On Automorphisms of Transformation Semigroups

by

Inessa Levi

Department of Mathematics, University of Louisville, Louisville, U.S.A.

and

Graham Wood

Department of Mathematics and Statistics University of Canterbury, Christchurch, New Zealand.

No. 87

May, 1993

 $\hat{\boldsymbol{\beta}}$

On Automorphisms of Transformation Semigroups

Inessa Levi and G.R. Wood

Communicated by Boris M. Schein

This paper addresses the problem of describing automorphisms of semigroups of transformations. In [2] we were involved in characterizing all automorphisms of Croisot-Teissier semigroups. The semigroups of transformations that belong to this large family generally consist of many-to-one transformations whose restrictions to range sets are oneto-one. Here we consider enlargements of Croisot-Teissier semigroups whose elements, restricted to range-sets, are no longer one-to-one. We show that such semigroups contain a maximal Croisot-Teissier semigroup, which in turn is used to present a complete description of automorphisms of these semigroups. Moreover we describe the Green's relations on these enlargements of Croisot-Teissier semigroups, and show that they are in fact simple semigroups, whose regular elements form a bisimple subsemigroup. We start by recalling the definition of Croisot-Teissier semigroups.

Let p and q be infinite cardinals with $p \ge q$, and let X be a set with $|X| \ge p$. Let $\mathcal{E} = {\mathcal{E}_i \mid i \in I}$ be a set of distinct equivalences on X such that $|X/\mathcal{E}_i| = p$ for all $i \in I$. A subset A of X is said to be well-separated (w.s.) by E if $|A| = p$ and $\mathcal{E}_i \cap (A \times A)$ is the identity relation on *A* for all $i \in I$. For a cardinal *t*, with $q \leq t \leq p$, let $C_t = \{w.s. \mid A \mid \text{for some } w.s. \mid B, A \subseteq B \text{ and } |B-A| = t\}.$ When X contains a w.s. set, the *Croisot-Teissier semigroup on* X, E of type (p,q) is $CT(X,\mathcal{E},p,q)$ ${f : X \to X \mid \pi(f) \in \mathcal{E}, R(f) \in \mathcal{C}_q}$ with the operation of function composition [1]. Recall that for a transformation *f* of *X*, $R(f) = f(X)$ denotes the range of *f*, and $\pi(f)$ denotes the partition of X determined by f such that *x* and *y* are in the same class of $\pi(f)$ if and only if $f(x) = f(y)$.

A Croisot-Teissier semigroup $CT(X, \mathcal{E}, p, q)$ is idempotent-free and either simple (when $p = q$) or has a minimal ideal $CT(X, \mathcal{E}, p, p)$ that itself is a Croisot-Teissier semigroup. A simple Croisot-Teissier semigroup $CT(X, \mathcal{E}, p, p)$ is the disjoint union of its minimal left ideals, and any simple ·idempotent-free semigroup with a minimal left ideal can be embedded in a simple Croisot-Teissier semigroup $CT(X, \mathcal{E}, p, p)$. The Green's relations on these semigroups were described in [3], and their congruences were studied in [4], [5], [6], [7] and [8].

We construct the following generalization of a Croisot-Teissier semigroup. In view of the intimate connection between equivalences on X and partitions of X we write $[x] \in \mathcal{B}$ to indicate that $[x]$ is the equivalence class of the equivalence \mathcal{B} containing $x \in X$. Given an infinite cardinal $r \leq p$, and an equivalence A on X let $\mathcal{A}^{(r)}$ be the family of all equivalences *B* on *X* such that $A \subseteq B$ and for every $[x] \in B$, $|[x]/A| < r$. Informally, such a B in $\mathcal{A}^{(r)}$ is formed by glueing together classes of A, with each class in B made up of fewer than r classes of A. The family $\mathcal{A}^{(r)}$ is referred to as the *family of r glueings of A.* Let $\mathcal{E}^{(r)} = \bigcup \{ \mathcal{E}_i^{(r)} \mid i \in I \}$ be the family of *r* glueings of $\mathcal E$ and

$$
S = \{ f : X \to X \mid R(f) \in C_q \text{ and } \pi(f) \in \mathcal{E}^{(r)} \} .
$$

