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ABSTRACT. We investigate Laguerre near-planes of order 4 and classify all such 
planes. We further develop various descriptions of these planes and characterise those 
Laguerre near-planes that can be extended to the Miquelian Laguerre plane. We also 
determine the automorphism groups of these planes and give characterisations of 
some of the planes in terms of their automorphism groups. 

1. Introduction and result 

A finite Laguerre plane of order n where n 2:: 2 is an integer consists of a set P 
of points, a set C of circles and a set Q of generators (subsets of P) such that the 
following four axioms are satisfied: 

(P) P contains n(n + 1) points. 
(G) Q partitions P and each generator contains n points. 
( C) Each circle intersects each generator in precisely one point. 
( J) Three points no two of which are on the same generator can be uniquely 

joined by a circle. 

From this definition it readily follows that a Laguerre plane of order n has n + 1 
generators, that every circle contains exactly n + 1 points and that there are na 
circles. 

All known models of finite Laguerre planes are of the following form. Let O be 
an oval in the Desarguesian projective plane P2 = PG(2,pm), pa prime. Embed P2 

into 3-dimensional projective space Pa = PG(3,pm) and let v be a point of Pa not 
belonging to P 2 • Then P consists of all points of the cone with base O and vertex 
v except the point v. Circles are obtained by intersecting P with planes of Pa not 
passing through v. In this way one obtains an ovoidal Laguerre plane of order pm. 
If the oval O one starts off with is a conic, one obtains the Miquelian Laguerre plane 
of order pm. All known finite Laguerre planes of odd order are Miquelian. 
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The internal incidence structure Ap at a point p of ,a Laguerre plane has the 
collection of all points not on the generator through p as point set and, as lines, 
all circles passing through p ( without the point p) and all generators not passing 
through p. This is an affine plane, the derived affine plane at p. A circle K not 
passing through the point of derivation p induces an oval in the projective extension 
of the derived affine plane at p which intersects the line at infinity in the point 
corresponding to lines that come from generators of the Laguerre plane; in Ap 
one has a parabolic curve. (The derived affine planes of the Miquelian Laguerre 
planes are Desarguesian and the parabolic curves are parabolae whose axes are 
the verticals, i.e., the lines that come from generators of the Laguerre plane.) A 
Laguerre plane can thus be described in one derived affine plane A by the lines 
of A and a collection of parabolic curves. This planar description of a Laguerre 
plane, which is the most commonly used representation of a Laguerre plane, is then 
extended by the points of one generator where one has to adjoin a new point to 
each line and to each parabolic curve of the affine plane. It follows from [8] that 
every parabolic curve in a finite Desarguesian affine plane of odd order is in fact 
a parabola. Furthermore, using a simple counting argument it was shown in [1] 
that a finite Laguerre plane of odd order that admits a Desarguesian derivation is 
Miquelian. 

The spatial description of an ovoidal Laguerre plane as the geometry of plane 
sections of an oval cone is related to the planar description in one derived plane 
by stereographic projection from one point of the cone onto a plane not passing 
through the point of projection. In this description all points of the Laguerre plane 
except the points on the generator through the point of projection are covered. 

In this note we consider the restriction of a finite Laguerre plane to one of its 
derived affine planes. When verifying the axioms of a Laguerre plane in such a planar 
representation one always has to consider special cases involving the extra points. 
We now ask to what extend the description in a derived affine plane determines 
the Laguerre plane. A partial solution to this problem was given in [11] in the case 
of odd order and under the assumption that a point exists at which the internal 
incidence structure ( defined in exactly the same way as for Laguerre planes) can be 
extended to a Desarguesian affine plane. To be more precise, a Laguerre near-plane 
of order n ~ 3 is an incidence structure of n 2 points, circles and generators satisfying 
the axioms ( G), ( C) and ( J) from above. This definition extends the terminology for 
Minkowski planes and Mobius planes adopted in [6] and [10], respectively. Laguerre 
near-planes occur as special Laguerre semi-planes in [7] but have not been further 
investigated there. 

Clearly, there are n generators, every circle contains exactly n points and there 
are n 3 circles. One obviously obtains a Laguerre near-plane of order n by deleting 
a generator from a Laguerre plane of order n. Conversely, it is not clear how to 
extend circles in order to construct a Laguerre plane from a Laguerre near-plane 
since all circles have the same length. Even worse, if an extension exists, it may not 
be unique, see Section 2. 

In [11] all Laguerre near-planes of order at most seven, except order 4 are covered. 
Furthermore, Laguerre near-planes of order 4 were used in [10] to construct Mobius 
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near-planes of order 4. In this paper we investigate Laguerre near-planes of order 4. 
We develop a representation of such planes in terms of a single map. We determine, 
up to isomorphism, all Laguerre near-planes of order 4 and characterize those planes 
that can be extended to Laguerre planes. The results obtained in this note can be 
summarized as follows. 

Theorem. Let f : IB:l -+ JF4 where JF4 = {O, 1, w, w + 1 }, w2 = w + 1, denotes 
the Galois field of order 4 be a map such that for each xo, Yo, z0 E lF4 the functions 
x H f(x, Yo, zo), y H f(xo, y, zo) and z H f(xo, Yo, z) are permutations oflF4. Such 
a map describes a Laguerre near-plane £(!) of order 4 as follows. The point set is 
lF4 x lF4 and generators are the verticals { c} x JF4 for c E JF4. Circles are of the form 

(

1 1 
1 w 

{(u,(x,y,z,f(x,y,z))· 1 w+l 

1 0 

1 
w+l 

w 
0 

for x, y, z E lF 4. Conversely, every Laguerre near-plane of order 4 can be uniquely 
described in this way by such a map. 

A Laguerre near-plane £(!) can be uniquely extended to the Miquelian Laguerre 
plane of order 4 by adjoining the points of one generator if and only if one of the 
following holds. 

(1) f + f (0, 0, 0) is additive; 
(2) the circle set {(x,y,z,f(x,y,z)) I x,y,z E lF4} (i.e., the graph off) forms 

an affine subspace of JF! over the Galois field JF2 of order 2; 
(3) its describing map f is of degree at most 3. 

Up to isomorphism, there are precisely five Laguerre near-planes of order 4. 
These planes are described by the maps 

f o ( x, y, z) =x + y + z, 
fi(x, y, z) =(x2 + x)(z2 + z) + x + y + z, 

h(x, y, z) =(x2 + x)(y2 + y) + (y2 + y)(z2 + z) + (x2 + x)(z2 + z) + x + y + z, 
h(x, y, z) =(x2 + x)(y2 + y)(z2 + z) + x + y + z, 

f4(x, y, z) =(x2 + w2x)(y2 + wy)(z2 + wz) + (x2 + w2x)(y2 + w2 y) 

+ (x2 + w2 x)(z2 + w2z) + (y2 + wy)(z2 + wz) + x + y + z. 

The automorphism group r(fi) of £(fi) has order 210 · 32 , 29 , 210 · 3, 27 · 3 and 
27 for i = 0, 1, 2, 3, 4, respectively. Moreover, r(f0 ) and r(h) are transitive on the 
collection of all incident point-circle pairs; in particular, these groups act transitively 
on the point set, the set of circles and the set of generators. The automorphism 
groups of £(!1) and £(!4) are circle-transitive but not transitive on the sets of 
generators (and thus not point-transitive); r(Ji) fixes no generator whereas r(f4 ) 

fixes two generators. r(h) is neither point- nor circle-transitive but is transitive on 
the set of generators. 
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All Laguerre near-planes £(fi), except possibly £(!4 ), can be obtained from £(!0 ) 

by the process of geometric substitution, cf. 4.1, where certain circles of £(!0 ) are 
replaced by new circles obtained from the old ones by changing their points of inter­
section with one generator. 

By the above theorem there are essentially five interpolating systems of rank 3. 
Clearly there is only one interpolating system of rank 4. An interpolating system of 
rank 2 corresponds to an affine plane, so that there is only one interpolating system 
of rank 2. 

With the exception of section 2 we deal with Laguerre near-planes of order 4 
exclusively and sometimes omit order 4 when speaking of Laguerre near-planes. 

2. Laguerre near-planes of even order 

In this section we give an example that shows that a Laguerre near-plane of even 
order may be extended in more than one way to a Laguerre plane of the same order. 

Consider the ovoidal Laguerre plane over an oval O in PG(2, 2m). The tangents 
of O pass through a common point v, the nucleus of 0, so that OU {v} becomes 
a hyperoval; cf. [3, Lemma 12.10) or [2, §8.1). We can now remove any point of 
OU {v} and obtain again an oval. Hence, if we delete a generator from the ovoidal 
Laguerre over 0, we obtain a Laguerre near-plane of order 2m. But now we can 
either add the deleted generator or a generator formed from the line through the 
vertex and the nucleus of 0. In both cases we obtain a Laguerre plane. In general, 
the two Laguerre planes are not isomorphic. Substituting a point of a conic by its 
nucleus yields a translation oval which is not a conic unless m ::; 2. Hence one 
extension is the Miquelian Laguerre plane whereas another extension is an ovoidal 
non-Miquelian Laguerre plane. In coordinates, let lF2m = GF(2m) be the Galois 
field of order 2m. We consider the following Laguerre near-plane of order 2m with 
point set lF 2m x lF 2m , generators being the verticals { c} x lF 2m for c E lF 2m and circles 
being of the form 

{ (x, ax2 +bx+ c) I x E lF2m} 

for a, b, c E lF2m. We call this the parabola model since the circles are the graphs of 
parabolae and lines. We extend this Laguerre near-plane by a generator { oo} x lF2m. 

A circle described by a, b, c E lF2m as above is adjoined the point ( oo, a). This yields 
the Miquelian Laguerre plane of order 2m. If we adjoin the point ( oo, b) however 
we obtain an ovoidal non-Miquelian Laguerre plane of order 2m if m 2 3. (For 
m = 1 or 2 we obtain again the Miquelian Laguerre plane.) Explicitly, let ¢ be the 
permutation of (JF 2m U { oo}) x lF 2m defined by ¢ ( x, y) = ( x2, y). A circle 

{(x, ax2 +bx+ c) I x E lF2m} U {(oo, b)} 

is taken under ¢ to 

{(u, bu2
m-l +au+ c) I u E lF2m} U {(oo, b)}. 
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This gives the familiar representation of the ovoidal Laguerre plane £(2m-l) over 
the translation oval { ( x, x2m- i ) I x E lF 2m } U { ( oo)} in the Desarguesian plane over 
lF2m, 

The above example shows that it is possible for a Laguerre near-plane to be 
extended to two non-isomorphic Laguerre planes. Moreover, it is also possible 
that two non-isomorphic Laguerre near-planes can be extended to essentially the 
same Laguerre plane. To see this consider the following Laguerre near-plane of 
order q = 2m, m 2::: 3, whose circles are the sets { (x, axq- 2 + bx + c) I x E lFq} 
for a, b, c E lF q. Adjoining the point ( oo, a) to such a circle yields essentially the 
Laguerre plane £(2m-l) from above. (The map 

{ 

(x2
, xy), ~f x E lFq, x -=I= 0, 

(x, y) H (oo, y), 1f x = O, 

(0, y), if x = oo, 

t.akes the set {(x, axq- 2 +bx+ c) Ix E lFq} U {(oo, a)} to the set 

{(u,cu2
m-i +bu+a) I uElFq}U{(oo,c)} 

so that one obtains the circles of £(2m- 1). Note that xq-l = 1 for x E lFq,x -=I= 0.) 
As seen above, this Laguerre plane also is the extension the Laguerre near-plane 
obtained from the Miquelian Laguerre plane by deleting one generator. However, 
the two Laguerre near-planes are not isomorphic. Under the map 

) { 
( x, xy), if x E lF q, x # 0, 

(x,y H . 
( 0' y)' 1f x = 0' 

t lie set { (x, axq- 2 +bx+ c) I x E lFq} is taken to the set 

{(:r:,bx 2 +cx+a) Ix ElFq,x#O}U{(O,c)} 

~• 1 that one almost. has an isomorphism if it were not for the points on the generator 
((O,y) iyElFq}, 

3. Linear Laguerre near-planes of order 4 

In the following we look at the case of order 4 in more detail. Every projective 
plane P of order 4 is Desarguesian, cf. the remark following Satz 12.4.14 in [5], 
and every hyperoval in the Desarguesian projective plane of order 4 is obtained 
from a conic by adjoining its nucleus, see [9]. Furthermore, deleting a point from a 
hyperoval results in a conic. Since circles of a Laguerre plane not passing through 
the point p induce parabolic curves in the derived affine plane at p, circles are 
described by parabolae in the affine plane obtained from P by removing the line at 
infinity. However, such a configuration of lines and parabolae does not necessarily 
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yield a Laguerre plane since Lemma 2.8 from [11] does no longer hold. In fact, we 
do not have to go through the process employed in [11] of extending the traces of 
circles to ovals or hyperovals etc. for q = 4. The point set of an internal incidence 
structure Ip at a point p can be identified with (JF 4 \ { 0}) x JF 4 and generators being 
the verticals { c} x JF 4. For each circle its trace in Ip has three points and determines 
a unique polynomial of degree at most 2. 

3.1 A representation of the circles of a Laguerre near-planes of order 
4. One can expand on this idea as follows. The point set of a Laguerre near-planes 
of order 4 can be identified with JF 4 x JF 4 and generators being the verticals { c} x JF 4. 
Each circle has four points and determines a unique polynomial of degree at most 
3, that is, each circle is described by some (c3 , c2 , c1 , c0 ) E JF:1 as 

Figure 1 below gives a schematic representation of the generators and the circle 
C1,w,o,1 where we write JF4 as JF4 = {O, 1, w, w + 1} with w2 + w + 1 = 0. 

