
Ray Traversal for Incremental Voxel Colouring

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science

in the

University of Canterbury

by

O. W. Batchelor

Examining Committee

R. Mukundan Supervisor

G. Wyvill Examiner

University of Canterbury

2006

Abstract

Image based scene reconstruction from multiple views is an interesting

challenge, with many ambiguities and sources of noise. One approach to scene

reconstruction is Voxel Colouring, Seitz and Dyer [26], which uses colour

information in images and handles the problem of occlusion.

Culbertson and Malzbender [11], introduced Generalised Voxel Colour-

ing (GVC) which uses projection and rasterization to establish global scene

visibility. Our work has involved investigating the use of ray traversal as an

efficient alternative.

We have developed two main approaches along this line, Ray Images

and Ray Buckets. Comparisons between implementations of our algorithms

and variations of GVC are presented, as well as applications to areas of

optimisation colour consistency and level of detail.

Ray traversal seems a promising approach to scene visibility, but requires

more work to be of practical use. Our methods show some advantages over

existing approaches in time use. However we have not been as succesful as an-

ticipated in reconstruction quality shown by implementation of optimisation

colour consistency.

Table of Contents

0.1 Common definitions . 1

Chapter 1: Introduction 2

1.1 Motivation . 2

1.2 Goals . 3

1.3 Overview . 3

Chapter 2: Background and Previous work 4

2.1 Structure from motion . 5

2.2 Volumetric reconstruction 5

2.3 Silhouette, Visual hull reconstruction 7

2.4 Voxel Colouring . 8

2.5 Space Carving . 10

2.5.1 Photo hull . 10

2.5.2 Space Carving algorithm 12

2.6 Generalised Voxel Colouring 14

2.6.1 Item buffers . 14

2.6.2 GVC algorithm . 16

2.7 GVC-LDI . 16

2.7.1 Layered Depth Images 17

2.8 Colour consistency . 19

2.8.1 Monotonic consistency function 20

2.8.2 Voxel projection sampling 20

2.9 Colour consistency functions 20

2.9.1 Colour sets . 22

2.9.2 Optimisation based colour consistency 23

Chapter 3: Implementation issues 26

3.1 GVC implementation . 26

3.1.1 Voxel projection . 26

3.2 Face culling . 26

3.3 OpenGL table based GVC 28

3.3.1 Creating item buffers 28

3.3.2 Calculating Vis(V) . 28

3.3.3 Updates . 29

Chapter 4: Depth Stack Images 31

4.1 Finding the Changed Visibility Set 31

4.2 Calculating Vis(V) . 32

4.3 Voxel colouring algorithm 32

4.4 Pre-calculating . 33

4.5 Furthest first ordering . 33

4.6 Space use . 34

4.7 Problems . 35

4.8 Summary . 35

Chapter 5: Ray Images 37

5.1 Voxel traversal algorithm 37

5.2 Incremental voxel traversal 38

5.3 Ray generation . 40

5.4 Ray initialisation . 41

5.5 Finding the Changed Visibility Set 41

5.6 Calculating Vis(V) . 41

5.7 Voxel colouring algorithm 42

5.8 Comparing traversal methods 42

5.9 Summary . 42

Chapter 6: Incremental Voxel Statistics 44

6.1 Tentative carving . 45

6.2 Computing change in reprojection error 45

6.2.1 Problems . 48

6.3 Carving order . 48

6.3.1 Carving queues . 50

6.4 Summary . 51

ii

Chapter 7: Ray Buckets 53

7.1 Accumulation . 54

7.2 Initialisation . 55

7.3 Voxel colouring algorithm 56

7.4 Optimisation colour consistency 56

7.5 Summary . 58

Chapter 8: Comparison 59

8.1 Teapot scene . 60

8.2 Gargoyle scene . 65

8.3 Cactus scene . 66

8.4 Violet scene . 66

8.5 Ray traversal . 67

8.6 Discussion . 67

8.6.1 GVC . 69

8.6.2 Bucket, GVC-LDI . 72

8.6.3 GVC-LDI . 73

8.6.4 Ray Image . 74

8.6.5 Bucket . 74

8.7 Summary . 75

Chapter 9: Applications 77

9.1 Optimisation colour consistency 77

9.1.1 Cactus . 77

9.1.2 Violet . 79

9.2 Summary . 79

9.3 Level of detail . 79

9.4 Resolution vs View distribution experiment 82

9.4.1 Results . 84

Chapter 10: Summary 86

10.1 Conclusion . 87

10.2 Future . 88

References 89

iii

Acknowledgments

We would like to thank all the hedgehogs. Without their help, this thesis

would not have become a reality.

iv

0.1 Common definitions

Voxel - A unit of volume, which for all practical purposes used here, it is a

cube of unit size.

Voxel array - A 3 dimensional array of voxels.

Dim - The dimensions of the voxel array.

SVL - Surface Voxel List, the set of solid voxels adjacent to one or more

empty voxels.

VVL - Visible Voxel List, the set of all voxels which are visible.

CVS - Changed Visibility Set, the set of voxels with changed visibility re-

sulting from the carving of a voxel.

CVSVL - Changed Visibility Surface Voxel List, the set of all voxels which

have changed visibility since they were last evaluated for colour consistency.

IB - Item buffer, an image comprising of Voxel IDs.

LDI - Layered Depth Image, an image comprising of ray surface voxel inter-

section lists.

DSI - Depth Stack Image - an image comprising of Depth Stacks (DS)

DS - A stack of all ray voxel intersections in furthest first order.

Vis(V) - The visible projection of a Voxel V onto an image/Item buffer.

LOD - Level Of Detail

GVC - Generalised Voxel Colouring

1

Chapter I

Introduction

Scene reconstruction is the process of generating scene geometry from

input sensors. There are many varieties of scene reconstruction. Image based

reconstruction from multiple views is an interesting challenge. One form of

reconstruction from images is voxel colouring, which began with Seitz and

Dyer in [26]. Recently varieties have appeared to make use of many cameras

at arbitrary viewpoints, notably Generalised Voxel Colouring (GVC) [11].

Our work has involved investigating the use of ray traversal as an efficient

alternative to purely projection and rasterization approaches, notably [11] in

the process of finding visibility for voxel colouring. We have developed two

approaches, one ray images, the other ray buckets for computing incremental

voxel colouring - both using voxel ray traversal.

In the first approach we build on the GVC method, using projection

and rasterization with an item buffer to map voxels to visible rays, using

ray traversal to update individual rays changed in the item buffer. For the

second approach we used a different organisation of visibility data strucutes,

associating visibility information directly with voxels.

1.1 Motivation

There are many uses of image based scene reconstruction including 3D pho-

tography, capturing landmarks and heritage. Our interest in the topic stems

from the ability to create artwork from images for writing small games. Voxel

colouring [26] became a topic of interest due to its elegant simplicity. How-

ever, currently image based scene reconstruction suffers from lower quality

and longer processing times compared to active capturing methods.

2

1.2 Goals

The initial goal was to provide a better means for implementing optimisation

based voxel colouring, which appeared to produce some very good quality

results, but with a rather heavy computational cost. The layered depth

image approach of [11] required a large amount of memory and time. We have

applied our approaches to this task, the first proved problematic - prompting

further investigation, which yielded the second.

It was initially envisioned that the independence between rays would be

a very useful property, as it could lead to parallel implementations on a

GPU for example. However it proved equally useful as a means for updating

visibility in a serial/incremental means, which ended up being the focus of

this research.

1.3 Overview

Firstly, we give a summary of important background material and previous

research in the area. Visual hull reconstruction including Voxel Colouring,

Space carving and GVC, as well as colour consistency. We then describe our

implementation of relevant algorithms for comparisons, GVC with OpenGL

and the rasterization of cubes.

We describe each of our approaches in detail, beginning with some less

successful methods - Depth Stack Images and how they led to Ray Images.

Our difficulties with using ray images to implement optimisation colour con-

sistency are explained, which leads to the Ray Buckets algorithm which is

discussed in detail.

We implement various methods and compare them with our approaches.

We make comparisons on runtime statistics and reprojection error using

threshold colour consistency for a number of implementations, trials with

optimisation colour consistency and comparisons between methods for use

with level of detail methods. Results show that our method is useful in some

situations, and compares favourably to GVC-LDI.

3

Chapter II

Background and Previous work

Different approaches to scene reconstruction can be categorised over sev-

eral axes: Active vs. passive reconstruction, sparse vs. dense/volumetric and

global vs. local. We focus on image based (passive), local, volumetric scene

reconstruction - specifically voxel colouring.

Active acquisition involves projecting patterns or light onto a scene. The

correspondences between views can be found very accurately, leading to good

quality reconstruction. Active acquisition involves separate hardware - an

example is using laser range finders.

Passive acquisition (image based) involves measuring the existing light-

ing, which is more accessible and more widely used than active capturing

technologies. Image based reconstruction is often less accurate and contains

more ambiguities than active reconstruction.

Sparse reconstruction involves identifying and solving for sparse scene

features (eg. points, lines) and camera geometry. Two examples are point

clouds from an active acquisition and structure from motion (SFM). Recent

surveys on this topic include [34, 13].

Dense reconstruction focuses on reconstructing every point in the scene

(or a continuous volume). Dense stereo is an example, where an algorithm

attempts to assign a depth to every pixel in the view image. Volumetric

reconstruction is a kind of dense reconstruction, where a scene is divided into

volume elements (voxels), and every voxel marked opaque or transparent (or

some level inbetween).

Global reconstruction algorithms attempt to consider the whole (or large

parts) simultaneously. A good example is using global minimisation tech-

nique with stereo, where graph cuts [5] or dynamic programming [21] can

be used to penalise bad matches and local discontinuity. These algorithms

4

are used to find a global solution where constraints (prior knowledge) are

provided to regularise the solution.

A local reconstruction algorithm only examines a fraction of the scene at

any time. Voxel colouring is a good example of a local reconstruction algo-

rithm. Colour consistency imposes no relationship (bar visibility) between

voxels. As such, it does not make assumptions about the scene (eg. objects

have smooth surfaces), except those required to simplify the problem.

2.1 Structure from motion

Structure from motion includes a wide range of reconstructions, from solving

for epipolar–lines in two images, to solving for unknown camera parame-

ters and points in many images. A common scenario is solving equations

where many noisy but overspecified constraints are identified from known re-

lationships. For example the camera geometry and the relationship between

projected points etc. A recent publication on how to achieve reconstruction

of points and cameras by solving purely linear equations is found in [25]

Sparse reconstruction is especially important as, to perform higher level

reconstruction - eg. volumetric reconstruction, it is usually necessary to know

camera parameters, so it may first involve some form of sparse reconstruc-

tion, eg. camera calibration with grid or markers, SFM from image features.

Examples of using both sparse then volumetric reconstruction are presented

in [6, 24].

2.2 Volumetric reconstruction

Volumetric reconstruction attempts to reconstruct every scene point (or an

approximation of). Discrete, volumetric reconstruction involves representa-

tion of the scene by discrete volume elements (voxels). Volumetric recon-

struction algorithms include computerised tomography, silhouette intersec-

tion, level sets [28], various types of stereo and Voxel colouring. Two surveys

on volumetric reconstruction (mostly centred on Voxel colouring) are [30, 12].

Volumetric reconstruction algorithms can also be divided over how visi-

bility is treated. Most computer vision based algorithms usually assume a

5

Figure 2.1: (a) An image, (b) pixels of an image at 34×21, (c) a rough voxel
model at 20 × 20 × 20.

scene with binary opacity and occlusions. Various types of computer tomog-

raphy (typically used for medical applications), assume a translucent scene

(without refraction) such as from an X-Ray. An image intensity at a point

is treated as an integral of material down a ray and occlusions are usually

ignored. Tomography has been applied to vision problems too [14], and some

vision problems applied to scenes with transparent [3] or reflective surfaces

[4].

Voxels may be interpreted in two ways. One is to consider them to be

a point sample in a volume, the other is to consider them to be a unit of

volume, eg. a cuboid. Tomography, Voxel Colouring and Space Carving all

consider voxels to be point samples, whereas Generalised Voxel Colouring

considers voxels to be volumes.

We base our work on the framework presented in Generalised Voxel

Colouring and consider voxels as volumes. Figure 2.1 shows an example

of a low resolution cuboid voxel representation of a model (c), and for com-

parison a pixel representation of an image (b), with the original image of a

continuous scene at high resolution.

Additional implications arise from these interpretations, the major one

being how the image of a voxel is treated. If a voxel is a point sample, then

it will project to a point on each image. Whereas if a voxel is a volume, then

a voxel will project to an area on each image. This has implications with

regard to colour consistency.

6

Figure 2.2: The visual hull of an object from two cameras.

2.3 Silhouette, Visual hull reconstruction

A silhouette gives an area (in an image) for which there exists, at an unknown

depth, a non background object. Silhouettes can be created by segmenting

an image, most often from a controlled environment with a solid background

colour eg. a bluescreen. Figure 2.2 shows the 2D visual hull of an ellipse.

The simplest volumetric reconstruction algorithm is silhouette intersec-

tion, which involves extruding the silhouette of each input image and finding

the intersection of all extrusions. Silhouette intersection is most easily per-

formed using a discrete voxel approach. The intersection algorithm carves

away all non-foreground voxels for each image.

The result of silhouette intersection is known as the Visual Hull. This

is a conservative estimate of the shape in the foreground, it is often used

as a starting point for other algorithms or in addition to other information.

However, this use is restricted as it requires an accurate segmentation, usually

requiring a controlled environment.

An example of early use of silhouette intersections for reconstruction is

[35]. A recent example using stereo and silhouettes together, giving very

good quality reconstructions is presented in [2]. Voxel colouring [26] also

may make optional use of silhouettes.

7

2.4 Voxel Colouring

Voxel Colouring [26, 27] is an attempt to use the colour information in mul-

tiple views to obtain a reconstruction. Voxel Colouring can be characterised

by its general scene representation, binary colour consistency measure, ex-

plicit occlusion handling and arbitrary number of input cameras. A review

of recent progress is presented in [31].

In contrast to stereo algorithms which directly represent correspondences

as disparities, image correspondences are represented implicitly by the pro-

jections of each voxel to images. For this, camera geometry must be fully

known (up to a scale factor).

