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This paper addresses the problem of describing automorphisms of semigroups of 
transformations. In [2] we were involved in characterizing all automorphisms of Croisot
Teissier semigroups. The semigroups of transformations that belong to this large family 
generally consist of many-to-one transformations whose restrictions to range sets are one
to-one. Here we consider enlargements of Croisot-Teissier semigroups whose elements, 
restricted to range-sets, are no longer one-to-one. We show that such semigroups contain 
a maximal Croisot-Teissier semigroup, which in turn is used to present a complete 
description of automorphisms of these semigroups. Moreover we describe the Green's 
relations on these enlargements of Croisot-Teissier semigroups, and show that they are 
in fact simple semigroups, whose regular elements form a bisimple subsemigroup. We 
start by recalling the definition of Croisot-Teissier semigroups. 

Let p and q be infinite cardinals with p ~ q, and let X be a set with lXI ~ p. 
Let £ = {Ei I i E J} be a set of distinct equivalences on X such that IX/Eil = p for 
all i E J. A subset A of X is said to be well-separated (w.s.) by £ if IAI = p and 
Ei n (Ax A) is the identity relation on A for all i E J. For a cardinal t, with q ~ t ~ p, 
let Ct = {w.s. A I for some w.s. B, A ~ B and IE- AI = t}. When X contains 
a w.s. set, the Croisot-Teissier semigroup on X,£ of type (p,q) is CT(X,E,p,q) = 
{f : X -+X I 1r(f) E £, R(f) E Cq} with the operation of function composition [1]. 
Recall that for a transformation f of X, R(f) = f(X) denotes the range of/, and 1r(f) 
denotes the partition of X determined by f such that x and y are in the same class of 
1r(f) if and only if f(x) = f(y). 

A Croisot-Teissier semigroup CT(X, E,p, q) is idempotent-free and either simple 
(when p = q) or has a minimal ideal CT(X,E,p,p) that itself is a Croisot-Teissier 
semigroup. A simple Croisot-Teissier semigroup CT(X,E,p,p) is the disjoint union 
of its minimal left ideals, and any simple ·idempotent-free semigroup with a minimal 
left ideal can be embedded in a simple Croisot-Teissier semigroup CT( X,£, p, p). The 
Green's relations on these semigroups were described in [3], and their congruences were 
studied in [4], [5], [6], [7] and [8]. 
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We construct the following generalization of a Croisot-Teissier semigroup. In view 
of the intimate connection between equivalences on X and partitions of X we write 
[x] E B to indicate that [x] is the equivalence class of the equivalence B containing 
x E X. Given an infinite cardinal r :::; p, and an equivalence A on X let A(r) be the 
family of all equivalences B on X such that A~ B and for every [x] E B, l[x]/ AI < r. 
Informally, such a Bin A(r) is formed by glueing together classes of A, with each class 
in B made up of fewer than r classes of A. The family A(r) is referred to as the family 
of r glueings of A. Let £(r) = U{ £i(r) I i E I} be the family of r glueings of£ and 

S = {f : X ~ X I R(f) E Cq and 1r(f) E £(r)} . 

The above semigroup S contains a maximal Croisot-Teissier subsemigroup S# that 
generally does not coincide with the original CT(X, £, p, q). Let£# ={A E £(r) l1r(t) = 
1r(ft), for all /, t E S with 1r(f) = A} and let S# = CT(X, £# ,p, q). We show that 
S# is a subsemigroup of S containing CT(X, £,p, q). Let Cf be the set of ranges of all 
the mappings in S#. If A E Cq and B E £# then (A x A) n B = iA, else for /, t E S 
with 1r(f) = B and R(t) = A, 1r(jt) and 1r(t) are distinct, a contradiction. Therefore 
Cq is a subset of Cf. Moreover since £ is a subset of £#, Cf is a subset of Cq, and so 
the next result follows from the above and the observation that for any f and g in a 
Croisot-Teissier semigroup, 1r(fg) = 1r(g). 

Proposition 1 S# is a maximal Croisot-Teissier subsemigroup of S. 

In the following example we start with a specific Croisot-Teissier semigroup and con
struct the associated £(r) and£#. The example is based on [2, Example 4.2]. 

Example Let R be the set of all real numbers, and R+ be the set of all positive reals. 
For each a E R + let Ea be the equivalence on R whose only non-singleton class is 
[a] = {a} U (R- R+). Let £0 be the equivalence on R having two non-singleton classes: 
[-1] = {b E R : -1 :::; b :::; 0} and [-2] = {b E R : b < -1}. Let £ = {£b : b E 
R, b ~ 0}, and p = q = IRI. Note that the Cp sets are those subsets A of R+ having 
IAI = IR+ -AI, and that the semigroup CT(R, £, p, p) consists of all transformations 
f : R ~ R having 1r(j) E £ and R(f) E CP. 