Figure 1 

There are 256 vectors in JF:1 and 64 of them describe circles as above. We denote 
the collection of all circle describing vectors again by C. In this representation 
axioms (P), (G) and (C) of a Laguerre near-plane are clearly satisfied. Axiom (J) 
is equivalent to saying that for any three mutually distinct x 1, x 2 , x 3 E JF4 and any 
three Y1, Y2, y3 E JF 4 the system of linear equations 

x3) 3 
x2 
~: = (y,, y,, y3) 

has a unique solution (c3 , c2 , c1 , c0 ) in C. The kernel of the above matrix is spanned 
by 

(1, XI+ X2 + X3, X1X2 + X2X3 + X3X1, X1X2X3). 

Since there are four such unordered triples (x1 , x 2 , x 3 ), we obtain four lines through 
each point of the affine space JF:1. Then the condition on C is that it intersects each 
of these lines in exactly one point. In other words, C is a hypersurface of JF:1 that 
can be represented by a function from ~ to JF 4 in each of the four directions given 
by the above kernels. 
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3.2. Linear Laguerre near-planes of order 4. A nice class of examples are the 
linear Laguerre near-planes of order 4. In this case, C is a linear subspace of F.i -
in fact, one can look more generally at affine subspaces of F.i, that is, C is of the 
form 

C = {(cs, c2, c1, co) E JF.i I ascs + a2c2 + a1c1 + aoco = b} 

for some as,a2,a1,a0,b E IF, (as,a2~a1,ao) i= (0,0,0,0), but we shall see that 
nothing is gained in so doing. (The linear Laguerre near-planes are those with 
b = 0.) For C to be a hypersurface as described above we have to require that 
(as, a 2 , a1 , a0 ) is linearly independent with any three of the four vectors ( xs, x 2 , x, 1) 
for x E IF 4 , or equivalently, 

for any three mutually distinct x 1 , x 2 , xs E IF4, that is, the entries of 

(

1 1 1 1 ) 
0 1 w w+l 

(as, a2, a1, ao) · 0 1 w + 1 w 

1 0 0 0 

are all non-zero. There are 81 such vectors. Furthermore, because (as, a2, a1, ao) 
and >.(as, a 2 , a 1 , a0 ) for >. E IF, >. i= 0, describe the same linear Laguerre near-plane, 
we have at most 27 potentially different linear Laguerre near-planes of order 4. 
These are described by the following vectors which we normalized so that they have 
a leading 1. 

as a2 a1 ao as a2 a1 ao 
1 0 0 1 1 2 0 0 1 w 
3 0 0 1 w+l 4 0 1 0 1 
5 0 1 0 w 6 0 1 0 w+l 
7 1 0 0 0 8 1 0 0 w 
9 1 0 0 w+l 10 1 1 w 0 
11 1 1 w w 12 1 1 w w+l 
13 1 1 w+l 0 14 1 1 w+l w 
15 1 1 w+l w+l 16 1 w 1 0 
17 1 w 1 w 18 1 w 1 w+l 
19 1 w w 0 20 1 w w w 
21 1 w w w+l 22 1 w+l 1 0 
23 1 w+l 1 w 24 1 w+l 1 w+l 
25 1 w+l w+l 0 26 1 w+l w+l w 
27 1 w+l w+l w+l 

The parabola model of a Laguerre near-plane of order 4 is of this form. More 
precisely, it can be obtained for (as, a2, a 1, a0) = (1, O, 0, 0) and b = 0. In fact, all 
affine subspaces essentially yield the same model as we shall see in the following 
section. 
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3.3. Isomorphisms of Laguerre near-planes of order 4. In order to make 
the last statement precise we have to look at isomorphisms of Laguerre near-planes. 
The obvious definition of an isomorphism between Laguerre near-planes of the same 
order is that we have a bijection between the point sets that takes generators to 
generators and circles to circles. Using the representation 3.1 for Laguerre near­
planes of order 4, every isomorphism is of the form 

JF! --+ JF! : (x, y) H (a(x), /3x(Y)) 

where a and f3x are permutations of IF4 for each x E IF4. The collection of all 
permutations of IF4 x IF4 as above forms a group r of order 244 = 215 · 35

. 

Clearly, the group of permutations of IF4 is the symmetric group 84. Every 
even permutation can be written as x H ax+ b for some a, b E IF4 , a =/= 0. The 
automorphism x H x 2 of IF4 is an odd permutation of JF4 - in fact, a transposition 
- and every odd permutation of IF 4 is of the form x H ax2 + b for some a, b E IF 4. 
We give a set of generators for r as permutations of IF4 x IF4 and determine how 
circles are transformed. 

(1) (x, y) H (x, y + t3x3 + t 2x2 + t 1x + t 0) for t3, t 2, t1, t 0 E IF4. These permu­
tations take Cc3,c2,c1,c0 to Cc3+t3 ,c2+t2,c1 +ti,co+to. 

(2) (x, y) H (x + t, y) for t E IF4. These permutations take Cc3 ,c2,c1 ,c0 to 
cd3,d2,d1,do where 

(d,,d,, d,, do) = {c,, c,, c1, co) · G t 
t2 t') 1 0 t2 

0 1 t . 

0 0 1 

(3) (x, y) H (rx, y) for r E IF4, r =/= 0. These permutations take Cc3 ,c2 ,c1,c0 to 

Cc3,rc2 ,r2c1 ,co· 
(4) (x, y) H (x2

, y). This permutation takes Cc3 ,c2 ,c1 ,c0 to Cc3 ,c1 ,c2 ,c0 · 

{ 
(x, y), if x =/= u, 

(5) (x,y) H ( ) . for r,u E IF4, r =/= O. 
x, ry , 1f x = u, 

In order to describe how these permutations transform circles let x 1 , x 2 , x 3 , 

x4 be the four elements of IF 4 . Each polynomial 

vanishes at xi, x2 and x3 and has value 1 at X4 because (x4-x1)(x4-x2)(x4-
x3) equals the product of all non-zero elements in IF4 . Expanding we obtain 
the coefficient-vector (1, x1 + x 2 + x3, x1x2 + x 2x3 + x3x1, x1x2x3) which is 
the same as the spanning vector for the kernel from above. Explicitly, we 
have the following four polynomials 

Po(X) =X3 + 1, 

P1(X) =X3 + X 2 + X, 

Pw(X) =X3 + wX2 + (w + l)X, 

Pw+1(X) =X3 + (w + l)X2 + wX. 

i 
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Using these four polynomials, the above permutation takes the points on 
the circle Cc3 ,c2 ,c1 ,c0 to the points (x, cax3 + c2x2 + c1x + co) for x-::/= u and 
(u, r(c3u3 +c2u2+c1u+c0 )) whose interpolating polynomial is c3X 3 +c2X 2+ 
c1X + c0 + (r + l)(cau3 + c2u2 + c1u + co)Pu(X). Expanding we find that 
Cc3 ,c2 ,c1 ,c0 is taken to Cd3 ,d2 ,di,do where (da, d2, d1, do) = (ca, c2, c1, co)· M 
with 

( 

1 + (r + l)u3 

M _ (r + l)u2 

- (r + l)u 
r+l 

(r + l)u 
1 + (r + l)u3 

(r + l)u2 

(r + l)u 

(r + l)u2 

(r + l)u 
1 + (r + l)u3 

(r + l)u2 

{ 
(x, y), if x-::/= u, 

( 6) ( x, y) H ( 2) . for u E lF 4. Following the same path as for 
x,y , 1fx=u, 

isomorphisms of type (5) above we see that a circle Cc3 ,c2 ,c1 ,c0 is taken to 
cds,d2,d1,do where 

andp~, p~, p;, p~ are the coeffiecients of the polynomialpu(X), i.e., Pu(X) = 
p~X3 + p~X2 + p;X + p~. 

We return to linear Laguerre near-planes. The permutation 

t 3 , t 2, t 1, t0 E lF4 , of type (1) takes C determined by a3, a2, a1, a0, b E lF to one 
with parameters a3, a2, a1, ao, b + a3t3 + a2t2 + a1t1 + aoto. This shows that every 
affine Laguerre near-plane of order 4 is isomorphic to one with b = 0. For the 
remainder of this section we always make this assumption, i.e., we only consider 
linear Laguerre near-planes, and we denote the linear Laguerre near-plane with 
parameters a3, a2, a1, a0 by .C(aa, a2, a1, a0). From the action of generators of r on 
circles as found above we readily obtain the following. 

(1) Permutations of type (1) where a3t 3 +a2t2+a1ti +a0 t 0 = 0 take the Laguerre 
near-plane .C(a3, a2, a1, a0) to itself. 

(2) Permutations or type (2) take .C(aa, a2, a1, ao) to .C(ba, b2, b1, bo) where 

0 0) 0 0 
1 0 . 

t 1 

(3) Permutations or type (3) take .C(aa, a2, a1, ao) to .C(aa, r 2a2, ra1, ao). 
(4) The permutation of type (4) takes .C(a3,a2,a1,a0) to .C(a3,a1,a2,a0). 
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(5) Permutations of type (5) take ..C(a3, a 2, a1, ao) to ..C(a3, a2, a1, ~(a3+ao)+a3) 
for u = 0 and to ..C(b3, b2, bi, bo) where (b3, b2, b1, bo) = ~(a3, a2, a1, ao) · M 
with 

M- ( (r} l)u 
- (r + l)u2 

0 

for u = 1, w, w + 1. 

(r + l)u2 

1 
(r + lu) 

0 

(r + l)u 
(r + l)u2 

1 
0 

r + 1 ) (r + l)u 
(r + :)u2 

(6) Permutations of type (6) do not take (1F4-) linear subspaces of IBj to linear 
subspaces. (They do however permute 1F2 -linear subpaces where 1F2 = {O, 1} 
is the field of order 2.) We therefore can ignore them as far as linear Laguerre 
near-planes are concerned. 

Applying the above tranformations and combinations thereof to ..C(l, 0, 0, 0) direct 
computation shows that all possible 27 linear Laguerre near-planes occur. For 
example, 

25 ~ 10 
20 --2.+ 9 

2 4 5 
6 2'>. 11 

--2.+ 22 
--4 8 
2
·\ 15 
~ 26 

~ 19 ~ 13 
--t 18 --4 16 
4 24 ~ 21 
--4 27 --4 12 

5 14 --+ 
5 17 --+ 

2,>. 
--+ 1 

5 7 --+ 

4 
23 

3 
--+ --+ 

2 
3 

3 
--+ --t 

4 4 3,>. 
--t -...:....+ 

where the numbers refer to the vectors as listed in 3.2 and the the numbers above 
the arrows refer to the type of permutation used; furthermore, A indicates that one 
has to multiply by some non-zero element of 1F4 the obtain the respective vector 
with a leading 1. Hence, we have the following result. 

Proposition 3.4. Every linear Laguerre near-plane of order 4 is isomorphic to 
the Laguerre near-plane ..C(l, 0, 0, 0) obtained from the Miquelian Laguerre plane of 
order 4 by deleting one generator. 

4. A representation of Laguerre near-planes of order 4 

As for models of Laguerre near-planes of order 4 that are not isomorphic to 
..C(l, O, 0, 0) we begin with a closer description of circles of ..C(l, 0, 0, 0). They are of 
the form 

{ (x, ax2 +bx+ c) I x E lF4} 

for a, b, c E 1F4 and they fall into three classes. First, there are the graphs of the 
~our constant polynomials obtained for a= b = 0. Then there are the graphs of the 
24 permutation polynomials obtained for a = 0, b -=I= 0 and a -=I= 0, b = 0. Third, 
there are the graphs of the remaining 36 polynomials obtained for a, b -=I= O; these 
polynomials take on exactly two values and each of these values occurs exactly 
twice. 

Note that the same picture emerges if we delete a different generator from the 
Miquelian Laguerre plane of order 4 because the automorphism group of this plane 
is transitive on the point set. 

i 
! 
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Example 4.1. We now modify the above model to obtain a new Laguerre near­
plane of order 4. To this end, we consider the circles that are entirely contained 
Ill 

S=lB\ x{w,w+l}, 

see the shaded areas in Figure 2 where IF 4 = { 0, 1, w, w + 1} as before and w2 +w + 1 = 
0. There are 8 such circles, two of the first kind and six of the third kind, see Figure 
2 for a schematic representation of these circles. 

1'Hff 
0 1 ffi ffi+ 1 

Figure 2 

These 8 circles cover 32 admissible triples of points, that is, triples of points such 
that no two of the points are on the same generator. We now replace these circles by 
8 new circles covering the same 32 admissible triples of points. From this property 
it will be clear that we again obtain a Laguerre near-plane of order 4. The new 
circles are obtained as the images of the 8 old circles under the map 

if x # 0, ,I, ( ) { (x,y), 
'+': x,y i--+ ( 2) x, y , if x = O; 

that is, the points (0, w) and (0, w + 1) are swapped and all other points remain 
unchanged, see Figure 3 for a schematic representation of these new circles. 

ffi+1~s 

1 tffJ 
0 1 ffi ffi+ 1 

Figure 3 
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However, since we still have circles of all three types and the new circles, this 
Laguerre near-plane cannot be obtained from a Laguerre plane of order 4 by deleting 
one generator. 