The above semigroup *S* contains a maximal Croisot-Teissier subsemigroup *S#* that generally does not coincide with the original $CT(X, \mathcal{E}, p, q)$. Let $\mathcal{E}^{\#} = \{A \in \mathcal{E}^{(r)} | \pi(t) =$ $\pi(ft)$, for all $f, t \in S$ with $\pi(f) = A$ and let $S^{\#} = CT(X, \mathcal{E}^{\#}, p, q)$. We show that $S^{\#}$ is a subsemigroup of *S* containing $CT(X, \mathcal{E}, p, q)$. Let $\mathcal{C}_{q}^{\#}$ be the set of ranges of all the mappings in S^* . If $A \in \mathcal{C}_q$ and $B \in \mathcal{E}^*$ then $(A \times A) \cap B = i_A$, else for f, $t \in S$ with $\pi(f) = B$ and $R(t) = A$, $\pi(ft)$ and $\pi(t)$ are distinct, a contradiction. Therefore \mathcal{C}_q is a subset of \mathcal{C}_q^* . Moreover since $\mathcal E$ is a subset of \mathcal{E}^* , \mathcal{C}_q^* is a subset of \mathcal{C}_q , and so the next result follows from the above and the observation that for any f and g in a Croisot-Teissier semigroup, $\pi(fg) = \pi(g)$.

Proposition 1 *S# is a maximal Croisot-Teissier subsemigroup of S.*

In the following example we start with a specific Croisot-Teissier semigroup and construct the associated $\mathcal{E}^{(r)}$ and \mathcal{E}^* . The example is based on [2, Example 4.2].

Example Let R be the set of all real numbers, and R^+ be the set of all positive reals. For each $a \in \mathbb{R}^+$ let \mathcal{E}_a be the equivalence on R whose only non-singleton class is $[a] = \{a\} \cup (\mathbf{R} - \mathbf{R}^+)$. Let \mathcal{E}_0 be the equivalence on **R** having two non-singleton classes: $[-1] = \{b \in \mathbb{R} : -1 \leq b \leq 0\}$ and $[-2] = \{b \in \mathbb{R} : b < -1\}$. Let $\mathcal{E} = \{\mathcal{E}_b : b \in \mathbb{R} : b \in \mathbb{R}\}$ **R**, $b \ge 0$, and $p = q = |\mathbf{R}|$. Note that the \mathcal{C}_p sets are those subsets A of \mathbf{R}^+ having $|A| = |\mathbf{R}^+ - A|$, and that the semigroup $CT(\mathbf{R}, \mathcal{E}, p, p)$ consists of all transformations $f: \mathbf{R} \to \mathbf{R}$ having $\pi(f) \in \mathcal{E}$ and $R(f) \in \mathcal{C}_p$.

If $r = N_0$, $\mathcal{E}^{(r)}$ is the set of all equivalences on **R** whose non-singleton classes are of the form $Y' \cup Y''$ where Y' is either $[-1], [-2], \mathbf{R}-\mathbf{R}^+$, or empty, and Y'' is either a finite subset of \mathbb{R}^+ or empty. Let $S = \{f : \mathbb{R} \to \mathbb{R} \mid R(f) \in C_p, \pi(f) \in \mathcal{E}^{(r)}\}$. Since $\mathcal{E}^{\#}$ is just $\mathcal E$ together with all partitions in $\mathcal E^{(r)}$ for which every $\mathcal C_p$ set is a partial transversal, $\mathcal E^{\#}$ consists of all equivalences in $\mathcal{E}^{(r)}$ whose non-singleton classes are of the form $Y' \cup Y''$. where *Y'*, *Y''* are as above with $|Y''| \le 1$. Thus we have that $CT(\mathbf{R}, \mathcal{E}, p, p) \subset S^* =$ $CT(X, \mathcal{E}^{\#}, p, p) \subset S.$

We show that the restriction $\phi^{\#}$ of an automorphism ϕ of *S* to $S^{\#}$ is a *rangepreserving, r union-preserving* and *r glueing-preserving* automorphism of *S#* (see Definitions 2,4, and 5 below), and that every such automorphism of S^* may be extended to an automorphism of *S.* Therefore using the characterization of automorphisms of Croisot-Teissier semigroups in $[2]$ we are able to describe the automorphisms of S completely. The next definition was introduced in [2, p.228].

Definition 2 *An automorphism* ¢ *of a semigroup of transformations S is said to be* range-preserving *if for all f, g
ightaral* $R(g)$ *if and only if* $R(\phi(f)) \subseteq R(\phi(g))$.

