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Abstract 

 This paper presents a method for characterising the primary dynamics of a 

rotary unmanned aerial vehicle. Based on first principles and basic aerodynamics, 

a mathematical model which explains the rigid body dynamics of a model-scale 

helicopter is developed. This model is reduced to three simplified decoupled 

models of attitude dynamics. Empirical test data is collected from a field 

experiment with significant wind disturbances. The method worked accurately on 

both uncoupled and fully coupled attitude models. An integral based parameter 

identification method is presented to identify the unknown intrinsic helicopter 

parameters as well as model of wind disturbance. An extended Kalman filter 

system identification method and common nonlinear regression are used for 

comparison. The EKF was found to be highly dependent on the initial states, so is 

not suitable for this application which contains significant disturbance and 

modelling errors. Nonlinear regression proved to be sufficiently accurate but 

computationally expensive.  The proposed integral based parameter identification 

method was shown to be fast and accurate and is well suited to this application.  
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1 INTRODUCTION 

 There has been significant research interest in designing small-scale 

helicopters, mainly due to their agility and maneuverability. By directing the 

thrust force of the main rotor accordingly, helicopters are capable of vertical flight 

as well as translational movement. Thus, helicopters have an advantage over fixed 

wing aircraft as they do not need translational velocity to produce aerodynamic 

flight forces. However, the complicated nonlinear dynamics of a scaled-model 

helicopter make the modelling and control design a challenging task.     

 Early research on the identification scheme and control design for a 

model-scaled helicopter are based on linearized dynamics [1] of the helicopter 

using the concept of stability derivatives. Flight dynamics modelling are typically 

broken into operating regions such as hovering or forward flight. The model is 

valid within a certain frequency range, where good linear correlation between 

angular rate and cyclic inputs is found [2]. A few papers [3-5] directly identified 

the nonlinear model dynamics using state-space identification method and EKF. 

However, they often require good initial estimates of states which may not always 

be available.  

 First principles modelling typically produces a nonlinear dynamic model 

and an extended flight envelope, which provides the capability of extracting linear 

models at various trim operating points [6]. The main drawback of this approach 

is that extensive knowledge of helicopter dynamics is required. Furthermore 

significant experimentation and tuning is needed to accurately determine the 

underlying physical parameters. System identification [7] can be combined with 

first principles modeling to identify the unknown or uncertain physical 

parameters. Typical approaches of system identification in time-domain are the 

prediction error method (PEM)[8], maximum likelihood method [9], equation 
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error method and output error method [10]. However, these method are usually 

very time consuming, sensitive to starting point and with no guarantee of global 

optimality [11].  

In this paper, a simplified model for pitch, roll and yaw dynamics is 

derived from a complex nonlinear model. It was found that a fully decoupled 

model in pitch, roll and yaw was able to capture data equally well compared to a 

more complex model with state coupling. Even though the complex model is 

theoretically more accurate, the significant wind disturbance and other unknown 

dynamics dominate. Thus, the simplified model is much more suitable given 

significantly less computational requirements and its ease of analysis. In addition, 

a major advantage of a simpler model is the potential for real time 

implementation, which is a key motivation for the methods developed in this 

paper.  

Specifically, changing wind conditions will change the angle of attack and 

thus the centre of pressure of actuation surfaces. Hence important parameters like 

torque constants and damping associated with the attitude dynamics will change 

over time. There may also be unmodelled flow disturbances that significantly 

change the helicopter dynamics compared to a calm day or indoor environment. 

Therefore this paper is focussed on robust minimal modelling methods in difficult 

environments to ensure the methods developed are extendable to all types of 

atmospheric conditions during flight.  

An integral based parameter identification method [12-14] which was 

published in the biomedical field is significantly extended to account for 

disturbance and modeling error. Specifically, the methods published in the 

biomedical field are for open loop diagnosis with a low sampling rate and are not 

designed for control applications where the sampling rate is very high and there 
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are significant disturbances. In addition, the accuracy of this method is compared 

to the Extended Kalman Filter (EKF), which is another fast parameter 

identification method that is potentially comparable to the integral method. 

However, this comparison has not yet been performed in the literature. The 

integral method is also compared against standard non-linear regression to test the 

computational efficiency and accuracy.  

The paper is organized as follows: In Section 2, the experimental set up 

and data acquisition are described. In Section 3, the model-scaled helicopter 

attitude dynamics model structure is presented. Section 4 describes the integral- 

based parameter identification method and Section 5 shows the Extended Kalman 

Filter parameter estimation method. In Section 6 the identification results obtained 

from the two methods are compared and in Section 7 the conclusions and future 

work are given.      

 

2 METHODOLOGY 

2.1  Experimental setup and data acquisition 

Obtaining open loop responses to characterize a helicopter flying in an 

outdoor environment is not feasible. Hence a number of manoeuvres were 

executed by a test pilot via a remote control system. In the experiment, a varying 

frequency sweep input signal was used to provide data for system identification, 

which includes potential coupling in the inputs and outputs. The helicopter was 

initially piloted to slowly take off to a certain height, then a sinusoidal low 

frequency excitation signal of approximately 1~3Hz was applied on one of the 

cyclic inputs before hover at trim position again. As the helicopter take-off 

dynamics are not considered in the model, the flight data is truncated and 
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collected from the point where the hovering stage begins. Therefore, the 

helicopter was essentially performing lateral and longitudinal flight motion. The 

input-output data was recorded at a sampling rate of 100Hz and passed through a 

low pass filter which has cut-off frequency at 15Hz to remove undesired 

information such as structural vibrations. It is recommended that the filter for all 

the output and input is chosen with a cut-off frequency 5 times higher than the 

maximum frequency of the excitation signal [7].    

In order to record the data for identification, data logging is implemented 

through an onboard Mobisense MBS270 embedded computer. MBS270 runs as a 

standalone computer with kernel and file system in flash that support Linux OS. 

Thus, it offers faster software development since the program can be developed in 

the high-level programming language in C/C++ with supplied open source 

libraries. The Mobisense MBS270 is the central processing unit in our application 

which interfaces with an Inertial Measurement Unit (IMU) from MicroStrain 

3DGX1 via RS232 serial interface to log the helicopter attitude information. The 

IMU unit performs the filtering and processing on the raw sensory output data 

from accelerometer, gyroscopes, and magnetometers to output linear acceleration, 

angular rates and orientation of the helicopter.        

