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ABSTRACT 

Base isolation is an increasingly applied earthquake-resistant design technique in highly 

seismic areas. Examination of the actual performance of isolated structures in real earthquake 

has become a critical issue. In this paper, a new computational method for system 

identification is proposed for obtaining insight into the linear and nonlinear structural 

properties of based-isolated buildings. A bilinear hysteresis model is used to model the 

isolation system and the superstructure is assumed linear. The method is based on linear and 

nonlinear regression analysis techniques. Response time histories are divided into different 

loading or unloading segments. A one-step multiple linear regression is implemented to 

simultaneously estimate storey stiffness and damping parameters of the superstructure. A 

two-step regression-based procedure is proposed to identify the nonlinear physical parameters 

of the isolation system. First, standard multiple linear regression is implemented to deduce 

equivalent linear system parameters. Analysis of the varying equivalent linear system 

parameters with displacement is used to distinguish linear and nonlinear segments. Second, 

nonlinear regression is applied for the nonlinear segments to obtain nonlinear physical 

parameters. A 3-storey base-isolated building was simulated to real earthquake ground 

motions and recorded responses were used to demonstrate the feasibility of the proposed 
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method. Superstructure and isolation bearing properties were identified to within 6% those of 

actual model value even with a SNR 30dB signal noise level. The overall method allows the 

simple, effective analysis of nonlinear base isolated structures. The approach to multi-degree 

of freedom nonlinear structures could be readily generalised to nonlinear, fixed-base, multi-

storey structures.  

KEY WORDS: system identification; multiple linear regression; multi-phase regression; 

hysteresis; seismic isolation 
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1.  INTRODUCTION 

 

The goal of seismic isolation is to shift the fundamental natural period of a building away 

from the dominant frequency components of the ground motion. Isolators are placed at the 

base of the structure to physically decouple it from the foundation and provide flexibility and 

energy dissipation capability. Base isolation systems have been effective in protecting 

structures from strong motion earthquakes and are used with increasing popularity [1-4]. 

However, their effectiveness is dependent on isolator performance. If isolators degrade or fail 

due to aging, temperature cycles or exceeding their design capacity during extreme events, 

structural safety is no longer guaranteed. In another case, the isolators were too stiff and no 

isolation was provided, leading to structural damage [5]. Therefore, the identification and 

monitoring of the building isolation performance is increasingly important in civil 

engineering.  

 

Recorded seismic responses contain a lot of information about the dynamic properties of the 

structures and isolators.  A number of studies to identify the actual performance of the base-

isolated structures subjected to seismic excitation have been conducted. The four base-

isolated buildings affected by the 1994 Northridge earthquake were identified as equivalent 

linear dynamic systems characterized by time-invariant or time-variant modal parameters in 

[6].  Nagarajaiath and Sun [7] investigated the seismic response and performance evaluation 

of the base-isolated USC Hospital Building. Both parametric and non-parametric system 

identification methods were applied to estimate the equivalent linear system periods and 

damping. The same method was then used to identify the base-isolated Los Angeles Country 

Fire Command and Control building in [8].  In a later work, a time segmented least squares 

technique was proposed for the building and time-variant linear system properties were 
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obtained in [9]. Recently, Yoshimoto et al [10] proposed a multiple-input multiple-output 

(MIMO) subspace identification method for damage detection of the base-isolated buildings. 

Time piecewise system parameters, such as the lateral stiffness and damping coefficient, were 

identified as damage indices. Loh et al. [11] developed a recursive subspace identification 

method to identify the time-variant periods and damping of the mid-story isolation buildings 

using earthquake records. Yao and Pakzad [12] proposed time and frequency domain linear 

regression methods to identify interstory stiffness of a shear frame structure subjected to 

white noise excitation.  

 

However, these studies are all based on an assumed linear equivalent system over the whole 

time history or piecewise linear systems over different time segments. Nonlinear physical 

parameters of the structural system, which are more attractive for understanding the actual 

dynamic characteristics of base-isolated buildings, and which are critical to structural control 

and health monitoring, cannot be directly obtained. Equally, it is these parameters, linear and 

nonlinear, which are used to specify isolators and in design. Thus, directly identifying these 

parameters would best suit designers and practitioners. 

 

A limited number of methods addressed nonlinear physical parameter identification of base-

isolated structures, have been developed. Tan and Huang [13] proposed an iterative trial and 

error optimization procedure to identify the physical parameters of the linear superstructure 

and bilinear hysteretic isolators. The essence of the study is the application of a Masing 

criterion to transform the multi-value hysteretic restoring force into a single-value function 

such that ordinary identification processes can be used. The method needs complex iterations 

and is computationally costly. Similar identification methods were then extended to different 

base-isolated structures in [14-17]. Furukawa et al. [18] proposed a least squares prediction-
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error minimization method to identify a base-isolated building in Kobe City affected by the 

1995 Hyogoken-Nambu earthquake. The isolation system was identified based on three 

different models: a linear equivalent model, a bilinear model and a tri-linear model.  Results 

show that the nonlinear model parameters can be reasonably estimated and the tri-linear 

model best fit the actual isolator hysteretic behaviour and response time histories. Ahn and 

Chen [19] proposed a nonlinear model-based system identification method for a three-span 

continuous base-isolated bridge. It used the Mengotto-Pinto model to model hysteresis 

behaviour of the lead-rubber bearings. Nonlinear model parameters were pulled out by a two 

phase output-error optimization algorithm to address ill-conditioning issues.  Xie and Mita 