The following decomposition of the union *W* of all well-separated sets, and the associated decomposition of the Croisot-Teissier semigroup into a union of its right ideals was first described in [2]. Here we present a brief account of these decompositions and some terminology introduced in [2], which we use to give a description of all rangepreserving automorphisms of *S#* and automorphisms of *S.* Let K be an index set containing *I* such that $\mathcal{E}^{\#} = {\mathcal{E}_i \mid i \in K}$. A pair of C_q sets *A* and *B* are said to be σ -related if whenever *A* and *B* both meet a non-singleton class [u] of $\delta = \bigcap {\mathcal{E}_i : i \in K}$ there exist $F_1 = A, F_2, \ldots, F_n = B \in C_q$ such that $F_j \cap F_{j+1} \in C_q$ and $F_j \cap [u] \neq \Phi$. Let $\{M_{\alpha} \mid \alpha \in \Omega\}$ be the collection of all maximal families of σ -related C_q sets. For each $\alpha \in \Omega$ let $\mathcal{A}_{\alpha} = \bigcup \{A \mid A \in \mathcal{M}_{\alpha}\}\$ and $\mathcal{I}_{\alpha} = \{f \in S^{\#} \mid R(f) \in \mathcal{M}_{\alpha}\}\$, a right ideal of S^* . A set $\{h_\alpha \mid \alpha \in \Omega\}$ of permutations of W is termed *compatible* if there exists a permutation *k* of W/ρ such that the equality of the ρ -classes $[h_{\alpha}(x)] = k([x])$ holds for all $\alpha \in \Omega$ and $x \in W$, k induces a permutation of the set $\{(\mathcal{E}_i|_{W\times W})/\rho : i \in K\}$ of the equivalences on W/ρ , and $h_{\alpha}f = h_{\beta}f$ for all $f \in I_{\alpha} \cap I_{\beta}$. For each \mathcal{E}_i define $B(\mathcal{E}_i) = \{ [x] \in \mathcal{E}_i \mid [x] \cap W = \Phi \}$ and let $J = \{ i \in K \mid B(\mathcal{E}_i) \neq \Phi \}$. The following result describing range-preserving automorphisms of a Croisot-Teissier semigroup was proved in [2, Theorem 4.4]. The statement is in terms of the maximal Croisot-Teissier subsemigroup *S#* of *S.*

Proposition 3 Let ϕ^* be a range-preserving automorphism of S^* . There exists, uniquely,

- *(i) a compatible set* $\{h_{\alpha} \mid \alpha \in \Omega\}$ *of permutations of W,*
- *(ii) a permutation* $z^{\#}$ of $\mathcal{E}^{\#}$ such that $z^{\#}(\mathcal{E}_i)\big|_{W} = h_{\alpha}(\mathcal{E}_i\big|_{W})$ for any $\mathcal{E}_i \in \mathcal{E}^{\#}$ and $\alpha \in \Omega$, and
- *(iii) a family of bijections* $\{y_i \mid i \in J\}$ *where* $y_i : \mathcal{B}(\mathcal{E}_i) \to \mathcal{B}(z^{\#}(\mathcal{E}_i))$ *, such that*
	- *1)* $\phi^{\#}(f)|_{W} = h_{\alpha} f h_{\alpha}^{-1}$ for all $f \in \mathcal{I}_{\alpha}$,
	- 2) $\pi(f) = z^{\#}(\pi(f)),$ and
	- 3) $\phi^{\#}(f)(D) = h_{\alpha} f y_i^{-1}(D)$ for all $f \in I_{\alpha}$ with $\pi(f) = \mathcal{E}_i$ and $D \in \mathcal{B}(z^{\#}(\mathcal{E}_i)).$

Conversely, given S# and (i), (ii), and (iii), there exists a unique range-preserving $automorphism \phi^{\#}$ of $S^{\#}$ such that 1), 2), and 3) hold.

3

Definition 4 *Given an automorphism* ϕ^* *of* S^* *and an equivalence class* A *of* \mathcal{E}_i *let* \mathcal{A} *be the equivalence class of* $z^{\#}(\mathcal{E}_i)$ containing $h_{\alpha}(x)$, for some $\alpha \in \Omega$, if $x \in A \cap W \neq \Phi$, and $\tilde{A} = y_i(A)$ if $A \cap W$ is empty. An automorphism $\phi^{\#}$ of $S^{\#}$ is said to be r unionpreserving *if whenever* \mathcal{E}_i , $\mathcal{E}_j \in \mathcal{E}^{\#}$ *with* $\mathcal{E}_i^{(r)} \cap \mathcal{E}_j^{(r)} \neq \Phi$ *and* C, D *are collections of fewer than r classes in* \mathcal{E}_i *and* \mathcal{E}_j *respectively, then* \cup $C = \cup$ \mathcal{D} *if and only if* \cup $\{ \mathcal{\tilde{A}}: A \in$ \mathcal{C} } = \cup { $\mathcal{B}: B \in \mathcal{D}$ }.

