Hereditary Convexity for Harmonic Homeomorphisms

NGIN-TEE KOH

ABSTRACT. We study hereditary properties of convexity for planar harmonic homeomorphisms on a disk and an annulus. A noteworthy class of examples with the hereditary property arises from energy-minimal diffeomorphisms of an annulus, whose existence was established in [9, 11]. An extension of a result by Hengartner and Schober [8] to an annulus is used to deduce the boundary behavior of a harmonic mapping from an annulus into a doubly-connected region bounded by two convex Jordan curves.

1. Introduction

Harmonic mappings, which are complex-valued orientation-preserving univalent functions satisfying Laplace's equation $\Delta f=0$ on their respective domains in \mathbb{C} , bear some curious features. For example, while harmonic mappings of hyperbolic regions generally do not decrease either the Euclidean metric or the hyperbolic metric (because a result of Heinz [6, Lemma] is optimal—see, e.g., [4, p. 77] or [12, p. 91]), it was shown in [12, Theorem 1.1] that harmonic mappings preserving the unit disk \mathbb{D} decrease the Lebesgue area measure of concentric disks $\mathbb{D}_r = \{z \in \mathbb{C} : |z| \le r < 1\}$.

If the image of the unit disk under a conformal mapping is a convex region Ω , then the image of every disk in $\mathbb D$ is also convex (see, e.g., [3, proof of Theorem 2.11] or [16]). On the other hand, the situation for harmonic mappings is markedly different. The harmonic mapping

$$f(z) = \operatorname{Re} \frac{z}{1-z} + i \operatorname{Im} \frac{z}{(1-z)^2}$$

maps $\mathbb D$ onto the half plane $\{w: w > -\frac{1}{2}\}$, which is convex, but $f(\mathbb D_r)$ is not convex for $\sqrt{2}-1 < r < 1$ (see, e.g., [2, Example 5.5] or [4, pp. 46–48]). This is related to the fact that unidirectional convexity is not a hereditary property of holomorphic univalent functions (see, e.g., [2, Theorem 5.3; 5; 7]). Hence, convexity is not a hereditary property of harmonic mappings in general. Nevertheless, we obtain sufficient conditions for this hereditary property to be present in harmonic mappings. We also study a related hereditary property of harmonic mappings between doubly-connected regions, which is the main subject of this paper.

2. Connection with the Doubly-Connected Case

For 0 < r < 1, let A_r denote the annulus $\{z \in \mathbb{C} : r < |z| < 1\}$, let $\overline{A_r}$ denote its closure, and let \mathbb{T}_r denote the circle $\{z \in \mathbb{C} : |z| = r\}$. We will use \mathbb{T} to represent the unit circle $\partial \mathbb{D}$. Harmonic diffeomorphisms will refer to harmonic mappings that are diffeomorphisms.

At first glance, our following result may appear somewhat surprising.

Theorem 2.1. Let h be a harmonic diffeomorphism of \mathbb{D} into a bounded convex region Ω_0 in the finite plane such that the radial limit $\lim_{r\to 1} h(re^{i\theta})$ lies on $\partial\Omega_0$ for almost all θ . Suppose that, on $\mathbb{A}_{\sqrt{2}-1}$,

(2.1)
$$\Delta \operatorname{Im} \log \left(1 - \frac{\bar{z} h_{\bar{z}}}{z h_{z}} \right) = 0,$$

where $h_z = \partial h/\partial z$, $h_{\bar{z}} = \partial h/\partial \bar{z}$, and Δ represents the Laplace operator. Then, $h(\mathbb{D}_r)$ is a strictly convex region for 0 < r < 1.

Remark. If h is conformal, then $1 - \bar{z}h_{\bar{z}}/(zh_z) \equiv 1$. Hence, its argument function $\text{Im} \log(1 - \bar{z}h_{\bar{z}}/(zh_z))$ is a constant integer multiple of 2π .

In view of condition (2.1), we have stated Theorem 2.1 for harmonic diffeomorphisms in place of harmonic mappings. This is nonetheless hardly a restriction, since a result of Lewy (see, e.g., [4, p. 20] or [14, Theorem 1]) shows that the Jacobian of a harmonic mapping does not vanish at any point.

A harmonic mapping f of $\mathbb D$ into a bounded region has bounded real and imaginary parts. By Fatou's Theorem [17, Theorem IV.6], the angular limits of f exist almost everywhere on $\partial \mathbb D$. Hence, the radial limit assumption in Theorem 2.1 is apparently weaker than customarily requiring either the convexity of $h(\mathbb D)$ or the surjectivity of h.

Given a harmonic mapping g of \mathbb{D} , where $g(\mathbb{D})$ is a convex region, it is known that $g(\mathbb{D}_r)$ is convex for $r \in (0, \sqrt{2} - 1]$ (see, e.g., [4, p. 46] or [15, Theorem 1]). This explains the focus on $\mathbb{A}_{\sqrt{2}-1}$ in Theorem 2.1. More generally, we prove the following.

