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Abstract  

Key message Fitting and comparing three sets of compatible biomass models for prediction of 

biomass or carbon stocks of natural and planted Quercus variabilis Blume forests.   

Abstract To make the sum of estimated values from biomass models of various components of a tree 

equal to estimated tree total biomass for Quercus variabilis Blume (cork oak) forests in North China, 

single-tree compatible biomass models were developed. 100 trees from 100 plots in North China were 

felled to obtain biomass of aboveground components, and roots of 19 of those trees were extracted for 

measurement of root biomass. After Box-Cox transformations of variables, two sets of independent 

component biomass models with a dummy variable in models to define stand origin were separately 

built using linear mixed effects analyses (one set of models with site as a random factor; the other set 

without any random factor). Then three methods were compared to force compatibility of the biomass 

models: sums of linear mixed effects models, sums of linear models, and simultaneous equation fits 

based on linear models. Model parameters were estimated by ordinary least squares (OLS) or seeming 

unrelated regression procedures (SUR). Coefficients of determination (r
2
), root mean square error 

(Rmse), residuals plots and histograms of residuals indicated that models fitted with sums of linear 

mixed effects models were the least biased and most precise at estimating total above-ground biomass. 

Further testing for the linear mixed effects models with jackknife validation and prediction sum of 

squares (PRESS) statistics indicated that the compatible biomass models can be used to predict biomass 

or carbon stocks of cork oak forests in North China within specific tree diameter at breast height and 

height ranges. 

Keywords Quercus variabilis Blume · dummy variable · Box-Cox transformation · linear mixed effects 

models · seeming unrelated regression procedures · jackknife validation 

Introduction 

Forests play an important role in the mitigation of global climate change by sequestering CO2. 

Estimating forest biomass with models facilitates indepth studies of ecosystem energy flows and 

carbon cycling. Monitoring of forest biomass and carbon stocks and establishment of biomass models 

suitable for larger areas are therefore increasingly important (Case and Hall, 2008; Gurdak et al., 2014; 

Jenkins et al., 2003; Muukkonen, 2007; Návar, 2009; Ritchie et al., 2013; Snorrason and Einarsson, 

2006; Vallet et al., 2006). Both linear and nonlinear models are commonly used for biomass modelling 
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(Durkaya et al., 2009; Sajdak et al., 2014; Schmidt et al., 2009; Torres Vélez and Del Valle, 2007; 

Zeng et al., 2011; Zianis et al., 2004). Moreover, compatible biomass modelling systems have been 

proposed and applied to ensure compatibility between total biomass models and component biomass 

models. Researchers have developed two principal ways of creating compatible biomass models: (1) 

the total biomass regression function is defined as the sum of separately calculated best regression 

functions of component biomasses; (2) joint-generalized least squares regression, like seemingly 

unrelated regressions (SUR), two-stage least-squares methods (2SLS) , three-stage least-squares 

methods (3SLS) and generalized method of moments (GMM) (António et al., 2007; Balboa-Murias et 

al., 2006; Bi et al., 2010; Brandeis et al., 2006; Castedo-Dorado et al., 2012; Gómez-García et al., 2013; 

Gómez-García et al., 2014; Hasenauer et al., 1998; Carvalho and Parresol, 2003; Li and Zhao, 2013; 

Menéndez-Miguélez et al., 2013; Parresol, 1999, 2001; Ruiz-Peinado et al., 2011; Shaiek et al., 2011). 

 

Oak forest accounts for 15.89% of forest stand area and 13.30% of forest stand volume in China (Luo 

et al., 2009). Quercus variabilis Blume (Cork oak) is used for timber, cork, soil and water conservation, 

and is mainly distributed in the areas of Taihang Mountain and Yan Mountain in North China. A large 

number of biomass models of oak have been created in Europe, North America, Portugal, Spain, 

Greece, and China (Bao et al., 1984; Canadell et al., 1988; Zianis et al., 2005; Ter-Michaelian et al., 

1997; Paulo and Tomé, 2010; Fonseca and Parresol, 2001; Tian et al., 1997; Zianis et al., 2011). In 

most models tree height (H), diameter at breast height (DBH) or their combination (d
2
h) are 

independent variables. Until now, Quercus variabilis Blume compatible biomass models in North 

China have not been developed. The objective of the study described here was therefore to establish 

and compare three sets of compatible biomass models applied to natural and planted Quercus variabilis 

Blume forests in North China: (1) A total biomass regression function defined as the sum of separately 

calculated best linear mixed effects models of the component biomasses (sums of linear mixed effects 

models); (2) A total biomass regression function defined as the sum of separately calculated best linear 

models of the component biomasses (sums of linear models); and (3) simultaneous equations of linear 

models of biomass based on seemingly unrelated regressions (SUR).  