In terms of the representation developed in 3.2 we replace the eight polynomials 

w, 
X 2 +x +w, 
(w + l)X2 + wX + w, 
wX2 + (w + l)X + w + 1, 

w+l, 
wX2 + (w + l)X + w, 
(w + l)X2 + wX + w + 1, 
X 2 +X +w+l 

(in the order of Figure 2) by the cubic polynomials 

X 3 +w+ 1, X 3 +w, 
X 3 +X2 +x +w+ 1, 
X 3 + (w + l)X2 + wX + w + 1, 
X 3 +wX2 + (w+ l)X +w, 

X 3 + wX2 + (w + l)X + w + 1, 
X 3 + (w + l)X2 + wX + w, 
X 3 +X2 +x +w, 

respectively, obtained from the former polynomials by adding the polynomial X 3 + 
1. Obviously, the collection of these eight cubic polynomials plus the remaining 
polynomials of degree at most 2 is not closed under addition, i.e., it is no IF2 -

linear subspace of IBj. Therefore this Laguerre near-plane cannot be isomorphic to 
.C(l, O, O, 0) since every element of the group r preserves IF2 -linearity, see the list in 
3.3. 

Cearly, the above construction generalises as follows, see also the example in 
[10, Section 4]. Let U and V be two 2-subsets of IF4 and let U' and V' be the 
complements of U and V, respectively. Let W = V or W = V'. We then replace 
all the 8 circles that are entirely contained in S = U x V U U' x W by the circles 
obtained thereof by swapping two points in S on one fixed generator. We can 
even repeat the construction for different sets U and V as long as eight circles are 
contained in S and obtain a Laguerre near-plane of order 4 in each step. In fact, 
since we no longer have graphs of polynomials of degree at most 2, we can apply this 
construction to any subset S C IF4 x IF4 that contains exactly two points on each 
generator provided that exactly eight circles are entirely contained in it. When 
applying the method just described to a Laguerre near-plane .C1 once or several 
times and obtaining a Laguerre near-plane .C2, we say that .C2 is obtained from .C1 
by geometric substitution. 

4.2. A representation of Laguerre near-planes of order 4 in terms a single 
map. We use the description of Casa hypersurface of IBj developed in 3.1. In order 
to simplify the notation let 

T= (1 
1 
w 

w+l 
0 

1 
w+l 

w 
0 
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and let e1 = (1, 0, 0, 0), e2 = (0, 1, O, 0), e3 = (0, O, 1, 0) and e4 = (0, 0, 0, 1) be the 
standard basis vectors of lF4. Then C' = C · r-1 , where 

r-1= 
(

1 1 1 0) 
1 w+l w O 
1 w w+l O 
1 1 1 1 

is a hypersurface of ]1 which intersects each line v + lF4ei for i = 1, 2, 3, 4, v E ]1, 
in exactly one point. Hence, we can write C' in the form 

C' = {(x,y,z,f(x,y,z)) I x,y,z E lF4} 

for some map f : ~ -+ lF4. Furthermore, for fixed xo, Yo, zo E lF4 the functions 
fyo,zo : x H f (x, Yo, zo), fxo,zo : Y H f(xo, Y, zo) and fxo,Yo : z H f(xo, Yo, z) 
are permutations of lF4. Conversely, every map f with this property describes a 
modified circle set C' and thus defines a Laguerre near-plane of order 4. We denote 
this plane by£(!). 

With every map f: ~ -+ lF4 we can associate a unique polynomial in X, Y and 
Z of degree at most 3 in each of the three variables, i.e., 

3 

f (X, Y, Z) = L ai,j,kxiyj zk 
i,j,k=O 

for some ai,j,k E JF4. Each of the above restricted maps then is described by a 
polynomial in one variable of degree at most 3. However, there are only a few such 
polynomials that define permutations of lF4. 

3 . 
Lemma 4.3. A polynomial p(X) = Li=O aiX2 of degree at most 3 over lF4 defines 
a permutation of lF4 if and only if a3 = 0 and either a 2 = 0 or a1 = 0. The latter 
condition is equivalent to a~ + ar = 1. 

Proof. The polynomialp(X) defines a permutation oflF4 if and only if the evaluation 
map p : lF4 -+ lF4 : x H p(x) is one-to-one. Since translations and homotheties are 
permutations, we may assume that the leading coefficient of p(X) is 1 and that 
the constant term equals 0. Suppose that p(X) has degree 3 so that p(X) = 

X 3 +a2X 2 +a1X. If a1 = 0, thenp(O) = p(a2 ) = 0 andp is not injective for a 2 #- 0. 
If a 2 = a 1 = O, then p(l) = p(w) = 1 and again pis not injective. We now assume 
that a1 =f 0. Since p(X) defines a permutation of lF4 if and only if p(a\ X) defines 
a permutation of lF 4, we may assume that a1 = 1 so that p(X) = X 3 + a 2X 2 + X. 
But then p(l) = p(a2 ) = a 2 and pis not injective. This proves that p(X) has degree 
at most 2, i.e., a3 = 0. 

Suppose that p(X) has degree 2. As before we may assume that a 2 = 1 and 
a0 = 0. Then p(O) = p(a1 ) = 0 and pis not injective for a 1 -=/:- 0. Clearly, x H x 2 is 
a permutation of lF4 so that a quadratic polynomial defines a permutation of lF4 if 
and only if the linear term equals O. 

i 
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Since u3 = 0 or 1 for u = 0 or u =I- 0, respectively, it readily follows that 
u3 + v3 = 1 for u, v E JF4 if and only if either u = O, v =I- 0 or u =I- 0, v = 0. D 

Note that maps of the form x H a 2x2 + a1x for a 2 , a 1 E JF4 are additive, that is, 
they are linear of JF 2 . Hence each such permutation of JF 4 represents an element of 
GL(2, 2), the group of all invertible 2 x 2 matrices over the field JF2 • This group has 
order 6 and obviously the maps for a 2 =I- O, a 1 = 0 and a 2 = 0, a 1 =I- 0 belong to it. 
Therefore we must have already covered all permutations of this form. 

From this point of view one further obtains the inverse of x H a 2x 2 + a1x for 
a2, a1 E lF4, a~+ af = 1, in closed form. Let 

then 

a~x + afx
2 

= u 2
. 

In matrix notation we have 

Since the coefficient matrix of this system of linear equations has determinant af + 
a~ = 1, one finds 

We now consider the partial map z H f(x, y, z) which is described by a polyno­
mial in Z. By the preceding lemma the coefficient of Z 3 must be 0. Therefore 

3 

"""' a· · 3Xiyj = 0 ~ i,J, 
i,j=O 

3 . . 
for all x, y E lF4. Hence the polynomial p(X, Y) = I:i,j=O ai,j,sxiy3 vanishes 
identically. This implies ai,j,3 = 0 for all i and j. Considering the other partial maps, 
we similarly find that ai 3 k = a3 3· k = 0 for all i, J. and k from O to 3. Therefore 

' ' ' ' 2 · . k f (X, Y, Z) reduces to f (X, Y, Z) = I:i,j,k=O ai,j,kxiyJ Z for some ai,j,k E lF4. 
Furthermore, 

2 2 

( L ai,j,2xiyi)
3 + ( L ai,j,1xiyi)

3 = 1 
i,j=O i,j=O 

for all x, y E lF4. In particular, for x = y = 0 we obtain a5 0 2 + a5 0 1 = 1 so that 
' ' ' , 

either ao O 2 = 0 or a0 0 1 = 0 and the respective other term being non-zero. , ' ' ' 
By looking at the other partial maps we obtain the following characterisation. 
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Proposition 4.4. f(X, Y, Z) = '-'? . k-O ai 1· kxiyi zk describes a Laguerre near-
L.-ti,1, - '' 

plane if and only if 

2 2 

( L ai,j,2Xiyi)3 + ( L ai,j,1Xiyi)3 = 1 
i,j=O i,j=O 

2 2 
~ ik3 ~ ik3 ( 6 ai,2,kX z ) + ( 6 ai,1,kx z ) = 1 

i,k=O i,k=O 
2 2 
~ "k3 ~ "k3 ( 6 a2,j,kY1 z ) + ( 6 a1,j,kY1 z ) = 1 

j,k=O j,k=O 

for all x, y, z E lF4. In particular, aJ O 2 + ag O 1 = aJ 2 0 + ag 1 0 = a~ 0 o + af O o = 1. 
' ' ' ' ' ' ' ' ' ' ' ' 

It seems that the corresponding polynomial identities cannot be algebraically 
used in general to simplify the form of f a great deal although we shall come 
back to them later on. However note that the above conditions do not involve the 
coefficient a0 ,0 ,0 . In fact, up to isomorphism, we can always assume that ao,o,o = 0, 
see 5.1. 

Corollary 4.5. The inverses of the partial maps with respect to x, y and z are 
given by 

f;;)(x) =ff (y, z)x2 + ff (y, z) 2 x + fo(Y, z) 2 ff (y, z) + fo(Y, z)ff (y, z) 2
, 

J;;;(y) =ff (x, z)y2 + Jr.(x, z)2y + Jlf (x, z) 2 J:!j(x, z) + Jlf (x, z)ff (x, z)2, 
' 

f;;,t(z) =fI(x, y)z2 + Jt(x, y) 2 z + ft(x, y) 2 JI(x, y) + Jt(x, y)ft(x, y) 2
, 

respectively, where Jf(y,z), Jf(y,z), J0(y,z), ff(x,z), Ji'(x,z), flf(x,z), U(x,y), 
ff(x,y) and fo(x,y) are the respective coefficient functions, i.e., 

f(x, Y, z) =ff (y, z)x2 + ff (y, z)x + fo(Y, z) 

= ff (x, z)y2 + Ji' (x, z)y + Jlf (x, z) 

= f; ( x, y) z2 + ft ( x, y) z + ft ( x, y) . 

Proof. Let f ( x, y, z) = f 2 ( x, y) z2 + f i ( x, y) z + f 6 ( x, y). We can write the inverse 
fx,y of the partial map with respect to z in the form fx,y(z) = g2(x, y)z2+g1(x, y)z+ 
go(x, y). Expanding the identity fx,y(f (x, y, z)) =zone finds 

gz(x, y)f{(x, Y) 2 + g1(x, y)JI(x, y) = 0, 

gz(x, y)JI(x, y) 2 + 91(x, y)f{(x, y) = 1, 

gz(x,y)ft(x,y)2 + 91(x,y)ft(x,y) + go(x,y) = 0. 
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This is a system of linear equations for 92 ( x, y), 91 ( x, y) and 90 ( x, y). Since its 
determinant is f2(x, y) 3 + f{(x, y) 3 = 1 by Proposition 4.5, this system has a 
unique solution and one readily finds 

92(x, y) = fHx, y), 

91(x,y) = f{(x,y) 2, 

9o(x, y) = ft(x, Y) 2 N(x, y) + ft(x, y)f{(x, y)2. 

The inverses of the other partial maps are found likewise. D 

Examples 4.6. 
(1) The linear Laguerre near-plane £(1, 0, 0, 0) is represented in the form£(!) 

with f (x, y, z) = x + y + z. 
(2) Let f(x, y, z) = (x2 + x)(z2 + z) + x + y + z. Then f is a Laguerre near-plane 

describing map. The inverses of the partial maps with respect to x, y and z are 
w H (w2 + w + y2 + y)(z2 + z) + w + y + z2, w H (x2 + x)(z2 + z) + w + x + z, 
w H (w2 + w + y2 + y)(x2 + x) + w + x2 + y, respectively, where w = f(x, y, z). 

(3) Let f(x,y,z) = (x2+x)(y2+y)+(y2+y)(z2+z)+(x2+x)(z2+z)+x+y+z. 
Then f is a Laguerre near-plane describing map. The inverses of the partial maps 
with respect to x, y and z are w H f(w, y2, z2), w H f(x 2, w, z2), w H f(x 2, y 2, w), 
respectively, where w = f(x, y, z). 

(4) In order to represent the Laguerre near-plane in 4.1 by a function f one 
computes the transforms of the eight polynomials of degree at most 2 and of the 
eight cubic polynomials they are replaced with. One finds that adding (0, 0, 0, 1) 
brings one from one set to the other, that is, f is obtained from (x, y, z) H x + 
y + z by adding a function 9 ( x, y, z) that vanishes on all the vectors corresponding 
to the polynomials not replaced and has constant value 1 on the eight vectors 
corresponding to the polynomials that are replaced. The latter eight vectors are 
(u, v, w) where u, v, w E {w, w + 1}, i.e. (u, v, w, u + v + w) is the transform of a 
coefficient vector of a poynomial that is replaced. Now 9(x, y, z) can be found as 

9(x, Y, z) Pw(x)pw(Y)Pw(z) + Pw(x)pw(Y)Pw+1(z) 

Therefore 

+ Pw(X)Pw+1(Y)Pw(z) + Pw(X)Pw+1(Y)Pw+1(z) 

+ Pw+1(x)pw(Y)Pw(z) + Pw+1(x)pw(Y)Pw+1(z) 

+ Pw+1(x)Pw+1(Y)Pw(z) + Pw+1(x)Pw+1(Y)Pw+1(z) 

=(Pw(x) + Pw+1(x))(Pw(Y) + Pw+1(y))(Pw(z) + Pw+1(z)) 

=(x2 + x)(y2 + y)(z2 + z) 

f (x, y, z) = (x2 + x)(y2 + y)(z2 + z) + x + y + z. 

Again, it is easily verified that f is a Laguerre near-plane describing map. The 
inverses of the partial maps with respect to x, y and z are w H f ( w, y, z), w H 

f(x,w,z), w H f(x,y,w), respectively, where w = f(x,y,z). 
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5. The Classification 

We return to the permutations listed in 3.3 and examine how they transform a 
Laguerre near-plane £(!) given by a map f as in 4.2. 