If r = ~o, £(r) is the set of all equivalences on R whose non-singleton classes are of 
the form Y'UY" where Y' is either [-1], [-2],R-R+, or empty, andY" is either a finite 
subset of R+ or empty. Let S = {f : R ~ R I R(f) E Cp, 1r(j) E £(r)}. Since£# is just 
£ together with all partitions in £(r) for which every Cp set is a partial transversal, £# 
consists of all equivalences in £(r) whose non-singleton classes are of the form Y' U Y", 
where Y', Y" are as above with IY"I :::; 1. Thus we have that CT(R,£,p,p) C S# = 
CT(X,£#,p,p) c S. . 0 

We show that the restriction ¢# of an automorphism ¢ of S to S# is a range
preserving, r union-preserving and r glueing-preserving automorphism of S# (see Def
initions 2,4, and 5 below), and that every such automorphism of S# may be extended 
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to an automorphism of S. Therefore using the characterization of automorphisms of 
Croisot-Teissier semigroups in [2] we are able to describe the automorphisms of S com
pletely. The next definition was introduced in [2, p.228]. 

Definition 2 An automorphism ¢ of a semigroup of transformations S is said to be 
range-preserving if for all f, g E S, R(f) ~ R(g) if and only if R( ¢(!)) ~ R( ¢(g)). 

The following decomposition of the union W of all well-separated sets, and the 
associated decomposition of the Croisot-Teissier semigroup into a union of its right 
ideals was first described in [2]. Here we present a brief account of these decompositions 
and some terminology introduced in [2], which we use to give a description of all range
preserving automorphisms of S# and automorphisms of S. Let K be an index set 
containing I such that £# -: { Ei I i E K}. A pair of Cq sets A and B are said to be 
a-related if whenever A and B both meet a non-singleton class [u] of 8 = n{ Ei : i E K} 
there exist F1 = A, F2, ••• , Fn = B E Cq such that Fj n FHl E Cq and Fj n [u) =f:. <I>. 
Let { Ma I a E n} be the collection of all maximal families of a-related Cq sets. For 
each a E n let Aa = U{A I A E Ma} and Ia = {f E S# I R(f) E Ma}, a right ideal 
of S#. A set { ha I a E n} of permutations of W is termed compatible if there exists 
a permutation k of W/ p such that the equality of the p-classes [ha(x)] = k([x]) holds 
for all a E [2 and x E W, k induces a permutation of the set {(Eilwxw )/ p : i E K} 
of the equivalences on W/ p, and haf = h13 j for all f E Ian If3. For each Ei define 
B(Ei) = {[x] E Ei I [x] n W = <I>} and let J = { i E K I B(Ei) =f:. <I>}. The following 
result describing range-preserving automorphisms of a Croisot-Teissier semigroup was 
proved in [2, Theorem 4.4]. The statement is in terms of the maximal Croisot-Teissier 
subsemigroup S# of S. 

Proposition 3 Let¢# be a range-preserving automorphism of S#. There exists, uniquely, 

(i) a compatible set {ha I a En} of permutations of w, 

(ii) a permutation z# of£# such that z#(£i)Jw = ha(EiJw) for any Ei E £# and 
a En, and 

(iii) a family of bijections {Yi I i E J} where Yi : B(Ei)-+ B(z#(£i)), such that 
1) ¢#(!)Jw = hafh-;/ for all f E Ia, 
2) 1r(f) = z#(1r(f)), and 
3) ¢#(!)(D)= hafYi1(D) for all f E Ia with 1r(f) = Ei and DE B(z#(£i)). 

Conversely, given S# and (i), (ii), and (iii), there exists a unique range-preserving 
automorphism¢# of S# such that 1), 2), and 3) hold. 0 
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Definition 4 Given an automorphism ¢;# of S# and an equivalence class A of Ei let A 
be the equivalence class of z#(£i) containing hcx(x), for some a En, if x E An W-=/= <I>, 

and A = Yi(A) if An W is empty. An automorphism ¢;# of S# is said to be r union
preserving if whenever Ei, Ej E £# with £i(r) n £Y) -=/= <I> and C, V are collections of 
fewer than r classes in Ei and Ej respectively, then U C = U V if and only if U {A : A E 
C} = u {B: BE V}. 