Methods 

Measurements 

100 cork oak plots in 13 stands with different site conditions and age distributions were created in the 

following locations: Gao-Luo forestry station, Qi-Jiahe forestry station, Bei-Tan forestry station and 

Heng-He forestry station of Zhong-tiaoshan region in Shanxi province, collective forests of Da-Geliao 

village in Xingtai city of Hebei province, Si-Zuolou forestry station and Xi-Shan forestry station in 

Beijing. 67 plots in naturally regenerated forest and 33 plots in plantations were included and the area 

of each plot was 20m × 20m (0.04ha). Measured variables were as follows: (1) Single tree variables 

including diameter at breast height, tree height, crown width, crown length; (2) Biomass data of various 

components obtained by fully weighing individual tree components in the mentioned plots including 

aboveground biomass of each component of 100 trees closest to the average within each plot (67 

naturally regenerated trees and 33 planted trees) and root biomass of 19 of those 100 trees (12 naturally 

regenerated trees and 7 planted trees). Additionally, another 13 sets of root biomass data can be found 

in two related reports (Bao et al., 1984; Tian et al., 1997). For the biomass data, subsamples were also 

selected and weighed to get fresh mass in the field. Then all the subsamples were oven-dried at 85 ºC in 

a laboratory until a constant mass was reached. Using the ratio of dry mass to fresh mass, biomass of 
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each component was computed including stem woody biomass, stem bark biomass, branch biomass, 

foliage biomass, total stem biomass (including bark), total crown biomass and total aboveground 

biomass for all the 100 trees. For 32 trees, root biomass and total tree biomass were obtained as well. 

Summaries of plots and weighed trees are shown in Table 1. 

 

The following notations will be used hereafter. Other notations in some particular equations will be 

listed with those equations: 

DBH is diameter at breast height over bark (1.3 m above the ground, cm)  

H is total tree height (m)  

d
2
h is equal to DBH *DBH *H 

Wi (model) is biomass (kg) for each component (i can be wood, bark, branch, foliage, root, stem, crown, 

total aboveground and total tree) 

tWi (model) is transformed biomass for each component by the Box-Cox method (i can be wood, bark, 

branch, foliage, root, stem, crown, total aboveground and total tree) 

p-value in the following tables is probability of type I error in Shapiro Wilks test. 

“lme” is a linear mixed effects model 

“lm” is a linear model 

“sums of lme” is a method of sums of linear mixed effects model to force additivity of biomass models  

“sums of lm” is a method of sums of linear model to force additivity of biomass models 

SUR is a method of seemingly unrelated regressions to force additivity of biomass models 

 

Table 1 Summary of plots and weighed trees 

Items 

Natural forests (67 trees) Plantations (33 trees) 

Type or interval 
Number of 

trees 
Type or interval 

Number of 

trees 

Site 

type 

Sunny slope with medium or thick soil in the 

low-elevation area 
25 

Sunny slope with medium or thick soil 

in the low-elevation hilly 
9 

Sunny slope with thin soil in the 

low-elevation area 
9 

Sunny slope with thin soil in the 

low-elevation hilly 
11 

Shady slope with medium or thick soil in the 

low-elevation area 
18 

Shady slope with medium or thick soil 

in the low-elevation hilly 
10 

Shady slope with thin soil in the 

low-elevation area 
7 

Shady slope with thin soil in the 

low-elevation hilly 
3 

Flat ground with thick soil in the 

low-elevation area 
3   

Sunny slope with medium or thick soil in the 

low-and middle- elevation area 
1   

Shady slope with thin soil in the low-and 

middle- elevation area 
4   

Age 

group 

(years) 

Small age-aged stands (<40) 38 Small age-aged stands (<20) 4 

Middle-aged stands (41-60) 26 Middle-aged stands (21-40) 20 

Nearly mature stands (61-80) 2 Nearly mature stands (41-50) 9 

Mature stands (>80) 1   

DBH [5,7) 1 [3,5) 2 
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class 

(cm) 