5.1 Isomorphisms and normal form. Using the formulae for the action of gen­
erators of r as given in 3.3 we 'conjugate' by the transformation matrix T from 4.2 
to find how a Laguerre near-plane £(!) is transformed. (For example, in types (1) 
to (5) the coefficients are linearly transformed by a matrix S, then (x, y, z, f(x, y, z)) 
is taken to (x, y, z, f(x, y, z))Tsr-1. This gives us the new map f is transformed 
into.) One obtains the following. 

(1) (x, y) H (x, y + t3x3 + t2x2 + tix + to) for t3, t2, t1, to E lF4 takes £(!) to 
£(!') where f' (x, y, z) = f (x + s3, y + s2, z + s1) + so with 

(s3, s2, s1, so)= (t3, t2, t1, to)· y-l 

= (t3 + t2 +ti+ to, t3 + (w + l)t2 + wt1 + to, 

t3 + wt2 + (w + l)t1 + to, to). 

Writing p(x) = t3x3 +t2x2+t1x+to we have p(O) = s0 , p(l) = s3, p(w) = s2 
and p(w + 1) = s1. Hence (x, y) H (x, y + p(x)) takes£(!) to£(!') where 
f'(x, y, z) = f(x + p(l), y + p(w), z + p(w + 1)) + p(O). In particular, the 
permutation 

(x, y) H (x, y + tpu(x)) = { ((x, y), ) 
x,y+t, 

for t, u E IF4 takes £(!) to £(!') where 

if x I- u, 

if x = u, 

J'(x, y, z) = f(x + tpu(l), y + tpu(w), Z + tpu(w + 1)) + tpu(O) 

f (x, y, z) + t, if u = 0, 

f (x + t, y, z), if u = 1, 
= 

f(x, y + t, z), if u = w, 

f (x, y, z + t), if u = w + 1. 

(2) (x, y) H (.r + l, y) for t E lF4 takes £(!) to £(!') where f' = f for 
t = 0 and J' is an inverse of a partial map of f with the other two vari­
ables exchanged given by f'(J(x,y,z),z,y) = x, f'(z,f(x,y,z),x) = y and 
f'(y, x, f(1:, y, z)) = z fort= 1, wand w + 1, respectively, that is, the maps 
(x, y, z) H J2~;(x), (x, y, z) H J;,;(y) and (x, y, z) H f;;};(z), respectively. 

(3) (x, y) H (rx, y) for r E lF4 , r I- 0, takes£(!) to£(!') where 

{ 

f ( x, y, z) , if r = 1, 

J'(x,y,z) = f(y,z,x), ~fr= w, 
f(z,x,y), 1fr=w+l. 
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(4) (x, y) H (x 2
, y) takes£(!) to£(!') where f'(x, y, z) = f(x, z, y). 

{ 
(x,y), ifxf u, ') 

(5) (x, y) H ( ) . _ for r, u E 1F4 , r # 0, takes £(!) to £(! 
x, ry , 1f x - u, 

where 

f'(x, y, z) = 

r f ( x, y, z), if u = 0, 

f(r 2x,y,z), ifu= 1, 

f(x, r 2 y, z), if u = w, 

()() {
(x,y), 

6 x, y H ( 2) 
x,y ' 

f (x, y, r2z), if u = w + 1. 

if x # u, 
. for u E JF4 takes £(!) to £(!') where 
1f X = u, 

f ( x' y' z) 2 ' if u = 0' 

f'(x, Y, z) = 
f(x 2 ,y,z), ifu=l, 

f(x,y 2 ,z), ifu=w, 

f(x,y,z 2 ), ifu=w+l. 

Note that permutations of type (1) can be used to yield a map that takes (0,0,0) 
to O whereas permutations of type (3) and ( 4) allow us to obtain any permutation 
of the coordinates x, y and z. Permutations of type (5) and (6) allow us to replace 
any of the coordinates by a fixed multiple or by its square, respectively. This 
can be applied to obtain some normalizations for some of the coefficients of f. In 
particular, applying an isomorphism of type (1), we can achieve that a0 ,o,o = 0. 
This means that C0 0 0 0 is then a circle in our Laguerre near-plane. Furthermore, 

. 3 3 '~' 3 + 3 - 3 3 - 1 44 since a0,0,2 + a 0,0,1 - a0,2,0 a 0,1,0 - a2,o,o + a 1,o,o - , see . , we can use 
isomorphisms of type (6), if necessary, to achieve ao,o,2 = ao,2,0 = a2,o,o = 0. 
Finally, using isomorphisms of type (5), if necessary, we can further assume that 
ao,0,1 = ao,1,0 = a1,o,o = 1. Then f (x, 0, 0) = x, f (0, y, 0) = y and f (0, 0, z) = z 
for all x, y, z E JF4 . We say that f is in normal form if the above identities are 
satisfied. All examples 4.6 are in normal form. With this notation we have proved 
the following. 

Proposition 5.2. A Laguerre near-plane £(!) is isomorphic to a Laguerre near­
plane £(!') where f' is in normal form. 

Note that inverses of partial maps can be obtained as a composition of permu­
tations of types (2), (3) and ( 4). More precisely, the inverse of the partial map 
with respect to x, y and z can be found after the permutation ( x, y) H ( x 2 + 1, y), 
(x, y) H (w(x 2 1), y) and (x, y) H ((w + l)(x2 + 1), y), respectively. 

A map f in normal form can obviously be written in the form f(x, y, z) = 
g(x, y, z) + x + y + z where the polynomial g(X, Y, Z) corresponding to g has no 
pure terms Xi, yj or zk. From this representation it follows that every Laguerre 
near-plane of order 4 can be obtained from the parabola model of a Laguerre plane 
of order 4 by replacing some of the circles by graphs of cubic polynomials. To be 
more precise, since 

(x, y, z, f(x, y, z)) = (x, y, z, x + y + z) + (0, 0, 0, g(x, y, z)) 
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and 
(0, 0, 0, g(x, y, z))T = (g(x, y, z), 0, 0, g(x, y, z)), 

the polynomial g(x, y, z)(X3 + 1) is added to the polynomial of degree at most 2 
corresponding to (x, y, z, x + y + z) (with coefficient vector (x, y, z, x + y + z)T). 
If (x, y, z, x + y + z)T = (0, a, b, c) so that (x, y, z, x + y + z) corresponds to the 
polynomial q(X) = aX2 + bX + c, then x = q(l), y = q(w) and z = q(w + 1). This 
correspondence between (x, y, z) and (a, b, c) defines a permutation of JF4 . Under 
this correspondence g(x, y, z) becomes a function h : ~ -+ JF4 of a, b and c. Then 
the graph of aX 2 + bX + c is replaced by the graph of h(a, b, c)X3 + aX 2 + bX + 
c + h(a, b, c). Furthermore, since we add a multiple of X 3 + 1, this process can 
be viewed as swapping two points on the generator {O} x JF4 • In particular, every 
Laguerre near-plane of order 4 is isomorphic to one obtained from the parabola 
model by altering some circles by moving their points on the generator { 0} x JF 4 . 

Note that this may not necessarily be done by geometric substitution. 

Example 5.3. The Laguerre near-plane in Example 4.6.2 is in normal form and 
g(x, y, z) = (x2 + x)(z2 + z) is non-zero if and only if x and z are in { w, w + 1} and 
g(x, y, z) = 1 in this case. Hence 2 · 2 · 4 = 16 circles are replaced. Moreover, the 
points (0, 0) and (0, 1) and the points (0, w) and (0, w + 1) are swapped on {O} x JF4 . 

Circles that are replaced pass through { 1, w + 1} x { w, w + 1}. Since q ( 0) = c = 
x + y + z = y or y + 1 in this case, all the circles that are replaced also pass through 
either {O, w} x {O, 1} or {O, w} x { w, w + l}. Hence we proceed in two steps with 
respect to the sets 51 = JF4 x { w, w+ 1} and 52 = {O, w} x{O, 1 }U{l, w+l }x{ w, w+l }, 
see Figure 4. 

O 1 w w+ 1 

.:-j j ·1 

i ii 

Figure 4 

The first set yields Example 4.1, that is, we add 

91(x, Y, z) = (x2 + x)(y2 + y)(z2 + z), 

see Example 4.6.4. In the second step we add 

g2(x, Y, z) Pw(x)po(Y)Pw(z) + Pw(x)p1(Y)Pw(z) 

+ Pw(X)Po(y)Pw+1(z) + Pw(x)p1(Y)Pw+1(z) 

+ Pw+1(x)po(Y)Pw(z) + Pw+1(x)p1(Y)Pw(z) 

+ Pw+1(x)po(Y)Pw+1(z) + Pw+1(x)p1(Y)Pw+1(z) 

=(Pw(x) + Pw+1(x))(Po(Y) + P1(y))(Pw(z) + Pw+1(z)) 

=(x2 + x)(y2 + y + l)(z2 + z). 
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Then 91 + 92 = g as required. 

Proposition 5.4. A Laguerre near-plane L(f) is isomorphic to the Laguerre near­
plane obtained from the Miquelian Laguerre plane of order 4 by deleting one gener­
ator if and only if f + f (0, 0, 0) is additive, that is, 

f (x, y, z) = a2x2 + a1x + b2y2 + b1y + c2z2 + c1z + d 

for some a2, a1, b2, b1, c2, c1, d E lF4 1 a~+ af = b~ +bf= c~ +cf= 1. 
A Laguerre near-plane .C(f) with f in normal form is isomorphic to the parabola 

model of a Laguerre near-plane of order 4 if and only if f (x, y, z) = x + y + z. 

Proof. As we have seen in 3.3, each permutation of the form (1) to (6) takes an 
affine subspace of the affine space JF! over the prime field JF2 to such a subspace. 
Furthermore, each such subspace that meets each parallel of the coordinates axes 
i 1 t exactly one point can be described by a function f as in the proposition. Hence 
<'very Laguerre near-plane isomorphic to .C(l, 0, 0, 0) can be represented in this form. 

Conversely, .C(f) with f as above is isomorphic to .C(f') for some f' in normal 
f< >rm. Furthermore, J' still has the same overall form. Hence f' ( x, y, z) = x + y + z, 
t hat is, .C(f ') is the parabola model. D 

In the proof of Proposition 5.4 we found another characterization of the parabloa 
1ttodel. 

Corollary 5.5. A Laguerre near-plane L(f) is isomorphic to the parabola model of 
II Laguerre near-plane of order 4 if and only if the graph of f is an affine subspace 
uf JF! over 1F 2 . 

2 ' . k 
Let f(x, x, y) = 'I:,i,j,k=O ai,j,kx2 yJ z for some ai,j,k E lF4. We say that f has 

tl1gree n if n = max{i + j + k I ai,j,k-!- 0}. Note that isomorphisms of types (1), 
(:{), (4) and (5) do not change the degree. In the following we discuss the degrees 
fr, >m 1 to 4 separately and do a computer search for degrees 5 and 6. 

Degree 1. In this case, we clearly have f(x,y,z) = ax+ by+ cz + d for some 
". Ii. c, d E JF4 , a, b, c-!- 0, and .C(f) is isomorphic to .C(l, 0, 0, 0) by Proposition 5.4. 

Degree 2. In this 1·as(\ f (x, y, z) = a2 o ox2+ao 2 oY2+ao o 2z2+a11 oxy+a1 o 1xz+ 
, ' ' ' ' ' , ' ' ' 

"" 1,1yz + a1,o,o:r -t 110.1,oY + ao,o,1z + ao,o,o for some ai,j,k E lF4 where at least one 
, , 11•fficient ai,j,k i:-; 11011-zero for i + j + k = 2. Rewriting f as a partial map in x we 
Ii .i ve 

f(x, y, z) =u'2.o,o:r: 2 

+ (a1,1,0Y + a1,o,1z + a1,o,o)x 
2 2 + ao,2,oY + ao,o,2z + ao,1,1YZ + ao,1,oY + ao,o,1z + ao,o,o-

1 (v Propsition 4.4 we have either a2,o,o = 0 or a1,1,0y + a1,o,1z + a1,o,o = 0 for all 
11. z E lF4. If a2 o o ---1- 0, then we obtain a11 o = a1 o 1 = a1 o o = O·, if a2 o o = 0, 
. '' I '' , , '' '' 
then a1,1,0Y + a1,o,1z + a1,o,o -!- 0 for any y, z E lF4 and one finds a1,1,o = a1,o,1 = 0. 
Therefore a1,1,0 = a 1,0,1 = 0 in any case. Considering the partial map in y one 
likewise obtains ao 1 1 = 0. Hence a1 1 o = a1 o 1 = ao 1 1 = 0 and .C(f) is isomorphic 

' ' ' ' ' ) ' ' 
to .C(l, 0, 0, 0) by Proposition 5.4. 
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Degree 3. Writing f as a partial map in z we have 

f (x, Y, z) =(a1,o,2X + ao,1,2Y + ao,o,2)z2 

+ (a2,o,1x
2 + a1,1,1XY + ao,2,1Y

2 + a1,o,1X + ao,1,1Y + ao,o,1)z 
2 2 2 2 + a2,1,ox Y + a1,2,0XY + a2,o,0X + a1,1,0XY + ao,2,oY 

+ a1,o,0X + ao,1,oY + ao,o,o 

for some ai 1· k E 1F4 where at least one coefficient ai 1· k is non-zero for i + j + k = 3. 
' ' ' ' 

Equating the coefficient of z2 to O describes a line unless a 1 0 2 = a0 1 2 = 0. ' ' ) ) 

Equating the coefficient of z to O describes a conic or a line unless a2 o 1 = a1 1 1 = 
' ' ' , 

ao 2 1 = a1 o 1 = ao 11 = 0. Since a line has four points and a conic has at most 
' ' ' ' ' ' ' 

eight points (in case of a degenerate conic representing two parallel lines), a line 
and a conic or line cannot cover all 16 points of JF~. Therefore, both coefficients 
of z2 and z must be constant so that f (x, y, z) = ao,o,2z2 + ao,o,1z + a2,1,ox2y + 

2 2 2 I t' 1 a1,2,oxy + a2,o,0x + ao,2,oY + a1,1,oxy + a1,o,0X + ao,1,oY + ao,o,o, n par 1cu ar, 
a1 o 2 = ao 1 2 = a2 o 1 = a1 1 1 = ao 2 1 = 0. 