Points in the scene which are roughly ’the same’ colour when projected to

non-occluded images are termed colour consistent or photo consistent. Photo

consistent points are deemed to be part of the shape, and those which are

deemed inconsistent, are not. This assumes a lambertian scene, where, given

all other conditions constant, a point should appear to be the same colour

independant of view angle.

Voxel Colouring explicitly handles occlusion by identifying a class of cam-

era configuration, given by the ordinal visibility constraint in which cameras

are restricted in a way which allows explicit front to back iteration of the

voxellised volume.

The ordinal visibility constraint is defined in [26] as:

There exists a norm |·| such that for all scene points P and Q, and
input images I, P occludes Q in I only if |P| < |Q|.

In practice this means that the voxel volume will consist of a series of voxel

planes. Voxels within a plane have the same norm, thus cannot occlude each

other. This means the voxel volume need only be iterated in one pass (in

planes). Each voxel may be examined for colour consistency just once. Solid

voxels are masked with image bitmasks, so that voxels farther away may be

identified as occluded. The Voxel Colouring algorithm is outlined in figure

2.3. Vis(V) is the set of projected pixels, Proj(V), masked by the marked

pixels in each image.

8

initialise Solid voxel set to null

for each voxel plane 1 to r {

for each voxel V in plane {

clear Vis(V)

for each image we {

compute footprint p of V in we

add unmarked pixels in p to Vis(V)

}

s = consistency (Vis(V))

if(s < threshold) {

add V to Solid voxel set

add Vis(V) to ToMark

}

}

mark pixels in ToMark

clear ToMark

}

Figure 2.3: Voxel Colouring algorithm

9

A key property of this voxel colouring algorithm is that occlusion is ex-

plicitly handled. Once a voxel is marked solid, it casts a ”shadow” over voxels

in successive iterations by marking the pixels in its projection as occluded

using bitmasks over input images. Note that the reason for using ToMark

rather than directly marking voxels, is that voxels on the same plane should

not occlude each other (they have the same norm, from the ordinal visibility

constraint).

The ordinal visibility constraint provides a mechanism for an efficient,

mechanical front to back traversal, and works in a good deal of camera con-

figurations. Derivatives of Voxel Colouring develop algorithms for handling

occlusion for arbitrary camera configurations. We refer to this family deriva-

tives, including voxel colouring, as ”voxel colouring algorithms”.

2.5 Space Carving

In [16, 19] Kutulakos and Seitz set out a general framework for volumetric

reconstruction based on photo consistency. They define the limits of a re-

construction based on photo consistency – the photo hull, then present an

algorithm to find the photo hull, called Space Carving.

2.5.1 Photo hull

The geometry which can be inferred from multiple views is ambiguous, since

there are a range of photo consistent shapes which may satisfy a set of input

images. It is trivial to show this is the case. For example, the geometry of a

solid object could be faked by a set of precisely placed images.

Figure 2.4 shows the 2D visual hull and photo hull of a square with two

different colours per side. The visual hull provides an approximation of the

shape, the photo hull gives a slightly closer approximation. Note that the

quality of the photo hull depends heavily on the colours of the object. Here

the approximation is not much better than the visual hull because of few

changes in colour. If the object was of constant colour, the photo hull is

equal to the visual hull. The photo hull is always equal or a subset of the

visual hull, as the real object is always equal or a subset of the photo hull.

Visual hull ⊇ Photo hull ⊇ Real object.

10

Figure 2.4: A visual hull and a photo hull (solid black lines) of a coloured
square - the difference between them is the area where projections show two
different colours.

Photo consistency consistK() is defined in [19] as:

1. An algorithm consistK() is available that takes as input at least

K ≤ N colors col1, ..., colK , K vectors ξ1, ..., ξK , and the light

source positions (non-Lambertian case), and decides whether it is

possible for a single surface point to reflect light of color coli in

direction ξi simultaneously for all i = 1, ..., K.

2. consistK() is assumed to be monotonic, i.e., consistK(col1, ..., colj, ξ1, ..., ξj)

implies that consistK(col1, ..., colm, ξ1, ..., ξm) for every m < j and

permutation of 1, ..., j.

The shape which is the union of all consistent shapes, is termed the

maximum photo-consistent shape or photo hull. In [19] the photo hull is

defined as:

Let V be an arbitrary subset of R3. If V is the union of all photo-

consistent shapes in V, every point on the surface of V is photo-

consistent. We call V the photo hull.

11

The photo hull becomes an upper bound for all shapes which may project

to the same set of images. Kutulakos and Seitz then prove that given a mono-

tonic photo consistency function (and perfect inputs), their space carving

algorithm will produce the photo hull.

A key idea introduced by the Space Carving algorithm is the idea of least

commitment reconstruction. A superset of the true scene is used as an esti-

mate for scene visibility. Used with a monotonic colour consistency function,

carving is conservative. No voxel evaluated with a subset of its true visibility

will be marked inconsistent. Most practical colour consistency functions are

not monotonic, e.g. thresholded standard deviation is not monotonic.

Despite the possibility of using non lambertian scenes, in practice it is

assumed that a scene is lambertian. So the definition of consistK() reduces

to checking that col1, ..., colj are identical within bounds of calibration error

and noise.

2.5.2 Space Carving algorithm

The Space Carving algorithm [16, 19] generalises Voxel Colouring to allow

arbitrary camera placement. It does this by performing several plane sweeps,

only a subset of cameras satisfying the Ordinal Visibility Constraint are

used at any point. The images/cameras which satisfy this condition are the

cameras which lie behind the path of the sweeping plane.

Space Carving uses plane sweeps along axes of the volume bounding box.

Each voxel on the plane is examined for colour consistency only among pixels

of (non occluded) cameras which are behind the sweeping plane. Voxels which

are not consistent are removed. Voxels which are consistent are marked using

bitmasks over input images (in the same fashion as Voxel Colouring) for

masking visibility of subsequent voxels.

The space carving algorithm as described in [16] (slightly paraphrased to

fit terms used here) is listed in figure 2.5. In addition to this algorithm they

describe the multi-plane sweep algorithm, which performs the plane sweep

for several planes, and then performs a post-evaluation for each voxel using

visible cameras from all plane sweeps.

Space carving has been implemented using graphics hardware [8, 20], to

12

initialise Solid volume to superset of the scene

initialise Plane behind volume

intersect Plane with Solid

for each surface voxel V on Plane {

for each camera C behind Plane {

compute projection p of V in C

if p is unmarked add V to Vis(V)

}

if (consist (Vis(V))) {

mark projection of voxels in Vis(V)

} else {

remove V from Solid

}

move Plane foward one step

} until(Plane lies in front of volume)

Figure 2.5: Space carving algorithm. Note that the terminology differs from
[16] Vis(V) is used in place of col1, ..., colj, and Solid in place of V.

13

�

�

��

��

�

�

��

��

Figure 2.6: An item buffer of a voxel model, the numbers are voxel IDs.

which it is well suited because of the fast projection of an image to a plane,

performed by texture mapping.

2.6 Generalised Voxel Colouring

The Generalised Voxel Colouring of Culbertson and Malzbender [11], (GVC)

generalises Space Carving so that all views can be considered simultaneously,

rather than with separate passes. GVC follows the conservative carving

approach of Space Carving. It uses rasterization with depth buffering to

determine the closest visible voxel projecting to a pixel.

2.6.1 Item buffers

The set of solid voxels which adjoin (6-connected) one or more empty voxels

is termed the Surface Voxel List, or SVL. The SVL is updated by examining

neighbours as voxels are carved In [11], the SVL is implemented as a hash ta-

ble, and the voxel volume is implemented as a bitfield. The term 6-connected

refers to cubes which connect to their neighbours by thier faces (a cube has

6 faces).

Each voxel is assigned a unique ID. An item buffer is an image of voxel

IDs, and their depth (distance from the camera). Each voxel ID corresponds

to the nearest visible voxel at each pixel of an input image. An item buffer

corresponds one to one with the colours in an input image. An example item

buffer is shown in figure 2.6.

14

������

��	
��

������
��
���������

��
��������

�

Figure 2.7: Vis(V), the set of pixels in visible projections of a voxel in each
image.

An item buffer can be computed by rasterizing the set of surface voxels

(SVL) to an image using depth buffering. A rasterization algorithm will

produce a set of pixels and depths for a voxel. These pixels are updated in

item buffers. A pixel is masked if the incoming depth is farther than the

existing depth, but replaced if it is less.

An item buffer can be used to quickly establish the set of visible pixels

for a voxel V. Items in the projection of V are visible if they have the same

ID as V.

Given a set of item buffers, one for each input image, Vis(V) may be

found. Vis(V) is the set of visible pixels (for one voxel, V) in all item

buffers, an example is shown in figure 2.7. Vis(V) is a subset of Proj(V),

the projection of V to each image. This relationship can be stated as,

p ∈ Proj(V), V ∈ Item(p) ⇔ p ∈ V is(V).

The Vis(V) set establishes correspondences between pixels in multiple

images, this can be used to determine colour consistency. An advantage of

GVC over Space Carving is that at any point, the full colour information is

used (from Vis(V)), where as Space Carving uses a limited set depending on

the carving plane. Another difference is that GVC treats Voxels uniformly

as a volume, with projections as an area. Vis(V) contains potentially several

pixels per image.

15

initialise Solid, SVL

do {

compute item buffers by rasterizing each voxels in SVL

for every voxel V in SVL {

compute Vis(V)

if (not consist(Vis(V))) {

carve V

remove V from SVL

add uncarved neighbours of V to SVL

}

}

} while(some voxels carved)

Figure 2.8: GVC algorithm, [32]

2.6.2 GVC algorithm

GVC uses an iterative process of calculating item buffers and evaluating/modifying

surface voxels. Results in [11] showed that this gave an improvement in re-

construction quality over Space Carving. One slightly problematic issue with

GVC is that it becomes much slower as the number of voxels carved per it-

eration is reduced. This occurs close to convergence. GVC-LDI also [11], is

given as a solution which carves each voxel in serial. The GVC algorithm is

given in figure 2.8, definitions of Vis(V) and the SVL follow.

2.7 GVC-LDI

GVC with Layered Depth Images (GVC-LDI) [11] uses Layered Depth Im-

ages as a means of updating visibility. GVC-LDI is a serial carving process,

compared to GVC’s parallel carving process. The major difference lies in the

granularity of updates of the item buffers. GVC-LDI uses LDIs to determine

the exact change in visibility of carving one voxel.

Only voxels which change visibility require re-evaluation of colour consis-

tency. GVC-LDI keeps track of these voxels in the Changed Visibility Sur-

16

� �

������������

� �� �

�

� �

Figure 2.9: An element of a GVC item buffer, and an element of a LDI.

face Voxel List (CVSVL). Voxels are removed one by one from the CVSVL,

if found inconsistent they are carved, and any voxels changing visibility as a

result are added to the CVSVL for re-evaluation.

The CVSVL may be considered a carving queue. A possibility is that

re-arranging the carving order (a priority queue) may improve results.

2.7.1 Layered Depth Images

In the context of GVC-LDI, a layered depth image is an extension of an item

buffer. For each pixel P, instead of containing just the nearest voxel ID, an

LDI instead stores (at P) a linked list of all intersections (Voxel ID, depth)

with surface voxels (SVL). The lists are stored in near to far depth ordering,

so that the top elements of all lists may be used as an item buffer. Voxels

are added to the list at a certain depth, the insertion place is found by linear

search. Removing voxels from the list is by linear search of Voxel ID.

A comparison between an item buffer and a layered depth image is shown

in figure 2.9. The item buffer stores only the first surface intersection at

the given pixel (A), whereas the layered depth image stores every surface

intersection sorted by depth. In this case there is a hole in the centre of the

voxel model, so (A, B, C and D) are all surface intersections.

The Changed Visibility Set (CVS) is the set of all voxels which become

the head of each list within changed LDIs. This includes voxels within lists

17

initialise Solid, SVL

initialise CVSVL to SVL

render SVL to LDIs

while (CVSVL not empty) {

delete V from head of CVSVL

compute Vis(V)

if(not consist(V)) {

carve V

remove V from SVL

remove V from each LDI(P) in Proj(V)

for each neighbor N of V not in SVL {

add N to SVL, each LDI(P) in Proj(N), CVSVL

}

for each LDI(P) with a changed head U, add U to CVSVL

}

}

Figure 2.10: GVC-LDI algorithm, [32]

already when the top voxel is carved, as well as voxels which are uncovered

and become a new member of a list (and the SVL).

GVC-LDI shows some advantages over GVC. These include:

• It performs many less colour consistency evaluations.

• Serial carving process allows rapid convergence towards end of process.

• Carving order becomes more flexible.

• There is potential to use the exact visibility change in the colour con-

sistency test.

However, the implementation using LDI means there are some significant

downsides, which are:

18

• It uses orders of magnitude more memory - O(LDI depth * pixels).

• It has a much greater constant cost per voxel. (It uses up to six voxel

projections per voxel evaluation to GVC’s one).

Although [11] did not report such a significant difference in running times

between GVC and GVC-LDI, it has been our experience in implementing

these two algorithms, that GVC-LDI is much slower on the whole. Some

comparisons from our implementations are presented in section 8.

2.8 Colour consistency

Colour consistency is a decision. It aims to determine if it is possible for one

voxel to simultaneously reflect the light, as measured by its visible projections

to images. For lambertian scenes this amounts to determining if it is possible

within error (eg. calibration and discretisation errors), that each visible

projection is of the same voxel, of a constant colour.

Colour consistency is used with voxel colouring algorithms to determine

if a voxel should be opaque or transparent. If a voxel is deemed colour con-

sistent the voxel is considered opaque, otherwise it is considered transparent.

There has been a great deal of work put into finding a consistency function

which will adequately reconstruct lambertian scenes of various texture and

shape. Colour consistency functions can be divided into several categories,

monotonic, non monotonic, those which operate on groups of pixels between

images, those which operate on a single pixel (treat a voxel as a point), colour

set matching, statistically based and optimisation based.

