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Abstract

Connectivity is a fundamental tool for matroid theorists, which has be-

come increasingly important in the eventual solution of many problems in

matroid theory. Loosely speaking, connectivity can be used to help describe

a matroid’s structure. In this thesis, we prove a series of results that further

the knowledge and understanding in the field of matroid connectivity. These

results fall into two parts.

First, we focus on 3-connected matroids. A chain theorem is a result that

proves the existence of an element, or elements, whose deletion or contraction

preserves a predetermined connectivity property. We prove a series of chain

theorems for 3-connected matroids where, after fixing a basis B, the elements

in B are only eligible for contraction, while the elements not in B are only

eligible for deletion. Moreover, we prove a splitter theorem, where a 3-

connected minor is also preserved, resolving a conjecture posed by Whittle

and Williams (2013).

Second, we consider k-connected matroids, where k ≥ 3. A certain tree,

known as a k-tree, can be used to describe the structure of a k-connected

matroid. We present an algorithm for constructing a k-tree for a k-connected

matroid M . Provided that the rank of a subset of E(M) can be found in

unit time, the algorithm runs in time polynomial in |E(M)|. This generalises

Oxley and Semple’s (2013) polynomial-time algorithm for constructing a 3-

tree for a 3-connected matroid.
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Chapter 1

Introduction

Matroid connectivity has been an integral part of the theory of matroids

since Tutte’s (1966) seminal paper. Having proved that every 3-connected

simple graph can be constructed from a wheel graph by splitting a vertex or

adding an edge between non-adjacent vertices, Tutte examined whether this

result could be generalised to matroids. Tutte proved what is now known

as the Wheels-and-Whirls Theorem. Moreover, in the process he introduced

the concept of connectivity in matroids.

Let M be a matroid with ground set E. The connectivity function of

M , denoted by λM , or simply λ, is defined on all subsets X ⊆ E by

λM (X) = r(X) + r(E −X)− r(M).

We follow the recent convention of excluding the “ + 1” that was present in

Tutte’s original definition. A subset X or a partition (X,E − X) of E is

k-separating if λM (X) ≤ k − 1. A k-separating partition (X,E − X) is a

k-separation if |X| ≥ k and |E −X| ≥ k. The matroid M is n-connected if,

for all k < n, it has no k-separations. A k-separating set X, a k-separating

partition (X,E−X), or a k-separation (X,E−X) is exact if λM (X) = k−1.

An exactly 3-separating partition (X,Y ) is sequential if there is an ordering

(e1, e2, . . . , ek) of X or Y such that {e1, e2, . . . , ei} is 3-separating for all

i ∈ {1, 2, . . . , k}; otherwise, it is non-sequential.

Connectivity in matroids is closely related to connectivity in graphs, but

additionally incorporates duality, a fundamental concept in the theory of

matroids. In particular, the connectivity function is invariant under duality;

that is, λM (X) = λM∗(X), where M∗ is the matroid dual of M . As a
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consequence, matroid connectivity is different to graph connectivity in one

crucial way: small circuits limit the connectivity of a matroid, whereas small

cycles do not limit the connectivity of a graph.

Historically, a significant proportion of research in matroid theory has

focussed on 3-connected matroids. This is partly due to decomposition re-

sults that allow an arbitrary matroid to be broken into a collection of smaller

3-connected matroids, where the original matroid can be reconstructed from

the components. More specifically, the 1-separations of a matroid induce a

partition of the ground set, where each part consists of the elements in a

component of the decomposition, and the original matroid can be recon-

structed via direct sum. Cunningham and Edmonds (1980) showed that

a 2-connected matroid can be decomposed into 3-connected components,

and the original 2-connected matroid can be reconstructed using the ma-

troid operation of 2-sum. Moreover, we can obtain a labelled tree that

describes precisely how the 3-connected components are put together in the

reconstruction. A number of matroid properties have been shown to hold

precisely if the property holds for each of the 3-connected components in

the 2-sum decomposition; that is, the property is closed under 2-sums. One

example of such a property is matroid representability over a field.

Another reason for the focus on 3-connected matroids is the existence of

satisfactory chain theorems for these matroids. A chain theorem is a result

that asserts the existence of an element, or elements, that can be either

deleted or contracted from a matroid while a predetermined connectivity

condition is preserved. These theorems are important tools that enable

inductive arguments to be made in order to derive matroid structure results.

The primordial example of a chain theorem is Tutte’s aforementioned

Wheels-and-Whirls Theorem:

Theorem 1.0.1 (Tutte, 1966). Let M be a 3-connected matroid with at

least one element. Then, the following are equivalent:

(i) There exists an element e ∈ E(M) such that either M\e or M/e is

3-connected.

(ii) M is not isomorphic to a wheel or a whirl of rank at least three.

An even stronger result is Seymour’s (1980) Splitter Theorem. This result

was also proved independently by Tan (1981).
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Theorem 1.0.2 (Seymour, 1980). Let M be a 3-connected matroid, and let

N be a 3-connected proper minor with |E(N)| ≥ 4 where if N is a wheel,

then M has no larger wheel as a minor, while if N is a whirl, then M has

no larger whirl as a minor. Then there exists an element e ∈ E(M) such

that either M\e or M/e is 3-connected and has an N -minor.

These foundational theorems have had a profound influence on matroid

structure theory (Seymour, 1995; Oxley, 1996), and, over time, a number of

variants and extensions have been found (for example, Coullard and Oxley,

1992; Whittle, 1999; Oxley et al., 2012). The research in the first part of

this thesis also falls into this category.

Let M be a 3-connected matroid, and fix a basis B for M . In Part I, we

present some chain theorems, and a Splitter Theorem, where the removed

element e can only be contracted if e ∈ B, and can only be deleted if

e ∈ E(M) − B. We say that an element e removed in this way is removed

relative to B. When M is a representable matroid, it has a standard matrix

representation of the form [Ir|D], where Ir is the r × r identity matrix. A

natural choice for B is the set of elements corresponding to columns of Ir.

With this choice of basis, deleting an element e ∈ E(M)−B corresponds to

removing a column from the representation, while contracting an element

e ∈ B corresponds to removing a row and a column. In either case, the

resulting representation remains in standard form without the need for a

pivot operation. Thus, any information visible in the original representation

is preserved. The benefit of such an approach is illustrated by the arguments

of Geelen et al. (2000) in their proof of the excluded minors for GF (4).

Indeed, the results in the first part of the thesis are already being used as

tools to prove results in matroid representation theory.

Oxley et al. (2008a) and Whittle and Williams (2013) have previously

studied the existence of elements that can be removed relative to a fixed basis

and preserve a connectivity condition. In particular, Oxley et al. (2008a)

proved a Splitter Theorem that ensures a single element can be removed

relative to a fixed basis while preserving 3-connectivity and retaining a 3-

connected N -minor. We extend this result by ensuring the presence of more

than one such element. However, to do so requires the use of a slightly

weaker connectivity condition. We discuss the previously known results and

how they relate to our findings in the introduction to Part I.

It was once a predominant line of thought that focussing on 3-connected
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matroids was sufficient to avoid degeneracies that arise in less structured

matroids. In particular, Kahn (1988) conjectured that, for some prime

power q and 3-connected matroid M , the number of inequivalent GF (q)-

representations of M is bounded by some integer n(q). Although Kahn’s

conjecture is true for q ≤ 5, Oxley et al. (1996) showed that it is false

for any larger prime power q. However, all known counterexamples have

one feature in common: the presence of mutually interacting 3-separations.

This inspired Oxley et al. (2004) to investigate the structure of 3-separations

in a 3-connected matroid. They showed that for any 3-connected matroid

there exists a tree, known as a 3-tree, that describes all the non-sequential

3-separations, up to a natural equivalence.

Due to mounting evidence that restricting one’s attention to 3-connected

matroids is sometimes insufficient, there has been a recent interest in fur-

ther understanding higher connectivity. Beavers (2006), and, independently,

Chen and Xiang (2012), showed that a 3-connected representable matroid

consisting of at least nine elements can be decomposed into sequentially 4-

connected matroids and sporadic matroids of three types, where the original

matroid can be reconstructed from the components. Aikin and Oxley (2012)

showed that a 4-connected matroid with at least 17 elements has a “4-tree”

that describes its non-trivial 4-separations, up to an equivalence. Clark and

Whittle (2013) extended this to the abstract setting of tangles in a con-

nectivity system. As a specialisation, their result shows that a k-connected

matroid, with at least 8k − 15 elements, has a k-tree that describes the

matroid’s non-trivial k-separations.

However, there are a number of complications when using the notion

of k-connectivity for k ≥ 4. To begin with, strict 4-connectivity is often

too strong to be useful in practice. For example, neither the cycle matroid

M(Kr+1) of a complete graph, nor the finite projective geometryGF (r−1, q)

is 4-connected. As these highly structured matroids are, in a sense, the maxi-

mal members in the class of rank-r graphic matroids, or rank-r representable

matroids respectively, a more reasonable approach is to use one of the vari-

ous weaker forms of 4-connectivity. Although the results in the second part

of the thesis apply to strictly k-connected matroids, it is conceivable that a

similar approach could be used for weaker forms of k-connectivity. However,

we do not address this further in the remainder of the thesis.

Another complication is that the concept of a non-sequential k-separation



5

needs to be generalised in order to make sense for more than just the case

when k = 3. This issue is well explained by Aikin and Oxley (2012), and

we follow their approach for k = 4. More generally, our approach for all k

is consistent with Clark and Whittle (2013). Let (X,Y ) be a k-separation

in a k-connected matroid M . We say that (X,Y ) is k-sequential if there

is an ordered partition (Z1, Z2, . . . , Zk) of X or Y where each Zi consists

of at most k − 2 elements and Z1 ∪ Z2 ∪ · · · ∪ Zi is k-separating for all

i ∈ {1, 2, . . . , k}; otherwise, (X,Y ) is non-sequential. Under this definition,

the so-called “non-trivial” k-separations in the tree decomposition results of

Aikin and Oxley (2012) and Clark and Whittle (2013) are, more precisely,

the non-sequential k-separations.

Although Oxley et al. (2004) proved the existence of a 3-tree for a 3-

connected matroid, the approach taken in their proof of this result does not

appear to elicit an efficient algorithm for finding such a 3-tree. However,

Oxley and Semple (2013) presented such an algorithm, thereby reproving

the result using a different approach. Provided that the rank of any subset

of the ground set E of a 3-connected matroid M can be found in unit time,

this algorithm finds a 3-tree for M , with running time polynomial in the

size of E. Similarly, although Clark and Whittle’s (2013) result ensures the

existence of a k-tree for a k-connected matroid M , it does not guarantee

the existence of a polynomial-time algorithm for finding such a k-tree. In

the second part of this thesis, we present a polynomial-time algorithm for

constructing a k-tree for a k-connected matroid. We describe our approach

in proving the correctness of this algorithm in the introduction to Part II.

We would hope that the existence of an algorithm for constructing a

k-tree for a k-connected matroid is useful in its own right. That said, we

close this section with a short remark to demonstrate it may have other

applications. Recall that for a prime power q > 5, Oxley et al. (1996) gave

counterexamples to the conjecture by Kahn that a 3-connected matroid M

has at most n(q) inequivalent GF (q)-representations. A common feature of

these counterexamples is that they have what are known as swirl-like flowers.

Recently, Geelen and Whittle (2013) showed that for a 3-connected matroid

with no swirl-like flowers of order j, where j ≥ 5, there is a function γ(j, p)

that provides an upper bound on the number of inequivalent representations

over GF (p), where p is prime. Such a result gives an indication of the

value of a polynomial-time algorithm for constructing a k-tree for a given
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matroid. For example, consider an arbitrary 3-connected matroid M for

which the rank of a subset of E(M) can be found in unit time, and let j ≥ 5.

As a straightforward consequence of Oxley and Semple’s (2013) algorithm

for constructing a 3-tree, one can find, in polynomial time, whether M is

a member of the class of matroids with no swirl-like flowers of order at

least j, where any matroid in this class has at most γ(j, p) inequivalent

representations over GF (p).

1.1 Overview

The research in this thesis falls into two parts. In the first part we fo-

cus on 3-connected matroids, proving a series of results that are analogous

to the Wheels-and-Whirls Theorem (Theorem 1.0.1) or Splitter Theorem

(Theorem 1.0.2), but where elements are removed relative to a fixed ba-

sis. Chapter 2 contains two analogues of the Wheels-and-Whirls Theorem;

while in Chapter 3 we present a Splitter Theorem relative to a fixed basis.

The results in Sections 2.2 and 2.3 and Chapter 3 are new unless otherwise

stated. The key results of Sections 2.3, 3.2 and 3.3 are published in “Annals

of Combinatorics” (Brettell and Semple, 2014a).

In the second part of this thesis, we turn our attention to matroids that

may be more highly connected. The main result of this part of the thesis

is a polynomial-time algorithm for constructing a k-tree for a k-connected

matroid. In Chapter 4, we cover the concepts required in order to describe

the algorithm and prove its correctness; in particular, k-connectivity, k-

flowers, k-trees, and k-paths. In Chapter 5, we describe the algorithm.