[20] presented a method to estimate the restoring force of an isolation layer using component 

mode synthesis (CMS). The amplitude-dependent equivalent system stiffness and damping 

coefficients were identified to characterize the nonlinearity of the isolation layer.  Oliveto et 

al. [21] developed a time domain nonlinear system identification procedure to determine the 

physical parameters of the hybrid seismic isolation system of a base-isolated building. The 

method used a bilinear hysteretic model and a constant coulomb friction model to model the 

high damping rubber bearings and low friction sliding bearing respectively. The model 

parameters were estimated by a nonlinear least squares output-error minimization method 

using free vibration test data. The Covariance Matrix Adaptation- Evolution Strategy (CMS-

ES) algorithm was proposed for identification of nonlinear base isolation system from 

earthquake records in [22]. 

 

Hence, nonlinear isolation system parameters can be identified. However, most of these 

methods belong to classes of output-error algorithms that depend on a specific mechanics 

model, which may or may not fully match the measured response due to material 

nonlinearities, degradation or variability in construction. Furthermore, these methods are 
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applied after the whole time history data are obtained and cannot be applied in real-time, near 

real-time, or in situ. In particular, an optimization iteration algorithm is needed to derive 

model parameters, as well as added algorithm control parameters that are often manually 

adjusted to get a good result given the complex optimization algorithm applied. Thus, there is 

a major need for a much simpler, more efficient approach to capturing nonlinear behaviours 

that is amenable to real-time or near real-time results and requires no specific model and less 

operator input.  

 

It should also be noted that structural control arena there have been some simpler real-time 

approaches. In particular most have dealt with strictly linear structure stiffness or/and modal 

parameters [23-25], which is not the case here. Among relatively simpler nonlinear structural 

identification methods in the control arena, Wu and Smyth [26] used a non-parametric 

unscented Kalman filter to identify five of fourteen parameters in one generalised hysteretic 

model with minimal noise, while Smyth et al [27] used a similar adaptive filtering approach 

for a Bouc-Wen modeled hysteretic structure. All of these are mechanics model dependent 

and identify some parameters that would allow a nonlinear elasto-plastic stiffness to be 

identified for a record, but not cycle to cycle. 

 

In this paper, a new computational method for identification of physical parameters of 

nonlinear base-isolated buildings is developed and validated. The algorithm is based on linear 

and nonlinear statistical regression analysis techniques. It yields nonlinear physical 

parameters of the isolation system, as well as linear stiffness and damping parameters of the 

isolated structure. The proposed method can be generalised to various forms of nonlinearity 

in the isolation layer. A proof-of-concept case study was performed to demonstrate and prove 

the method. 
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2. STRUCTURAL MODEL 

 

Consider the base-isolated N-storey shear building in Figure 1. Let 𝑚𝑖, 𝑘𝑖, 𝑐𝑖 denote the mass 

of the 𝑖 -th level, the stiffness and the viscous damping coefficient of the 𝑖 -th storey, 

respectively. Let 𝑢𝑖 denote the displacement of the 𝑖-th ceiling in relation to the ground. The 

base mass is  𝑚0 and relative displacement is  𝑢0 . A typical base-isolated building can be 

separated into two structural systems: a superstructure and a base isolation layer. Various 

base isolation systems have been extensively developed in recent years [1, 28, 29]. The lead 

rubber bearing (LRB) has been the most popular base isolation system among others for 

practical implementation in New Zealand, Japan, the United States, China, and other seismic 

areas. Without the loss of generality, the base isolated building is assumed equipping with 

LRBs and additional viscous dampers which help to maximize energy absorption. The 

response of the upper superstructure can be effectively reduced to an acceptable level through 

the installation of the base isolation system. Thus, It is reasonable that the superstructure is 

assumed remaining within the elastic range during an earthquake and the nonlinearity is only 

associated with the base-isolated systems. 

 

 

 

 

 

 

 



8 
 

 

  

 

 

 

 

 

 

 

                                            Figure 1 N-storey base-isolated shear building model 

The isolation system can be characterized by a hysteretic restoring force 𝑓𝑟  and a viscous 

damper coefficient 𝑐0 . The equation of motion for the base-isolated multi-storey building 

subjected to ground acceleration 𝑢̈𝑔 can then be expressed: 

 

𝑴𝒖̈ + 𝑪𝒖̇ + 𝑲𝒖 + 𝑹 = −𝑴𝑰𝑢̈𝑔                                         (1) 

 

in which 𝒖 = {𝑢0 𝑢1 ⋯ 𝑢𝑁}𝑇  and the structural mass matrix   𝑴, damping matrix  𝑪, 

linear stiffness matrix 𝑲, isolators restoring force matrix  𝑹 and unity vector 𝑰 are defined: 
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⎢
⎢
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𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑐0+𝑐1 −𝑐1 𝟎
−𝑐1 𝑐1+𝑐2

⋱ ⋱
⋱ ⋱

𝑐𝑁−1 + 𝑐𝑁 −𝑐𝑁
𝟎 −𝑐𝑁 𝑐𝑁 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

                           (2b) 