Definition 5 An automorphism ϕ^* of S^* is said to be r glueing-preserving *if for all* $\mathcal{E}_i \in \mathcal{E}^{\#}, \ \mathcal{E}_i \in \mathcal{E}_i^{(r)}$ *if and only if* $z^{\#}(\mathcal{E}_i) \in z^{\#}(\mathcal{E}_j)^{(r)}$.

We are now ready to present the main result of the paper describing automorphisms of *S.* The proof of the theorem below is the content of Lemmas 7 to 16 and Propositions 8 and 17.

Theorem 6 An automorphism ϕ of S induces a range-preserving, r union-preserving, *r* glueing-preserving automorphism ϕ^* of S^* . Conversely every range-preserving, r *union-preserving, r glueing-preserving automorphism of S# can be extended uniquely to an automorphism of S.*

Lemma 7 *Let* $f, g \in S$ *. Then*

- *(i)* $\pi(f) \in \pi(q)^{(r)}$ *if and only if* $f \in S^1 q$;
- *(ii)* $\pi(f) = \pi(q)$ *if and only if* $S^1 f = S^1 q$;
- *(iii)* $f \mathcal{L} q$ *if and only if* $\pi(f) = \pi(q)$.

Proof. Observe that (ii) follows directly from (i), while to prove (i) it suffices to show that if $\pi(f) \in \pi(g)^{(r)}$ then $f \in S^1g$. For this choose any $\mathcal{E}_i \in \mathcal{E}^{\#}$ and let *D* be the set of all classes in \mathcal{E}_i that have a non-empty intersection with $R(g)$. Define an equivalence relation μ on the classes of $\mathcal D$ via $(A, B) \in \mu$ if and only if $fg^{-1}(A) = fg^{-1}(B)$. Since $\pi(g) \in \mathcal{E}^{(r)}$ and $\pi(f) \in \pi(g)^{(r)}$, it follows that there are fewer than *r* classes of *D* in each μ -equivalence class. Let $\eta : \mathcal{E}_i - \mathcal{D} \to \mathcal{D}$ be a one-to-one mapping (it is readily checked that $|\mathcal{E}_i - \mathcal{D}| \leq |\mathcal{D}| = p$. Extend μ to \mathcal{E}_i by adjoining to each μ -equivalence class the preimages of its elements under η . Fewer than *r* classes are adjoined, since η is one-to-one. The equivalence classes of μ on \mathcal{E}_i naturally provide us with an r glueing P of \mathcal{E}_i . Note that $R(g)$ contains a transversal of P and let t be a transformation of X having $\pi(t) = \mathcal{P}$ and for every $y = g(x)$, $t(y) = f(x)$. Then $t \in S$ and $f = tg \in S^1g$, as required. Finally note that (iii) is a restatement of (ii). \Box

Let ϕ be an automorphism of *S*. The following is a consequence of Lemma 7 and the definition of S^* .

Proposition 8 1. The correspondence $z : \mathcal{E}^{(r)} \to \mathcal{E}^{(r)}$ defined by $z(\pi(f)) = \pi(\phi(f))$ is *a bijection such that* $P \in \mathcal{E}_i^{(r)}$ *if and only if* $z(\mathcal{P}) \in z(\mathcal{E}_i)^{(r)}$.

2. The restriction $\phi^{\#}$ of ϕ to $S^{\#}$ is an r glueing-preserving automorphism of $S^{\#}$.

Lemma 9 *For every* $A \in \mathcal{C}_q$ *and* $\mathcal{E}_i \in \mathcal{E}$ *there exists a* $\mathcal{P} \in \mathcal{E}_i^{(r)}$ *such that* A *is a total transversal of P.*

Proof. Note that *A* is a partial transversal of \mathcal{E}_i and let *D* be the set of all classes in \mathcal{E}_i that have an empty intersection with *A*. Then $|\mathcal{D}| \leq p$, and there exists a one-to-one function $\eta : \mathcal{D} \to A$. Let P be a partition of X consisting of all classes of \mathcal{E}_i that do not intersect $\eta(\mathcal{D})$ and all the sets of the form $F \cup [\eta(F)]$, where $[\eta(F)]$ is the \mathcal{E}_i -class of $\eta(F)$ and $F \in \mathcal{D}$. Then $\mathcal{P} \in \mathcal{E}_i^{(r)}$ as required.