Finally, in Chapter 6, we prove the correctness of the algorithm and that it

runs in polynomial time. Our approach, in this part, was inspired by Oxley

and Semple (2013), but there are a number of additional hurdles to overcome

for our more general result. We clearly state the results that are obtained

by a straightforward generalisation. Sections 4.2 and 4.4 and Chapters 5

and 6 contain new results. This work in this part of the thesis has also been

submitted for publication (Brettell and Semple, 2014b).

More detailed overviews of the individual chapters are given at the be-

ginning of each of the two parts.

Throughout the thesis, we assume a basic understanding of matroid the-

ory. We refer the uninitiated reader to Chapters 1–6 of Oxley’s (2011) text
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“Matroid Theory”. We follow the notation and terminology of this text

unless otherwise specified.



Part I

Preserving 3-connectivity

relative to a fixed basis

Let M be a 3-connected matroid, let B be a basis of M , and let N be a

3-connected minor of M . We say that an element e ∈ E(M) is (N,B)-robust

if either

(i) e ∈ B and M/e has an N -minor, or

(ii) e ∈ E(M)−B and M\e has an N -minor.

Furthermore, an element e ∈ E(M) is strictly removable with respect to B,

or strictly B-removable, if either

(i) e ∈ B and M/e is 3-connected, or

(ii) e ∈ E(M)−B and M\e is 3-connected.

Oxley et al. (2008a) were the first to investigate the presence of elements that

can be removed relative to a fixed basis so that 3-connectivity is preserved.

They proved the following:

Theorem 2.0.1 (Oxley et al., 2008). Let M be a 3-connected matroid with

no 4-element fans, let N be a 3-connected minor of M , and let B be a basis of

M . Suppose that M has an (N,B)-robust element. Then M has an element

that is both strictly B-removable and (N,B)-robust.

A 4-element fan is a set of four elements consisting of a triangle (a 3-element

circuit) that meets a triad (a 3-element cocircuit); we discuss fans further in

8
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Section 2.3.1. Oxley et al. (2008a) also demonstrated that the requirement

that M has some (N,B)-robust element is necessary, by giving an example

of a 3-connected matroid M with 3-connected minor N and basis B such

that M has no (N,B)-robust elements.

In one sense, Theorem 2.0.1 is best possible; we cannot guarantee the

presence of more than one strictly B-removable (N,B)-robust element, as

we shall demonstrate in Section 3.1. However, if we are not concerned about

retaining an N -minor, two strictly B-removable elements can be found. This

is our first main result.

Theorem 2.0.2. Let M be a 3-connected matroid with no 4-element fans

such that |E(M)| ≥ 2, and let B be a basis of M . Then M has at least two

strictly B-removable elements.

We prove this theorem in Section 2.2.1.

Note that, if |E(M)| ≥ 4, then an element of B that is in a triangle is

not strictly B-removable, as the resulting matroid has a non-trivial parallel

class. Dually, an element of E(M) − B that is in a triad is not strictly

B-removable, as the resulting matroid has a non-trivial series class. If these

elements are the only obstacles to maintaining 3-connectivity, a natural ques-

tion is whether we can extend Theorem 2.0.1 or Theorem 2.0.2 to find more

elements that can be removed relative to a fixed basis.

Whittle and Williams (2013) addressed this question when 3-connectivity

is preserved, but no N -minor is retained. Their result extends Theorem 2.0.2

when considering 3-connectivity up to simplification or cosimplification. Fol-

lowing their example, we say that an element e ∈ E(M) is removable with

respect to B, or B-removable, if either

(i) e ∈ B and si(M/e) is 3-connected, or

(ii) e ∈ E(M)−B and co(M\e) is 3-connected.

Theorem 2.0.3 (Whittle and Williams, 2013). Let M be a 3-connected

matroid with no 4-element fans such that |E(M)| ≥ 4, and let B be a basis

of M . Then M has at least four B-removable elements.

The requirement that M has no 4-element fans is consistent with the work

of Oxley et al. (2008a), but is not strictly necessary when taking into ac-

count which elements of the fan are in the basis B. Indeed, we prove a
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stronger form of Theorem 2.0.3, as Corollary 2.3.12, where 4-element fans

are permitted unless the fan has one of two particular labellings relative

to B.

Our second main result is an analogue of the Splitter Theorem when

considering 3-connectivity up to simplification or cosimplification. We say

that an element e ∈ E(M) is (N,B)-strong if either

(i) e ∈ B, and si(M/e) is 3-connected and has an N -minor, or

(ii) e ∈ E(M)−B, and co(M\e) is 3-connected and has an N -minor.

Theorem 2.0.4. Let M be a 3-connected matroid with no 4-element fans

such that |E(M)| ≥ 5, let N be a 3-connected minor of M , and let B be a

basis of M . If M has at least two (N,B)-robust elements, then M has at

least two (N,B)-strong elements.

We prove this theorem in Section 3.2.1.

This result resolves Whittle and Williams’ conjecture (2013, Conjecture

6.1). It is worth noting that the theorem differs from the conjecture in that

M is required to have at least five elements, and at least two (N,B)-robust

elements. These are both necessary assumptions. To see that M must have

at least five elements, consider the matroid U2,4 with U1,3- or U2,3-minor.

Furthermore, we give an example, in Section 3.2.2, of a 3-connected matroid

with a 3-connected proper minor N that has only one (N,B)-robust element.

In Section 3.2.3, we give an example of a 3-connected matroid with precisely

two (N,B)-strong elements, which demonstrates that Theorem 2.0.4 is, in

a sense, the best we can hope for.

However, as with Theorem 2.0.3, we are able to strengthen Theorem 2.0.4

by considering the labellings of the 4-element fans relative to the fixed basis.

The stronger result, Theorem 3.2.10, demonstrates that M still has the

two desired elements when a 4-element fan is present, unless the fan has

a particular labelling relative to B. In Section 3.2.4, we give an example

to illustrate that when a matroid has a 4-element fan with this particular

labelling, we cannot guarantee the presence of even a single (N,B)-strong

element.

Having established a lower bound on the number of strong elements, it is

natural to consider what can be said about matroids that have the minimum

number of such elements. A matroid has path-width three if its ground set
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is sequential; that is, there is an ordering (e1, e2, . . . , en) of E(M) such that

{e1, e2, . . . , ei} is 3-separating for all i ∈ {1, 2, . . . , n}. Whittle and Williams

(2013) proved that a matroid with precisely four removable elements, with

respect to some fixed basis, has path-width three. In Section 3.3, we prove

the following theorem.

Theorem 2.0.5. Let M be a 3-connected matroid with no 4-element fans

such that |E(M)| ≥ 5, let N be a 3-connected minor of M , and let B be

a basis of M . Let P denote the set of (N,B)-robust elements of M . If M

has precisely two (N,B)-strong elements, then (P,E(M)−P ) is a sequential

3-separation.

A stronger result, where we consider the 4-element fans’ labellings relative

to the fixed basis, is presented as Theorem 3.3.1.

This part of the thesis is structured as follows. In Chapter 2, we prove

two analogues of the Wheels-and-Whirls Theorem: first, in Section 2.2, we

prove Theorem 2.0.2; then, in Section 2.3, we prove an upgrade of Theo-

rem 2.0.3. In Chapter 3, we focus on removable elements that also retain a

copy of a specified 3-connected minor. In Section 3.1, we give an example to

show that Theorem 2.0.1 is best possible in the sense that we cannot guaran-

tee more than one element that is strictly removable and robust. Section 3.2

culminates in Theorem 3.2.10, a generalisation of Theorem 2.0.4. Finally,

in Section 3.3, we prove Theorem 3.3.1, a generalisation of Theorem 2.0.5.

We write x ∈ cl(∗)(Y ) to denote that either x ∈ cl(Y ) or x ∈ cl∗(Y ). The

phrase by orthogonality refers to the fact that a circuit and a cocircuit cannot

intersect in exactly one element. Lastly, we remark that the 3-connectivity

conclusions in the theorems in Sections 2.3 and 3.2 are up to parallel and

series classes. However, with the help of Lemma 2.1.8 in the next section,

it is easily seen that these conclusions are really up to parallel and series

couples, where a parallel couple (respectively, series couple) is a parallel

(respectively, series) class of size two.



Chapter 2

Chain Theorems

In this chapter we prove two chain theorems: Theorem 2.0.2 and a general-

isation of Theorem 2.0.3. These theorems are analogues of Tutte’s Wheels-

and-Whirls Theorem (Theorem 1.0.1) that ensure the existence of elements

that can be removed relative to a fixed basis.

The chapter is structured as follows. The next section contains some

necessary preliminaries regarding 3-connectivity and vertical 3-separations

that are used throughout Part I of the thesis. In each of the two subse-

quent sections we prove a chain theorem. In Section 2.2, the result ensures

the existence of two strictly removable elements, which preserve strict 3-

connectivity, while the result in Section 2.3 ensures the existence of four

removable elements, which preserve 3-connectivity up to simplification or

cosimplification.

2.1 Preliminaries

The following lemma is a consequence of the easily verified fact that the

connectivity function is submodular.

Lemma 2.1.1. Let M be a 3-connected matroid, and let X and Y be 3-

separating subsets of E(M).

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.

(ii) If |E(M)− (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

When Lemma 2.1.1 is applied in this part of the thesis, we refer to it as

“uncrossing”. The next corollary follows by a routine induction argument.

12
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Corollary 2.1.2. Let M be a 3-connected matroid, and let X be a finite

set of 3-separating subsets of E(M). If
∣∣E(M)−

(⋃
X∈X X

)∣∣ ≥ 2, then⋂
X∈X X is 3-separating.

The following two lemmas are used frequently in this part of the thesis.

The first is well known (see, for example, Proposition 2.1.12, Oxley, 2011)

and is a consequence of orthogonality; the second is a consequence of the

first.

Lemma 2.1.3. Let e be an element of a matroid M , and let X and Y be

disjoint sets whose union is E(M) − {e}. Then e ∈ cl(X) if and only if

e /∈ cl∗(Y ).

Lemma 2.1.4. Let X be an exactly 3-separating set in a 3-connected ma-

troid with ground set E, and suppose that e ∈ E −X. Then

(i) X ∪ {e} is 3-separating if and only if e ∈ cl(∗)(X), and

(ii) X ∪ {e} is exactly 3-separating if and only if e is in exactly one of

cl(X) ∩ cl(E − (X ∪ {e})) and cl∗(X) ∩ cl∗(E − (X ∪ {e})).

The next lemma was established by Oxley et al. (2008b).

Lemma 2.1.5. Let (X,Y ) be an exactly 3-separating partition of a 3-

connected matroid M . If |X| ≥ 3 and x ∈ X, then x ∈ cl(∗)(X − {x}).

A 3-separation (X,E−X) of a matroid M with ground set E is vertical

if r(X) ≥ 3 and r(E−X) ≥ 3. We also say a partition (X, {e}, Y ) of E is a

vertical 3-separation when (X ∪ {e}, Y ) and (X,Y ∪ {e}) are both vertical

3-separations and e ∈ cl(X) ∩ cl(Y ). The next three lemmas will be used

frequently; a proof of the first is given by Oxley et al. (2008a), the second

follows from a result established by Oxley et al. (2008b), while the third is

elementary.

Lemma 2.1.6. Let M be a 3-connected matroid and let z ∈ E(M). If

si(M/z) is not 3-connected, then M has a vertical 3-separation (X, {z}, Y ).

Lemma 2.1.7. Let (X, {z}, Y ) be a vertical 3-separation of a 3-connected

matroid M . Then there exists a vertical 3-separation (X ′, {z}, Y ′) such that

X ′ ⊆ X, and Y ′ ∪ {z} is closed.
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Lemma 2.1.8. Let M be a 3-connected matroid and let L be a rank-2 subset

with at least four elements. If l ∈ L, then M\l is 3-connected.

Let (X ′, {b′}, Y ′) be a vertical 3-separation in a matroid M , and let

B ⊆ E(M). We say that X ′ is minimal in (X ′, {b′}, Y ′) with respect to B,

where b′ ∈ B, if for any other vertical 3-separation (X, {b}, Y ) on M such

that b ∈ X ′ ∩B, we have X * X ′ ∪ {b′} and Y * X ′ ∪ {b′}. If our choice of

B is clear, we will just say X ′ is minimal in (X ′, {b′}, Y ′).
The next two lemmas are contained in results from the literature; the

proofs are provided for completeness. In particular, the second lemma is

extracted from proofs by both Oxley et al. (2008a, Lemma 3.2), and Whittle

and Williams (2013, Lemma 3.1).

Lemma 2.1.9. Let (X, {b}, Y ) be a vertical 3-separation of a matroid M

with B ⊆ E(M) and b ∈ B. There exists a vertical 3-separation (X ′, {b′}, Y ′)
such that X ′ is minimal in (X ′, {b′}, Y ′) with respect to B, the set Y ′ ∪ {b′}
is closed, X ′ ∪ {b′} ⊆ X ∪ {b}, and b′ ∈ (X ∪ {b}) ∩B.

Proof. By Lemma 2.1.7, there exists a vertical 3-separation (X1, {b}, Y1)
such that Y1 ∪ {b} is closed, and X1 ⊆ X. Suppose that X1 is not minimal

in (X1, {b}, Y1). Then there exists a vertical 3-separation (X2, {b2}, Y2) with

b2 ∈ X1 ∩ B such that X2 ⊆ (X1 − {b2}) ∪ {b}. If X2 = (X1 − {b2}) ∪ {b},
then Y2 = Y1, so b2 ∈ cl(Y1), contradicting the fact that Y1 ∪ {b} is closed.