[7,9) 8 [5,7) 2 

[9,11) 19 [7,9) 2 

[11,13) 20 [9,11) 3 

[13,15) 7 [11,13) 14 

[15,17) 5 [13,15) 5 

[17,19) 1 [15,17) 5 

[19,21) 2   

[21,23) 2   

[23,25) 2   

Independent biomass model construction for each component 

Variable transformations: Before modeling, some explanatory and response variables ( ) were 

transformed to new variables ( ) by Box-Cox transformation to make frequency distributions of 

those variables ( ) as close to normal distributions as possible. Equation (1) expresses a Box-Cox 

transformation (Sakia, 1992):  

                        (1) 

Where,  was the original response or explanation variable (e.g., D, H, d
2
h and Wi),  was the 

response or explanatary variable after Box-Cox transformation (e.g., tD, tH, td
2
h and tWi),  was the 

parameter in the Box-Cox transformation. 

 

In this study, only variables in bark biomass models were transformed by the logarithmic 

transformation in above formula, while variables in other models were transformed by Box-Cox 

transformations with a value of λ not equal to 0. 

 

Model structure and selection: Linear mixed effects models (with site as a random factor) and linear 

models were used to establish independent component biomass models. Variables tD, tH, td
2
h, D1 were 

chosen as possible explanatory variables where dummy variable D1 was introduced in a model to 

define forest origin (D1=1 for natural forests; D1=0 for plantation). Variables tWi were response 

variables. Model forms were (Peng and Lu, 2012; Su et al., 2012): 

 (2) 

       (3) 

Where, formula (2) is a linear mixed effects model; formula (3) is a linear model ;  is the vector of 

the response variable (e.g., tWi);  is the vector of fixed-effect regressors (e.g., tD, tH, td
2
h, D1);  

is the vector of random-effect regressors (e.g., site);  is the vector of fixed effect coefficients (e.g., a, 

b, c, e);  is the vector of the random- effect coefficients;  is the vector of errors. 

 

For variable selection of independent component models, an overall merit-based method was used. All 

the regression equations in different combinations of tD, tH, td
2
h, D1 were compared by examining 

coefficients of determination (r
2
) and root mean square errors (Rmse). Residual distribution 

homogeneity and model bias were visually checked by residual plots with loess regression lines 

overlaid on the plots. For an unbiased model, a loess line should be flat and located at the zero value on 
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the vertical axis in the residual plot (Jacoby, 2000). Normality of residuals was checked with 

histograms of residuals and by using a Shapiro Wilk test (probabilities of type I error or p values below 

0.05 indicate a departure from a normal distribution). For each biomass component an "optimal" 

regression equation of each component (tWi) was selected. The optimal Wi model was also obtained by 

back-transforming the tWi model and then residuals were further examined.  

Compatible biomass model establishment  

After obtaining independent biomass models of each component, three sets of compatible biomass 

models for cork oak natural forest and plantation in North China were established and compared 

including: (1) a total biomass regression function defined as the sum of the separately calculated best 

linear mixed effects models of the biomass of its components (sums of lme); (2) a total biomass 

regression function defined as the sum of the separately calculated best linear models of the biomass of 

its components (sums of lm); and (3) simultaneous equations of linear models based on seemingly 

unrelated regressions (SUR). The following relationship should be satisfied (Fig.1).  

 

 

 

 

 

 

Fig. 1 Relationship between each component, where lines from right to left indicate summation 

 

Methods (1) and (2), sums of lme and sums of lm, included stem wood biomass models, bark 

biomass models, branch biomass models, foliage biomass models and root biomass models. Then 

summing stem wood biomass models and bark biomass models to get stem biomass models, summing 

branch biomass models and foliage biomass models to get crown biomass models, and summing stem 

wood biomass models, bark biomass models, branch biomass models and foliage biomass models to get 

total aboveground biomass models for all the 100 trees. For 32 trees, tree total biomass models were 

also obtained by summing stem wood biomass models, bark biomass models, branch biomass models, 

foliage biomass models and root biomass models. 