' ' ' ' ' ' ' ' ' ' 
A simimlar argument for the partial map in x shows that a 2,1,o = a1,2,o = 0 - a 

contradiction to f being of degree 3. Hence degree 3 cannot occur. 

Since example 4.6.2 gives a map f of degree 4, and by Proposition 5.4 and the 
above we have the following characterization. 

Proposition 5.6. A Laguerre near-plane describing map f cannot have degree 3. 
Furthermore, £(!) is isomorphic to £(1, 0, 0, 0) if and only if f has degree at most 
3. 

Degree 4. Let 

f(x, Y, z) =a2,2,ox2y2 + ao,2,2Y2
Z

2 + a2,o,2x2z2 

2 2 2 + a2,1,1x yz + a1,2,1xy z + a1,1,2xyz 
2 2 2 2 2 2 + a2,1,ox Y + a2,o,1X z + a1,2,0XY + ao,2,1Y z + a1,o,2xz + ao,1,2YZ 

+ a1,1,1xyz 
2 2 2 + a2,o,ox + ao,2,oY + ao,o,2z + a1,1,oxy + ao,1,1YZ + a1,o,1xz 

+ a1,o,ox + ao,1,oY + ao,o,1z + ao,o,o 

for some ai 1· k E 1F4 where at least one coefficient ai 1· k is non-zero for i + J. + k = 4. 
' ' ' ' 

Since isomorphisms of type (1) do not change the degree off, we may assume that 
a0 ,o,o = 0. There are two types of terms of degree 4, one involving all three variables 
(like in xyz2) and the other involving only two variables (like in x2y2). 

We now suppose that terms of the first type occur. Using isomorphisms of types 
(3) and (4), we may assume that a1,1,2 I= 0. Rewriting fas a partial map in z we 
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have 

f(x, Y, z) =(a2,o,2X
2 + a1,1,2XY + ao,2,2Y

2 + a1,o,2X + ao,1,2Y + ao,o,2)z
2 

+ (a2,1,1x
2
y + a1,2,1XY

2 + a2,o,1x
2 + a1,1,1XY + ao,2,1Y

2 

+ a1,o,1x + ao,1,1Y + ao,o,1)z 
2 2 2 2 2 2 + a2,2,ox Y + a2,1,ox Y + a1,2,0XY + a2,o,ox + a1,1,oxy + ao,2,oY 

+ a1,o,ox + ao,1,oY· 

Equating the coefficient of z2 to O describes a nondegenerate quadric which has at 
most five points or a pair of intersecting lines which have seven points. Equating 
the coefficient of z to O yields at most ten points unless this coefficient is identically 
0. (The equation (a1,2,1X + ao,2,1)Y

2 + (a2,1,1x2 + a1,1,1x + ao,1,1)Y + a2,o,1x
2 + 

a1,0,1x + ao,o,1 = 0 has at most two solutions y for each x unless a1,2,1X + ao,2,1 is a 
common factor of a2 1 1X2 + a1 1 1X + ao 1 1 and a2 o 1X2 + a1 o 1X + ao o 1 in which 
case one may have 4 + 3. 2 = '10 soluti~~s; if the 'c~efficient 'or y 2 is id~ntically 0, 
then a similar consideration shows that at most 10 solutions can occur.) Since we 
must cover 16 points the coefficient of z2 must describe a pair of intersecting lines 
and equating the coefficient of z to O must yield nine points. To get this number 
of points we must have a1,2,1 # 0 and a1,2,1X + ao,2,1 must be a common factor 
of a2 1 1X 2 + a11 1X + ao 11 and a2 o 1X2 + a1 o 1X + ao o 1· Hence all points on 
the ;e~tical line' { a2t 1 a 1 ,~,~} x lF4 ~r~ solution~.' Howev~r: such a line intersects 
at least one of the two non-parallel lines determined by the coefficient of z 2 

- a 
contradiction to the fact that the two sets of zeros must be disjoint. 

Finally, if the coefficient of z is identically 0, then the coefficient of z2 must never 
become O - a contradiction. This shows that terms of the first type cannot occur. 

We thus have a1,1,2 = a1,2,1 = a2,1,1 = 0. Thus the isomorphism of type (6)that 
substitutes z2 for z does not change the degree. Moreover, applying the same ar­
gument as before to the map (x, y, z) ~ f(x, y, z2), we see that a1,1,1 = 0. Using 
isomorphisms of types (3) and ( 4) we may assume that a 2 ,0 ,2 # 0 and using an iso­
morphism of type (6), we may further assume that a 0 ,0 ,2 = 0. Note that the degree 
has not chaged. Considering f as a partial map in z as before we see that equating 
the coefficients of z 2 and z to O describes a quadric or a quadric/line, respectively. 
Such a configuration can cover 16 points if and only if we have degenerate quadrics 
describing two parallel lines in both cases; together, one has a full bundle of parallel 
lines. Using isomorphisms of type (5), we may assume that a2,0,2 = 1 and ao,2,2 = 0 
or 1. Let a = a0,2,2. Since x 2 + ay2 + a1,o,2X + ao,1,2Y = 0 describes a pair of parallel 
lines, we must have a 1 0 2 # 0 and we can achieve that a 1 0 2 = 1 by isomorphisms 
of type (5). But then ~0', 1 ,2 = a. Thus the coefficient of z2 ~ow has the form 

x 2 + ay2 + x + ay = (x + ay) 2 + x + ay. 

(Note that a= 0 or 1 so that a2 = a.) Since the coefficient of z must represent the 
two remaining parallel lines in the bundle, one finds that 

2 2 ( 2 2 ) a2,o,1x + ao,2,1Y + a1,o,1x + ao,1,1Y + ao,0,1 = ao,0,1 x + ay + x + ay 
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and a0,0,1,.j: 0. Using isomorphisms of type (5), we may assume that a0,o,1 = f 
We now rewrite f as a partial map in x. We find 

f (x, Y, z) =(z
2 + z + a2,2,0Y

2 + a2,1,0Y + a2,o,o)x
2 

+ (z2 + z + a1,2,0Y
2 + a1,1,0Y + a1,o,o)x 

2 2 2 2 2 + ay z + ayz + ay z + ao,2,oY + ao,1,1YZ + z + ao,1,oY· 

23 

After applying an isomorphism of type (6), if necessary, we may assume that a2,o,o = 

O and a 1,o,o # 0. Note that the substitution of x by x2 does not change the degree. 
Equating the coefficients of x 2 and x to O gives us again two quadrics and these 
must describe four parallel lines between them. Let b = a 2 ,1 ,0 . Then a2 ,2 ,0 = b2 

and z 2 + z a1,2,0Y2 + a1,1,0Y + a1,o,o = a1,o,o(z2 + z + b2 y2 + by) as before. Hence 
a1 o o = 1, a11 0 = b and a1 2 0 = b2. 

' ' ' ' ' ' Finally, rewriting f as a partial map in y, we find 

f (x, y, z) =(az2 + az + b2
x

2 + b2x + ao,2,o)y
2 

+ (az 2 + az + bx2 +bx+ ao,1,o)Y 

+ (x2 + x)(z2 + z) + x + z. 

After applying an isomorphism of type (6), if necessary, we may assume that a 0 ,2 ,0 = 

O and a 0 ,1 ,0 # 0. Note that the substitution of y by y 2 does not change the degree. 
The same arguments as before yield for f the following form: 

f(x, y, z) = (x2 + x)(z2 + z) + a(y2 + y)(z2 + z) + b(x2 + x)(y2 + y) + x + y + z 

where a 2 = a and b2 = b. 
Clearly, (a, b) = (0, 1) and (a, b) = (1, 0) yield isomorphic Laguerre near-planes. 

(a, b) = (0, 0) yields the plane in Example 4.5.2. Furthermore, in this case, the 
inverse of the partial map with respect to x essentially is the above map with 
(a, b) = (0, 1). Hence (a, b) = (0, 1) and (a, b) = (0, 0) yield isomorphic Laguerre 
near-planes of order 4. In summary, we have obtained the following result. 

Proposition 5. 7. A Laguerre near-plane£(!) with f of degree 4 is isomorphic to 
a Laguerre near-plane £(fi) or £(h) where Ji and h are the maps defined by 

fi(x, y, z) = (x2 + x)(z2 + z) + x + y + z 

and 

h(x, y, z) = (x
2 + x)(y2 + y) + (y2 + y)(z2 + z) + (x2 + x)(z2 + z) + x + y + z, 

respectively. 

Note that both Laguerre near-planes £(!1 ) and £(h) can be obtained by geo­
metric substitution. For £(Ji) see Example 5.3. 
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In order to obtain £(!2) one applies geometric substitution for all the sets in­
dicated in Figure 5 by the shaded areas and by swapping points on the leftmost 
generator { ( 0, v) I v E lF 4 }. Note that these areas define mutually disjoint circle 
sets so that gemetric substitution can be carried out in each step. Of course, one 
can also start with £(!1 ) and then adding 

(x, y, z) H (x 2 + x)(y2 + y)(z2 + z + 1) 

( third square) and 

(x, y, z) H (x 2 + x + l)(y2 + y)(z2 + z) 

( forth square). 

Degrees 5 and 6. For these last two remaining cases we did a computer search for 
functions f. In fact, we searched for all functions f in normal form, not necessarily 
of degree 5 or 6. Let 

f(x, Y, z) =a2,2,2x2y2z 2 + a2,2,1x2y2z + a2,1,2x2yz2 + a1,2,2xy2z 2+ 
2 2 2 2 2 2 a2,2,0X Y + ao,2,2Y z + a2,o,2X z 

2 2 2 + a2,1,1X yz + a1,2,1XY z + a1,1,2xyz 
2 2 2 2 2 2 + a2,1,0X Y + a2,o,1x z + a1,2,0XY + ao,2,1Y z + a1,o,2xz + ao,1,2YZ 

+ a1,1,1xyz 
2 2 2 + a2,o,ox + ao,2,oY + ao,o,2z + a1,1,oxy + ao,1,1YZ + a1,o,1xz 

+ a1,o,ox + ao,1,oY + ao,o,1z + ao,o,o 

for some ai,j,k E JF4 . Since we are only interested in Laguerre near-planes up to 
isomorphism we can assume that f is in normal form, that is, 

a2 o o = ao 2 o = ao o 2 = ao o o = 0 and a1 o o = ao 1 o = ao o 1 = 1. 
' ' ' ' ' ' ' ' ' ' ' ' ' ' 

Furthermore, under an isomorphism of type (5) we can replace f by (x, y, z) H 

w2 f(wx, wy, wz) or (x, y, z) H wf(w2x, w2y, w2z). Then the coefficients a 2 ,2,2 of 
X 2Y 2 Z 2 and a1 1 1 of XY Z are replaced by w2a2 2 2 or wa2 2 2, and w 2a1 11 or 

' ' ' ' ' ' ' ' 
wa1, 1,1 , respectively. Hence we may further assume that 

a2 2 2 = 0 or 1 and a1 1 1 = 0 or 1 if a2 2 2 = 0 
' ' ' ' ' ' 
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We proceed in three steps. 
Step 1: We determine all coefficients bi,j E IF4 , i = 0, 1, 2, j = 1, 2, such that 
(b2,2x2 + b1,2x + bo,2) 3 + (b2,1x2 + bi,1x + bo,1) 3 = 1 for all x E lF4. We found 96 
solution vectors b = (b2,2, b1,2, b0,2, b2,1, b1,1, b0,1). Note that one can restrict the 
search to b0 ,2 = 0 and b0 ,1 = 1; this yields 16 solution vectors. These vectors are 

b2 2 , b1 2 , bo 2 , b2 1 
' 

b11 
' 

bo 1 , 
0 0 0 0 0 1 
0 0 0 1 w 1 
0 0 0 1 w+l 1 
0 0 0 w 1 1 
0 0 0 w w 1 
0 0 0 w+l 1 1 
0 0 0 w+l w+l 1 
1 1 0 1 1 1 
1 w 0 w w+l 1 
1 w+l 0 w+l w 1 
w 1 0 w+l w 1 
w w 0 1 1 1 
w w+l 0 w w+l 1 

w+l 1 0 w w+l 1 
w+l w 0 w+l w 1 
w+l w+l 0 1 1 1 

All other solution vectors are then obtained by multiplication by w and w2 and by 

exchanging the roles of bi,2 and bi,l, i.e., multiplying b by ( ~: i:) where 03 and 

h denotes the 3 x 3 zero and identity matrix, respectively. 
Step 2: We determine all coefficients bi,j,k E IF4 , i = 0, 1, 2, j = 0, 1, 2, k = 1, 2, 
where b2,2,2 = 0, 1 and b1,1,1 = 0, 1 if b2,2,2 = 0 such that (b2,2,2x2y2 + b2,1,2x2y + 
b x2 + b xy2 + b xy + b x + b y 2 + b y + b )3 + (b x2y 2 + 2,0,2 1,2,2 1,1,2 1,0,2 0,2,2 0,1,2 0,0,2 2,2,1 
b2,1,1x2y + b2,o,1x2 + b1,2,1XY2 + b1,1,1XY + b1,o,1x + bo,2,1Y2 + bo,1,1Y + bo,0,1) 3 

= 1 
for all x, y E lF4. 