Colour consistency has many issues in practice. Both the nature of surface

texture and scale, as well as noise, can cause errors in reconstruction. Noise

mainly will result from camera calibration, image noise, and lighting issues.

Any errors can accumulate and cause voxels to seem inconsistent, while solid

in the true scene or consistent while empty. A reconstruction can end up

with both types of error simultaneously. These errors can cascade, and cause

huge errors beyond the initial misclassification.

19

2.8.1 Monotonic consistency function

To ensure a carving process is conservative, a monotonic colour consistency

function is required. A monotonic consistency function is one where if a

voxel is deemed colour consistent for a certain set of pixels, then it will

always be consistent for a subset of those pixels. This is a desirable property

for maintaining a conservative approach, but seems awkward from the point

of view of normalising a colour consistency test to be fair for a variable

number of views. Colour caching [9] and histograms [10] are two examples

of monotonic consistency tests.

2.8.2 Voxel projection sampling

The representation of a voxel, and its projection to images is an important

consideration for a colour consistency function. On one hand, a voxel can

be treated as a point which projects to a point on images, as Space Carving

[16]. On the other hand a voxel can be treated as a unit of volume, which

projects to an area on images [11].

The method by which a voxel area is sampled is also an important con-

sideration, GVC [11] treats a projection as a discrete set of pixels - Vis(V),

where as [7] uses a weighting for pixels on the edge of a voxel’s projection.

Using an area projection means that instead of having a single pixel/colour

per image, one has a set of pixels/colours per image. This means that one

can use the statistics of the local image region in the colour consistency test.

Broadhurst and Cipolla use analysis of variance in [7].

Another approach discussed in [17] is to assume there may be some er-

rors in inputs which effectively result in local permutation within a radius.

Assuming the correct projection will be within this radius, a disc of pixels

around a voxel’s projected point can be used to assess colour consistency,

and this will include the correct colour. This is also discussed below.

2.9 Colour consistency functions

A useful measure for evaluating the results of reconstructions is the reprojec-

tion error. This is the output image of voxels are reprojected and compared

20

with input images on a pixel by pixel basis. The comparison is usually the

difference squared between colour components of each pixel of an image of

reprojected voxels, and the input image. This can also be computed on a per

voxel basis by summing the error, for each pixel in its projection.

Cv =

∑

p∈vis(V) Cp

|V is(V)|
(2.1)

error(V) =
∑

p∈vis(V)

dist(Cp, Cv) (2.2)

dist(C1, C2) =
3

∑

α=1

(C1α − C2α)2 (2.3)

consist(V) = error(V) < τ (2.4)

Where the subscript Xα refers to the channel α of colour X. Cp, Cv,

refers to the colour of pixel p, voxel v.

Reprojection error can be used as a monotonic colour consistency func-

tion, as shown in equation 2.4. This provides a normalised value for the

reprojection error, however it is not monotonic because of this normalisa-

tion. Reprojection error has also been used with optimisation processes as

discussed in section 2.9.2.

A simple way to use multi-pixel projections is by a weighted average of

(euclidian) differences of voxel colours from each view, and the overall mean

voxel colour. This is shown in equation 2.5, where pixels(V, i) is the number

of pixels in the projection of voxel V, to image i, Ci is the average colour of

pixels in projection to image i, Cv is the average colour of all pixels in the

projection of voxel V (equation 2.1).

between(V) =

∑

i=1)n dist(Ci, Cv) ∗ pixels(V, i)

|V is(V)|
(2.5)

Another function is presented in [32] is termed the adaptive standard

deviation test. It compares the ratio of within image variance to between

image variance. Where within image variance refers to the variance within

Pixels(V, i) and between image variance refers to variance between the means

21

of Pixels(V, i).

Let sbetween be the standard deviation between the means of image colours,

and swithin be the mean of the within image standard deviations. Two thresh-

olds are used, determined by experimentation τ1, τ2.

consist(V) = sbetween < τ1 + τ2swithin (2.6)

An alternative to the average within image standard deviation, is to use

the minimum. We have found this efffective, as textureless regions on the

input scene, which usually correspond to textureless regions on all images.

If a textureless region exists on one input image then it may be reasonable

to expect textureless regions on all images.

The adaptive standard deviation test is really an approximation of the

full analysis of variance test as used by [7] between groups of pixels.

2.9.1 Colour sets

Corresponding pixel sets can also be directly compared. One way to do this,

termed Colour Caching, is presented in [9], where a voxel is consistent if there

are any similar colours included in all sets. A similar method uses histograms

[10], where the colours set in each image are discretised into histograms. A

voxel is considered colour consistent if every pair of histograms intersect.

In [18] Kutulakos presents a framework for reconstruction where calibra-

tion and image errors are taken into consideration. The idea is that an image

be treated as if it had a shuffle transform applied, as a model for noise and

errors. A shuffle transform of size N, shifts each pixel in an image up to N

pixels from where it originated.

A colour consistency function taking the shuffle transform into account is

required to scan a much larger area in order to find the real occupying pixel.

In practice, implementation involves searching a disc around a voxel’s centre

of projection. A colour consistency test requiring similar colours in each disc

is used. This can be then used in a coarse to fine reconstruction algorithm,

moving from a larger to smaller sized disc.

22

2.9.2 Optimisation based colour consistency

Slabaugh et al. [29] introduced a different paradigm of colour consistency,

based on carving voxels only if they improve a global function. An opti-

misation based colour consistency test turns voxel colouring into an energy

minimisation search problem. This is intended to solve some of the problems

with threshold based consistency tests. Problems are determining the ad-hoc

value for the threshold, and a single threshold can often be both too large

and too small in different sections of the same scene.

If a voxel’s approximate colour is determined as the average of all pixels

to which it projects, then its reprojection error can be computed by equation

2.2. One can compute a voxel colour, (and thus reprojection error), for every

pixel in an image. Global reprojection error can then be calculated as the

sum of reprojection errors over every pixel.

This global reprojection error can be examined before and after the carv-

ing of one voxel. Reprojection error will change for not only the pixels in the

projection of the removed voxel, but all pixels in projections of voxels with

changed visibility. Taking the difference of error in this set of pixels before

and after carving, gives us the change in reprojection error. The change in

reprojection error can be used as a colour consistency function. A voxel is

carved only if it improves the reprojection error.

This can be made practical by reducing the problem to a local calculation,

by realising that only a small subset of voxels change colour with the carving

of one voxel (as voxel colours and their reprojections are independent of each

other). This set is termed the CVS, the Changed Visibility set, and only the

visible projections of this set will change colour, shown in equation 2.7.

Only pixels in the projection of the CVS voxels need be compared, to de-

termine if the carving of one voxel increases or reduces the global reprojection

error. The reprojection error of pixels of (2.7) are summed (2.8) before and

after the carving of a voxel. If the reprojection error is improved (reduced)

after carving then the voxel is colour consistent (2.9).

A method for finding the CVS is GVC-LDI, [11] which is used by Slabaugh

et al. [29] in their algorithm. In GVC-LDI this set is found for voxel V, as

the set of all voxels U which became the head of an LDI, as shown in figure

23

2.10.

CV RS(V) =
⋃

U∈CV S(V)

vis(U) (2.7)

reproj(V) =
∑

P∈CV RS(V)

distSq(Cv, Cp) (2.8)

consist(V) = reproj(V) ≤ carved(reproj(V)) (2.9)

One of the problem is that it contains many local minima. Far from the

global minimum, reprojection error is rather noisy. On its own using equation

2.9 as a consistency function, away from the global minimum, produces no

useful decision.

Slabaugh et al. [29] treat optimisation as a post process from an existing

voxel colouring algorithm, which ensures that the starting conditions are close

to a global minimum. They also consider adding voxels, rather than a purely

carving approach, using simulated annealing to overcome local minima.

Results from [29] show that this process produces voxel models which have

less noise and fit the original scene more closely. Despite achieving good

reconstructions, their results show that the process is very slow. Quoting

figures from the results section, they used a HP J5000 workstation with two

440MHz processors and 2GB of RAM. For their shoes scene, a real scene, at

144×128×90 initialised by the GVC-LDI algorithm which took 71 minutes,

execution for their greedy method took 491 minutes, and their simulated

annealing 709 minutes while consuming 800 MB of RAM.

An unknown aspect of optimisation colour consistency, is handling back-

ground pixels. What should be done about pixels which were originally

coloured, but became background pixels on the carving of a voxel? Back-

ground pixels are those pixels in the visible projections of a voxel V, which

are not in the set given by equation 2.7.

Background(V) = V is(V) \ CV RS(V) (2.10)

For segmented images this is not a problem. Background pixels should

never occur unless holes are mistakenly introduced. For non-segmented im-

24

ages, it is not clear as to what part they should play. This is potentially

problematic, as the ”trivial solution”, where all voxels are carved, will al-

ways have the lowest reprojection error! In [29], a fixed penalty is assigned

to background pixels to stop holes forming in the model.

25

Chapter III

Implementation issues

3.1 GVC implementation

3.1.1 Voxel projection

Voxel rasterization lies at the heart of GVC-based algorithms. In order to

make a good comparison between them, voxel rasterization must be imple-

mented in a reasonably efficient fashion. As we assume voxels to be unit

cubes, we also use cubes to rasterize voxels. This is the only sensible choice.

Although it is possible to use others, such as points, there is no guarantee

that these will be watertight or be consistent between views.

Rasterization is performed as a three step process.

• Corner points are projected using the projection matrix (pinhole cam-

era model). Clipping is done here, rather coarsely (if no corners are

visible then the voxel is rejected).

• Faces are culled (as discussed below).

• Faces are rasterized as quads by a scanline or half-space quad rasteri-

zation method.

3.2 Face culling

Visible faces of a cube may be efficiently culled by determining the nearest

feature to the camera. If this is a face, then that face only will be visible. If

it is an edge, two faces will be visible. If it is a corner, three faces will be

visible. This can be determined on a face by face basis for an axis aligned

cube, by comparing the camera centre with the axis aligned planes of the

26

��� ���

�����	
�����	
 ����
�

Figure 3.1: The visible faces of a square dependent on camera position along
the horizontal axis.

cubes faces. Figure 3.1 shows the visible faces of a square. For example, the

left face is only visible when the centre of the camera is less than the line

marked Min.

visible(min, max, camera) =



















positive visible camera > max

not visible min ≤ camera ≤ max

negative visible camera < min

(3.1)

Equally important, interior faces should be culled (except in some cases

where this is required!). This can be done by simple comparison with neigh-

bouring values in the volume. Both forms of culling can be implemented

using 6 bit bitmasks for face visibility with an and operation. Deciding

which faces to draw is also simplified this way, by using a lookup table of

64 cubes, in a similar style to the marching cubes algorithm. These cubes

contain a list of quads, which are the final visible quads to be rasterized.

27

3.3 OpenGL table based GVC

For comparison, we made a simple implementation of GVC using OpenGL

for rasterization. This relied on the batch-update style of GVC. It uses a

resizable array of Voxel IDs as a representation of the SVL (instead of a

hashtable in the GVC). Then, instead of using an item buffer comprising of

Voxel IDs, we use indices into the SVL array as ”items”. This facilitates

use of scanning images pixel-by-pixel directly, adding to a table of colour

consistency information. This would also be feasible using a hashtable, but

is much faster in practice and more compact.

3.3.1 Creating item buffers

Item buffers are created by OpenGL rasterization. For each voxel, visible

faces are determined. Faces are accumulated (as vertices) in a large array, and

rendered all at once using a call to glDrawArrays. This proved a reasonably

efficient method of rasterizing large numbers of voxels, sufficient that the step

of calculating Vis(V) and evaluating colour consistency became the largest

component. Using a Geforce Fx 5200 on an Athlon 2600+, this process

is roughly 3 times faster than software rendering for a mid size voxel grid

(eg. 1283). However, as the number of voxels increase the benefit of using

hardware rasterization diminishes.

3.3.2 Calculating Vis(V)

Vis(V) is computed incrementally for all voxels, instead of rasterizing each

voxel separately, as per GVC. The process is done in reverse, by scanning

every pixel on every item buffer. A large table is allocated, with an entry for

each voxel in the SVL. When a pixel is scanned, the (useful) information is

accumulated in this table. For simple thresholding colour consistency tests,

this usually does not require evaluating all voxels in Vis(V) at once, so some

simplification could be used. For example, accumulating the average colour

in all views, vs. the average colour in each view.

28

3.3.3 Updates

Updates are performed in parallel, all inconsistent voxels removed and all

newly exposed voxels to be added to the SVL are added in one iteration. A

small difference from the vanilla GVC algorithm. Here two binary volumes

are used, one for solid/empty state, the other in order to supplement the

SVL for O(1) lookup – set if the voxel is currently on the surface. This is

useful during the batch-update process, so that surface changes can be made

without updating the SVL array incrementally, which otherwise would be

expensive. The algorithm is listed in figure 3.2.

29

initialise Solid, Surface, SVL

do {

compute item buffers by rasterizing voxels on SVL

initialise table to size of SVL

clear ToAdd, ToCarve lists

for each item buffer IB {

for each pixel P in IB add (IB, P) to table

}

for each voxel V in table {

if not consist(table, V) add V to ToCarve list

}

for each voxel V in ToCarve {

for each neighbor N of V {

if not Surface(V) && Solid(V) {

Surface(V) = True

add V to ToAdd list

}

}

Solid(V) = False

Volume(V) = False

}

filter ToCarve from SVL

add ToAdd to SVL

} until (empty(ToCarve))

Figure 3.2: Simple OpenGL table variant of GVC

30

Chapter IV

Depth Stack Images

One approach to maintaining item buffers, is to precompute a list of all

(occupied or empty) voxels intersecting a particular ray. This, computed for

all pixels/rays in an input image, forms another kind of layered depth image,

which can be used in an incremental voxel colouring algorithm.

A Depth Stack, is a stack of voxel IDs intersected along one ray. The

back of a Depth Stack, is the closest voxel to the input image, as shown in

figure 4.1. A Depth Stack Image (DSI), is an image of Depth Stacks. We use

this name to avoid confusion with a LDI from GVC-LDI.

Unlike a LDI, a DS is not updated in the middle. Voxels are only pushed

or popped off the back, as a stack.