Theorem 2.2. Let h be a harmonic diffeomorphism of A_{ρ} into a doubly-connected region Ω bounded by two convex Jordan curves in the finite plane such that the

radial limits $\lim_{r\to 1} h(re^{i\theta})$ and $\lim_{r\to \rho} h(re^{i\varphi})$ lie on $\partial\Omega$ for almost all θ and φ . If (2.1) holds on \mathbb{A}_{ρ} , then $h(\mathbb{T}_r)$ is a strictly convex curve for $\rho < r < 1$.

Suppose f is a bounded harmonic mapping of \mathbb{A}_{ρ} . The compact set $\partial \mathbb{A}_{\rho}$ may be covered by a finite number of simply-connected neighborhoods R_1, R_2, \ldots, R_n in $\overline{\mathbb{A}_{\rho}}$ whose boundaries are Jordan curves. For each integer $k \in [1, n]$, let g_k be a conformal mapping of \mathbb{D} onto the interior of R_k . By Fatou's Theorem, the harmonic mapping $f \circ g_k$ has angular limits almost everywhere on \mathbb{T} . The isogonality of g_k at each boundary point of \mathbb{T} (see, e.g., [17, Theorem IX.5 and the subsequent paragraph]) implies that f has angular limits almost everywhere on $\partial \mathbb{A}_{\rho} \cap R_k$. It follows that f has angular limits almost everywhere on $\partial \mathbb{A}_{\rho} = \bigcup_{k=1}^n (\partial \mathbb{A}_{\rho} \cap R_k)$. Hence, the radial limit assumption in Theorem 2.2 may appear to be weaker than requiring either the boundary components of $h(\mathbb{A}_{\rho})$ to be convex Jordan curves or h to be surjective. While the latter comparison is correct, it will follow from Corollary 4.2 in Section 4 that the radial limit assumption in Theorem 2.2 implies that the boundary components of $h(\mathbb{A}_{\rho})$ are convex Jordan curves.

3. ILLUSTRATIVE EXAMPLES

Definition 3.1. An orientation-preserving homeomorphism $h: \mathbb{A}_{\rho} \to \Omega$ is said to be energy-minimal if h minimizes the quantity

(3.1)
$$E(f) = \iint_{\mathbb{A}_{\rho}} |f_z|^2 + |f_{\bar{z}}|^2$$

among all orientation-preserving homeomorphisms $f: \mathbb{A}_{\rho} \longrightarrow \Omega$ with $E(f) < \infty$.

Remark 3.2. An energy-minimal homeomorphism $h: \mathbb{A}_{\rho} \to \Omega$ exists as long as the conformal modulus of \mathbb{A}_{ρ} does not exceed that of Ω (see, e.g., [9, Theorem 1.1] or [11, Theorem 1.1]).

Remark 3.3. Energy-minimal homeomorphisms are diffeomorphisms [10, Theorem 1.2]. This can also be seen as a consequence of their harmonicity (see, e.g., [14, Theorem 1] and the next remark). Henceforth, we refer to them as energy-minimal diffeomorphisms.

Remark 3.4. Since Poisson modification decreases the quantity in (3.1) (see, e.g., [1, proof of Lemma 7] or [9, Lemma 4.2]), energy-minimal diffeomorphisms are necessarily harmonic [9, Proposition 8.1 and Theorem 2.3].

It turns out that an energy-minimal diffeomorphism $h: \mathbb{A}_{\rho} \to \Omega$ satisfies (2.1). Since h is an orientation-preserving diffeomorphism,

$$(3.2) |h_z| > |h_{\bar{z}}|$$

on A_{ρ} . It was shown in [9, Lemma 6.1] that

$$(3.3) h_z \overline{h_{\bar{z}}} = \frac{m}{z^2},$$

where m is a real constant. We can rewrite (3.3) as

$$\frac{\bar{z}h_{\bar{z}}}{zh_z}=\frac{m}{|z|^2\,|h_z|^2},$$

which, in view of (3.2), yields

$$-1<\frac{\bar{z}h_{\bar{z}}}{zh_{\bar{z}}}<1,$$

and thus the function $1 - \bar{z}h_{\bar{z}}/(zh_z)$ is real and positive. Consequently, its argument function $\text{Im}\log(1 - \bar{z}h_{\bar{z}}/(zh_z))$ is a constant integer multiple of 2π . Theorem 2.2 now yields the following result.

Theorem 3.5. Let $h: \mathbb{A}_{\rho} \to \Omega$ be an energy-minimal diffeomorphism, where Ω is a doubly-connected region bounded by two convex Jordan curves in the finite plane. Then, $h(\mathbb{T}_r)$ is a strictly convex curve for $\rho < r < 1$.