For method (3), simultaneous equations (based on linear models) were established with the 

estimated value of stem biomass of an independent linear stem biomass model (Xu, 1998). The 

remaining parameters in other models were jointly estimated by seemingly unrelated regressions 

(SUR). Given the limited number of sampled trees for root biomass, the root biomass model was not 

included in compatible models estimated using this method. Method (3) is described as formulae 

(4)-(9), where Wi is observed biomass value, Wi΄ is estimated biomass value, the fi(x) has the same form 

as that in the corresponding independent biomass model: 

Group1:  

Wtotal aboveground =Wstem΄+f crown (x)      (4) 

Wcrown = f crown (x)                      (5) 

Group2:    

Wwood = f wood (x)                       (6) 

Wbark =Wstem΄-f wood (x)                  (7) 

Group3: 

Wfoliage 

Wbranch 

Wbark 

Wwood 

Wcrown 

Wstem 

Wtotal 

aboveground 
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Wfoliage = f foliage (x)                     (8) 

Wbranch =Wcrown΄-f foliage (x)              (9)  

The parameters of the total aboveground biomass model and the crown biomass model were jointly 

estimated based on the estimated stem biomass using an independent stem biomass model (Group1). 

Then models of stem wood and bark, foliage and branch were separately jointly fitted based on the 

estimated stem biomass and crown biomass (Group2 and Group3). Whether or not to include any 

particular estimated parameter was decided by the significance of a t-test. 

 

After establishing three sets of compatible biomass models using the three approaches, the values of r
2
 

and Rmse were compared. Residual distribution homogeneity and model bias were visually checked by 

residual plots with loess regression lines overlaid on the plots; Normality of residuals was checked with 

Shapiro Wilks tests and by examining histograms of residuals. Then the most suitable set of compatible 

biomass models could be selected. 

 

Since an independent validation data set was not available, the Leave-One-Out Jackknife method with 

PRESS (Prediction Sum of Squres) statistics was used to further test those most suitable models 

(Sánchez-González et al., 2007; Sánchez-González et al., 2005). MPRESS (the mean of the PRESS 

residuals see formula (10)) and MPRESS (the mean of the absolute values of the PRESS residuals) for 

each tWi model were computed. Additionally, the residual ranges and prediction ranges of tWi models 

and their corresponding jackknife tests were compared with residual plots. 

                  (10) 

Where,  is the observed value of observation i, is the estimated value for observation i in a 

model fitted without this observation,  is the number of observations. 

Results 

Independent biomass models of each component 

The dummy variable in this study specified stand origin. Fig.2 is a plot of the dependent variable 

(tWwood) versus the independent variable (tDBH) with loess regression lines overlaid on it for stem 

wood biomass model and suggests that there was a difference between the relationships between 

tWwood and tDBH for natural forest (dotted line) and plantation (solid line). Similar differences were 

also found for other component biomass models. The dummy variable D1 was significant (P<0.05) in 

stem wood biomass models and foliage biomass models, which suggested that the two component 

models were indeed different between plantation and natural forest. While the coefficients of varable 

D1 for other components models were not significant, so variable D1 was not introduced to those 

models (see tWi model in Tables 2 and 3). 

 

The original root biomass dataset assembled 32 sets of data available in north China. However the 

biggest tree was an outlier (Fig.3). In order to establish a more accurate root biomass model for trees 

with more common sizes, the root biomass data of the biggest tree was excluded from modeling.  

 

The best tWi models of various components separately based on linear mixed effects models and linear 

models for individual biomass components of cork oak forest were selected. Summaries of those 

selected models are shown in Tables 2 and 3. 
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Most of the values of r
2
 of the two sets of tWi models were above 0.9 (Tables 2 and 3). Most of the 

values of r
2
 of Wi models were above 0.8 except for bark biomass model and foliage biomass model. 

All the values of Rmse of Wi models were below 8 kg.  

 

For “lme” tWi models, probabilities of type I errors for biomass models of branch and root were above 

0.05 and those for stem wood, bark and foliage were below 0.05; For “lm” tWi models probabilities of 

type I errors for models of bark, branch and root were above 0.05 and those for stem wood and foliage 

were below 0.05. For “lme” Wi models and “lm” Wi models, all the probabilities of type I errors were 

below 0.01 (Tables 2 and 3).  