4.1 Finding the Changed Visibility Set

In order to find the next visible voxel for one ray or pixel, voxels must be

iteratively popped off a depth stack. Each voxel popped from the stack is a

voxel which may potentially become visible, if it is a solid voxel (found by a

�

�

��

��

�

� � �

����

�

��

��

� � �

����

�

��

��

� � �

����

��	
�	
�	
�

��	
��	
��

��

Figure 4.1: A layered depth stack image, the nearest voxel is at the back of
each depth stack.

31

for each pixel P in Vis(V) {

do {

pop back of DSI(P)

B = new back of DSI(P)

} until solid(B) or (B is null)

add B (if not null) to CVS

}

return CVS

Figure 4.2: Finding CVS set using Depth Stack Images

lookup to the binary voxel array), it will have changed visibility.

A simple algorithm for finding the Changed Visibility Set (CVS) of re-

moving one voxel is figure 4.2. The CVS set is calculated as the union of

voxels found to have changed visibility for each pixel/ray in Vis(V).

4.2 Calculating Vis(V)

The back of each Depth Stack (thus the closest voxel) in a DSI may be used

as an item buffer. So Vis(V) may be efficiently calculated by finding the set

of pixels in the projection of V, which have the same Voxel ID at the back

of its depth stack as V.

4.3 Voxel colouring algorithm

A simple voxel carving algorithm in the mould of GVC-LDI, results from the

ability to find precisely the set of voxels with changed visibility after a voxel

carving, the CVS. However, it is simpler because each DSI is only operated

on as a stack and is an otherwise static structure. In addition, there is no

need to keep a Surface Voxel List (SVL) anymore, because the CVSVL may

be updated without any knowledge of neighbour voxels. This simplifies the

top level algorithm somewhat, as shown in figure 4.3.

32

initialise Solid, CVSVL

push voxels onto a DSI for each image

while(CVSVL is not empty) {

remove voxel V from CVSVL

calculate Vis(V)

if not Consist(Vis(V)) then {

carve V from Solid

update DSIs to find CVS

add CVS set to CVSVL

}

}

Figure 4.3: DSI Voxel colouring algorithm

4.4 Pre-calculating

Pre-calculating the initial state of a DSI can be done by rasterization. Voxels

may be rasterized in a furthest-first depth ordering. When a voxel V is

rasterized, its ID is pushed onto the depth stack of each pixel in its projection,

Proj(V).

4.5 Furthest first ordering

Furthest first rasterization may be done by splitting the voxel space into

eighths, separated by an axis aligned plane of voxels as a pivot, this voxel

plane (an interval the width of one voxel) contains the camera position for

each dimension. If the camera lies outside the voxel space on any axis then

the last voxel plane is used as the pivot.

Each of the eighths then has a clear back to front ordering from the pivot

towards the edges (either 0, or the maximum voxel bound). Looping on each

voxel region is ordered. The order of loop nesting is along the most signif-

icant axis to least significant. This is determined from the primary camera

view direction vector. To simplify implementation, instead of re-ordering the

loops, indices accessing the voxel array are permuted/unpermuted.

Pseudo code is listed in figure 4.4. Where cameraPos in voxel units,

33

foreach i in [0, 1, 2] {

pivot[i] = clamp(cameraPos[i], 0, max)

}

permutation = first (sort decreasing pairs) where

pairs = zip [0, 1, 2] cameraDir

foreach d in [0, 1] {

start[d] = permute((not d) * max)

end[d] = permute(pivot.x + d, pivot.y + d, pivot.z + d)

}

foreach a in [0, 1]

for x = start[a].x to end[a].x {

foreach b in [0, 1]

for y = start[b].y to end[b].y {

foreach c in [0, 1]

for z = start[c].z to end[c].z {

v = unpermute (x, y, z)

rasterize v

}

}

}

Figure 4.4: Furthest first voxel ordering

cameraDir the primary view direction of the camera, start and end are a 2

element array of 3D vectors. Max is the maximum index of each dimension

of the voxel array.

4.6 Space use

The obvious problem with this approach, is the drastic amount of memory

required, which is on the order of the depth × pixels for each input image.

When encoding elements of a DS as 32 bit integers, a DSI may use imprac-

tical amounts of memory. To make things more practical the voxels may be

encoded using differences (using 6-connected voxels). Rasterization does not

ensure this is necessarily correct, but edge or corner connected voxels can be

forced into 6-connected voxels by inserting extra voxels.

34

When 6-connected, each voxel can be encoded with just 3 bits, which

makes it nearly practical to use. Memory use is roughly equivalent to a LDI,

with linked lists of 32 bit integers, for a similar scene. Both are very large.

A comparison of relative memory use of techniques is given in section 8.5.

4.7 Problems

Aside from large memory use, the major problem with this technique is the

time required to rasterize and compress the DSIs. This step required nearly

two thirds of the entire execution time.

It turned out that using voxel raytracing, (as described in the next sec-

tion), achieved equivalent runtimes excluding the pre-calculation step al-

together. If anything, it was more expensive to unpack pre-computed 6-

connected voxels on a depth stack, than to use a ray traversal algorithm.

The approach showed some promise in that it carved voxels at a much

greater rate than GVC-LDI, although taking a much greater time to initialise.

It achieved times of less than half, compared to our implementation of GVC-

LDI (including initialisation).

4.8 Summary

GVC-LDI took the approach of storing and updating surface intersections

down a ray. We looked at pre-calculating every voxel intersection (a depth

stack) down rays from input images, using Depth Stack Images. The DSIs

also required updating as a voxel is removed, but only those elements which

are members of Vis(V), and only the back element(s) required removing –

allowing the use of a static structure.

This has two major advantages over GVC-LDI. Firstly, a much simpler

and direct method of finding the voxels of changed visibility (the CVS).

Secondly, a much simpler data structure to update allowing for a mostly

static sized data structure and O(1) updates, where as GVC-LDI requires

multiple additional projections and linear updates on lists.

It has several unsolved problems however. Memory use is immense for

the uncompressed data structure, storing every voxel down a ray is a large

35

amount of data – in the order of the total number of voxels. This mandates

a compressed structure (which is possible because of the coherency between

voxels along a ray). Initialisation is extremely slow. Rasterizing every voxel

in back to front order, to be placed in per-pixel lists ends up taking 2/3 of the

total running time. It is less flexible compared to GVC-LDI when looking at

the possibility of adding voxels as well as carving.

36

Chapter V

Ray Images

An alternative to pre-calculating every ray-voxel intersection, is to tra-

verse a ray through the voxel space. In a ray traversal algorithm the exact

ordering of the intersections of a ray through the voxel space is required.

This requires a voxel ray tracing algorithm.

An algorithm which can be stopped and resumed is required, (otherwise

rays must be traced through the entire voxel space at each iteration), while

storing a minimum amount of intermediate calculations. This becomes very

significant, as the number of intermediate calculations is equal to the number

of pixels in all input images.

There exist several algorithms for ray-voxel traversal, which are commonly

used for ray tracing, spacial subdivision and volume rendering. We chose to

use the voxel traversal algorithm of Amanatides and Woo [1], for a uniform

voxel grid. Alternatives exist for non uniform grids eg. an octree, for which

a traversal algorithm is presented in [23].

5.1 Voxel traversal algorithm

The voxel traversal algorithm of Amanatides and Woo [1] computes exactly

the intersections of all voxels along the path of a ray, which is precisely the

information required for our purposes. It is particularly efficient, involving

just 2 floating point comparisons per voxel traversed, one addition and an

integer comparison.

In essence, voxel traversal consists of line drawing. The major difference

of this algorithm to other line drawing algorithms, is that it is symmetrical

with regard to the axes. There is no primary stepping axis, which simplifies

the algorithm considerably. It consists of an initialisation step, followed by

37

�

� � �

� � �

�

Figure 5.1: Ray voxel traversal, to find the nearest solid voxel, the ray should
intersect [A, B, C, D, E, F, G] in that order, and stop at H

iteration.

Values calculated in initialisation include:

• (x, y, z) - The current voxel

• tDelta(x, y, z) - The distance (in ray units t) to step the (width/height)

of one unit, for each (x, y, z) axis.

• tMax(x, y, z) - The distance (in ray units t) until the next crossing of

the (x, y, z) axis.

• step(x, y, z) - The direction to step in each axis.

• justOut(x, y, z) - The value for which the voxel is just out of bounds.

The iterative part of the algorithm can be expressed most simply, as

finding the axis with the least distance to travel (in ray units t), at each

iteration. This is shown in figure 5.2. However using array lookups to the

current axis is not as efficient as explicit if statements. It is more practically

implemented as figure 5.3; and it is presented in this form in [1].

5.2 Incremental voxel traversal

The traversal algorithm shown above may be stopped and resumed. It re-

quires storing 6 floating point numbers to do so, for tDelta and tMax. The

38

do {

axis = min tMax (x, y, z)

tMax[axis] = tMax[axis] + tDelta[axis]

current[axis] = current[axis] + step[axis]

if(current[axis] == justOut[axis]) return

processVoxel (current)

}

Figure 5.2: Simplified ray voxel traversal

do {

if(tMax.x < tMax.y) {

if(tMax.x < tMax.z) {

tMax.x += tDelta.x

x = x + step.x

if(x == justOut.x) return

} else {

tMax.z += tDelta.z

z = z + step.z

if(z == justOut.z) return

}

} else {

if(tMax.y < tMax.z) {

tMax.y += tDelta.y

y = y + step.y

if(y == justOut.y) return

} else {

tMax.z += tDelta.z

z = z + step.z

if(z == justOut.z) return

}

}

processVoxel (x, y, z)

}

Figure 5.3: Ray voxel traversal [1]

39

struct RayStepper {

float mx, our, mz; //tMax

float dx, dy, dz; //tDelta

unsigned short x, y, z;

unsigned short dirMask; //Bitmask for sign of dx, dy, dz

};

Figure 5.4: Ray stepping structure

current voxel is represented by 3 integers, and step. justOut may be pre-

computed and looked up by the sign of tDelta.

The C++ data structure used for storing this is shown in figure 5.4. Given

space useage of 4 byte floats, and 2 bytes per unsigned short, this results in a

32 byte structure. This structure consumes a rather large amount of memory

when stored for each pixel on each input image. But none the less, it is similar

to the use of a DSI or LDI. A comparison of representation is given in chapter

8.

5.3 Ray generation

We use ray generation typical to ray tracing. The pinhole camera model is

used. Rays may be generated by taking an inverse-projection for a given

pixel and depth. A slightly better approach, involves taking the finding the

4 corners of the image plane with inverse-projection and interpolating to find

rays inbetween.

In equation 5.1, P , is the combined OpenGL projection matrix, extended

with a 4th row to form the usual 3x4 projection matrix, used for calibration.

This is done in order to facilitate display (depth buffering). It makes P

invertable, which is useful for ray generation or reverse projection. X is a

4×1 homogeneous vector representing a scene point. x is a 4×1 homogeneous

vector of a projected point where its x, y components are image pixels and

the component z is a normalised depth used for depth buffering.

PX = x (5.1)

40

initialise CVS(V) to the empty set

for each pixel P in Vis(V) {

do {

step ray (P)

R = current ray (P)

} until solid(R) or (R is null)

add R (if not null) to CVS(V)

}

Figure 5.5: Finding CVS set using ray traversal

unproj(x) = X = P−1x (5.2)

ray(x) = (camera, unproj(x)) (5.3)

5.4 Ray initialisation

Rays are generated, then intersected with the bounding box of the voxel

space. This gives an initial voxel. The ray stepper is then initialised. The

combined ray generation, and ray initialisation, takes about a tenth of the

total time of a the Ray Images algorithm. If starting on a more complicated,

or half-carved voxel model, then tracing each ray is required in addition.

This process can be quite slow, illustrated by figure 9.13 where we apply

these algorithms to level of detail, requiring re-initialisation multiple times.

5.5 Finding the Changed Visibility Set

The changed visibility set, is found by an equivalent method to the DSI

method. The CVS, is the set of solid voxels found from traversing each ray

in Vis(V), as shown in figure 5.5.

5.6 Calculating Vis(V)

A ray image may also be used as an item buffer, with one notable difference.

The pixels of a rasterized voxel will not match the pixels in a ray image

41

perfectly, because the ray traversal process does not follow fill conventions

used by rasterization. To get around this, we use an over approximation –

a bounding box around a cube’s projection. This results in scanning a few

extra pixels, which ends up being more or less identical in terms of efficiency,

compared to using an optimised rasterization routine.

5.7 Voxel colouring algorithm

We use an identical voxel colouring algorithm to that used with a DSI, as

shown in 4.3, replacing DSI with ray image in each instance.

5.8 Comparing traversal methods

A parallel (stepping all rays at once) front to back traversal of a voxel volume

(from an arbitrary viewpoint) is often faster than an equivalent operation

using the (entirely precomputed) Depth Stack Image.

We have performed some small trials, using two implementations (com-

pressed, uncompressed - using a C++ std::stack) of DSI, as well as ray traver-

sal [1], shown in figure 5.3. The test is to traverse a voxel space entirely from

the viewpoint of one image, with rays generated for each pixel. For a DSI this

involves popping one element off every stack (unless empty) in a loop. Ray

traversal steps every ray once, in a loop. Results are presented in chapter 8.

5.9 Summary

While the Depth Stack Image approach pre-calculates and stores every inter-

section down a ray, the Ray Image approach calculates each ray intersection

on the fly, using a ray-voxel traversal algorithm. This requires storing inter-

mediate stepping variables with each input image pixel, instead of popping

elements off the back of a Depth Stack. The ray traversal algorithm is re-

sumed and stopped again.

This has the same advantages as the DSI, but negates many of the diffi-

culties. The main issue, the initialisation period is solved. It’s initialisation

involves intersecting rays with the starting voxel volume, this is somewhat

slower than GVC and GVC-LDI, however it is not significant. The memory

42

use is not significantly reduced from using compressed DSIs. It is a little

more flexible with regard to adding voxels. A voxel may be directly tested

for ray intersection, compared to its (approximate) projection, however such

avenues have not been examined closely.

