32.3	35.6	0.20	20.8	44.9	32.2	47.6	52.4	30.6	45.0	32.1	3.7 3.1	0.51 0.18	0.44 0.70	4.6 4.0	8.4
Ohai Ohai	SC1	SC1-6 SC1-7	357.10 358.20	357.60 358 70	0.5 0.5	357.35 358 45	6.9 6.7	22.9 29.4	33.1 31.1	37.1 32.8	0.20	21.4 19.3	24.6 31.5	35.6 33.3	39.8 35 2	0.21 0.21	23.0 20.6	45.4 46.2	31.6 31.7	47.2 48 7	52.8 51.3	30.5 30 1	45.4 46 2	31.6 31.6	3.4 3.2	0.18	0.79	4.4 4.2	7.8 7.6
Ohai	SC1	SC1-8	367.20	367.70	0.5	367.45	9.0	13.1	32.9	45.0	0.20	24.7	14.4	36.2	49.5	0.24	27.1	41.2	32.3	42.2	57.8	31.7	41.2	32.2	4.3	0.18	0.44	5.0	9.4
Ohai Ohai	SC1 SC1	SC1-9 SC1-10	399.73 414.20	401.20 414.98	1.5 0.8	400.47 414.59	5.1 6.6	35.4 4.9	26.8 38.8	32.7 49.7	0.22 0.24	18.5 28.2	37.3 5.2	28.2 41.5	34.5 53.2	0.23 0.26	19.5 30.2	41.5 43.5	33.1 32.1	45.0 43.8	55.0 56.2	31.0 31.9	41.6 43.5	33.0 32.1	4.3 5.4	0.18 0.24	0.72 0.66	5.2 6.3	10.1 8.7
Ohai	SC1	SC1-11	414.98	416.14	1.2	415.56	5.6	12.4	39.3	42.7	0.27	26.6	13.1	41.6	45.2	0.29	28.2	47.1	33.1	47.9	52.1	32.5	47.1	33.0	5.0	0.24	0.33	5.6	8.7

Appendix F: Ash Constituent Results

Table 1 Huntly ash constituent data

													Loss on		Total with
Interval	Midpoint	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	Na₂O	K ₂ O	TiO ₂	Mn₃O₄	SO3	P ₂ O ₅	Ignition	Total	loss of
		%	%	%	%	%	%	%	%	%	%	%	%	%	Ignition
TW1 C9	338.95	58.70	15.07	2.90	8.23	1.43	2.85	0.78	0.90	0.01	6.05	0.05	0.42	96.97	97.39
TW1 C10	339.45	41.23	14.75	6.74	13.24	2.31	4.30	0.44	2.45	0.01	11.64	0.04	0.61	97.15	97.76
TW1 C11	339.95	18.82	21.25	5.80	21.37	2.84	5.56	0.26	5.17	0.01	15.08	0.05	1.04	96.21	97.25
TW1 C12	340.45	7.61	25.86	7.12	27.31	3.86	6.81	0.25	1.55	0.01	14.65	0.06	1.13	95.09	96.22
TW1 C13	340.95	10.23	23.75	6.03	29.22	2.94	5.46	0.22	2.93	0.01	14.80	0.09	2.58	95.68	98.26
TW1 C14	341.45	15.36	22.08	4.94	22.39	2.63	4.93	0.58	6.91	0.01	16.23	0.07	1.38	96.13	97.51
TW1 C15	341.95	9.51	17.47	5.89	34.45	4.89	6.39	0.25	0.24	0.01	15.56	0.07	2.09	94.73	96.82
TW1 C16	342.45	4.71	13.89	7.05	33.89	6.13	8.41	0.31	0.35	0.01	19.80	0.04	1.60	94.59	96.19
TW1 C17	342.95	2.39	11.83	6.22	34.91	5.86	9.19	0.28	0.30	0.01	21.14	0.03	1.99	92.16	94.15
TW1 C18	343.45	4.78	3.98	8.76	51.90	16.58	3.37	0.24	0.31	0.01	8.40	0.01	4.95	98.34	103.29
TW1 C19	343.95	4.28	12.34	7.88	35.25	6.52	7.92	0.73	0.47	0.01	19.20	0.06	2.19	94.66	96.85
TW1 C20	344.45	1.03	17.04	7.64	33.22	6.58	8.08	0.21	0.28	<0.01	19.29	0.03	1.80	93.40	95.20
TW1 C21	344.95	5.20	13.22	4.94	46.54	5.57	5.79	0.21	0.47	0.02	13.63	0.03	2.19	95.62	97.81
TW1 C22	345.45	3.68	4.68	4.94	74.69	5.64	1.24	0.17	0.12	0.05	4.69	0.03	4.38	99.93	104.31
TW1 C23	345.95	17.83	22.63	4.48	31.86	3.67	4.42	0.21	0.53	0.01	9.80	0.37	1.13	95.81	96.94
TW1 C24	346.45	57.10	31.79	1.23	1.60	0.47	0.62	0.48	3.47	<0.01	0.92	0.06	0.86	97.74	98.60
TW1 C25	346.95	47.73	27.55	1.94	7.29	1.57	1.98	0.32	4.66	<0.01	4.44	0.22	0.52	97.70	98.22
TW1 C26	347.45	27.95	28.85	2.88	18.41	4.74	3.50	0.37	0.69	<0.01	9.02	0.41	0.97	96.82	97.79
TW1 C27	347.95	39.96	25.95	1.98	7.83	1.38	2.45	0.33	11.20	<0.01	5.71	0.26	0.60	97.05	97.65
TW1 C28	348.45	26.73	31.51	2.58	14.01	2.55	4.70	0.17	1.95	<0.01	12.47	0.33	0.74	97.01	97.75
TW1 C29	348.95	9.30	10.76	5.48	52.83	7.64	2.06	0.14	1.51	0.02	7.84	1.29	2.03	98.87	100.90
TW1 C30	349.45	5.01	10.92	6.06	57.72	6.64	2.56	0.22	0.59	0.02	9.49	0.03	2.29	99.26	101.55
TW1 C31	349.95	3.31	25.43	3.78	27.84	4.24	7.07	0.21	1.40	<0.01	20.12	0.05	1.50	93.45	94.95
TW1 C32	350.70	1.75	16.65	4.75	30.41	4.88	5.65	0.21	12.45	0.01	18.47	0.06	1.63	95.29	96.92
TW1 C33	351.45	1.74	20.81	5.08	28.42	3.98	7.74	1.01	1.88	<0.01	23.31	0.02	1.04	94.00	95.04
TW1 C34	351.95	0.79	10.30	6.61	33.83	4.67	8.11	0.38	0.32	0.01	26.52	0.04	1.79	91.58	93.37
TW1 C35	352.45	0.96	0.94	6.77	71.01	10.99	1.00	0.09	0.06	0.03	6.54	0.01	3.72	98.40	102.12
TW1 C36	353.05	0.79	0.68	11.31	42.00	4.77	7.53	0.25	0.22	0.02	25.38	0.03	0.54	92.98	93.52
TW1 C37	353.80	4.27	1.40	12.42	33.86	6.07	7.90	0.44	0.17	0.01	25.49	0.04	0.72	92.07	92.79
TW1 C38	354.45	1.65	2.18	12.13	29.68	4.74	9.11	0.32	0.38	0.01	30.11	0.03	0.56	90.34	90.90
TW1 C39	354.95	2.37	1.86	9.08	31.54	4.46	9.13	0.33	0.29	0.01	31.82	0.03	0.49	90.92	91.41
TW1 C40	355.45	3.35	3.63	17.29	36.82	11.94	3.85	0.15	0.17	0.02	18.49	0.08	0.93	95.79	96.72
TW1 C41	355.95	3.80	2.02	9.05	32.05	5.02	8.49	0.37	0.18	0.01	30.89	0.04	0.66	91.92	92.58
TW1 C42	356.45	3.15	1.98	12.18	46.21	12.94	3.57	0.36	0.13	0.01	16.71	0.03	2.99	97.27	100.26
TW1 C43	356.95	2.54	3.79	10.80	31.45	5.20	8.52	0.35	0.49	0.01	27.01	0.05	0.71	90.21	90.92
TW1 C44	357.45	0.78	6.32	10.89	31.39	6.08	7.48	0.50	0.67	0.01	25.75	0.04	0.96	89.91	90.87
TW1 C45	357.95	7.35	24.14	3.75	22.46	1.88	6.36	0.33	10.70	0.01	15.53	0.08	0.98	92.60	93.58
	mean	12.37	14.31	6.74	32.08	5.25	5.52	0.34	2.07	0.01	16.27	0.12	1.53	95.07	96.61
	Std	16.36	9.84	3.50	16.09	3.33	2.58	0.19	3.24	0.01	8.16	0.22	1.09	2.72	3.36

Table 2 Ohai ash constituent data

Interval	Midpoint	SiO₂ %	Al ₂ O ₃ %	Fe₂O₃ %	CaO %	MgO %	Na₂O %	K₂O %	TiO₂ %	Mn₃O₄ %	SO₃ %	P₂O₅ %	Loss on Ignition	Total %	Total with Loss of Ignition
SC1		,.	,.	,		,.			,.		,.	,.	/0	, .	
SC1-1	255 15	59 56	31 47	3 4 9	0.67	0.95	0.72	0.74	1 64	<0.01	0 14	0.03	0.67	99 41	100.08
SC1-3	339 50	32 74	17 59	11 17	12.63	6.39	4.03	0.25	1.04	0.06	10 40	0.80	0.07	97 24	97 70
SC1-4	340.60	40.45	24.46	2.05	4 95	1 11	7.24	0.25	5.16	~0.00	4 40	4 96	0.40	95.13	95.72
SC1-5	356.61	63 15	29.36	2.00	0.37	0.45	0.93	0.50	1 55	0.01	0.06	0.05	1.02	90.10	100 11
SC1-6	357 35	52 16	31 17	4 75	4.28	2 39	1 1 1	0.30	1.66	0.01	1.22	0.05	0.73	99.00	99.91
SC1-7	358.45	56 56	32.09	5.68	0.61	1.28	1.00	0.30	1.60	0.01	0.30	0.03	1.63	99.62	101 25
SC1-8	367.45	72.97	18.98	1 23	0.46	0.30	1.86	0.40	1.02	<0.01	0.00	0.02	0.67	97 58	98.25
SC1-9	400.47	71.36	19.48	1.72	0.43	0.47	1.45	1.09	1.36	<0.01	0.16	0.02	1.57	97.51	99.08
SC1-10	414 59	40.43	14 54	5 43	15.82	6 23	3.98	0.21	0.96	<0.01	8.55	0.02	0.39	96.40	96 79
SC1-11	415.51	51.77	23.92	4.21	3.83	1.43	4.16	0.73	1.15	0.01	5.44	0.19	0.55	96.84	97.39
	mean	54.12	24.31	4.24	4.40	2.10	2.65	0.49	1.77	0.02	3.07	0.64	0.83	97.80	98.63
I	Std	13.38	6.47	2.89	5.52	2.30	2.13	0.28	1.21	0.02	3.91	1.54	0.44	1.49	1.74
SC3															
SC3-1	319.60	62.64	18.42	3.07	4.19	1.06	2.79	0.38	1.11	0.01	3.44	0.03	1.05	97.10	98.14
SC3-2	320.45	61.54	29.91	2.37	0.77	0.57	0.78	0.93	1.61	<0.01	0.27	0.02	2.15	98.77	100.92
SC3-3	333.55	23.00	13.72	9.37	17.05	4.84	7.12	0.34	0.70	0.01	18.65	0.03	0.66	94.83	95.49
SC3-4	333.90	30.26	6.41	7.95	18.51	4.46	6.05	0.33	0.66	0.01	14.39	0.02	0.30	95.45	95.75
SC3-5	335.15	31.33	9.62	7.58	17.42	4.94	7.96	0.43	0.50	0.01	15.67	0.03	0.66	95.45	96.11
SC3-6	336.15	26.89	12.71	8.76	16.39	4.96	8.36	0.47	0.62	0.01	15.97	0.03	0.95	95.15	96.10
SC3-7	337.10	18.19	15.62	9.14	17.17	5.20	9.42	0.47	0.66	0.01	18.66	0.03	1.02	94.58	95.60
SC3-8	339.75	20.66	12.29	8.93	15.98	4.36	10.80	0.47	0.64	0.01	20.67	0.03	0.92	94.83	95.74
SC3-9	340.65	16.53	10.89	10.51	16.45	4.88	11.05	0.38	0.57	0.01	23.84	0.03	0.84	95.10	95.94
SC3-10	341.65	18.70	9.34	10.09	19.82	5.32	10.24	0.33	0.50	0.01	21.18	0.03	0.67	95.53	96.20
SC3-11	342.58	18.51	10.38	9.31	21.98	5.85	10.04	0.44	0.55	0.04	18.93	0.05	0.98	96.09	97.07
SC3-12	343.50	11.85	11.01	10.31	23.42	5.47	11.61	0.32	0.48	0.04	21.85	0.03	0.88	96.39	97.27
SC3-13	344.50	12.68	9.71	12.68	28.02	6.14	8.91	0.26	0.51	0.12	17.58	0.03	1.08	96.61	97.69
SC3-14	345.60	13.87	13.09	8.35	30.31	6.32	7.96	0.26	1.04	0.04	15.21	0.03	1.30	96.48	97.78
SC3-15	346.60	12.52	13.95	10.52	28.28	5.83	8.47	0.27	0.63	0.11	16.09	0.04	1.63	96.70	98.33
SC3-16	347.50	10.48	9.63	12.29	31.60	7.15	8.13	0.25	0.49	0.16	16.64	0.04	1.46	96.84	98.30
SC3-17	348.25	7.77	8.42	10.10	39.10	10.44	6.93	0.22	0.37	0.06	14.20	0.03	2.21	97.64	99.85
SC3-18	349.26	32.19	14.38	6.21	20.38	3.95	7.06	0.25	0.93	0.03	11.76	0.13	1.49	97.23	98.72
	mean	23.87	12.75	8.75	20.38	5.09	7.98	0.38	0.70	0.04	15.83	0.04	1.12	96.15	97.28
1	Std	15.69	5.16	2.69	9.20	2.11	2.75	0.16	0.30	0.04	5.94	0.02	0.51	1.13	1.57