A separate microcontroller Arduino Duemilanove is also used for reading 

the helicopter actuation input which are the pulse width signal for four servo 

motors. The four servo motors are the actuation input to the helicopter. Three of 

them are arranged in 120 degrees around swash plate so that each servo motor can 

elevate one side of swash plate and their combined efforts enable cyclic and 

collective pitch on main rotors blade. The last servo motor is for applying pedal 

input to the helicopter by adjusting the tail rotor blade pitch angle. The recorded 

servo signals are then transferred to the MBS270 through UART line.  



6 

The input output data collected during flight test is stored into a microSD 

memory card on MBS270 as a text file and then transferred to a PC workstation 

for analysis after landing. The overall architecture of the data acquisition system 

is shown in Fig. 1.  

  

 

 

 

 

 

 

The Trex 600 ESP remote control (RC) helicopter is a model helicopter 

chosen as the platform for carrying out the data measurement on real flight due to 

its sufficient payload capacity, great manoeuvrability and low cost replacement 

parts. It is equipped with Bell-Hiller stabilizer bar and has a two-bladed rotor of 

0.6m radius. The dry weight is 3.3kg and allows payload of 2kg with operation 

time of about 15 minutes. Trex 600 with the necessary instrumentation equipment 

installed is shown in Fig. 2. 

 

 

Fig. 2 Modified Trex600 with instrumentation equipment installed 
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Fig. 1 Architecture of Data Acquisition System 
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2.2  Modelling structure 

 For modelling a model-scale helicopter, a standard six degree of freedom 

(DOF) model is used. The axes of rotation of the helicopter are shown in Fig. 3. 

The standard equation describing angular velocity in the body frame is defined:   

 1 -1( )B B B B  ω I Iω ω I τ  (1) 

 [ ]B Tp q rω  (2) 

 [ ]B M M M  τ  (3) 
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where 
B

ω  is the angular velocity in body fixed reference frame, 
B
τ  is the 

moment components along body axes, and I is the fuselage inertial matrix in 

body coordinates. Due to the symmetry of the helicopter with respect to the 

B Bx z  plane, the terms 
xyI and 

yzI are zero. Although 
xzI is non-zero, but the 

value is typically much smaller than the other terms, thus it will be ignored in the 

model. 

 

 

 

 

 

 

 

 

 

Fig. 3 Six degree of freedom of helicopter in body frame 
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After some analytical manipulation, Equation (1) can be broken down into: 
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where , ,p q r  are the helicopter’s roll rate, pitch rate and yaw rate respectively, 

and , ,M M M  
 are the roll moment, pitch moment and yaw moment 

respectively.  

The external moment acting on the helicopter rigid body are mainly 

contributed by the main rotor. By varying the angle of attack of the main rotor 

blade or cyclic pitch angle, an aerodynamic lift force is created. The pitch and roll 

moment of the helicopter are generated through the difference in the lift force in 

lateral and longitudinal axes. The equations for the moment M
and M

in 

Equation (5) are defined:  
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where 
3 4,  is a correction factor to compensate for simplified aerodynamics, 

1,2,3,4,L  are the linkage lengths in rotor hub assembly,  is the air density,  is 

the main rotor angular velocity, l  is the position along the main rotor blade, and 

a is the main rotor lift slope, c is the main blade chord length and 
mdL is the main 

rotor aerodynamics lift element. Equation (6) indicates that the pitch and roll 
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moments depend on the pitch and roll input command through 
cyc as well as on 

the flybar flapping angle  . The last term in Equation (7) is due to the gyroscopic 

effect of the rotating blade, which is the ratio between the second element of the 

angular velocity vector of main rotor blade 
2M  and main rotor rotational speed 

[15].  

 For a full-scale helicopter, the stability is achieved by having bigger body 

size and also the flapping mechanism on the rotor hub. Flapping dynamics are 

commonly modelled in the literature [16,17]. However, RC helicopters have a 

hingeless rotor hub and are equipped with a flybar to increase damping on lateral 

and longitudinal flight motion, and enhance the stability of the helicopter. 

Therefore, this paper specifically chose the flybar dynamics instead of flapping 

dynamics as the base model for demonstrating that the simplified models can 

perform equally well to complex model in the presence of disturbances during 

flight. Preliminary investigation showed that since the thrust vector is normal to 

the main rotor plane, whenever a flapping angle is present, the cyclic collective 

input generates a moment on helicopter attitude dynamics. Therefore, a cyclic 

collective term is investigated to see if it improves prediction of attitude dynamics 

as compared to simpler models that lump this effect into other parameters.  

The Flybar flapping angle derivation starts from defining dynamics of 

flybar in the Euler equation [18]: 

 F F F F F F  τ ω I ω I ω  (8) 
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where 
fI is the unified rotational inertial of the flybar. The parameters 

1, 2 3,F F F   are the external moment applied to flybar, which can be obtained by 

integrated lift elements dL along the length of flybar and 
1 2 3, ,F F F   are the 

angular velocities of flybar around ,  and  axesB B Bi j k in Fig. 3.    

After defining the flybar angular velocity, inertial and external forces, the 

flybar flapping angle is defined [18] : 
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The constants 
1 2,  are a correction factor to compensate for simplified flybar 

aerodynamics, ,   are the roll and pitch input command respectively, ,  are 

the roll rate and pitch rate of helicopter body frame respectively,  is the 

orientation angle of flybar and 
5,6,7,8,9L are the linkages in the rotor hub assembly. 

After substituting the flybar flapping angle of Equation (10) into Equation (6), 

the equations for the moments ,M M   
can be written in the form :   
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where 

1 2 3, ,C C C  are terms from the flybar flapping angle of Equation (8). The 

1C term augments the cyclic input of main rotor and 
2C term increases the 

damping moment in the helicopter attitude dynamics, which gives control booster 

to the actuator servo and stabilizing effect to the helicopter respectively. The 

moment M
 around the z-axis is defined by: 

 T T g mM T L K r     (15) 

 
3 2

3 2 ( )
2 3 2

T T T T T T

n B B
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where 
TT is the tail rotor thrust, 

TL is the length between the main and tail rotor 

axes, 
gK is the gyro gain for tail rotor, r is the helicopter heading rate, 

m is the 

main rotor induced yaw moment in the opposite direction to the tail rotor thrust, 

defined by: 

 
m m oK    (17) 

where 
mK is the main rotor torque gain, 

o is the collective pitch cyclic input. The 

second term in Equation (15) is due to the active yaw damping system in the 

form of electronic gyro and is described by a simple linear model.     