43

Chapter VI

Incremental Voxel Statistics

The Ray Image algorithm (figure 4.3), has been applied to optimisation

based colour consistency. Colour consistency relies on calculating certain

statistics about each voxel. These statistics are often expensive to calcu-

late via rasterization. The key point of this method, is that these voxel

statistics can often be updated incrementally as the reconstruction proceeds.

This builds on the spirit of GVC-LDI of maintaining incremental visibility

information.

The methods considered in this section presented some difficulties, and

were not very successful in themselves. As a result, the more general Ray

Buckets approach (discussed in chapter 7), was developed with these ideas

in mind, and is much more successful for the tasks discussed in this chapter.

It was found that a useful way of computing statistics required for colour

consistency, (and ordering the carving queue), was to perform incremental

updates. Some way of finding a voxel’s colour quickly was required. It turns

out that the voxel colour can be easily calculated incrementally, by adding

colour as new rays are found to be visible.

We use a hashtable, mapping voxels to their statistics, to store this new

information. The hashtable is termed the Visible Voxel List (VVL). The

VVL is a subset of SVL. It is possible to have voxels on the surface (in the

SVL) which are not visible to any view (thus are not in the VVL).

When a ray is traced to a solid voxel using figure 5.5, the colour and

visibility count is accumulated and stored in the VVL.

44

6.1 Tentative carving

In order to evaluate how the carving of a voxel will change the global and

local reprojection error, we use a tentative carving procedure. This involves

creating a set of candidates, along with their changed visibility statistics,

(these are the same voxels as the CVS). The reason for the term candidate,

is that once a voxel is found inconsistent, the candidates are confirmed, and

used to update old visibility information. This procedure differs from tenta-

tive carving as described in 2.9 in that they focus on the ability to undo a

change rather than computing the change and deciding whether to apply it,

as described here.

In order to perform a tentative carving procedure, first a set of candidate

voxels is computed by ray traversal for each ray in Vis(V). These candidates

are the voxels with changed visibility (the CVS). Each ray is stepped until

it meets a solid voxel. This voxel will be in the CVS, and is recorded as a

candidate.

Rays are then placed in bins for each candidate. The bins are implemented

as lists, and a hashtable maps candidates to rays. A fixed array with linear

search is a more practical alternative to a hashtable for small numbers. The

candidates inherit colour/count statistics looked up from the VVL. Together

with the new set of rays a new voxel colour statistics are calculated.

In order to apply optimisation colour consistency, it needs to be deter-

mined if the carving is an improvement using equation 2.9. The information

required is the colour of each CVS voxel U, and its visible projection Vis(U),

before and after carving.

The colour of the CVS voxels are round from the VVL and candidates.

Identifying the visible projection of each of these voxels involves projecting

and filtering with each item buffer as usual.

6.2 Computing change in reprojection error

The procedure is listed below for the simplest case of evaluating the change

in reprojection error. The reprojection error before and after carving, is

calculated using the previous and updated colour of each candidate voxel

45

initialise Solid, VVL, CVSVL, Ray Images

while(CVSVL is not empty) {

remove voxel V from CVSVL

calculate Vis(V)

for each pixel P in Vis(V) {

U = next Solid voxel on Ray(P)

add (P if not null) to Candidates(U)

}

for each voxel U in Candidates {

add Proj(U) to CVRS(V)

calculate before/after Colours(U)

}

if not consistent (V, Colours, CVRS(V))

carve V from Solid

update or add Candidates to VVL

update or add Candidates to to CVSVL

}

}

Figure 6.1: Optimisation colour consistency using ray traversal

46

(and the voxel being carved). A dash represents the property after carving

(eg. V is′(U) will replace Vis(U) if V is carved). Cr is the colour of ray r.

V is′(U) = V is(U) ∪ Rays(Candidate(U))

(6.1) Updated Vis(U) set.

Colour(U) =
P

r∈V is(U) Cr

|V is(U)|

(6.2) Colour before carving.

Colour′(U) =
P

r∈V is′(U) Cr

|V is′(U)|

(6.3) Colour after carving.

E(U) =
∑

r∈V is(U) dist(C, Colour(U)

(6.4) Reprojection error before carving.

E ′(U) =
∑

r∈V is′(U) dist(C, Colour′(U)

(6.5) Reprojection error after carving.

FG(V) =
⋃

U∈V is(V) V is(U)

(6.6) Set of foreground voxels.

47

change(V) =
∑

U∈FG(V) E ′(U) − (E(V) +
∑

U∈FG(V) E(U))

(6.7) Change in reprojection error.

consist(V) = change(V) ≤ 0

(6.8) Colour consistency function.

A similar approach can be taken for the probabilistic approach given in

[15]. The probability associated with a voxel occupying a pixel is transformed

by the negative log, which is summed and compared in the same way.

6.2.1 Problems

The motivation for using ray traversal was that it would apply nicely to

Optimisation based colour consistency measures. It was thought that once

the CVS was efficiently obtained, that an algorithm to utilise Optimisation

based colour consistency would be easily found.

It proved slightly more difficult and less practical than first thought. The

difficulty lies in the fact that one must end up calculating the projections

of each voxel in the Candidates anyway. The ability to make use of the

incremental statistics is therefore negated. A key advantage over GVC-LDI

is avoiding excessive rasterization. However, this advantage is lost.

In order to address these issues, another approach was taken, as described

in section 7, where Vis(V) is updated incrementally, and the use of item

buffers and rasterization are avoided entirely.

6.3 Carving order

Using a monotonic colour consistency function, carving does not matter. Us-

ing a non monotonic carving order, the order matters makes a difference, a

conservative carving is not guaranteed. Using an ordering from low proba-

bility to high probability, was discussed in [15], but made no mention of how

48

Figure 6.2: Least visible first, most visible first carving order.

it influenced results, or how it was implemented (using GVC-LDI).

Take an extreme case, shown in figure 6.2, where two examples are shown.

The orderings are analogous to depth first vs. breadth first search. Assuming

voxels are never colour consistent, using a least visible first ordering burrows

a one voxel wide hole through the centre of the volume. This happens because

the newly exposed voxels almost always also have the least visibility.

The problems here are obvious, the information from the second camera

is never used, as the voxels in the tunnel are never visible. In the second,

voxels on the surface and closest to the two cameras are carved first, which

results in much better conditioning as voxels are only examined when the

maximum information is used.

Although least visible first is an absurd ordering, a more natural ordering

such as the GVC ordering may also result in a sub par ordering. Extreme

cases may be avoided by applying some kind of minimum visibility for consis-

tency checks. Some examples of different carving orders are shown in figure

6.3. A hashtable ordering results from using a hashtable for the CVSVL,

where the hashtable is iterated removing the previous element each time,

giving a fairly arbitrary ordering but occasionally showing an uneven pat-

49

Figure 6.3: Three different carving orders: GVC order, hashtable order and
most visible first order.

tern.

Practical results using a most–visible first ordering are compared in chap-

ter 8. It can be seen that using a most-visible first order, uses a much larger

Vis(V) on average, than the GVC ordering, or an arbitrary ordering (as with

Ray Images).

6.3.1 Carving queues

An advantage of incremental methods is that a priority queue, rather than a

systematic or randomised carving order may be used. To achieve this a queue

is needed which allows elements to be indexed by key/voxel, and updated in

the queue. Additionally, we need to be able to remove the first element in

the queue, and link it back to voxel statistics.

To do this there are two ways which seem acceptable. The first uses a

stable tree for the CVSL priority queue, specifically a C++ (STL) multimap,

where elements are ordered by some property of the voxel (in this case we use

most-visible first). The elements in the map contain the voxel ID. A hashtable

stores visible voxels, containing the visibility count, the accumulated colour

and also an iterator into the CVSVL priority queue.

The first element in the multimap can be removed to find the highest

priority voxel. Queue items may be updated by looking up the visible voxel

hashtable, then using the iterator to manipulate the queue.

The second way, is to use a heap where heap elements are doubly linked

with the visible voxel hashtable elements. The hashtable is setup as before,

50

only each element now has an additional index into the heap array (which

may be invalid/null, as the CVSVL is a subset of the VVL set). Each heap

element contains the priority, and an iterator into the hashtable. A slightly

annoying issue is that when implemented as an array, the heap is manipu-

lations (eg. during a sift up or sift down), move making it hard to keep an

index.

The disadvantage of the second way is that it accesses memory which is

sparsely distributed. Whenever a sift up or sift down operation is carried

out on the heap, many hashtable items are updated. It seems to work well

in practice, being a little faster than the tree approach using standard C++

containers. It is significantly faster on updates which occur much more fre-

quently than insertions and deletions. For each voxel carved, several will be

updated, one deleted and few inserted. Time complexity is the same for both

methods, on average O(logn) for inserts deletions and updates.

6.4 Summary

We have looked at an approach to apply the Ray Images algorithm to optimi-

sation colour consistency. We associated voxels with statistics incrementally

gathered. This introduced the Visible Voxel List structure as a hashtable

mapping voxel IDs to voxel statistics. A tentative carving approach was

taken whereby a set of candidate voxel statistics were first computed, colour

consistency evaluated using those statistics, then if found inconsistent the

candidates are committed.

These methods worked well for applying an ordering to the carving pro-

cess (as discussed in section 6.3), but a deficiency in the Ray Image approach

was found leading to another approach, discussed in chapter 7.

We have looked at keeping incremental statistics on voxels. These statis-

tics can then be used to order the carving process. We discussed briefly

the potential problems associated with carving voxels in a poor ordering –

though results discussed in section 8.6 tend to show that it does not matter a

great deal with regard to quality in practice, but perhaps more in algorithmic

complexity.

Two methods of keeping implementing carving priority queues are given,

51

using either a stable tree or a binary heap. In either case the structure is

doubly linked with the VVL hashtable. Both methods do not add significant

overhead to the algorithm, but the binary heap is a little faster with regard

to updating voxel visibility.

52

Chapter VII

Ray Buckets

In (section 6.1), the approach of updating voxel statistics incrementally

was introduced. Previously ray stepping information has been stored in an

image, to use as an item buffer, in conjunction with rasterization. A natural

generalisation is to avoid the use of images and rasterization entirely, and use

incremental updates for both visibility information/Vis(V) as well as voxel

statistics (colour, reprojection error etc.).

The common factor required for colour consistency tests is Vis(V). Gen-

eralised Voxel Colouring [11] uses rasterization to determine Proj(V). Vis(V)

contains each element Proj(V) equal to its corresponding entry in an item

buffer. Instead of looking to evaluate Vis(V) efficiently, we look at an ap-

proach where Vis(V) is updated incrementally for all visible voxels.

This turns the VVL set (a hashtable), into the primary data structure.

Voxels of this hashtable set contain containers termed buckets - due to the

nature of their use. Buckets are filled as rays pass through and become

visible. When the voxel is carved the bucket is tipped out and the rays pass

through to buckets further down.

Voxel ray traversal is used to update the VVL structure. Each ray stored

(each member of vis(V)) also stores ray stepping information. When a voxel

V, is carved, rays in Vis(V) are accumulated to other voxels which are, or

will become, members of the VVL. These voxels are the CVS(V), found by

ray traversal.

A queue is used to maintain the voxels which require evaluation. Only

those which change visibility during a carving operation require re-evaluation.

This is the same role as Changed Visible Surface Voxel List (CVSVL) from

GVC-LDI [11]. The data structures used are outlined in figure 7.1.

The VVL is implemented as a hashtable, mapping Voxel IDs to a structure

53

������

������

������

������

���������	
��������
 �	
�� ���

	

��

�����

�������

����

�������
����
�����

������

�������

�������

�������

�������

���
��
���

������

 ��!�
 "

�����������

������

���#
$#%
�%
&'

(���
����
$#%
�%
&'

(���
����
����

������
$#%
�%
&'

������

������

������

������������

��������������������

������

��

������

������������

��

������

��

��������

)��*�����
$��#�� "%
��#��')���
$+�������%
��#�� "'

,������

Figure 7.1: The major data structures and their connections.

containing Vis(V). We use the term bucket for this structure, as it behaves

as water poured into a bucket. When the voxel is carved, the water is tipped

out and ”falls” into other buckets. The bucket may also be used to update

useful statistics, for example current reprojection error of a voxel.

One further step is taken, in that ray stepper information is also merged

with colour information into one record. This is convenient from an imple-

mentation point of view, as they are both likely to be used together. It also

cuts down on memory, as background rays will no longer be stored at all.

This helps with segmented images and using a small region of interest as a

large portion of unneeded information may be discarded.

7.1 Accumulation

As an entirely carving process is taken, then visibility is never reduced for a

voxel, only increased. This means updates can be performed by accumulating

rays to voxel buckets. When a voxel is carved, several rays pass through to

solid voxels further on.

One implementation decision which must be made is how voxel buckets

and rays are represented. The most straightforward approach is to use a

structure for rays (copying by value), and voxel buckets are simply an array

or list of these rays. The other potential approach is to use an indirect pointer

54

into a giant table of rays. The first approach is simpler, but using an indirect

pointer seems to work slightly better. This is perhaps due to lessening the

large quantity of data being copied.

We use a simple C++ vector to implement ray buckets. New rays are

grouped and added all at once (like candidates as listed in figure 6.1). Buckets

are efficiently copied by using swaps rather than copies to conserve alloca-

tions. Given the large amount of memory being moved, this is particularly

important. Other alternatives were tried, including linked lists and linked

lists of vectors.

7.2 Initialisation

Initialisation is performed by accumulating all generating rays for input im-

ages, and accumulated into an empty VVL hashtable. In practice, this occurs

by generating one image of rays (as per the Ray Image algorithm) at a time,

pairing it with an input image and extracting each ray, accumulating it to

the VVL hashtable. This is done image by image, so that only a small part

of the dataset needs to be loaded twice at any one time.

Effectively the input to the algorithm is no longer a series of images, but

a large set of rays (associated with a colour/other statistics). This could be

useful in providing a level of detail approach, where only the most important

rays are added. In its most basic form this means that background rays

can be immediately culled. Potentially different sampling could be used

dependent on image data. For example it might be useful to sample more

densely around object contours.