𝑲 =

⎣
⎢
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⎡ 𝑘1 −𝑘1 𝟎
−𝑘1 𝑘1+𝑘2

⋱ ⋱
⋱ ⋱

𝑘𝑁−1 + 𝑘𝑁 −𝑘𝑁
𝟎 −𝑘𝑁 𝑘𝑁 ⎦

⎥
⎥
⎥
⎥
⎤

                           (2c) 

𝑹 = 𝑑𝑖𝑎𝑔{𝑓𝑟 0 … 0}                                          (2d) 

𝑰 = {1 1 ⋯ 1}𝑇                                                 (2e) 
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3. IDENTIFICATION ALGORITHM AND PROCEDURE 

 

3.1 Physical parameter identification of the superstructure 

With a linear model assumption for the superstructure, the equations of motion of the shear 

superstructure can be separated from Equation (1) and written in a non-compact form: 

 

𝑚𝑁𝑢̈𝑁 + 𝑐𝑁(𝑢̇𝑁 − 𝑢̇𝑁−1) + 𝑘𝑁(𝑢𝑁 − 𝑢𝑁−1) = −𝑚𝑁𝑢̈𝑔                            (3a) 

𝑚𝑖𝑢̈𝑖 + 𝑐𝑖(𝑢̇𝑖 − 𝑢̇𝑖−1) + 𝑘𝑖(𝑢𝑖 − 𝑢𝑖−1) − 𝑐𝑖+1(𝑢̇𝑖+1 − 𝑢̇𝑖) − 𝑘𝑖+1(𝑢𝑖+1 − 𝑢𝑖) = −𝑚𝑖𝑢̈𝑔 

 𝑖 = 1~𝑁 − 1       (3b) 

 

A revised equation of motion for the i-th storey can be derived by summing Equation (3) 

from i to N, and is defined: 

 

−∑ 𝑚𝑗(𝑢̈𝑔 + 𝑢̈𝑗)𝑁
𝑗=𝑖 = 𝑐𝑖(𝑢̇𝑖 − 𝑢̇𝑖−1) + 𝑘𝑖(𝑢𝑖 − 𝑢𝑖−1)     𝑖 = 1~𝑁                    (4) 

 

The response variables at each measurement instant k can then be defined: 

 

𝑦𝑘 = −∑ 𝑚𝑗(𝑢̈𝑔,𝑘 + 𝑢̈𝑗,𝑘)𝑁
𝑗=𝑖                                                 (5a) 

𝑥1,𝑘 = 𝑢̇𝑖,𝑘 − 𝑢̇𝑖−1,𝑘                                                         (5b) 

𝑥2,𝑘 = 𝑢𝑖,𝑘 − 𝑢𝑖−1,𝑘                                                         (5c) 

 

Note that these variables can be obtained directly or indirectly from measurement and the 

prior known mass data. Equation (4) should hold for these response variables at each instant. 
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Thus, the problem of physical parameter identification of the linear superstructure is 

transformed to a search for the linear relationship between the variables   𝑦𝑘 and  𝑥1,𝑘, 𝑥2,𝑘. If 

the response variables at each instant are considered as an observation pair, the identification 

problem can be represented by a general multiple linear regression model [30]: 

 

𝒀 = 𝑿𝜷 + 𝝐                                                         (6a) 

𝒀 =

⎩
⎪
⎨

⎪
⎧
𝑦1
𝑦2
⋮
𝑦𝑘
⋮
𝑦𝑛⎭
⎪
⎬

⎪
⎫

 ,    𝑿 =

⎣
⎢
⎢
⎢
⎢
⎡
1 𝑥1,1 𝑥2,1
1 𝑥1,2 𝑥2,2
⋮ ⋮ ⋮
1 𝑥1,𝑘 𝑥2,𝑘
⋮ ⋮ ⋮
1 𝑥𝑛,𝑘 𝑥𝑛,𝑘⎦

⎥
⎥
⎥
⎥
⎤

,    𝜷 = �
𝛽0
𝛽1
𝛽2
� ,   𝝐=

⎩
⎪
⎨

⎪
⎧
𝜖1
𝜖2
⋮
𝜖𝑘
⋮
𝜖𝑛⎭
⎪
⎬

⎪
⎫

                (6b) 

 

where n is the number of all observed response variable pairs,  𝒀 is regressand, 𝑿 is the 

repressor, 𝜷  is the regression coefficients vector to be estimated, and 𝝐  is the vector of 

estimation error at different times and is random and normally distributed. Note that  𝝐 

represents the inevitable measurement noise and model uncertainty in this regression analysis.  

 

The least squares principle can then be used to find the unbiased estimates of the regression 

coefficients by choosing the regression line that is the most “closest” line to all data points 

(𝑦𝑘, 𝑥1,𝑘 , 𝑥2,𝑘), i.e., 

 

(𝑏0, 𝑏1,𝑏2)𝑇 = 𝐚𝐫𝐠𝒎𝒊𝒏𝜷[(𝒀 − 𝑿𝜷)′(𝒀 − 𝑿𝜷)]                              (7) 

 

where argmin[.] stands for the argument of the minimum, and the vector(𝑏0, 𝑏1, 𝑏2)𝑇 is the 

least squares estimates of the regression coefficients vector. Comparing Equation (6) and 

Equation (4), it is clear that the resulting regression coefficient 𝛽1 represents the relationship 
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between velocity and restoring force, and the coefficient 𝛽2  represents the relationship 

between displacement and restoring force. Thus, b1 is the estimate of damping parameter and 

b2 is the estimate of stiffness parameter in Equation (4). 