We conclude this section with a family of examples for which

$$\operatorname{Im}\log\left(1-\frac{\bar{z}h_{\bar{z}}}{zh_{z}}\right)$$

is not constant. Define $h: \mathbb{A}_{\rho} \to \mathbb{C}$ by

$$h(z) = \frac{z+a}{1+az} - b\log|z|,$$

where $a \in (0,1)$ and $b = a(1-\rho^2)/((1-\rho^2a^2)\log\rho) < 0$. Then, h is harmonic, and

$$1 - \frac{\bar{z}h_{\bar{z}}}{zh_z} = \frac{2(1-a^2)z}{2(1-a^2)z - b(1+az)^2},$$

which is meromorphic on \mathbb{A}_{ρ} . Another elementary computation shows that the Jacobian

$$|h_z|^2 - |h_{\bar{z}}|^2 = \frac{(1-a^2)^2}{|1+az|^4} \left(1 - \frac{b}{1-a^2} \operatorname{Re} \frac{(1+az)^2}{z}\right),$$

whose last factor on the right-hand side has its minimum on $\overline{\mathbb{A}_{\rho}}$ at $z=-\rho$. Hence, h will be a harmonic diffeomorphism of \mathbb{A}_{ρ} onto \mathbb{A}_{σ} satisfying (2.1) for values of a and ρ such that this minimum is positive, where we have that $\sigma = \rho(1-a^2)/(1-\rho^2a^2) \in (0,\rho)$. An instance of this occurs at $a=\rho=\frac{1}{2}$.

4. Auxiliary Results on Boundary Behavior

Let θ and φ denote polar angles. In this section, we study the boundary behavior of a harmonic mapping between an annulus \mathbb{A}_{ρ} and a doubly-connected region Ω bounded by two Jordan curves that is not necessarily surjective, but whose radial limits at $\partial \mathbb{A}_{\rho}$ are contained in $\partial \Omega$.

Proposition 4.1. Let h be a harmonic mapping of \mathbb{A}_{ρ} into a doubly-connected region Ω bounded by two Jordan curves C_1 and C_{ρ} in the finite plane such that the radial limits $\lim_{r\to 1} h(re^{i\theta})$ and $\lim_{r\to \rho} h(re^{i\phi})$ lie on C_1 and C_{ρ} , respectively, for almost all θ and φ . Then, there is a countable set $W \subset \partial \mathbb{A}_{\rho} = \mathbb{T} \cup \mathbb{T}_{\rho}$ such that the unrestricted limits

$$H(e^{i\theta}) = \lim_{z \to e^{i\theta}} h(z), \quad H(\rho e^{i\varphi}) = \lim_{z \to \rho e^{i\varphi}} h(z)$$

exist on $\partial A_{\rho} \setminus W$, and are contained in C_1 and C_{ρ} , respectively. Moreover, we have the following:

- (a) H is both continuous and orientation-preserving on $\mathbb{T} \setminus W$ and $\mathbb{T}_{\rho} \setminus W$.
- (b) For each $e^{i\theta} \in W$, the one-sided limits

$$\begin{split} H(e^{i\theta^-}) &= \lim_{\sigma \to \theta^-, e^{i\sigma} \notin W} H(e^{i\sigma}), \\ H(e^{i\theta^+}) &= \lim_{\sigma \to \theta^+, e^{i\sigma} \notin W} H(e^{i\sigma}) \end{split}$$

exist, belong to C_1 and are distinct.

(c) For each $\rho e^{i\phi} \in W$, the one-sided limits

$$H(\rho e^{i\varphi^{-}}) = \lim_{\sigma \to \varphi^{-}, \rho e^{i\sigma} \notin W} H(\rho e^{i\sigma}),$$

$$H(\rho e^{i\varphi^{+}}) = \lim_{\sigma \to \varphi^{+}, \rho e^{i\sigma} \notin W} H(\rho e^{i\sigma})$$

exist, belong to C_{ρ} and are distinct.

(d) The cluster sets of h at the points $e^{i\theta} \in W$ and $\rho e^{i\varphi} \in W$ are the line segments joining $H(e^{i\theta-})$ to $H(e^{i\theta+})$ and $H(\rho e^{i\varphi-})$ to $H(\rho e^{i\varphi+})$, respectively.

A version of the above result for harmonic mappings between $\mathbb D$ and bounded simply-connected regions with locally-connected boundary was given by Hengartner and Schober [8, Theorem 4.3]. Since the conclusions concern local properties of h, we may obtain Proposition 4.1 by covering $\partial \mathbb A_\rho$ with a finite number of simply-connected neighborhoods R_1, R_2, \ldots, R_n in $\overline{\mathbb A_\rho}$ whose boundaries are Jordan curves, and applying Hengartner and Schober's result to the harmonic mapping $h \circ g_k$, where g_k is a conformal mapping of $\mathbb D$ onto the interior of R_k for each integer $k \in [1, n]$. A noteworthy consequence of Proposition 4.1, besides Corollary 4.2 below, is that h may be extended continuously to $\partial \mathbb A_\rho$ outside the countable set W, and that each boundary point of $h(\mathbb A_\rho)$ corresponds to a nonempty "pre-image" (with infinitely many points on a boundary line segment of $h(\mathbb A_\rho)$ associated with a "pre-image" point in W from (d)). These facts will prove their worth in Section 5.