Lemma 10 *For every* $A \in \mathcal{C}_q$ and $\mathcal{E}_i \in \mathcal{E}$ there exists an idempotent e in S with $R(e) = A$ and $\pi(e) \in \mathcal{E}_i^{(r)}$.

Proof. Using Lemma 9 choose $P \in \mathcal{E}_i^{(r)}$ such that *A* is a total transversal of *P*. Then the required idempotent is a transformation *e* of X with $\pi(e) = \mathcal{P}$, $R(e) = A$ and $e(a) = a$, for every $a \in A$.

Proposition 11 $S^2 = S$.

Proof. For an *f* in *S* let *e* be an idempotent in *S* with $R(e) = R(f)$ (Lemma 10). Then $f = ef \in S^2$.

Lemma 12 *(i)* For f and g in S, $R(f) \subseteq R(g)$ if and only if for every idempotent e *in S, eq = q implies ef = f.*

{ii) All automorphisms of S are range-preserving.

Proof. Observe that (ii) is an easy consequence of (i) and the fact that idempotents are preserved under automorphisms. To prove (i) note that if $R(f) \subseteq R(g)$ and *e* is an idempotent such that $eg = g$ then *e* is the identity on $R(q)$, hence *e* is the identity on $R(f)$, and so $ef = f$. Conversely assume $x \in R(f) - R(g)$ and let $x = f(y)$. Choose an idempotent *e* in *S* with $R(e) = R(g)$. Then $eg = g$ while $ef(y) = e(x) \neq x = f(y)$, so that $ef \neq f$.

Note that the above result implies that the restriction $\phi^{\#}$ of ϕ to $S^{\#}$ is a rangepreserving automorphism of *S#,* described in Proposition 3. We will use it to describe ϕ itself.

Lemma 13 Let $f \in S$ with $R(f) \in \mathcal{M}_{\alpha}$, and take $x \in W$. Then $\phi(f)(x) = h_{\alpha} f h_{\alpha}^{-1}(x)$.

Proof. We show that there exists a $g \in S^*$ such that $fg \in S^*$ and $x \in R(\phi(f))$. Let [x] be the δ -class containing x and $V = h_{\alpha}^{-1}([x])$. Choose $A \in C_q$ such that $A \cap V$ is non-empty and let $A \cap V = \{y\}$. Assume $\pi(f) \in \mathcal{E}_i^{(r)}$. Since A is a partial transversal of \mathcal{E}_i and each class of $\pi(f)$ consists of fewer than *r* classes of \mathcal{E}_i , $r \leq p$, there exists a subset D of A of cardinality p such that $y \in D$ and D is a partial transversal of $\pi(f)$. Let $D \in \mathcal{M}_{\beta}$, for some $\beta \in \Omega$, and $h_{\beta}^{-1}(x) = w$. Note that $h_{\beta}^{-1}([x]) = h_{\alpha}^{-1}([x])$, so that *y δ w* (see [2, p.211] for details), and choose $g \in S^*$ with $R(g) = (D - \{y\}) \cup \{w\}$ and $g(v) = w$ for some $v \in W$. Then $g \in \mathcal{I}_\beta$, and since $\pi(g) = \pi(fg)$ and $R(fg) \subseteq R(f)$ we have that $fg \in S^{\#} \cap \mathcal{I}_{\alpha}$. Let $u = h_{\beta}(v)$, then $u \in W$ and $\phi(g)(u) = h_{\beta}gh_{\beta}^{-1}(u) = h_{\beta}gh_{\beta}^{-1}h_{\beta}(v) = h_{\beta}gh_{\beta}^{-1}(u)$ $h_{\beta}g(v) = h_{\beta}(w) = x; \ \ \phi(fg)(u) = h_{\alpha}fgh_{\alpha}^{-1}(u); \ \ \phi(f)(x) = \phi(f)\phi(g)(u) = \phi(fg)(u) = x.$ $h_{\alpha}fgh_{\alpha}^{-1}(u) = h_{\alpha}fgh_{\alpha}^{-1}h_{\beta}(v) = h_{\alpha}fg(v) = h_{\alpha}f(w) = h_{\alpha}fh_{\beta}^{-1}(x) = h_{\alpha}fh_{\alpha}^{-1}(x)$, since $h_{\alpha}^{-1}h_{\beta}(v)$ and *v,* $h_{\beta}^{-1}(x)$ and $h_{\alpha}^{-1}(x)$ are pairwise δ -related. \square