Fixing y we obtain four identities in x, namely 

(y = 0), 

((b2,2,2 + b2,1,2 + b2,o,2)x
2 

+ (b1,2,2 + b1,1,2 + bi,o,2)x + bo,2,2 + bo,1,2 + bo,0,2)
3
+ 

((b2,2,1 + b2,1,1 + b2,o,1)x
2 

+ (b1,2,1 + b1,1,1 + b1,o,1)x + bo,2,1 + bo,1,1 + bo,0,1)
3 

= 1 

(y = 1), 

((b2,2,2(w + 1) + b2,1,2w + b2,o,2)x2 + (b1,2,2(w + 1) + b1,1,2W + b1,o,2)x 

+bo,2,2(w + 1) + bo,1,2W + bo,0,2) 3+ 
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((b2,2,1(w + 1) + b2,1,1w + b2,o,1)x2 + (b1,2,1(w + 1) + b1,1,1w + b1,o,1)x 

+bo,2,1(w + 1) + bo,1,1w + bo,0,1) 3 = 1 

(y = w) and 

((b2,2,2W + b2,1,2(w + 1) + b2,o,2)x2 + (b1,2,2w + b1,1,2(w + 1) + b1,o,2)x 

+bo,2,2w + bo,1,2(w + 1) + bo,0,2) 3 + 

((b2,2,1W + b2,1,1(w+1) + b2,o,1)x2 + (bi,2,1W + b1,1,1(w + 1) + b1,o,1)x 

+bo,2,1w + bo,1,1(w + 1) + bo,0,1) 3 = 1 

(y = w + 1) for all x E 1F 4. Hence the vectors 

bo =(b2,o,2, b1,o,2, bo,0,2, b2,o,1, b1,o,1, bo,o,o) 

b1 =(b2,2,2 + b2,1,2 + b2,o,2, b1,2,2 + b1,1,2 + b1,o,2, bo,2,2 + bo,1,2 + bo,0,2, 

b2,2,1 + b2,1,1 + b2,o,1, b1,2,1 + b1,1,1 + b1,o,1, bo,2,1 + bo,1,1 + bo,0,1) 

bw =(b2,2,2(w + 1) + b2,1,2W + b2,o,2, b1,2,2(w + 1) + b1,1,2w + b1,o,2, 

bo,2,2(w + 1) + bo,1,2W + bo,0,2, b2,2,1(w + 1) + b2,1,1w + b2,o,1, 

b1,2,1(w + 1) + b1,1,1w + b1,o,1, bo,2,1(w + 1) + bo,1,1W + bo,0,1) 

bw+l =(b2,2,2W + b2,1,2(w + 1) + b2,o,2, b1,2,2w + b1,1,2(w + 1) + b1,o,2, 

bo,2,2w + bo,1,2(w + 1) + bo,0,2, b2,2,1w + b2,1,1(w+l) + b2,o,1, 

bi,2,1W + b1,1,1(w + 1) + b1,o,1, bo,2,1W + bo,1,1(w + 1) + bo,0,1) 

must appear in the list found in Step 1. Furthermore, 

Thus, going through the list found in Step 1 one looks for triples (bo, b1, bw) such 
that b0 + b1 + bw is also in this list. The coefficients bi,j,k are then determined by 

(b2,2,2, b2,1,2, b2,o,2) =(b6, bi, b~) · S 

(b2,2,1, b2,1,1, b2,o,1) =(b6, bf, b!) · S 

(b1,2,2, b1,1,2, b1,o,2) =(b5, bi, b~) · S 

(b1,2,1, b1,1,1, b1,o,1) =(bg, bt bt) · S 

(bo,2,2, bo,1,2, bo,0,2) =(bg, bt b!) · S 

(bo,2,1, bo,1,1, bo,0,1) =(bg, bt bt) · S 

where b~ denotes the ith entry of be, c = 0, 1, w, and 

(

w+l 
S= w 

1 

w 
w+l 

1 
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A total of 4056 solution vectors (bi,j,k)i,j,k were found. 
Step 3: We determine all coefficients ai,j,k E 1F4 of a Laguerre near-plane describing 
map in normal form where a 2,2, 2 equals O or 1 and a1,1,1 equals O or 1 if a2,2,2 = 0. 
Note that a 2 ,2 ,2 and a 1 ,1 ,1 appear as b2 ,2 ,2 and b 1 ,1 ,1 in each of the three identities 
associated with the three partial maps so that we can directly use the list found 
in Step 2. Looking at the partial map with respect to z we have ai,j,k = bi,j,k 
for i, j = 0, 1, 2 and k = 1, 2. For the partial map with respect to y we now have 
ai,j,k = bi,k,j for i, k = 0, 1, 2 and j = 1, 2. Finally, for the partial map with respect 
to x we obtain ai,j,k = bj,k,i for j, k = 0, 1, 2 and i = 1, 2. Hence we search through 
the list found in step 2 for triples of vectors b1 = (b},j,k), b2 = (b;,j,k) and b3 = (bf,j,k) 
that show the following identities 

Then 

bl -b2 -b3 
2,2,2 - 2,2,2- 2,2,2 

bl -b2 -b3 
2,1,1- 1,2,1- 1,1,2 

bl -b2 -b3 
2,2,1 - 2,1,2- 1,2,2 

bl -b2 -b3 
1,2,1- 2,1,1- 1,2,1 

bl -b2 -b3 
2,1,2 - 2,2,1- 2,1,2 

bl -b2 -b3 
1,1,2- 1,1,2- 2,1,1 

bl -b2 -b3 
1,2,2 - 2,1,2- 2,2,1 

bl -b2 -b3 
1,1,1- 1,1,1- 1,1,1 

bl -b2 
0,2,2 - 0,2,2 

bl -b3 
2,0,2- 2,0,2 

b2 -b3 
2,0,2- 0,2,2 

bl -b2 
0,2,1 - 0,1,2 

bl -b3 
2,0,1- 1,0,2 

b2 -b3 
2,0,1- 0,1,2 

bl -b2 
0,1,2 - 0,2,1 

bl -b3 
1,0,2- 2,0,1 

b2 -b3 
1,0,2- 0,2,1 

bl -b2 
0,1,1 - 0,1,1 

bl -b3 
1,0,1- 1,0,1 

b2 -b3 
1,0,1- 0,1,1 

ai,j,k = b},k,j for i, k = 0, 1, 2 and j = 1, 2, 

ai,j,o = b7,o,j for i = 0, 1, 2, and j = 1, 2. 

Note that a 2,o,o = 0, a 1,o,o = 1 and ao,o,o = 0 by our assumptions. 
A total of 36 maps were found. Of these one is of degree 1, 21 are of degree 4 

and 14 are of degree 6. The map of degree 1 is (x, y, z) H x + y + z. The maps f 1 
and h are among the 21 maps of degree 4 all of which can be transformed to either 
Ji or f2. This observation agrees with (and confirms) our previous results on maps 
of degrees at most 4. The 14 maps of degree 6 are listed in the table below where 
column i shows the coefficients of the map i. 

Each of these can be transformed to h (column 1) or f 4 (column 14), see the 
proposition below. In fact, colums 2 to 8 transform into column 1 and columns 9 to 
13 transform into column 14. For example, one can use an isomorphism of type (6) 
to replace f by ( x, y, z) H f ( x 2 , y 2 , z2 ) 2 . This has the effect that each coefficient is 
squared so that O and 1 are fixed and w and w+ 1 are exchanged. Hence the coefficent 
vectors in columns 10, 11 and 13 can be transformed into those in columns 14, 12 
and 9, respectively. tTe coefficent vectors in columns 9 and 13 are transformed into 
those in column 14 by swapping x with y and x with z, respectively. 
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1 2 3 4 5 6 7 8 g 10 11 12 13 14 
a2,2,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
a2,2,1 1 1 1 1 1 1 1 1 w w+l w w+l w+l w 
a2,1,2 1 1 1 1 1 1 1 1 w+l w+l w+l w w w 
a1,2,2 1 1 1 1 1 1 1 1 w w w+l w w+l w+l 
a2,2,o 0 1 0 1 0 1 0 1 1 1 1 1 1 1 
a2,1,1 1 1 1 1 1 1 1 1 1 w 1 1 1 w+l 
a2,o,2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 
a1,2,1 1 1 1 1 1 1 1 1 w+l 1 1 1 w 1 
a1,1,2 1 1 1 1 1 1 1 1 1 1 w w+l 1 1 
ao,2,2 0 0 1 1 0 0 1 1 1 1 1 1 1 1 
a2,1,o 0 1 0 1 0 1 0 1 w+l w w+l w w w+l 
a2,o,1 0 0 0 0 1 1 1 1 w w w w+l w+l w+l 
a1,2,o 0 1 0 1 0 1 0 1 w+l w+l w w+l w w+l 
a1,1,1 1 1 1 1 1 1 1 1 w w+l w+l w w+l w 
a1,o,2 0 0 0 0 1 1 1 1 w w w w+l w+l w+l 
ao,2,1 0 0 1 1 0 0 1 1 w+l w+l w w+l w w 
ao,1,2 0 0 1 1 0 0 1 1 w+l w+l w w+l w w 
a2,o,o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
a1,1,o 0 1 0 1 0 1 0 1 w w+l w w+l w+l w 
a1,o,1 0 0 0 0 1 1 1 1 w+l w+l w+l w w w 
ao,2,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
ao,1,1 0 0 1 1 0 0 1 1 w w w+l w w+l w+l 
ao,0,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
a1,o,o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
ao,1,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
ao,0,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
ao,o,o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Proposition 5.8. A Laguerre near-plane £(!) with f of degree > 4 is isomorphic 
to a Laguerre near-plane .C(h) or £(!4) where h and f 4 are the maps defined by 

h(x, y, z) = (x
2 + x)(y

2 + y)(z
2 + z) + x + y + z 

and 

f4(x, y, z) =(x
2 + w2

x)(y
2 + wy)(z2 + wz) + (x2 + w2x)(y2 + w2y) 

+ (x2 + w2
x)(z

2 + w2
z) + (y2 + wy)(z2 + wz) + x + y + z, 

respectively. There are no Laguerre near-planes £(!) with f of degree 5. 

Proof. Examining the 36 solutions one finds that either all coefficients a2,2,2, a2,2,1, 

a2,1,2, a1,2,2, a2,1,1, a1,2,1, a1,1,2 and a1,1,1 are non-zero or they are all zero. It 
is clear that under an isomorphism of type (1), (3), (4), (5) or (6) this property 
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is preserved. From Corollary 4.5 it follows that under an isomorphism of type 
(2) these coefficients are permuted among themselves and perhaps squared so that 
they remain all non-zero or all zero. Since for a map of degree 5 some of these 
coefficients would have to be zero and some others would have to be non-zero, the 
above argument shows that there are no Laguerre near-plane describing maps of 
degree 5. Furthermore, if f has degree 6 it must be tranformed into one of the 
maps of degree 6 found in Step 3. This proves the proposition. D 

As seen in 4.5.4 the Laguerre near-plane £(!3) can be obtained from the parabola 
model by geometric substitution. As for £(!4) one readily sees that £(!4 ) shares 36 
circles with the parabola model (just find the number of solutions of f 4 (x, y, z) = 
.r + y + z). Hence 28 circles have to be replaced in £(!0 ) in order to obtain £(!4). 

I Iowever as 28 is not divisible by 8 the sets used in the process of geometric sub­
stitution cannot be disjoint and some circles must be changed back to parabolae if 
geometric substitution is possible. So far we have not found suitable sets for geo­
I nctric substitution. We therefore conjecture that £(!4 ) cannot be obtained from 
t he parabola model by geometric substitution. 

6. Automorphism groups 

So far we have established that a Laguerre near-plane of order 4 is isomorphic to 
1111e of the Laguerre near-planes £(fi), i = 0, 1, 2, 3, 4. In order to show that in fact 
t l1P latter five planes are mutually non-isomorphic we investigate the automorphism 
l',roups f (Ji) of these planes, that is, the collection of all permutations in r that 
pn)serve the Laguerre near-plane. Recall from 3.3 that every automorphism of a 
Laµ;uerre near-plane of order 4 is of the form 

F!---tF!: (x,y) H (a(x),f3x(Y)) 

wl1Pre a and f3x are permutations of JF4 for each x E JF4 . The collection of all 
p,·rmutations with o = id is a normal subgroup 6. A composition of permutations 
, d t _vpes ( 1), ( 5) and ( G) yields elements in 6. We further denote by 6 1 the collection 
, ,f all permutations i11 6 whose accompanying field automorphisms on generators 
.111• the identity, i.1· .. pnmutations of the form (x, y) H (x, axy+ bx) for ax, bx E lF4, 
111 -1- 0. Clearly . ...). 1 is a normal subgroup of 6. From 5.1 one readily obtains the 
l,dlowing. 