 

As the loess curves of “lme” models were much closer to the baseline than those of “lm” models, only 

“lme” model residual plots and histograms of residuals for stem wood biomass model and root biomass 

model are shown in Fig.4 (Those for biomass models of bark, branch and foliage were quite similar and 

so they are not shown here). Residual ranges and predicted value ranges of “lme” models of various 

components are shown in Table 2. Heteroskedasticity of tWi models for “lme” was not obvious and for 

most of the models (Fig. 4a, c), and residuals approximately followed a normal distribution (Fig. 4b, d). 
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Fig. 2 Transformed stem wood biomass (tWwood) versus transformed DBH (tDBH) for stem wood biomass model (The dotted 

line and solid line are respectively the loess regression lines for natural forest and plantation) 
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Fig. 3 Root biomass versus d2h for 32 sets of data  

 

Table 2 Summary for independent biomass linear mixed effects models (lme) 

tWi model 
p-value 

(tWi) 

r2 

(tWi) 

Rmse 

(tWi) 

p-value 

(Wi) 

r2 

(Wi) 

Rmse 

(Wi) 

predicted 

value range 

Residual 

range 

tWwood=a+b*tDBH

+c*D1 
0.020 0.959 0.283 1.677e-08 0.958 7.645 (0.2,8.2) (-1.5,0.7) 

tWbark=a+b*tDBH 0.002 0.903 0.223 < 2.2e-16 0.706 5.577 (-0.1,3.8) (-1.0,0.9) 

tWbranch=a+b*td2h+

c*H 
0.842 0.902 0.360 4.433e-11 0.898 4.876 (-0.3,5.5) (-1.0, 1.0) 

tWfoliage=a+b*H+

c*td2h+e*D1 
0.011 0.780 0.361 1.315e-05 0.748 1.105 (-0.6,2.7) (-1.0,0.8) 

tWroot=a+b*td2h 0.097 0.884 0.696 0.005232 0.839 1.824 (-0.8,11.0) (-2.2,3.6) 

 

Table 3 Summary for independent biomass linear models (lm) 

tWi model 
p-value 

(tWi) 
r2 (tWi) 

Rmse 

(tWi) 

p-value 

(Wi) 
r2 (Wi) 

Rmse 

(Wi) 
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tWwood=a+b*tDBH+c*D1 0.022 0.944 0.332 8.697e-10 0.936 9.381 

tWbark=a+b*tDBH 0.126 0.875 0.253 1.048e-15 0.689 5.739 

tWbranch=a+b*td2h+c*H 0.889 0.874 0.409 4.544e-12 0.861 5.689 

tWfoliage=a+b*H+c*td2h+e*D1 0.009 0.768 0.371 1.116e-05 0.732 1.139 

tWroot=a+b*td2h 0.079 0.864 0.756 0.005085 0.811 1.979 
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Fig.4 Loess residual plots and histograms of residuals for independent biomass linear mixed effects models (lme) (For Fig. 4a, c, 

the solid horizontal lines are baselines and the dotted lines are loess curves) 

Compatible biomass models 

Coefficients and standard errors of the coefficients for the three sets of compatible biomass models ((1) 

sums of lme; (2) sums of lm; and (3) SUR) are listed in Table 4.  

The corresponding probabilties of type I errors in Shapiro Wilk tests (p-value) for “sums of lme” and 

“sums of lm” are in Table 5. The corresponding values for SUR are in Table 6. 

 

Table 4 Coefficients and standard errors of the coefficients (se) for “sums of lme”, “sums of lm” and SUR (Wi) 

Components 

(equation form and λ(i)) 
Methods 

Coefficients (±se) 

a (±se) b(±se) c(±se) e (±se) 

stem SUR 
-1.776 *** 

(±0.121) 

0.481*** 

(±0.009) 
  

stem wood 

(tWwood=a+b*tDBH+c*D1; 

λ(Wwood)= 0.16, 

λ(DBH) =0.45) 

Sums of 

lme 

 -1.710 *** 

(±0.229) 

1.3449 *** 

(±0.0459) 

0.3909 ** 

(±0.1369) 
 

Sums of 

lm 

-1.995 *** 

(±0.167) 

1.418 ***  

(±0.036) 

0.249 *** 

(±0.071) 
 

bark 

(tWbark=a+b*tDBH; 

Sums of 

lme 

-2.687 *** 

(±0.230) 

2.000 *** 

(±0.092) 
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λ(Wbark)=0, 

λ(DBH) =0) 