Capturing input data becomes more flexible. For example, instead of

15 images with 800 × 600, it could become feasible to use 60 images with

resolution at 400×300. This would still use approximately the same number

of rays (thus using approximately the same resources), but cover a much more

comprehensive set of view angles. Given that voxel colouring techniques work

most successfully on occluding contours, it may be a promising approach. We

made a comparison using some generated images of the teapot scene. Results

are shown in section 9.4.

55

7.3 Voxel colouring algorithm

A voxel colouring algorithm using ray buckets is shown in figure 7.2. It

operates in much the same way as shown in figure 6.1, however the differences

are in the detail, ie. initialisation, finding Vis(V) and data structures.

One point is that the rays are stepped before evaluating colour consis-

tency. This is only required for evaluating an optimisation based colour

consistency test. Otherwise, it is more efficient to evaluate consistency first.

One of the issues mentioned in section 6.1, was that despite being able

to easily calculate the CVS set, in order to properly evaluate a change in

reprojection error, one needed to project each voxel in the CVS again. The

advantage of ray buckets approach, is that each voxel maintains its visibility

set, so that it does not need to be recalculated to evaluate voxel colour

consistency. This means that calculation of the voxel’s projection is shared

between evaluations, which allows optimisation colour consistency to operate

in a much more efficient manner.

7.4 Optimisation colour consistency

We have applied the Bucket algorithm to optimisation voxel colouring as

[29, 15]. We have looked at a purely carving method, as opposed to [29],

which involved a process of adding and removing voxels. Adding voxels

would complicate the bucket algorithm because it would involve removing

rays from existing buckets, as well as forcing a mapping from images back to

rays. This is one area where GVC-LDI is more flexible.

From each candidate all the required information is available for imple-

menting an optimisation based consistency function. The old visibility in-

formation is looked up from the VVL, and the new visibility information is

stored with each candidate.

The Bucket approach substantially improves on the Ray Images approach,

as the visible projections are pre-calculated when the projections of each voxel

in the CVS is required. An extension of this is possible. The reprojection

error can be incrementally calculated. It might also be useful to use the

metric as a priority for ordering. Kim and Kweon [15] used an ordering from

56

initialise Solid

Generate rays from input images

For each ray R {

Find first solid voxel V

Acumulate R to VVL(V)

}

Set CVSVL to voxels in VVL

while(CVSVL is not empty) {

remove voxel V from CVSVL

lookup Vis(V) from VVL

for ray R in Vis(V) {

step R

U = next Solid voxel on R

if not background(U)

add R Candidates(U)

}

if(not Consist(Vis(V), Candidates) {

carve V from Solid

remove V from VVL

for each Voxel U in Candidates {

add rays in Candidates(U) to VVL(U)

}

}

}

Figure 7.2: Ray Buckets algorithm

57

high probability to low probability.

7.5 Summary

We have looked at an alternative to Ray Images by throwing out input im-

ages and item buffers entirely, and relying on a purely incremental approach

where all ray statistics including input colour, and stepping information are

associated with rays. Rays are associated directly with voxels in the Visi-

ble Voxel List hashtable. Rays are ”tipped” from one bucket as a voxel is

carved, to end up being accumulated in another, eventually residing in either

a colour consistent voxel or reaching the background.

We have discussed a voxel colouring algorithm and implementations for

thresholds, and optimisation colour consistency. The bucket approach solves

the earlier problems of Ray Images, by having the Vis(V) set for any voxel

available for constant time lookup (by the VVL hashtable).

The bucket approach is less flexible than GVC-LDI with regard to adding

voxels. Another mechanism associating image pixels to rays would be needed

for adding voxels. It is much more flexible than GVC-LDI in the represen-

tation of input images, (images are transformed into a set of independent

rays). This also may be a drawback, as noted it becomes harder to find the

source of a ray. For example, a ray may need to store the ”image number”.

A use could be level of detail in input images.

58

Chapter VIII

Comparison

We have compared several different aspects of the proposed approaches.

We compare runtime statistics for threshold colour consistency with imple-

mentations of all proposed algorithms and variations, as well as controls

consisting of GVC and OpenGL accelerated GVC, for threshold colour con-

sistency.

We make use of four datasets, a set of rasterized images ”Teapot”, cali-

brated photo sets Cactus, Gargoyle, and ”Violet” courtesy of Pr. Kyros Ku-

tulakos (University of Toronto). We use one system for most comparisons, an

Athlon 2600+, with 768MB of RAM and a Geforce FX 5200 graphics card.

For the gargoyle dataset with threshold colour consistency, another system

was used with more memory to allow GVC-LDI to run.

We have compared our algorithms to several others (at a common level)

using the threshold colour consistency test given in equation 2.5. We compare

time vs. reprojection error, as well as runtime statistics of memory use.

The implementations compared are GVC, GVC-LDI, a version of optimised

GVC using OpenGL for rasterization (GVC table), and earlier work using

ray traversal with item buffers (Ray–image). We have endeavoured to use

optimised versions of each algorithm, most sharing significant common code

for rasterization and volume representation. We have recorded statistics on

runtime behaviour for each algorithm where possible. (GVC-LDI exhausted

memory for some data sets).

Reprojection error is a problematic measure here and can’t be compared

between methods adequately, given that it always favors a reconstruction

with a fewer number of rays. Reprojection error per ray suffers similarly, in

that a model comprising of only a tiny part of the original scene may still

have a good reprojection error for the parts which do exist. A better measure

59

Method Memory use (MB)
Images alone 54.5

GVC table OpenGL 70.7
GVC 87.6

Bucket 225.0
Ray–image 311.8

DSI 316.4
GVC-LDI 538.3

Table 8.1: Memory use for teapot scene.

would have been to prepare reference voxel models and compare the volume

error.

8.1 Teapot scene

The first dataset consists of a teapot scene with 15 800 × 600 generated

images (by rasterization). The reconstructed resolution of the teapot scene

was at 1203.

All six methods successfully reconstruct the teapot to a similar quality

shown in figure 8.2. There are minor differences due to carving order. Vis(V)

differs between rasterization, OpenGL rasterization, and ray traversal. Fig-

ure 8.1 shows that the GVC table method is faster than the others (though

converges slowly), followed closely by the Bucket method, GVC, DSI with

an extremely long initialisation period, and GVC-LDI significantly slower.

To show the differences resulting from ordering, we have shown two carv-

ing orders for the Bucket carver. The reason for the hashtable ordering (Also

used by implementations of GVC-LDI and Ray–image) being faster, is simply

that it creates more surface noise and uses less rays per voxel. This results

in smaller Vis(V), with a larger ray traversal at each iteration (ie. each ray

skips over more voxels at a time, so is involved in less colour consistency

checks).

Of the two classes of algorithm, it can be seen that incremental methods

{GVC-LDI, Ray–image, Bucket} carve at a nearly constant rate, but GVC

based methods trail off rapidly towards convergence.

Maximum memory use (table 8.1) was significantly higher for incremental

60

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 0 50 100 150 200

R
ep

ro
je

ct
io

n
er

ro
r

Time (seconds)

Teapot test set

Bucket carver, most visible first
Bucket carver, semi-random order

GVC table carver
GVC

Ray Image
LDS

GVC-LDI

Figure 8.1: Reprojection vs. time for several algorithms

Figure 8.2: Reconstructed teapot scene. Figure 8.3: Rasterized image of teapot scene.

61

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

 5.5e+10

 0 20 40 60 80 100

R
ep

ro
je

ct
io

n
er

ro
r

Time (seconds)

Gargoyle data set

Bucket carver
GVC table carver

GVC
GVC-LDI

Ray Image

Figure 8.4: Reprojection vs. time for several algorithms

Figure 8.5: Reconstructed gargoyle scene. Figure 8.6: Photograph of gargoyle scene.

62

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

 0 50 100 150 200 250 300 350 400 450 500

R
ep

ro
je

ct
io

n
er

ro
r

Time (seconds)

Cactus data set

Bucket carver
GVC table carver

GVC
Ray Image

Figure 8.7: Reprojection vs. time for several algorithms

Figure 8.8: Reconstructed cactus scene. Figure 8.9: Photograph of cactus scene.

63

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 0 50 100 150 200 250

R
ep

ro
je

ct
io

n
er

ro
r

Time (seconds)

Violet data set

Bucket carver
GVC table carver

GVC
Ray Image

Figure 8.10: Reprojection vs. time for several algorithms

Figure 8.11: Reconstructed violet scene. Figure 8.12: Photograph of violet scene.

64

methods. GVC variations used insignificant amounts of memory in compar-

ison, using barely more than the memory taken up by the input images,

the voxel volume and other constant costs. Memory use for the incremental

methods is dominated by an order of the number of rays, which diminishes

as carving proceeds. GVC-LDI memory use increases as time progresses, if

surface noise increases. A surface with more noise creates more surface in-

tersections which increases the list size per pixel. This could be resolved by

using a priority queue for ordering.

8.2 Gargoyle scene

The gargoyle dataset consists of 16 719×485 photographs. The reconstructed

resolution of the gargoyle scene was lower than others at 803, in an attempt

to reduce memory use, to compare more algorithms.

This data set was run with different parameters in attempt to run the

GVC-LDI program without running into memory swapping issues. The test

system was a Pentium 4 2.8GHz, with 1GB of memory and a Geforce Fx

5200 graphics card. It was noted that despite these measures, GVC-LDI was

using close to 95 % of system memory. It is probable that performance is

severely degraded by memory swapping.

Statistics from the gargoyle scene show a similar general pattern to the

teapot scene. However the incremental methods are all relatively slower

compared to the GVC methods than for the teapot scene. The OpenGL

GVC program ran much faster than any of the others, and GVC-LDI was

exceptionally slow.

One reason for GVC doing well is a simplified surface, as the gargoyle

has a relatively convex shape (with small concavities). The serial algorithms

(Ray Buckets, and GVC-LDI) will be relatively faster when dealing with

shapes with uneven surfaces and deep concavities, as they will be processed

in a serial manner. For each voxel-step into a concavity, GVC will also re-

evaluate all the other voxels. This is further discussed in section 8.6.

The reconstruction quality of the gargoyle is close to the visual hull, as

the background varies greatly in contrast to the gargoyle. The gargoyle itself,

does not vary much in colour. The threshold colour consistency test does not

65

distinguish some finer points, for example the pattern on the base seen in

figure 8.6 is not captured in the reprojection 8.5.

8.3 Cactus scene

The cactus dataset consists of 30 768× 484 photographs. The reconstructed

resolution of the cactus scene was at 1203.

The cactus scene showed typical runtime statistics (figure 8.7), which

are very similar to the gargoyle. The GVC-LDI program was not used, as

it used more memory than we had available in test machines (more than

1GB). While others used a lot of memory (more than 500MB), they were

not affected by swapping issues. The OpenGL GVC was fastest. Both ray

traversal methods were similar, although a little slower than the OpenGL

GVC.

The cactus scene is a tricky example for voxel colouring algorithms.

Strictly speaking it contains mostly diffuse reflectors and no transparency,

the fine needles of the cactuses provide a similar effect to transparency and

result in some surface noisy surfaces in the reconstruction. The blurry grey

background also results in some noisy voxels in the reconstructions. Despite

these issues the plants are all very colourful which gives a good silhouette for

each interior plant, though fairly noisy.

8.4 Violet scene

The violet dataset consists of 40 768 × 484 photographs. The reconstructed

resolution of the violet scene was at 1203.

The violet scene showed the same general pattern (figure 8.7). The GVC-

LDI implementation was again not used as it used more memory than we

had available in test machines. The ray traversal methods also used a large

amount of memory, and were using close to 85 % of the 768MB in use, and

slow to start as a result (swapping was occurring). The OpenGL GVC was

fastest again, though with a smaller margin, it took some time to converge.

While both ray traversal methods were similar, they show a different curve

due to the different carving order used.

66

Method Memory used (MB) Init time (s) Traversal time (s)
Ray Image 16.1 0.18 3.6

DSI (Compressed) 18.4 9.2 5.9
DSI 165 12.1 7.6

Ray Image 16.1 0.20 4.2
DSI (Compressed) 21.5 11.1 7.3

DSI 227 11.6 8.4

Table 8.2: Runtime statistics for different ray traversal methods and struc-
tures.

The violet scene contains many thin leaves with nearly constant colour.

As a result the threshold consistency function failed to reconstruct these

very adequately - as can be seen in figure 8.11. The light green texture is not

shown on the leaves, and the geometry of the leaves consist of thick slabs.

8.5 Ray traversal

Here we compare the difference between pre-computing ray traversals with

Depth Stack Images vs. using ray traversal algorithms, shown in table 8.2.

The first set of data is from head-on to a voxel volume. The second is a view

from a corner. A ray which travels diagonally will pass through more voxels

on average, than a ray aligned with the voxel axes. The traversal times are

recorded by stepping one layer at a time through the volume.

It is fairly conclusive to say that the Ray Image approach is superior to

the DSI approach, given that it is better in memory use, initialisation time

and traversal time. It is interesting to see the compressed DSI traversal takes

less time, presumably because it involves accessing a much smaller memory

size. Probably for the same reason the Ray Image approach is faster than

either DSI lookup traversals.

8.6 Discussion

Trends, interesting statistics and complexity of the various algorithms is in-

formally discussed here. The time complexity for algorithms examined, is

dominated largely by the number of voxels (evaluation loop) × pixels per

67

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 50 100 150 200 250

C
ar

vi
ng

 ra
te

 (V
ox

el
s/

se
co

nd
)

Time

Carving rate vs. Time

Teapot
Gargoyle

Cactus
Violet

Figure 8.13: Carving rate vs. time for GVC (OpenGL)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100 120 140 160 180

C
ar

vi
ng

 ra
te

 (V
ox

el
s/

se
co

nd
)

Time

Carving rate vs. Time

Teapot
Gargoyle

Cactus
Violet

Figure 8.14: Carving rate vs. time for Bucket carver

68

voxel (consistency function). Memory complexity however, varies between

them.

The colour consistency function plays a large part, which has complexity

linear with the size of the Vis(V) set. For a typical case, the size of Vis(V)

will vary depending on visibility and proximity from the camera centres. So

we approximate the complexity of colour consistency to a roughly constant

complexity equal to the average size of Vis(V).