Recall (Proposition 8) that ϕ induces a permutation $z : \mathcal{E}^{(r)} \to \mathcal{E}^{(r)}$ defined by $z(\pi(f)) = \pi(\phi(f)).$

Lemma 14 *If* $P \in \mathcal{E}_i^{(r)}$ *and C and D are classes of* \mathcal{E}_i , *then* $C \cup D$ *is a subset of a P-class if and only if* $C \cup D$ *is a subset of a class of* $z(\mathcal{P})$ *.*

Proof. Let $f \in S$ with $\pi(f) = P$. Using Lemma 7 choose $g, t \in S$, such that $f = tg$ and $\pi(g) = \mathcal{E}_i$. Assume $R(t) \in \mathcal{M}_\alpha$ (and so $R(f) \in \mathcal{M}_\alpha$), $R(g) \in \mathcal{M}_\beta$. If $C \in \mathcal{B}(\mathcal{E}_i)$ then $\tilde{C} = y_i(C)$, and by Proposition 3, $\phi(f)(\tilde{C}) = \phi(f)(y_i(C)) = \phi(t)h_\beta gy_i^{-1}(y_i(C)) =$ $h_{\alpha}th_{\alpha}^{-1}h_{\beta}g(C) = h_{\alpha}f(C)$, by Lemma 13, since $h_{\beta}g(C) \in W$. If $D \in B(E_i)$ then $\phi(f)(\tilde{C})=\phi(f)(\tilde{D})$ iff $\phi(f)(y_i(C))=\phi(f)(y_i(D))$ iff $f(C)=f(D)$, as required. If *D* is not in $\mathcal{B}(\mathcal{E}_i)$, then there is an $x \in D \cap W$ and $\phi(f)(\tilde{D}) = \phi(f)(h_\alpha(x)) = h_\alpha f h_\alpha^{-1} h_\alpha(x) =$ $h_{\alpha} f(D)$, so again $\phi(f)(\tilde{C}) = \phi(f)(\tilde{D})$ iff $f(C) = f(D)$. The remaining case when *C* is not in $\mathcal{B}(\mathcal{E}_i)$ can be dealt with in a similar manner.

Corollary 15 *The automorphism* $\phi^{\#}$ *is r union-preserving.*

Lemma 16 Let $f \in S$ with $R(f) \in \mathcal{M}_{\alpha}$, $\pi(f) \in \mathcal{E}_i^{(r)}$, and $D \in z(\pi(f))$ with $D \cap W = \Phi$. *Then* $\phi(f)(D) = h_{\alpha} f y_i^{-1}(C)$, where $C \subseteq D$, $C \in z(\mathcal{E}_i)$ and $C \cap W = \Phi$.

Proof. Choose $g, t \in S$, with $\pi(g) = \mathcal{E}_i$ such that $f = tg$. Assume $R(g) \in \mathcal{M}_{\beta}$, $R(t) \in$ M_{τ} . Since $D \in z(\pi(f)) \in z(\mathcal{E}_{i}^{(r)})$, there exists a subset *C* of *D*, $C \in z(\mathcal{E}_{i})$. Then $\phi(f)(D) = \phi(f)(C) = \phi(t)\phi(g)(C) = h_{\tau}th_{\tau}^{-1}h_{\beta}gy_i^{-1}(C)$, since $g \in S^{\#}$, and $h_{\beta}gy_i^{-1}(C) \in$ *W.* Since for any $a \in X$, $h^{-1}h_{\beta}g(a)$ and $g(a)$ are \mathcal{E}_j -equivalent for any j, $h_{\tau}th^{-1}h_{\beta}gy_i^{-1}(C)$ $= h_{\tau} t g y_i^{-1}(C) = h_{\tau} f y_i^{-1}(C) = h_{\alpha} f y_i^{-1}(C)$, because $R(f)$ is a subset of $R(t)$.

Proposition 17 Let μ be a range-preserving, r union-preserving and r glueing-preserving automorphism of S^* . Then μ can be extended uniquely to an automorphism τ of S.