Definition 5 An automorphism ¢;# of S# is said to be r glueing-preserving if for all 
Ei E £#, Ei E £Y) if and only if z#(£i) E z#(£j)(r). 

We are now ready to present the main result of the paper describing automorphisms 
of S. The proof of the theorem below is the content of Lemmas 7 to 16 and Propositions 
8 and 17. 

Theorem 6 An automorphism¢; of S induces a range-preserving, r union-preserving, 
r glueing-preserving automorphism ¢;# of S#. Conversely every range-preserving, r 
union-preserving, r glueing-preserving automorphism of S# can be extended uniquely to 
an automorphism of S. 

Lemma 7 Let f, g E S. Then 

(i) 1r(f) E 1r(g)(r) if and only iff E S 1g; 

(ii) 1r(f) = 1r(g) if and only if S 1 f = S 1g; 

(iii) f .C g if and only if 1r(f) = 1r(g). 

Proof. Observe that (ii) follows directly from (i), while to prove (i) it suffices to show 
that if 1r(f) E 1r(g)(r) then f E S 1g. For this choose any £i E £# and let V be the set 
of all classes in £i that have a non-empty intersection with R(g). Define an equivalence 
relation fJ on the classes of V via (A, B) E fJ if and only if fg- 1(A) = fg- 1(B). Since 
1r(g) E £(r) and 1r(j) E 1r(g )<r), it follows that there are fewer than r classes of V in 
each JJ-equivalence class. Let 'TJ : £i - V -+ V be a one-to-one mapping (it is readily 
checked that l£i -VI :S lVI = p). Extend fJ to £i by adjoining to each JJ-equivalence 
class the preimages of its elements under 'Tf· Fewer than r classes are adjoined, since 'TJ 

is one-to-one. The equivalence classes of fJ on £i naturally provide us with an r glueing 
P of £i. Note that R(g) contains a transversal of P and let t be a transformation of X 
having 1r(t) = P and for every y = g(x), t(y) = f(x). Then t E Sand f = tg E S 1g, as 
required. Finally note that (iii) is a restatement of (ii). D 

Let ¢; be an automorphism of S. The following is a consequence of Lemma 7 and 
the definition of s#. 
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Proposition 8 1. The correspondence z : £(r) --+ £(r) defined by z( 1r(j)) = 1r( ¢;(!)) is 
a bijection such that P E EY) if and only if z(P) E z(Ei)(r). 

2. The restriction ¢;# of¢; to S# is an r glueing-preserving automorphism of S#. 

Lemma 9 For every A E Cq and Ei E E there exists a P E EY) such that A is a total 
transversal of P. 

Proof. Note that A is a partial transversal of Ei and let V be the set of all classes in Ei 
that have an empty intersection with A. Then lVI :::; p, and there exists a one-to-one 
function 71 : V --+ A. Let P be a partition of X consisting of all classes of Ei that do 
not intersect rt(V) and all the sets of the form F U [rt(F)], where [rt(F)] is the Ei-class 
of rt(F) and FE V. Then P E Ei(r) as required. 0 

Lemma 10 For every A E Cq and Ei E E there exists an idempotent e in S with 
R(e) =A and 1r(e) E Ei(r). 

Proof. Using Lemma 9 choose P E Ei(r) such that A is a total transversal of P. Then the 
required idempotent is a transformation e of X with 1r(e) = P, R(e) =A and e(a) =a, 
for every a E A. 0 

Proposition 11 S 2 = S. 

Proof. For an finS let e be an idempotent inS with R(e) = R(f) (Lemma 10). Then 
f = ef E 8 2• 0 

Lemma 12 {i) For f and g in S, R(f) ~ R(g) if and only if for every idempotent e 
inS, eg = g implies ef =f. 
{ii) All automorphisms of S are range-preserving. 

Proof. Observe that (ii) is an easy consequence of (i) and the fact that idempotents 
are preserved under automorphisms. To prove (i) note that if R(f) ~ R(g) and e is an 
idempotent such that eg = g then e is the identity on R(g), hence e is the identity on 
R(f), and so ef =f. Conversely assume x E R(f)- R(g) and let x = f(y). Choose an 
idempotent e inS with R(e) = R(g). Then eg = g while ef(y) = e(x) =/:- x = f(y), so 
that ef =/:-f. 0 

Note that the above result implies that the restriction ¢;# of ¢; to S# is a range
preserving automorphism of S#, described in Proposition 3. We will use it to describe 
¢; itself. 