The average cost per voxel-iteration is given by c which varies between

algorithms and colour consistency algorithm. This cost is mostly dependent

on the average size of the Vis(V) set, which depends on the relative voxel,

image resolution and the carving order, especially.

Statistics on how time for evaluation varies within each scene are shown

in figures 8.15, 8.16. The same general trend is shown (larger Vis(V) takes

longer). Of particular note, the Bucket algorithm shows significantly larger

average Vis(V) than GVC. This is not surprising as the statistic is a running

mean over time. The carving queue specifically orders carving voxels with

the largest Vis(V) first, whereas GVC evaluates all surface voxels at each

iteration, so is bound to include a wider distribution.

The time complexity of all voxel colouring algorithms come from the

total voxel evaluations e, by the cost of evaluating each voxel c. We assume

a voxel volume of size n3. Given some voxels will be re-evaluated, (other

factors ignored), the complexity will be O(c ∗ k ∗ n3) where k is the average

number of times each voxel is evaluated. This factor is dependent on scene

and algorithm factors.

8.6.1 GVC

The number of voxels evaluated by GVC is the sum of of surface area at each

iteration. The number of iterations and the surface area are both dependent

on the scene. Some statistics resulting from the four test scenes used above

are shown in table 8.3.

Statistics on iterations and surface area for GVC can be seen in figure

8.17. For a typical scene the surface area reduces only a little, and the number

of iterations are about 0.75n in 3 of 4 cases. Note that the gargoyle used an

69

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600Lo
ca

l a
ve

ra
ge

 o
f e

va
lu

at
io

n
tim

e
(m

ic
ro

se
co

nd
s)

Size of Vis(V) (pixels)

Size of Vis(V) vs. evaluation time

Teapot
Gargoyle

Cactus
Violet

Figure 8.15: Vis(V) vs. Carving time for Bucket algorithm

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 20 40 60 80 100 120 140 160Lo
ca

l a
ve

ra
ge

 o
f e

va
lu

at
io

n
tim

e
(m

ic
ro

se
co

nd
s)

Size of Vis(V) (pixels)

Size of Vis(V) vs. evaluation time

Teapot
Gargoyle

Cactus
Violet

Figure 8.16: Vis(V) vs. Carving time for GVC algorithm

70

Scene Iterations Evaluated k

Teapot 91 6867691 3.97
Gargoyle 59 911211 1.78
Cactus 77 6569071 3.80
Violet 148 8972587 5.19

Table 8.3: Average evaluations per voxel, for GVC.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 20 40 60 80 100 120 140 160

S
ur

fa
ce

 a
re

a
(v

ox
el

s)

Number of iterations

Iterations vs. Surface area

Teapot
Gargoyle

Cactus
Violet

Figure 8.17: Iterations vs surface area, GVC

71

Scene Evaluated k

Teapot 1356920 0.79
Gargoyle 911211 0.95
Cactus 6569071 0.88
Violet 8972587 1.38

Table 8.4: Average evaluations per voxel, for Ray Buckets.

803 volume resolution, the others used a 1203 resolution. Assuming constant

surface area at O(n2) and the iterations O(n) an approximate complexity is

O(n3 × c). This does seems to be a reasonable approximation, as k varies

between 1.78 and 5.19.

8.6.2 Bucket, GVC-LDI

A major difference between incremental/serial (GVC-LDI, Bucket carver)

and parallel (GVC) is that in the incremental methods, carving is at a nearly

constant rate as shown by 8.14. Where as (necessarily) parallel methods

evaluate an almost constant number of voxels per iteration, and carve at a

decreasing rate per iteration. This can be seen in figure 8.13.

Statistics from test scenes using the bucket carver are given in table 8.4

below. Of note, overall a serial algorithm performs greatly fewer evaluations,

and k varies between 0.79 and 1.38. There is no direct correspondence be-

tween the statistics for GVC and the statistics below. Note that for the

gargoyle set, k is relatively low for GVC, but relatively high for Buckets.

This illustrates the relative disparity seen for the gargoyle, but not for other

datasets.

The evaluation count statistics for GVC-LDI, and ray images are directly

related, and differ only by two factors. Firstly, the carving order is different.

Secondly (in the case of GVC-LDI), it is possible for a voxel to be removed

on one side of a voxel model, causing a voxel on the other to rise to the

head of its linked list. While not actually changing visibility, this results in

fractionally more voxels being evaluated.

The cost for evaluating one voxel is vastly different between GVC-LDI,

Bucket and Ray Image algorithms. Bucket and Ray Image algorithms are

72

Scene List modifications Average list length
Teapot 473 × 106 1.44

Table 8.5: Average list length, for GVC-LDI.

remove V from each LDI(P) in Proj(V)

for each neighbor N of V not in SVL {

add N to SVL, each LDI(P) in Proj(N), CVSVL

}

for each LDI(P) with a changed head U, add U to CVSVL

Figure 8.18: Voxel modification portion of GVC-LDI algorithm listed in fig-
ure 2.10

considerably faster on a per voxel cost, and use a little less memory. A

summary of each is given below.

8.6.3 GVC-LDI

Adding or removing a given voxel V, for GVC-LDI requires modifying the

LDIs. This requires finding Proj(V) first, then updating each linked list in

Proj(V). This has complexity O(|Proj(V)| ∗ length), where length is the

average length of a linked list in an LDI.

Updating visibility structures for GVC-LDI requires first removing the

current voxel from LDIs. Each newly visible neighbour voxel U, is added

to the LDIs. The overall cost per voxel, will depend on the number of new

voxels added, the length of the LDI lists, and the number of times the lists

are modified. Statistics for the teapot scene are given. The list lengths are

relatively short, but there are a large number of list modifications compared

to ray steps for the Ray Image and Bucket algorithms, statistics are listed in

table 8.5.

The set of changed visibility voxels (a superset of CVS), is found by gath-

ering the head of each linked list in LDIs which has changed. The relevant

portion of the GVC-LDI algorithm is listed in figure 8.18.

73

Scene Ray traversals Voxels traversed Average depth
Teapot 539 × 105 195 × 106 3.62

Gargoyle 645 × 105 278 × 106 4.32
Cactus 162 × 106 672 × 106 4.14
Violet 267 × 106 119 × 107 4.48

Table 8.6: Ray traversal statistics, for Ray Images.

8.6.4 Ray Image

Updating visibility structures using ray images requires finding the CVS

(shown in figure 5.5), then adding the CVS to the CVSVL (adding ele-

ments to the CVSVL hashtable is O(1)). This involves iterating each ray

and stepping until the next solid voxel is found. So, the complexity of c

is O(|V is(V)| ∗ depth), where depth is the average depth stepped per ray

traversal. Some statistics on this factor are listed in table 8.6. The depth

stepped is almost identical for all four scenes despite having quite different

geometry.

8.6.5 Bucket

Updating visibility structures using buckets is a little more complicated. It

splits finding the CVS and adding the CVS to the CVSVL before and after

evaluating colour consistency (though in the case of using a threshold it works

either way).

Finding the set of candidates is done by stepping each ray and storing the

intermediate ray in a small hashtable. This step is O(|V is(V)|∗depth) (depth

is the average depth stepped per ray traversal). Adding the candidates to

the CVSVL involves appending each ray from candidates to the equivalent

bucket in the CVSVL. This is also an O(|V is(V)|) process (appending to a

list is constant time).

The cost of adding/removing voxels is constant and negligible for (GVC,

GVC-LDI) but incurs some cost when an ordering queue is involved (Buck-

ets). If the carving queue is on the order of the surface area which we approx-

imate to O(n2) - adding and deleting from the binary heap is an O(logn2)

operation.

74

Scene Ray traversals Voxels traversed Average depth
Teapot 101 × 106 192 × 106 1.90

Gargoyle 135 × 106 277 × 106 2.04
Cactus 354 × 106 651 × 106 1.83
Violet 475 × 106 117 × 107 2.46

Table 8.7: Ray traversal statistics, for Ray Buckets.

Carving queues and visibility updates are considered c = O(|V is(V)| ∗

depth) + O(logn2). However, in practice updating carving queues is domi-

nated by the other factors.

The Bucket algorithm has very similar statistics (shown in table 8.7) aris-

ing from ray traversal, to that of the Ray Image listed above. The difference

is a result of the carving order, otherwise they would be identical. In this case

the Ray Image algorithm is using an arbitrary (hashtable) ordering, whereas

the Bucket algorithm is using a most visible first ordering. The result is that

the average depth is halved, but number of traversals are doubled compared

to the Ray Image statistics. Unsurprisingly, nearly the same number of vox-

els are traversed in total for both cases, given that they both arrive at a very

similar final model.

8.7 Summary

The GVC table method accelerated with OpenGL is consistently fastest with

the lowest memory use, however it is the most restricted of the methods

compared. Both Bucket and Ray Image algorithms perform similarly, in all

cases faster than software GVC and by a large factor over GVC-LDI.

Each algorithm tested (bar GVC-LDI, due to memory constraints) recon-

structed each of the test scenes using a threshold colour consistency function.

Despite large differences in carving order, and the way Vis(V) is calculated,

reconstructions were very similar. This can be seen from looking at the re-

projection error achieved by each algorithm. Only minor differences in the

final result occur.

The complexity of each can be approximated to O(n3) ∗ c, however there

are many factors involved. The number of evaluations are different, but

75

nearly constant in practice within algorithms (as can be seen from tables

above for parameter k). The parameter c is dominated by O(|V is(V)|),

where the average size of Vis(V) depends on voxel resolution and camera

geometry. Additional factors arise for GVC-LDI and ray traversal meth-

ods. Such as the average linked list depth and the average depth of voxels

traversed.

76

Chapter IX

Applications

Here we examine the application of the Bucket approach to optimisation

colour consistency, and compare the reconstruction quality given by imple-

mentations of two prior works. We look at the feasibility of using level of

detail with the bucket approach, and compare statistics with those given

by using GVC for the same task. We also examine the flexibility of the

Bucket approach by comparing the usefulness of being able to use many low

resolution images vs. few high resolution images.

9.1 Optimisation colour consistency

We have implemented two optimisation voxel colouring methods, as described

in [29], and [15]. We have made some comparisons to demonstrate the fea-

sibility, as well as demonstrate versatility, and compare each with regard to

reconstruction quality.

We have tested both implementations on the cactus and the violet. We

first ran a thresholding carver over the data set to reduce the time taken,

though using level of detail is also equally useful for this purpose. We used a

combination of threshold and optimisation to further carve the voxel model

and compared the results. The reason for using both threshold and optimi-

sation was to reduce local minima which seem to be the main problem with

this type of consistency function. However this somewhat defeats the point

of avoiding the need for an ad-hoc threshold.

9.1.1 Cactus

Both reduced reprojection error well, statistics are shown in table 9.1. How-

ever as the depth maps, show the reconstructions produced contain very

77

Figure 9.1: Threshold. Figure 9.2: Threshold. (depth)

Figure 9.3: Reprojection error. Figure 9.4: Reprojection error. (depth)

Figure 9.5: Probabilistic. Figure 9.6: Probabilistic. (depth)

Method Time (s) Reduced reproj.
Reprojection error 82.0 39.7%

Probabilistic 221.7 28.1%

Table 9.1: Reprojection error reduced for cactus scene.

78

Method Time (s) Reduced reproj.
Reprojection error 148.3 39.1%

Probabilistic 478.2 38.3%

Table 9.2: Reprojection error reduced for violet scene.

noisy surfaces. Results of each are shown in figures 9.3, and 9.5. Both take

considerably longer than threshold consistency functions, but show a small

improvement in reconstruction quality.

9.1.2 Violet

The reconstruction of the violet shows a similar pattern. Reprojection error

is reduced, shown in table 9.2, but shows very noisy surfaces. Results of

each are shown in figures 9.9, and 9.11. Again, both take a very long time

but show small a improvement in reconstruction quality. The optimisation

colour consistency also does not do any better with the leaves, leaving large

slabs. The reconstructions still do not show up the lighter green colour of

the inside of the leaves at all.

9.2 Summary

We have implemented and compared two optimisation consistency functions

using the Ray Buckets approach. Overall, reprojection error, but not quality

improved over threshold colour consistency. In each test scene, and consis-

tency function, reprojection error is reduced but results in very noisy surface

reconstructions. Some improvement can be made by adding ad-hoc con-

straints on a minimum number of visible cameras, or in combination with

level of detail to avoid local minima.

9.3 Level of detail

We have looked at the applicability of using level of detail to reduce the

large reconstruction period at high resolutions, for both GVC and the bucket

method. We have used the method first shown by Proc and Dyer in [22]. It

begins with a low resolution voxel volume and repeats steps outlined below.

79

Figure 9.7: Threshold. Figure 9.8: Threshold. (depth)

Figure 9.9: Reprojection error. Figure 9.10: Reprojection error. (depth)

Figure 9.11: Probabilistic. Figure 9.12: Probabilistic. (depth)

80

 1e+09

 1e+10

 1e+11

 0 10 20 30 40 50 60

R
ep

ro
je

ct
io

n
er

ro
r

Time (seconds)

Level of detail, gargoyle data set

Bucket carver, with LOD
GVC table carver, with LOD

Bucket carver

Figure 9.13: Reprojection vs. time for LOD sequence

Figure 9.14: Level of detail sequence 303 to 2403.

81

1. Carve voxels.

2. Augment voxel model.

3. Double resolution (along each axis)

We anticipated that the Bucket method may be particularly suited to this

technique because it is fast when convergence is close. We ran a compari-

son between GVC with LOD, the bucket method with LOD, and the Bucket

method without LOD as a control. Resolution began at 303 and increased in

resolution 4 times to reach 2403. A sequence of the intermediate reconstruc-

tions at each resolution is shown in figure 9.14. The original image from the

same view is shown in figure 8.6, and a graph of reprojection error in figure

9.13.

Results show that the technique worked better with GVC. The bucket

method proved somewhat slower because of the slow re-initialisation period

involving raytracing the intermediate voxel model. This could be solved by

using additional spacial acceleration structures. Clearly LOD pays off for

both methods however, as they are much faster than the control. The only

disadvantage is a possible loss of fine detail, however this also helps reduce

noise.