Table 3 Greymouth ash constituent data

	2	$A_{12}O_3$	Fe ₂ O ₃	CaO	MgO	Na₂O	K₂O	TiO ₂	Mn₃O₄	SO ₃	P ₂ O ₅	Loss on Ignition	Total	loss of
	%	%	%	%	%	%	%	%	%	%	%	%	%	Ignition
309.70	56.96	21.78	13.00	2.45	0.44	1.09	0.68	1.03	0.11	0.38	1.34	0.29	99.26	99.55
309.97	67.81	21.84	2.68	0.14	1.24	0.15	4.49	0.98	0.01	<0.01	0.10	0.26	99.44	99.70
334.92	75.92	15.68	1.10	0.19	0.71	0.23	2.83	1.14	<0.01	<0.01	0.08	0.53	97.88	98.41
335.30	75.21	15.52	0.92	0.72	0.46	0.48	1.70	1.30	<0.01	<0.01	1.03	0.64	97.34	97.98
341.25	58.72	16.23	16.53	1.22	0.64	1.72	1.26	1.18	0.02	0.46	0.07	0.89	98.06	98.95
341.75	75.90	14.23	2.63	0.78	0.36	0.83	0.77	1.43	<0.01	0.40	0.03	2.02	97.34	99.36
342.25	47.23	20.72	18.76	2.66	0.84	3.54	0.72	1.09	0.02	0.06	0.06	0.73	95.70	96.43
343.35	nsufficient sample													
343.85	Long Term	Desorption												
344.36	66.29	23.97	1.54	0.30	1.09	0.37	4.13	0.95	<0.01	0.00	0.02	0.37	98.68	99.05
345.10	70.58	19.99	1.34	0.12	1.07	0.15	4.22	1.04	<0.01	<0.01	0.01	0.61	98.53	99.14
345.60	71.17	18.84	1.92	0.12	1.09	0.13	4.17	0.98	<0.01	<0.01	0.01	1.04	98.43	99.47
345.92	69.86	12.74	9.48	0.94	1.83	0.12	2.82	0.86	0.04	0.84	0.01	1.69	99.54	101.23
346.55	71.31	11.39	11.83	1.54	0.37	0.70	1.64	0.98	0.01	0.03	0.06	2.09	99.86	101.95
347.35	Long Term	Desorption			0.40			4.00	0.04		/	1.00		
347.85	83.46	10.48	0.94	0.44	0.16	0.56	0.22	1.60	< 0.01	0.06	0.01	1.60	97.92	99.52
348.35	/4./1	18.58	1.44	1.66	0.20	1.09	0.50	1.33	<0.01	<0.01	0.07	1.99	99.57	101.56
348.85	64.66	29.02	1.22	1.63	0.24	0.98	0.29	0.78	< 0.01	< 0.01	0.08	4.95	98.89	103.84
349.43	65.41	26.33	1.36	1.74	0.20	1.32	0.27	2.76	<0.01	<0.01	0.10	2.19	99.49	101.68
349.95	81.22	13.71	0.98	1.48	0.13	0.45	0.24	1.20	<0.01	<0.01	0.11	1.80	99.51	101.31
350.45	84.40	10.62	1.10	1.28	0.15	0.32	0.68	1.12	<0.01	<0.01	0.08	2.19	99.74	101.93
351.25	Long Term	Desorption		war will be	analyzad in	2014 1110								
351.50	Sample Off	10 AC	KRF TUTI IN E				2.27	0.00	-0.01	-0.01	0.07	4.20	00.94	104.00
302.39 moon	70.17	10.40	1.40	1.29	0.07	0.17	3.37 194	1 20	<0.01	<0.01	0.07	4.30	99.04	104.22
Std	0.21	5.26	5.02	0.77	0.04	0.82	1.04	0.43	0.04	0.20	0.10	1.39	1 10	1 08
	309.70 309.97 334.92 335.30 341.25 341.75 342.25 343.35 343.85 343.85 344.36 345.10 345.60 345.92 346.55 347.35 347.85 348.85 349.43 349.95 350.45 351.25 351.25 351.50 352.39 mean <i>Std</i>	% 309.70 56.96 309.97 67.81 334.92 75.92 335.30 75.21 341.25 58.72 341.25 58.72 341.25 47.23 343.35 Insufficient 343.35 Insufficient 343.35 Insufficient 343.35 Insufficient 343.35 Insufficient 343.85 Long Term 345.60 71.17 345.92 69.86 346.55 71.31 347.85 83.46 348.35 74.71 348.85 64.66 349.43 65.41 349.95 81.22 350.45 84.40 351.25 Long Term 351.50 Sample on 352.39 73.17 mean 70.21 Std 9.22	% % 309.70 56.96 21.78 309.97 67.81 21.84 334.92 75.92 15.68 335.30 75.21 15.52 341.25 58.72 16.23 341.25 58.72 16.23 341.75 75.90 14.23 342.25 47.23 20.72 343.35 Insufficient sample 343.85 243.35 Insufficient sample 343.85 344.36 66.29 23.97 345.10 70.58 19.99 345.60 71.17 18.84 345.92 69.86 12.74 345.85 71.31 11.39 347.85 83.46 10.48 348.85 64.66 29.02 349.43 65.41 26.33 349.95 81.22 13.71 350.45 84.40 10.62 351.50 Sample omitted from X 352.39 73.17 18.46 <t< td=""><td>% % 309.70 56.96 21.78 13.00 309.97 67.81 21.84 2.68 334.92 75.92 15.68 1.10 335.30 75.21 15.52 0.92 341.25 58.72 16.23 16.53 341.75 75.90 14.23 2.63 342.25 47.23 20.72 18.76 343.35 Insufficient sample 343.85 Long Term Desorption 344.36 66.29 23.97 1.54 345.60 71.17 18.84 1.92 345.60 71.17 18.84 1.92 345.60 71.31 11.39 11.83 345.52 69.86 12.74 9.48 345.55 71.31 11.39 11.83 345.52 83.46 10.48 0.94 344.85 64.66 29.02 1.22 349.43 65.41 26.33 1.36 349.95 81.22</td><td>% % % 309.70 56.96 21.78 13.00 2.45 309.97 67.81 21.84 2.68 0.14 334.92 75.92 15.68 1.10 0.19 335.30 75.21 15.52 0.92 0.72 341.25 58.72 16.23 16.53 1.22 341.75 75.90 14.23 2.63 0.78 342.25 47.23 20.72 18.76 2.66 343.35 Insufficient sample 2.63 0.78 343.85 Long Term Desorption 344.36 66.29 23.97 1.54 0.30 345.10 70.58 19.99 1.34 0.12 345.60 71.17 18.84 1.92 0.12 345.60 71.17 18.84 1.92 0.12 345.92 69.86 12.74 9.48 0.94 345.52 Long Term Desorption 347.85 83.46 10.48 0.94 0.44 348.8</td><td>% % % % 309.70 56.96 21.78 13.00 2.45 0.44 309.97 67.81 21.84 2.68 0.14 1.24 334.92 75.92 15.68 1.10 0.19 0.71 335.30 75.21 15.52 0.92 0.72 0.46 341.25 58.72 16.23 16.53 1.22 0.64 341.75 75.90 14.23 2.63 0.78 0.36 342.25 47.23 20.72 18.76 2.66 0.84 343.35 Insufficient sample Jast 0.12 1.07 344.36 66.29 23.97 1.54 0.30 1.09 345.10 70.58 19.99 1.34 0.12 1.07 345.60 71.17 18.84 1.92 0.12 1.09 345.92 69.86 12.74 9.48 0.94 1.83 346.55 71.31 11.39 11.8</td><td>% % % % % % 309.70 56.96 21.78 13.00 2.45 0.44 1.09 309.97 67.81 21.84 2.68 0.14 1.24 0.15 334.92 75.92 15.68 1.10 0.19 0.71 0.23 335.30 75.21 15.52 0.92 0.72 0.46 0.48 341.25 58.72 16.23 16.53 1.22 0.64 1.72 341.75 75.90 14.23 2.63 0.78 0.36 0.83 342.25 47.23 20.72 18.76 2.66 0.84 3.54 Insufficient sample Jong Term Desorption Jong Term Desorption Jong To 0.15 344.36 66.29 23.97 1.54 0.30 1.09 0.37 345.92 69.86 12.74 9.48 0.94 1.83 0.12 345.92 69.86 12.74 9.48 0.94 0</td><td>% % % % % % % 309.70 56.96 21.78 13.00 2.45 0.44 1.09 0.68 309.97 67.81 21.84 2.68 0.14 1.24 0.15 4.49 334.92 75.92 15.68 1.10 0.19 0.71 0.23 2.83 335.30 75.21 15.52 0.92 0.72 0.46 0.48 1.70 341.25 58.72 16.23 16.53 1.22 0.64 1.72 1.26 343.35 Insufficient sample 2.63 0.78 0.36 0.83 0.77 342.25 47.23 20.72 18.76 2.66 0.84 3.54 0.72 343.85 Insufficient sample 2.072 18.76 2.66 0.84 3.54 0.72 344.36 66.29 23.97 1.54 0.30 1.09 0.37 4.13 345.00 71.17 18.84 1</td><td>%$%$$%$$%$$%$$%$$%$$%$309.7056.9621.7813.002.450.441.090.681.03309.9767.8121.842.680.141.240.154.490.98334.9275.9215.681.100.190.710.232.831.14335.3075.2115.520.920.720.460.481.701.30341.2558.7216.2316.531.220.641.721.261.18341.7575.9014.232.630.780.360.830.771.43342.2547.2320.7218.762.660.843.540.721.09343.85Long Term Desorption</td><td>% % % % % % % % 309.70 56.96 21.78 13.00 2.45 0.44 1.09 0.68 1.03 0.11 309.97 67.81 21.84 2.68 0.14 1.24 0.15 4.49 0.98 0.01 334.92 75.92 15.68 1.10 0.19 0.71 0.23 2.83 1.14 <0.01</td> 335.30 75.21 15.52 0.92 0.72 0.46 0.48 1.70 1.30 <0.01</t<>	% % 309.70 56.96 21.78 13.00 309.97 67.81 21.84 2.68 334.92 75.92 15.68 1.10 335.30 75.21 15.52 0.92 341.25 58.72 16.23 16.53 341.75 75.90 14.23 2.63 342.25 47.23 20.72 18.76 343.35 Insufficient sample 343.85 Long Term Desorption 344.36 66.29 23.97 1.54 345.60 71.17 18.84 1.92 345.60 71.17 18.84 1.92 345.60 71.31 11.39 11.83 345.52 69.86 12.74 9.48 345.55 71.31 11.39 11.83 345.52 83.46 10.48 0.94 344.85 64.66 29.02 1.22 349.43 65.41 26.33 1.36 349.95 81.22	% % % 309.70 56.96 21.78 13.00 2.45 309.97 67.81 21.84 2.68 0.14 334.92 75.92 15.68 1.10 0.19 335.30 75.21 15.52 0.92 0.72 341.25 58.72 16.23 16.53 1.22 341.75 75.90 14.23 2.63 0.78 342.25 47.23 20.72 18.76 2.66 343.35 Insufficient sample 2.63 0.78 343.85 Long Term Desorption 344.36 66.29 23.97 1.54 0.30 345.10 70.58 19.99 1.34 0.12 345.60 71.17 18.84 1.92 0.12 345.60 71.17 18.84 1.92 0.12 345.92 69.86 12.74 9.48 0.94 345.52 Long Term Desorption 347.85 83.46 10.48 0.94 0.44 348.8	% % % % 309.70 56.96 21.78 13.00 2.45 0.44 309.97 67.81 21.84 2.68 0.14 1.24 334.92 75.92 15.68 1.10 0.19 0.71 335.30 75.21 15.52 0.92 0.72 0.46 341.25 58.72 16.23 16.53 1.22 0.64 341.75 75.90 14.23 2.63 0.78 0.36 342.25 47.23 20.72 18.76 2.66 0.84 343.35 Insufficient sample Jast 0.12 1.07 344.36 66.29 23.97 1.54 0.30 1.09 345.10 70.58 19.99 1.34 0.12 1.07 345.60 71.17 18.84 1.92 0.12 1.09 345.92 69.86 12.74 9.48 0.94 1.83 346.55 71.31 11.39 11.8	% % % % % % 309.70 56.96 21.78 13.00 2.45 0.44 1.09 309.97 67.81 21.84 2.68 0.14 1.24 0.15 334.92 75.92 15.68 1.10 0.19 0.71 0.23 335.30 75.21 15.52 0.92 0.72 0.46 0.48 341.25 58.72 16.23 16.53 1.22 0.64 1.72 341.75 75.90 14.23 2.63 0.78 0.36 0.83 342.25 47.23 20.72 18.76 2.66 0.84 3.54 Insufficient sample Jong Term Desorption Jong Term Desorption Jong To 0.15 344.36 66.29 23.97 1.54 0.30 1.09 0.37 345.92 69.86 12.74 9.48 0.94 1.83 0.12 345.92 69.86 12.74 9.48 0.94 0	% % % % % % % 309.70 56.96 21.78 13.00 2.45 0.44 1.09 0.68 309.97 67.81 21.84 2.68 0.14 1.24 0.15 4.49 334.92 75.92 15.68 1.10 0.19 0.71 0.23 2.83 335.30 75.21 15.52 0.92 0.72 0.46 0.48 1.70 341.25 58.72 16.23 16.53 1.22 0.64 1.72 1.26 343.35 Insufficient sample 2.63 0.78 0.36 0.83 0.77 342.25 47.23 20.72 18.76 2.66 0.84 3.54 0.72 343.85 Insufficient sample 2.072 18.76 2.66 0.84 3.54 0.72 344.36 66.29 23.97 1.54 0.30 1.09 0.37 4.13 345.00 71.17 18.84 1	% $%$ $%$ $%$ $%$ $%$ $%$ $%$ 309.7056.9621.7813.002.450.441.090.681.03309.9767.8121.842.680.141.240.154.490.98334.9275.9215.681.100.190.710.232.831.14335.3075.2115.520.920.720.460.481.701.30341.2558.7216.2316.531.220.641.721.261.18341.7575.9014.232.630.780.360.830.771.43342.2547.2320.7218.762.660.843.540.721.09343.85Long Term Desorption	% % % % % % % % 309.70 56.96 21.78 13.00 2.45 0.44 1.09 0.68 1.03 0.11 309.97 67.81 21.84 2.68 0.14 1.24 0.15 4.49 0.98 0.01 334.92 75.92 15.68 1.10 0.19 0.71 0.23 2.83 1.14 <0.01	% %	% %	% %	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

* NOTE In some canisters, the full interval was not sampled. This is the case for canisters 19 and 24, and the depths that were sampled are noted down. In canisters 7, 23, and the three samples that were held in long term desorption (8, 14, 22) no XRF analysis was performed.

Appendix G: Microscopic Results

Table 1 Petrological data for Huntly, Ohai and Greymouth point counts

	Vitrinite					Liptinite						Inertinite				Mineral matter					Total
Sample	C Tell	B Tell	L Tell	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	I-d	Scel	Pyr	Qtz	clay	Cbn	Fe-O	Counts
944 c5	16	87	88	230	23	4	14	7	8	2	0	7	5	12	5	0	1	0	0	0	509
944 c6 p8 A	30	61	110	218	16	6	18	2	12	2	0	10	7	8	10	0	3	0	0	0	513
944 c6 p8 B	16	89	66	237	32	2	8	0	22	1	0	8	6	9	4	0	1	2	0	0	503
944 c13	7	65	123	272	25	3	2	5	21	2	0	11	4	15	2	1	6	1	0	0	565
944 c15	7	69	112	217	21	7	9	9	11	14	0	4	6	9	2	0	12	3	1	0	513
944 c16	14	51	226	131	6	5	5	5	15	25	0	4	4	15	2	1	2	1	0	1	513
944 c20	16	44	196	158	11	6	4	10	16	6	0	4	11	7	7	0	8	2	2	0	508
944 c21	11	46	182	189	21	8	6	7	8	11	1	4	1	2	5	0	18	5	1	0	526
TW1 c10	33	64	81	209	42	4	6	4	24	1	1	5	0	16	7	0	1	3	2	1	504
TW1 c11	23	78	50	226	25	6	3	16	50	4	0	7	0	7	10	1	0	0	0	5	511
TW1 c19	46	62	32	222	45	6	1	9	45	1	1	3	1	15	17	1	1	2	3	0	513
TW1 c21	29	34	108	294	20	4	1	7	17	4	0	2	0	17	7	0	1	0	4	0	549
TW1 c28	62	96	39	222	43	3	2	3	11	2	0	0	1	9	2	0	1	6	0	0	502
TW1 c32	60	64	91	202	29	5	5	3	23	2	1	0	0	13	8	0	0	2	2	0	510
TW1 c37	99	41	39	209	49	4	16	1	18	1	0	0	0	20	7	0	0	1	0	1	506
TW1 c43	29	85	92	194	41	4	13	1	21	5	0	0	1	10	9	0	0	1	0	0	506
SC3-1	18	119	114	138	6	11	12	5	17	15	0	16	5	4	2	0	15	5	0	0	502
SC3-3	16	119	76	206	29	2	12	1	9	7	0	5	12	6	1	0	0	0	0	0	501
SC3-7	8	99	108	194	15	4	16	1	6	9	0	8	9	17	6	0	1	0	1	0	502
SC3-9	15	127	80	221	15	1	8	0	7	3	0	5	6	10	3	0	0	1	1	0	503
SC3-12	14	97	82	226	22	6	6	1	13	3	0	4	5	13	8	0	1	0	1	0	502
SC3-13	17	105	101	191	18	1	3	2	14	22	0	5	6	7	8	0	1	0	1	0	502
SC3-15	12	107	115	184	14	10	6	0	5	7	0	13	8	13	2	0	1	3	0	0	500
SC3-17	7	89	110	214	12	6	1	0	8	6	0	15	11	13	7	0	0	1	2	0	502
SC1-3	6	76	194	151	13	7	3	3	17	8	0	6	3	5	7	0	2	0	1	0	502
SC1-8	4	89	249	64	4	4	4	19	21	13	0	3	5	3	4	0	9	7	0	0	502
SC1-10	10	58	149	202	14	7	2	2	13	3	0	8	16	11	4	0	1	1	4	1	506
SC1-11	20	115	44	189	14	2	17	3	21	15	0	5	7	2	5	0	8	33	0	1	501

Appendix H: Gas Results

Table 1 Huntly gas data

		Sample deta	ails		Gas Data							
		• • •	_	-	Measured	Residual	Lost gas	Total gas				
Basin	Drill hole #	Canister	From	То	gas m3/t	gas m3/t	m3/t	m3/t				
Huntly	TW1	9	338.70	339.20	1.1	0.27	0.04	1.4				
Huntly	TW1	10	339.20	339.70	1.1	0.21	0.05	1.4				
Huntly	TW1	11	339.70	340.20	1.0	0.22	0.05	1.3				
Huntly	TW1	12	340.20	340.70	1.3	0.54	0.05	1.9				
Huntly	TW1	13	340.70	341.20	1.1	0.25	0.06	1.4				
Huntly	TW1	14	341.20	341.70	1.1	0.20	0.06	1.4				
Huntly	TW1	15	341.70	342.20	0.9	0.22	0.04	1.1				
Huntly	TW1	16	342.20	342.70	0.7	0.74	0.03	1.5				
Huntly	TW1	17	342.70	343.20	0.6	0.96	0.02	1.5				
Huntly	TW1	18	343.20	343.70	0.8	0.81	0.04	1.7				
Huntly	TW1	19	343.70	344.20	0.6	0.86	0.02	1.4				
Huntly	TW1	20	344.20	344.70	0.8	0.78	0.03	1.6				
Huntly	TW1	21	344.70	345.20	0.9	0.37	0.03	1.3				
Huntly	TW1	22	345.20	345.70	1.1	0.36	0.06	1.5				
Huntly	TW1	23	345.70	346.20	1.6	0.20	0.08	1.9				
Huntly	TW1	24	346.20	346.70	0.7	0.13	0.05	0.9				
Huntly	TW1	25	346.70	347.20	1.0	0.45	0.06	1.5				
Huntly	TW1	26	347.20	347.70	1.2	0.34	0.11	1.7				
Huntly	TW1	27	347.70	348.20	0.6	0.97	0.02	1.6				
Huntly	TW1	28	348.20	348.70	1.0	0.37	0.03	1.4				
Huntly	TW1	29	348.70	349.20	0.9	0.88	0.02	1.8				
Huntly	TW1	30	349.20	349.70	1.1	0.50	0.04	1.7				
Huntly	TW1	31	349.70	350.20	0.9	0.83	0.03	1.8				
Huntly	TW1	32	350.20	351.20	1.0	0.63	0.03	1.7				
Huntly	TW1	33	351.20	351.70	0.7	0.84	0.02	1.6				
Huntly	TW1	34	351.70	352.20	1.2	0.66	0.02	1.9				
Huntly	TW1	35	352.20	352.70	0.6	1.07	0.02	1.7				
Huntly	TW1	36	352.70	353.39	0.6	1.06	0.02	1.7				
Huntly	TW1	37	353.39	354.20	1.2	0.61	0.05	1.9				
Huntly	TW1	38	354.20	354.70	1.3	0.54	0.05	1.9				
Huntly	TW1	39	354.70	355.20	1.4	0.28	0.06	1.7				
Huntly	TW1	40	355.20	355.70	1.6	0.26	0.06	1.9				
Huntly	TW1	41	355.70	356.20	1.2	0.35	0.05	1.6				
Huntly	TW1	42	356.20	356.70	1.2	0.77	0.08	2.1				
Huntly	TW1	43	356.70	357.20	0.5	1.13	0.02	1.7				
Huntly	TW1	44	357.20	357.70	0.9	0.94	0.03	1.8				
Huntly	TW1	45	357.70	358.20	0.8	0.83	0.03	1.7				
· · · · ·				mean	1.0	0.6	0.0	1.6				
				Std	0.3	0.3	0.0	0.2				

Table 2 Ohai gas data

	S	Sample details	5	Gas Data							
					Measured	Residual	Lost gas	Total gas			
Basin	Drill hole #	Canister	From	То	gas m3/t	gas m3/t	m3/t	m3/t			
Ohai	SC3	SC3-1	319.10	320.20	3.2	0.77	0.45	4.4			
Ohai	SC3	SC3-2	320.15	320.75	1.6	0.77	0.64	3.0			
Ohai	SC3	SC3-3	333.10	334.00	3.9	0.55	0.24	4.7			
Ohai	SC3	SC3-4	333.65	334.65	3.8	0.55	0.27	4.6			
Ohai	SC3	SC3-5	334.65	335.65	4.1	0.55	0.30	4.9			
Ohai	SC3	SC3-6	335.65	336.65	4.0	0.55	0.32	4.8			
Ohai	SC3	SC3-7	336.65	337.55	4.1	0.55	0.29	4.9			
Ohai	SC3	SC3-8	339.35	340.15	4.3	0.40	0.42	5.1			
Ohai	SC3	SC3-9	340.15	341.15	4.5	0.40	0.40	5.3			
Ohai	SC3	SC3-10	341.15	342.15	3.1	0.40	0.38	3.9			
Ohai	SC3	SC3-11	342.15	343.00	2.7	0.40	0.58	3.7			
Ohai	SC3	SC3-12	343.00	344.00	3.6	0.40	0.44	4.5			
Ohai	SC3	SC3-13	344.00	345.00	4.6	0.40	0.47	5.5			
Ohai	SC3	SC3-14	345.36	346.20	4.9	0.40	0.48	5.8			
Ohai	SC3	SC3-15	346.20	347.00	4.8	0.45	0.42	5.7			
Ohai	SC3	SC3-16	347.00	348.00	5.0	0.54	0.27	5.8			
Ohai	SC3	SC3-17	348.00	348.50	4.9	0.54	0.31	5.8			
Ohai	SC3	SC3-18	348.76	349.76	3.9	0.54	0.25	4.7			
				mean	3.9	0.5	0.4	4.8			
				Std	0.9	0.1	0.1	0.8			
Ohai	SC1	SC1-1	254.90	255.40	1.6	0.51	0.47	2.6			
Ohai	SC1	SC1-2			3.9	0.51	0.36	4.8			
Ohai	SC1	SC1-3	338.95	340.05	3.2	0.51	0.53	4.3			
Ohai	SC1	SC1-4			3.7	0.51	0.44	4.6			
Ohai	SC1	SC1-5	356.12	357.10	3.1	0.18	0.70	4.0			
Ohai	SC1	SC1-6	357.10	357.60	3.4	0.18	0.79	4.4			
Ohai	SC1	SC1-7	358.20	358.70	3.2	0.18	0.85	4.2			
Ohai	SC1	SC1-8	367.20	367.70	4.3	0.18	0.44	5.0			
Ohai	SC1	SC1-9	399.73	401.20	4.3	0.18	0.72	5.2			
Ohai	SC1	SC1-10	414.20	414.98	5.4	0.24	0.66	6.3			
Ohai	SC1	SC1-11	414.98	416.14	5.0	0.24	0.33	5.6			
				mean	3.7	0.3	0.6	4.6			
				Std	1.0	0.2	0.2	1.0			
Table 3 Greymouth gas data

	Sar	nple details				Ga	is Data	
		Conjeter	From	Та	Measured	Residual	Lost gas	Total gas
Basin	Drill hole #	Callister	FIOII	10	gas mort	gas mort	1113/1	1113/1
Greymouth	944	16	309.55	309.85	2.89	0.26	0.55	3.70
Greymouth	944	1	309.85	310.35	0.53	0.07	0.07	0.67
Greymouth	944	2	334.74	335.10	1.83	0.26	0.05	2.14
Greymouth	944	3	335.10	335.50	2.36	0.35	0.40	2.78
Greymouth	944	4	341.00	341.50	1.79	0.58	0.02	2.39
Greymouth	944	5	341.50	342.00	2.12	1.04	0.05	3.21
Greymouth	944	6	342.00	342.50	1.37	0.77	0.07	2.21
Greymouth	944	7	343.10	343.60	2.54	0.58	0.07	3.19
Greymouth	944	8	343.60	344.10	2.85	0.20	0.08	3.13
Greymouth	944	9	344.10	344.70	2.74	0.60	0.08	3.42
Greymouth	944	10	344.85	345.35	1.47	0.19	0.03	1.69
Greymouth	944	11	345.35	345.85	0.87	0.10	0.05	1.02
Greymouth	944	12	345.85	346.35	1.44	0.67	0.07	2.18
Greymouth	944	13	346.35	347.00	1.81	0.45	0.06	2.32
Greymouth	944	14	347.10	347.60	2.42	0.22	0.08	2.72
Greymouth	944	15	347.60	348.10	1.13	0.60	0.04	1.77
Greymouth	944	17	348.10	348.60	2.58	0.41	0.07	3.06
Greymouth	944	18	348.60	349.10	2.35	0.24	0.11	2.70
Greymouth	944	19	349.10	349.60	1.96	0.54	0.07	2.57
Greymouth	944	20	349.70	350.20	1.03	0.45	0.09	1.57
Greymouth	944	21	350.20	350.70	1.85	0.43	0.04	2.32
Greymouth	944	22	351.00	351.50	2.65	0.28	0.06	2.98
Greymouth	944	23	351.50	352.00	1.56	0.41	0.05	2.02
Greymouth	944	24	352.00	352.50	1.07	0.52	0.04	1.63
				mean	1.9	0.4	0.1	2.4
				Std	0.7	0.2	0.1	0.8