Proof. Let μ be as stated, and $\{h_{\alpha} \mid \alpha \in \Omega\}$, $z^{\#}$, $\{y_i \mid i \in I\}$ be the parameters describing μ as in Proposition 3. We extend $z^{\#}$ to a permutation *z* of $\mathcal{E}^{(r)}$ as follows. Define a mapping *z* from $\mathcal{E}^{(r)}$ to itself such that $z(\mathcal{E}_i) = z^{\#}(\mathcal{E}_i)$, $i \in K$, and for $\mathcal{P} \in$ $\mathcal{E}_i^{(r)}, z(\mathcal{P}) \in (z^{\#}(\mathcal{E}_i))^{(r)}$ such that $\tilde{B} \cup \tilde{C}$ is a subset of a $z(\mathcal{P})$ -class if and only if $B \cup C$ is a subset of a P-class. To see that *z* is well-defined assume $P \in \mathcal{E}_i^{(r)} \cap \mathcal{E}_j^{(r)}$, and let *F* be a P-class such that $F = \bigcup \{G \mid G \in \mathcal{E}_i\} = \bigcup \{H \mid H \in \mathcal{E}_j\}$. Since *F* is a union of fewer than r classes of \mathcal{E}_i or \mathcal{E}_j and μ is r union-preserving, we have that \bigcup $\{G \mid G \in \mathcal{E}_i\} = \bigcup$ $\{H : H \in \mathcal{E}_i\}$, as required.

Define a mapping τ on S as follows. For $f \in S^*$, let $\tau(f) = \mu(f)$. For $f \in S$ with $R(f) \in \mathcal{M}_{\alpha}$ and $\pi(f) \in \mathcal{E}_i^{(r)}$, let $\pi(\tau(f)) = z(\pi(f))$, and $\tau(f)(x) = h_{\alpha} f h_{\alpha}^{-1}(x)$ if $x \in W$, while for an $[x] \in \mathcal{B}(z(\mathcal{E}_i)), \ \tau(f)(x) = h_{\alpha} f y_i^{-1}(D)$, where $D \subseteq [x], \ D \in \mathcal{E}_i$.

To see that $\tau(f)$ is a mapping assume that $[x] \in \mathcal{B}(z(\mathcal{E}_i))$ and there exists $u \in$ *W,* $u \in C \in z(\mathcal{E}_i)$ such that x, u are in the same class of $\pi(\tau(f))$. Then $\tau(f)(x) =$ $h_{\alpha} f y_i^{-1}(x), \ \tau(f)(u) = h_{\alpha} f h_{\alpha}^{-1}(u)$, and since by the definition of *z*, $f h_{\alpha}^{-1}(C) = f y_i^{-1}(x)$ we have that $h_{\alpha} f y_i^{-1}(x) = h_{\alpha} f h_{\alpha}^{-1}(u)$, as required. The proof that τ is a homomorphism is analogous to that of Proposition 3 (see [2, $\S4$]).

We now turn to the description of the Green's relations on *S.* Just as the maximal Croisot-Teissier subsemigroup $S^{\#} = \{f \in S | \pi(ft) = \pi(t) \text{ for all } t \in S\}$ of *S* played a crucial role in the description of the automorphisms of S, so the maximal regular subsemigroup of *S* aids in the description of the Green's relations on *S.* Let *E(S)* be the set of all idempotents of S , and define

$$
N = \{ f \in S \mid R(ft) = R(f) \text{ for some } t \in S \} .
$$

Then *N* is a subsemigroup of *S* containing *E(S).* Moreover *N* contains all the regular transformations in *S*, for if *f* is regular then $fgf = f$, for some $g \in S$, and $R(f(gf)) =$ *R(f).* We show in Proposition 20 that *N* is the maximal regular subsemigroup of *S.*

Proposition 18 For distinct $f, g \in S$, $f \mathcal{R} g$ iff $f, g \in N$ with $R(f) = R(g)$.

Proof. Assume $f \mathcal{R} g$, then $fs = g$ and $gt = f$, for some $s, t \in S$. Therefore $R(f) = R(g)$, and so $R(f) = R(g) = R(fs) = R(gt)$, hence $f, g \in N$. Conversely, assume $f, g \in N$ with $R(f) = R(g)$. Then there exist $A, B \in C_q$ such that *A* and *B* are transversals of $\pi(f)$ and $\pi(g)$ respectively. Let $h: B \to A$ be a bijection such that $h(b) = \{f^{-1}g(b)\}\cap A$, for each $b \in B$. Define $s \in S$ such that $R(s) = A$, $\pi(s) = \pi(g)$, and for each $b \in B$, a transversal of $\pi(s)$, $s(b) = h(b)$. Then $fs = g$, and a transformation $t \in S$ such that $gt = f$ may be constructed similarly.