Lemma 13 Let f E S with R(f) E Ma, and take x E W. Then cj;(f)(x) = hafh-;1(x). 
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Proof. We show that there exists agE S# such that fg E S# and x E R(¢(!)). Let 
[x] be the 8-class containing x and V = h;;1 ([x]). Choose A E Cq such that An V is 
non-empty and let An V = {y }. Assume 1r(f) E £t). Since A is a partial transversal 
of £i and each class of 1r(f) consists of fewer than r classes of £i, r ~ p, there exists a 
subset D of A of cardinality p such that y E D and Dis a partial transversal of 1r(f). Let 
DE M 13 , for some f3 En, and hfi1(x) = w. Note that hfi1([x]) = h;;1 ([x]), so that y 8 w 
(see [2, p.211] for details), and choose g E S# with R(g) = (D-{y})U{w} and g(v) = w 
for some v E W. Then g E I 13 , and since 1r(g) = 1r(f g) and R(f g) ~ R(f) we have that 
fg E S# n 'Ia. Let u = h13(v), then u E Wand cp(g)(u) = hf3ghfi1(u) = h13ghfi1h13(v) = 
h13g(v) = h13(w) = x; cp(fg)(u) = hafgh-;}(u); ¢(f)(x) = ¢(f)¢(g)(u) = cp(fg)(u) = 
hafgh;;1(u) = hafgh;;1hf3(v) = hafg(v) = haf(w) = hafhfi1(x) = hafh;;1(x), since 
h;;1h13 (v) and v, hfi1(x) and h;;1(x) are pairwise 8-related. 0 

Recall (Proposition 8) that ¢ induces a permutation z : £(r) -+ £(r) defined by 
z(7r(f)) = 7r(cp(f)). 

Lemma 14 If P E £i(r) and C and D are classes of £i, then CUD is a subset of a 
P-class if and only if CUD is a subset of a class of z(P). 

Proof. Let f E S with 1r(f) = P. Using Lemma 7 choose g, t E S, such that f = tg and 
1r(g) = £i· Assume· R(t) E Ma (and so R(f) E Ma), R(g) E M13. If C E B(£i) then 
C = Yi(C), and by Proposition 3, ¢(!)(C) = ¢(f)(Yi(C)) = ¢(t)hf3gyi1(Yi(C)) = 
hath;;1hf3g(C) = haf(C), by Lemma 13, since h13g(C) E W. If D E B(£i) then 
¢(f)( C)= cp(f)(D) iff ¢(f)(Yi(C)) = cp(f)(yi(D)) iff f(C) = f(D), as required. If Dis 
not in B(£i), then there is an x E DnW and ¢(!)(D)= ¢(f)(ha(x)) = hafh;;1ha(x) = 
haf(D), so again ¢(!)(C) = ¢(!)(D) iff f( C) = f(D). The remaining case when C is 
not in B(£i) can be dealt with in a similar manner. 0 

Corollary 15 The automorphism ¢# is r union-preserving. 

Lemma 16 Let f E S with R(f) E Ma, 1r(f) E £i(r), and D E z( 1r(f)) with DnW = <.P. 
Then cp(f)(D) = hafYi1(C), where C ~ D, C E z(£i) and C n W = <.P. 

Proof. Choose g, t E S, with 1r(g) = £i such that f = tg. Assume R(g) E M 13 , R(t) E 
M 7 • Since D E z(1r(f)) E z(£i(r)), there exists a subset C of D, C E z(£i)· Then 
¢(f)(D) =¢(f)( C)= ¢(t)¢(g)(C) = h7 th:;1h13gy;1(C), since g E S#, and h13gy;1(C) E 
W. Sinceforanya EX, h:;1h13 g(a) andg(a) are£requivalentforany j, h7 th:;1h13 gyi-1(C) 
= hrtgy;1(C) = hrfYi-1(C) = hafYi1(C), because R(f) is a subset of R(t). 0 

Proposition 17 Let fJ be a range-preserving, r union-preserving and r glueing-preserving 
automorphism of S#. Then f..l can be extended 'Uniquely to an automorphism T of S. 
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Proof. Let jJ, be as stated, and {hex I a E n}, z#, {Yi I i E J} be the parameters 
describing JJ as in Proposition 3. We extend z# to a permutation z of £(r) as follows. 
Define a mapping z from £(r) to itself such that z(Ei) = z#(£i), i E K, and for P E 

Ei(r), z(P) E (z#(£i))(r) such that B U Cis a subset of a z(P)-class if and only if B U C 
is a subset of a P-class. To see that z is well-defined assume P E Ei(r) n EY), and 
let F be a P-class such that F = U {G I G E Ei} = U {H I H E Ej}· Since F is 
a union of fewer than r classes of Ei or Ej and fJ is r union-preserving, we have that 
U {GIG E Ei} = U {H: HE Ej}, as required. 