9.4 Resolution vs View distribution experiment

As mentioned in section 7.2 a promising approach may be to trade off image

resolution with the number of input images. This is in order to test the

hypothesis that voxel colouring works best at determining occluding contours

and therefore should work best with a wide distribution of input image angles.

Using Ray Buckets images are not (directly) used, so reconstruction quality

may improve while memory and time complexity remain roughly equivalent.

Two sets of data were used for this comparison, the teapot dataset with

strongly contrasting objects, and the hand dataset with just one object and

less contrasting colours. An Athlon 2600+ with 768 MB of ram was used. In

both cases the Ray Buckets algorithm given in figure 7.2 were used and, the

resolution of the voxel volume was 1203.

82

Figure 9.15: Independent views of the result using 60 × 400 × 300 images,
and 15 × 800 × 600 images.

Figure 9.16: Reprojection of one view using 99 images at 384 × 242 vs. 25
images at 768 × 484.

For the teapot dataset 15 images, with 800 × 600 surrounding the voxel

volume were captured. In the other case 60 images at 400 × 300 were used.

For the hand dataset 99 photos at 768 × 484 of a hand were used, in one

case all 99 photos were scaled to quarter resolution of 384×242 in the other,

every fourth image was used (25 of 99 images).

For each data set ,both cases used the same threshold colour consistency

function, with the same thresholds - using weighted central differences as

given by 2.5. Rasterized images of the teapot scene were used. Segmentation

information was not used in reconstruction.

83

Figure 9.17: Input image for reconstruction in figure 9.16

Case Total raysTime taken (s)Carved

teapot - 15 images 5145943 64.58 1074472
teapot - 60 images 5208912 76.25 1351763

hand - 25 images 3232679 58.07 1332153
hand - 99 images 3264641 75.81 1379089

Table 9.3: Runtime statistics, comparing different input image placement
and resolutions.

9.4.1 Results

Subjectively, using 60 images produced a less noisy reconstruction than with

15 images, as shown in figure 9.15. It should be also noted that it took many

more attempts at re-arranging the cameras to cover the scene ”evenly” in

the case with fewer images.

It was noted that in setting up the comparison the position of the cameras

in the 15 image case affected the result considerably. In the 60 image case,

the arrangement of particular images/cameras seemed to matter very little,

provided they very roughly covered the space around the voxel volume.

For the hand dataset 9.16 the reconstruction was very similar in both

cases. This is probably because extra camera angles provided very little extra

background information when the visual hull is adequately reconstructed

with a smaller number of images.

The runtime statistics (table 9.3) show that nearly the same total number

of rays were used for both datasets (at the beginning – some may be discarded

84

as the process continues). The case using fewer high resolution images was

slightly faster. This is almost certainly because they evaluated and carved

less voxels in total. Reprojection error does not compare directly, as the

input images are different in each case, so it was not looked at.

Overall, this small experiment confirms somewhat the hypothesis that

voxel colouring works best at determining occluding contours, and shows

that the idea of using voxel colouring with many lower resolution images

at wide viewpoints could be beneficial at least using colourful high contrast

scenes as the teapot dataset.

85

Chapter X

Summary

We have investigated the use of using ray traversal as a means for incre-

mental, serial voxel colouring. We have looked at three main approaches,

Depth Stack Images (DSI), Ray Images and the Bucket approach. Each

looked at improving a problem found in prior approaches. All three use a form

of ray traversal. These algorithms have been implemented and compared

in detail. Applications have been investigated, for threshold/optimisation

colour consistency and level of detail.

It was initially thought that as ray tracing is seen as a very slow process,

so directly computing ray traversal would work poorly. So we looked at an

approach pre-computing ray traversals using rasterization (seen as efficient).

This resulted in a different kind of Layered Depth Image, which we termed

a Depth Stack Image. Ray traversal amounted to simply popping elements

off the back of each depth stack. This had several problems, notably using a

large amount of memory and having a slow initialisation period.

In comparison to GVC-LDI, the DSI approach was promising. It is sim-

pler and is much faster at carving voxels. However, it created a couple of

issues. Firstly uses even more memory than GVC-LDI unless some form

of compression is used, and secondly the initialisation period is extremely

slow. Compared to both variations of GVC, the DSI approach is consider-

ably slower.

It turned out that pre-computation of the ray traversals provided ab-

solutely no gain over direct ray traversal. Direct ray traversal has been a

superior solution. An image of rays was used in place of the DSI, and an

equivalent voxel colouring algorithm was found. Traversal took place by re-

suming and stopping a ray traversal algorithm. Compared to GVC-LDI and

the DSI approach, it is much faster in all aspects. It is comparable but a

86

little slower than the OpenGL GVC implementation.

It turned out that implementing optimisation colour consistency was dif-

ficult using Ray Images. The Ray Buckets approach was developed in an

attempt to overcome these shortcomings. Item buffers were removed, and in

their place a structure associating rays directly associated with their current.

As a voxel is carved rays are ”tipped” (like a bucket) and ”fall” into another

voxel by ray traversal. The major benefit with the Ray Buckets approach is

that Vis(V) is incrementally updated and immediately available on demand,

as opposed to computing Vis(V) when required.

Use of incremental statistics and tentative carving allowed the application

of a Ray Bucket algorithm to optimisation colour consistency. Reconstruction

quality has not improved over threshold colour consistency significantly. We

have compared two functions, both reduce reprojection error but result in a

very noisy surface reconstructions.

Application to level of detail highlights a weakness in that re-initialisation

is slow. GVC appears to work a little better for this purpose, due to a

more efficient re-initialisation. All carving methods benefit from marked

improvement in running time at high voxel resolution from the level of detail

approach, however.

10.1 Conclusion

In conclusion ray traversal seems like a promising method for maintaining

global scene visibility when carving voxel models. We developed two success-

ful approaches, one based around using Ray Images as item buffers, and the

other maintaining visible ray lists for each voxel. (Ray Buckets.)

Overall, using ray traversal compares favourably with GVC-LDI greatly

in time and space use for incremental voxel carving. It is more flexible in

input representation, but trickier, to implement a scheme involving both

adding and carving voxels than GVC-LDI.

Use of ray traversal also compares well with GVC. However the use of

hardware rasterization is clearly beneficial resulting in faster running times

with GVC as evidenced by the OpenGL GVC running times. Ray traversal is

much more flexible than vanilla GVC for searching or determining visibility

87

change.

We have looked at applying these methods to optimisation colour consis-

tency, with mixed success. Reconstruction resulted in noisy surfaces, despite

reducing reprojection error. Level of detail was shown to be a useful method

for reducing time taken, but not as well suited to our approaches as antici-

pated.

10.2 Future

In future, it would seem to be useful to investigate use of ray traversal for

parallel approaches where graphics hardware can be used. Ray traversal is

currently used for displacement mapping in real time, so a proof of con-

cept already exists in regard to performing voxel ray traversal on graphics

hardware. Implementation would need to consider the type of a consistency

function and routing of inputs and outputs carefully. Partially serial meth-

ods for example, processing the first N voxels from a carving queue, may be

of use.

There are many avenues to explore with regard to optimisation colour

consistency. Stereo methods have shown much higher quality reconstruc-

tions than voxel colouring – but typically approximate visibility in a much

more crude manner, using visual hulls, thresholds or the best N views, for

example [2]. Wet may be useful to use an algorithm like those presented

here in combination with stereo. One notable example in this vein uses a

low resolution voxel grid with GVC-LDI, followed by using stereo with graph

cuts [33].

88

References

[1] John Amanatides and Andrew Woo. A fast voxel traversal algorithm for

ray tracing. In Eurographics ’87, pages 3–10. Elsevier Science Publishers,

Amsterdam, North-Holland, 1987.

[2] C. Andez and E. Schmitt. A snake approach for high quality image-based

3d object modeling. In 2nd IEEE Workshop on Variational, Geometric

and Level Set Methods in Computer Vision, pages 241–248, Nice, France,

2003.

[3] Jeremy S. De Bonet and Paul A. Viola. Roxels: Responsibility weighted

3d volume reconstruction. In ICCV (1), pages 418–425, 1999.

[4] Thomas Bonfort and Peter Sturm. Voxel carving for specular surfaces.

In Proceedings of the 9th IEEE International Conference on Computer

Vision. IEEE CSP, October 2003.

[5] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy

minimization via graph cuts. In ICCV (1), pages 377–384, 1999.

[6] Felicia Brisc and Paul Whelan. Creating virtual models from uncali-

brated camera views. In Proceedings of the Irish EuroGraphics Work-

shop, 2004.

[7] A. Broadhurst and R. Cipolla. A statistical consistency check for the

space carving algorithm. In Proc. 11th British Machine Vision Conf.,

pages 282–291, 2000.

[8] Zach Ch., Karner K., Reitinger B., and Bischof H. Space carving on

3d graphics hardware. Technical report, VRVis Technical Report, Graz

University of Technology, 2004.

89

[9] Vikram Chhabra. Reconstructing specular objects with image based

rendering using color caching. Master’s thesis, Worcester Polytechnic

Institute, 2001.

[10] Bruce Culbertson. A histogram-based color consistency test for voxel

coloring. In ICPR ’02: Proceedings of the 16 th International Confer-

ence on Pattern Recognition (ICPR’02) Volume 4, page 40118. IEEE

Computer Society, 2002.

[11] W. B. Culbertson and T. Malzbender. Generalized voxel coloring. In

Proceedings of the ICCV Workshop, volume Vision Algorithms Theory

and Practice, September 1999.

[12] C. R. Dyer. Volumetric scene reconstruction from multiple views. In

L. S. Davis, editor, Foundations of Image Understanding, pages 469–489.

Kluwer, 2001.

[13] A. Fusiello. Uncalibrated euclidean reconstruction: A review. Image

and Vision Computing, 18(67), pages 555–563, May 2000.

[14] David T. Gering and William M. Wells III. Object modeling using

tomography and photography. In MVIEW ’99: Proceedings of the IEEE

Workshop on Multi-View Modeling & Analysis of Visual Scenes, page 11,

Washington, DC, USA, 1999. IEEE Computer Society.

[15] Ho-Won Kim and In So Kweon. Optimal photo hull recovery for the

image-based modeling. In The 6th Asian Conference on Computer Vi-

sion (ACCV), Jeju, Korea, January 2004.

[16] K. N. Kutulakos and S. M. Seitz. What do n photographs tell us about

3d shape?, January 1998. Computer Science Dept. U. Rochester.

[17] Kiriakos N. Kutulakos. Approximate n-view stereo. In ECCV ’00: Pro-

ceedings of the 6th European Conference on Computer Vision-Part I,

pages 67–83, London, UK, 2000. Springer-Verlag.

90

[18] Kiriakos N. Kutulakos. Approximate n-view stereo. In ECCV ’00: Pro-

ceedings of the 6th European Conference on Computer Vision-Part I,

pages 67–83, London, UK, 2000. Springer-Verlag.

[19] Kiriakos N. Kutulakos and Steven M. Seitz. A theory of shape by space

carving. Int. J. Comput. Vision, 38(3):199–218, 2000.

[20] N. Bagherzadeh M. Sainz and A. Susin. Hardware accelerated voxel

carving. In 1st Ibero-American Symposium in Computer Graphics

(SIACG 2002), Guimaraes, Portugal., pages 289–297, 2002.

[21] Y. Ohta and T. Kanade. Stereo by intra- and inter-scanline search

using dynamic programming. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 7:139–154, 1985.

[22] Andrew C. Prock and Charles R. Dyer. Towards real-time voxel coloring.

In Proc. Image Understanding Workshop, pages 315–321, 1998.

[23] J. Revelles, C. Ureña, and M. Lastra. An efficient parametric algorithm

for octree traversal. Journal of WSCG 8(2), pages 212–219, 2000.

[24] Bagherzadeh N. Sainz M. and Susin A. Carving 3d models from un-

calibrated views. In 5th IASTED International Conference Computer

Graphics and Imaging (CGIM 2002), Kauai, Hawaii, USA, pages 144–

149, 2002.

[25] Bagherzadeh N. Sainz M. and Susin A. Recovering 3d metric struc-

ture and motion from multiple uncalibrated cameras. In In IEEE Proc.

International Conference on Information Technology: Coding and Com-

puting, pages 268–273, 2002.

[26] Steven M. Seitz and Charles R. Dyer. Photorealistic scene reconstruction

by voxel coloring. In CVPR ’97: Proceedings of the 1997 Conference

on Computer Vision and Pattern Recognition (CVPR ’97), page 1067.

IEEE Computer Society, 1997.

91

[27] Steven M. Seitz and Charles R. Dyer. Photorealistic scene reconstruction

by voxel coloring. Int. J. Comput. Vision, 35(2):151–173, 1999.

[28] J. Sethian. Level Set Methods and Fast Marching Methods: Evolving

Interfaces in Computational Geometry. Cambridge University Press,

1998.

[29] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer. Improved

voxel coloring via volumetric optimization. Technical report, Center for

Signal and Image Processing, Georgia Institute of Technology, 2000.

[30] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer. A survey

of methods for volumetric scene reconstruction from photographs. In

International Workshop on Volume Graphics 2001, Stony Brook, New

York, pages 81–100, june 2001.

[31] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer. A survey

of methods for volumetric scene reconstruction from photographs. Tech-

nical report, Center for Signal and Image Processing, Georgia Institute

of Technology, 2001.

[32] Gregory G. Slabaugh, W. Bruce Culbertson, Thomas Malzbender,

Mark R. Stevens, and Ronald W. Schafer. Methods for volumetric re-

construction of visual scenes. Int. J. Comput. Vision, 57(3):179–199,

2004.

[33] Gang Zeng, Sylvain Paris, Long Quan, and François Sillion. Progressive

surface reconstruction from images using a local prior. In International

Conference on Computer Vision, 2005.

[34] Ye Lu Zhang, J.Z. Wu, and Q.M.J. Ze-Nian Li. A survey of motion-

parallax-based 3-d reconstruction algorithms. Systems, Man and Cyber-

netics, Part C, IEEE Transactions on, 34(4):532–548, November 2004.

92

[35] A. Zhirkov. Binary volumetric octree representation for image based

rendering. In Proc. of GRAPHICON’01, September 2001., September

2001.

93