Proposition 19 *For distinct* $f, g \in S$, $f \mathcal{D} g$ *iff either* $\pi(f) = \pi(g)$, *or* $f, g \in N$.

Proof. Assume *f* D g, so that *f* L s and s R g, for some $s \in S$. Then $\pi(f) = \pi(s)$ (Lemma 7) and if $s \neq g$, then $s, g \in N$ so that $f \in N$ also. Conversely, if $f, g \in N$, choose $s \in S$ with $R(s) = R(f)$ and $\pi(s) = \pi(g)$. Then $s \in N$ and $f \mathcal{L} s \mathcal{R} g$.

Since *N* consists of precisely those elements *f* of *S* whose partition $\pi(f)$ has a total transversal amongst C_q sets, N is a D-class of S. Moreover N is a D-class of S containing the set of idempotents of *S,* so that every element of *N* is regular. This, in conjunction with the earlier observation that *N* contains all the regular elements of *S,* proves the next result.

Proposition 20 *N is the maximal regular subsemigroup of S.*

Proposition 21 *S is simple.*

Proof. Since *N* is a D-class of *S* (see the remark after Proposition 19) and $D \subseteq J$, it suffices to show that for any $f \in S$ there exists $g \in N$ such that $f \mathcal{J} g$. A proof similar to that of Lemma 9 yields that for an $f \in S$ there exists $P \in (\pi(f))^{(r)}$ such that for $g \in S$ with $\mathcal{P} = \pi(g)$, we have that $g \in N$. Now let *i* be such that $\pi(f) \in \mathcal{E}_i^{(r)}$, and choose $\mathcal{Q} \in \mathcal{E}_i^{(r)}$ such that for $A, B \in \mathcal{E}_i$, A and B are in the same class of \mathcal{Q} if and only if both $A \cap R(f)$ and $B \cap R(g)$ are non-empty, and $f^{-1}(A)$ and $f^{-1}(B)$ are in the same class of P. Then for $s \in S$ with $\pi(s) = Q$ we have that $\pi(sf) = P$, and so $sf \in N$. Let $sf = g$. We show that there exist $u, v \in S$ such that $f = ugv$. Let *v* be such that $R(v)$ is a transversal of $\pi(g)$ and $\pi(v) = \pi(f)$. Then $R(gv) = R(g)$ and $\pi(gv) = \pi(f)$. Choose a bijection *w* from $R(g)$ onto $R(f)$ such that $w(gv(x)) = f(x)$ for all $x \in X$. Let $u \in N$ be such that $R(g)$ is a transversal of $\pi(u)$, and for each $y \in R(g)$, $u(y) = w(y)$. Then $f = ugv$, as required.

References

- [1] Clifford, A.H. and G.B. Preston, *The Algebraic Theory of Semigroups,* II, American Mathematical Society, 1967.
- [2] Levi, Inessa, K.C. O'Meara, and G.R. Wood, *Automorphisms of Croisot-Teissier Semigroups,* Journal of Algebra, 101(1), 1986, 190-245.
- [3] Levi, Inessa, *Green)s Relations on Croisot- Teissier Semigroups,* Semigroup Forum, 33, 1986, 299-307.
- [4] Levi, Inessa and Steven Seif, *Range Sets and Partition Sets in Connection with Congruences and Algebraic Invariants,* Semigroup Forum, 1993, to appear.
- [5] Lindsey, D. and B. Madison, *Congruences on Croisot-Teissier Semigroups,* Proceedings of the Conference on Semigroups in honor of Alfred H. Clifford, Tulane Univ., New Orleans, La., 1979, 193-206.
- [6] Mielke, B.W., *Regular Congruences on Croisot- Teissier and Baer-Levi Semigroups,* J. Math. Soc. Japan, 24, 1972, 539-551.
- [7] Mielke, B.W., *Regular Congruences on a Simple Semigroup with a Minimal Right Ideal,* Publ. Math. Debrecen, 20, 1973, 79-84.
- [8] Mielke, B.W., *Completely Simple Congruences on Croisot-Teissier Semigroups,* Semigroup Forum, 9, 1975, 283-293.

Mathematics Department University of Louisville Louisville, KY 40292 U.S.A.

Mathematics Department University of Canterbury Christchurch, 1 New Zealand