 

2.3 Overall roll, pitch and yaw attitude dynamics  

To simplify dynamics, denoting p  , q  , and assuming 
1, , ,a c c  are 

constant in Equation (12) and (14) yield the roll model: 
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The parameters 
1k and 

2k in Equation (18) are considered as the roll torque 

constant of the main rotor blade angle and the overall effective roll damping 

respectively. For this model, the parameter
,1dk is added as constant external torque 

offset modelling asymmetry in the roll. It will also account for other unmodelled 

dynamics.  

Similarly, the pitch and yaw rate models are defined:  
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where: 

 5 6 2 7 3 8 3

( )
,   ,   ,   zz xx m

yy yy

I I P
k k k k k k C

I I


     (22) 

 
3

3 2

9 10 11 12

( )
,   ,   ,   

2 3

xx yy

T T T T g m

zz

I I n B
k k a c R k K k K

I



      (23) 

 ,2 ,3torque offset in pitch, torque offset in yawd dk k   (24) 

 

 2.4 Measurement of roll, pitch and yaw 

The measurement of orientation angle and attitude velocity are collected using the 

IMU in an inertial reference frame and body fixed reference frame respectively, 

which are denoted as quaternion angles and angular rates. The static errors in 

accuracy of the sensor are 0.5o , which are sufficiently accurate for this 

application. Note that quaternions are used to calculate the attitude angles to avoid 

the common problem of gimbal lock with Euler angles, that can cause significant 

numerical errors.  
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 Therefore, a quaternion representation of attitude is used in the 

mathematical computation of attitude by integrating the kinematic equation in 

terms of the unit quaternion vector describing the relation between the rigid body 

attitude variation and the body angular velocities. The initial conditions are 

assumed to be zero rotation angle. The quaternions vector  0 1 2 3q q q q  is 

solved by the standard set of differential equations:  
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where: 
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The time-varying rotational matrix corresponding to the unit quaternion 

 0 1 2 3q q q q  is defined as:     
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The orientation of the helicopter in terms of the body fixed frame is obtained 

using the equations: 
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where      0 0 01 0 0 , 0 1 0 , 0 0 1XA YA ZA    are the unit vectors in 

earth reference frame, , ,RA PA YA  are the resulting rigid body axis vectors. The 

angle of body frame axis with respect to earth reference axis is then calculated 

using trigonometric functions:   
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Fig. 4 shows the axes and angles relative to the helicopter body axis, where: 

RA   Axis parallel to the tail of helicopter from front nose 

PA   Axis pointing directly to the right of helicopter ( directly south if the nose 

is pointing East) 

YA   Vertical axis perpendicular to main helicopter blades point down in the 

formation   
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The parameters ,  and     in Equation (30) by right hand rule are used to give 

an intuitive and easily visualized idea of the range of attitude dynamics of the 

helicopter during flight.  

 

 

 

 

 

 

  

 

 

 

2.5  Modelling and integral-based parameter identification  

2.5.1 Blade cyclic angle (
cyc ) dynamics 

The radio controlled servo actuators on the model-scaled helicopter contribute to 

the overall dynamics due to the servo response time delay. A well known first 

order approximation to a time delay of 
i  seconds is

e


is the Pade 

approximation: 

  1 1 2cyc cyc cyc cycd n n       (31) 

where 
1 1 2, ,d n n are the coefficients of Pade approximation.  

Fig. 4 Angle of helicopter relative to earth reference frame 
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The approximation of Equation (31) is computed in MATLAB using the Pade 

function. The specific value of 
i is chosen based on finding the optimal 

correlation between the commanded angle and the measured roll response. 

Ideally, the measured angle would be used; however this measurement was not 

available in the experiment. An advantage of Equation (31) is that it can be easily 

included as an extra differential equation in the overall model, so it can be easily 

implemented.  

 

2.5.2  Identifying constant intrinsic parameters 

To identify the unknown parameters in Equation (18), the integral-based 

parameter identification method of [13,14] is significantly extended to handle 

high sample rates and disturbances. Specifically, the method of [13,14] and other 

published biomedical papers [19,20] have very low sample rates. Thus, the 

parameters are identified over regions that have slow dynamics and very little 

modelling error. For the case of the helicopter, the sample rate is 1000's of times 

faster, so many other dynamics including disturbances can occur during the time 

period of parameter identification where parameters are assumed constant. Hence, 

the methods of [19,20] are not suitable for this application.  

 For this derivation, it is assumed that the unknown parameter ,1dk in 

Equation (18) is constant for all time. The first step is to define 1n  time 

points, ,    0,...,iT i n
 
that cover the whole data range. These 1n  points 

partition the data into n  intervals,  1[ , ],  1,...i iT T i n  . For simplicity, each 

interval is assumed to be the same length. Integrating Equation (18) from 

1   to  iT t
 yields: 
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1 1 1 1
0, 1 2 3 4 ,1 1

1

( ) ( ),  

t [ , ),   1,...,

i i i i

t t t t

i d i
T T T T

i i

p t p k qr k dt k pdt k qdt k t T

T T i n


   





      

 

   
 (32) 

Let ( )datap t  denote the measured roll rate data and define the function: 

 
1 1

1 1

mod , 0, 1 2

3 4 ,1 1

( )

( )

i i

i i

t t

el i i data data
T T

t t

data data d i
T T

p t p k q r dt k dt

k p dt k q dt k t T


 

 


  

   

 

 
 (33) 

 where: 

 0, 1( ),     1,..,i data ip p T i n   (34) 

The initial conditions in Equation (34) reset the beginning of each interval to the 

measured data, which ensures modelling error doesn't build up significantly over 

time. Choose N  equally spaced time points,  , 1 ,   1,...,data i iT T j t j N     in 

each time interval 
1[ , ),    1,...,i iT T i n 

 
, with 

0 0T  . Setting mod , ( ),el i datap p t
 

for  , ,   1,...,data it T i n  gives a set of N equations in 5 unknown parameters, 

which is defined by the matrix equation:     

     

1 ,1

,

data

n data n

I p

X

I p

  
  

   
   
   

 (35) 

where: 

 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

( )

,     1,...,

( )

i i i i

i i i i

i i i i

i i i i

T t T t T t T t

i i

T T T T

i

T N t T N t T N t T N t

i i

T T T T

qrdt dt pdt qdt T t T

I i n

qrdt dt pdt qdt T N t T









   

   

   

   

   

 

       

 

 
    

 
 

 
 
 
     
 
 

   

   

 

(36) 
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1 0,

, 0, 1

1 0,

( )

,    ( ),   1,...,

( )

data i i

data i i data i

data i i

p T t p

p p p T i n

p T N t p



 



   
 

  
    

 (37) 

 1 2 3 4 ,1[ , , , , ]dX k k k k k  (38) 

The integrals in Equation (36) are numerically evaluated using the trapezium 

rule. An approximation to the unknown parameters X  in Equation (38) can be 

found by solving Equation (35) by linear least squares. Define the resulting 

parameters of this solution as 1 2 3 4 ,1, , ,  and dk k k k k . Due to modeling error and 

disturbance, these resulting parameters may not be optimal after this first iteration. 