LPmma 6.1. Lei r5 : Fj ---t IB',f : (x, y) H (x, f3x(Y)) be an element of 6. Then 6 
lul.-cs the Laguerre near-plane£(!) to £(!') where 

J'(x, Y, z) = f3o(f(/3i(x), f3w(y))3w+1(z))) 

and where {3 denotes the permutation obtained from f3 by squaring the leading co­
efficient of {3, that is, if f3(x) = axm + b with a, b E lF4 , a #- 0, m = 1, 2, then 
f3(x) = a2xm + b for x E lF4. 
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6.2. The automorphism group of the parabola model. Since £(10 ) extends 
to the Miquelian Laguerre plane, every automorphism of the Miquelian Laguerre 
plane that fixes a distinguished generator induces an automorphism of the Laguerre 
near-plane obtained by removing the distinguished generator. It is well known that 
the automorphism group of the Miquelian Laguerre plane of order 4 has order 29 · 32 · 5 
and acts transitively on the set of all incident point-circle pairs. In particular, this 
group is transitive on the set of generators. Hence the stabilizer of a generator has 
order 29 · 32

. In terms of the isomorphisms from 3.3 the group induced by this 
stabilizer is generated by all permutations of types (2) and (3) and by the following 
permutations: 

- (x, y) H (x, y + t2x2 + tix + to) for t2, ti, to E lF4 (type (1)), 
- (x,y) H (x2 ,y2 ) (types (4) and (6) combined) and 
- (x, y) H (x, ry) for r -1- 0 (type (5)). 

However, £(10 ) also admits the permutation of type (4) as an automorphism. In 
fact, together they generate the entire automorphism group of £(10 ). From the 
transitivity properties of the automorphism group of the Miquelian Laguerre plane 
of order 4 we see that the group G0 generated by the above automorphisms is 
transitive on the set of point-circles pairs ('flags') and induces the full symmetric 
group of degree 4 on the set of generators. Now let 'Y be an automorphism of £(10 ). 

Up to elements in G 0 we can assume that 'Y fixes each generator, i.e., 'YE .6., and that 
'Y fixes the circle {(x,O) Ix E lF4}. Then ry(x,y) = (x,f3x(Y)) where f3x(Y) = axymx 
with ax E lF4, a -1- 0, and mx = 1, 2. Using the automorphisms (x, y) H (x, y2) and 
(x, y) H (x, ry) in G0 , if necessary, we may further assume that (30 is the identity. 
By Lemma 6.1 we then must have fo(x, y, z) = fo(/31 (x), /3w(Y)J3w+1(z))), that is, 

for all x, y, z E lF4. But this implies a1 =aw= aw+I = 1 and m1 = mw = mw+I = 1, 
that is, 'Y is the identity. 

This shows that the automorphism group of £(10 ) is contained in G0 . In sum­
mary we obtain the following. 

Proposition 6.3. The automorphism group r(f0 ) of the Laguerre near-plane £(10 ) 

has order 210 
· 32

. Furthermore, r(f 0) acts transitively on the set of point-circles 
pairs of £(Jo) and induces the full symmetric group 84 of degree 4 on the set of 
generators. In particular, r(f0 ) is point-transitive and circle-transitive. 

Although £(Jo) extends to the Miquelian Laguerre plane of order 4 not every 
automorphism of £(10 ) extends to an automorphism of the Laguerre plane. 

6.4. The automorphism group of £(12). From 5.1 we find that the following 
permutations are automorphisms of £(fz). 

- (x, y) H (x, y + trx2 + t1x + to) for t1 E lF4, to E lF2; 

( ) { 
( x + t, y) , if x E { 0, t} 

x, y H 2 for t E lF4, t #- 0; 
( x + t, y ) , if x E lF 4 \ { 0, t} 

- (x,y) H (rx,y) for r -1- O; 
- (x,y) H (x2 ,y); 
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- (x,y) H (x,y2); 

( ) { 
(x,y+w), 

x, y H ( 2 ) 
x,y ' 

if x E {O, t} 
for t E IF4, t #- 0. 

if x E IF 4 \ { 0, t} 

31 

These automorphisms generate a group G2 . By looking at the x-coordinates we see 
that every permutation of the set of generators can be obtained by an element of 
G2. 

Let 'Y be an automorphism of £(h). Up to elements in G2 we can assume 
that 'Y fixes each generator, i.e., 'Y E ~. Then ry(x, y) = (x, f3x(Y)) where f3x(Y) = 
axym,, + bx with ax, bx E IF4, a #- 0, and mx = 1, 2. Using the automorphisms 

2 { ( x, y + w), if x E IF 2 
(x, y) H (x, y ) and (x, y) H ( 2) . · { } in G2 , if necessary, 

x, y , 1f x E w, w + 1 
we may further assume that m 0 = mw+I = 1. By Lemma 6.1 we then must have 
h(x, Y, z) = f3o(h((31(x), f3w(Y), f3w+1(z)))), that is, 

(1) 

ao[(a1x2
m 1 + aiXm1 +bi+ b1)(awy2mw + a!ymw + b! + bw) 

+(awy2mw + a!ymw + b! + bw)(aw+1z2 + a!+1Z + b!+1 + bw+1) 

+(a1x2
m 1 + aiXm1 +bi+ b1)(aw+1z2 + a!+1z + b!+1 + bw+1) 

+aiXm1 + a!ymw + a!+lz + b1 + bw + bw+1] + bo 

= ( x 2 + x) (y 2 + y) + (y 2 + y) ( z2 + z) + ( x2 + x) ( z2 + z) + x + y + z 

for all x, y, z E IF4 . Looking at terms x2 and x in (1) we find 

Since b2+b E IF2 for each b E IF4, we obtain two cases. Either b~+bw+b~+I +bw+I = 1 
and then m1 = 2, a1 = a5, or b~ + bw + b~+I + bw+I = O, and then m1 = 1, 
a1 = ao. In both cases we have a1 = a~ 1 and a1x 2

m 1 + af xm1 = a~1 x 2
m1 + 

a~m1 xm1 = a0 x 2 + a5x. One similarly finds that a>.= a~>- for,\= w,w + 1 and 
awy2mw + a~ymw = aoy2 + a5y, aw+1z2 + a~+1z = aoz2 + a5z. Comparing terms xy 
in (1) yields a0 = 1 and thus a>.= 1 for all,\ E IF4 . 

Let d>. =bi+ b>. for ,\ = 1, w, w + 1. Then (1) becomes 

(x 2 + X + d1)(y2 + y + dw) + (y 2 + y + dw)(z2 + Z + dw+1) 

+(x2 + X + d1)(z2 + z + dw+1) + Xm 1 + ymw + Z + bo + b1 + bw + bw+l 

= (x2 + x)(y2 + y) + (y 2 + y)(z2 + z) + (x 2 + x)(z2 + z) + x + y + z. 

Expanding the left-hand side, we see that 

(dw + dw+1)(x2 + x) + xm1 = x 

(di+ dw+i)(y2 + y) + ymw = Y 

(d1 + dw)(z2 + z) + z = z 
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and 

Thus dw = d1 and, as before, either dw+l = di, m1 = 1 or dw+l = d1 + 1, m1 = 2, 
and bo + b1 + bw + bw+1 = d1. Hence, we have two cases. 
Case 1: dw+l = dw = d1 E lF2, ffi>.. = 1 for all A E lF4. 
If d1 = 0, then ry is the map (x, y) H (x, y + tix2 + t 1x + t0) where to = b0 E lF2 
and t1 = b1 + (w + l)bw + wbw+1, see 5.1, that is, ry E G2. For d1 = 1 we use the 
composition of the last automorphisms in the list above for each t E JF4, t -# 0. 

{ 
(x,y+w), ifxElF4 \{w} 

This yields the automorphism ry' : (x, y) H ( . 
x,y+w+l), 1fx=w 

( :r, y + w + Pw ( x)). Then ry' o ry is an automorphism as before and thus again ry E G2. 
Case 2: dw+1 = d1 + 1, dw = d1 E lF2, mo = mw+1 = 1, m1 = mw = 2. 

. . { ( x, y + w), if x E { 0, w + 1} 
In this case we use the automorphism (x, y) H 2 . { to 

( x, y ) , 1f x E 1, w} 
obtain an automorphism as in the first case. 

This shows that the automorphism group of £(h) is contained in G2. Further­
more, G2 is of order 210 ·3 since, from above, G2/ L). ,..,_, 84, IL)./ L).1 I = 8 and IL).1 I = 16. 
Taking the first and last automorphisms in the list above one readily sees that G2 
is transitive on the generator {O} x JF4. Thus G2 acts transitively on the point set 
IF'., x lF4. 

Using the first and last automorphisms in the list above we see that L). is transitive 
on the generator {O} xlF4. The stabilizer L).(o,o) of (0, 0) has order 25 and is generated 
hy the following automorphisms: 

- ( x, y) H ( x, y + t2 x2 + tx) for t E lF 4; 
- (x, y) H (x, y 2 ); 

( ) { 
(x,y), 

x,y H 
2 

; 
( x, y + x) , if x E lF 4 \ lF 2 

if x E {O, w} 
(x, y) H (:r:, y2 + W + 1), if X = 1 

{ 

(:r, y), 

(:r,y2 +w), if x = w + 1 

The last two autolllorphisms are obtained as a composition of two of the last au­
I omorphisms in t.11(• list at the beginning of this section (for t = w, w + 1 and 
I = 1, w + 1, respect. i vely). The first and last automorphisms then show that L).(o,o) 

i:,,, transitive on tll(' µ;enerator {1} x JF4. Finally, the stabilizer L).(o,o),(l,O) of (0, 0) 
and (1, 0) has order '.2 3 and is generated by (x, y) H (x, y + x2 + x), (x, y) H (x, y2) 

{ 
( :z; , y) , if x E lF 2 • 

,111d (x, y) H 2 ) . \ . It now readily follows that L).(o o) (lo) 
( x, y + x , 1f x E lF 4 lF 2 ' ' ' 

is transitive on the generator { w} x JF4. Since each circle through (0, 0) is uniquely 
determined by its intersection with the two generators {1} x JF4 and { w} x lF 4, we 
see that 6.(o,o) is transitive on the set of circles through (0, 0). Hence, ( G2) (o,o) is 
transitive on the set of circles through (0, 0), and because G2 is point-transitive, we 
finally obtain that G2 acts transitively on the set of point-circles pairs of £(h). 

In summary we obtain the following. 
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Proposition 6.5. The automorphism group I'(fz) of the Laguerre near-plane L(fz) 
has order 210 · 3. Furthermore, I'(fz) acts transitively on the set of point-circles 
pairs of L(fz) and induces the full symmetric group S4 on the set of generators. In 
particular, I'(fz) is point-transitive and circle-transitive. 

6.6. The automorphism group of .C(!J). From 5.1 we find that the following 
permutations are automorphisms of L(h). 

- (x, y) H (x, y + trx2 + t1x + to) for t1 E lF4, to E lF2; 
- ( x, y) H ( x + t, y) for all t E JF 4, 

(x,y) H (rx,y) for r #- O; 
- (x, y) H (x2, y); 
- (x, y) H (x, y2

). 

These automorphisms generate a group G3 of order 27 · 3. By looking at the x­
coordinates we see that every permutation of the set of generators can be obtained 
by an element of G3 . 

Let, be an automorphism of .C(!J). Up to elements in G3 we can assume that, 
fixes each generator, i.e., 1 E .6.. Then 1 (x, y) = (x, axymx + bx) where ax, bx E lF4, 
a#- 0, and mx = 1, 2. Using the automorphism (x, y) H (x, y2 ) in G3 , if necessary, 
we may further assume that m 0 = 1. By Lemma 6.1 we then must have 

ao[(a1x2
m 1 + afxm1 +bi+ b1)(awy2mw + a~ymw + b~ + bw) 

(2) 
(a Z2mw+I + a2 zmw+l + b2 + b l) ' w+l w+l w+l w+ 

+aiXm1 + a~ymw + a~+l Zmw+I +bi+ bw + bw+l] + bo 

- ( x 2 + x) (y2 + y) ( z2 + z) + x + y + z 

for all x,y,z E JF4 . Looking at terms x 2 and x in (2) we find 

Since b2 +b E JF2 for each b E JF4, we obtain two cases. Either b~+bw = b~+l +bw+l = 

1 and then m1 = 2, a1 = a5, or (b~+bw)(b~+1+bw+1) = 0, and then m1 = 1, a1 = ao. 
In both cases we have a1 = a:;11 and a1x2m 1 + aixm1 = a0 x 2 + a5x as in 6.6. One 
similarly finds that a>, = a:;1>- for >. = w, w + 1 and awy2mw + a~ymw = aoy2 + a5y, 
aw+1z2mw+1 + a~+1zmw+i = aoz2 + a5z. Comparing terms x 2 y2z 2 in (2) yields 
a0 = 1 and thus a>, = 1 for all >. E JF4 . 

Now (2) becomes 

(x 2 + x +bi+ b1)(y2 + y + b~ + bw)(z2 + z + b~+I + bw+1) 
+xml + ymw + zmw+I + bo + bl + bw + bw+l 

= (x2 + x)(y2 + y)(z2 + z) + x + y + z. 

Expanding the left-hand side, we see that bi+ bi= b~ + bw = b~+I + bw+I = 0 and 
bo + b1 + bw + bw+I = O; in particular, b>. E lF2 for all>. E JF4. Furthermore, ffi>. = 1 
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for all A E IF4 . But this implies that ry is the map (x, y) H (x, y + t?x2 + t 1x + to) 
where to= bo and t1 = b1 + (w + l)bw + wbw+1, that is, "( E G3. 