Sums of 

lm 

-2.865 *** 

(±0.194) 

 2.065 *** 

(±0.079) 
  

SUR 
-3.558 *** 

(±0.277) 

2.336 *** 

(±0.097) 
  

crown SUR 
-2.300 *** 

(±0.200) 

-0.086 ** 

(±0.029) 

0.453 *** 

(±0.031) 
 

branch 

(tWbranch=a+b*td2h+c*H; 

λ(Wbranch)= 0.11, 

λ(d2h) =0.16) 

Sums of 

lme 

-2.988 *** 

(±0.286) 

0.563 *** 

(±0.039) 

 -0.194 *** 

(±0.041) 
 

Sums of 

lm 

-2.911 *** 

(±0.221) 

0.560 *** 

(±0.039) 

-0.197 *** 

(±0.043) 
 

foliage 

(tWfoliage=a+b*H+c*td2h+e*D1; 

λ(Wfoliage)= 0.18, 

λ(d2h) =0.16) 

Sums of 

lme 

-2.126 *** 

(±0.220) 

-0.122 **  

(±0.039) 

0.349 ***  

(±0.036) 

-0.311 **  

(±0.096) 

Sums of 

lm 

-2.091 *** 

(±0.204) 

 -0.126 ** 

(±0.039) 

0.350 *** 

(±0.035) 

-0.289 *** 

(±0.079) 

SUR 
-2.077 *** 

(±0.201) 

-0.086 ** 

(±0.033) 

0.318 *** 

(±0.033) 

-0.252 *** 

(±0.067) 

root 

(tWroot=a+b*td2h; 

λ(Wroot)= 0.66, 

λ(d2h) =0.42) 

Sums of 

lme 

-2.058 ** 

(±0.763) 

0.185 *** 

(±0.016) 
  

Sums of 

lm 

-2.287 ** 

(±0.643) 

 0.190 *** 

(±0.014) 
  

Significant codes: *** 0.001, **0.01, * 0.05. The type III sums of squares were used in “sums of lme” and “sums of lm”. The t-tests 

were used in SUR. 

 

Table 5 p-value in Shapiro Wilks test for sums of lme and sums of lm 

Wi model sums of lme sums of lm 

tWstem=tWwood+tWbark 2.643e-12 8.645e-13 

tWcrown =tWbranch+tWfoliage 2.503e-11 7.41e-12 

tWtotal aboveground=tWwood+tWbark+ 

tWbranch+tWfoliage 
1.552e-13 7.998e-14 

tWtotaltree=tWwood+tWbark+tWbranch+tWfoliage+tWroot 0.04626 0.08583 

 

Table 6 r2, Rmse and p-value in Shapiro Wilks tests for simultaneous equations (SUR) 

Simultaneous equations based on lm r2 Rmse p-value (Wi) 

Group1 

Wstem 0.954 9.990 8.349e-13 

Wcrown 0.893 5.560 3.88e-07 

Wtotal aboveground = Wstem + Wcrown 0.951 14.007 8.187e-13 

Group2 
Wwood = Wstem-Wbark 0.964 7.020 7.566e-05 

Wbark 0.719 5.453 2.354e-14 

Group3 
Wbranch=Wcrown-Wfoliage 0.894 4.998 4.986e-07 

Wfoliage 0.739 1.125 0.0002 

 

All the coefficients for the three sets of compatible biomass models were significant at α=0.01 

confidence level (Table 4). Generally speaking, standard errors for the three sets of models were very 
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low compared to the magnitudes of predicted values. For sums of lme models, the values ranged from 

0.016 to 0.763 (Table 4).  

 

Most of the values of r
2
 of Wi models in SUR were above 0.8 except for the bark biomass model and 

the foliage biomass model, and values of r
2
 in SUR were a little larger than those of “sums of lm” 

models for stem wood biomass, bark biomass, branch biomass and foliage biomass (Table 3, Table 6). 

Most of the values of Rmse in SUR were below 10 kg except for the total aboveground biomass model 

and values of Rmse in SUR were a little smaller than those in “sums of lm” models for stem wood 

biomass, bark biomass, branch biomass, foliage biomass (Table 3, Table 6).  