For the next iteration, define:  

 , 1,( ) ( ),    [ ]approx approx i i ip t p t t T T   (39) 

   
1 1

1 1

, , 1 2

3 4 ,1 1

( )

( )

i i

i i

t t

approx i o i data data
T T

t t

data data d i
T T

p t p k q r dt k dt

k p dt k q dt k t T


 

 


  

   

 

 
 

(40) 

Equation (39) is then substituted back into Equation (35)-(38) to form a new 

matrix equation. This matrix equation is solved by linear least squares to give new 

parameters 1 2 3 4 ,1, , ,   and dk k k k k , which produce a second approximation 

, ( )approx ip t from Equation (39)-(40). This process is continued until the least 

squares error between the estimated roll rate ( )approxp t  and the measured data, 

changes less than a specified tolerance. The overall algorithm is summarized in 

Fig. 5. Note that the partitioning of the data into n intervals is critical to account 

for the significant disturbance and high sampling rate in this application. Without 

this partitioning, the methods previously published in [13,14,19,20] do not 

perform accurately on the simplified models of Equation (18)-(21), because of 
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accumulated modelling error on the long stretches of data where the parameters 

are assumed constant.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Algorithm of integral method 

Input: measured data ( )datap t , number of data points n, number of 

intervals N 

Step 3: Replace 
datap in Equations (35) and (37) with 

( )approxp t
 
and solve Equation (35) by linear least squares to 

obtain a new set of parameters 1 2 3 4 ,1, , ,  and dk k k k k   

Output: Identified parameters 1 2 3 4 ,1, , ,  and dk k k k k in Equation (38) 

Step 2: Define new approximation ( )approxp t
 
via Equation (39)-

(40),  

Has the least squares error 

between the current 

( )approxp t  and the previous 

( )approxp t changed by less 

than a tolerance? 

Step 4: Replace 
datap in Equation (39) by 

approxp
 
in step 3 to 

obtain a new approximation ( )approxp t in Equation (40)  

Step 1 : Setup Equations (33)-(38) and solve Equation (35) by 

linear least squares to obtain X in Equation (38). Define 

parameters as 1 2 3 4 ,1, , ,  and dk k k k k    

Step 2: Define new approximation ( )approxp t
 
by Equation (39)-(40)

(40),  

No 

Yes 
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2.5.3 Modeling wind disturbance 

The helicopter was flown outdoors, thus environment disturbance has a significant 

effect on the dynamics. Wind disturbance models are common in the literature, but 

they typically only deal with one type of disturbance, for example vertical wind 

gusts [21].  

The approach in this paper is to capture the complex disturbance directly by 

computing the effective applied torque to the helicopter at discrete intervals. The 

applied wind load is modeled as the constant cyclic input command required to 

reproduce the observed helicopter response for the given time period. The model is 

defined by:  

 
1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( )dp t k q t r t k t k p t k q t u t      (41) 

 2 ,1( )d d du k u t k   (42) 

In Equation (41), the constant values of 
1 2 3, ,k k k and 

4k are assumed known or 

estimated and the effect of the mean wind speed, wind fluctuations and the roll 

offset are lumped into single parameter 
du , which is defined: 

 
,

1

( ) ( ( ( 1) ) ( ))
n

d d i

i

u t H t i t H t i t u


        (43) 

 
( ) 1,   t > 0

0,   t < 0

H t 


 (44) 

where ( )H t is the Heaviside function and t is the specified time interval that 

( )du t  is assumed to be constant over. With this formulation in Equation (41), the 

disturbance ( )du t  is a meaningful parameter as it relates the external disturbance 

to a torque ( )du t . This torque can be written in terms of the equivalent cyclic 

input ( )du t  and a constant disturbance offset ,1dk  in Equation (42). This approach 
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allows virtual profiles of the observed disturbances to be stored and used later for 

control development.  

Once 
1 2 3 4, , ,k k k k

 
and ,1dk are identified using the algorithm of Fig. 5, the 

piecewise constant ( )du t  in Equation (43) is identified over the intervals of 

length t . The choice of t  can significantly affect the model match and 

identified disturbance profile. If t  is too large, the disturbance profile will not 

capture any high frequency wind inputs. If t  is too small, it will capture a large 

amount of noise. For simplification of implementation, t  is chosen based on the 

data logging frequency.  

To account for noise, the identified disturbance profile is smoothed a 

number of times by a 10 point moving average. The numbers of smoothings is 

chosen to give a fitted normal distribution that is the closest least squares match to 

the fitted normal distribution of the blade cyclic command. The assumption is that 

the variations in the blade cyclic command about the mean are approximately 

correlated to the wind loads on the roll axis. This assumption is reasonable as the 

test pilot is manually keeping the helicopter stable in the roll via a joy stick and 

radio control. If a large wind disturbance moves the helicopter in the roll, the test 

pilot will move the blade cyclic angle a lot faster and further than for the case of a 

small disturbance.  

Let N be the number of time intervals of width t  that fit in the whole 

time period of the experiment, and  

 
,         1,...,it i t i N    (45) 

Integrating Equation (41) from 
1it 
to t , yields: 

 1
1 1 2 3 4 , 1( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ) ( )

i

t

i i d i i
t

p t p t k q t r t k t k p t k q t dt u t t


         (46) 
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where 
,d iu is an unknown constant. Solving Equation (46) for ,d iu  yields:  

 , 2 , ,1d i d i du k u k   (47) 

Once ,d iu in Equation (47) is known, ( )du t  and ,1dk in Equation (42) can be 

determined from the known value of 
2k  and an assumption that ( )du t  has a 

mean value of zero.   