Appendix I: Saturation Results

Hu	ntly	Ohai	SC1	Ohai	SC3	Greymouth		
Interval	Sat ⁿ %	Interval Sat ⁿ %		Interval	Sat ⁿ %	Interval	Sat ⁿ %	
9	28.0	SC1-1	55.8	SC3-1	68.9	16	70.2	
10	29.0	SC1-2	75.0	SC3-2	47.7	1	12.7	
11	26.9	SC1-3	67.5	SC3-3	73.9	2	40.6	
12	39.1	SC1-4	72.5	SC3-4	72.8	3	52.8	
13	28.5	SC1-5	62.9	SC3-5	77.5	4	45.4	
14	28.4	SC1-6	69.0	SC3-6	76.1	5	60.9	
15	23.6	SC1-7	66.6	SC3-7	77.4	6	41.9	
16	31.2	SC1-8	78.1	SC3-8	80.5	7	60.5	
17	31.7	SC1-9	81.2	SC3-9	83.5	8	59.4	
18	34.1	SC1-10	98.8	SC3-10	61.6	9	64.9	
19	29.6	SC1-11	87.9	SC3-11	58.6	10	32.1	
20	33.3	-	-	SC3-12	70.2	11	19.4	
21	26.9	-	-	SC3-13	86.3	12	41.4	
22	30.7	-	-	SC3-14	90.7	13	44.0	
23	39.2	-	-	SC3-15	90.0	14	51.6	
24	18.3	-	-	SC3-16	90.8	15	33.6	
25	31.1	-	-	SC3-17	90.7	17	58.1	
26	34.6	-	-	SC3-18	74.0	18	51.2	
27	33.1	-	-	-	-	19	48.8	
28	28.3	-	-	-	-	20	29.8	
29	36.7	-	-	-	-	21	44.0	
30	34.0	-	-	-	-	22	38.3	
31	36.0	-	-	-	-	23	38.3	
32	34.8	-	-	-	-	24	30.9	
33	32.5	-	-	-	-	-	-	
34	38.4	-	-	-	-	-	-	
35	35.2	-	-	-	-	-	-	
36	34.8	-	-	-	-	-	-	
37	38.8	-	-	-	-	-	-	
38	38.1	-	-	-	-	-	-	
39	35.1	-	-	-	-	-	-	
40	38.6	-	-	-	-	-	-	
41	32.1	-	-	-	-	-	-	
42	42.7	-	-	-	-	-	-	
43	34.9	-	-	-	-	-	-	
44	37.4	-	-	-	-	-	-	
45	35.0	-	-	-	-	-	-	

Appendix J: Correlation Charts

Huntly	Vitrain %	Measured gas	Residual gas	Lost gas	Total gas
Vitrain %	1.00				
Measured gas	-0.11	1.00			
Residual gas	0.30	-0.85	1.00		
Lost gas	-0.28	0.81	-0.81	1.00	
Total gas	0.40	-0.37	0.81	-0.50	1.00
Greymouth	Vitrain %	Measured gas	Residual gas	Lost gas	Total gas
Vitrain %	1.00				
Measured gas	-0.30	1.00			
Residual gas	0.17	-0.45	1.00		
Lost gas	-0.44	0.49	-0.30	1.00	
Total gas	-0.33	0.93	-0.14	0.58	1.00
Ohai SC3	Vitrain %	Measured gas	Residual gas	Lost gas	Total gas
Vitrain %	1.00				
Measured gas	-0.12	1.00			
Residual gas	0.19	0.02	1.00		
Lost gas	-0.11	0.08	-0.85	1.00	
Total gas	-0.11	1.00	0.00	0.12	1.00
Ohai SC1	Vitrain %	Measured gas	Residual gas	Lost gas	Total gas
Vitrain %	1.00				
Measured gas	0.02	1.00			
Residual gas	-0.46	-0.31	1.00		
Lost gas	0.40	-0.22	-0.44	1.00	

Table 1 Charts showing correlation coefficients for vitrain % and gas volume

	Inherent		Volatile Matter	Fixed carbon	Calorific	Suggate	Measured	Residual	Lost gas	Total gas
Huntly TW1	Moisture (aa)	Ash (db) %	(daf)	(daf)	value (daf)	number	gas m3/t	gas m3/t	m3/t	m3/t
Moisture (aa)	1.00									
Ash (db) %	-0.49	1.00								
Volatile Matter (daf)	-0.65	0.55	1 00							
Fixed carbon (daf)	0.66	-0.55	-1.00	1 00						
Calorific value (daf)	-0.01	-0.55	0.02	-0.02	1 00					
Suggato numbor	-0.10	-0.05	-0.16	0.02	0.68	1 00				
Moscured acc m2/	-0.19	-0.03	-0.10	0.10	0.00	0.04	1 00			
Neasureu gas mort	0.03	-0.12	-0.12	0.12	-0.40	-0.04	1.00	1 00		
Residual gas m3/t	0.16	-0.35	-0.26	0.26	0.20	0.10	-0.66	1.00	1.00	
Lost gas m3/t	-0.13	0.20	0.04	-0.04	-0.27	-0.04	0.72	-0.64	1.00	1.00
Total gas m3/t	0.23	-0.56	-0.46	0.46	-0.22	0.10	0.37	0.45	0.11	1.00
	lu h e ve u t		Valatila Matter	Cived carbon	Colorifia	Cummete	Management	Desidual	1	Total man
Croumouth	Moisture (aa)	Ash (dh) %	volatile Watter	Fixed carbon	Calofilic	number	measureu	residual	LUSI gas	m3/t
Greymourn	4.00	Asii (ub) 70	(uai)	(uai)	value (ual)	number	gas more	gas more	more	more
Moisture (aa)	1.00	4.00								
Ash (db) %	-0.95	1.00								
Volatile Matter (daf)	-0.94	0.89	1.00							
Fixed carbon (daf)	0.94	-0.89	-1.00	1.00						
Calorific value (daf)	0.83	-0.85	-0.86	0.86	1.00					
Suggate number	-0.73	0.77	0.63	-0.63	-0.63	1.00				
Measured gas m3/t	0.59	-0.62	-0.64	0.64	0.56	-0.48	1.00			
Residual gas m3/t	0.30	-0.39	-0.19	0.19	0.45	-0.50	0.05	1.00		
Lost gas m3/t	0.17	-0.18	-0.25	0.25	0.08	-0.11	0.43	-0.20	1.00	
Total gas m3/t	0.64	-0.69	-0.66	0.66	0.63	-0.59	0.95	0.32	0.43	1.00
	Inherent		Volatile Matter	Fixed carbon	Calorific	Suggate	Measured	Residual	Lost gas	Total gas
Ohai SC3	Moisture (aa)	Ash (db) %	(daf)	(daf)	value (daf)	number	gas m3/t	gas m3/t	m3/t	m3/t
Moisture (aa)	1.00									
Ash (db) %	-0.82	1.00								
Volatile Matter (daf)	-0.77	0.75	1.00							
Fixed carbon (daf)	0.77	-0.75	-1.00	1.00						
Calorific value (daf)	0.24	-0.09	0.04	-0.04	1.00					
Suggate number	-0.08	0.19	-0.39	0.39	0.00	1.00				
Measured gas m3/t	0.58	-0.71	-0.46	0.47	0.03	-0.23	1.00			
Residual gas m3/t	-0.80	0.72	0.45	-0.46	0.00	0.53	-0.47	1.00		
Lost gas m3/t	-0.22	0.57	0.34	-0.33	-0.27	-0.01	-0.52	0.00	1.00	
Total gas m3/t	0.51	-0.62	-0.41	0.41	-0.01	-0.19	0.99	-0.39	-0.44	1.00
	0.01	0.02	0	0	0.01	0110	0.00	0.00	0111	
	Inherent		Volatile Matter	Fixed carbon	Calorific	Suggate	Measured	Residual	Lost gas	Total gas
Ohai SC1	Moisture (aa)	Ash (db) %	(daf)	(daf)	value (daf)	number	gas m3/t	gas m3/t	m3/t	m3/t
Moisture (aa)	1.00									
Ash (db) %										
	-0.48	1.00								
Volatile Matter (daf)	-0.48 -0.47	1.00 0.78	1.00							
Volatile Matter (daf) Fixed carbon (daf)	-0.48 -0.47 0.47	1.00 0.78 -0.78	1.00 -1.00	1.00						

Table 2 Charts showing correlation coefficients for proximate and ultimate analyses and gas volume

1.00

0.48

0.90

-0.36

-0.27 0.88 1.00

0.54

-0.26 -0.27 0.51 1.00

-0.41 -0.14 0.99 1.00 -0.59 -0.39

1.00 -0.06

1.00

0.78

0.58

0.70

-0.33

0.00

Calorific value (daf)