So X2 $ (X1 − {b2}) ∪ {b}.
If X2 is not minimal in (X2, {b2}, Y2), then we can pick a b3 ∈ X2 ∩ B

such that (X3, {b3}, Y3) is a vertical 3-separation and repeat the process.

Since |Xj | < |Xi| for i < j, we will eventually obtain a vertical 3-separation

(Xn, {bn}, Yn) such that Xn is minimal in (Xn, {bn}, Yn). By Lemma 2.1.7,

there exists a vertical 3-separation (X ′, {b′}, Y ′) that also satisfies the crite-

rion that Y ′ ∪ {b′} is closed.

Lemma 2.1.10. Let M be a 3-connected matroid with a vertical 3-separation

(X1, {b1}, Y1) such that Y1 ∪ {b1} is closed, X1 is minimal in (X1, {b1}, Y1)
with respect to some B ⊆ E(M), and b1 ∈ B. If (X2, {b2}, Y2) is a vertical

3-separation of M with Y2 ∪ {b2} closed, b2 ∈ X1 ∩B, and b1 ∈ Y2, then all

of the following hold:

(i) X1 ∩X2, X1 ∩ Y2, Y1 ∩X2, and Y1 ∩ Y2 are all non-empty,
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(ii) r((X1 ∩X2) ∪ {b2}) = 2, and

(iii) if |Y1 ∩X2| ≥ 2, then r((X1 ∩ Y2) ∪ {b1, b2}) = 2.

Proof. Suppose that X1 ∩ X2 = ∅; then X2 ⊆ Y1 ∪ {b1} and thus

b2 ∈ cl(X2) ⊆ cl(Y1 ∪ {b1}) = Y1 ∪ {b1}, contradicting b2 ∈ X1. Likewise, if

X1 ∩ Y2 = ∅, then Y2 ⊆ Y1 ∪ {b1} and b2 ∈ Y1 ∪ {b1}; a contradiction. Now

suppose that Y1 ∩X2 = ∅; then X2 ⊆ X1 ∪ {b1}, but since b2 ∈ X1 ∩B, this

contradicts the minimality of X1 in (X1, {b1}, Y1). Likewise if Y1 ∩ Y2 = ∅,
then Y2 ⊆ X1 ∪ {b1}; a contradiction. So (i) holds.

As E(M)−(X1∪X2) = (Y1∩Y2)∪{b1}, we have |E(M)−(X1∪X2)| ≥ 2.

Thus, as X1 and X2 are 3-separating, X1 ∩ X2 is 3-separating, by un-

crossing. If |X1 ∩ X2| = 1, then (ii) holds. It remains to consider when

|X1 ∩ X2| ≥ 2. In this case, since |E(M) − (X1 ∩ X2)| ≥ 2 and M is 3-

connected, X1 ∩ X2 is an exact 3-separation. Since X1 and X2 ∪ {b2} are

3-separating, and |E(M)− (X1 ∪X2 ∪ {b2})| = |Y1 ∩ Y2|+ 1 ≥ 2, it follows,

by uncrossing, that X1 ∩ (X2 ∪ {b2}), which equals (X1 ∩ X2) ∪ {b2}, is

3-separating. By Lemma 2.1.4(i), b2 ∈ cl(∗)(X1 ∩X2). If b2 ∈ cl∗(X1 ∩X2),

then, by Lemma 2.1.3, b2 /∈ cl(Y1 ∪ Y2); a contradiction, as b2 ∈ cl(Y2).

So b2 ∈ cl(X1 ∩ X2). But then, if r(X1 ∩ X2) ≥ 3, the partition

(X1 ∩ X2, {b2}, Y1 ∪ Y2) is a vertical 3-separation of M , contradicting the

minimality of X1 in (X1, {b1}, Y1). Thus (ii) holds.

Finally, to prove (iii), let |Y1 ∩X2| ≥ 2. Since X1 ∪ {b1} and Y2 ∪ {b2}
are 3-separating, and |E(M)− ((X1 ∪ {b1}) ∪ (Y2 ∪ {b2}))| = |Y1 ∩X2| ≥ 2,

it follows, by uncrossing, that (X1 ∪ {b1}) ∩ (Y2 ∪ {b2}) is 3-separating.

But |(X1 ∩ Y2) ∪ {b1, b2}| ≥ 2 and |E(M) − ((X1 ∩ Y2) ∪ {b1, b2})| ≥ 2,

so, since M is 3-connected, (X1 ∩ Y2) ∪ {b1, b2} is exactly 3-separating. By

Lemma 2.1.5, b2 ∈ cl(∗)((X1 ∪ {b1}) ∩ Y2). But noting that X2 ⊆ E(M) −
((X1 ∩ Y2) ∪ {b1, b2}), we have b2 ∈ cl(E(M)− ((X1 ∩ Y2) ∪ {b1, b2})), thus,

by Lemma 2.1.3, b2 /∈ cl∗((X1 ∪ {b1}) ∩ Y2). So b2 ∈ cl((X1 ∪ {b1}) ∩ Y2).
If r((X1 ∩ Y2) ∪ {b1, b2}) ≥ 3, then it follows that ((X1 ∪ {b1}) ∩ Y2, {b2},
E(M)− ((X1∩Y2)∪{b1, b2})) is a vertical 3-separation that contradicts the

minimality of X1 in (X1, {b1}, Y1). So (iii) holds, completing the proof of

the lemma.
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2.2 The existence of strictly removable elements

Let M be a 3-connected matroid with no 4-element fans, and let B be a

basis of M . Recall that an element e ∈ E(M) is strictly B-removable if

e ∈ B and M/e is 3-connected, or e ∈ E(M)− B and M\e is 3-connected.

The matroid M has at least one strictly B-removable element (Oxley et al.,

2008a, Theorem 1.1). In Section 2.2.1, we show that there are at least two

such elements, thus proving Theorem 2.0.2. However, we cannot guarantee

more than two such elements, as we show in Section 2.2.2.

2.2.1 The proof of Theorem 2.0.2

We start with two simple lemmas. A proof of the dual of the first is given

by Oxley (2011, Proposition 8.2.7), and a proof of the dual of the second is

given by Oxley et al. (2008a, Lemma 4.1).

Lemma 2.2.1. Let e be an element of a matroid M . Suppose that M/e is

3-connected, but M is not. Then either e is a loop, e is a coloop, or e is

contained in a series pair.

When a matroid is 2-connected, we simply say it is connected ; otherwise,

we say it is disconnected.

Lemma 2.2.2. Let M be a connected matroid with at least seven elements

such that si(M) is 3-connected and all parallel classes of M have size at

most two. Let {p1, p2} and {q1, q2} be distinct parallel pairs of M . Then

{p1, p2, q1, q2} is coindependent.

The next lemma handles a special situation that arises regularly.

Lemma 2.2.3. Let M be a 3-connected matroid with no 4-element fans,

and containing the triangles {b1, a, b2} and {b2, d, d′}, and a cocircuit

{a, b2, d, d′}. Then M\d and M\d′ are 3-connected.

Proof. Towards a contradiction, suppose that M\d is not 3-connected.

Then there exists a 2-separation (W,Z) of M\d. Without loss of gen-

erality, |W ∩ {b1, a, b2}| ≥ 2. Since r({b1, a, b2}) = 2, we have r(W ) =

r(W ∪ {b1, a, b2}) ≤ r(M) − 1, so either (W ∪ {b1, a, b2}, Z − {b1, a, b2}) is

a 2-separation of M\d, or |Z − {b1, a, b2}| < 2. But if |Z − {b1, a, b2}| < 2,

then it follows that Z is a series pair that meets the triangle {b1, a, b2} in a
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single element, contradicting orthogonality. Since {a, b2, d, d′} is a cocircuit,

d′ ∈ cl∗M\d(W ∪ {b1, a, b2}) so either (W ∪ {b1, a, b2, d′}, Z − {b1, a, b2, d′})
is a 2-separation of M\d, or |Z − {b1, a, b2}| = 2. Since d ∈ cl({b2, d′}),
the first possibility implies that (W ∪ {b1, a, b2, d, d′}, Z − {b1, a, b2, d′}) is

a 2-separation of M ; a contradiction. The second possibility implies that

(Z−{b1, a, b2})∪{d} is a triad that forms a 4-element fan with the triangle

{b2, d, d′}; a contradiction. Thus M\d is 3-connected, and, by symmetry,

M\d′ is also 3-connected.

The approach taken to prove Theorem 2.0.2 is as follows. If M has an

element b ∈ B such that si(M/b) is not 3-connected, there is a vertical 3-

separation (X, {b}, Y ), by Lemma 2.1.6. The set X contains an element

b2 ∈ B; Lemma 2.2.4 handles the case where si(M/b2) is not 3-connected,

while Lemmas 2.2.5 and 2.2.6 handle when si(M/b2) is 3-connected. After

compiling these, as Lemma 2.2.7, one special case remains, which is handled

in Lemma 2.2.8.

Lemma 2.2.4. Let M be a 3-connected matroid with no 4-element fans and

let B be a basis of M . Let B′ be a subset of B such that if b ∈ B and si(M/b)

is not 3-connected, then b ∈ B′. Suppose there exist elements b1 ∈ B′ such

that (X1, {b1}, Y1) is a vertical 3-separation with Y1 ∪ {b1} closed and X1

minimal in (X1, {b1}, Y1) with respect to B′, and b2 ∈ X1 ∩ B′ such that

si(M/b2) is not 3-connected. Then either

(i) there exist distinct elements d, d′ ∈ X1 ∩ (E(M) − B) such that M\d
and M\d′ are 3-connected, or

(ii) X1 = {a, b2, b3, d} where X1 ∩ B = {b2, b3}, and M\d and si(M/b3)

are 3-connected, but co(M\a), si(M/b2) and M/b3 are not.

Proof. The matroid M has a vertical 3-separation (X2, {b2}, Y2), by

Lemma 2.1.6, where b1 ∈ Y2 and, by Lemma 2.1.7, Y2 ∪ {b2} is closed.

By Lemma 2.1.10, each of X1 ∩X2, X1 ∩ Y2, Y1 ∩X2, and Y1 ∩ Y2 is non-

empty, and r((X1∩X2)∪{b2}) = 2. We consider two cases separately: when

|Y1 ∩X2| = 1, and when |Y1 ∩X2| ≥ 2.

First, consider the case when |Y1 ∩X2| = 1. As |X2| ≥ 3 and b1 /∈ X2,

|X1 ∩ X2| ≥ 2. If |X1 ∩ X2| = 2, then (X1 ∩ X2) ∪ {b2} is a triangle

and X2 is a triad, so X2 ∪ {b2} is a 4-element fan; a contradiction. So

|X1 ∩ X2| ≥ 3, in which case (X1 ∩ X2) ∪ {b2} is a rank-2 set of at least
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four elements. Thus, by Lemma 2.1.8, M\x is 3-connected for x ∈ X1 ∩X2.

Since at most one element of X1 ∩ X2 is in B, the set X1 ∩ X2 contains

distinct elements d, d′ ∈ X1 ∩ (E(M) − B) such that M\d and M\d′ are

3-connected, satisfying (i).

Now consider the case when |Y1 ∩ X2| ≥ 2. By Lemma 2.1.10(iii),

r((X1 ∩ Y2) ∪ {b1, b2}) = 2. We label the lines L1 = (X1 ∩ Y2) ∪ {b1}
and L2 = (X1 ∩X2) ∪ {b2}. If cl(L1) or cl(L2) has cardinality at least four,

then, by Lemma 2.1.8, there are two distinct elements in E(M)−B whose

deletion maintains 3-connectivity, again satisfying (i). Suppose instead that

| cl(L1)| = 3 and | cl(L2)| ∈ {2, 3}. Let X1 ∩ Y2 = {a}. If | cl(L2)| = 2, so

|X1 ∩ X2| = 1, then X1 is a triad, cl(L1) is a triangle, and both contain

{a, b2} resulting in a 4-element fan; a contradiction. So let | cl(L2)| = 3 and,

in particular, X1∩X2 = {c, d} where d ∈ E(M)−B. Then, by Lemma 2.2.3,

M\d and M\c are 3-connected. If c ∈ E(M)−B, then (i) holds. So we now

assume that c ∈ B.

First, we consider the case where si(M/c) is 3-connected. Since c is in a

triangle, M/c is not 3-connected. We also observe that a ∈ E(M)−B since

b1, b2 ∈ cl(L2), and since X1−{a} is a triangle, co(M\a) is not 3-connected.

Thus we have case (ii), with b3 = c.

We now assume that si(M/c) is not 3-connected, in which case, by

Lemma 2.1.6, M has a vertical 3-separation (X3, {c}, Y3) with b1 ∈ Y3.

We may assume that Y3 ∪ {c} is closed, by Lemma 2.1.7. Then, as c ∈ B′,
since si(M/c) is not 3-connected, each of X1 ∩ X3, X1 ∩ Y3, Y1 ∩ X3 and

Y1 ∩ Y3 is non-empty and r((X1 ∩X3) ∪ {c}) = 2, by Lemma 2.1.10. Since

X1 = {a, b2, c, d}, we have {|X1 ∩X3|, |X1 ∩ Y3|} = {1, 2}. If |Y1 ∩X3| = 1,

then |X1 ∩ X3| = 2, since |X3| ≥ 3, implying that X3 ∪ {c} is a 4-

element fan; a contradiction. So |Y1 ∩ X3| ≥ 2 and, by Lemma 2.1.10(iii),

r((X1∩Y3)∪{b1, c}) = 2. Since {b1, b2, c} ⊆ B, it follows that b2 ∈ X1∩X3.