 

3.2 Physical parameter identification of the isolation layer 

The equation of motion for the isolation layer is defined: 

 

−∑ 𝑚𝑗(𝑢̈𝑔 + 𝑢̈𝑗)𝑁
𝑗=0 = 𝑐0𝑢̇0 + 𝑓𝑟                                                   (8) 

 

Note that the restoring force of the base isolator is highly nonlinear and dependent on the 

displacement history. It is difficult to accurately describe the nonlinear force-deformation 

behaviour of the isolator. However, according to experimental observation, the inelastic 

response of LRB isolators can be effectively modelled using a bilinear hysteretic law [31]. 

The restoring force-deformation relationship of the isolator is thus defined: 

 

𝑓𝑟(𝑢0) = 𝑓𝑟(𝑢0𝐼 ) + 2𝑔(𝑢0−𝑢0
𝐼

2
)                                             (9) 

 

where I is the instant of most recent loading reversal and  𝑢0𝐼  is the base relative displacement 

at instant I. The bilinear backbone curve function 𝑔 is defined [16]: 

 

𝑔(𝑣) = �
𝑘𝑒𝑣 −𝑑𝑦 ≤ 𝑣 ≤ 𝑑𝑦

𝑘𝑒𝑑𝑦 + 𝑘𝑝(𝑣 − 𝑑𝑦) 𝑣 > 𝑑𝑦
−𝑘𝑒𝑑𝑦 + 𝑘𝑝(𝑣 + 𝑑𝑦) 𝑣 < −𝑑𝑦

                                (10) 
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where 𝑣 is the displacement,  𝑑𝑦 denotes the yielding displacement, and 𝑘𝑒 and 𝑘𝑝 are elastic 

stiffness and post-yielding stiffness, respectively. The later three parameters fully 

characterize nonlinear properties of the isolator and are the physical parameters to be 

identified.  

 

The hysteretic restoring force of the isolation system is path dependent and not a single-value 

function of displacement. It is dependent on deformation history and on whether the 

deformation is increasing (positive velocity) or decreasing (negative velocity). More 

importantly, the left side of Equation (8) is not linearly related to the variable  𝑢0. Therefore, 

the physical parameters of the isolation layer cannot be directly obtained by a standard 

multiple linear regression analysis.  A two-step regression-based procedure is thus developed 

to solve the problem.  

 

3.2.1 Partition of the response history  

The isolation system subjected to a strong-motion earthquake may experience several cycles 

of deformation, showing a general hysteresis history, as illustrated in Figure 2. It can be seen 

that the nonlinear restoring force is path dependent and multi-valued. However, within a time 

segment where the velocity holds the same sign, the restoring force is a single-value function 

of the deformation. Hence, the whole response history can be sliced into many sub-cycles and 

sub-half cycles according to the points where the velocity is zero.  

 

These points are called turning points. For example, if the turning points (𝑥3, 𝑥5 and 𝑥7 ) 

have been known, the data points between  𝑥3 and 𝑥7 form a sub-cycle 𝑖 that includes a full 

loading and unloading path. Two sub-half cycles can be obtained through dividing this sub-
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cycle by another turning point 𝑥5. The point  𝑥5 is not only the ending point of the loading 

path, but also the starting point of the very next unloading path in this sub cycle. Obviously, 

the hysteretic restoring force between two successive points in one half cycle is single-valued 

and either monotonically increasing or decreasing. Thus, regression analysis can be 

implemented for these half cycle data separately to obtain the best approximation. The 

estimated regression coefficients will then relate to the system physical parameters in these 

half cycles. 

 

 

 
 

Figure 2 (a) a general hysteresis loop;     (b) Sub-cycle and sub-half cycle segments 

 

Generally, during an earthquake event, some half-cycle responses are linear and some 

nonlinear. To identify the nonlinear model parameters, the first step is to identify and separate 

the linear and nonlinear half cycles. For linear half cycles, a standard multiple linear 

regression can be used directly. For nonlinear half cycles, a nonlinear regression technique is 

needed owing to nonlinear relationship between variables.  
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3.2.2 The first step: standard multiple linear regression to each half cycle 

A standard multiple linear regression is separately implemented to a set of data points in each 

half cycle first. It actually assumes an equivalent linear system model for each half cycle. 

Thus, the derived regression coefficients give the estimate of the equivalent linear system 

stiffness 𝑘𝑙  and viscous damping coefficient 𝑐𝑙 within the segment. When there is no inelastic 

deformation presented in the half-cycle, the equivalent linear system stiffness should 

approach a realistic system elastic stiffness  𝑘𝑒. However, when there is inelastic deformation, 

this equivalent linear system stiffness should capture a secant average stiffness of 𝑘𝑒 and  𝑘𝑝, 

and be notably lower. 

 

The equivalent linear stiffness 𝑘𝑙 varies over different half-cycle segments. Varying  𝑘𝑙 is a 

significant indicator of the nature of the dynamic system. It is reasonable that the hysteresis 

curve responds linearly where sub-half cycle displacement increment ∆𝑑  is small and 

nonlinearly where ∆𝑑 is larger than the structural yield displacement. Thus, a rapid drop in 𝑘𝑙 

at large displacement increment can be viewed as a good indicator of inelastic behaviour 

during that specific half cycle. The analysis of 𝑘𝑙  versus ∆𝑑   thus gives an indicator to 

identify potential inelastic sub-half cycles. In addition, the estimated equivalent linear 

damping coefficient 𝑐𝑙  is the measure of system energy dissipation. System energy 

dissipation capacity will similarly increase due to the added hysteretic damping. Thus, the 

analysis of 𝑐𝑙 versus ∆𝑑  may also be used as another indicator of the inelastic sub half cycles. 