Suppose f is a harmonic mapping of \mathbb{A}_{ρ} into a doubly-connected region Ω bounded by two convex Jordan curves in the finite plane such that the radial limits $\lim_{r\to 1} f(re^{i\theta})$ and $\lim_{r\to \rho} f(re^{i\varphi})$ lie on $\partial\Omega$ for almost all θ and φ . The radial limits $\lim_{r\to 1} f(re^{i\theta})$ and $\lim_{r\to \rho} f(re^{i\varphi})$ are contained in distinct boundary components of $f(\mathbb{A}_{\rho})$ by virtue of the fact that f is a homeomorphism (see, e.g., [13, p. 11]), and thus they lie on distinct boundary components of $\partial\Omega$. It follows from Proposition 4.1 that the boundary of $f(\mathbb{A}_{\rho})$ consists of two Jordan curves. Since any inner boundary line segment of $f(\mathbb{A}_{\rho})$ has to be a subset of the inner boundary of Ω , the inner boundaries of $f(\mathbb{A}_{\rho})$ and Ω must coincide. On the other hand, replacing any outer boundary sub-arc γ of $\partial\Omega$ with a line segment joining the endpoints of γ results in a convex Jordan curve. Hence, we have the following result.

Corollary 4.2. Let h be a harmonic mapping of \mathbb{A}_{ρ} into a doubly-connected region Ω bounded by two convex Jordan curves in the finite plane such that the radial limits $\lim_{r\to 1} h(re^{i\theta})$ and $\lim_{r\to \rho} h(re^{i\varphi})$ lie on $\partial\Omega$ for almost all θ and φ . Then, the boundary of $h(\mathbb{A}_{\rho})$ consists of two convex Jordan curves, of which the inner boundary curve coincides with the inner boundary curve of Ω .

5. SECANT BEHAVIOR NEAR THE BOUNDARY

Suppose h is a harmonic diffeomorphism of \mathbb{A}_{ρ} into a doubly-connected region Ω bounded by two convex Jordan curves in the finite plane such that the radial limits $\lim_{r\to 1} h(re^{i\theta})$ and $\lim_{r\to \rho} h(re^{i\varphi})$ lie on $\partial\Omega$ for almost all θ and φ . For each $\tau>0$, let

$$f_{\tau}(re^{i\theta}) = \frac{h(re^{i(\theta+\tau)}) - h(re^{i\theta})}{\tau},$$

and let $\psi_{\tau}(z) = \arg f_{\tau}(z)$ for all $z = re^{i\theta} \in \mathbb{A}_{\rho}$. We will establish the following result.

Lemma 5.1. The period of $\psi_{\tau} - \theta$ is 2π , and the single-valued harmonic functions $\psi_{\tau} - \theta$ are uniformly bounded on \mathbb{A}_{ρ} for sufficiently small τ .

Since the radial limits $\lim_{r\to 1} h(re^{i\theta})$ and $\lim_{r\to \rho} h(re^{i\varphi})$ are contained in distinct boundary components of $\partial\Omega$, it follows from Proposition 4.1 that h has a continuous extension to $\overline{\mathbb{A}_{\rho}} \setminus W$ for some countable set $W \subset \partial \mathbb{A}_{\rho}$. The orientation-preserving feature of h carries over to $\mathbb{T} \setminus W$ and $\mathbb{T}_{\rho} \setminus W$, and by Corollary 4.2, the boundary components of $h(\mathbb{A}_{\rho})$ are convex Jordan curves, one of which is a curve Γ containing a point a' such that

$$|a'| = \sup_{z \in \mathbb{A}_{\rho}} |h(z)|.$$

We may suppose, without loss of generality, that

$$(5.1) h(\mathbb{T} \setminus W) \subseteq \Gamma.$$

The line L through a' that makes an angle of $\arg a' + \pi/2$ with the positive real axis is a supporting line of Γ . We let c' be a point on Γ that has a parallel supporting line distinct from L, and pick distinct points b' and d' on Γ that have supporting lines parallel to the line segment a'c'. The points a', b', c', and d' are chosen so that they follow one another in the positive direction around Γ , and we denote the angles made by their supporting lines with the positive real-axis by α , β , $\alpha + \pi$, and $\beta + \pi$, respectively, such that

$$\alpha < \beta < \alpha + \pi < \beta + \pi < \alpha + 2\pi$$
.