 

2.6 Extended Kalman Filter Method 

The Extended Kalman filter (EKF) is a recursive algorithm that produces an 

estimate of states and an estimation error covariance. It requires a measured output, 

a known input and system model, and the assumed process and measurement noise 

statistics. The goal is to characterize the ability of an EKF to identify the unknown 

parameters of Equation (18). To simplify analysis, the parameters 
1 4 and k k  in 

Equation (18) are set to zero. The continuous-time model of Equation (18) is 

discretized using a simple Euler integration scheme, with sample time 22mssT  , 

corresponding to the data logging frequency of 45Hz. The discrete model is 

defined as: 

 
1 1 2( )k k s k k d kp p T k p k u k w        (48) 

where subscript k is the discrete time index and ( )k kp p t . In the time interval

1[ , ]k kt t 
, the input ku is assumed constant, 

kw is the state noise process due to 

disturbance and modelling error, and is assumed to be zero-mean, white Gaussian 

noise with variance Q .  
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The unknown parameters 
1 2,  and dk k k in Equation (48) are estimated by treating  

the parameters as state variables, which renders the estimation problem effectively 

nonlinear [22].  The unknown parameter vector is defined by: 

 1 2,{ , }T

dk k k   (49) 

The constant system parameter   is considered as the output of an auxiliary 

dynamic system: 

 0   (50) 

Thus, the augmented state vector is defined by:  

 
p

x
 

  
 

 (51) 

The augmented state equation is represented by: 

 1 ( , )k k k kx F x u w    (52) 

1 1

3 1

3 1

,     zero matrix,
I 





 
   

 
0

0

1 2 3( )
( , )

s k k

k k

k

T k p k u k
F x u

   
  

   (53)

 

Since the only roll rate is considered, the observation equation is:  

 k k k kz p Hx v    (54) 

where 
kv is zero-mean white Gaussian noise with variance R corresponds to 

measurement error. The augmented observation equation is:  

   1

1 1 1 1 3 1 1 1

1

k

k k k k

k

x
z H v Hx v



     



 
    

 
0  (55) 

The EKF approximates the nonlinear filtering problem by linearizing the model of 

Equation (52) at each time step around the last best estimate of the nonlinear 

process *

kx ,  



24 

 

*
* *

1

( , )
( , ) ( ) (2)k k

k k k k k k

F x u
x F x u x x O w

x



    


 (56) 

where:  

 
*

1 4

3 1 3 3

( , )
( , )

k k
sk k

F x u
I TF x u

x
x



 

 
   

 
  0 I

 (57) 

The second highest order term is very small and hence ignored. The discrete time 

state transition matrix of Equation (57) is denoted by ( )x . (~) and (^)  is 

used to denote the predicted and corrected variables respectively.  

 

Extrapolation: 

  1
ˆˆ ˆ( , , )k k k k k sx x F x u T     (58) 

 1
ˆ

k k   (59) 

 1
ˆ T T

k kP P     Q  (60) 

 ~ predicted variable, corrected variable    (61) 

Update:  

 1

1 1 1( )T T

k k kK P H HP H R 

     (62) 

 
1 1 1 1 1

ˆ ( )k k k k kx x K z Hx        (63) 

 1 4 4 1 1
ˆ ( )k k kP I K H P      (64) 
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3 RESULTS AND DISCUSSION  

3.1 Test Data Pre-processing  

The servo actuation signals collected during the experiment are the time interval 

of pulse width modulation (PWM) and are in milliseconds. Because of the 

electronic mixing feature on the RC helicopter, all three servo motors around the 

swashplate work together to achieve the desired pitch angle on the main rotor 

blade. Therefore, the control inputs (longitudinal cyclic, lateral cyclic, collective 

and pedal) from the pilot stick are not related to the three servo motors on one-to-

one basis except the pedal input. In order to correlate the control inputs to the four 

servos  PWM signal, an experiment is perfomed and a linear correlation is 

assumed. The predefined equation is:  

 *

lonAILE

latAUX

colELEV

pedRUDD

U

U
G

U

U









  
  
   
  
  
    

  (65) 

where  
T

AILE AUX ELEV RUDDU U U U  are the four servo motor signals pulse 

width measurement, 
T

lon lat col ped      are the pilot sticks adjustment range 

( 1  for , ,lon lat ped   and
col ). After substituting the obtained data from a few 

combinations of control input with a corresponding PWM signal, the resulting 

formula is obtained:  

 '* trim U G U   (66) 

where 
trimU  is the pulse width for starting position of pilot stick position, 'G  is 

the determined control input gain. In order to access the control input at any time, 

the following equation translates the servo motors pulse width to the 

corresponding control input:  
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 1' ( )trim  G U U   (67) 

Fig. 6 shows the control input plot after conversion from the servo motor 

measurement for the first 50s. To further show the frequency range of the input 

excitation, a Fast Fourier Transform (FFT) plot for each control input is given in 

Fig. 7. The control inputs in Fig. 6 and Fig. 7 include purposely constructed 

oscillation as well as the natural pilot response to mitigate wind gusts on the 

helicopter. This inputs cover a good range of excitation frequencies for identifying 

the major attitude dynamics in each axis. In addition, Fig. 6 shows that prior to the 

significant actuation input from the pilot, the helicopter is held as close as possible 

to the steady state given the gusty wind conditions.      
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Fig. 6 Control input plot 
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 Fig. 8(a) shows an example of the measured angular roll rate, which is 

quite noisy. The noise is likely due to the large amount of vibration transferred 

from the airframe to the sensor since there is no such noise in the control inputs of 

Fig. 6. To reduce this noise and allow a more suitable comparison to the model, a 

finite impulse response (FIR) low pass filter is implemented in Matlab. The cutoff 

frequency of passband and stopband are set at 4Hz and 8Hz respectively which is 

more than covers the observed frequencies in the control input. Fig. 8(b) gives an 

example of the smoothed profile.  