 

The loess curves of “sums of lme” models were closest to the x-axis, followed by “sums of lm”, and 

SUR with the biggest deviation from the x-axis, and only “sums of lme” models residual plots and 

histograms of residuals for total aboveground biomass and total tree biomass are shown in Fig.5 with 

the same symbol meanings as Fig. 4. The loess lines of each “sums of lme” model generally produced a 

flat line located at the baseline except for few big trees with DBH values above 19 cm or H values 

above 15m (Fig. 5a, c). For most of the “sums of lme” Wi models, the residuals did not follow normal 

distribution and heteroskedasticity was obvious (Fig. 5b, d).  

 

To sum up, Values of r
2
 were a little higher and values of Rmse were a little lower in SUR than those in 

“sums of lm”, but SUR had higher bias than “sums of lm” for most components, and the “sums of lm” 

had higher bias than the “sums of lme” whose loess lines of each model generally produced a flat line 

located at the baseline except for few big trees (Fig. 5a, c), therefore the "sums of lme" in the three 

above methods was the most suitable way to force additivity of different components in this study. 
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Fig. 5 Loess residual plots and histograms of residual for compatible linear mixed effects models (sums of lme)   

Jackknife test and PRESS statistics of linear mixed effects models 

Compatible biomass models based on the method of “sums of lme” were selected as the best models 

and so they were validated with jackknife methods and PRESS (Prediction Sum of Squres) statistics. 

The MPRESS and MAPRESS statistics for each tWi model are shown in Table 7. Residual plots and 

histograms of residuals for the jackknife testing of stem wood biomass model and root biomass model 

(tWi) are shown in Fig.6 with the same symbol meanings as Fig.4. Residual ranges and predicted value 

ranges for the jackknife tests of various components are shown in Table 7. 

 

Table7 Summary for each “sums of lme” tWi model from jackknife fitting 

Component p-value PRESS MPRESS MAPRESS 
predicted value 

range 

Residual 

range 

stem wood 0.057 9.779 0.0006 0.231 (0.2,8.2) (-1.5,0.7) 

bark 0.0004 6.333 -8.955e-05 0.174 (-0.1,3.8) (-1.0,0.9) 

branch 0.820 15.639 -0.003 0.318 (-0.3,5.5) (-1.0, 1.0) 

foliage 0.009 14.682 -0.002 0.284 (-0.6,2.7) (-1.0,0.8) 

root 0.089 60.481 -0.039 1.111 (-0.8,11.0) (-2.1, 4.3) 
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Fig.6 Residual plots and histograms of residuals for jackknife testing 

 

Table7 shows values of PRESS, MPRESS and MAPRESS for each tWi model. Values of MPRESS for 

the stem wood biomass model, bark biomass model, branch biomass model and foliage biomass model 

were respectively 0.0006, -8.955e-05, -0.003 and -0.002; and values of MAPRESS for the four models 

were respectively 0.231, 0.174, 0.318 and 0.284. Values of MPRESS and MAPRESS for the root 

biomass model were respectively -0.039 and 1.111. 

 

It can be seen from Figs.4, 6 that for the tWi model the scatter distribution in residual plots from fitting 

and those from the jackknife validation were similar and frequency distributions in histograms of 

residuals were similar as well. In Fig.6a, c, heteroskedasticity was not obvious and the loess curves 

were close to the x-axes. In addition, residuals approximately followed normal distributions (Fig.6 b, 

d).  

 

Comparing the residual ranges of biomass models of various components in Tables 2 and 7, it can seen 

that for stem wood biomass, bark biomass, branch biomass and foliage biomass, the residual ranges of 

tWi models and jackknife tests were approximately equal, respectively were from -1.5 to 0.7, from -1.0 

to 0.9, from -1.0 to 1.0 and from -1.0 to 0.8. The predicted value ranges of above four tWi models and 

their jackknife tests were also approximately equal, respectively were from 0.2 to 8.2, from -0.1 to 3.8, 

from -0.3 to 5.5 and from -0.6 to 2.7. For root biomass, the prediction ranges of tWi models and 
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jackknife tests were approximately equal, i.e., both were from -0.8 to 11.0; however, the residual ranges 

were from -2.2 to 3.6 for tWroot model and from -2.1 to 4.3 for its jackknife test.  