By virtue of the results obtained in Section 4 (see, e.g., Proposition 4.1 and the subsequent paragraph), we may choose on \mathbb{T} four associated "pre-image" points a, b, c, and d of a', b', c', and d', respectively. Let A, B, C, and D be the overlapping open arcs on \mathbb{T} from a to c, from b to d, from c to a, and from d to b, respectively. We then cover \mathbb{T} with a finite number of sufficiently small open disks D_1, D_2, \ldots, D_n such that the following hold:

- (1) Each disk D_k intersects \mathbb{T} in an arc A_k that is contained within at least one of the arcs A, B, C, or D.
- (2) The endpoints a_k , b_k of each A_k do not coincide with any of the points a, b, c, or d.

By so doing, we obtain a finite number of simply-connected sets

$$R_1 = \overline{\mathbb{A}_{\rho}} \cap D_1$$
, $R_2 = \overline{\mathbb{A}_{\rho}} \cap D_2$, ..., $R_n = \overline{\mathbb{A}_{\rho}} \cap D_n$

in $\overline{\mathbb{A}_{\rho}}$ whose respective boundaries are Jordan curves, and $R_k \cap \mathbb{T} = A_k$ for each k. Fix $\delta \in (0, \pi/2)$. For each integer $k \in [1, n]$, let g_k be a conformal mapping of \mathbb{D} onto the interior R_k° of R_k such that the harmonic measure

$$\omega(g_k(0), A_k, R_k^{\circ}) = 2\delta$$
 and $A_k = \{g_k(e^{is}): -\delta < s < \delta\}.$

This may be achieved by extending g_k to a homeomorphism of $\bar{\mathbb{D}}$ and making appropriate choices of $g_k(0)$ and $g_k(e^{is})$ for one particular s. If

$$J = \{s \colon -\pi < s < -2\delta\} \cup \{s \colon 2\delta < s \le \pi\},\$$

then for all $s \in J$ and $t_k \in (-\delta, \delta)$, we have

$$\delta < |s - t_k| < \frac{3\pi}{2}, \quad \cos(s - t_k) < \cos\delta,$$

and thus

$$1 - 2r_k \cos(s - t) + r_k^2 > 1 - 2r_k \cos \delta + r_k^2$$
$$= \sin^2 \delta + (r_k - \cos \delta)^2 \ge \sin^2 \delta.$$

We fix

(5.2)
$$\tau \in (0, d(\{a, b, c, d\}, \bigcup_{k=1}^{n} \{a_k, b_k\})),$$

where $d(X,Y) = \inf\{d(x,y) : x \in X, y \in Y\}$, and d(x,y) denotes the Euclidean distance between the points x and y. The harmonicity of

$$(5.3) u_{\tau} = \operatorname{Im}(e^{-i\alpha}f_{\tau})$$

on \mathbb{A}_{ρ} implies that the compositions $u_{\tau} \circ g_k$ are harmonic on \mathbb{D} for all k, and thus

$$(5.4) u_{\tau}(g_k(r_k e^{it_k})) = \int_{-\pi}^{\pi} u_{\tau}(g_k(e^{is})) \cdot P_k(e^{is}) \, \mathrm{d}s,$$
$$= \left(\int_{-2\delta}^{2\delta} + \int_{J} u_{\tau}(g_k(e^{is})) \cdot P_k(e^{is}) \, \mathrm{d}s,$$

where

$$P_k(e^{is}) = \frac{1 - r_k^2}{2\pi (1 - 2r_k \cos(s - t_k) + r_k^2)}, \quad 0 \le r_k \le 1.$$

If $A_k \subseteq A$, then the first integral on the second line in (5.4) is non-negative by virtue of the fact that the restriction of u_{τ} to A_k is non-negative. The second integral, on the other hand, may be estimated as follows. If $\varepsilon > 0$, then on each set

$$S_k = \left\{ r_k e^{it_k} \in \mathbb{D} \colon 1 - \frac{\varepsilon \sin^2 \delta}{4|a'|} < r_k \le 1, \ -\delta < t_k < \delta \right\},\,$$

we have

$$\bigg|\int_I u_\tau(g_k(e^{is}))\cdot P_k(e^{is})\,\mathrm{d} s\bigg| \leq \frac{2|a'|(1-r_k^2)}{\sin^2\delta} < \frac{4|a'|(1-r_k)}{\sin^2\delta} < \varepsilon.$$

Hence, for each $\varepsilon > 0$, there is a set S_k containing $g_k^{-1}(A_k)$ such that

$$(5.5) (u_{\tau} \circ g_k) > -\varepsilon.$$

A similar argument applied to each of the other cases

$$A_k \subseteq B$$
, $A_k \subseteq C$, $A_k \subseteq D$

(with α replaced by β , $\alpha + \pi$, $\beta + \pi$, respectively) also yields $S_k \supset g_k^{-1}(A_k)$ such that (5.5) is valid.