Fig. 8 (a) Measured roll rate. (b)Smoothed measured roll rate 
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3.2 Integral-based identification for roll dynamics identification 

The algorithm of Fig. 5 is now applied to the roll rate data in Fig. 8(b) with 

1 40, 0k k  . The resulting parameters are:   

 
2 3 ,11.3475 ,    2.4208 ,    0.0399dk k k    (68) 

These parameters and 
1 40, 0k k   are substituted into the model differential 

Equation (18) and numerically simulated using ode45 in Matlab. Fig. 10 gives a 

close up of two regions in Fig. 9, which shows a good overall match. Fig. 11 

shows in detail the difference between the measured and modelled roll rate. The 

algorithm of Fig. 5 is now applied to the pitch rate and yaw rate data with 

coupling terms set to zero, the resulting parameters are:  

 
6 7 ,2 -0.8903 ,     2.5188 ,     0.0115dk k k    (69) 

 
10 11 12 ,3  13.4702 , 3.4342 ,  -0.5623,  0.0964dk k k k     (70) 

 

Fig. 9 Integral-based roll rate estimation compared with flight data 
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Fig. 10 (a) Close-up region R1 in Fig. 9 (b) Close-up region R2 in Fig. 9. 
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Fig. 11 The difference between the measured and modelled roll rate 
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The mean absolute error and the 90
th

 percentile of the attitude rate in degrees/s are 

given in Table. 1. The error of the attitude rate relative to the maximum absolute 

attitude rate is also shown. Note that yaw rate has significantly larger errors than 

the roll rate and pitch rate, but this increased error is due to the much higher yaw 

rate observed and it has lower relative percentage error.  

 

 

 
Fig. 13 (a) Integral-based yaw rate estimation compared with flight data.  

(b) Close-up region R1 in (a) 
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Fig 12 Integral-based pitch rate estimation compared with flight data at  

certain time interval 
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Attitude Mean absolute 

error(degree/s) 

90
th

  

percentile(degree/s) 

Error relative 

to maximum 

(%) 

Roll rate 1.5166 2.5152 8.39 

Pitch rate 1.7444 3.1993 9.68 

Yaw rate 7.7574 11.9200 3.83 

  
Table. 1 Error statistics of helicopter roll rate, pitch rate and yaw rate 

 

 As a further comparison the parameters 
1 12,...,k k in Equations (18)-(24) 

are identified using the integral method. For example, in the roll rate, the 

parameters are identified by substituting the measured q  and r  and applying the 

algorithm in Fig. 5. A similar method is applied to the pitch and yaw rates. Once 

the parameters are identified, Equations (18)-(24) are solved numerically and the 

resulting response is compared to the measured data. Fig. 14 gives a comparison 

between the coupled model response, the decoupled model response of Fig. 10 

and the measured data. These results further show the capabilities of the integral 

method to identify more complex models. It also shows that in this case there is 

little gain in using the complex model of Equations (18)-(24) over the simplified 

models. The full comparison is given in Table. 2. The results show that the more 

complex model has a slightly lower mean absolute error compared to the simpler 

model. From the result, it can be seen that the coupling terms have very little 

effect on the overall attitude dynamics since any potential benefit is swamped by 

wind disturbance.      
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Attitude Mean absolute 

error(degree/s) 

coupled model 

Mean absolute 

error (degree/s) 

between models 

90
th

  

percentile(degree/s) 

Error 

relative to 

maximum 

(%) 

Roll rate 1.4927 0.0064 2.4578 8.25 

Pitch rate 1.6266 0.0138 2.7739 9.03 

Yaw rate 7.8203 0.0168 12.2085 3.86 

 
Table. 2 Error statistics of helicopter roll rate, pitch rate and yaw rate of coupled 

model and mean absolute error of between models 
 
 

 

 

 In order to further validate the dynamics model, the modelled predicted 

,  and     of the helicopter are computed from Equations (25)-(29). To remove 

drift in integration, the best least squares piecewise linear function over 10s 

periods is subtracted from the data and the model using the command "detrend" in 

matlab. The resulting detrended modelled and measured angles are plotted in Fig. 

16,17 and 18. As a further comparison to complement Fig. 16, the residual error 

between the measured and quaternion derived roll angle is shown in Fig. 15. The 

results show that the minimal model captures all the major attitude dynamics quite 
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accurately. Specifically, the modelled roll angle tracked the measured angle with a 

mean absolute error of 1.7860 degrees and a standard deviation of 2.4779 degrees. 

For the pitch angle, the mean absolute error is 2.1029 degrees and standard 

deviation is 3.0539 degrees. For the yaw angle, it has a mean absolute error of 

6.8740 degrees and standard deviation of 8.9974 degrees. Note that some of the 

precise quantitative variations are not captured since there was significant wind 

gusts during the experiment and no disturbance is included in this model response.    

 

Fig. 16 Measured roll angle vs quaternion derived roll angle 
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Fig. 15 Residual error between measured and model angle 

 

0 50 100 150 200 250 300
-20

-15

-10

-5

0

5

10

time[s]

an
gl

e 
[d

eg
re

e]



34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 Measured pitch angle vs quaternion derived pitch angle 
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Fig. 18 Measured yaw angle vs quaternion derived yaw angle 

 

0 50 100 150 200 250 300
-150

-100

-50

0

50

100

150

time[s]

ya
w

 a
ng

le
 [d

eg
re

e]

 

 

Measured yaw angle

 Model yaw angle



35 

3.3 Identification of external disturbance ud(t) on helicopter roll 

dynamics 

The helicopter roll response with external disturbances present is modelled by 

Equation (41), where 
1 4 2 30, 0, ,k k k k   are assumed to be known and ( )p t and 

 are directly measured. Fig. 19 shows the disturbance profile 
du after applying 

Equation (46) for identifying the time varying disturbance. Note that a 10-point 

moving average is applied 5 times to disturbance profile. The 5 times smoothing 

is chosen to minimize the least square error between the best fitted normal 

distributions of the pilot control input and the disturbance respectively, which are 

shown Fig. 20 and Fig. 21. The assumption is that the wind inputs are roughly 

equivalent to the pilot’s input to try and repel the disturbance. 