Suggate number Measured gas m3/

Residual gas m3/t

Lost gas m3/t Total gas m3/t 0.15

-0.12

-0.14

0.33

-0.19 -0.14 -0.88

-0.16

-0.72

0.11

0.21 -0.74 -0.78

-0.58

-0.70

0.33

0.00 -0.71

Huntly	SiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	CaO %	MgO %	Na₂O %	K₂O %	TiO₂ %	Mn₃O₄ %	SO₃%	P ₂ O ₅ %	Measured	Residual	Lost gas	Total gas
SiO ₂ %	1.00				-							gas m ⁻ /t	gas m ⁻ /t	m ⁻ /t	m ⁻ /t
Al ₂ O ₃ %	0.57	1.00													
Fe ₂ O ₃ %	-0.59	-0.79	1.00												
CaO %	-0.70	-0.66	0.37	1.00	4 00										
MgO %	-0.54	-0.63	0.60	0.69	1.00	1.00									
K ₂ O %	0.30	-0.25	-0.09	-0.08	-0.08	0.19	1.00								
TiO ₂ %	0.20	0.48	-0.45	-0.43	-0.23	-0.20	0.03	1.00							
Mn ₃ O ₄ %	-0.21	-0.35	0.04	0.72	0.25	-0.44	-0.37	-0.20	1.00						
SO3 %	-0.64	-0.49	0.62	0.04	0.07	0.91	0.16	-0.24	-0.32	1.00					
P ₂ O ₅ %	0.17	0.21	-0.25	0.01	-0.03	-0.33	-0.21	0.06	0.05	-0.32	1.00				
Measured gas m ³ /t	0.02	-0.04	0.23	-0.04	0.02	-0.07	-0.16	-0.13	-0.02	0.07	0.06	1.00			
Residual gas m ³ /t	-0.45	-0.33	0.22	0.32	0.35	0.26	0.00	0.00	0.03	0.25	0.04	-0.66	1.00		
Lost gas m ³ /t	0.26	0.16	0.01	-0.15	0.00	-0.28	-0.09	-0.11	-0.02	-0.20	0.08	0.72	-0.64	1.00	1.00
Total gas m /t	-0.52	-0.44	0.54	0.34	0.46	0.22	-0.20	-0.15	0.01	0.38	0.12	0.37	0.45	0.11	1.00
Ohai SC3	SiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	CaO %	MgO %	Na ₂ O %	K₂O %	TiO₂ %	Mn ₃ O ₄ %	SO₃%	P ₂ O ₅ %	Measured	Residual	Lost gas	Total gas
SiO ₂ %	1.00											gas in n	gas III /t	111 / C	111 / C
Al ₂ O ₃ %	0.72	1.00													
Fe ₂ O ₃ %	-0.93	-0.74	1.00												
CaO %	-0.86	-0.67	0.76	1.00	1.00										
Na ₂ O %	-0.82	-0.68	0.78	0.48	0.53	1.00									
K ₂ O %	0.64	0.77	-0.62	-0.76	-0.66	-0.46	1.00								
TiO ₂ %	0.79	0.89	-0.84	-0.65	-0.75	-0.78	0.64	1.00							
Mn₃O₄ %	-0.49	-0.26	0.59	0.68	0.52	0.13	-0.46	-0.32	1.00						
SO3 %	-0.83	-0.73	0.83	0.48	0.56	0.96	-0.48	-0.81	0.10	1.00					
P ₂ O ₅ %	-0.01	0.00	-0.12	0.12	-0.01	0.06	-0.25	0.08	0.06	-0.05	1.00				
Measured gas m ³ /t	-0.71	-0.61	0.68	0.76	0.71	0.46	-0.76	-0.57	0.52	0.49	0.02	1.00			
Residual gas m ³ /t	0.84	0.67	-0.78	-0.60	-0.57	-0.91	0.51	0.65	-0.23	-0.88	-0.07	-0.47	1.00	4.00	
Lost gas m /t Total gas m ³ /t	0.28	0.51	-0.29	-0.28	-0.34	-0.18	0.53	-0.35	0.00	-0.30	-0.22	-0.52	-0.24	1.00	1.00
Total gas in /t	-0.40	-0.42	0.47	0.00	0.50	0.10	-0.00	-0.00	0.47	0.22	0.00	0.03	-0.24	-0.42	1.00
Ohai SC1	SiO ₂ %	Al_2O_3 %	Fe ₂ O ₃ %	CaO %	MgO %	Na ₂ O %	K ₂ 0 %	TiO₂ %	Mn ₃ O ₄ %	SO ₃ %	P_2O_5 %	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m ³ /t	Total gas m ³ /t
Ohai SC1	SiO₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	CaO %	MgO %	Na₂O %	K₂O %	TiO ₂ %	Mn ₃ O ₄ %	SO ₃ %	P ₂ O ₅ %	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m³/t	Total gas m³/t
Ohai SC1 SiO ₂ % Al ₂ O ₃ %	SiO₂ % 1.00 0.25	Al ₂ O ₃ %	Fe ₂ O ₃ %	CaO %	MgO %	Na ₂ O %	K ₂ O %	TiO ₂ %	Mn₃O₄ %	SO₃%	P ₂ O ₅ %	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m³/t	Total gas m³/t
Ohai SC1 SiO ₂ % Al ₂ O ₃ % Fe ₂ O ₃ % CaO %	SiO₂ % 1.00 0.25 -0.91 -0.87	Al ₂ O ₃ %	Fe ₂ O ₃ %	CaO %	MgO %	Na ₂ O %	K20 %	TiO ₂ %	Mn₃O₄ %	SO ₃ %	P ₂ O ₅ %	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m³/t	Total gas m³/t
Ohai SC1 SiO ₂ % Al ₂ O ₃ % Fe ₂ O ₃ % CaO % MgO %	SiO₂ % 1.00 0.25 -0.91 -0.87 -0.92	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55	Fe ₂ O ₃ %	CaO % 1.00 0.98	MgO %	Na₂O %	K₂O %	TiO₂ %	Mn₃O₄ %	SO ₃ %	P ₂ O ₅ %	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m³/t	Total gas m³/t
Ohai SC1 SiO ₂ % Al ₂ O ₃ % Fe ₂ O ₃ % CaO % MgO % Na ₂ O %	SiO₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68	Al₂O₃ % 1.00 -0.18 -0.63 -0.55 -0.73	Fe ₂ O ₃ %	CaO % 1.00 0.98 0.78	MgO % 1.00 0.71	Na₂O % 1.00	K ₂ O %	TiO₂ %	Mn₃O₄ %	SO ₃ %	P ₂ O ₅ %	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m³/t	Total gas m ³ /t
Ohai SC1 SiO ₂ % Al ₂ O ₃ % Fe ₂ O ₃ % CaO % MgO % Na ₂ O % K ₂ O %	SiO ₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20	Fe ₂ O ₃ %	CaO % 1.00 0.98 0.78 -0.55	MgO % 1.00 0.71 -0.57	Na₂O % 1.00 -0.29	Κ₂Ο %	TiO₂ %	Mn ₃ O ₄ %	SO ₃ %	P ₂ O ₅ %	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m³/t	Total gas m³/t
Ohai SC1 SiO2 % Al₂O3 % Fe₂O3 % CaO % MgO % Na₂O % K₂O % TiO2 %	SiO₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 2.55	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 0.85	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 -0.46 -0.35	CaO % 1.00 0.98 0.78 -0.55 -0.78 -0.78	MgO % 1.00 0.71 -0.57 -0.67	Na₂O % 1.00 -0.29 -0.93	K₂O % 1.00 0.18 0.20	TiO₂ %	Mn ₃ O ₄ %	SO ₃ %	P ₂ O ₅ %	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m³/t	Total gas m ³ /t
Ohai SC1 SiO ₂ % Al ₂ O ₃ % Fe ₂ O ₃ % CaO % MgO % Na ₂ O % K ₂ O % TiO ₂ % Mn ₃ O ₄ %	SiO₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 0.90	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 -0.46 -0.35 0.85 0.78	CaO % 1.00 0.98 0.78 -0.55 -0.78 0.53 0.02	MgO % 1.00 0.71 -0.57 -0.67 0.65	Na₂O % 1.00 -0.29 -0.93 0.47 0.01	K ₂ O % 1.00 0.18 -0.33 0.42	TiO₂ %	Mn ₃ O ₄ %	SO ₃ %	P ₂ O ₅ %	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m³/t	Total gas m³/t
Ohai SC1 SiO ₂ % A ₂ O ₃ % Fe ₂ O ₃ % CaO % MgO % Na ₂ O % K ₂ O % TiO ₂ % Mn ₃ O ₄ % SO ₃ %	SiO₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 -0.46 -0.35 0.85 0.78 0.90	CaO % 1.00 0.98 0.78 -0.55 -0.78 0.53 0.93 0.75	MgO % 1.00 0.71 -0.57 -0.67 0.65 0.92 0.83	Na₂O % 1.00 -0.29 -0.93 0.47 0.91 0.72	K ₂ O %	TiO₂ % 1.00 -0.32 -0.84 -0.59	Mn₃O₄ % 1.00 0.68 0.94	SO ₃ %	₽₂0₅%	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m³/t	Total gas m³/t
Ohai SC1 SiO2 % Al203 % Fe203 % CaO % Mg0 % Na20 % TiO2 % Mn304 % SO3 % P205 %	SiO₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 -0.46 -0.35 0.85 0.78 0.90 -0.11	CaO % 1.00 0.98 0.78 -0.55 -0.78 0.53 0.75 0.75 0.41	MgO % 1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26	Na₂O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65	K₂O % 1.00 0.18 -0.33 -0.40 -0.13	TiO₂ % 1.00 -0.32 -0.84 -0.59 -0.75	Mn₃O₄ % 1.00 0.68 0.94 -0.16	SO ₃ %	P₂O₅ %	Measured gas m ³ /t	Residual gas m ³ /t	Lost gas m³/t	Total gas m³/t
Ohai SC1 SiO2 % Al2O3 % Fe,O3 % GaO % MgO % Na2O % K2O % TiO2 % Mn3O4 % SO3 % P2O5 % Measured gas m ³ /t Residual gas m ³ /t	SiO₂ % 1.00 0.25 -0.91 -0.87 -0.87 -0.87 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.75 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.06	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 -0.46 -0.35 0.85 0.78 0.90 -0.11 0.58	1.00 0.98 0.78 -0.55 -0.78 0.53 0.93 0.75 0.41 0.33	MgO % 1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43	1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24	1.00 0.18 -0.33 -0.43 -0.43 -0.13 -0.04	1.00 -0.32 -0.84 -0.75 -0.75	Mn ₃ O ₄ %	SO ₃ % 1.00 0.89 0.40 0.44	P₂O₅% 1.00 0.08 0.61	Measured gas m ³ /t 1.00 -0.54	Residual gas m ³ /t	Lost gas m³/t	Total gas m³/t
Ohai SC1 SiO2 % Al₂O3 % Fe ₂ O3 % CaO % MgO % Na₂O % K₂O % TiO2 % Mn30 % SO3 % P₂O5 % Measured gas m ³ /t Residual gas m ³ /t Lost gas m ³ /t	SiO₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.53	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.06 0.32	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 -0.46 -0.35 0.85 0.78 0.90 -0.11 0.58 0.04	1.00 0.98 0.78 -0.55 -0.78 0.53 0.93 0.75 0.41 0.33 -0.05	1.00 0.71 -0.57 -0.65 0.92 0.83 0.26 0.43 0.02	Na ₂ O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49	1.00 0.18 -0.33 -0.43 -0.40 -0.13 -0.04 -0.07	1.00 -0.32 -0.84 -0.75 -0.12 0.38	Mn₃O₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15	SO ₃ % 1.00 0.89 0.40 0.44 -0.28	P ₂ O ₅ %	Measured gas m ³ /t 1.00 -0.54 -0.14	Residual gas m ³ /t 1.00 -0.43	Lost gas m ³ /t	Total gas m³/t
Ohai SC1 SiO2 % Al₂O3 % Fe ₂ O3 % CaO % MgO % Na₂O % K₂O % TiO2 % Mn3O4 % SO3 % P₂O5 % Measured gas m³/t Lost gas m³/t Total gas m³/t	SiO₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17	Al ₂ O ₃ % 1.00 -0.18 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.06 0.32 -0.71	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 -0.46 -0.35 0.78 0.90 -0.11 0.58 0.90 -0.11 0.58 0.04 -0.03	1.00 0.98 0.78 -0.55 0.73 0.93 0.75 0.41 0.33 -0.05 0.48	1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43 0.02 0.34	Na ₂ O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66	1.00 0.18 -0.33 -0.43 -0.40 -0.13 -0.04 -0.07 -0.16	1.00 -0.32 -0.84 -0.59 -0.72 -0.38 -0.77	Mn ₃ O ₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15 -0.15 -0.12	SO ₃ % 1.00 0.89 0.40 0.44 -0.28 0.45	P ₂ O ₅ % 1.00 0.08 0.61 -0.23 0.13	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99	Residual gas m ³ /t 1.00 -0.43 -0.52	Lost gas m ³ /t 1.00 -0.05	Total gas m³/t
Ohai SC1 SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % TIO2 % Mn3O4 % SO3 % P205 % Measured gas m ³ /t Lost gas m ³ /t Total gas m ³ /t	SiO ₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ %	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.06 0.32 -0.71 Al ₂ O, %	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 -0.46 -0.35 0.78 0.90 -0.11 0.58 0.04 -0.03 Fe ₂ O ₃ %	1.00 0.98 0.78 -0.78 0.73 0.73 0.73 0.73 0.41 0.33 -0.05 0.48 CaO %	1.00 0.71 -0.57 -0.65 0.92 0.83 0.26 0.43 0.02 0.34	Na₂O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66 Na₂O %	K₂O % 1.00 0.18 -0.33 -0.43 -0.43 -0.43 -0.13 -0.04 -0.17 -0.16 K₂O %	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 0.38 -0.77 TiO ₂ %	Mn ₃ O ₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15 -0.15 -0.12 Mn ₃ O ₄ %	SO ₃ % 1.00 0.89 0.40 0.44 -0.28 0.45 SO ₃ %	P ₂ O ₅ % 1.00 0.08 0.61 -0.23 0.13 P ₂ O ₅ %	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured	Residual gas m ³ /t 1.00 -0.43 -0.52 Residual	Lost gas m³/t 1.00 -0.05 Lost gas	Total gas m³/t 1.00 Total gas
Ohai SC1 SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % TIO2 % Mn3O4 % SO3 % P205 % Measured gas m ³ /t Lost gas m ³ /t Total gas m ³ /t Greymouth	SiO ₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % 1.00	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.06 0.32 -0.71 Al ₂ O ₃ %	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 -0.46 -0.35 0.78 0.90 -0.11 0.58 0.04 -0.11 0.58 0.04 -0.35 Fe ₂ O ₃ %	1.00 0.98 0.78 -0.55 0.78 0.53 0.93 0.75 0.41 0.33 -0.05 0.48 0.41 0.33 -0.05 0.48	1.00 0.71 -0.57 -0.65 0.92 0.83 0.26 0.43 0.02 0.34 MgO %	Na ₂ O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.65 0.24 -0.49 0.65 0.24 -0.49 0.65 0.24 -0.49 0.65 0.24 -0.29 -0.93 0.47 -0.29 -0.93 0.47 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.92 -0.93 -0.93 -0.93 -0.94 -	1.00 0.18 -0.33 -0.43 -0.43 -0.13 -0.04 -0.17 -0.16 K₂O %	1.00 -0.32 -0.84 -0.75 -0.12 0.38 -0.77 TiO₂ %	Mn ₃ O ₄ %	SO ₃ % 1.00 0.89 0.40 0.44 -0.28 0.45 SO ₃ %	P₂O₅ % 1.00 0.08 0.61 -0.23 0.13 P₂O₅ %	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	Residual gas m ³ /t 1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m³/t 1.00 -0.05 Lost gas m³/t	Total gas m³/t 1.00 Total gas m³/t
Ohai SC1 SiO2 % Al₂O3 % Fe₂O3 % GaO % MgO % Na₂O % K₂O % TiO2 % Mn304 % P₂O3 % Measured gas m³/t Lost gas m³/t Total gas m³/t Grøymouth SiO2 % AlcO %	SiO ₂ % 1.00 0.25 0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % 1.00 -0.60 -0.60 -0.60 -0.60 -0.70 -0.70 -0.87 -0.92 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.87 -0.89 -0.89 -0.89 -0.80 -0.89 -0.80 -0.80 -0.89 -0.80 -0.10 -0.00 -0.00 -0.10 -0.00 -0.	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.63 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.69 -0.64 -0.51 -0.69 -0.64 -0.51 -0.69 -0.64 -0.51 -0.63 -0.73 -0.86 -0.51 -0.64 -0.51 -0.63 -0.64 -0.51 -0.69 -0.71 -0.71 -0.73 -0.73 -0.73 -0.75 -0.73 -0.73 -0.73 -0.64 -0.51 -0.69 -0.71 -0.71 -0.73 -0.73 -0.73 -0.73 -0.75 -0.73 -0.73 -0.73 -0.64 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.64 -0.32 -0.71 -0.71 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.64 -0.73 -0.71 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.64 -0.73 -0.71 -0.73 -0.71 -0.73 -0.71 -0.75 -0.71 -0.75	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 0.46 -0.35 0.78 0.90 -0.11 0.58 0.90 -0.11 0.58 0.04 -0.03 Fe ₂ O ₃ %	1.00 0.98 0.78 0.55 0.78 0.53 0.75 0.41 0.33 0.75 0.41 0.35 0.41 0.35 0.48 CaO %	1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43 0.02 0.34 MgO %	1.00 -0.29 -0.93 0.47 0.72 0.65 0.24 -0.49 0.66 Na ₂ O %	1.00 0.18 -0.33 -0.43 -0.40 -0.13 -0.04 -0.07 -0.16 K ₂ O %	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 -0.38 -0.77 TiO₂ %	Mn ₃ O ₄ %	SO ₃ % 1.00 0.89 0.40 0.44 -0.28 0.45 SO ₃ %	P ₂ O ₅ % 1.00 0.08 0.61 -0.23 0.13 P ₂ O ₅ %	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	Residual gas m ³ /t 1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m ³ /t 1.00 -0.05 Lost gas m ³ /t	Total gas m ³ /t 1.00 Total gas m ³ /t
Ohai SC1 SiO2 % Al2O3 % FeyO3 % GaO % MgO % Na2O % MgO % Na2O % TiO2 % Mn3O4 % SO3 % P2O5 % Measured gas m³/t Residual gas m³/t Total gas m³/t Total gas m³/t Greymouth SiO2 % SiO2 % Al2O3 % Fe-O2 % Fe-O2 %	SiO ₂ % 1.00 0.25 -0.91 -0.87 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % 1.00 -0.60 -0.74	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.06 0.32 -0.71 Al ₂ O ₃ % 1.00 -0.06	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 0.85 0.78 0.90 -0.11 0.58 0.90 -0.11 0.58 0.04 -0.03 Fe ₂ O ₃ %	1.00 0.98 0.78 0.55 -0.78 0.53 0.93 0.75 0.41 0.33 -0.05 0.48 CaO %	1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43 0.02 0.34 MgO %	1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66 Na₂O %	1.00 0.18 -0.33 -0.40 -0.13 -0.07 -0.16 K ₂ O %	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 -0.38 -0.77 TiO₂ %	Mn ₃ O ₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15 -0.12 Mn ₃ O ₄ %	SO ₃ % 1.00 0.89 0.40 0.44 -0.28 0.45 SO ₃ %	P₂O₅ % 1.00 0.08 0.61 0.23 0.13 P₂O₅ %	Measured as m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	Residual gas m ³ /t 1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m³/t 1.00 -0.05 Lost gas m³/t	Total gas m³/t 1.00 Total gas m³/t
Ohai SC1 SiO2 % Al2O3 % Fe2O3 % CaO % Mg0 % Na2O % TiO2 % Mn3O4 % SO3 % P2O5 % Measured gas m ³ /t Lost gas m ³ /t Total gas m ³ /t Greymouth SiO2 % Al2O3 % Fe ₂ O3 % CaO %	SiO ₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.53 -0.17 SiO ₂ % 1.00 -0.60 -0.74 -0.60 -0.75 -0.91 -0.61 -0.91 -0.92 -0.91 -0.92 -0.93 -0.92 -0.92 -0.93 -0.92 -0.93 -0.92 -0.93 -0.92 -0.93 -0.92 -0.93 -0.17 -0.92 -0.75 -0.92 -0.75 -0.92 -0.75 -0.92 -0.75 -0.92 -0.77 -0.92 -0.77 -0.92 -0.77 -0.92 -0.92 -0.93 -0.77 -0.92 -0.93 -0.77 -0.92 -0.93 -0.77 -0.92 -0.93 -0.77 -0.92 -0.95 -0	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.69 -0.69 -0.69 -0.69 -0.69 -0.71 Al ₂ O ₃ % 1.00 -0.06 0.19	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 0.85 0.78 0.90 -0.11 0.58 0.90 -0.11 0.58 0.00 Fe ₂ O ₃ %	CaO % 1.00 0.98 0.78 0.55 -0.78 0.53 0.75 0.41 0.33 -0.05 0.48 CaO % 1.00	1.00 0.71 -0.57 -0.65 0.92 0.83 0.26 0.43 0.26 0.43 0.02 0.34	1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66 Na₂O %	1.00 0.18 -0.33 -0.40 -0.13 -0.04 -0.13 -0.04 -0.16 K₂O %	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 0.38 -0.77 TiO₂%	Mn ₃ O ₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15 -0.12 Mn ₃ O ₄ %	1.00 0.89 0.40 0.44 -0.28 0.45 SO ₃ %	P₂O₅ % 1.00 0.08 0.61 -0.23 0.13 P₂O₅ %	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	Residual qas m ³ /t 1.00 -0.43 -0.52 Residual qas m ³ /t	Lost gas m ³ /t 1.00 -0.05 Lost gas m ³ /t	Total gas m ³ /t 1.00 Total gas m ³ /t