Fix r sufficiently close to 1 such that

$$(5.6) \mathbb{T}_r \subset \bigcup_{k=1}^n g_k(S_k) \setminus \mathbb{T}.$$

Since f_T is non-zero on the compact set \mathbb{T}_r , there exists $m_r > 0$ such that

$$(5.7) |f_{\tau}| \ge m_r$$

on \mathbb{T}_r . Pick $k_r > 0$ satisfying

(5.8)
$$\varepsilon_r = \arcsin \frac{k_r}{m_r} < \frac{1}{2} \min \{ \beta - \alpha, \alpha + \pi - \beta \}.$$

Since

$$u_{\tau} = \operatorname{Im}(e^{-i\alpha}f_{\tau}) = |f_{\tau}|\sin(\psi_{\tau} - \alpha),$$

it follows from (5.7) that on $g_k(S_k) \cap \mathbb{T}_r$,

$$\sin(\psi_{\tau} - \alpha) > -\frac{k_r}{m_r}$$

if $A_k \subseteq A$, and thus

$$(5.9) -\varepsilon_r < \psi_\tau - \alpha < \pi + \varepsilon_r.$$

Likewise, on $g_k(S_k) \cap \mathbb{T}_r$,

(5.10)
$$\begin{cases} -\varepsilon_r < \psi_\tau - \beta < \pi + \varepsilon_r & \text{if } A_k \subseteq B; \\ -\varepsilon_r < \psi_\tau - (\alpha + \pi) < \pi + \varepsilon_r & \text{if } A_k \subseteq C; \\ -\varepsilon_r < \psi_\tau - (\beta + \pi) < \pi + \varepsilon_r & \text{if } A_k \subseteq D. \end{cases}$$

In particular, on \mathbb{T}_r , we obtain

$$\psi_{\tau}(re^{i(\theta+2\pi)}) = \psi_{\tau}(re^{i\theta}) + 2\pi,$$

though this may also be seen from the fact that $h(\mathbb{T}_r)$ is a Jordan curve. Hence, $\psi_{\tau} - \theta$ is a single-valued harmonic function on \mathbb{A}_{ρ} .

In view of (5.8), (5.9), and (5.10), we see that $\psi_{\tau}(re^{i\theta}) - \theta$ is uniformly bounded for all τ and r satisfying (5.2) and (5.6), respectively. A similar argument could be applied to \mathbb{T}_{ρ} to obtain a corresponding result when r is sufficiently close to ρ . This proves Lemma 5.1, since $\psi_{\tau} - \theta$ is continuous on \mathbb{A}_{ρ} .

6. Proof of Theorem 2.2

Let $\psi(z) = \arg(\partial/\partial\theta)h(z)$ for all $z = re^{i\theta} \in \mathbb{A}_{\rho}$. As a consequence of (5.1), the convexity of $h(\mathbb{T}_r)$ will follow from the inequality

$$\frac{\partial \psi}{\partial \theta} \ge 0$$

on A_{ρ} , with $h(\mathbb{T}_r)$ being strictly convex if the inequality is strict. Since $h(\mathbb{T}_r)$ is a smooth (or, more precisely, real-analytic) Jordan curve, we obtain

(6.2)
$$\psi(re^{i(\theta+2\pi)}) = \psi(re^{i\theta}) + 2\pi,$$

Observe that

(6.3)
$$\frac{\partial h}{\partial \theta} = i(zh_z - \bar{z}h_{\bar{z}}) = izh_z \left(1 - \frac{\bar{z}h_{\bar{z}}}{zh_z}\right).$$

By (3.2), the quantity in parentheses has positive real part and hence, by (2.1), its argument is a single-valued harmonic function. Since h_z is holomorphic and non-zero on \mathbb{A}_{ρ} , it follows from (6.2) and (6.3) that $\psi - \theta$ is a single-valued harmonic function on \mathbb{A}_{ρ} . Moreover, it is bounded by virtue of Lemma 5.1 since $\psi = \lim_{T \to 0} \psi_T$ on \mathbb{A}_{ρ} .

Let $G_z(\zeta)$ denote the Green's function for \mathbb{A}_ρ with singularity at $z = re^{i\theta}$, and let $n = n_w$ be the inward normal at $w = Re^{i\varphi} \in \partial \mathbb{A}_\rho$. We may rotate \mathbb{A}_ρ together with the singularity $z = re^{i\theta}$ about the origin through an angle σ to obtain

(6.4)
$$G_{re^{i\theta}}(Re^{i\varphi}) = G_{re^{i(\theta+\sigma)}}(Re^{i(\varphi+\sigma)}),$$

from which the definition of partial differentiation implies

$$\begin{split} \frac{\partial}{\partial \theta} G_{z}(w) &= \lim_{\sigma \to 0} \frac{1}{\sigma} \Big(G_{re^{i(\theta + \sigma)}}(Re^{i\varphi}) - G_{re^{i\theta}}(Re^{i\varphi}) \Big) \\ &= \lim_{\sigma \to 0} \frac{1}{\sigma} \Big(G_{re^{i\theta}}(Re^{i(\varphi - \sigma)}) - G_{re^{i\theta}}(Re^{i\varphi}) \Big) \\ &= \lim_{\sigma \to 0} \frac{1}{-\sigma} \Big(G_{re^{i\theta}}(Re^{i(\varphi + \sigma)}) - G_{re^{i\theta}}(Re^{i\varphi}) \Big) \\ &= -\frac{\partial}{\partial \varphi} G_{z}(w). \end{split}$$
 by (6.4)