Bothe indicators of inelastic behaviour can be automated and easily found using a threshold. 

 

3.2.3 The second step: nonlinear regression to identified nonlinear sub-half cycles 

Many estimates of viscous damping coefficient 𝑐0  and elastic stiffness 𝑘𝑒  can be directly 

obtained from multiple linear regression analysis of those identified linear half cycles.  The 

http://dict.baidu.com/s?wd=increment
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mean of 𝑐0 estimates is identified as ‘actual’ viscous damping coefficients of the isolation 

layer and will be used as a known parameter at the second identification step. Therefore, 

Equation (8) can be written: 

 

−∑ 𝑚𝑗(𝑢̈𝑔 + 𝑢̈𝑗)𝑁
𝑗=0 − 𝑐0𝑢̇0 = 𝑓𝑟                                         (11) 

 

During a loading or unloading inelastic half cycle, the restoring force is a piecewise linear 

function of displacement with parameters  𝑘𝑒, 𝑘𝑝 and 𝑑𝑦.  𝑘𝑝 is usually only about 5%-10% 

of  𝑘𝑒 for typical isolators. To identify the final elastic stiffness, 𝑘𝑒 , and post-yielding 

stiffness, 𝑘𝑝 , simultaneously from Equation (11), data points in the identified nonlinear half 

cycle must be divided into two segments, and a different linearly parameterized polynomial 

identified via regression analysis for each segment. The difficulty is associated with the 

unknown interaction point of each segment and the join point of the segmented regression 

lines has to be estimated to ensure continuity throughout the nonlinear half cycle. 

 

This situation is a special nonlinear regression problem, named multi-phase regression with 

unknown transition points. The problem has a long history in mathematics [32-34] and has 

been applied in some engineering fields [35, 36]. However, according to the author’s best 

knowledge, it has not been used in structural dynamic system identification.  

 

First, define: 

 

𝑦𝑘 = −∑ 𝑚𝑗(𝑢̈𝑔,𝑘 + 𝑢̈𝑗,𝑘)𝑁
𝑗=0 − 𝑐0𝑢̇0,𝑘                                       (12a) 

𝑥𝑘=𝑢0,𝑘   𝑘 = 1,2, … ,𝑚                                                  (12b) 
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in which, m is the number of data points in a nonlinear half cycle. Herein, a two-phase linear 

regression function can be defined: 

 

𝑓(𝑥,𝛽) = � 𝛽10 + 𝛽11𝑥,                  𝑥 ≤ 𝑥0
  𝛽20 + 𝛽21𝑥,                  𝑥 > 𝑥0                                          (13) 

 

where 𝜶 = {𝛽10,𝛽11,𝛽20,𝛽21}T is the set of the unknown regression coefficients of each 

segment and 𝑥0  is the unknown join point. The join point satisfies the linear constraint to 

ensure the continuity of the solution at the interaction point: 

 

𝛽10 + 𝛽11𝑥0 =  𝛽20 + 𝛽21𝑥0                                              (14) 

 

Using the least-squares estimation, the regression analysis seeks the best estimate of the 

vector  𝜶 that minimizes the residual sum: 

 

𝑅(𝜶) = ∑ [𝑦𝑘 − 𝑓(𝑥𝑘,𝛽)]2𝑚
𝑘=1                                              (15) 

 

In case of the function (13), the sum 𝑅(𝜶) can be expressed as 

 

𝑅(𝜶) = ∑ [𝑦𝑘 − (𝛽10 + 𝛽11𝑥𝑘)]2𝑥𝑘≤𝑥0 + ∑ [𝑦𝑘 − (  𝛽20 + 𝛽21𝑥𝑘)]2𝑥𝑘>𝑥0          (16) 

 

where the solution of Equation (16) is subject to the constraint Equation (14). 

 

To minimize the function  𝑅(𝜶), a method similar to [35] is applied. Conceptually, if the 

transition point is known, the minimum of  𝑅(𝜶) can be found by computing a standard linear 
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regression for each segment. Thus, given an arbitrary data partition between point 𝐼 and 𝐼 + 1, 

the residual sum can be minimized over 𝜶𝑰 = {𝛽10,𝛽11,𝛽20,𝛽21}𝑇, and this outcome yields a 

sequence of residual sum function 𝑅𝐼(𝜶)(𝐼 = 2, … ,𝑚 − 2, ) . The goal is to pick the 𝐼 that 

gives the minimum value for 𝑅𝐼(𝜶). Note that this is true only when 𝑥𝐼 ≤ 𝑥0 ≤ 𝑥𝐼+1. Thus, 

the estimation of 𝑥0 has to be computed using the constraint Equation (14) from the element 

of  𝜶𝑰 to check that 𝑥0 is in fact between the two data points 𝐼 and 𝐼 + 1. If so, the final 

solution is found. If it is not, a confidence interval method presented in [35] can be used to 

check whether to attribute this issue to observation outliers or an incorrect assumption.  