This shows that the automorphism group of £(h) is contained in G3 . Since 
b2 + b E IF2 for each b E IF4, it readily follows that each of the generators of G3 in 
the list above maps IF4 x IF2 to itself. In fact, G3 has the two orbits IF4 x IF2 and 
IF4 x { w, w + 1} in the point set. In particular, G3 is neither point-transitive not 
circle transitive ( a circle entirely contained in IF 4 x IF 2 cannot be mapped to one 
having a point in the other point-orbit). In summary we obtain the following. 

Proposition 6.7. The automorphism group r(h) of the Laguerre near-plane £(h) 
has order 27 ·3. Furthermore, r(h) is neither point- nor circle-transitive but induces 
the full symmetric group S4 on the set of generators. 

6.8. The automorphism group of £(11). From 5.1 we find that the following 
permutations are automorphisms of £(11). 

(x, y) H (x, y + t2x2 + t1x + to) for t2, ti, t 0 E IF4 such that t2 + t1 + to E IF2 
and wt2 + (w + l)ti + t 0 E IF2; 

- (x,y)H(x+w,y); 
(x, y) H (w 2x 2 , y); 
(x, y) H (x, y 2); 

( ) { ( x, y + w2 
x

2
), if x E IF 4 \ { w + 1} 

x, y H (x, y2 + w2x2), if x = w + 1 

( ) { 
( x, y + x), if x E IF 4 \ { 1} 

x,y H 2 ( x, y + x), if x = 1 

These automorphisms generate a group G1. By looking at the x-coordinates we see 
that G 1 has two or bits { { 0} x IF 4, { w} x IF 4} and { { 1} x IF 4, { w + 1} x IF 4} on the 
set of generators. 

We first show that the automorphism group r(Ji) of £(Ji) cannot be transitive on 
the set of generators. Otherwise there is an automorphism ry that takes the generator 
{O} x JF4 to the generator {1} x JF4 . Using the automorphism (x,y) H (w2x2,y), if 
necessary, we may assume that ry is of the form ( x, y) H ( ax + 1, f3x (y)) for some 
a E JF4, a # 0, and permutations f3x of JF4 . From 5.1 and 4.6.2 we see that the 
permutation (x, y) H (ax+ 1, y) takes £(Ji) to£(!) where 

{ 

(x 2 +x+z2 +z)(y2 +y)+x+y2 +z, ifa=l, 

f(x,y,z)= (x 2 +x+y2 +y)(z2 +z)+x+y+z2
, ifa=w, 

(y2 + y + z2 + z)(x2 + x) + x 2 + y + z, if a= w + 1. 

But ry is a composition of this permutation and a permutation in .6.. Using Lemma 
6.1 we now see that Ji cannot be obtained in this way. This shows that r(Ji) 
cannot be transitive on the set of generators. Hence, r(f1) has the same orbits as 
G1 on the set of generators. 

Let ry be an automorphism of £(Ji). Up to elements in G1 we can assume that ry 
fixes each generator, i.e.,"( E .6.. Then ry(x, y) = (x, axymx + bx) where ax, bx E lF4, 
a#- 0, and mx = 1, 2. Using the last three automorphisms in G1 in the list above, 
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if necessary, we may further assume that m 0 = m1 = mw+l = 1. By Lemma 6.1 we 
then must have 

ao[(a1x2 + aiX +bi+ b1)(aw+1z2 + a:i+1z + b:i+i + bw+1) 

+aiX + a:iymw + a:i+1 Z + b1 + bw + bw+l] + bo 

= (x2 + x)(z2 + z) + x + y + z 

for all x, y, z E IF4. As before in 6.4 and 6.6 we see that mw = 1, a>,. = 1 for all 
A E lF4, bi+ b1 = b!+i + bw+l = 0, that is b1, bw+l E IF2 and b1 + bw + bw+l + bo = 0. 
But then 'Y is of the first type in the list above. 

This shows that the automorphism group of £(Ji) is contained in G1. Further­
more, G1 has order 29 since, from above, IGi/61 = 4, !6/611 = 8 and l61I = 16. 
Using the first automorphisms in the list above we see that 6 is transitive on the 
generator {O} x IF4. The stabilizer 6co,o) of (0, 0) has order 25 and is generated by 
the following automorphisms: 

- (x, y) H (x, y + t 2x 2 + tix) for t 2 , ti E lF4 such that t 2 + t1 E IF2 and 
wt2 + (w + l)t1 E IF2; 

- (x, y) H (x, y 2); 

( ) { (x,y+w 2x 2
), ifxElF4 \{w+l} 

x,y H (x,y2 +w2x 2), ifx=w+l 

( ) { 
( x, y + x) , if x E IF 4 \ { 1} 

- x, y H 2 ( x, y + x), if x = 1 

The first and third automorphisms then show that 6(o,o) is transitive on the gener­
ator {1} x IF4. Finally, the stabilizer 6(o,o),(l,O) of (0, 0) and (1, 0) has order 23 and 
is generated by (x, y) H (x, y + s(x2 + x)) for s E IF4 and (x, y) H (x, y2). It now 
readily follows that 6(o,o),(l,O) is transitive on the generator { w} x IF4. Since each 
circle is uniquely determined by its intersection with the three generators { 0} x IF 4, 
{1} x IF4 and { w} x IF4, we see that 6 is transitive on the set of circles. In summary 
we obtain the following. 

Proposition 6.9. The automorphism group I'(fi) of the Laguerre near-plane £(Ji) 
has order 29 . Furthermore, I'(fi) is circle-transitive and induces a group of order 4 
(the noncyclic group Z2 x Z2 where Z2 is the cyclic group of order 2) on the set of 
generators and has precisely two orbits of length two each on this set. In particular, 
I'(f 1) is not point-transitive. 

6.10. The automorphism group of £(!4). From 6.1 and 5.1 we find that the 
following permutations are automorphisms of £(!4). 

- (x,y) H (x,y + t1x2 + tix + t0) for t 1 E IF4, t 0 E {0,w + 1} such that 
t1 +to E {O,w}; 

{ 

( x, y + w + 1), if x E { 0, w}, 
- ( x, y) H ( x, y), if x = 1, 

(x,wy 2
), if x = w + 1; 
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{ 

( x, y + w + 1), if x E { 0, w + 1}, 
( x, y) H ( x, y), if x = 1, 

(x, wy2
), if x = w; 

{ 

( x, y + w), if x E { 0, w}, 
( x, y) H (x, y), if x = w + 1, 

(x, (w + l)y2
), if x = 1; 

{ 

(x,wy 2
), 

(x,y) H (x,y+x), 

(x, y), 

- (x,y)H(x2 ,y). 

if x = o, 
if x E {l,w}, 
if x = w + 1; 

These automorphisms generate a group G4 of order 27 . 

Let 'Y be an automorphism of £(14 ). We first assume that 'Y fixes each generator, 
i.e.,"( E ~- Then 1(x, y) = (x, axym"' + bx) where ax, bx E lF4, a#- 0, and mx = 1, 2. 
Using the automorphisms in G4 in the list above, if necessary, we may further 
assume that m 0 = m 1 = mw = mw+l = 1. By Lemma 6.1 we then must have 

(3) 

ao[(a1x2 + w2aix +bi+ w2b1)(awy2 + wa~y + b~ + wbw) 

·(aw+1z
2 + wa~+1z + b~+l + wbw+1) 

+(a1x2 + w2aix +bi+ w2b1)(awy2 + w2a~y + b~ + w2 bw) 

+(a1x2 + w2 aix +bi+ w2b1)(aw+1z2 + w2a~+1z + b~+l + w2 bw+1) 
+(awy2 + wa~y + b~ + wbw)(aw+1z2 + wa~+1z + b~+l + wbw+1) 

+aix + a~y + a~+l z + b1 + bw + bw+1] + bo 

= (x2 + w2x)(y2 + wy)(z2 + wz) + (x2 + w2x)(y2 + w2y) 

+(x2 + w2x)(z2 + w2z) + (y2 + wy)(z2 + wz) + x + y + z 

for all x, y, z E JF4 . Comparing terms in which each of x, y and z occurs, i.e., 

we obtain 

Looking at terms involving bothy and z but no x in (3) we find 

bi+ w2b1 = 0, i.e., b1 E {O, w + l}. 
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Now (3) becomes 

(x 2 + w2 x)(y2 + wy + b! + wbw)(z2 + wz + b!+i + wbw+1) 

+(x2 + w2x)(y2 + w2 y + b! + w2 bw) + (x 2 + w2x)(z2 + w2 z + b!+i + w2 bw+1) 

+(y2 + wy + b! + wbw)(z2 + wz + b!+i + wbw+1) +bi+ bw + bw+l + bo 

= (x 2 + w2 x)(y2 + wy)(z2 + wz) 

+(x2 + w2 x)(y2 + w2 y) + (x 2 + w2x)(z2 + w2 z) + (y 2 + wy)(z2 + wz) 

for all x, y, z E IB\. 
By looking at terms z 2 and y 2

, respectively, one similarly finds that 

b! + wbw = 0, i.e., bw E {O, w }, 

b!+i + wbw+l, i.e., bw+l E {O, w }. 
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Now x = y = z = 0 yields b1 + bw + bw+l + bo = 0. Finally, by looking at the term 
x 2 one obtains 

The last three conditions then imply that 

bw = bw+l E {0,w} 

and hence 
bo = b1 E { 0, w + 1}. 

But now ry is of the form (x, y) H (x, y + t 1x 2 + t 1x + t 0 ) where t 0 = b0 E {O, w + 1} 
and t1 +to= bw E {O,w}. 

Using the first and fifth automorphisms in the list above we see that .6. is tran­
sitive on the generator {1} x JF4 . The third and fourth automorphisms then show 
that .6.(1,o) is transitive on the generator {O} x lF4. 

The stabilizer .6.(1,o),(o,o) of (1, 0) and (0, 0) contains the following automor­
phisms: 

- (x, y) H (x, y + w(x2 + x)); 
ifxElF2, 

- (x, y) H (x, (w + l)y2 + w + 1), if x = w, 
{ 

(x, y), 

(x, wy2 + w + 1), if x = w + 1. 
(This is the composition of the second and third automorphisms.) 

It now readily follows that .6.(o,o),(l,O) is transitive on the generator { w} x lF4. Since 
each circle is uniquely determined by its intersection with the three generators 
{O} x lF4, {1} x JF4 and {w} x lF4, we see that .6. is transitive on the set of circles. 

We finally show that every automorphism of £(!4) fixes the generators {O} x lF4 
and {1} x JF4 . Using the transitivity of .6. on the circle set and the sixth automor­
phism in the list at the beginning of this section, if necessary, we may assume that we 

' C' •, 
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have an automorphism,' of the form (x,y) H (sx+t,axymx) where s,ax E IF4 \ {O} 
and mx E {1, 2} for x E IF4. We now write,' as the composition of the permutations 

,'1 :(x, y) H (x + t, y), 

,'2 :(x, y) H (sx, y), 

,'3 :(x,y) H (x,axymx), 

as ,' = 11 o 12 o 13. Then ,'3 takes £(!4) to the same Laguerre near-plane as 

(11 ° 12)-1 = 1210 11· 
For example, if t = 1 and s = w + 1, and using Corollary 4.5 and 5.1.(2) and (3) 

we find that 

for all x, y, z E IF4 , where g is the inverse of the partial map f 4 with respect to x, 
that is, 

g(x, y, z) =(x2 + w2x)(y2 + wy)(z2 + wz) + (x2 + w2x)(y2 + w2y) 

+ (x2 w2x)(z2 + w2z) + w2(y2 + wy)(z2 + wz) 

+ x + wy2 + wz2 

Explicitly one obtains 

(4) 

ao[(a1X2m1 + W2aiXm1 )(awy2mw + watymw)(aw+lZ2mw+I + wat+1zmw+1) 

+(a1x2m1 + w2aiXm1 )(awy2mw + w2atymw) 

+(a1X2m1 + W2aiXm1 )(aw+1Z2mw+1 + W2at+1zmw+I) 

+(awy2mw + watymw)(aw+lZ2mw+I + wat+lzmw+I) 

+arxm1 + atymw + at+1zmw+1 ]mo 

= (y2 + w2y)(z2 + wz)(x2 + wx) + (y2 + w2y)(z2 + w2z) 

+(y2 + w2y)(x2 + w2x) + w2(z2 + wz)(x2 + wx) + y + wz2 + wx2 

for all x, y, z E IF4 • Comparing terms x 2 , y and z2 in ( 4) we find that 

momw = 1, mom1 = momw+l = 2, 

But then the coefficient of x2y2z2 on the left-hand side in (4) becomes w2 whereas on 
the right-hand side it is 1 - a contradiction. This shows that t = 1, s = w + 1 is not 
possible. Similar arguments yield that all the other combinations for s and t except 
s = 1, t = 0 are not possible. From the list of automorphisms at the beginning 
of this section we see that only the last automorphism moves some generators. 
In particular, the genera tors { 0} x IF 4 and { 1} x IF 4 are fixed and { w} x IF 4 and 
{ w + 1} x JF4 can be exchanged. In summary we obtain the following. 
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Proposition 6.11. The automorphism group I'(f4 ) of the Laguerre near-plane 
£(!4) has order 27 . Furthermore, r(f 4) is circle-transitive and induces on the set 
of generators a group of order 2 that fixes two generators. 

Looking at the orders of the automorphism groups or their transitivity properties 
we obtain the following. 

Corollary 6.12. The Laguerre near-planes £(Ji), i 

non-isomorphic. 
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