Hence,

$$(6.5) \quad \frac{\partial}{\partial \theta} \frac{\partial}{\partial n} G_z(w) = \frac{\partial}{\partial n} \frac{\partial}{\partial \theta} G_z(w) = -\frac{\partial}{\partial n} \frac{\partial}{\partial \varphi} G_z(w) = -\frac{\partial}{\partial \varphi} \frac{\partial}{\partial n} G_z(w).$$

Let $T = \{t \in \mathbb{R} : (\partial/\partial t)\Psi_1(t) \text{ and } (\partial/\partial t)\Psi_\rho(t) \text{ both exist}\}$, where

$$\Psi_1(\theta) = \arg \frac{\partial}{\partial \theta} h(e^{i\theta}), \quad \Psi_{\rho}(\theta) = \arg \frac{\partial}{\partial \theta} h(\rho e^{i\theta}).$$

Since the boundary components of $h(\mathbb{A}_{\rho})$ are convex Jordan curves by Corollary 4.2, it follows that $\mathbb{R} \setminus T$ is countable. Recall that the harmonic function $\psi - \theta$ has the integral representation (see, e.g., [17, Theorem I.21])

$$\begin{split} 2\pi(\psi(z)-\theta) &= \int_0^{2\pi} [\Psi_1(\varphi)-\varphi] \frac{\partial}{\partial n} G_z(e^{i\varphi}) \,\mathrm{d}\varphi \\ &+ \int_0^{2\pi} [\Psi_\rho(\varphi)-\varphi] \frac{\partial}{\partial n} G_z(\rho e^{i\varphi}) \rho \,\mathrm{d}\varphi, \end{split}$$

where the integrals are taken over $[0, 2\pi] \cap T$. Partial differentiation with respect to θ followed by an application of (6.5) yields

$$2\pi \left(\frac{\partial}{\partial \theta} \psi(z) - 1\right)$$

$$= \int_{0}^{2\pi} \left[\Psi_{1}(\varphi) - \varphi\right] \frac{\partial}{\partial \theta} \frac{\partial G_{z}}{\partial n} d\varphi + \int_{0}^{2\pi} \left[\Psi_{\rho}(\varphi) - \varphi\right] \frac{\partial}{\partial \theta} \frac{\partial G_{z}}{\partial n} \rho d\varphi$$

$$= -\int_{0}^{2\pi} \left[\Psi_{1}(\varphi) - \varphi\right] \frac{\partial}{\partial \varphi} \frac{\partial G_{z}}{\partial n} d\varphi - \int_{0}^{2\pi} \left[\Psi_{\rho}(\varphi) - \varphi\right] \frac{\partial}{\partial \varphi} \frac{\partial G_{z}}{\partial n} \rho d\varphi \quad \text{by (6.5)}$$

$$= \int_{0}^{2\pi} \frac{\partial G_{z}}{\partial n} d[\Psi_{1}(\varphi) - \varphi] + \int_{0}^{2\pi} \frac{\partial G_{z}}{\partial n} \rho d[\Psi_{\rho}(\varphi) - \varphi].$$

Hence (see, e.g., [17, Theorem I.20]),

(6.6)
$$2\pi \frac{\partial}{\partial \theta} \psi(z) = \int_0^{2\pi} \frac{\partial G_z}{\partial n} d\Psi_1(\varphi) + \int_0^{2\pi} \frac{\partial G_z}{\partial n} \rho d\Psi_\rho(\varphi).$$

It follows from (5.1) that $\Psi_1(\varphi)$ and $\Psi_{\rho}(\varphi)$ are non-decreasing functions of φ . Since $\partial G/\partial n$ is positive on $\partial \mathbb{A}_{\rho}$, it follows from (6.6) that $\partial \psi/\partial \theta$ is also positive on \mathbb{A}_{ρ} . Hence, $h(\mathbb{T}_r)$ is strictly convex for $\rho < r < 1$, which concludes our proof of Theorem 2.2.

Remark. The proof would have been much simpler if $h \in C^2(\overline{\mathbb{A}_\rho})$, for it follows from (6.3) that (6.1) is then equivalent to

$$\begin{split} 1 + \frac{\partial}{\partial \theta} \left\{ \arg h_z + \arg \left(1 - \frac{\bar{z} h_{\bar{z}}}{z h_z} \right) \right\} \\ &= 1 + \operatorname{Re} \left\{ \frac{z h_{zz}}{h_z} + \frac{\bar{z} (z h_{\bar{z}} h_{zz} + 2 h_z h_{\bar{z}} + \bar{z} h_z h_{\bar{z}\bar{z}})}{h_z (z h_z - \bar{z} h_{\bar{z}})} \right\} \geq 0. \end{split}$$

Since this holds on $\partial \mathbb{A}_{\rho}$, the maximum principle yields the same inequality on \mathbb{A}_{ρ} . The desired conclusion then follows from the observation that $\partial \psi / \partial \theta$ cannot be identically zero on \mathbb{A}_{ρ} , as $h(\mathbb{T}_r)$ is a Jordan curve for $\rho < r < 1$.