Ohai SC1 SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % TiO2 % Mn3O4 % SO3 % P2O5 % Measured gas m ³ /t Lost gas m ³ /t Total gas m ³ /t Greymouth SIO2 % Al2O3 % Fe2O3 % CaO % MgO %	SiO ₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % 1.00 -0.60 -0.74 -0.50 0.33	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.06 0.32 -0.71 Al ₂ O ₃ % 1.00 -0.06 0.32 -0.71 -0.71 -0.69 -0.71 -0.71 -0.71 -0.69 -0.71 -0.71 -0.71 -0.69 -0.71 -0.71 -0.69 -0.71 -0.71 -0.71 -0.69 -0.71 -0.71 -0.71 -0.71 -0.71 -0.71 -0.75 -0.71 -0.75 -0.73 -0.75 -0.73 -0.75 -0.73 -0.75 -0.73 -0.75 -0.71 -0.69 -0.71 -0.9 -0.71 -0.9 -0.71 -0.9 -0.71 -0.9 -0.06 -0.71 -0.9 -0.71 -0.9 -0.71 -0.9 -0.71 -0.9 -0.71 -0.9 -0.9 -0.9 -0.71 -0.9 -0.9 -0.9 -0.9 -0.9 -0.71 -0.9 -0.	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 0.85 0.78 0.90 -0.11 0.58 0.04 -0.03 Fe ₂ O ₃ % 1.00 0.57 0.19	1.00 0.98 0.78 0.55 -0.78 0.53 0.75 0.41 0.33 -0.05 0.48 CaO % 1.00 -0.41	1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43 0.02 0.34 MgO %	1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66 Na₂O %	1.00 0.18 -0.33 -0.43 -0.43 -0.04 -0.07 -0.16 K₂O %	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 -0.38 -0.77 TiO₂%	Mn ₃ O ₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15 -0.12 -0.12 -0.12	1.00 0.89 0.40 0.44 -0.28 0.45 SO₃%	P₂O₅% 1.00 0.08 0.61 -0.23 0.13 P₂O₅%	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	Residual gas m ³ /t 1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m ³ /t 1.00 -0.05 Lost gas m ³ /t	Total gas m³/t 1.00 Total gas m³/t
Ohai SC1 SiO2 % Al2O3 % Fe,O3 % Fe,O3 % GaO % Mg0 % Na2O % K2O % TIO2 % Mn,O4 % SO3 % P2O5 % Measured gas m³/t Lost gas m³/t Total gas m³/t Total gas m³/t Greymouth SiO2 % SiO2 % Al2O3 % Fe ₂ O3 % CaO % MgO % Na ₂ O %	SiO ₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % 1.00 -0.74 -0.60 -0.74 -0.50 -0.74 -0.50 -0.74 -0.50 -0.74 -0.50 -0.74 -0.50 -0.75 -0.75 -0.89 -0.75 -0.89 -0.89 -0.89 -0.89 -0.89 -0.89 -0.89 -0.89 -0.50 -0.54 -0.55 -0.55 -0.89 -0.55 -0.55 -0.89 -0.55 -0.55 -0.89 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.89 -0.55 -0	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.35 -0.64 -0.51 -0.69 -0.06 0.32 -0.71 Al ₂ O ₃ % 1.00 -0.06 0.9 0.09 0.25	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 0.46 -0.35 0.85 0.78 0.90 -0.11 0.58 0.04 -0.03 Fe ₂ O ₃ % 1.00 0.57 0.19 0.70	1.00 0.98 0.78 0.55 0.53 0.75 0.41 0.33 -0.05 0.48 CaO %	1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43 0.02 0.34 MgO %	Na₂O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66 Na₂O % Na₂O %	1.00 0.18 -0.33 -0.40 -0.13 -0.04 -0.07 -0.16 K₂O %	1.00 -0.32 -0.84 -0.75 -0.12 0.38 -0.77 TiO₂ %	Mn ₃ O ₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15 -0.12 - Mn ₃ O ₄ %	1.00 0.89 0.40 0.44 -0.28 0.45 SO ₃ %	P₂O₅ % 1.00 0.08 0.61 -0.23 0.13 P₂O₅ %	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	Residual gas m ³ /t 1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m³/t 1.00 -0.05 Lost gas m³/t	Total gas m³/t 1.00 Total gas m³/t
Ohai SC1 SiO2 % Al2O3 % FeyO3 % CaO % Mg0 % Na2O % K2O % TiO2 % Mn304 % SO3 % P2O5 % Measured gas m ³ /t Lost gas m ³ /t Total gas m ³ /t Greymouth SIO2 % Al2O3 % CaO % Ma2O % K2O % K2O % K2O % K2O % K2O % K2O %	SiO ₂ % 1.00 0.25 0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % 1.00 -0.60 -0.74 -0.50 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.32 -0.72 -0.50 -0.74 -0.75 -0.	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.64 -0.51 -0.69 -0.06 0.32 -0.71 Al ₂ O ₃ % 1.00 -0.06 0.19 0.25 0.25 0.11 -0.19 -0.19 -0.19 -0.19 -0.19 -0.19 -0.19 -0.11	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 0.85 0.78 0.90 -0.11 0.58 0.90 -0.11 0.53 0.04 -0.03 Fe ₂ O ₃ % 1.00 0.57 0.70 0	CaO % 1.00 0.98 0.78 0.55 -0.78 0.53 0.93 0.75 0.41 0.33 -0.05 0.48 CaO % 1.00 -0.41 0.72 -0.69 0.41	MgO % 1.00 0.71 -0.57 -0.67 0.63 0.92 0.83 0.26 0.43 0.02 0.34 MgO % 1.00 -0.22 0.80 0.44	1.00 -0.29 -0.93 0.47 0.72 0.65 0.24 -0.49 0.66 Na₂O %	1.00 0.18 -0.33 -0.43 -0.40 -0.13 -0.04 -0.07 -0.16 K₂O %	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 0.38 -0.77 TiO₂%	Mn ₃ O ₄ %	1.00 0.89 0.40 0.44 −0.28 0.45 SO₃%	1.00 0.08 0.61 −0.23 0.13 P ₂ O ₅ %	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	1.00 -0.43 -0.52 Residual gas m³/t	Lost gas m ³ /t 1.00 -0.05 Lost gas m ³ /t	Total gas m ³ /t 1.00 Total gas m ³ /t
Ohai SC1 SiO2 % Al2O3 % FepO3 % GaO % MgO % Na2O % TiO2 % Mn3O4 % SO3 % P2O5 % Measured gas m ³ /t Total gas m ³ /t Total gas m ³ /t Greymouth SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % TO2 %	SiO ₂ % 1.00 0.25 0.91 -0.87 -0.87 -0.68 0.50 0.54 -0.65 0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % 1.00 -0.60 -0.74 -0.50 -0.72 -0.03 0.09 -0.72 -0.03 0.94 -0.72 -0.03 0.94 -0.72 -0.03 0.94 -0.72 -0.03 0.94 -0.72 -0.03 0.94 -0.72 -0.03 0.94 -0.72 -0.03 0.94 -0.74 -0.74 -0.75	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.06 0.32 -0.71 Al ₂ O ₃ % 1.00 -0.06 0.19 0.09 0.25 0.13 0.11 0.11 0.11	Fe ₂ O ₃ % 1.00 0.70 0.82 0.35 0.78 0.78 0.78 0.90 -0.11 0.58 0.04 -0.03 Fe ₂ O ₃ % 1.00 0.57 0.19 0.70 -0.18 -0.24	CaO % 1.00 0.98 0.78 0.55 -0.78 0.53 0.93 0.75 0.41 0.33 -0.05 0.48 CaO % 1.00 -0.41 0.72 -0.69 0.14 0.46	MgO % 1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43 0.02 0.34 MgO % 1.00 -0.22 0.80 -0.44 0.11	Na₂O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66 Na₂O % Na₂O %	1.00 0.18 -0.33 -0.40 -0.13 -0.40 -0.13 -0.07 -0.16 K ₂ O %	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 0.38 -0.77 TiO₂ %	Mn ₃ O ₄ %	SO ₃ % 1.00 0.89 0.40 0.44 -0.28 0.45 SO ₃ %	P₂O₅ % 1.00 0.08 0.61 0.23 0.13 P₂O₅ %	Measured as m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m ³ /t 1.00 -0.05 Lost gas m ³ /t	Total gas m ³ /t 1.00 Total gas m ³ /t
Ohai SC1 SiO2 % Al2O3 % Fe2O3 % Fe2O3 % Mg0 % Na2O % Ma2O % TiO2 % M304 % SO3 % P2O5 % Measured gas m³/t Residual gas m³/t Total gas m³/t Greymouth SiO2 % SiO2 % Al2O3 % Fe2O3 % CaO % Mg0 % Na2O % K2O % TiO2 % Mn3O4 % SiO2 %	SiO ₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % SiO ₂ % -0.64 -0.65 -0.93 -0.65 -0.91 -0.65 -0.91 -0.65 -0.92 -0.65 -0.93 -0.77 -0.92 -0.70	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.71 Al ₂ O ₃ % 1.00 -0.06 0.19 0.09 0.25 0.13 0.11 0.11 0.11 0.25	Fe₂O ₃ % 1.00 0.70 0.82 0.53 0.85 0.78 0.85 0.78 0.90 -0.11 0.58 0.04 -0.03 Fe₂O ₃ % Fe₂O ₃ %	CaO % 1.00 0.98 0.78 0.55 -0.78 0.53 0.75 0.41 0.33 -0.05 0.48 CaO % 1.00 -0.41 0.72 -0.69 0.14 0.46 0.12	MgO % 1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43 0.02 0.34 MgO % 1.00 -0.22 0.80 -0.44 0.11 0.41	Na₂O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66 Na₂O % 1.00 -0.51 0.20 0.16 0.06	1.00 0.18 -0.33 -0.40 -0.13 -0.04 -0.13 -0.04 -0.16 K₂O % 1.00 -0.42 -0.15 -0.07	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 -0.38 -0.77 TiO ₂ %	Mn ₃ O ₄ % 1.00 0.68 0.94 -0.16 0.65 -0.12 Mn ₃ O ₄ % 1.00 0.53	SO ₃ % 1.00 0.89 0.40 0.44 0.45 SO ₃ %	P₂O₅ % 1.00 0.08 0.61 −0.23 0.13 P₂O₅ %	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	Residual gas m ³ /t 1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m ³ /t 1.00 -0.05 Lost gas m ³ /t	Total gas m³/t 1.00 Total gas m³/t
Ohai SC1 SiO2 % Al2O3 % Fe2O3 % Fe2O3 % Ma2O % K2O % Ma2O % TiO2 % Ma9O % Na2O % SO3 % Fe2O3 % Measured gas m³/t Residual gas m³/t Lost gas m³/t Total gas m³/t Greymouth SiO2 % MgO % Na2O % K2O % TiO2 % MgO % Na2O % K2O % TiO2 % Mn3O4 % SO3 % PLO- % SO3 %	SiO ₂ % 1.00 0.25 -0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 -0.30 -0.17 SiO ₂ % 1.00 -0.60 -0.72 -0.30 -0.72 -0.30 -0.45 -0.21	Al₂O₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.71 Al₂O₃ % 1.00 -0.04 0.19 0.25 0.13 0.11 0.12 0.11 0.12	Fe₂O ₃ % 1.00 0.70 0.82 0.53 0.85 0.78 0.90 -0.11 0.58 0.09 -0.11 0.58 0.00 Fe₂O ₃ % Fe₂O ₃ %	1.00 0.98 0.78 0.55 -0.78 0.53 0.75 0.41 0.33 -0.05 0.48 CaO % 1.00 -0.41 0.72 -0.69 0.14 0.46 0.12 0.31	MgO % 1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43 0.02 0.34 MgO % 1.00 -0.22 0.80 -0.44 0.11 0.41 0.41	Na₂O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66 Na₂O % 1.00 -0.51 0.20 0.16 0.05	1.00 0.18 -0.33 -0.43 -0.40 -0.13 -0.07 -0.16 K₂O % 1.00 -0.42 -0.15 -0.07 -0.19	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 0.38 -0.77 TiO₂%	Mn ₃ O ₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15 -0.12 Mn ₃ O ₄ % 1.00 0.53 0.71	1.00 0.89 0.40 0.44 -0.28 0.45 SO ₃ %	P₂O₅% 1.00 0.08 0.61 -0.23 0.13 P₂O₅%	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m ³ /t 1.00 -0.05 Lost gas m ³ /t	Total gas m³/t 1.00 Total gas m³/t
Ohai SC1 SiO2 % Al2O3 % Fe,O3 % Fe,O3 % CaO % Mg0 % Na2O % K2O % TiO2 % Mn3O4 % SO3 % P2O5 % Measured gas m³/t Lost gas m³/t Total gas m³/t Total gas m³/t Greymouth SiO2 % SiO2 % Na2O % K2O % TiO2 % Mn3O4 % So3 % Fe2O3 % CaO % Mg0 % Na2O % K2O % TiO2 % Mn3O4 % SO3 % P205 % Measured gas m³/t	SiO ₂ % 1.00 0.25 0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % 1.00 -0.74 -0.60 -0.74 -0.50 -0.72 -0.03 0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.03 -0.72 -0.75 -0.7	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.06 0.32 -0.71 Al ₂ O ₃ % 1.00 -0.06 0.19 0.25 0.11 0.11 -0.25 0.11 0.21 -0.25 0.11 0.21 -0.25 0.12 -0.25 -0.12 -0.12 -0.25 -0.12 -0.25 -0.12 -0.25 -0.12 -0.25 -0.12 -0.25 -0.12 -0.25 -0.12 -0.25 -0.12 -0.25 -0.12 -0.12 -0.25 -0.11 -0.25 -0.11 -0.25 -0.11 -0.25 -0.11 -0.25 -0.11 -0.25 -0.11 -0.25 -0.11 -0.25 -0.11 -0.25 -0.11 -0.25 -0.11 -0.25 -0.12 -0.27 -0.25 -0.11 -0.25 -0.12 -0.27 -0.25 -0.12 -0.25 -0.2	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 -0.46 -0.35 0.78 0.90 -0.11 0.58 0.04 -0.03 Fe ₂ O ₃ % 1.00 0.57 0.79 0.70 0.18 -0.20 0.51 0.50 0.51 0.50 0.65 0.65 0.65 0.78 0.90 0.04 0.04 0.05 0.78 0.04 0.05	CaO % 1.00 0.98 0.78 -0.55 -0.78 0.53 0.93 0.75 0.41 0.33 1.00 -0.41 0.72 -0.69 0.14 0.46 0.12 0.33	MgO % 1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43 0.02 0.34 MgO % 1.00 -0.22 0.80 -0.44 0.11 0.41 -0.11 0.41 -0.57	Na₂O % 1.00 -0.29 -0.93 0.47 0.66 0.24 -0.49 0.66 Na₂O % 1.00 -0.51 0.21 0.16 0.06 0.05 0.17	1.00 0.18 -0.33 -0.43 -0.40 -0.13 -0.04 -0.07 -0.16 K₂O % 1.00 -0.42 -0.15 -0.07 -0.15 -0.07 -0.36	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 0.38 -0.77 TiO₂ % 1.00 -0.16 -0.14 -0.08	Mn ₃ O ₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15 -0.12 Mn ₃ O ₄ % 1.00 0.53 0.71 0.36	1.00 0.89 0.40 0.44 -0.28 0.45 SO₃%	P₂O₅ % 1.00 0.08 0.61 -0.23 0.13 P₂O₅ %	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t	1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m ³ /t 1.00 -0.05 Lost gas m ³ /t	Total gas m³/t 1.00 Total gas m³/t
Ohai SC1 SiO2 % Al2O3 % Fe,O3 % CaO % Mg0 % Na2O % May O % Na2O % MD2 % May O % May O % Na2O % May O % Na2O % Masser dgas m³/t Cao % Measured gas m³/t Lost gas m³/t Greymouth SiO2 % May O % Na2O % May O % SO 3 % P. Os % Measured gas m³/t Measured gas m³/t Residual gas m³/t	SiO ₂ % 1.00 0.25 0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % 1.00 -0.60 -0.72 -0.03 0.07 -0.63 -0.72 -0.03 0.72 -0.03 0.72 -0.03 0.72 -0.03 0.92 -0.65 -0.23 -0.21 -0.65 -0.23 -0.21 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.89 -0.89 -0.89 -0.82 -0.10 -0.50 -0.74 -0.50 -0.50 -0.54 -0.55 -0.54 -0.55 -0.55 -0.54 -0.55 -0.55 -0.54 -0.55 -	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.64 -0.51 -0.69 -0.06 0.32 -0.71 Al ₂ O ₃ % 1.00 -0.06 0.19 0.25 0.13 0.11 -0.25 0.10 0.21 -0.12 -0.10 -0.25 0.10 0.22 -0.29	Fe ₂ O ₃ % 1.00 0.70 0.82 0.53 0.90 -0.11 0.58 0.90 -0.11 0.58 0.04 -0.03 Fe ₂ O ₃ % 1.00 0.57 0.70 -0.18 -0.20 0.51 0.50 0.18 0.50 0.18 0.29	CaO % 1.00 0.98 0.78 0.55 -0.78 0.53 0.93 0.75 0.41 0.33 -0.05 0.48 CaO % 1.00 -0.41 0.72 -0.69 0.14 0.46 0.12 0.31 0.33 0.28	MgO % 1.00 0.71 -0.57 -0.67 0.62 0.92 0.83 0.26 0.43 0.02 0.34 MgO % 1.00 -0.22 0.80 -0.44 0.11 0.41 -0.18 -0.10	Na₂O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66 Na₂O % 1.00 -0.51 0.20 0.16 0.06 0.05 0.17 0.41	1.00 0.18 -0.33 -0.43 -0.40 -0.13 -0.04 -0.07 -0.16 K₂O % 1.00 -0.42 -0.15 -0.07 -0.19 -0.36 -0.41	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 0.38 -0.77 TiO₂% 1.00 -0.16 -0.14 -0.20 0.02	Mn₃O₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15 -0.12 Mn₃O₄ % 1.00 0.53 0.71 0.36 0.71 0.36	SO ₃ % 1.00 0.89 0.40 0.44 -0.28 0.45 SO ₃ % 1.00 0.12 0.10 0.43	P₂O₅ % 1.00 0.08 0.61 -0.23 0.13 P₂O₅ % 1.00 0.48 -0.24	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t 1.00 0.16	Residual gas m ³ /t 1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m ³ /t 1.00 -0.05 Lost gas m ³ /t	Total gas m ³ /t 1.00 Total gas m ³ /t
Ohai SC1 SiO2 % Al2O3 % FepO3 % GaO % MgO % Na2O % K2O % TiO2 % Mn3O4 % SO3 % P2O5 % Measured gas m ³ /t Total gas m ³ /t Total gas m ³ /t Greymouth SiO2 % MgO % Na2O % FepO3 % Greymouth SiO2 % Ma2O % FepO3 % Ma2O % FepO3 % Ma2O % SO3 % P2O5 % Measured gas m ³ /t SO3 % P2O5 % Measured gas m ³ /t Residual gas m ³ /t Residual gas m ³ /t	SiO ₂ % 1.00 0.25 0.91 -0.87 -0.92 -0.68 0.50 0.54 -0.65 -0.89 -0.82 -0.10 -0.50 0.03 -0.17 SiO ₂ % 1.00 -0.60 -0.74 -0.50 -0.74 -0.50 -0.72 -0.03 0.09 -0.45 -0.23 -0.21 -0.19 -0.62 -0.24	Al ₂ O ₃ % 1.00 -0.18 -0.63 -0.55 -0.73 0.20 0.86 -0.35 -0.64 -0.51 -0.69 -0.06 0.32 -0.71 Al ₂ O ₃ % 1.00 -0.06 0.19 0.09 0.25 0.13 0.11 0.11 0.12 0.25 0.10 0.27 -0.25 0.10 0.27 -0.29 0.16	Fe ₂ O ₃ % 1.00 0.70 0.82 0.35 0.78 0.78 0.90 -0.11 0.58 0.04 -0.03 Fe ₂ O ₃ % 1.00 0.57 0.19 0.70 -0.18 -0.20 0.51 0.70 0.18 0.20 0.51 0.70 0.18 0.50 0.18 0.20 0.17	CaO % 1.00 0.98 0.78 0.55 -0.78 0.53 0.93 0.75 0.41 0.33 -0.05 0.48 CaO % 1.00 -0.41 0.72 -0.69 0.14 0.46 0.12 0.31 0.33 0.28 0.34	MgO % 1.00 0.71 -0.57 -0.67 0.65 0.92 0.83 0.26 0.43 0.02 0.34 MgO % 1.00 -0.22 0.80 -0.44 0.11 -0.18 -0.35 -0.10 -0.15	Na₂O % 1.00 -0.29 -0.93 0.47 0.91 0.72 0.65 0.24 -0.49 0.66 Na₂O % 1.00 -0.51 0.20 0.16 0.06 0.05 0.17 0.41 0.05	1.00 0.18 -0.33 -0.40 -0.13 -0.40 -0.13 -0.04 -0.17 -0.16 K ₂ O %	1.00 -0.32 -0.84 -0.59 -0.75 -0.12 -0.38 -0.77 TiO₂ % 1.00 -0.16 -0.14 -0.02 -0.04 0.27 -0.06	Mn ₃ O ₄ % 1.00 0.68 0.94 -0.16 0.65 -0.15 -0.12 Mn ₃ O ₄ % 1.00 0.53 0.71 0.36 -0.07 0.74	1.00 0.89 0.40 0.44 −0.28 0.45 SO ₃ %	P₂O₅ % 1.00 0.08 0.61 0.23 0.13 P₂O₅ % 1.00 0.48 0.24 0.99	Measured gas m ³ /t 1.00 -0.54 -0.14 0.99 Measured gas m ³ /t 1.00 0.16 0.51	Residual gas m ³ /t 1.00 -0.43 -0.52 Residual gas m ³ /t	Lost gas m ³ /t 1.00 -0.05 Lost gas m ³ /t	Total gas m ³ /t 1.00 Total gas m ³ /t