Define a mapping TonS as follows. For f E S#, let T(j) = {t(f). For f E S with 
R(f) E Ma and 1r(f) E Ei(r), let 7r(T(f)) = z(1r(f)), and T(j)(x) = hafh~1 (x) if x E W, 
while for an [x] E B(z(Ei)), T(j)(x) = hafYi1(D), where D ~ [x], DE Ei. 

To see that T(j) is a mapping assume that [x] E B(z(Ei)) and there exists u E 
W, u E C E z(Ei) such that x, u are in the same class of 1r( T(j)). Then T(j)(x) = 

hafYi1(x), T(j)(u) = hafh~1 (u), and since by the definition of z, fh~1 (C) = fyi 1(x) 
we have that hafYi1(x) = hafh~1 (u), as required. The proof that Tis a homomorphism 
is analogous to that of Proposition 3 (see [2, §4]). D 

We now turn to the description of the Green's relations on S. Just as the maximal 
Croisot-Teissier subsemigroup S# = {f E Sl 1r(ft) = 1r(t) for all t E S} of S played 
a crucial role in the description of the automorphisms of S, so the maximal regular 
subsemigroup of S aids in the description of the Green's relations on S. Let E(S) be 
the set of all idempotents of S, and define · 

N = {f E Sl R(ft) = R(f) for some t E S} . 

Then N is a subsemigroup of S containing E(S). Moreover N contains all the regular 
transformations in S, for if f is regular then f g f = f, for some g E S, and R(f (g f)) = 
R(f). We show in Proposition 20 that N is the maximal regular subsemigroup of S. 

Proposition 18 For distinct j, g E S, f R g iff j, g EN with R(f) = R(g). 

Proof. Assume f R g, then fs = g and gt = j, for somes, t E S. Therefore R(f) = R(g), 
and so R(f) = R(g) = R(fs) = R(gt), hence f,g EN. Conversely, assume f,g EN 
with R(f) = R(g). Then there exist A, B E Cq such that A and B are transversals of 
1r(f) and 1r(g) respectively. Let h: B-+ A be a bijection such that h(b) = {f-1g(b)}nA, 
for each bE B. Defines E S such that R(s) =A, 1r(s) = 1r(g), and for each bE B, a 
transversal of 1r(s), s(b) = h(b). Then fs = g, and a transformation t E S such that 
gt = f may be constructed similarly. D 

Proposition 19 For distinct f, g E S, f V g iff either 1r(f) = 1r(g), or f, gEN. 

Proof. Assume f V g, so that f £sands R g, for somes E S. Then 1r(f) = 1r(s) 
(Lemma 7) and if s i= g, then s, g E N so that f E N also. Conversely, if f, g E N, 
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chooses E S with R(s) = R(f) and 1r(s) = 1r(g). Then sEN and f .C s R g. 0 

Since N consists of precisely those elements f of S whose partition 1r(f) has a total 
transversal amongst Cq sets, N is a D-class of S. Moreover N is a D-class of S containing 
the set of idempotents of S, so that every element of N is regular. This, in conjunction 
with the earlier observation that N contains all the regular elements of S, proves the 
next result. 

Proposition 20 N is the maximal regular subsemigroup of S. 

Proposition 21 S is simple. 

Proof. Since N is a D-class of S (see the remark after Proposition 19) and D ~ J, it 
suffices to show that for any f E S there exists g E N such that f J g. A proof similar 
to that of Lemma 9 yields that for an f E S there exists P E ( 1r(j) )(r) such that for 
g E S with P = 1r(g), we have that g E N. Now let i be such that 1r(j) E Ei(r), and 
choose Q E Et) such that for A, B E Ei, A and B are in the same class of Q if and only 
if both An R(f) and B n R(g) are non-empty, and f- 1(A) and f- 1(B) are in the same 
class of P. Then for s E S with 1r(s) = Q we have that 1r(sf) = P, and so sf E N. 
Let sf =g. We show that there exist u, v E S such that f = ugv. Let v be such that 
R(v) is a transversal of 1r(g) and 1r(v) = 1r(f). Then R(gv) = R(g) and 1r(gv) = 1r(f). 
Choose a bijection w from R(g) onto R(f) such that w(gv(x)) = f(x) for all x EX. Let 
u E N be such that R(g) is a transversal of 1r(u), and for each y E R(g), u(y) = w(y). 
Then f = ugv, as required. 0 
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