If a ∈ X1∩Y3, then c ∈ cl({a, b1}) ⊆ cl(Y2∪{b2}) = Y2∪{b2}; a contradiction.

But then a ∈ X1∩X3, in which case c ∈ cl({a, b2}) ⊆ cl(Y2∪{b2}) = Y2∪{b2};
again, a contradiction. Thus the lemma holds.

The approach taken in the proof of the next lemma is inspired by the

proof of the main theorem in the paper by Oxley et al. (2008a, Theorem 1.2).

Lemma 2.2.5. Let M be a 3-connected matroid with no 4-element fans and

|E(M)| ≥ 7. Let B be a basis of M such that si(M/b) is 3-connected for



2.2. THE EXISTENCE OF STRICTLY REMOVABLE ELEMENTS 19

some b ∈ B. Then either

(i) M/b is 3-connected, or

(ii) M\d is 3-connected for some d ∈ E(M)−B, where {b, d} is contained

in a triangle of M .

Proof. Suppose that (i) does not hold. The matroid M/b is not 3-connected,

but si(M/b) is, so M/b has a non-trivial parallel class P , as M is 3-

connected. Since at most one element of P is in B, there exists an ele-

ment d ∈ P ∩ (E(M) − B). As rM (P ∪ {b}) = 2, if |P | > 2 then M\d is

3-connected, by Lemma 2.1.8, so (ii) holds.

Now we may assume that all parallel classes of M/b are parallel pairs.

Let one such pair be P = {p1, p2}, with p1 ∈ E(M) − B. If M\p1 is 3-

connected, then, since P ∪ {b} is a triangle, (ii) holds; so we now assume

that M\p1 is not 3-connected.

Suppose that b is in series with some other element s of M\p1; then, since

b cannot be in series with s in M , {s, b, p1} is a triad in M . But {b, p1, p2}
is a triangle of M , so {s, b, p1, p2} is a 4-element fan; a contradiction. Thus,

b is not in series with any other element of M\p1.
Since M/b is 3-connected up to parallel pairs, and hence M/b\p1 is also,

if M/b\p1 has no parallel pairs, then it is 3-connected. By the contrapositive

of Lemma 2.2.1, M\p1 is also 3-connected, since b is not contained in a series

pair in M\p1; a contradiction. So we may assume that M\p1/b has at least

one parallel pair Q.

If Q is a parallel pair of M\p1, it is a parallel pair of M ; a contradiction.

So, letting Q = {q1, q2}, we have that {q1, q2, b} is a triangle of M\p1. Let

(J,K) be a 2-separation of M\p1 where, without loss of generality, b ∈ J . If

|J | = 2, then it follows that J is a series pair; a contradiction. Thus |J | ≥ 3

and (J − {b},K) is a 2-separation of M\p1/b since

λM\p1/b(J − {b}) ≤ (rM\p1(J)− 1) + rM\p1(K)− (r(M\p1)− 1)

= 1.

Because M\p1/b is 3-connected up to parallel pairs, either

(J − {b}) ∩ E(si(M\p1/b)) or K ∩ E(si(M\p1/b)) consists of a single el-

ement. Thus, either rM\p1(J) = 2 or rM\p1(K ∪ {b}) = 2. If b ∈ clM\p1(K)
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then rM\p1/b(K) = rM\p1(K)− 1 and M\p1/b is disconnected; a contradic-

tion. Since K consists of at least two elements, it has rank at least two

in M\p1, so rM\p1(K ∪ {b}) > 2 and rM\p1(J) = 2, and it follows that

|J | = 3. Hence Q = J − {b} is the unique parallel pair of M/b\p1 and, by

Lemma 2.1.3, b ∈ cl∗M\p1(Q).

It follows that {b, p1, q1, q2} contains a cocircuit in M . Recalling that

{q1, q2, b} is a triangle of M\p1, and thus is also a triangle of M , if

{b, p1, q1, q2} contains a triad, then we have a 4-element fan in M ; a contra-

diction. So {b, p1, q1, q2} is a cocircuit.

Since the intersection of the circuit {q1, q2, b} with the cobasis E(M)−B
is non-empty, we can assume that q1 ∈ E(M) − B. Then, if M\q1 is 3-

connected, (ii) is satisfied. If not, following the same argument as for when

M\p1 is not 3-connected, we see that M/b\q1 has a unique parallel pair. But

since Q is the only parallel pair in M/b\p1, the only parallel pairs in M/b

are P and Q, and the unique parallel pair in M/b\q1 is P . Furthermore,

b ∈ cl∗M\q1(P ). Thus {b, q1, p1, p2} contains a cocircuit—in fact it is a cocir-

cuit since M has no 4-element fans. By the dual of the circuit elimination

axiom, {p1, p2, q1, q2} contains a cocircuit. Thus, by Lemma 2.2.2 and since

|E(M/b)| ≥ 6, we have a contradiction unless |E(M/b)| = 6.

In the exceptional case, |E(M)| = 7 and the only triangles of M con-

taining b are {b, p1, p2} and {b, q1, q2}. It follows that |E(si(M/b))| = 4,

thus si(M/b) ∼= U2,4, since si(M/b) is 3-connected. Now r(M) = 3, and

E(M) − {p1, p2, q1, q2} is contained in a hyperplane with rank two; a con-

tradiction. This completes the proof of the lemma.

Lemma 2.2.6. Let M be a 3-connected matroid with no 4-element fans and

|E(M)| ≥ 7. Let B be a basis of M and let (X1, {b1}, Y1) be a vertical 3-

separation of M such that si(M/b) is 3-connected for some b ∈ X1 ∩B, and

Y1 ∪ {b1} is closed. Then one of the following holds:

(i) M/b is 3-connected,

(ii) there exists an element d ∈ cl(X1) ∩ (E(M) − B) such that M\d is

3-connected, and M has a triangle containing b and d, or

(iii) there exist distinct elements d ∈ X1∩ (E(M)−B) and d′ ∈ E(M)−B
such that both M\d and M\d′ are 3-connected.
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Proof. It follows from Lemma 2.2.5 that either (i) holds, or there exists

an element d ∈ E(M) − B such that M\d is 3-connected and b and d are

contained in a rank-2 set L of at least three elements. First suppose |L| ≥ 4.

Due to the rank of L, we have |L ∩ B| ≤ 2. Then, by Lemma 2.1.8, there

are at least two elements d, d′ ∈ L ∩ (E(M)− B) whose deletion maintains

3-connectivity. If |L ∩ (Y1 ∪ {b1})| ≥ 2, then, since Y1 ∪ {b1} is closed,

L ⊆ Y1 ∪ {b1}, contradicting b ∈ X1 ∩ L. Thus |L ∩ (Y1 ∪ {b1})| ≤ 1, so,

without loss of generality, d ∈ X1, and thus (iii) holds.

Now suppose |L| = 3 and let L = {d, b, q}. If d ∈ X1, then (ii) holds, so

assume that d ∈ Y1 ∪ {b1}. Then, recalling b ∈ X1, if q ∈ Y1 ∪ {b1}, we have

b ∈ cl(Y1 ∪ {b1}), contradicting the fact Y1 ∪ {b1} is closed. So q ∈ X1, and

thus d ∈ cl(X1), satisfying (ii).

Lemma 2.2.7. Let M be a 3-connected matroid with no 4-element fans

where B is a basis of M , and |E(M)| ≥ 7. Suppose there exists an element

b1 ∈ B such that si(M/b1) is not 3-connected, and let (X1, {b1}, Y1) be a

vertical 3-separation of M . Then one of the following holds:

(i) M has at least two strictly B-removable elements, or

(ii) there exists an element d ∈ cl(X1) ∩ cl(Y1) ∩ (E(M) − B) such that

M\d is 3-connected. Moreover, there exist elements bx ∈ X1 ∩ B and

by ∈ Y1 ∩ B such that si(M/bx) and si(M/by) are 3-connected, and

M/b is not 3-connected for all b ∈ B.

Proof. By Lemma 2.1.7, there exists a vertical 3-separation (X ′, {b1}, Y ′)
such that X ′ ⊆ X1 and Y ′ ∪ {b1} is closed. There also exists a vertical

3-separation (Y ′′, {b1}, X ′′) where X ′′ ∪ {b1} is closed and Y ′′ ⊆ Y1, with

X ′ ∩ Y ′′ = ∅. We show that there exists a strongly B-removable element

bx ∈ X ′ ∩ B or dx ∈ cl(X ′) ∩ (E(M) − B), and a strongly B-removable

element by ∈ Y ′′ ∩ B or dy ∈ cl(Y ′′) ∩ (E(M)− B). If the two elements we

find are equal, we show that (ii) holds; otherwise (i) holds.

There exists an element b′1 ∈ (X ′ ∪ {b1}) ∩B such that (X ′1, {b′1}, Y ′1) is

a vertical 3-separation with X ′1 minimal in (X ′1, {b′1}, Y ′1), and X ′1 ∪ {b′1} ⊆
X ′ ∪ {b1}, by Lemma 2.1.9. First, suppose that si(M/b) is 3-connected for

all b ∈ X ′1 ∩ B. Since X ′1 is an exactly 3-separating set of rank at least

three, there exists at least one such b. Then, by Lemma 2.2.6, either (i)

holds immediately, or there exists either a bx ∈ X ′1 ∩ B such that M/bx is
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3-connected, or a dx ∈ cl(X ′1)∩ (E(M)−B) such that M\dx is 3-connected.

Note that bx 6= b1, so bx ∈ X ′ ∩ B, and cl(X ′1) ⊆ cl(X ′ ∪ {b1}) = cl(X ′), so

dx ∈ cl(X ′) ∩ (E(M) − B). Now suppose that si(M/b2) is not 3-connected

for some b2 ∈ X ′1 ∩ B. Then, by Lemma 2.2.4, there exists an element

dx ∈ X ′1 ∩ (E(M) − B) such that M\dx is 3-connected. Note that, in fact,

dx ∈ X ′ ∩ (E(M)−B).

By the same reasoning for the vertical 3-separation (Y ′′, {b}, X ′′), there

exists either a by ∈ Y ′′ ∩ B such that M/by is 3-connected, or a dy ∈
cl(Y ′′) ∩ (E(M) − B) such that M\dy is 3-connected. It is now clear

that the lemma holds, apart from in the case where we have a dx and

dy such that dx = dy. Consider this case. We relabel d = dx = dy.

There exist vertical 3-separations (X ′1, {b′1}, Y ′1) and (Y ′′1 , {b′′1}, X ′′1 ) where

d ∈ cl(X ′1) ∩ cl(Y ′′1 ) ∩ (E(M) − B), with X ′1 ∪ {b′1} ⊆ X1 ∪ {b1} and

Y ′′1 ∪ {b′′1} ⊆ Y1 ∪ {b1}. Since cl(X ′) ∩ Y ′′ = ∅ = X ′ ∩ cl(Y ′′), this is

only possible when si(M/b) is 3-connected for all b ∈ X ′ ∪ Y ′′. If M/b is 3-

connected for some b ∈ B, then (i) holds. Otherwise, letting bx ∈ X ′1∩B and

by ∈ Y ′′1 ∩B, we have case (ii). This completes the proof of the lemma.

We require one more lemma in order to prove Theorem 2.0.2.

Lemma 2.2.8. Let M be a 3-connected matroid with no 4-element fans and

a basis B. Suppose there exists an element b ∈ B such that si(M/b) is 3-

connected and b is in a triangle {b, x1, x2}, where M\x1 is not 3-connected.

Then either

(i) there exist distinct elements d, d′ ∈ E(M) − B such that M\d and

M\d′ are 3-connected, and there exists a rank-2 set of at least four

elements containing {b, d, d′}, or

(ii) b is contained in a triangle {b, d, x3}, where {x1, x2}∩{d, x3} = ∅, the

matroid M\d is 3-connected, and d ∈ E(M)−B.

Proof. Since M\x1 is not 3-connected, it has a 2-separation (P,Q). Without

loss of generality, let b ∈ Q. If x2 ∈ Q, then x1 ∈ cl(Q) and (P,Q∪{x1}) is a

2-separation of M ; a contradiction. So x2 ∈ P . Also note that if b ∈ cl(P ),

then x1 ∈ cl(P ); a contradiction. So b /∈ cl(P ).

Next we show that (P ∪ {x1}, Q − {b}) is 2-separating in M/b. Since

{x1, x2} is a parallel pair in M/b, and b /∈ cl(P ), we have rM/b(P ∪ {x1}) =
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rM/b(P ) = rM (P ). Also, rM/b(Q− {b}) = rM (Q)− 1. Thus,

λM/b(P ∪ {x1}) = rM (P ) + (rM (Q)− 1)− (r(M)− 1)

= rM\x1
(P ) + rM\x1

(Q)− r(M\x1)

= 1.