For further validation of this approach, the Kolmogorov-Smirnov test is 

applied to the similarities of both distributions. From the test, a p-value of 0.00097 

is obtained, which shows that both normal distributions of the input and 

disturbance are statistically similar. In addition, the 90% confidence interval of 

du is [-0.0829, 0.0901], whereas for the cyclic input the [-0.1539, 0.0543]. This 

result shows that the smoothed disturbance profile is within the same range as the 

pilot control inputs so is physically realistic and is thus a reasonable 

representation of the wind disturbances in the test. For example, if a disturbance 

was identified with a value greater than what is physically possible with the 

control inputs, it suggests that the model is over fitted and not valid. Hence this 

approach of comparing fitted distributions is a consistent way of identifying a 

realistic disturbance profile that could be used for later control development.       
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Fig. 19 Identified roll rate disturbance 

 

 

Fig. 20 Histogram of pilot control input 
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Fig. 21 Histogram of disturbances 
 
 
 

3.4  Simulating model with disturbances 

Using the identified disturbance ( )du t from Equation (42) and the parameters 

from Equation (18) with 
1 40, 0k k  , the model of Equation (41) describing 
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The modelled roll rate predicted the measured roll rate with mean absolute error 

of 0.0953 degrees/s and standard deviation of 0.1322 degrees/s. In addition, the 
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angle with a mean absolute error of 0.2793 degrees and standard deviation of  

0.1947 degrees. Importantly, these accurate results are obtained with a realistic 

disturbance model representing the significant wind fluctuations.  
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3.5 Computation speed evaluation 

To show the significant computation efficiency of the integral method, a 

comparison is made to standard non-linear regression (NLR) in MATLAB. Both 

methods are implemented on a laptop equipped with 2.50GHz CPU and 3.98GB 

of RAM. In the NLR method, the objective function for Equation (18) is defined: 

 2

1 2 1 2

1

( , , ) ( ( , , )( ) ( ))
N

d numerical d i data i

i

F k k k p k k k t p t


   (71) 

 numericalp   numerical solution of Equation (18) (72)  

The numerical solver chosen is ode45 and the absolute and relative tolerances that 

control the automatic step size are increased until the error in simulation reaches a 

maximum of 5% with respect to the most accurate solution obtained from using a 

very small step size. This approach ensures the simulation speed is made as fast as 

possible to provide an accurate computational comparison. The command 

lsqnonlin in Matlab is used to find the unknown parameters 
1 2,  and dk k k  that 

produce the best least squares solution to Equation (71). The starting point for the 

parameters is set as:  

 
1 25,    5,    5dk k k    (73) 

The results are shown in Table. 3. It can be seen that integral method is 

approximately 710 times faster than the NLR method, and has very similar 

accuracy. The reason for such a significant speed increase is that the integral 

method only requires sums of data which are very fast to compute and most 

importantly it does not require any forward simulation at each iteration. The 

nonlinear regression requires the solution of the underlying differential equation at 

each iteration which is very computationally expensive. Similar gains have been 

observed in the bio-medical field [13] .  
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 CPU Time(s) Mean Absolute error(degree/s) 

Integral Method ~ 0.63 1.5261 

NLR [5,5,5] ~ 447.80 1.3913 

NLR [50,50,50] ~688.00 2.4547 

NLR [100, 100,100] ~ 380.06 55.7191 

 
Table. 3 Comparison between Integral method and NLS 

  

Table. 3  also shows two cases where the starting points are set far away from the 

solution. One of these cases has significant error, showing that in this case the 

NLR method has found a local minima. Therefore, there is no guarantee in finding 

the global minima unless the starting point is near to the solution. This result 

shows the typical starting point dependence of NLR, which increases the 

computation time further when several other starting points have to be used. The 

integral method uses the measured data as starting point so does not require a 

good initial starting point for the parameters.    

 

3.6  EKF Identification method 

Using Equation (18), the nonlinear model is discretized and linearized at each 

sample point and the states and unknown parameters are estimated following EKF 

algorithm in Equations (58)-(64). Before applying the EKF method, estimates of 

the state covariance, the initial parameter and noise statistics are required [18]. A 

priori knowledge on the model parameters were initially obtained based on the 
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integral method result so that the initial state covariance (0)p could be set to a 

low value. Specifically, the values used were:  

 

1e-2 0 0 0

0 1 0 0
(0)= 

0 0 1 0

0 0 0 1

 
 
 
 
 
 

p  (74) 

The noise statistics were determined empirically using a grid search on a wide 

range of possibilities to find the best match between the simulated roll rate and 

measured roll rate. This approach ensures that a global optimum value was found. 

In order to keep track of the growth in uncertainties in the estimation procedure, 

covariance analysis is performed by following the changes in diagonal elements 

of the covariance matrix P̂  [23]. This process is illustrated in Fig. 22, where it 

shows the analysis for the case 3(a) in Table. 4 below. The uncertainties are 

slowly stabilizing to constant values and do not grow unboundedly. Fig. 23 shows 

the estimated parameters in roll dynamics that converge to stable value. The 

resulting error in the roll rate prediction is shown in Table. 4. 

 

 
Fig. 22 Covariance analysis of the estimated parameters 
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Fig. 23 parameters estimation result for 

1,..., dk k  

 

The results show that with optimal estimate on state covariance, initial 

parameters and noise statistics, the EKF can estimate the roll rate satisfactorily. 

However, the computation time required to obtain this estimate was 2.5178s for 

308s of roll rate data, which is ~ 30 times slower than the integral method but 

faster than the non-linear regression method. In addition, the error is nearly 2 

times greater than the integral method and non-linear regression method. Hence 

for the EKF method, even in the best case where optimal noise statistics are 

known, there is still a trade-off between an increase in speed and a loss of 

accuracy. The integral method does not have this problem.   

However, a further difficulty with the EKF identification method is that it 

can be very dependent on the process noise covariance matrix
cQ and the initial 

states [24]. To illustrate this sensitivity, three main cases are considered as shown 

in Table. 4. Note that the parameter 
om is a vector comprising the initial roll rate 

value and 3 unknown parameters in roll dynamics equation.  
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om  Q Mean Absolute 

Error(degree/s) 

90
th

 

percentile 

(degree/s)  

Case 1(a) [0  0.1  10  0.1]  1 73.9202 142.2668 

Case 1(b) [0  2  3  0] 1 4.3078 7.6458 

Case 2(a) [0  0.1  10  0.1] 1e-8 2.2244 3.6727 

Case 2(b) [0  2  3  0] 1e-8 2.2289 3.6708 

Case 3(a) [0  0.1  10  0.1] 1e-2 3.9678 6.8241 

Case 3(b) [0  2  3  0] 1e-2 2.2884 3.7996 

 

Table. 4 Error statistic for roll rate from EKF method 
 

Cases 1 and 3 show that for a suboptimal value of Q  the error is very sensitive to 

the initial state 
om . However, for an optimal value of Q , case 2 shows that the 

results are not significantly affected by the initial state 
om . The value of Q  is 

essentially equivalent to the amount of modeling error which is highly dependent 

on the wind conditions on the day and other helicopter dynamics which are highly 

variable. Thus, to ensure a globally optimal value of Q  is chosen, there will 

always be some simulations of the numerical solver ode45 required which would 

significantly further slow down the computation. Furthermore, since the best 

solution that the EKF could achieve has twice the error of the non-linear 

regression and the integral method approaches, it appears to be not suitable for 

this type of application, where significant disturbances are present. These large 

disturbances are due to the helicopter being flown outdoors.         