Table 3 Charts showing correlation coefficients for ash constituents and gas volume

Tiunuy	Quartz	Kaolinite	Calicite	Ankerite	Siderite	Pyrite	Muscavite	Measured gas	Residual gas	Lost gas	Total gas
Quartz	1.00										
Kaolinite	0.02	1.00									
Calicite	-0.17	-0.28	1.00								
Ankerite	-0.17	-0.28	1.00	1.00							
Siderite	-	-	-	-	1.00						
Pyrite	-	-	-	-	-	1.00					
Muscavite	-	-	-	-	-	-	1.00				
Measured gas	0.11	-0.10	-0.04	-0.04	-	-	-	1.00			
Residual gas	-0.42	-0.26	-0.22	-0.22	-	-	-	-0.74	1.00		
Lost gas	0.50	-0.10	-0.13	-0.13	-	-	-	0.90	-0.79	1.00	
Total gas	-0.48	-0.52	-0.39	-0.39	-	-	-	0.10	0.59	-0.07	1.00
Ohai SC3	Quartz	Kaolinite	Calicite	Ankerite	Siderite	Pyrite	Muscavite	Measured gas	Residual gas	Lost gas	Total gas
Quartz	1.00							•	-		
Kaolinite	0.52	1.00									
Calicite	-0.98	-0.53	1.00								
Ankerite	-0.91	-0.43	0.86	1.00							
Siderite	-0.60	-0.56	0.56	0.26	1.00						
Pyrite	-	-	-	-	-	1.00					
Muscavite	-	-	-	-	-	-	1.00				
Measured gas	-0.54	-0.67	0.67	0.45	0.27	-	-	1.00			
Residual gas	0.29	0.75	-0.28	-0.12	-0.60	-	-	-0.58	1.00		
Lost gas	-0.11	-0.23	0.11	-0.13	0.55	-	-	-0.09	-0.18	1.00	
Total gas	-0.57	-0.63	0.71	0.46	0.26	-	-	0.98	-0.47	0.02	1.00
Greymouth	Quartz	Kaolinite	Calicite	Ankerite	Siderite	Pyrite	Muscavite	Measured gas	Residual gas	Lost gas	Total gas
Greymouth Quartz	Quartz 1.00	Kaolinite	Calicite	Ankerite	Siderite	Pyrite	Muscavite	Measured gas	Residual gas	Lost gas	Total gas
<i>Greymouth</i> Quartz Kaolinite	Quartz 1.00 -0.78	Kaolinite	Calicite	Ankerite	Siderite	Pyrite	Muscavite	Measured gas	Residual gas	Lost gas	Total gas
<i>Greymouth</i> Quartz Kaolinite Calicite	Quartz 1.00 -0.78 -	Kaolinite 1.00 -	Calicite	Ankerite	Siderite	Pyrite	Muscavite	Measured gas	Residual gas	Lost gas	Total gas
<i>Greymouth</i> Quartz Kaolinite Calicite Ankerite	Quartz 1.00 -0.78 -	Kaolinite 1.00 -	Calicite 1.00 -	Ankerite 1.00	Siderite	Pyrite	Muscavite	Measured gas	Residual gas	Lost gas	Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite	Quartz 1.00 -0.78 - - -0.37	Kaolinite 1.00 - - 0.33	Calicite 1.00 - -	Ankerite	Siderite	Pyrite	Muscavite	Measured gas	Residual gas	Lost gas	Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite	Quartz 1.00 -0.78 - - -0.37 -0.60	Kaolinite 1.00 - 0.33 0.00	Calicite 1.00 - -	Ankerite 1.00 - -	Siderite 1.00 -0.12	Pyrite	Muscavite	Measured gas	Residual gas	Lost gas	Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite	Quartz 1.00 -0.78 - - -0.37 -0.60 0.07	Kaolinite 1.00 - 0.33 0.00 -0.25	Calicite 1.00 - - - -	Ankerite 1.00 - -	Siderite 1.00 -0.12 -0.20	Pyrite 1.00 0.22	Muscavite 1.00	Measured gas	Residual gas	Lost gas	Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas	Quartz 1.00 -0.78 - - -0.37 -0.60 0.07 -0.45	Kaolinite 1.00 0.33 0.00 -0.25 0.35	Calicite 1.00 - - - - -	Ankerite 1.00 - - - -	Siderite 1.00 -0.12 -0.20 0.80	Pyrite 1.00 0.22 0.07	Muscavite 1.00 0.12	Measured gas	Residual gas	Lost gas	Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas	Quartz 1.00 -0.78 - - -0.37 -0.60 0.07 -0.45 -0.23	Kaolinite 1.00 0.33 0.00 -0.25 0.35 -0.09	Calicite 1.00	Ankerite 1.00	Siderite 1.00 -0.12 -0.20 0.80 -0.29	Pyrite 1.00 0.22 0.07 0.60	Muscavite 1.00 0.12 -0.25	Measured gas 1.00 -0.17	Residual gas 1.00	Lost gas	Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28	Kaolinite 1.00 0.33 0.00 -0.25 0.35 -0.09 0.31	Calicite 1.00	Ankerite 1.00	Siderite 1.00 -0.12 -0.20 0.80 -0.29 0.97	Pyrite 1.00 0.22 0.07 0.60 -0.24	Muscavite 1.00 0.12 -0.25 -0.22	Measured gas 1.00 -0.17 0.68	Residual gas 1.00 -0.46	Lost gas	Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.53	Kaolinite 1.00 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34	Calicite 1.00	Ankerite 1.00	Siderite 1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22	Muscavite 1.00 0.12 -0.25 -0.22 -0.04	Measured gas 1.00 -0.17 0.68 0.95	Residual gas 1.00 -0.46 0.10	Lost gas 1.00 0.65	Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.53	Kaolinite 1.00 - 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34	Calicite 1.00	Ankerite 1.00	1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22	Muscavite 1.00 0.12 -0.25 -0.22 -0.04	Measured gas 1.00 -0.17 0.68 0.95	Residual gas 1.00 -0.46 0.10 Residual	Lost gas 1.00 0.65	Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.28 -0.53 Quartz	Kaolinite 1.00 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34 Kaolinite	Calicite 1.00	Ankerite 1.00	Siderite 1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81 Siderite	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite	Measured gas 1.00 -0.17 0.68 0.95 Measured gas	Residual gas 1.00 -0.46 0.10 Residual gas	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas Ohai SC1 Quartz	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.28 -0.53 Quartz 1.00	Kaolinite 1.00 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34 Kaolinite	Calicite 1.00	Ankerite 1.00 - - - - - - - - - - - - -	Siderite 1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81 Siderite	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite	Measured gas 1.00 -0.17 0.68 0.95 Measured gas	Residual gas 1.00 -0.46 0.10 Residual gas	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas Ohai SC1 Quartz Kaolinite	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.28 -0.53 Quartz 1.00 0.41	Kaolinite 1.00 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34 Kaolinite 1.00	Calicite 1.00	Ankerite 1.00	1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite	Measured gas 1.00 -0.17 0.68 0.95 Measured gas	Residual gas 1.00 -0.46 0.10 Residual gas	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas Ohai SC1 Quartz Kaolinite Calicite	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.53 Quartz 1.00 0.41 -	Kaolinite 1.00	Calicite 1.00	Ankerite 1.00	1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite	Measured gas 1.00 -0.17 0.68 0.95 Measured gas	Residual gas 1.00 -0.46 0.10 Residual gas	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas Ohai SC1 Quartz Kaolinite Calicite Ankerite	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.53 Quartz Quartz 1.00 0.41 - -0.91	Kaolinite 1.00 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34 Kaolinite 1.000.71	Calicite 1.00	Ankerite 1.00	1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite	Measured gas 1.00 -0.17 0.68 0.95 Measured gas	Residual gas 1.00 -0.46 0.10 Residual gas	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas Ohai SC1 Quartz Kaolinite Calicite Ankerite Siderite	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.53 Quartz 1.00 0.41 - -0.91 -0.86	Kaolinite 1.00 - 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34 Kaolinite 1.00 - -0.71 0.00	Calicite 1.00	Ankerite 1.00	Siderite 1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81 Siderite 1.00	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite	Measured gas 1.00 -0.17 0.68 0.95 Measured gas	Residual gas 1.00 -0.46 0.10 Residual gas	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas Ohai SC1 Quartz Kaolinite Calicite Ankerite Siderite Pyrite	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.23 -0.28 -0.53 Quartz 1.00 0.41 - -0.91 -0.86 - -	Kaolinite 1.00 - 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34 Kaolinite 1.00 - -0.71 0.00 - - - - - - - - -	Calicite 1.00	Ankerite 1.00	Siderite 1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81 Siderite 1.00 -	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite 1.00	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite	Measured gas 1.00 -0.17 0.68 0.95 Measured gas	Residual gas 1.00 -0.46 0.10 Residual gas	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas Ohai SC1 Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.28 -0.53 Quartz 1.00 0.41 - -0.91 -0.86 - - - -0.86 - - - - - - - - - - - - -	Kaolinite 1.00 - 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34 Kaolinite 1.00 - -0.71 0.00 - - - - - - - - -	Calicite 1.00	Ankerite 1.00	Siderite 1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81 Siderite 1.00 - -	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite 1.00 -	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite 1.00	Measured gas 1.00 -0.17 0.68 0.95 Measured gas	Residual gas 1.00 -0.46 0.10 Residual gas	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas Ohai SC1 Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.23 -0.28 -0.53 Quartz Quartz 1.00 0.41 - -0.91 -0.86 - - -0.86 - -0.91 -0.86 - - -0.12	Kaolinite 1.00 - 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34 Kaolinite 1.00 - -0.71 0.00 - -0.71 0.00 - -0.23	Calicite 1.00	Ankerite 1.00	Siderite 1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81 Siderite 1.00 - 0.36	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite 1.00 - -	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite 1.00 -	Measured gas 1.00 -0.17 0.68 0.95 Measured gas 1.00	Residual gas 1.00 -0.46 0.10 Residual gas	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas Total gas Ohai SC1 Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.53 Quartz 1.00 0.41 - -0.91 -0.86 - - -0.12 -0.86	Kaolinite 1.00 - 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34 Kaolinite 1.00 - -0.71 0.00 - -0.23 0.00 - -0.23 0.00 - -0.23 0.00 - -0.23 0.00 - - - - - - - - -	Calicite 1.00	Ankerite 1.00	Siderite 1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81 Siderite 1.00 - 0.36 1.00	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite 1.00 - - -	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite 1.00 - -	Measured gas 1.00 -0.17 0.68 0.95 Measured gas 1.00 0.36	Residual gas 1.00 -0.46 0.10 Residual gas 1.00	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas
Greymouth Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Total gas Ohai SC1 Quartz Kaolinite Calicite Ankerite Siderite Pyrite Muscavite Measured gas Residual gas Lost gas	Quartz 1.00 -0.78 - -0.37 -0.60 0.07 -0.45 -0.23 -0.28 -0.53 Quartz 1.00 0.41 - -0.91 -0.86 - - -0.12 -0.86 0.86	Kaolinite 1.00 - 0.33 0.00 -0.25 0.35 -0.09 0.31 0.34 Kaolinite 1.00 - -0.71 0.00 - -0.23 0.00 0.60	Calicite 1.00	Ankerite 1.00	Siderite 1.00 -0.12 -0.20 0.80 -0.29 0.97 0.81 Siderite 1.00 - 0.36 1.00 -0.78	Pyrite 1.00 0.22 0.07 0.60 -0.24 0.22 Pyrite 1.00 - - - -	Muscavite 1.00 0.12 -0.25 -0.22 -0.04 Muscavite 1.00 - - - -	Measured gas 1.00 -0.17 0.68 0.95 Measured gas 1.00 0.36 -0.58	Residual gas 1.00 -0.46 0.10 Residual gas 1.00 -0.78	Lost gas 1.00 0.65 Lost gas	Total gas 1.00 Total gas