 

It can be seen from Equation (13) that the resulting regression coefficients, 𝛽11  and 

𝛽21, represent the relationship between displacement and restoring force. They correspond 

the elastic stiffness term, ke, and post-yielding stiffness term, kp, in Equation (10), 

respectively. The estimated joint point is the elastic/inelastic response turning point within 

the nonlinear half cycle. It is closely related to the isolation system yield displacement  𝑑𝑦. 

For an unloading nonlinear half cycle i, 𝑑𝑦 can be defined: 

 

𝑑𝑦𝑖 = 𝑥𝑚𝑎𝑥𝑖−𝑥0𝑖
2

                                                        (17) 

 

where  𝑥𝑚𝑎𝑥𝑖  is the displacement at the instant of most recent loading reversal; and 𝑥0i is 

estimated join point. For a loading nonlinear half cycle i: 

 

𝑑𝑦𝑖 = 𝑥0𝑖−𝑥𝑚𝑖𝑛𝑖
2

                                                      (18) 

 

where 𝑥𝑚𝑖𝑛𝑖   is at the instant of most recent loading reversal. 
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Through the proposed nonlinear regression procedure, many estimates of the elastic and post-

yielding stiffness, and yield displacement are obtained. The last output of each parameter is 

calculated by averaging of these estimated values over the time history. The flowchart of the 

identification method proposed is illustrated in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The flowchart of the identification procedure for base-isolated buildings 
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Measured response acceleration 
data, integrated to obtain 

displacement and velocity data 

With known structural mass, 
calculated by the Equation (5) to 
get observation pairs (yk,x1k,x2k) 
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history into many half cycles 
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4. PROOF-OF-CONCEPT CASE STUDY 

 

The proof-of-concept case used in this investigation is the three-story base-isolated shear 

building studied by Huang et al [16].  The floor masses, storey stiffnesses, storey viscous 

damping coefficients and nonlinear model parameters of the isolation system are shown in 

Figure 4. Nonlinear responses of the multi-storey base-isolated building to a real earthquake 

motion are simulated using the Newmark’s step-by-step method of integration. The selected 

ground motion is the record at the Coyote Lake Dam station during the 1989 earthquake 

event in Loma Prieta, California. The duration of the ground excitation is approximately 40s 

with a peak ground acceleration (PGA) of 0.484g. The ground acceleration record is available 

at a sample time step of 0.005s and filtered with low-pass and high-pass cut-off frequencies 

of 33 and 0.1 Hz, respectively, shown in figure 5. 

 

 

 

 

 

 

Figure 4 Model parameters of the 3-storey base-isolated building;   (The unit for stiffness is N/mm, for damping 

coefficient is N.sec/mm, and for mass is ton) 

 

The time histories of relative displacement at each floor are shown in Figure 6. By comparing 

the time histories of the top and base floors, one can realized that they are similar both in 

Displacement 

Force 

ke=44145 

kp=6886 
Fy 

m3=58.32 

m2=58.32 

m1=58.32 

m0=68.04 

k3=104920 

c3=202 

k2=168060 

c2=324 

k1=256150 

c1=494 

c0=156 dy=5.56mm 
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magnitude and the phase. Therefore, the upper structure can be modelled as a linear 

superstructure because interstory drifts in superstructure are very small.  

 

Figure 5 Ground acceleration recorded at the Coyote Lake Dam station during the 1989 Loma Prieta event 

 

 

Figure 6 Time histories of relative displacement: (a) top floor; (b) second floor; (c) first floor; (d) base floor  
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Figure 7 presents the total restoring force-displacement hysteretic loop of the base isolation 

layer. It can be seen that the isolation system experiences several inelastic hysteresis cycles. 

The isolation bearings show a ductility ratio of 8.232, which dissipates most of the energy of 

the ground inputs such that the superstructure interstory drifts are much reduced.   

 

 

Figure 7  Restoring force-displacement hysteresis loop of the isolation system 

 

It is noted that the free-field ground motion is used as the system input in this proof-of-

concept study. In real world application, the actual earthquake input to the building is not 

accurately known as the effect of soli-structure coupling. However, this limitation can be 

overcome by placing an accelerometer on the foundation. The records on the foundation can 

be used as earthquake input to the building.  

 

For system parameter identification, displacement and velocity histories are estimated from 

numerical integration of acceleration history. Numerical integration is sensitive to noise and 



23 
 

thus subject to drift and numerical error. In practice, the recommended mean removal and 

band-pass filters will not always produce satisfactory results, particularly if permanent 

deformation occurs [37]. However, additional sensors are increasingly used in civil 

engineering, and integration errors can be effectively corrected by data fusion of a wide range 

of different sensors [38-41]. The low-solution-measured displacement corrected acceleration 

integration method proposed by Hann et al [39] was applied to get the displacement and 

velocity estimates. In this case study, the low-solution-measured displacement was taken at 

1Hz and assumed to be a 1000pt backward moving average of 1000Hz calculated 

displacement data available from simulation. Acceleration data was taken at 1000Hz.  