Further testing on the rate of parameter convergence of EKF found that 

even when the optimal value of Q is chosen and initial parameters are set as in 

case 3(a) in Table. 4, estimation of the unknown parameter value using EKF 

appears to be very slow. The results are shown in Table 5 with 3 different data 
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sample length. In case 1, the parameters are not fully converging to the true value 

which results in poor prediction of roll response. As the sample length increased 

beyond 10s, the mean absolute error decreases to a level that similar to the error in 

Table. 4, which implies that the parameters are close to converging. However, the 

integral method does not have this problem, as the parameters converge 

immediately on any time period. Thus, the integral method has an additional 

advantage over the EKF in terms of tracking fast changes in the helicopter 

parameters in real time in the presence of significant disturbance. 

  

 

 

Sample time 

period(s) 

Mean Absolute 

Error(degree/s) 

90
th

 

percentile 

(degree/s)  

Case 1 4.84 4.7550 8.9209 

  Case 2  11 2.7373 3.4717 

Case 3 22 2.8490 4.8053 

Table. 5 Error statistic for different sample size  
 

 

 

4 LIMITATIONS AND FUTURE WORK 

The current modelling is restricted to the attitude dynamics of a scaled 

helicopter. In future work, attitude parameters will be made functions of dynamic 

pressure and angle of attack, which is a common approach to modeling 

translational effects in the literature. Another addition will be including rotor 

RPM in the attitude parameters. For example, the method presented could be 

applied on various steady state RPM to get a number of altitude parameter values. 

These values can be correlated to RPM to bootstrap a more complex model. 
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Hence, the concept is to capture the complexity by interactions of simpler models 

rather than one very complex model that would be too computationally intense to 

utilise in real time. Note that when translational dynamics are included, the IMU 

will provide the translational velocities from integrating the accelerometers, so 

could be easily included in the model if required. A translational model will be 

needed to address guidance of the helicopter to known GPS coordinates and this 

extension will be investigated in the future as well.   

In order to fully validate the present modelling approach, flight data from 

an aggressive execution of flight maneuvering is required, as was presented in 

[25]. Therefore further testing is required in a wider flight envelope to fully 

validate the effectiveness of the minimal modeling approach. However, the 

integral method has been shown to be very effective in quite complex models with 

relatively large number of parameters (e.g [13]). Hence further complexity could 

be added to the modeling as required to capture the measured data while still 

maintaining very fast and accurate system identification.   

In addition, another validation of the modeling approach in this paper 

would be to use the disturbance profile identified from experiments to simulate 

the response of a proportional-derivative controller for a number of gains. The 

distribution of the error in the roll rate relative to a given reference could then be 

predicted and compared with flight tests. This general approach has been very 

effective in biomedical field [14], and the goal is to apply this approach in the 

rotorcraft UAV field.  
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5 CONCLUSION 

A minimal modelling approach is presented, which simplifies a more 

complex model of a scaled helicopter, derived from first principles. Three 

methods of system identification were compared for identifying attitude 

dynamics. The methods are the integral method, EKF and non-linear regression. 

The integral method was ~30 times faster than EKF method and 15,667 times 

faster than non-linear regression. The integral method also had a similar accuracy 

to non-linear regression method.    

For the EKF method, the state estimation process accounts for the system 

disturbances via the process noise matrix Q .  With poor estimates of Q , the 

method was very sensitive to the initial states. With optimal values of Q  , the 

system disturbances were compensated to produce estimates of the model 

parameters that gave a reasonable match with the measured data. However, the 

errors were nearly twice the errors of the integral method and non-linear 

regression method. The EKF method was also not suitable for identifying 

parameters over a time period less than 5s and requires time periods greater than 

10s to satisfactorily converge. The integral method had none of these issues and 

combined with its fast computation has been demonstrated to be very suitable for 

this application.      

The integral method was shown to be effective in identifying both coupled 

and decoupled models. Thus the method is very flexible and provides the 

capabilities of adding more complexity if required to capture measured response.  

The integral method has a further advantage that it can separate the disturbances 

explicitly from the intrinsic dynamics. The method presented was to identify the 

disturbances as a constant torque over a given time period with all the intrinsic 
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parameters fixed. The torque can be related to the equivalent actuator angle and 

thus has a convenient physical interpretation. This disturbance profile could be 

used for later control development.    
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APPENDIX 

Notation 

a   Main rotor lift slope  

B   Tip loss factor  

2/ / Tc c c  Main/flybar/tail blade chord length 

, mdL dL  Differential lift elements for flybar and main rotor blade 

R  Length of main rotor blade 
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1R   Distance between rotor axis and flybar tip    

2R   Distance between rotor axis and flybar root 

TR   Length of tail rotor blade 

, ,IB BF IFR  Rotation matrices between Inertial, Body, and Flybar frames 

, ,IB BM IMR  Rotation matrices between Inertial, Body, and main rotor frames 

TL   Distance between tail rotor axis and c.g. 

91...L L   Linkage lengths in rotor hub assembly 

n   Number of main/flybar/tail blades 

l   Position along the main rotor blade 

. .c g   Centre of gravity 

xxI   Rotation inertia about bX axis 

yyI   Rotation inertia about bY axis 

zzI   Rotation inertia about bZ axis 

fI   Flybar moments of inertial in flapping 

gK   Gyro gain for tail rotor 

mK   Motor reaction torque gain 

M
  Moment about the bX axis  

M
  Moment about the bY axis  

M
  Moment about the bZ axis  

    Air density  

    Input cyclic command  

 I   Shortened notation of xxI  

  Main blade orientation angle 

  Flybar flapping angle 
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   Main rotor angular velocity  

, T   Inflow ratio for main rotor and tail rotor 

 

 