Table 4 Charts showing correlation coefficients for mineralogy and gas volume

Greymouth	Cell Tel	Band Tel	Large Tel	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Cell Tel	1.00	4.00															
Band Tel	0.10	1.00	1.00														
Large Tel	-0.11	-0.85	-0.96	1 00													
Des V-d	-0.17	0.74	-0.87	0.86	1 0 0												
Spor	0.03	-0.62	0.51	-0.51	-0.49	1.00											
Cu	0.75	0.46	-0.48	0.32	0.14	0.12	1.00										
Res	-0.44	-0.44	0.47	-0.41	-0.42	0.60	-0.28	1.00									
L-d	-0.07	0.17	-0.16	0.17	0.24	-0.73	-0.44	-0.51	1.00								
Sub	-0.30	-0.46	0.73	-0.78	-0.66	0.44	-0.32	0.32	-0.21	1.00							
FI	-0.21	-0.42	0.29	-0.19	0.07	0.54	-0.18	0.15	-0.48	0.14	1.00						
S-Fus	0.39	0.43	-0.68	0.74	0.45	-0.63	0.36	-0.70	0.37	-0.73	-0.37	1.00					
Fus	0.41	0.03	0.00	-0.11	-0.21	-0.03	0.15	0.21	0.30	-0.26	-0.62	0.00	1.00				
I-d	-0.13	0.30	-0.07	0.05	-0.16	-0.63	-0.10	-0.19	0.36	0.18	-0.74	0.29	0.01	1.00			
Scel	0.88	-0.11	-0.06	-0.01	-0.14	0.27	0.63	-0.13	-0.22	-0.46	0.04	0.27	0.48	-0.48	1.00	4.00	
S	-0.35	-0.30	0.38	-0.26	-0.39	-0.35	-0.54	-0.14	0.36	0.45	-0.22	0.10	-0.35	0.72	-0.58	1.00	1 0 0
Qtz	-0.40	-0.50	0.33	-0.20	-0.05	0.70	-0.33	0.33	-0.45	0.23	0.77	-0.55	-0.29	-0.73	-0.09	-0.27	1.00
Clay	-0.30	-0.50	0.27	-0.43	-0.30	0.54	-0.44	0.33	-0.15	0.28	0.25	-0.62	0.32	-0.73	-0.24	-0.29	0.88
Ee-O	-0.03	-0.28	0.64	-0.71	-0.65	-0.02	-0.24	-0.07	0.08	0.83	-0.14	-0.35	-0.20	0.54	-0.37	0.70	-0.29
Total Vit	0.00	0.61	-0.67	0.73	0.76	-0.73	0.09	-0.54	0.27	-0.72	0.02	0.67	-0.30	0.13	-0.03	-0.03	-0.38
Total Lip	-0.04	-0.40	0.65	-0.77	-0.71	0.57	-0.04	0.38	-0.28	0.91	-0.04	-0.72	0.08	0.08	-0.18	0.17	0.18
Total Int	0.60	0.31	-0.33	0.27	-0.06	-0.52	0.40	-0.35	0.40	-0.47	-0.82	0.67	0.62	0.51	0.43	0.08	-0.81
Total MM	-0.50	-0.59	0.41	-0.29	-0.09	0.74	-0.42	0.56	-0.38	0.31	0.76	-0.63	-0.28	-0.71	-0.16	-0.22	0.99
Measured gas	-0.12	-0.09	0.39	-0.38	-0.36	-0.17	-0.14	-0.13	-0.16	0.54	0.10	-0.12	-0.60	0.54	-0.41	0.68	-0.29
Residual gas	0.42	0.82	-0.81	0.68	0.59	-0.29	0.77	-0.24	-0.21	-0.67	-0.27	0.47	0.17	0.00	0.38	-0.60	-0.42
Lost gas	0.02	-0.29	0.65	-0.72	-0.67	-0.05	-0.25	-0.08	0.14	0.79	-0.19	-0.33	-0.13	0.55	-0.32	0.69	-0.33
Total gas	0.05	0.14	0.21	-0.27	-0.26	-0.26	0.09	-0.22	-0.18	0.43	-0.05	-0.02	-0.49	0.60	-0.29	0.55	-0.48
	0-11-7-1	Devid Tel	1	D		0	0			Quit		0.5	Fire		0		01-
Huntly	Cell Tel	Band Tel	Large Tel	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Huntly Cell Tel Band Tel	Cell Tel 1.00 -0 19	Band Tel	Large Tel	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
<i>Huntly</i> Cell Tel Band Tel Large Tel	Cell Tel 1.00 -0.19 -0.48	Band Tel 1.00 -0.22	Large Tel	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
<i>Huntly</i> Cell Tel Band Tel Large Tel Des	Cell Tel 1.00 -0.19 -0.48 -0.30	Band Tel 1.00 -0.22 -0.49	Large Tel 1.00 0.12	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Huntly Cell Tel Band Tel Large Tel Des V-d	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58	Band Tel 1.00 -0.22 -0.49 0.27	Large Tel 1.00 0.12 -0.55	Des 1.00 -0.61	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Huntly Cell Tel Band Tel Large Tel Des V-d Spor	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25	Band Tel 1.00 -0.22 -0.49 0.27 -0.04	Large Tel 1.00 0.12 -0.55 -0.27	Des 1.00 -0.61 -0.17	V-d 1.00 -0.20	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Huntly Cell Tel Band Tel Large Tel Des V-d Spor Cu	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08	Large Tel 1.00 0.12 -0.55 -0.27 0.04	Des 1.00 -0.61 -0.17 -0.59	V-d 1.00 -0.20 0.52	Spor 1.00 -0.25	Cu 1.00	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Huntiy Cell Tel Band Tel Large Tel Des V-d Spor Cu Res	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.03	1.00 0.12 -0.55 -0.27 0.04 -0.27	Des 1.00 -0.61 -0.17 -0.59 0.37	V-d 1.00 -0.20 0.52 -0.51	Spor 1.00 -0.25 0.72	Cu 1.00 -0.59	Res	L-d	Sub	FI	S-Fus	Fus	ŀd	Scel	S	Qtz
Huntly Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.01	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 -0.37	Des 1.00 -0.61 -0.17 -0.59 0.37 -0.09	V-d 1.00 -0.20 0.52 -0.51 -0.15	Spor 1.00 -0.25 0.72 0.94	Cu 1.00 -0.59 -0.30	Res 1.00 0.84	L-d	Sub	FI	S-Fus	Fus	ŀd	Scel	S	Qtz
Huntly Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 0.49	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 0.09	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 0.49 0.07	Des 1.00 -0.61 -0.17 -0.59 0.37 -0.09 0.16 0.22	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.55	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40	Cu 1.00 -0.59 -0.30 0.03 0.27	Res 1.00 0.84 0.21	L-d 1.00 0.04	Sub	F1	S-Fus	Fus	l-d	Scel	S	Qtz
Huntly Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 0.50	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 0.49 0.07 0.12	1.00 -0.61 -0.17 -0.59 0.37 -0.09 0.16 -0.32 0.10	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.55 0.15 0.20	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56	Cu 1.00 -0.59 -0.30 0.03 -0.27 0.40	Res 1.00 0.84 0.21 -0.02 0.82	L-d 1.00 0.04 0.27 0.74	Sub 1.00 -0.60	FI 1.00	S-Fus	Fus	ŀd	Scel	S	Qtz
Huntiy Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil S-Fus	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.59 -0.59	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02 0.61	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 0.49 0.07 -0.13 -0.13 -0.32	Des 1.00 -0.61 -0.17 -0.59 0.37 -0.09 0.16 -0.32 0.19 -0.23	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.15 -0.30 0.48	1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08	Res 1.00 0.84 0.21 -0.02 0.83 -0.19	L-d 1.00 0.04 0.27 0.74	Sub 1.00 -0.60 0.04 0.12	FI 1.00 0.18 -0.08	S-Fus	Fus	I-d	Scel	S	Qtz
Huntly Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fi S-Fus Fus	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.05 0.52	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02 0.61 -0.81	Large Tel 1.00 0.12 -0.55 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01	Des 1.00 -0.61 -0.7 0.59 0.37 -0.09 0.16 -0.32 0.19 -0.23 0.10	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.55 0.15 -0.30 0.48 0.31	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30	Sub 1.00 -0.60 0.04 0.12 -0.62	FI 1.00 0.18 -0.08 0.27	S-Fus 1.00 -0.35 -0.24	Fus 1.00 -0.37	I-d	Scel	S	Qtz
Huntly Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fi S-Fus Fus I-d S-fus Scel	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.05 0.52 -0.24	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02 0.61 -0.81 -0.16	Large Tel 1.00 0.12 -0.55 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23	Des 1.00 -0.61 -0.17 -0.59 0.37 -0.09 0.16 -0.32 0.19 -0.23 0.10 -0.15	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.44	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08	FI 1.00 0.18 -0.08 0.27 0.46	S-Fus 1.00 -0.35 -0.24 0.35	Fus 1.00 -0.37 0.19	I-d 1.00 0.08	Scel 1.00	S	Qtz
Huntly Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fl S-Fus Fus I-d Scel Scel S	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.05 0.52 -0.24 -0.32	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02 0.61 -0.81 -0.16 0.12	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23 -0.54	Des 1.00 -0.61 -0.17 -0.59 0.37 -0.09 0.16 -0.32 0.19 -0.23 0.10 -0.15 0.07	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.55 0.15 -0.30 0.48 0.31 0.07 -0.11	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84 0.87	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.86	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01	FI 1.00 0.18 -0.08 0.27 0.46 0.14	S-Fus 1.00 -0.35 -0.24 0.35 0.66	Fus 1.00 -0.37 0.19 0.14	1.00 0.08 -0.33	Scel 1.00 0.75	s 1.00	Qtz
Huntiy Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fl S-Fus Fus I-d Scel Scel Scel Scel Scel	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.53 -0.39 -0.62 -0.04 -0.59 -0.05 0.52 -0.24 -0.32 -0.32	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02 0.61 -0.81 -0.16 0.12 -0.05	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23 -0.54 -0.54 -0.12	Des 1.00 -0.61 -0.7 0.59 0.37 -0.09 0.16 -0.32 0.19 -0.23 0.10 -0.15 0.07 0.51	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07 -0.11 0.09	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84 0.87 -0.28	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42 -0.63	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.44 0.86 0.03	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95 -0.15	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01 -0.39	FI 1.00 0.18 -0.08 0.27 0.46 0.14 0.27	S-Fus 1.00 -0.35 -0.24 0.35 0.66 0.15	Fus 1.00 -0.37 0.19 0.14 0.28	1-d 1.00 0.08 -0.33 0.17	Scel 1.00 0.75 -0.05	s 1.00 0.00	Qtz 1.00
Huntiy Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fi S-Fus Fus I-d Scel SCel St Caty Clay	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.05 0.52 -0.24 -0.32 -0.22 -0.21 0.29	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02 0.61 -0.81 -0.16 0.12 -0.05 0.58	Large Tel 1.00 0.12 -0.55 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23 -0.54 -0.12 -0.32	Des 1.00 -0.61 -0.7 0.59 0.37 -0.09 0.16 -0.23 0.10 -0.15 0.07 0.51 -0.21	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07 -0.11 0.09 0.50	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84 0.87 -0.28 -0.47	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42 -0.63 -0.21	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.44 0.86 0.03 -0.37	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95 -0.15 -0.40	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01 -0.39 -0.45	FI 1.00 0.18 -0.08 0.27 0.46 0.14 0.14 0.27 0.19	S-Fus 1.00 -0.35 -0.24 0.35 0.66 0.15 -0.28	Fus 1.00 -0.37 0.19 0.14 0.28 0.48	I-d 1.00 0.08 -0.33 0.17 -0.17	Scel 1.00 0.75 -0.05 -0.45	\$ 1.00 0.00 -0.28	Qtz 1.00 0.51
Huntly Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fi S-Fus I-d S-fus S-fus Scel Scel Scel Scel Cu Cu Con	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.05 0.52 -0.24 -0.32 -0.22 -0.24 -0.32 -0.29 -0.31	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.09 0.24 -0.08 0.02 0.61 -0.16 0.12 -0.05 0.58 -0.61	Large Tel 1.00 0.12 -0.55 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23 -0.54 -0.12 -0.32 0.36	Des 1.00 -0.61 -0.17 -0.59 0.37 -0.09 0.16 -0.23 0.19 -0.15 0.07 -0.51 0.07	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07 -0.11 0.09 0.50 -0.40	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84 0.87 -0.28 -0.47 0.15	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42 -0.63 -0.21 -0.56	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.44 0.86 0.03 -0.37 0.12	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95 -0.15 -0.40 0.06	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01 -0.39 -0.45 -0.22	FI 1.00 0.18 -0.08 0.27 0.46 0.14 0.27 0.19 0.54	5-Fus 1.00 -0.35 -0.24 0.35 0.66 0.15 -0.28 0.12	Fus 1.00 -0.37 0.19 0.14 0.28 0.48 -0.19	1.00 0.08 -0.33 0.17 -0.17 0.42	Scel 1.00 0.75 -0.05 -0.45 0.35	\$ 1.00 0.00 -0.28 0.06	Qtz 1.00 0.51 0.56
Huntly Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil S-Fus I-d Scel S Scel S Qtz clay Cbn Fe-O	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.05 0.52 -0.24 -0.32 -0.22 -0.21 0.29 -0.27	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02 0.61 -0.16 0.12 -0.05 0.58 -0.61 0.14 0.14	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23 -0.54 -0.12 -0.32 0.36 -0.26 -0.26	Des 1.00 -0.61 -0.17 -0.59 0.37 -0.09 0.16 -0.23 0.19 -0.23 0.10 -0.15 0.07 0.51 -0.21 0.55 0.02	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07 -0.11 0.09 0.50 -0.40 -0.30	Spor 1.00 -0.25 0.72 0.94 -0.03 0.56 -0.11 -0.19 0.84 0.87 -0.28 -0.47 0.15 0.52	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42 -0.63 -0.21 -0.56 -0.06 0.56	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.44 0.86 0.03 -0.37 0.12 0.77 0.72	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95 -0.15 -0.40 0.06 0.65	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01 -0.39 -0.45 -0.22 0.24 0.24 -0.22 0.24	FI 1.00 0.18 -0.08 0.27 0.46 0.14 0.27 0.19 0.54 -0.26	S-Fus 1.00 -0.35 -0.24 0.35 0.66 0.15 -0.28 0.12 0.77	Fus 1.00 -0.37 0.19 0.14 0.28 0.19 -0.42 -0.19 -0.42	I-d 1.00 0.08 -0.33 0.17 -0.17 0.42 -0.41 -0.41	Scel 1.00 0.75 -0.05 -0.45 0.35 0.11	\$ 1.00 0.00 -0.28 0.06 0.58 0.06	Qtz 1.00 0.51 0.56 -0.38
Huntiy Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil S-Fus Fus I-d Scel S Guz clay Cbn Fe-O Total Vit	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.52 -0.24 -0.25 0.52 -0.24 -0.32 -0.21 0.29 -0.31 -0.27 0.32 -0.22 -0.24 -0.32 -0.25 -0.22 -0.24 -0.25 -0.22 -0.22 -0.24 -0.25 -0.22	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02 0.61 -0.81 -0.16 0.12 -0.05 0.58 -0.61 0.14 0.09 0.27	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23 -0.54 -0.12 -0.36 -0.26 0.35 -0.26 0.35	Des 1.00 -0.61 -0.7 -0.59 0.37 -0.09 0.16 -0.32 0.19 -0.23 0.10 -0.51 0.51 0.51 0.55 0.02 0.92	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07 -0.11 0.09 0.50 -0.40 -0.30 0.07 0.51	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84 0.87 -0.28 -0.47 0.52 -0.92 -0.15	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42 -0.63 -0.21 -0.56 -0.06 0.16 0.16	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.44 0.86 0.03 -0.37 0.12 0.77 -0.76 0.76	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95 -0.15 -0.40 0.06 0.65 -0.97 0.97	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01 -0.39 -0.45 -0.22 0.24 0.04 0.04	FI 1.00 0.18 -0.08 0.27 0.46 0.27 0.19 0.24 -0.26 -0.29 0.10	S-Fus 1.00 -0.35 -0.24 0.35 0.66 0.15 -0.28 0.12 0.77 -0.75 0.75	Fus 1.00 -0.37 0.19 0.14 0.28 0.48 -0.19 -0.42 0.12 0.22	1.00 0.08 -0.33 0.17 -0.17 0.42 -0.41 0.09	Scel 1.00 0.75 -0.05 -0.45 0.35 0.11 -0.83 0.71	s 1.00 0.00 -0.28 0.06 0.58 -0.90 0.00	Qtz 1.00 0.51 0.56 -0.38 0.15
Huntiy Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil S-Fus Fus Fus S-fus Cel S Qtz clay Cbn Fe-O Total Vit Total Vit	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.05 0.52 -0.24 -0.32 -0.21 0.29 -0.31 -0.27 0.32 -0.36 -0.56 -0.57 -0.32 -0.36 -0.57 -0.32 -0.36 -0.57 -0.57 -0.55 -0.57 -0.55	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02 0.61 -0.81 -0.16 0.12 -0.05 0.58 -0.61 0.14 0.09 0.55	Large Tel 1.00 0.12 -0.55 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23 -0.54 -0.12 -0.32 0.36 -0.26 0.35 -0.31 0.21	Des 1.00 -0.61 -0.17 -0.59 0.37 -0.09 0.16 -0.23 0.19 -0.15 0.07 0.51 -0.21 0.55 0.02 0.09	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07 -0.11 0.09 0.50 -0.40 -0.30 0.07 -0.15 -0.30	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84 0.87 -0.28 -0.47 0.52 -0.92 0.91 0.60	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42 -0.63 -0.21 -0.56 -0.21 -0.56 0.16 -0.06 0.16 -0.10 0.02	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.44 0.86 0.03 -0.37 0.12 0.77 -0.76 0.79 0.20	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95 -0.15 -0.40 0.06 0.65 -0.97 0.97 0.97 0.97	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01 -0.39 -0.45 -0.22 0.24 0.04 0.04 0.04 0.04 0.04	FI 1.00 0.18 -0.08 0.27 0.46 0.14 0.27 0.19 0.54 -0.29 0.12 0.51	S-Fus 1.00 -0.35 -0.24 0.35 0.66 0.15 -0.28 0.12 0.77 -0.75 0.71 0.42	Fus 1.00 -0.37 0.19 0.14 0.28 0.48 -0.19 -0.42 0.12 -0.09 0.12	1.00 0.08 -0.33 0.17 -0.17 0.42 -0.41 0.09 -0.30 0.56	Scel 1.00 0.75 -0.05 -0.45 0.35 0.11 -0.83 0.74 0.91	\$ 1.00 0.00 -0.28 0.06 0.58 -0.90 0.89 0.62	Qtz 1.00 0.51 0.56 -0.38 0.15 -0.35 0.15
Huntly Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fi S-Fus Gay Cay Cay Cay Cay Con Fe-O Total Vit Total Lip Total I	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.05 0.52 -0.24 -0.32 -0.32 -0.32 -0.36 -0.32 -0.36 -0.26	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.09 0.24 -0.08 0.02 0.61 -0.81 -0.16 0.12 -0.05 0.58 -0.61 0.14 0.09 0.07 -0.55 0.21	Large Tel 1.00 0.12 -0.55 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23 -0.54 -0.12 -0.32 0.36 -0.26 0.35 -0.31 -0.21 -0.36	Des 1.00 -0.61 -0.17 -0.59 0.37 -0.09 0.16 -0.23 0.19 -0.15 0.07 0.51 -0.21 0.55 0.02 0.09 -0.16 0.32	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07 -0.11 0.09 0.50 -0.40 -0.30 0.07 -0.15 0.15 -0.30 0.07 -0.15 0.15 0.16 -0.30 0.07 -0.15 0.15 0.16 -0.30 0.07 -0.15 0.15 0.16 -0.30 0.07 -0.30 0.09 0.50 -0.30 0.09 0.50 -0.30 0.09 0.50 -0.30 0.09 0.50 -0.30 0.09 0.50 -0.30 0.09 0.05 -0.30 0.09 0.05 -0.30 0.09 0.05 -0.30 0.07 -0.30 0.07 -0.30 0.07 -0.30 0.07 -0.30 0.09 0.07 -0.15 -0.30 0.07 -0.30 0.07 -0.30 0.07 -0.30 0.07 -0.30 0.07 -0.15 -0.30 0.07 -0.30 0.07 -0.15 -0.30 0.07 -0.30 0.07 -0.30 0.07 -0.15 -0.30 0.07 -0.10 -0.30 0.07 -0.15 0.05 -0.30 0.07 -0.15 -0.30 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.10 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.07 -0.15 0.06 0.07 -0.15 0.06 0.07 -0.15 0.06 0.07 -0.06 0.07 -0.06 0.07 -0.06 0.07 -0.06 0.07 -0.06 0.06 0.07 -0.06 0.06 0.06 0.06 0.07 -0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.06	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84 0.87 -0.28 -0.47 0.15 0.52 -0.92 0.91 0.60	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42 -0.63 -0.21 -0.56 -0.06 0.16 -0.10 -0.10 -0.20 20.81	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.86 0.03 -0.37 0.12 0.77 0.76 0.79 0.30	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95 -0.15 -0.40 0.065 -0.97 0.97 0.58 0.33	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01 -0.39 -0.45 -0.22 0.24 0.04 0.16 -0.42 -0.43	FI 1.00 0.18 -0.08 0.27 0.46 0.14 -0.26 -0.29 0.12 0.51 0.41	5-Fus 1.00 -0.35 -0.24 0.35 0.66 0.15 -0.28 0.12 0.77 -0.75 0.71 0.43 0.56	Fus 1.00 -0.37 0.19 0.14 0.28 0.48 -0.19 -0.42 0.12 -0.09 -0.18 0.06	I-d 1.00 0.08 -0.33 0.17 -0.17 0.42 -0.41 0.09 -0.30 0.56 -0.19	Scel 1.00 0.75 -0.05 -0.45 0.35 0.11 -0.83 0.74 0.81 0.06	\$ 1.00 0.00 -0.28 0.06 0.58 -0.90 0.89 0.52 0.42	Qtz 1.00 0.51 0.56 -0.38 0.15 -0.35 0.15 0.74
Huntily Cell Tell Band Tell Large Tel Des V-d Spor Cu Res L-d Sub Fil S-Fus Fus Id Scell Scell S Qiz clay Cbn Fe-O Total Vit Total Lip Total Int Total Int Measured gas	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.05 0.52 -0.24 -0.32 -0.21 0.29 -0.31 -0.27 0.32 -0.36 -0.05 -0.26 -0.32 -0.31 -0.27 0.32 -0.36 -0.36 -0.36 -0.36 -0.36 -0.32 -0.36 -0.32 -0.36 -0.32 -0.32 -0.31 -0.25 -0.24 -0.25 -0.25 -0.24 -0.25 -0.24 -0.32 -0.31 -0.25 -0.36 -0.36 -0.32 -0.32 -0.36 -0.32 -0.32 -0.36 -0.35 -0.32 -0.32 -0.24 -0.32 -0.24 -0.32 -0.24 -0.32 -0.24 -0.35 -0.36 -0.36 -0.32 -0.24 -0.32 -0.24 -0.32 -0.24 -0.35 -0.26 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.25 -0.26 -0.26 -0.36 -0.26 -0.26 -0.26 -0.36 -0.26	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.09 0.24 -0.08 0.02 0.61 -0.16 0.12 -0.05 0.58 -0.61 0.14 0.09 0.07 -0.55 0.21 -0.25 0.21 -0.26	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23 -0.54 -0.12 -0.32 0.36 -0.26 0.35 -0.31 -0.21 -0.36 -0.07	Des 1.00 -0.61 -0.17 -0.59 0.37 -0.09 0.16 -0.32 0.19 -0.23 0.10 -0.15 0.07 0.51 -0.221 0.55 0.02 0.09 -0.16 0.03 0.32 0.05	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07 -0.11 0.09 0.50 -0.40 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.50 -0.40 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.40 -0.30 0.07 -0.40 -0.30 0.07 -0.40 -0.30 0.07 -0.15 -0.30 0.07 -0.40 -0.30 0.07 -0.15 -0.30 0.07 -0.40 -0.30 0.07 -0.15 -0.30 0.07 -0.40 -0.30 0.07 -0.15 -0.30 0.07 -0.40 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.30 0.07 -0.15 -0.06 -0.	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84 0.87 -0.28 -0.28 -0.47 0.15 0.52 -0.92 0.91 0.60 0.19 -0.23	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42 -0.63 -0.21 -0.56 -0.06 0.16 -0.10 -0.02 -0.81 0.17	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.44 0.44 0.86 0.03 -0.37 0.12 0.77 -0.76 0.79 0.30 0.51 -0.04	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95 -0.15 -0.40 0.06 0.65 -0.97 0.97 0.58 0.33 -0.24	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01 -0.39 -0.45 -0.22 0.24 0.04 0.16 -0.42 -0.43 -0.43 -0.39	FI 1.00 0.18 -0.08 0.27 0.46 0.14 0.27 0.46 -0.29 0.54 -0.29 0.12 0.51 0.41 -0.06	S-Fus 1.00 -0.35 -0.24 0.35 0.66 0.15 -0.28 0.12 0.77 -0.75 0.71 0.43 0.56 0.16	Fus 1.00 -0.37 0.19 0.14 0.28 0.19 -0.42 0.19 -0.42 0.12 -0.09 -0.18 0.06 -0.77	1.00 0.08 -0.33 0.17 -0.17 0.42 -0.41 0.09 -0.30 0.56 -0.19 0.30	Scel 1.00 0.75 -0.05 -0.45 0.35 0.11 -0.83 0.74 0.81 0.06 -0.57	\$ 1.00 0.00 -0.28 0.06 0.58 -0.90 0.89 0.52 0.42 -0.31	Qtz 1.00 0.51 0.56 -0.38 0.15 -0.35 0.15 0.74 -0.14
Huntiy Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fl S-Fus Fus Fus S-fus Cay Cbn Fe-O Total Vit Total Vit Total Vit Total MM Measured gas Residual gas	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.52 -0.24 -0.32 -0.31 -0.27 0.32 -0.36 -0.36 -0.35 -0.32 -0.31 -0.27 0.32 -0.36 -0.36 -0.36 -0.32 -0.31 -0.27 0.32 -0.36 -0.36 -0.32 -0.31 -0.32 -0.36 -0.32 -0.36 -0.36 -0.32 -0.32 -0.32 -0.32 -0.36 -0.32 -0.32 -0.32 -0.36 -0.36 -0.32 -0.32 -0.36 -0.36 -0.32 -0.32 -0.36 -0.36 -0.32 -0.36 -0.26	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.09 0.24 -0.08 0.02 0.61 -0.81 -0.16 0.12 -0.05 0.58 -0.61 0.14 0.09 0.07 -0.55 0.21 -0.26 0.11	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 0.49 0.07 -0.13 -0.23 -0.54 -0.12 -0.32 0.36 -0.26 0.35 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.26 -0.26 -0.26 -0.27 -0.32 -0.55 -0.27 -0.32 -0.55 -0.27 -0.32 -0.55 -0.27 -0.32 -0.55 -0.27 -0.32 -0.55 -0.27 -0.32 -0.55 -0.27 -0.32 -0.55 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.25 -0.23 -0.23 -0.23 -0.25 -0.23 -0.23 -0.23 -0.25 -0.23 -0.23 -0.25 -0.23 -0.23 -0.23 -0.25 -0.23 -0.23 -0.25 -0.23 -0.23 -0.25 -0.23 -0.25 -0.23 -0.25 -0.23 -0.25 -0.25 -0.22 -0.32 -0.54 -0.26 -0.26 -0.26 -0.26 -0.26 -0.26 -0.26 -0.26 -0.26 -0.26 -0.26 -0.26 -0.35 -0.31 -0.26 -0.26 -0.26 -0.35 -0.31 -0.26 -0.30 -0.26 -0.35 -0.31 -0.26 -0.30 -0.26 -0.30 -0.26 -0.30 -0.26 -0.30 -0.21 -0.32 -0.31 -0.26 -0.30 -0.30 -0.30 -0.26 -0.30 -0.07 -0.06 -0.07 -0.06 -0.56 -0.57	Des 1.00 -0.61 -0.7 0.59 0.37 -0.09 0.16 -0.32 0.19 -0.15 0.07 0.51 -0.23 0.09 -0.15 0.07 0.51 -0.21 0.55 0.02 0.09 -0.16 0.03 0.32 0.05 -0.47	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07 -0.11 0.09 0.50 -0.40 -0.30 0.07 -0.15 -0.15 -0.15 -0.51 -0.15 -0.30 0.51 -0.15 -0.30 0.51 -0.15 -0.30 0.31 -0.15 -0.51 -0.30 -0.51 -0.30 -0.51 -0.30 -0.51 -0.30 -0.51 -0.30 -0.51 -0.30 -0.51 -0.30 -0.51 -0.30 -0.51 -0.55 -0.55 -0.55 -0.55 -0.55 -0.30 -0.15 -0.30 -0.15 -0.30 -0.15 -0.50 -0.50 -0.15 -0.30 -0.15 -0.30 -0.15 -0.50 -0.50 -0.15 -0.30 -0.50 -0.40 -0.30 -0.40 -0.30 -0.30 -0.55 -0.30 -0.40 -0.30 -0.30 -0.55 -0.30 -0.40 -0.37 -0.15 -0.06 -0.30 -0.37 -0.06 -0.30 -0.37 -0.06 -0.30 -0.37 -0.06 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.06 -0.30 -0.30 -0.30 -0.30 -0.06 -0.06 -0.06 -0.30 -0.06 -	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84 0.87 -0.28 -0.47 0.52 -0.92 0.91 0.60 0.19 -0.23 0.10	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42 -0.63 -0.21 -0.56 -0.06 0.16 -0.10 -0.02 -0.81 0.17 0.44	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.44 0.86 0.03 -0.37 0.12 0.77 -0.76 0.79 0.30 0.51 -0.04 -0.04 -0.04	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95 -0.15 -0.40 0.06 0.65 -0.97 0.58 0.33 -0.34 -0.24 -0.02	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01 -0.39 -0.45 -0.22 0.24 0.04 0.16 -0.42 -0.43 -0.39 0.21	FI 1.00 0.18 -0.08 0.27 0.46 0.27 0.14 0.27 0.19 0.54 -0.26 -0.29 0.12 0.51 0.41 -0.06 0.04	5-Fus 1.00 -0.35 -0.24 0.35 0.66 0.15 -0.28 0.12 0.77 -0.75 0.71 0.43 0.56 0.16 -0.16 -0.57	Fus 1.00 -0.37 0.19 0.14 0.28 0.48 -0.19 -0.42 0.12 -0.09 -0.42 0.12 -0.09 -0.18 0.06 -0.77 0.60	1.00 0.08 -0.33 0.17 -0.17 0.42 -0.41 0.09 -0.30 0.56 -0.19 0.30 0.05	Scel 1.00 0.75 -0.05 -0.45 0.11 -0.83 0.74 0.81 0.06 -0.57 0.45	s 1.00 0.00 -0.28 0.06 0.58 -0.90 0.52 0.42 -0.31 -0.03	Qtz 1.00 0.51 0.56 -0.38 0.15 0.74 -0.14 -0.32
Huntiy Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil S-Fus Fus Fus S-fus Fus Cel S Qtz clay Cbn Fe-O Total Vit Total Lip Total MM Measured gas Residual gas Residual gas Lost gas	Cell Tel 1.00 -0.19 -0.48 -0.30 0.58 -0.25 0.49 -0.53 -0.39 -0.62 -0.04 -0.59 -0.24 -0.24 -0.22 -0.24 -0.32 -0.24 -0.25 -0.24 -0.25 -0.24 -0.25 -0.24 -0.25 -0.24 -0.32 -0.25 -0.24 -0.32 -0.25 -0.24 -0.32 -0.21 -0.32 -0.31 -0.32 -0.32 -0.32 -0.31 -0.32 -0.32 -0.31 -0.32 -0.32 -0.31 -0.32 -0.31 -0.32 -0.31 -0.32 -0.31 -0.32 -0.32 -0.31 -0.32 -0.31 -0.32 -0.32 -0.32 -0.31 -0.32 -0.32 -0.31 -0.32 -0.32 -0.31 -0.32 -0.35 -0.26 -0.12 -0	Band Tel 1.00 -0.22 -0.49 0.27 -0.04 -0.08 0.03 0.09 0.24 -0.08 0.02 0.61 -0.81 -0.16 0.12 -0.05 0.58 -0.61 0.14 0.09 0.07 -0.55 0.21 -0.26 0.11 -0.223	Large Tel 1.00 0.12 -0.55 -0.27 0.04 -0.27 -0.37 0.49 0.07 -0.13 -0.32 0.01 -0.23 -0.54 -0.12 -0.35 -0.35 -0.31 -0.21 -0.36 -0.07 0.06 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.22 -0.37 -0.32 -0.36 -0.22 -0.35 -0.22 -0.32 -0.36 -0.22 -0.35 -0.22 -0.36 -0.22 -0.36 -0.26 -0.36 -0.26 -0.36 -0.26 -0.36 -0.26 -0.36 -0.36 -0.27 -0.37 -0.32 -0.36 -0.36 -0.21 -0.36 -0.26 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.21 -0.36 -0.07 -0.36 -0.07 -0.36 -0.07 -0.36 -0.07 -0.36 -0.07 -0.36 -0.07 -0.06 -0.06 -0.07 -0.06 -0.07 -0.07 -0.06 -0.07	Des 1.00 -0.61 -0.7 -0.59 0.37 -0.09 0.16 -0.23 0.19 -0.15 0.07 0.551 -0.21 0.55 0.02 0.09 -0.16 0.03 0.32 0.05 -0.47 0.02	V-d 1.00 -0.20 0.52 -0.51 -0.15 -0.30 0.48 0.31 0.07 -0.11 0.09 0.50 -0.40 -0.30 0.07 -0.15 0.15 0.15 -0.55 0.15 -0.50 -0.30 0.07 -0.15 0.15 -0.30 0.50 -0.40 -0.50 -0.40 -0.50 -0.50 -0.50 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.30 -0.15 -0.30 -0.48 -0.55 -0.50 -0.40 -0.55 -0.30 -0.40 -0.55 -0.30 -0.55 -0.50 -0.40 -0.55 -0.30 -0.40 -0.55 -0.30 -0.55 -0.30 -0.55 -0.30 -0.55 -0.30 -0.55 -0.30 -0.55 -0.30 -0.55 -0.30 -0.55 -0.30 -0.55 -0.30 -0.55 -0.30 -0.55 -0.30 -0.55 -0.06 -0.06 -0.06 -0.001 -0.07 -0.015 -0.06 -0.06 -0.001 -0.001 -0.06 -0.001 -0.001 -0.001 -0.06 -0.001 -0.0111 -0.0111 -0.011 -0.0111 -0.0111 -0.0111 -0	Spor 1.00 -0.25 0.72 0.94 -0.03 0.40 0.56 -0.11 -0.19 0.84 0.87 -0.28 -0.47 0.52 -0.92 0.91 0.60 0.19 -0.23 0.10	Cu 1.00 -0.59 -0.30 0.03 -0.27 -0.40 -0.08 0.36 -0.13 -0.42 -0.63 -0.21 -0.56 -0.06 0.16 -0.10 -0.02 -0.81 0.17 0.44 0.11	Res 1.00 0.84 0.21 -0.02 0.83 -0.19 -0.44 0.44 0.86 0.03 -0.37 0.12 0.77 -0.76 0.79 0.30 0.51 -0.04 -0.42 0.20	L-d 1.00 0.04 0.27 0.74 -0.03 -0.30 0.79 0.95 -0.15 -0.40 0.06 0.65 -0.97 0.58 0.33 -0.24 -0.22 0.08	Sub 1.00 -0.60 0.04 0.12 -0.62 -0.08 0.01 -0.39 -0.45 -0.22 0.24 0.04 0.16 -0.42 -0.43 -0.39 0.21 -0.40	FI 1.00 0.18 -0.08 0.27 0.46 0.14 0.27 0.19 0.54 -0.29 0.12 0.51 0.41 -0.06 0.04 0.04 0.08	S-Fus 1.00 -0.35 -0.24 0.35 0.66 0.15 -0.28 0.12 0.77 -0.75 0.71 0.433 0.56 0.16 -0.57 0.52	Fus 1.00 -0.37 0.19 0.14 0.28 0.48 -0.19 -0.42 0.12 -0.09 -0.18 0.06 -0.77 0.60 -0.76	1.00 0.08 -0.33 0.17 -0.17 0.42 -0.41 0.09 -0.30 0.56 -0.19 0.30 0.05 0.27	Scel 1.00 0.75 -0.05 -0.45 0.35 0.11 -0.83 0.74 0.81 0.06 -0.57 0.45 -0.57 0.45 -0.57 0.45 -0.53 -0.57 -0.45 -0.53 -0.54 -0.55 -0.55 -0.55 -0.55 -0.55 -0.45 -0.55 -0.45 -0.55 -0.55 -0.55 -0.55 -0.45 -0.55 -0.55 -0.45 -0.55 -0.55 -0.45 -0.55 -0.35 -0.55 -0.35	\$ 1.00 0.00 -0.28 0.06 0.58 -0.90 0.89 0.52 0.42 -0.31 -0.03 -0.04	Qtz 1.00 0.51 0.56 -0.35 0.15 0.74 -0.14 -0.14 -0.32 -0.04

Table 5 Charts showing correlation coefficients for organic petrology and gas volume