 

Sensor noise was added to realistically test robustness of the method.  A separate white noise 

corresponding to different signal-noise-ratios (SNR) was added to the simulated noise-free 

acceleration and displacement measurements, respectively, to mimic a realistic situation over 

a range of possible sensor performance. All these responses and prior known mass data were 

used as inputs to the identification procedure. The physical parameters of each storey are 

identified floor-to-floor. The identification procedure with random added noise was run 100 

times to generate final statistical results for each noise level. 
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5.  RESULTS AND DISCUSSIONS 

 

5.1 Physical parameter identification of the superstructure 

The response time histories are first sliced into many segments. Each segment is a monotonic 

loading or unloading half cycle. Standard multiple linear regression analysis was 

implemented to those half cycles and many estimates of interstory stiffness and damping 

parameters were obtained. The plots of estimated physical parameters for the superstructure 

at different half-cycle displacement increments using noise-free signals are shown in Figure 8. 

 

It can be seen from Figure 8 that the estimates of stiffness and damping parameter vary very 

slightly around a linear constant except at very small half cycle displacements. These results 

show that the superstructure is indeed identified as linear during the earthquake. The accuracy 

of regression analysis is closely related to the number and distribution of observed sample 

points.  At the segments with very small displacement increments, the time duration is very 

short and the observed samples are thus very limited and concentrated with the resulting 

impact on estimated parameters. It is reasonable to discard these few outlying identification 

results. Therefore, only these segments with displacement increment exceeding 1mm are 

considered to estimate the final storey stiffness and damping. 

 

The statistical results of identified stiffness and damping parameters from 100 runs for each 

noise level are summarized in Table 1. The proposed identification method yields good 

estimates of the storey stiffness and damping parameters even using signals with significant 

added random noise. The stiffness identification results are more accurate than the damping 

results, which is desirable. As the noise level increases, the identified parameter mean error 

and standard deviation both increase. However, as long as the SNR is larger than 30dB, the 
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estimated means of stiffness and damping parameters match very well with the actual values. 

Thus, information in Table 1 indicates that the proposed time-segmented multiple linear 

regression method for the superstructure yields good accuracy to within 2.47% for stiffness 

and 5.71% for damping (the worst case). 

  

  

  

Figure 8  Estimated stiffness and damping paramters for the superstructure using noise-free signals 
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Table 1 Identification results for the superstructure 

 
Storey 3 Storey 2 Storey 1 

k3 c3 k2 c2 k1 v1 
Estimates from noise-free signal 
Estimated mean 104883.25 202.00 168023.44 324.43 256016.02 488.34 
 
Estimates from signal  
at SNR of 70 dB 
Estimated  mean 104881.50 202.00 168023.84 324.44 256015.26 488.40 
Standard deviation  4.48 0.21 7.56 0.29 12.94 0.67 
 
Estimates from signal  
at SNR of 50 dB 
Estimated  mean 104875.15 202.31 167997.38 324.14 255998.55 488.40 
Standard deviation 42.92 1.70 64.03 3.20 109.90 6.74 
 
Estimates from signal  
at SNR of 30 dB 
Estimated  mean 102318.50 190.46 164977.18 323.86 250757.70 484.81 
Standard deviation  993.43 28.75 1520.14 44.89 2627.25 83.45 
       
Actual value 104920 202 168060 324 256150 494 
The unit for stiffness is N/mm and for damping is N.sec/mm. 

5.2 Physical parameter identification of the nonlinear isolation layer 

The parameter identification of the nonlinear isolation system was performed via the 

proposed two-step procedure. Figure 9 shows the identified equivalent linear system stiffness 

and damping varied with the half cycle displacement increment. Compared with Figure 8, it 

is clear that the equivalent linear system stiffness decrease and damping increases at larger 

displacement increment half cycles, which indicates the isolation system softens as expected 

due to hysteretic nonlinear behaviour under the large portion of the ground motion excitation.  

Figure 9 can be divided into a linear regime and a nonlinear regime. In the linear regime, the 

identified stiffness and damping parameter are nearly constant. It is difficult to accurately 

distinguish the linear and nonlinear regime. However, with some prior estimates and 

knowledge of the isolation system performance, such as by static or cyclic loading 

experiments, and observation of Figure 9, a probable transition phase from linear to nonlinear 

behaviour can be estimated. Herein, the half cycles with displacement increment between 1 to 
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10mm are identified as linear half cycles. The half cycles with displacement increment 

exceeding 20mm are identified as nonlinear half cycles. These thresholds could be readily 

generated a priori to using the method from simulation and experimental analysis.  

 

  

Figure 9 Effective linear system stiffness (top) and damping (bottom) identification results for the isolation 

system using noise-free signals 
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For the first step, standard multiple linear regression is implemented to those identified linear 

half cycles to get estimates of the linear viscous damping coefficients c0 and elastic stiffness 

ke of the isolation layer. Table 2 shows the statistical results of identified parameters for 

different noise levels. It can be seen that the estimate accuracy of the stiffness parameter is 

better than the damping parameter. The identified viscous damping coefficients for different 

noise levels will be used as the known parameters in the next identification step. 