Since si(M/b) is 3-connected, either |(Q − {b}) ∩ E(si(M/b))| = 1 or

|(P ∪ {x1}) ∩ E(si(M/b))| = 1. But since b /∈ cl(P ) and |P | ≥ 2, the latter

is not possible. Thus the former holds, so rM (Q) = 2.

Because (P,Q) is a 2-separation of M\x1, we have λM (P ) = 2, and

rM (Q ∪ {x1}) = 3. Thus, rM (P ) = r(M) − 1, so Q ∪ {x1} contains a

cocircuit. If |Q| = 2, then Q ∪ {x1, x2} is a 4-element fan; a contradiction.

If, instead, |Q| ≥ 4, then Q contains at most two elements of B, so (i) holds

by Lemma 2.1.8. It remains to consider when |Q| = 3. If Q ∪ {x1} contains

a triad, then Q ∪ {x1} is a contradictory 4-element fan; so Q ∪ {x1} is a

cocircuit. Given that r(Q) = 2, there is at least one element of Q not in

B, so let Q = {b, d, x3} where d ∈ E(M) − B. By Lemma 2.2.3, M\d is

3-connected. Thus (ii) holds.

Proof of Theorem 2.0.2. Suppose that r(M) ≤ 2. Since the only 3-

connected matroids of rank at most two are uniform, M is isomorphic to

U1,2, U1,3 or U2,n for n ≥ 3. Letting E(U1,2) = {b, d}, where {b} is a basis of

U1,2, we see that U1,2/b ∼= U0,1 and U1,2\d ∼= U1,1, where both U0,1 and U1,1

are 3-connected, so the theorem holds when M ∼= U1,2. When M ∼= U1,3,

the matroid U1,3\d is isomorphic to U1,2, which is 3-connected, for each

d ∈ E(U1,3) − B. Again, the theorem holds. Likewise, the theorem holds

when M ∼= U2,3, by duality. Finally, if M ∼= U2,n for n ≥ 4, then M\x is

3-connected for any x ∈ E(M), by Lemma 2.1.8, so the theorem holds in

this case. We may now assume that r(M) ≥ 3 and, by duality, r∗(M) ≥ 3.

Suppose that |E(M)| = 6. Then r(M) = r∗(M) = 3, and it follows that

since M has no 4-element fans, M is isomorphic to U3,6 or P6, where the

latter is the 6-element rank-3 matroid that has a single triangle as its only

non-spanning circuit. In U3,6, we can delete any element of E(M) − B to

obtain the 3-connected matroid U3,5, so the theorem holds when M ∼= U3,6.

Now consider P6. Deleting an element in the triangle results in a matroid

isomorphic to U3,5, so the theorem holds if at most one element in this
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triangle is in B. It remains to consider the case where there are two elements

of B in this triangle. Suppose that the other element of B is b3. Then

P6/b3 ∼= U2,5, a 3-connected matroid, in which case the theorem holds.

We now assume that |E(M)| ≥ 7 and consider two cases: the first is

when there exists an element b1 ∈ B such that si(M/b1) is not 3-connected;

and the second is when for every b ∈ B, the matroid si(M/b) is 3-connected.

In the first case, Lemma 2.2.7 implies that either the theorem holds,

or there exists an element d ∈ cl(X1) ∩ cl(Y1) ∩ (E(M) − B) such that

M\d is 3-connected, where (X1, {b1}, Y1) is a vertical 3-separation of M ,

there exist elements bx ∈ X1 ∩ B and by ∈ Y1 ∩ B such that si(M/bx) and

si(M/by) are 3-connected, and M/b is not 3-connected for all b ∈ B. Since

si(M/bx) is 3-connected but M/bx is not, either bx is in a rank-2 set of

at least four elements, in which case the theorem holds by Lemma 2.1.8,

or bx is contained in a triangle {bx, x, d1} where M\d1 is 3-connected, by

Lemma 2.2.5. Likewise, when the theorem does not hold immediately, by is

contained in a triangle {by, y, d2} where M\d2 is 3-connected. If d 6= d1 or

d 6= d2, then the theorem holds, so assume otherwise. Now, since the union

of these two triangles has rank three, either x or y is not in B. Without loss

of generality, we may assume that x ∈ E(M) − B. If M\x is 3-connected,

then the theorem holds; otherwise, by Lemma 2.2.8, bx is contained in a

triangle {bx, x′, d′} where M\d′ is 3-connected, d′ ∈ E(M)−B, and d′ 6= d,

so the theorem holds in this case.

We now consider the second case. Suppose there exists an element b1 ∈ B
such that M/b1 is 3-connected. If there also exists an element b2 ∈ B−{b1}
such that M/b2 is 3-connected, then clearly the theorem holds. Otherwise,

for every b2 ∈ B − {b1}, of which there are at least two such elements,

si(M/b2) is 3-connected, but M/b2 is not. However, since si(M/b2) is 3-

connected, Lemma 2.2.5 implies that E(M)−B contains an element d such

that M\d is 3-connected. Thus the theorem holds.

The only case that remains is when for every b ∈ B, the matroid si(M/b)

is 3-connected but M/b is not 3-connected. By Lemma 2.2.5, each bi ∈ B
is contained in a triangle Ti that also contains an element di ∈ E(M)− B,

where M\di is 3-connected. Since r(M) ≥ 3, let b1, b2 and b3 be distinct

elements of B. Suppose that, for each Ti, we have |Ti ∩ B| ≥ 2. Without

loss of generality, we may assume that T2 = T3 = {b2, b3, d2}. If b2 ∈ T1 or

b3 ∈ T1, then, as r(T1∪T2) = 3, the strictly B-removable elements d1 and d2
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are distinct. So let T1 = {b1, b4, d1} where b4 ∈ B. If d1 = d2, then, by the

circuit elimination axiom, {b1, b2, b3, b4} contains a circuit; a contradiction.

Thus, d1 and d2 are distinct strictly B-removable elements. We may now

assume that T1 = {b1, x, d1}, where x ∈ E(M)−B. If M\x is 3-connected,

then the theorem is satisfied, so assume otherwise. By Lemma 2.2.8, either

the theorem holds or {b1, d, x3} is a triangle of M , where d and d1 are distinct

strictly B-removable elements. This completes the proof of the theorem.

2.2.2 An example with two strictly removable elements

Every 3-connected matroid without 4-element fans has at least two strictly

removable elements, by Theorem 2.0.2. In this section, we give an example

to illustrate that we cannot guarantee more than two such elements. We

shall describe how to construct a matroid Mk,j of arbitrary rank with a basis

B and precisely two strictly B-removable elements. Such a matroid is an

“unpointed” variation of a pointed-flan as defined by Hall et al. (2005).

Let F be a flat of a matroid N . There is a unique extension N+ of N on

E(N) ∪ {e} such that the flats of N containing F are precisely the flats F ′

of N for which F ′ ∪ {e} is a flat of N+ having the same rank as F ′ (Oxley,

2011, Theorem 7.2.3). We call this a principal extension of N and say that

e has been freely added to the flat F . The rank function for N+ is as follows:

for all X ⊆ E(N),

rN+(X) = rN (X), and

rN+(X ∪ {e}) =

rN (X) if F ⊆ clN (X),

rN (X) + 1 if F * clN (X).

We now describe how to construct a matroid Mk,j of rank k + 2 with

precisely two strictly removable elements, where k ≥ 2 and 0 < j < k.

Start with the free (k + 2)-element matroid Uk+2,k+2 with ground set

{t, b0, b1, . . . , bk}. For each i ∈ {1, 2, . . . , k}, freely add ci to the flat

{t, bi−1, bi}. Now, freely add gi to the flat {bi, t} for each i ∈ {0, j, k}.
Finally, we delete t to obtain Mk,j .

Observe that B = {b0, b1, . . . , bk, gj} is a basis for Mk,j . Every element

in E(Mk,j)−B is in a triad, so these elements are not strictly B-removable.

Moreover, the only elements in B that, when contracted, do not open up a

2-separation are b0 and bk. Thus, these are the only two strictly removable
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elements of Mk,j .

In Figure 2.1, we illustrate the matroid M4,2, of rank six. Solid black

circles represent elements in B, while hollow circles represent elements in

E(M4,2)−B. A hollow square is used at the intersection of multiple lines to

indicate that the intersection of the span of those lines is empty. We shall

follow these rules for matroidal illustrations throughout Part I.

b1 b3

b2

g2b0 b4

g4g0

c2

c1

c3

c4

Figure 2.1: A 3-connected rank-6 matroid M4,2 with two strictly removable
elements b0 and b4.

2.3 The existence of removable elements

Let M be a 3-connected matroid and let B be a basis of M . We now turn our

attention to the presence of B-removable elements in M ; that is, elements

b ∈ B such that si(M/b) is 3-connected, or elements d ∈ E(M)−B such that

co(M\d) is 3-connected. Whittle and Williams (2013) proved that M has

at least four B-removable elements, provided that M has no 4-element fans

and |E(M)| ≥ 4 (Theorem 2.0.3). In this section, we strengthen this result

by relaxing the requirement that no 4-element fans are present. However, a

4-element fan with one of two particular labellings, relative to B, requires

special attention. We call these labelled fans either a Type I or Type II fan

relative to B.

This section is structured as follows. In Section 2.3.1, we give some

necessary preliminaries relating to fans; in particular, we define Type I

and Type II fans. Section 2.3.2 contains two key results: the first, Corol-

lary 2.3.11, shows that M has three B-removable elements provided that M

has no Type I fans; while the second, Corollary 2.3.12, shows that M has

four B-removable elements provided that M also has no Type II fans. The

latter generalises Theorem 2.0.3. In Section 2.3.3, we give an example to
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illustrate that Corollary 2.3.12 is best possible in the sense that we cannot

guarantee that M has more B-removable elements.

We begin with a well-known result, known as Bixby’s Lemma (Bixby,

1982).

Lemma 2.3.1. Let e be an element of a 3-connected matroid M . Then

either si(M/e) or co(M\e) is 3-connected.

Proofs for the next three lemmas are given elsewhere; the first is due

to Whittle and Williams (2013, Lemma 2.13), the second is due to Whittle

(1999, Lemma 3.8), and the third is due to Oxley and Wu (2000, Lemma 3.4).

A segment in a matroid M is a subset L of E(M) such that M |L ∼= U2,k for

some k ≥ 2, while a cosegment of M is a segment of M∗.

Lemma 2.3.2. Let M be a 3-connected matroid with a triad {a, b, c} and a

circuit {a, b, c, d}. Then at least one of the following holds:

(i) either co(M\a) or co(M\c) is 3-connected, or

(ii) there exist elements a′, c′ ∈ E(M) such that {a, a′, b} and {b, c, c′} are

triangles, or

(iii) there exists an element z ∈ E(M)− {a, b, c, d} such that {a, b, c, z} is

a cosegment.

Lemma 2.3.3. Let C∗ be a rank-3 cocircuit of a 3-connected matroid M .

If e ∈ C∗ has the property that clM (C∗) − {e} contains a triangle of M/e,

then si(M/e) is 3-connected.

Lemma 2.3.4. Let f1, f2, f3, f4, f5 be distinct elements of a 3-connected

matroid M that is not isomorphic to M(W3). Suppose that {f1, f2, f3} and

{f3, f4, f5} are triangles and {f2, f3, f4} is a triad of M . Then these two

triangles and this one triad are the only triangles and triads of M contain-

ing f3.

2.3.1 Fans

Let M be a 3-connected matroid. A subset F of E(M) having at least three

elements is a fan if there is an ordering (f1, f2, . . . , fk) of the elements of F

such that
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(i) for all i ∈ {1, 2, . . . , k−2}, the triple {fi, fi+1, fi+2} is either a triangle

or a triad, and

(ii) for all i ∈ {1, 2, . . . , k − 3}, if {fi, fi+1, fi+2} is a triangle, then

{fi+1, fi+2, fi+3} is a triad, while if {fi, fi+1, fi+2} is a triad, then

{fi+1, fi+2, fi+3} is a triangle.

An ordering of F satisfying (i) and (ii) is a fan ordering of F . If F has a

fan ordering (f1, f2, . . . , fk) where k ≥ 4, then f1 and fk are the ends of F ,

and f2, f3, . . . , fk−1 are the internal elements of F .

Let F be a fan with ordering (f1, f2, . . . , fk) where k ≥ 5, and let

i ∈ {1, 2, . . . , k}. An element fi is a spoke element of F if {f1, f2, f3} is

a triangle and i is odd, or if {f1, f2, f3} is a triad and i is even; otherwise

fi is a rim element. For a fan F with ordering (f1, f2, f3, f4), the element

f1 is a spoke element of F if {f1, f2, f3} is a triangle, otherwise it is a rim

element ; while f4 is a spoke element if {f1, f2, f3} is a triad, otherwise it is

a rim element.

The next lemma is a variant on a well-known result, which follows easily

from Bixby’s Lemma. We note that the requirement that |E(M)| ≥ 7 is

necessary; the rank-3 whirlW3 has six elements, and si(W3/e) is 3-connected

for a spoke element e ∈ E(W3), while co(W3\e) is 3-connected for a rim

element e ∈ E(W3).

Lemma 2.3.5. Let M be a 3-connected matroid such that |E(M)| ≥ 7.

Suppose M has a fan F of at least four elements, and let f be an end of F .

(i) If f is a spoke element, then co(M\f) is 3-connected and si(M/f) is

not 3-connected.