0 hai SC3	Cell Tel	Band Tel	Large Tel	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Cell Tel	1.00																
Band Tel	0.71	1.00	1.00														
Large Tel	-0.36	-0.38	1.00	1 00													
V-d	0.30	0.27	-0.00	0.60	1 00												
Spor	-0.07	-0.15	0.67	-0.61	-0.59	1.00											
Cu	0.10	0.41	-0.08	-0.35	0.06	0.04	1.00										
Res	0.59	0.28	0.29	-0.83	-0.40	0.39	0.34	1.00									
L-d	0.67	0.11	0.00	-0.47	-0.15	0.18	-0.07	0.84	1.00								
Sub	0.42	0.03	0.42	-0.63	-0.24	-0.03	-0.05	0.63	0.58	1.00							
FI	-	-	-	-	-	-	-	-		-	1.00						
S-Fus	-0.28	-0.18	0.82	-0.62	-0.77	0.80	-0.09	0.31	0.04	0.11	-	1.00	4 00				
Fus	-0.52	-0.21	-0.03	0.26	0.38	-0.20	0.07	-0.46	-0.57	-0.25	-	0.11	1.00	1.00			
I-d Sool	-0.86	-0.64	0.18	0.48	-0.03	0.02	-0.01	-0.66	-0.68	-0.50	-	-0.03	-0.21	0.43	1.00		
Scel	-0.55	-0.77	0.00	-	-	-0.20	-0.40	-0.15	-	-	-	-0.23	-0.21	-	-	1 00	
Qtz	0.46	0.31	0.42	-0.87	-0.62	0.64	0.33	0.92	0.68	0.41	-	0.56	-0.45	-0.55	-0.32	-	1.00
clay	0.27	0.33	0.59	-0.81	-0.73	0.82	0.11	0.58	0.29	0.18	-	0.78	-0.33	-0.38	-0.54	-	0.82
Cbn	-0.61	-0.64	0.01	0.57	-0.13	-0.35	-0.52	-0.42	-0.15	-0.16	-	-0.05	0.11	0.49	0.78	-	-0.44
Fe-O	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Vit	-0.09	0.12	-0.74	0.89	0.67	-0.69	-0.27	-0.82	-0.54	-0.55	-	-0.70	0.25	0.24	0.05	-	-0.86
Total Lip	0.52	0.20	0.41	-0.88	-0.37	0.40	0.39	0.96	0.75	0.73	-	0.31	-0.40	-0.55	-0.13	-	0.86
Total Int	-0.93	-0.80	0.61	0.11	-0.36	0.34	-0.21	-0.37	-0.46	-0.22	-	0.54	0.43	0.73	0.37	-	-0.22
Total MM	0.38	0.27	0.51	-0.87	-0.72	0.70	0.23	0.86	0.61	0.36	-	0.67	-0.45	-0.50	-0.33	-	0.99
Measured gas	-0.49	-0.30	0.18	0.42	-0.01	-0.28	-0.62	-0.75	-0.65	-0.08	-	0.04	0.36	0.40	0.21	-	-0.69
Residual gas	0.09	0.17	0.45	-0.77	-0.48	0.56	0.49	0.73	0.37	0.24	-	0.68	0.12	-0.39	-0.43	-	0.82
Lost gas	-0.45	-0.28	0.24	-0.33	-0.43	-0.14	-0.38	0.39	0.54	0.41	-	0.06	-0.90	-0.25	0.23	-	0.40
Total gas	-0.45	-0.20	0.54	0.25	-0.13	-0.14	-0.04	-0.02	-0.50	0.05	_	0.21	0.23	0.52	0.17	_	-0.00
Ohai SC1	Cell Tel	Band Tel	Large Tel	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Ohai SC1 Cell Tel	Cell Tel 1.00	Band Tel	Large Tel	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel	Cell Tel 1.00 0.61	Band Tel 1.00	Large Tel	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des	Cell Tel 1.00 0.61 -0.99 0.68	Band Tel 1.00 -0.49 -0 12	Large Tel 1.00 -0 79	Des	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d	Cell Tel 1.00 0.61 -0.99 0.68 0.62	Band Tel 1.00 -0.49 -0.12 -0.09	Large Tel 1.00 -0.79 -0.74	Des 1.00 0.97	V-d	Spor	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94	Large Tel 1.00 -0.79 -0.74 0.48	Des 1.00 0.97 0.15	V-d 1.00 0.21	Spor 1.00	Cu	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.89	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90	Large Tel 1.00 -0.79 -0.74 0.48 -0.82	Des 1.00 0.97 0.15 0.30	V-d 1.00 0.21 0.29	Spor 1.00 -0.87	Cu 1.00	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Des V-d Spor Cu Res	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.89 -0.55	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68	Des 1.00 0.97 0.15 0.30 -0.95	V-d 1.00 0.21 0.29 -1.00	Spor 1.00 -0.87 -0.30	Cu 1.00 -0.20	Res	L-d	Sub	FI	S-Fus	Fus	l-d	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.89 -0.55 0.20	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06	Des 1.00 0.97 0.15 0.30 -0.95 -0.55	V-d 1.00 0.21 0.29 -1.00 -0.51	Spor 1.00 -0.87 -0.30 -0.85	Cu 1.00 -0.20 0.62	Res 1.00 0.56	L-d	Sub	FI	S-Fus	Fus	ŀd	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.89 -0.55 0.20 0.36	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90 0.95	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06 -0.21	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38	Spor 1.00 -0.87 -0.30 -0.85 -0.91	Cu 1.00 -0.20 0.62 0.74	Res 1.00 0.56 0.44	L-d 1.00 0.99	Sub 1.00	F1	S-Fus	Fus	I-d	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.89 -0.55 0.20 0.36 - 0.36	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90 0.95 - 0.64	1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06 -0.21	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41 - 0.84	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38 -	Spor 1.00 -0.87 -0.30 -0.85 -0.91 -	Cu 1.00 -0.20 0.62 0.74 -	Res	L-d	Sub	FI 1.00	S-Fus	Fus	ŀď	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fi S-Fus	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.89 -0.55 0.20 0.36 - 0.18 0.23	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90 0.95 - -0.64 -0.52	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06 -0.21 - - -0.33 -0.28	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41 - 0.84 0.58	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38 - 0.81 0.38	Spor 1.00 -0.87 -0.30 -0.85 -0.91 - 0.65 0.27	Cu 1.00 -0.20 0.62 0.74 - - -0.27	Res 1.00 0.56 0.44 - - -0.84	L-d 1.00 0.99 - - 0.92 -0.92	Sub 1.00 -0.84 -0.65	FI 1.00	S-Fus	Fus	I-d	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil S-Fus Fus	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.89 -0.55 0.20 0.36 - 0.18 0.22	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90 0.95 - - -0.64 -0.52 -0.90	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06 -0.21 - -0.33 -0.28 0.09	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41 - 0.84 0.58 0.47	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38 - 0.81 0.38 0.38 0.38	5por 1.00 -0.87 -0.30 -0.85 -0.91 - 0.65 0.27 0.77	Cu 1.00 -0.20 0.62 0.74 - - 0.27 -0.17 -0.63	Res 1.00 0.56 0.44 - - 0.84 -0.37 -0.42	L-d 1.00 0.99 - -0.92 -0.71 -0.97	Sub 1.00 - -0.84 -0.65 -0.97	FI 1.00 - -	S-Fus 1.00 0.70 0.85	Fus	I-d	Scel	S	Qtz
Ohai SC1 Cell Tel Band Tel Des V-d Spor Cu Res L-d Sub Fi S-Fus Fus I-d S-Fus S-Sel	Cell Tel 1.00 0.61 -0.90 0.68 0.62 -0.62 0.89 -0.55 0.20 0.36 - 0.18 0.23 -0.06	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90 0.95 - -0.64 -0.52 -0.90 0.06	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06 -0.21 - - 0.33 -0.28 0.09 -0.03	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41 - 0.84 0.58 0.47 0.14	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38 - 0.81 0.38 0.38 0.39	5por 1.00 -0.87 -0.30 -0.85 -0.91 - 0.65 0.27 0.77 0.29	Cu 1.00 -0.20 0.62 0.74 -0.27 -0.17 -0.63 0.01	Res 1.00 0.56 0.44 - -0.84 -0.37 -0.42 -0.43	L-d 1.00 0.99 - -0.92 -0.71 -0.97 0.02	Sub 1.00 - -0.84 -0.65 -0.97 0.01	FI 1.00 - - -	S-Fus 1.00 0.70 0.85 0.11	Fus 1.00 0.82 -0.63	I-d 1.00 -0.24	Scel	<u>S</u>	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fi S-Fus Fus I-d Scel Scel Scel	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.89 -0.55 0.20 0.36 - 0.18 0.23 -0.22 -0.62 -	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90 0.95 - -0.64 -0.52 -0.90 0.06 -	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06 -0.21 - - -0.33 -0.28 0.09 -0.03 -	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41 - 0.84 0.58 0.47 0.14 -	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38 - 0.81 0.38 0.38 0.38 0.39 -	Spor 1.00 -0.87 -0.30 -0.85 -0.91 - 0.65 0.27 0.77 0.29 -	Cu 1.00 -0.20 0.62 0.74 - -0.27 -0.17 -0.63 0.01 -	Res 1.00 0.56 0.44 - -0.84 -0.37 -0.42 -0.43 - -	L-d 1.00 0.99 -0.92 -0.71 -0.97 0.02 -	Sub 1.00 - -0.84 -0.65 -0.97 0.01 -	FI 1.00 - - - - -	S-Fus 1.00 0.70 0.85 0.11 -	Fus 1.00 0.82 -0.63 -	1.00 -0.24	Scel 1.00	s 1.00	Qtz
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil S-Fus Fus I-d Scel S Cu	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.85 0.20 0.36 - 0.18 0.23 -0.22 -0.02 - 0.21	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.95 - -0.64 -0.52 -0.90 0.06 - 0.82	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06 -0.21 - -0.33 -0.28 0.09 -0.03 - -0.04	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41 - 0.84 0.58 0.47 0.14 - - 0.58	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38 - 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38	Spor 1.00 -0.87 -0.30 -0.85 -0.91 - 0.65 0.27 0.77 0.29 - -0.90	Cu 1.00 -0.20 0.62 0.74 - -0.27 -0.17 -0.63 0.01 - 0.58	Res 1.00 0.56 0.44 - -0.84 -0.37 -0.42 -0.43 - 0.68	L-d 1.00 0.99 - -0.92 -0.71 -0.97 0.097 0.94	Sub 1.00 - -0.84 -0.65 -0.97 0.01 - 0.93	F1 1.00 - - - - - - - - - -	S-Fus 1.00 0.70 0.85 0.11 - -0.90	Fus 1.00 0.82 -0.63 - -0.45	1.00 -0.24 -0.83	Scel 1.00 -0.33	s 1.00	Qtz 1.00
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fl Sub Fl S-Fus I-d Scel Scel Scel Scel Cu	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.89 -0.55 0.20 0.36 - 0.18 0.23 - 0.18 0.22 -0.06 - 0.21 0.87	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90 0.95 - -0.64 -0.52 -0.90 0.06 - 0.90 0.06 - 0.82 0.91	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06 -0.21 - - -0.33 -0.28 0.09 -0.03 - - -0.04 -0.78	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41 - 0.84 0.58 0.47 0.14 - - 0.57 0.24	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38 - 0.81 0.38 0.38 0.38 0.39 - - 0.61 0.20	Spor 1.00 -0.87 -0.30 -0.85 -0.91 - 0.65 0.27 0.77 0.29 - - -0.90 -0.92	Cu 1.00 -0.20 0.62 0.74 - -0.27 -0.17 -0.63 0.01 - 0.58 0.99	Res 1.00 0.56 0.44 - - 0.84 - 0.37 - 0.42 - 0.43 - 0.68 - 0.11	L-d 1.00 0.99 - -0.92 -0.92 -0.97 0.02 - 0.94 0.65	Sub 1.00 - -0.84 -0.65 -0.97 0.01 - 0.93 0.76	F1 1.00 - - - - - - - - - - - -	S-Fus 1.00 0.70 0.85 0.11 - -0.90 -0.32	Fus 1.00 0.82 -0.63 - -0.45 -0.13	I-d 1.00 -0.24 - -0.83 -0.63	Scel 1.00 - -0.33 -0.11	s 1.00 -	Qtz 1.00 0.65
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil S-Fus Fus I-d Scel Scel S Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.89 -0.55 0.20 0.36 - 0.18 0.23 -0.22 -0.06 - 0.22 -0.06 - 0.87 -0.11 0.87 -0.11	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90 0.95 - - -0.64 -0.52 -0.90 0.06 - 0.82 0.91 -0.84	Large Tel 1.00 -0.79 -0.74 0.48 -0.68 -0.06 -0.21 - -0.33 -0.28 0.09 -0.03 - -0.04 -0.78 -0.02	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41 - 0.84 0.58 0.47 0.14 - -0.57 0.24 0.56	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38 - 0.81 0.38 0.39 - -0.61 0.20 0.45	Spor 1.00 -0.87 -0.30 -0.85 -0.91 - 0.65 0.27 0.77 0.29 - -0.90 -0.92 0.71	Cu 1.00 -0.20 0.62 0.74 - -0.27 -0.17 -0.63 0.01 - 0.58 0.99 -0.54	Res 1.00 0.56 0.44 - -0.84 -0.37 -0.42 -0.43 - 0.68 -0.11 -0.49 -0.49	L-d 1.00 0.99 - -0.92 -0.71 -0.97 0.02 - 0.94 0.65 -0.97	Sub 1.00 - -0.84 -0.65 -0.97 0.01 - 0.93 0.76 -0.94	FI 1.00 - - - - - - - - - - - - - - - - - -	S-Fus 1.00 0.70 0.85 0.11 - -0.90 -0.32 0.88	Fus 1.00 0.82 -0.63 - -0.45 -0.13 0.86	I-d 1.00 -0.24 - -0.83 -0.63 0.99	Scel 1.00 - -0.33 -0.11 -0.26	s 1.00 - -	Qtz 1.00 0.65 -0.82
Ohai SC1 Cell Tel Band Tel Large Tel Des V-d Spor Cu Res L-d Sub Fil S-Fus Fus I-d S-cel S Qtz clay Cbn Fe-O	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.82 0.20 0.36 - 0.18 0.23 -0.22 -0.06 - 0.21 0.87 -0.11 0.87 -0.11 0.87	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90 0.95 - -0.64 -0.52 -0.90 0.06 - 0.82 0.91 -0.84 0.10	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06 -0.21 - - -0.33 -0.28 0.09 -0.03 - - -0.04 - -0.04 - -0.78 - 0.02 - - - - - - - - - - - - -	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41 - 0.84 0.58 0.47 0.14 - - 0.57 0.24 0.56 0.82 0.52	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38 0.38 0.38 0.38 0.39 - -0.61 0.20 0.45 0.65 0.22	5por 1.00 -0.87 -0.30 -0.85 -0.91 - 0.65 0.27 0.77 0.29 - - -0.90 -0.92 0.71 -0.25 0.00	Cu 1.00 -0.20 0.62 0.74 - -0.27 -0.17 -0.63 0.01 - 0.58 0.99 -0.54 0.50 0.50	Res 1.00 0.56 0.44 - -0.84 -0.37 -0.42 -0.43 - 0.68 -0.11 -0.49 -0.60 -0.61 -0.57	L-d 1.00 0.99 - -0.92 -0.71 -0.97 0.02 - 0.94 0.65 -0.97 -0.30 - 0.30	Sub 1.00 - -0.84 -0.65 -0.97 0.01 - 0.93 0.76 -0.94 -0.15 -0.94 -0.15	FI 1.00 - - - - - - - - - - - - - - - - - -	S-Fus 1.00 0.70 0.85 0.11 - - 0.90 -0.32 0.88 0.55 0.55	Fus 1.00 0.82 -0.45 -0.45 -0.13 0.86 0.75 0.62	I-d 1.00 -0.24 - -0.83 -0.63 0.99 0.35	Scel 1.00 - -0.33 -0.11 -0.26 -0.41 -0.27	s 1.00 - - - -	Qtz 1.00 0.65 -0.82 -0.14 -0.14
Ohai SC1 Cell Tei Band Tei Large Tei Des V-d Spor Cu Res L-d Sub Fil S-Fus I-d Scei S Qtz clay Cbn Fe-O Total Viti	Cell Tel 1.00 0.61 -0.99 0.68 0.62 -0.62 0.20 0.36 - 0.18 0.23 -0.22 -0.62 - 0.21 0.87 - 0.21 0.81 -0.73 0.73	Band Tel 1.00 -0.49 -0.12 -0.09 -0.94 0.90 0.17 0.90 0.95 - - -0.64 -0.52 -0.90 0.06 - 0.82 0.91 -0.84 0.10 -0.84 0.10 -0.84 0.10 -0.84 0.10 -0.84 0.91 -0.84 0.91 -0.84 0.91 -0.91 -0.91 -0.90 -0.94 -0.90 -0.94 -0.90	Large Tel 1.00 -0.79 -0.74 0.48 -0.82 0.68 -0.06 -0.21 - - -0.33 -0.28 0.09 -0.03 - - -0.04 - -0.78 - 0.02 - 0.84 0.60 0.02	Des 1.00 0.97 0.15 0.30 -0.95 -0.55 -0.41 - - - 0.84 0.58 0.47 0.14 - - 0.57 0.24 0.56 0.82 -0.02 0.55	V-d 1.00 0.21 0.29 -1.00 -0.51 -0.38 0.38 0.38 0.38 0.39 - -0.61 0.20 0.45 0.65 0.05 0.55	Spor 1.00 -0.87 -0.30 -0.85 -0.91 - 0.65 0.27 0.77 0.29 - - -0.90 -0.92 0.71 -0.25 0.98 0.88	Cu 1.00 -0.20 0.62 0.74 -0.27 -0.17 -0.63 0.01 - 0.58 0.99 -0.54 0.50 -0.90 0.50	Res 1.00 0.56 0.44 -0.84 -0.84 -0.37 -0.42 -0.43 - 0.68 -0.11 -0.49 -0.60 -0.17 0.65	L-d 1.00 0.99 - 0.92 -0.71 -0.97 0.02 - 0.94 0.65 -0.97 -0.30 -0.72 0.98	Sub 1.00 - -0.84 -0.65 -0.97 0.01 - 0.93 0.76 -0.94 -0.15 -0.81 0.07	FI 1.00 - - - - - - - - - - - - -	S-Fus 1.00 0.70 0.85 0.11 - -0.90 -0.32 0.88 0.55 0.49 0.02	Fus 1.00 0.82 -0.45 -0.45 -0.13 0.86 0.75 0.09 0.60	1.00 -0.24 - - 0.83 -0.63 0.99 0.35 0.64	Scel 1.00 - -0.33 -0.11 -0.26 -0.41 0.37 0.16	s 1.00 - - - - -	Qtz 1.00 0.65 -0.82 -0.14 -0.81 0.98

-0.93

0.68

-0.20

-0.26

-0.95

-0.42

-0.88

0.78

-0.10

-0.28

-0.98

-0.32

-

-

-

-

-

-

0.92

-0.38

0.29

0.32

0.74

0.49

0.91

-0.10

0.82

-0.44

0.59

0.93

0.96

-0.63

0.36

0.04

0.94

0.55

-0.27

-0.22

-0.82

0.95

-0.06

-0.74

-0.78

0.71

0.10 -0.58

-0.87

-0.13

-

-

-

-

-

-

-0.59

-0.01

-0.14

-0.48

-0.28

-0.29

Total Int

Total MM

Lost gas

Total gas

Measured gas

Residual gas

0.07

0.84

0.55

-0.23

-0.50

0.49

-0.74

0.90

0.03

-0.24

-0.99

-0.17

-0.19

-0.73

-0.52

0.11

0.38

-0.49

0.68

0.17

0.44

0.19

0.25

0.56

0.56

0.10

0.20

0.42

0.21

0.33

0.61

-0.95

-0.32 0.56

0.93

-0.10

-0.39

0.97

0.31

-0.25

-0.84

0.16

Appendix K: Graphs of correlations (from correlation charts)

Figure 1: Ohai SC3 significant correlations with gas and proximate data, based on correlation chart.

Figure 3: Greymouth 944 significant correlations with gas and proximate data, based on correlation chart.

Figure 4: Huntly TW1 significant correlations with gas and proximate data, based on correlation chart.

Figure 6: Ohai SC3 mainseam significant correlations with gas and XRF data, based on correlation chart.

5.0

5.5

6.0

Figure 7: Ohai SC1 significant correlations with gas and XRF data, based on correlation chart.

Figure 8: Greymouth 944 significant correlations with gas and XRF data, based on correlation chart.

5.2

Total gas, m³/t

4.7

5.7

4.2

4.7

5.2

Total gas, m³/t

5.7

4.2

Figure 11: Ohai SC1 significant correlations with gas and XRD data, based on correlation chart.

Figure 12: Greymouth 944 significant correlations with gas and XRD data, based on correlation chart.

Figure 13: Huntly TW1 significant correlations with gas and XRD data, based on correlation chart.

Figure 14: Ohai SC3 significant correlations with gas and maceral data, based on correlation charts.

Figure 15: Ohai SC3 significant correlations with gas and maceral data, based on correlation charts., continued.

Figure 17: Greymouth 944 significant correlations with gas and maceral data, based on correlation chart.

Figure 18: Greymouth 944 significant correlations with gas and maceral data, based on correlation chart, continued.

Figure 19: Huntly significant correlations with gas and maceral data, based on correlation charts.