Table 2 Linear viscous damping and elastic stiffness identification results for the isolation layer  

 ke c0 
Estimates from noise-free signal 
Estimated  mean 43888.10 188.71 
 
Estimates from signal at SNR of 70 dB 
Estimated  mean 43888.11 188.71 
Standard deviation 0.63 0.04 
 
Estimates from signal at SNR of 50 dB 
Estimated  mean 43888.57 188.68 
Standard deviation 5.85 0.42 
 
Estimates from signal at SNR of 30 dB 
Estimated  mean 43897.84 187.80 
Standard deviation  102.87 4.12 
   
Actual value 44145 156 

    The unit for stiffness is N/mm and for damping is N.sec/mm. 
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Table 3 Nonlinear physical parameter identification results for the isolation system 

 ke kp dy  
Estimates from noise-free signal 
Estimated  mean 43187.99 7075.49 5.49  
 
Estimates from signal at SNR of 70 dB 
Estimated  mean 43191.91 7076.29 5.49  
Standard deviation  11.20 3.03 0.00  
 
Estimates from signal at SNR of 50 dB 
Estimated  mean 43195.27 7072.70 5.49  
Standard deviation 55.05 6.69 0.01  
 
Estimates from signal at SNR of 30 dB 
Estimated  mean 42578.06 7080.74 5.56  
Standard deviation  171.26 14.83 0.03  
     
Actual 44145 6886 5.56  

     The unit for stiffness is N/mm, for damping is N.sec/mm and for yield displacement is mm. 

 

For the second step, nonlinear regression analysis is implemented to those identified 

nonlinear half cycles to yield nonlinear physical parameters of the isolation system. Table 3 

presents the statistical results of identified nonlinear physical parameters. It can be seen from 

Table 3 that the nonlinear regression analysis yields good performance to within 4% (worst 

case). As the noise level increases, the identification accuracy shows very little decrease. 

These latter results indicate the overall adequacy of the proposed two-step identification 

method for nonlinear multi-degree of freedom dynamic systems, as presented and in general.   

 

It is noted that there is no direct comparative assessment of the proposed method against an 

existing methods. The primary reason is that no prior methods split the linear half-cycles 

from the nonlinear half-cycles of response and pull out nonlinear half-cycle displacement and 

post-yielding stiffness, except Nayerloo et al [42], which is a much more complex, but real-

time, algorithm. Equally importantly, the work of Nayerloo et al [42] is restricted to fitting a 

Bouc-Wen model, whereas this approach is more general to any nonlinear, elasto-plastic 
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method. Finally, it is important to note that we found no prior works that directly identified 

nonlinear stiffness in this fashion making direct comparison very difficult for those that do 

address nonlinear behaviour. 

 

Although the efficiency of the method is demonstrated using a simple closed-formed problem, 

the value of the proposed method can be evaluated from three perspectives. First, the key of 

the method is to capture half-cycles and get elasto-plastic properties from them.  It is not 

dependent on a specific mechanics model, but instead relies on direct measurements and 

identified half-cycles. Thus, the proposed method can be generalized to identify similar 

hysteretic systems, which nonlinear half cycle shape can be approximated by a bilinear shape. 

Second, the identification procedure is carried out from half-cycle to half cycle. It thus can 

capture time-variant physical parameters to characterize a degrading hysteretic system. Third, 

the identification procedure is essentially performed storey by storey. The identification 

method for the isolation layer can be applied to superstructure if nonlinearity needs to be 

considered for the superstructure. Therefore, the proposed method is completely 

generalizable to overall nonlinear multi-storey structures and a wide range of mechanics. 

 

In addition, the approach can be extended to further portions of the half-cycles to identify 

further types of hysteresis loop. The schematic of Figure 2 is generic to a broad range of 

hysteresis loops, including the well-known Bouc-Wen model. However, extension to include 

pinching behaviours and further nonlinear mechanics requires only the addition of further 

regression steps to identify whether there are 3 or more segments in a given half-cycle, from 

which these more nonlinear behaviours and resulting nonlinear stiffness values could be 

reconstructed. Thus, this model-free method is generalisable to further, more complex 

nonlinear mechanics, although not shown specifically and is the subject of ongoing work. 
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6. CONCLUSIONS 

 

This paper presents a novel method, based on linear and nonlinear regression analysis 

techniques, for identification of the linear and nonlinear physical parameters of base-isolated 

multi-storey buildings using earthquake records. For the linear superstructure, a one-step 

multiple linear regression analysis is implemented to yield storey stiffness and damping 

parameters. For the nonlinear isolation layer, a two-step regression-based identification 

method is proposed. Nonlinear regression techniques are used to directly obtain elastic 

stiffness, post-yielding stiffness and yield displacement of the isolation system. A proof of 

concept case study has demonstrated the potential and feasibility of the proposed method. 

Identified system linear and nonlinear physical parameters are in very good agreement with 

those of the actual model values, even with a considerable level of measurement noise. 

 

It is important to note this nonlinear identification procedure is simple and computationally 

straightforward. It can directly identify nonlinear isolation parameters without complex 

iterative optimization.  The nonlinear regression algorithm requires no operator input to 

adjust optimization process, where previously proposed nonlinear output-error optimization 

methods have to select various weighting functions or control parameters to get optimal 

results. Although nonlinearity is considered only for the isolation system, the proposed 

method is completely generalizable to overall nonlinear multi-storey structures, where 

inelastic responses of both isolation system and the superstructure are allowed. Finally, the 

nonlinear regression algorithm is not only limited to bilinear hysteretic behaviour, tri-linear 

or more complex hysteretic models can also be identified by the proposed method with a little 

modification. For example, if we want to characterize the isolator with a tri-linear physical 
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model, the nonlinear regression model used in the second step should be changed from a two-

phase linear regression function to a three-phase linear regression function. 

 

Overall, the proposed method tested only for 2D shear-type framed structures and remains to 

be experimentally proven and further tested in more complex situations. However, it is a first 

step forward and can be readily generalized to 3D shear-type framed structures, as long as the 

3D motion can be resolved.  
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