(ii) If f is a rim element, then si(M/f) is 3-connected and co(M\f) is

not 3-connected.

Proof. Since M has a triangle, r(M) ≥ 2. But if r(M) = 2, then the 3-

connected matroid M is isomorphic to U2,n for some n ≥ 7, and such a

matroid has no 4-element fans; a contradiction. By duality, we may now

assume that r(M) ≥ 3 and r∗(M) ≥ 3. Next we show the following:

2.3.5.1. When f is a spoke element, either si(M/f) is not 3-connected,

or si(M/f) ∼= U2,3. When f is a rim element, either co(M\f) is not 3-

connected, or co(M\f) ∼= U1,3.
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Let f, f2, f3, f4 ∈ F , let {f, f2, f3} be a triangle and let {f2, f3, f4}
be a triad, so f is an end of F and a spoke element. The matroid

si(M/f) ∼= si(M/f\f2) contains a series pair {f3, f4}. But the only 3-

connected matroids with a series pair are U1,2 and U2,3, and the former

also has a parallel pair. Thus, either si(M/f) is not 3-connected, or it is

isomorphic to U2,3, so (2.3.5.1) holds when f is a spoke element. By taking

the dual, we see that (2.3.5.1) also holds when f is a rim element.

Now we assume, by duality, that r(M) ≥ 4. By Bixby’s Lemma, it

suffices to prove that when f is a spoke element si(M/f) is not 3-connected,

and when f is a rim element co(M\f) is not 3-connected. Suppose that

f is a spoke element. The matroid si(M/f) has rank at least three, so

si(M/f) � U2,3 and by (2.3.5.1), si(M/f) is not 3-connected. Now suppose

that f is a rim element. Note that, since r∗(M) ≥ 3, the rank of the matroid

si(M∗/f) is at least two, thus r(co(M\f)) ≥ 2. It follows, by (2.3.5.1), that

since co(M\f) � U1,3, the matroid co(M\f) is not 3-connected.

Let M be a matroid and let B be a basis of M . We define a Type I

fan relative to B in M to be a 4-element fan F with ordering (f1, f2, f3, f4)

where {f1, f2, f3} is a triangle and F ∩ B = {f1, f3}. We define a Type II

fan relative to B in M to be a 4-element fan F with ordering (f1, f2, f3, f4)

where {f1, f2, f3} is a triangle and F ∩B = {f1, f3, f4}.
Let M be a 3-connected matroid M with a basis B, where |E(M)| ≥ 7.

By Lemma 2.3.5(ii), a Type II fan F in M , as described in the previous

paragraph, contains a B-removable element f4.

2.3.2 An upgrade of Theorem 2.0.3

The main result of this section is Corollary 2.3.12, a generalisation of The-

orem 2.0.3 that relaxes the requirement that M has no 4-element fans. The

crux is Proposition 2.3.9, which shows that if M has a B-removable ele-

ment, then we can describe the “location” of either two other B-removable

elements, or a Type I or Type II fan. We prove three corollaries of this result,

each permitting different types of labelled fan. Corollary 2.3.10 shows that

either M has two B-removable elements, or a Type I fan F where each ele-

ment of F is not removable. Corollary 2.3.11 shows that if M has no Type I

fans, then M has three removable elements. Finally, Corollary 2.3.12 gener-

alises Theorem 2.0.3, showing that M has at least four removable elements



2.3. THE EXISTENCE OF REMOVABLE ELEMENTS 30

provided M has no Type I or Type II fans.

We start with a series of lemmas.

Lemma 2.3.6. Let M be a 3-connected matroid with r(M) ≥ 4. Suppose

that C∗ is a rank-3 cocircuit of M such that |C∗| ≥ 4.

(i) If there is no T ⊆ C∗ such that T is a triangle, then co(M\d) is

3-connected for all d ∈ C∗.

(ii) If T ⊆ C∗ such that T is a triangle, then co(M\d) is 3-connected for

all d ∈ T .

Proof. Suppose that co(M\d) is not 3-connected for some d satisfying the

hypothesis of either (i) or (ii). Then M\d has a 2-separation (U, V ) in which

neither U nor V is a series class. Clearly, d /∈ cl(U) and d /∈ cl(V ); other-

wise, M has a 2-separation. Thus U ∩ C∗ and V ∩ C∗ are both non-empty.

Furthermore, either U or V contains two distinct elements x1, x2 ∈ C∗ such

that C∗ ⊆ cl({x1, x2, d}). Without loss of generality, we may assume that

{x1, x2} ⊆ U . The set U ∪ {d} is exactly 3-separating. Therefore, by re-

peated applications of Lemma 2.1.4, for each subset D of V ∩ C∗, the set

D ⊆ cl(V −D) provided |V −D| ≥ 2. Let H = E(M)−C∗. If |V ∩H| ≥ 2,

then cl(H)∩C∗ is non-empty, contradicting the fact that H is a hyperplane.

Thus, |V ∩H| ≤ 1. If |V ∩H| = 0, then H ⊆ U and so, as U ∩ C∗ is non-

empty, r(U) = r(M). This implies that V is a parallel class; a contradiction

as M is 3-connected. Hence, |V ∩H| = 1 and r(V ) = 2. Let V ∩H = {h}.
If |V ∩ C∗| ≥ 2, then h ∈ cl(C∗) and so, by Lemma 2.1.4, h ∈ cl(H − {h}).
In particular, H ⊆ cl(U) and so r(U) = r(M); a contradiction. There-

fore, |V ∩ C∗| = 1, and so V is a 2-element cocircuit, a contradiction. This

completes the proof of the lemma.

Lemma 2.3.7. Let (X,Y ) be a 3-separation of a 3-connected matroid M . If

X∩cl(Y ) 6= ∅ and X∩cl∗(Y ) 6= ∅, then |X∩cl(Y )| = 1 and |X∩cl∗(Y )| = 1.

Proof. Let x ∈ X ∩ cl∗(Y ), and consider M\x. Since x ∈ cl∗(Y ), it follows,

by Lemma 2.1.3, that x 6∈ cl(X − {x}). Therefore, as M is 3-connected,

λM\x(X − {x}) = r(X − {x}) + r(Y )− r(M\x)

= r(X)− 1 + r(Y )− r(M)

= 1,
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so (X−{x}, Y ) is a 2-separation ofM\x. If x ∈ cl(Y ), then (X−{x}, Y ∪{x})
is a 2-separation of M ; a contradiction. Moreover, by the submodularity of

the rank function, r((X − {x}) ∩ cl(Y )) ≤ λM\x(X − {x}) = 1. Hence, as

M has no parallel pairs, |X ∩ cl(Y )| ≤ 1. Thus |X ∩ cl(Y )| = 1.

By contracting an element in X ∩ cl(Y ) and applying a dual argument,

we see that |X ∩ cl∗(Y )| = 1.

The next lemma is straightforward, but it is used frequently in the proof

of Proposition 2.3.9.

Lemma 2.3.8. Let M be a matroid that is simple and cosimple, with

f1, f2, f3, f4 ∈ E(M). If the only triangle containing f3 is {f1, f2, f3} and

the only triad containing f2 is {f2, f3, f4}, then si(M/f3) is 3-connected if

and only if co(M\f2) is 3-connected.

Proof. Since si(M/f3) ∼= M/f3\f2, and co(M\f2) ∼= M\f2/f3, we see that

si(M/f3) ∼= co(M\f2). The result follows.

Proposition 2.3.9. Let M be a 3-connected matroid and let B be a basis

of M . Suppose there exists an element b ∈ B such that si(M/b) is not 3-

connected, and let (X, {b}, Y ) be a vertical 3-separation of M . Then one of

the following holds:

(i) there exist distinct elements s1, s2 ∈ X that are B-removable, or

(ii) there exist distinct elements s1 ∈ X and s2 ∈ cl∗(X) ∩ B that are

B-removable, and a vertical 3-separation (X ′, {b′}, Y ′) of M such that

X ′ ∪ {s2} is a 4-element cosegment containing s1, the element b′ ∈ B
is not B-removable, and X ′ ∪ {b′} ⊆ X ∪ {b}, or

(iii) there exist distinct elements s1 ∈ X and s2, s3 ∈ cl(X) ∩ (E(M)−B)

that are B-removable, or

(iv) M has a Type I fan F relative to B where the internal elements of F

are contained in X, or

(v) M has a Type II fan relative to B contained in X ∪ {b}.

Proof. In what follows, we shall assume that (iv) does not hold, in which case

we will show that one of the other four cases holds. By Lemma 2.1.7, there

exists a vertical 3-separation (X ′, {b}, Y ′) such that Y ′ ∪ {b} is closed and
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X ′ ⊆ X. If the proposition holds for the vertical 3-separation (X ′, {b}, Y ′),
then clearly it holds for the vertical 3-separation (X, {b}, Y ); so we may

assume that Y ∪{b} is closed. Note that |X ∩B| ≥ 1. If X ∩B contains two

or more elements that are B-removable, then (i) holds; so we assume this is

not the case. As a result, it is sufficient to consider the following two cases:

(I) X ∩B = {bc} and bc is B-removable, or

(II) there exists an element bx ∈ X ∩B such that bx is not B-removable.

We will show that in case (I), one of (i)–(iii) holds. Note that if one of (i)–

(iii) holds for a vertical 3-separation (X1, {b1}, Y1) with X1∪{b1} ⊆ X∪{b},
then one of (i)–(iii) holds for (X, {b}, Y ). Thus, we first prove the following,

which includes the case where (I) holds.

2.3.9.1. If there exists an element b1 ∈ B and a vertical 3-separation

(X1, {b1}, Y1) such that X1 ∩ B = {bc}, where bc is B-removable,

X1 ∪ {b1} ⊆ X ∪ {b}, and Y1 ∪ {b1} is closed, then one of (i)–(iii) holds.

Since |X1 ∩B| = 1 and Y1 ∪{b1} is closed, Y1 ∪{b1} is a hyperplane and

X1 is a rank-3 cocircuit. If |X1| ≥ 4, then, by Lemma 2.3.6, there exists

a removable element in X1 ∩ (E(M) − B), so (i) holds. Thus, assume that

|X1| = 3, and let X1 = {a, bc, c}. If a or c is removable with respect to B,

then (i) is satisfied, so we may also assume neither co(M\a) nor co(M\c) is

3-connected.

Suppose that X1∪{b1} is not a 4-element fan. Then X1∪{b1} is a circuit.

As neither co(M\a) nor co(M\c) is 3-connected, it follows, by Lemma 2.3.2,

that either {a, bc, c} are the internal elements of a 5-element fan, or there

exists an element z ∈ E(M)−(X1∪{b1}) such that X1∪{z} is a cosegment.

For the latter, (ii) holds by the dual of Lemma 2.1.8. For the former, both

ends of the 5-element fan, a′ and c′ say, are in E(M)−B, otherwise we have

a Type I fan. It follows, by Lemma 2.3.5, that a′ and c′ are both removable.

Since bc ∈ X is also removable, (iii) holds.

Now consider the case where X1 ∪ {b1} is a 4-element fan. Then, up

to relabelling, either {a, bc, b1} or {a, c, b1} is a triangle. If {a, bc, b1} is a

triangle, then X1 ∪ {b1} is a Type I fan; a contradiction. Thus, {a, c, b1}
is a triangle. If c is contained in a triad T ∗ that is not {a, bc, c}, then, by

orthogonality, T ∗ contains either a or b1. But if it contains a, then X1 ∪ T ∗

is a cosegment of four elements, so by the dual of Lemma 2.1.8, (ii) holds. If



2.3. THE EXISTENCE OF REMOVABLE ELEMENTS 33

instead {b1, c} is contained in T ∗, then a is a spoke and an end element of a

4-element fan, so co(M\a) is 3-connected by Lemma 2.3.5; a contradiction.

It follows that the only triad containing c is {a, bc, c}.
If the only triangle containing a is {a, c, b1}, then si(M/a) ∼= co(M\c)

by Lemma 2.3.8, so si(M/a) is not 3-connected. But co(M\a) is not 3-

connected, contradicting Bixby’s Lemma, so a is contained in a triangle other

than {a, c, b1}. By orthogonality, such a triangle contains either {a, bc} or

{a, c}, but the latter is not possible since {a, c, b1} is a triangle and Y1∪{b1}
is closed. So a is contained in a triangle {a, bc, a′} say. Since si(M/bc) is 3-

connected but co(M\a) is not 3-connected, either bc is contained in a triangle

other than {a, bc, a′}, or a is contained in a triad other than {a, bc, c}, by

Lemma 2.3.8. But {b1, c, a, bc, a′} is a 5-element fan and r(M) ≥ 4, so, by

Lemma 2.3.4, the only triad containing a is {a, bc, c}. Thus, by orthogonality

and since Y1 ∪ {b1} is closed, {bc, c} is contained in a triangle {bc, c, c′}
say. Now (a′, a, bc, c, c

′) is a fan ordering of a 5-element fan. The elements

a′, c′ ∈ cl(X) are both in E(M) − B, or this fan contains a Type I fan. It

follows, by Lemma 2.3.5, that a′ and c′ are both removable, so (iii) holds,

completing the proof of (2.3.9.1).