Acknowledgements. The author thanks Leonid Kovalev for valuable discussions on the subject. The author also thanks the referee for carefully reading several versions of the manuscript.

REFERENCES

- K. ASTALA, T. IWANIEC, and G. MARTIN, Deformations of annuli with smallest mean distortion, Arch. Ration. Mech. Anal. 195 (2010), no. 3, 899–921. http://dx.doi.org/10.1007/s00205-009-0231-z. MR2591976 (2011c:30059)
- J. CLUNIE and T. SHEIL-SMALL, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25.
 http://dx.doi.org/10.5186/aasfm.1984.0905. MR752388 (85i:30014)
- [3] P. L. DUREN, *Univalent functions*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR708494 (85j:30034)
- [4] ______, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, vol. 156, Cambridge University Press, Cambridge, 2004. http://dx.doi.org/10.1017/CBO9780511546600. MR2048384 (2005d:31001)
- [5] A. W. GOODMAN and E. B. SAFF, On univalent functions convex in one direction, Proc. Amer. Math. Soc. 73 (1979), no. 2, 183–187.
 http://dx.doi.org/10.2307/2042288. MR516461 (80e:30006)
- [6] E. HEINZ, On one-to-one harmonic mappings, Pacific J. Math. 9 (1959), no. 1, 101–105. http://dx.doi.org/10.2140/pjm.1959.9.101. MR0104933 (21 #3683)
- [7] W. HENGARTNER and G. SCHOBER, A remark on level curves for domains convex in one direction, Applicable Anal. 3 (1973), no. 1, Collection of articles dedicated to Eberhard Hopf on the occasion of his 70th birthday, 101–106. http://dx.doi.org/10.1080/00036817308839059. MR0393450 (52 #14260)
- [8] ______, *Harmonic mappings with given dilatation*, J. London Math. Soc. (2) **33** (1986), no. 3, 473–483. http://dx.doi.org/10.1112/jlms/s2-33.3.473. MR850963 (87j:30037)
- [9] T. IWANIEC, N. T. KOH, L. V. KOVALEV, and J. ONNINEN, Existence of energy-minimal diffeomorphisms between doubly connected domains, Invent. Math. 186 (2011), no. 3, 667–707. http://dx.doi.org/10.1007/s00222-011-0327-6. MR2854087
- [10] T. IWANIEC, L. V. KOVALEV, and J. ONNINEN, Hopf differentials and smoothing Sobolev home-omorphisms, Int. Math. Res. Not. IMRN 14 (2012), 3256–3277. http://dx.doi.org/10.1093/imrn/rnr144. MR2946225
- [11] D. KALAJ, Energy-minimal diffeomorphisms between doubly connected Riemann surfaces, Calc. Var. Partial Differential Equations **51** (2014), no. 1-2, 465–494. http://dx.doi.org/10.1007/s00526-013-0683-8. MR3247397
- [12] N. T. KOH and L. V. KOVALEV, Area contraction for harmonic automorphisms of the disk, Bull. Lond. Math. Soc. 43 (2011), no. 1, 91–96. http://dx.doi.org/10.1112/blms/bdq083. MR2765553 (2012a:31001)
- [13] O. LEHTO and K. I. VIRTANEN, Quasiconformal Mappings in the Plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K.W. Lucas. MR0344463 (49 #9202)
- [14] H. LEWY, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689–692. http://dx.doi.org/10.1090/S0002-9904-1936-06397-4. MR1563404
- [15] S. RUSCHEWEYH and L. C. SALINAS, On the preservation of direction-convexity and the Goodman-Saff conjecture, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 63–73. http://dx.doi.org/10.5186/aasfm.1989.1427. MR997971 (90h:30041)
- [16] E. STUDY, Vorlesungen ber ausgewhlte Gegenstnde der Geometrie, Teubner, Leipzig, 1913. Heft II.

[17] M. TSUJI, Potential Theory in Modern Function Theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR0414898 (54 #2990)

School of Mathematics and Statistics University of Canterbury Private Bag 4800 Christchurch 8140, New Zealand E-MAIL: ngin-tee.koh@canterbury.ac.nz

KEY WORDS AND PHRASES: Annulus, convex, doubly-connected, energy-minimal diffeomorphisms, harmonic diffeomorphisms, harmonic homeomorphisms, harmonic mappings, hereditary property. 2010 MATHEMATICS SUBJECT CLASSIFICATION: 30C45, 30D40, 31A05, 31A20.

Received: February 4, 2013; revised: September 20, 2014.