Discussion  

Selection of compatible models  

Parresol (1999, 2001) proposed and compared two methods to force additivity of biomass models: (1) 

the total biomass regression function is defined as the sum of the separately calculated best regression 

functions of the biomass of its components; (2) joint-generalized least squares regression considerring 

the contemporaneous correlations among equations, like seemingly unrelated regressions (SUR). By 

comparing standard errors of the coefficients of the two procedures and their own confidence and 

prediction intervals, the author pointed out that procedure (2) was recommended over procedure (1). 

Other researchers also reported that system estimating methods were more flexible and directly used 

simultaneous methods such as two-stage least squares (2SLS), three-stage least squares (3SLS), 

seemingly unrelated regressions (SUR), generalized method of moments (GMM). (António et al., 2007; 

Balboa-Murias et al., 2006; Bi et al., 2010; Brandeis et al., 2006; Gómez-García et al., 2013; 

Gómez-García et al., 2014; Hasenauer et al., 1998; Carvalho and Parresol, 2003; Li and Zhao, 2013; 

Menéndez-Miguélez et al., 2013; Ruiz-Peinado et al., 2011). Just few researchers compared the 

aboving procedure (1) and procedure (2) again before using system estimating methods to fit models, 

e.g., (Návar et al., 2002). 

 

However some researchers fitted biomass models using procedure (1) rather than procedure (2) to 

make sure of the compatibility, i.e., fitting equations firstly and then evaluating additivity of predicted 

biomass components (Saint-André et al., 2005; Shaiek et al., 2011).  

 

In our study, three methods including “sums of lme”, “sums of lm” and SUR were compared on r
2
, 

Rmse and residuals plots, and the "sums of lme" in the three above methods was finally selected as the 

most suitable way to force additivity of different components in this study. This study may have been a 

special case as Parresol suggested in his paper (Parresol, 2001) that  

 

“…if one is faced with a small sample size and if contemporaneous correlations are small, then 

there is a loss in finite sample efficiency with estimated generalized NSUR, In this case, 

procedure (1) is best”.  

 

Root biomass model and bark biomass model 

The residual range for the root biomass model from fitting was a little wider than that from jackknife 

validation, but not overly (Figs.4, 6 c), so the root biomass model can be considered to have met the 

conditions for a jackknife validation. The bark biomass model used a logarithmic transformation and 

according some researchers (Baskerville, 1972; Wauters et al., 2008; Zianis et al., 2011), this may 

produce systematic underestimation of the dependent variable Y when converting the estimated logeY 

back to the original scale Y. A correction factor should be used to correct this bias according to those 

researchers. However, the correction factor was not used in this study as little bias was detected after 

back transformation. 
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Conclusions 

Biomass models obtained using the “sums of lme” method were selected as the most suitable in this 

study because they were less baised than those fitted using “sums of lm” or SUR methods. 

 

Forms of the “sums of lme” tWi models (with only fixed effects) were respectively 

tWwood=a+b*tDBH+c*D1, tWbark=a+b*tDBH, tWbranch=a+b*td2h+c*H, 

tWfoliage=a+b*H+c*td
2
h+e*D1 and tWroot=a+b*td2h. Then the Wi models can be obtained by 

converting the estimated tWi models back to the original scale Wi.  

 

The coefficients of determination (r
2
) for the biomass models were 0.958 for the stem wood biomass 

model, 0.706 for the bark biomass model, 0.898 for the branch biomass model, 0.748 for the foliage 

biomass model and 0.839 for the root biomass model. Root mean square errors (Rmse) for those five 

models were respectively 7.645 kg, 5.577 kg, 4.876 kg, 1.105 kg and 1.824 kg. Standard errors of the 

coefficients (se) of those models ranged from 0.016 to 0.763. The residual ranges for the biomass 

models and their corresponding jackknife tests were approximately equal, respectively from -1.5 to 0.7 

for stem wood, from -1.0 to 0.9 for bark, from -1.0 to 1.0 for branch and from -1.0 to 0.8 for foliage. 

The residual ranges for the root biomass model and its jackknife test were not so similar, respectively 

from -2.2 to 3.6 and from -2.1 to 4.3. 

 

Within the specific ranges of DBH (4cm, 19cm) or H (5m, 15m) in the dataset used in this study, the 

biomass models fitted with the “sums of lme” method can be used for calculation and prediction of 

biomass or carbon stocks of the cork oak forests in North China.  
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