Now consider (II). By Lemma 2.1.9, there exists an element b1 ∈ B and

a vertical 3-separation (X1, {b1}, Y1) such that X1 ∪ {b1} ⊆ X ∪ {b}, the

subset Y1 ∪ {b1} is closed, and X1 ∪ {b1} is minimal in (X1, {b1}, Y1). If

X1∩B = {bc} where bc is removable with respect to B, then (2.3.9.1) holds,

so the proposition holds in this case. Otherwise, X1∩B contains an element,

b2 say, that is not B-removable.

By Lemma 2.1.6, M has a vertical 3-separation (X2, {b2}, Y2) where

b2 ∈ X1. Without loss of generality, let b1 ∈ Y2 where, due to Lemma 2.1.7,

we can assume that Y2 ∪ {b2} is closed. By Lemma 2.1.10, each of X1 ∩X2,

X1 ∩ Y2, Y1 ∩X2, and Y1 ∩ Y2 is non-empty, and r((X1 ∩X2) ∪ {b2}) = 2.

We consider two subcases: |Y1 ∩X2| ≥ 2 and |Y1 ∩X2| = 1.

2.3.9.2. The proposition holds when |Y1 ∩X2| ≥ 2.

If |Y1 ∩X2| ≥ 2, then, by Lemma 2.1.10(iii), r((X1 ∩ Y2) ∪ {b1, b2}) = 2.

Let L1 = (X1 ∩ Y2) ∪ {b1} and L2 = (X1 ∩ X2) ∪ {b2}. If |L2| ≥ 4, then,

by Lemma 2.1.8, (i) holds. Similarly, if | cl(L1)| ≥ 4, then L1 contains at

least two removable elements, and these elements are in X1 since Y1 ∪ {b1}
is closed, thereby satisfying (i). Hence, since X1 ∩ Y2 is non-empty, we may
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assume that | cl(L1)| = 3 and |L2| ∈ {2, 3}.
Let X1∩Y2 = {a} and c ∈ X1∩X2. Note that a ∈ E(M)−B. If |L2| = 2,

then |X1 ∩ X2| = 1, X1 = {a, b2, c} is a triad and cl(L1) = {b1, a, b2} is a

triangle, so {b1, a, b2, c} is a 4-element fan. If c ∈ E(M)−B, then X1 ∪{b1}
is a Type I fan; a contradiction. But if c ∈ B, then X1 ∪ {b1} is a Type II

fan, in which case (v) holds.

Now suppose |L2| = 3 and, in particular, X1 ∩ X2 = {c, d}. Since

r(L2) = 2, we may assume, without loss of generality, that d ∈ E(M)− B.

By Lemma 2.3.6, co(M\d) and co(M\c) are 3-connected. If c ∈ E(M)−B,

then (i) holds. Furthermore, if c ∈ B, then (i) also holds as si(M/c) is

3-connected by Lemma 2.3.3. Thus, (2.3.9.2) holds.

It remains to prove that the proposition holds when |Y1∩X2| = 1. First,

we show that, in such a situation, if there is an element of B in X1 ∩ X2,

then the proposition holds.

2.3.9.3. If, for some bz ∈ X1 ∩ B such that si(M/bz) is not 3-connected,

(Xz, {bz}, Yz) is a vertical 3-separation of M where b1 ∈ Yz, the set Yz∪{bz}
is closed, |Y1∩Xz| = 1, and there exists an element p ∈ (X1∩Xz)∩B, then

(i) holds.

By Lemma 2.1.10, r((X1 ∩Xz)∪ {bz}) = 2, so if |(X1 ∩Xz)∪ {bz}| ≥ 4,

then (i) holds, by Lemma 2.1.8. If |X1 ∩ Xz| = 1, then, as b1 ∈ Yz, the

set Xz consists of two elements; a contradiction. So let X1 ∩ Xz = {p, q},
where p ∈ B and q ∈ E(M)−B, and let Y1 ∩Xz = {y}. First, suppose that

si(M/p) is not 3-connected. Then, by Lemmas 2.1.6 and 2.1.7, there exists

a vertical 3-separation (Xp, {p}, Yp) such that b1 ∈ Yp and Yp∪{p} is closed.

By Lemma 2.1.10, (X1∩Xp)∪{p} is a rank-2 set, and if |Y1∩Xp| ≥ 2, then

r((X1 ∩ Yp) ∪ {b1, p}) = 2. If, indeed, |Y1 ∩Xp| ≥ 2, then r(X1) = 3 and it

follows, by Lemmas 2.3.3 and 2.3.6, that p and q are removable, satisfying

(i). So assume that |Y1 ∩ Xp| = 1. Then (X1 ∩ Xp) ∪ {p} is a rank-2 set

of at least three elements. If this set has four or more elements, then (i)

holds by Lemma 2.1.8, so assume that |X1 ∩Xp| = 2. Now (X1 ∩Xp)∪ {p}
is a triangle contained in X1, but since Yz ∪ {bz} is closed, this triangle

contains q. Then either (X1 ∩Xp) ∪ {bz, p} is a rank-2 set of four elements,

so (i) holds by Lemma 2.1.8, or X1 ∩ Xp = {q, bz}. Since Xp is a triad, if

Y1 ∩ Xp = {y}, then {y, p, q, bz} is a 4-element cosegment, and si(M/p) is

3-connected by the dual of Lemma 2.1.8; a contradiction. So Y1∩Xp = {y′}
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where y′ 6= y, and {y, y′} ⊆ cl∗(X1). But, recalling that b1 ∈ cl(X1), this

contradicts Lemma 2.3.7.

Now suppose that si(M/p) is 3-connected. If co(M\q) is also 3-

connected, then (i) holds, so assume this is not the case. Now,

si(M/p) � co(M\q), so, by Lemma 2.3.8, either p is contained in a tri-

angle other than {p, q, bz}, or q is contained in a triad other than {p, q, y}.
Consider the former; by orthogonality and since Yz ∪{bz} is closed, {p, y} is

contained in a triangle T . Let T −{p, y} = {y′}. Note that y ∈ B, otherwise

Xz∪{bz} is a Type I fan. Since Y1∪{b1} is closed, and due to the rank of T ,

y′ ∈ X1 ∩ (E(M)−B). By Lemma 2.3.5, y′ is removable so (i) holds. Now

consider when q is in a triad T ∗ other than {p, q, y}. By orthogonality, T ∗

contains p or bz. If {q, bz} is contained in T ∗, then p is a spoke element and

an end of a 4-element fan, so si(M/p) is not 3-connected by Lemma 2.3.5;

a contradiction. So assume that {p, q} is contained in T ∗. Then T ∗ ∪ {y}
is a cosegment, and it contains a triad that intersects {bz, p, q} in a single

element; a contradiction. Thus (2.3.9.3) holds.

2.3.9.4. The proposition holds when |Y1 ∩X2| = 1.

As |X2| ≥ 3 and b1 /∈ X2, it follows that |X1∩X2| ≥ 2. By Lemma 2.1.10,

r((X1 ∩X2) ∪ {b2}) = 2. If |X1 ∩X2| ≥ 3, then (i) holds by Lemma 2.1.8.

Therefore, we may assume that |X1 ∩ X2| = 2. At most one element in

X1 ∩X2 is in B, but if there is such an element, then (i) holds by (2.3.9.3).

So let X1 ∩X2 = {p, q}, where {p, q} ⊆ E(M) − B, and let Y1 ∩X2 = {y}
where y ∈ B.

We first show that either (i) holds, or there exists an element b3 ∈ X1∩Y2
that is not removable with respect to B. If r(X1) = 3, then p and q are

removable by Lemma 2.3.6, satisfying (i). So assume that r(X1) ≥ 4, in

which case r(Y1∪{b1}) ≤ r(M)−2, so |X1∩B| ≥ 2. Let b3 ∈ X1∩B−{b2},
in which case b3 ∈ Y2. If si(M/b3) is not 3-connected, we have one of the

desired outcomes. So assume that b3 is removable. If either p or q is also

removable, then (i) holds. Suppose neither p nor q is removable. Then, by

Bixby’s Lemma, si(M/p) is 3-connected, so si(M/p) � co(M\q). It follows,

by Lemma 2.3.8, that either p is contained in a triangle other than {p, q, b2}
or q is contained in a triad other than {p, q, y}. If the latter, then, as in the

last paragraph of (2.3.9.3), this leads to a contradiction. If the former, then

by orthogonality and since Y2 ∪ {b2} is closed, such a triangle is {p, y, y′}
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where y′ ∈ X1 since Y1 ∪ {b1} is closed. Furthermore, (y′, y, p, q, b2) is a fan

ordering. By Lemma 2.3.5, if y′ ∈ B, then y′ is not removable, and choosing

b3 = y′ we have a desired outcome. So assume that y′ ∈ E(M)−B, in which

case y′ is removable, thereby satisfying (i).

Now, by Lemmas 2.1.6 and 2.1.7, there exists a vertical 3-separation

(X3, {b3}, Y3) such that b1 ∈ Y3 and Y3 ∪ {b3} is closed. By Lemma 2.1.10,

(X1 ∩ X3) ∪ {b3} is a rank-2 set, and if |Y1 ∩ X3| ≥ 2, then

r((X1 ∩ Y3) ∪ {b1, b3}) = 2. But if the latter holds, then p and q are remov-

able by Lemma 2.3.6, satisfying (i). Furthermore, if |(X1 ∩X3) ∪ {b3}| ≥ 4,

then (i) holds by Lemma 2.1.8. So we may assume that |Y1 ∩X3| = 1 and

|X1∩X3| = 2. Since X2 and X3 are triads, each with two elements contained

in X1, both y and the single element in Y1 ∩X3 are in the coclosure of X1.

But b1 ∈ cl(X1), so by Lemma 2.3.7, Y1 ∩X3 = {y}. If there exists an ele-

ment p′ ∈ (X1 ∩X3) ∩B, then (i) holds by (2.3.9.3). It remains to consider

when X1 ∩ X3 ⊆ E(M) − B. If {p, q} ⊆ X3, then {p, q, b3} is a triangle,

but {p, q, b2} is also a triangle, so p and q are removable, by Lemma 2.1.8,

satisfying (i). Otherwise, since Y3 ∪ {b3} is closed, {p, q, b2} ⊆ Y3. Let

X1 ∩ X3 = {p′, q′}. The two triads {p, q, y} and {p′, q′, y} intersect only

at y, so {p, q, y, q′, p′} is a corank-3 set. But this set contains four cobasis

elements; a contradiction. So (2.3.9.4) holds.

We deduce that the proposition holds.

Corollary 2.3.10. Let M be a 3-connected matroid such that |E(M)| ≥ 2,

and let B be a basis of M . Then, either

(i) M has at least two B-removable elements, or

(ii) M has a Type I fan F relative to B where each f ∈ F is not B-

removable.

Proof. If every element e ∈ E(M) is B-removable, then the corollary holds.

Therefore, by duality, we may assume that there exists an element b ∈ B
such that si(M/b) is not 3-connected. By Lemmas 2.1.6 and 2.1.7, there

exists a vertical 3-separation (X, {b}, Y ) of M such that Y ∪ {b} is closed,

and thus |E(M)| ≥ 7. By Proposition 2.3.9, either the corollary holds, or

M has a fan F , where F is either a Type I fan whose internal elements

are contained in X, or a Type II fan contained in X ∪ {b}. We will show

that when M has such a fan F , either the corollary holds, or there is a

B-removable element in X.
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Let F = {f1, f2, f3, f4} where F has fan ordering (f1, f2, f3, f4) such

that {f1, f2, f3} is a triangle. Suppose that F is a Type II fan, so

F ∩ B = {f1, f3, f4}. Then f4 ∈ X is a B-removable element, by

Lemma 2.3.5. Now suppose that F is a Type I fan. By Lemma 2.3.5, f1 and

f4 are not B-removable. If the only triangle containing f3 is {f1, f2, f3} and

the only triad containing f2 is {f2, f3, f4}, then, by Lemma 2.3.8, either f2

and f3 are both B-removable, in which case (i) holds, or neither f2 nor f3

is B-removable, in which case (ii) holds. Suppose that f3 is contained in a

triangle T distinct from {f1, f2, f3}. By orthogonality, T contains f2 or f4.

When f2 ∈ T , the set T ∪ {f1} has rank two, so contains two B-removable

elements by Lemma 2.1.8. When f4 ∈ T , the set T ∪ {f1, f2} is a 5-element

fan, so f2 is not B-removable, by Lemma 2.3.5. If f3 is not B-removable,

(ii) holds. Otherwise, X contains the B-removable element f3.

There exists a vertical 3-separation (Y2, {b}, X2) of M such that X2∪{b}
is closed, X ⊆ X2 and Y2 ⊆ Y , by Lemma 2.1.7. By a second application

of Proposition 2.3.9, either the corollary holds, or M has a fan F , where

F is either a Type I fan whose internal elements are contained in Y2, or a

Type II fan contained in Y2 ∪{b}. By the same argument as in the previous

paragraph, either the corollary holds, or Y2 contains a B-removable element.

In the exceptional case, X and Y2 each contain aB-removable element, where

Y2 ⊆ E(M)−X, so the corollary holds.

Corollary 2.3.11. Let M be a 3-connected matroid, where |E(M)| ≥ 3,

and let B be a basis of M . Suppose that M has no Type I fans relative to B.

Then M has at least three B-removable elements.

Proof. If every element e ∈ E(M) is B-removable, then the corollary holds.

Therefore, by duality, we may assume that there exists an element b ∈ B
such that si(M/b) is not 3-connected. By Lemmas 2.1.6 and 2.1.7, there

exists a vertical 3-separation (X, {b}, Y ) of M such that Y ∪ {b} is closed.

By Lemma 2.1.7, there also exists a vertical 3-separation (Y ′, {b}, X ′) of M

such that X ′ ∪ {b} is closed, X ⊆ X ′, and Y ′ ⊆ Y . By Proposition 2.3.9, X

and Y ′ each contain a removable element, where if (v) holds, the Type II fan

contains a removable element by Lemma 2.3.5. Thus, if Proposition 2.3.9(i)

or Proposition 2.3.9(iii) holds for either vertical 3-separation, the corollary

holds.

We may now assume that either Proposition 2.3.9(ii) or Proposi-
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tion 2.3.9(v) holds for each of the vertical 3-separations. When Proposi-

tion 2.3.9(ii) holds for either vertical 3-separation, there are two removable

elements s1, s2 ∈ B, by the dual of Lemma 2.1.8. On the other hand, if

Proposition 2.3.9(v) holds for both vertical 3-separations, again there are

two removable elements s1, s2 ∈ B, by Lemma 2.3.5. There exists an ele-

ment b∗ ∈ E(M)−B, as |E(M)| ≥ 3 and M is 3-connected. If b∗ is remov-

able, the corollary holds. Otherwise, by the dual of Lemma 2.1.6, there is a

vertical 3-separation (P, {b∗}, Q) in M∗. Next we apply Proposition 2.3.9 to

(P, {b∗}, Q). If Proposition 2.3.9(i) or Proposition 2.3.9(iii) holds, then the

corollary holds, noting in the former case that there is also a removable ele-

ment in Q by an application of Proposition 2.3.9 to (Q, {b∗}, P ). But when

Proposition 2.3.9(ii) or Proposition 2.3.9(v) holds for (P, {b∗}, Q), there ex-

ists a removable element s∗1 ∈ E(M) − B that is distinct from s1 and s2.

Thus the corollary holds.

Corollary 2.3.12. Let M be a 3-connected matroid, where |E(M)| ≥ 4,

and let B be a basis of M . Suppose that M has no Type I or Type II fans

relative to B. Then M has at least four B-removable elements.

Proof. If every element e ∈ E(M) is removable with respect to B, then

the corollary holds. Therefore, by duality, we may assume that there exists

an element b ∈ B such that si(M/b) is not 3-connected. By Lemmas 2.1.6

and 2.1.7, there exists a vertical 3-separation (X, {b}, Y ) of M such that

Y ∪ {b} is closed. There also exists a vertical 3-separation (X2, {b}, Y2) of

M such that X2 ∪ {b} is closed, X ⊆ X2 and Y2 ⊆ Y .

We can now apply Proposition 2.3.9 using each of the two vertical 3-

separations in turn, where Proposition 2.3.9(iv) and Proposition 2.3.9(v)

cannot hold since M has no Type I or Type II fans. If Proposition 2.3.9(iii)

holds for (X, {b}, Y ), then there exist distinct removable elements s1 ∈ X
and s2, s3 ∈ cl(X). By an application of Proposition 2.3.9 to (Y2, {b}, X2),

there is at least one removable element in Y2, and {s2, s3} ⊆ X2 sinceX2∪{b}
is closed, so the corollary holds in this case. By symmetry, we can now as-

sume that Proposition 2.3.9(iii) does not hold for either vertical 3-separation.

If Proposition 2.3.9(i) holds for both vertical 3-separations, then clearly the

corollary holds, so it remains to consider when Proposition 2.3.9(ii) holds

for at least one of the vertical 3-separations.

Now we may assume there exist a vertical 3-separation (X ′, {b′}, Y ′)
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and removable elements s1 ∈ X ′ and s2 ∈ cl∗(X ′), where X ′ ∪ {s2} is a

4-element cosegment. If b′ ∈ cl∗(X ′∪{s2}), then b′ is removable by the dual

of Lemma 2.1.8; a contradiction. So b′ ∈ cl(Y ′ − {s2}), by Lemma 2.1.3.

It follows, by Lemma 2.1.4, that when r(Y ′ − {s2}) ≥ 3, the partition

(X ′∪{s2}, {b′}, Y ′−{s2}) is a vertical 3-separation. Then, by an application

of Proposition 2.3.9 to (Y ′−{s2}, {b′}, X ′∪{s2}), the corollary holds unless

there exists an element s′2 ∈ (X ′ ∪ {s2})∩B such that (Y ′ −{s2})∪ {s′2, b′}
contains a 4-element cosegment. This cosegment must contain s′2 and cannot

contain b′, by the dual of Lemma 2.1.8, as it is not removable. Thus, the two

4-element cosegments intersect at a single element s′2, so the union of these

two cosegments has corank three. But s′2 ∈ B, so this union contains four

elements of the cobasis E(M) − B; a contradiction. Now consider the case

where r(Y ′−{s2}) = 2. If |Y ′−{s2}| ≥ 3, then, recalling b′ ∈ cl(Y ′−{s2}),
there are two elements in Y ′ − {s2} that are removable by Lemma 2.1.8, so

the corollary holds. It remains to consider when |Y ′| = 3. Since r(M) = 4,

precisely one element of Y ′ − {s2} is in B. But then Y ′ ∪ {b1} is a Type II

fan; a contradiction. So the corollary holds.

2.3.3 An example with four removable elements

In this section, we give an example to demonstrate that the bound in Corol-

lary 2.3.12 is sharp in the sense that a 3-connected matroid M with a basis B

and no 4-element fans can have precisely four B-removable elements.

This example is similar to the one in Section 2.2.2, but extra care needs

to be taken to ensure there are only two B-removable elements at each

“end”. Let k ≥ 4. We will describe how to construct a matroid Mk of

rank k + 2. The matroid M6 is illustrated in Figure 2.2. Start with the

free (k+2)-element matroid Uk+2,k+2 with ground set {t, b0, b1, . . . , bk}. For

each i ∈ {3, 4, . . . , k − 2} ∪ {1, k}, freely add ci to the flat {t, bi−1, bi}. For

each i ∈ {1, 2, k− 1, k}, freely add xi to the flat {bi−1, bi}. Finally, delete b1

and bk−1 to obtain Mk. We fix a basis B = {b0, x1, b2, b3, . . . , bk−2, xk, bk, t}
for this matroid.

Note that Mk has no triangles, so it has no 4-element fans. We now show

that the B-removable elements are {b0, x1, xk, bk}. Due to the lack of trian-

gles, si(Mk/b) ∼= Mk/b for each b ∈ B. Thus, it is evident that si(Mk/bi) is

not 3-connected for each bi ∈ {b2, b3, . . . , bk−2}. Moreover, t is not remov-

able as ({b0, x1, c1}, E(Mk)−{b0, x1, c1, t}) is a 2-separation of si(Mk/t), for
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t

b0

x1

b2
b3

b4

x6

b6

c1

x2 c3 c4
x5

c6

Figure 2.2: A 3-connected rank-8 matroid M6 with precisely four B-
removable elements: b0, x1, x6 and b6.

example. On the other hand, b0, x1, xk and bk are B-removable. Each ci,

for i ∈ {3, 4, . . . , k − 2}, is in two triads, so co(Mk\ci) ∼= Mk\ci/bi−1/bi,
which is not 3-connected, as {b0, x1, c1, x2}∪{b2, . . . , bi−2}∪{c3, . . . , ci−1} is

2-separating in co(Mk\ci). Finally, {b0, c1, x1, x2} is a cosegment in Mk, so

Mk\c1, or Mk\x2, has a series class of three elements. But Mk\c1/b0/x1, or

Mk\x2/b0/x1, has a parallel pair {b2, x2}, or {t, c1} respectively, so c1 and x2

are not B-removable. By symmetry, ck and xk−1 are also not B-removable.

Although this example demonstrates that the bound in Corollary 2.3.12

is sharp when considering matroids with no Type I or Type II fans, it is

unresolved whether the bound in Corollary 2.3.11 is sharp when considering

matroids that may have Type II fans. In other words, does there exist a

3-connected matroid M with a basis B, no Type I fans relative to B, and

precisely three B-removable elements? We leave this as an open question.



Chapter 3

A Splitter Theorem

In this chapter, we consider the existence of elements that can be removed,

relative to a fixed basis, and also retain an N -minor. Recall that Oxley et al.

(2008a) showed that, for a 3-connected matroid M with basis B and no 4-

element fans, there is at at least one element that is strictly B-removable

and (N,B)-robust. We give an example, in Section 3.1, to illustrate that

we cannot guarantee more than one such element. However, relaxing our

requirements slightly, we can guarantee the presence of two (N,B)-strong

elements. This is the titular result of the chapter and is proved in Section 3.2.

In the same section, we provide some examples to demonstrate that this

result is, in a sense, best possible. We close the chapter with Section 3.3,

where we consider the structure of matroids with the minimum number

of (N,B)-strong elements. In particular, we prove that if P is the set of

(N,B)-robust elements in such a matroid, then (P,E(M)−P ) is a sequential

3-separation.

3.1 An example with one strictly removable ro-

bust element

In this section, we describe the construction of a matroid, with arbitrary

rank, that has precisely one element that is both strictly B-removable and

(N,B)-robust.

Let k ≥ 1. We describe how to construct a matroid Mk of rank k + 3

with a single strictly B-removable (N,B)-robust element. In particular, M3

is given in Figure 3.1, where N = F−7 . Although we use F−7 as the 3-

41
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connected minor N in the construction, any sufficiently structured matroid

with a triangle {t, t1, t2} would do.

b2
b1

b0

t2

t1

g0

c3c2

c1

Figure 3.1: A 3-connected rank-6 matroid M3 with only one element, b0,
that is both strictly B-removable and (F−7 , B)-robust.

The matroid Mk is constructed as follows. Let Uk,k be the free k-element

matroid Uk,k with ground set {b0, b1, . . . , bk−1}, and let F−7 be the non-Fano

matroid containing a triangle {t, t1, t2}. Construct the direct sum Uk,k⊕F−7 .

For each i ∈ {1, 2, . . . , k− 1}, freely add ci to the flat {t, bi−1, bi}, and freely

add ck to the flat {bk−1, t, t1, t2}. We also freely add g0 to the flat {b0, t}.
Finally, we delete t to obtain Mk.

Let A be a basis of F−7 \t. Then B = A ∪ {b0, b1, . . . , bk−1} is a ba-

sis for Mk. An element e ∈ E(Mk) is (F−7 , B)-robust if and only if

e ∈ {b0, b1, . . . , bk−1} ∪ {c1, c2 . . . , ck}. Thus, Mk has 2k elements that

are (F−7 , B)-robust, where 2k ≥ 2. Each ci is in at least one triad, for

i ∈ {1, 2, . . . , k}, so Mk\ci is not 3-connected. Moreover, each of b1 and b2

opens up a 2-separation when contracted, so these elements are not strictly

B-removable. On the other hand, Mk/b0 is 3-connected. Hence, b0 is the

only strictly B-removable (F−7 , B)-robust element in Mk.

3.2 The existence of strong elements

Let M be a 3-connected matroid, let B be a basis of M , and let N be a

3-connected minor of M . Recall that an element e ∈ E(M) is (N,B)-strong

if either

(i) e ∈ B, and si(M/e) is 3-connected and has an N -minor, or

(ii) e ∈ E(M)−B, and co(M\e) is 3-connected and has an N -minor.



3.2. THE EXISTENCE OF STRONG ELEMENTS 43

In Section 3.2.1, we prove Theorem 3.2.10, a generalisation of Theorem 2.0.2.

Informally, this theorem says we can find two (N,B)-strong elements in M

provided that M has at least five elements, at least two (N,B)-robust ele-

ments, and no 4-element fans with a specific labelling with respect to B. In

the remainder of the section, we give a series of examples to demonstrate

that this theorem is the best we can hope for, in three ways: Section 3.2.2

shows that the existence of two (N,B)-robust elements is necessary; Sec-

tion 3.2.3 shows that we cannot guarantee more than two (N,B)-strong

elements; and Section 3.2.4 shows that if Type I fans are present, we cannot

guarantee any (N,B)-strong elements at all.

3.2.1 The proof of Theorem 2.0.4

The proofs of the next two lemmas are straightforward.

Lemma 3.2.1. Let e and f be distinct elements of a 3-connected matroid M ,

and suppose that si(M/e) is 3-connected. Then either

(i) M/e\f is connected, or

(ii) si(M/e) ∼= U2,3 and M has no triangle containing {e, f}.

Moreover, if no non-trivial parallel class of M/e contains f , then M/e/f is

connected.

Lemma 3.2.2. Let (X,Y ) be a 2-separation of a connected matroid M and

let N be a 3-connected minor of M . Then {X,Y } has a member U such

that |U ∩ E(N)| ≤ 1. Moreover, if u ∈ U , then

(i) M/u has an N -minor if M/u is connected, and

(ii) M\u has an N -minor if M\u is connected.

In the arguments that follow, we initially restrict our attention to a 3-

connected N -minor with |E(N)| ≥ 4, so that N is simple and cosimple.

The next lemma illustrates this. We handle the case where |E(N)| ≤ 3 in

Lemma 3.2.8.

Lemma 3.2.3. Let N be a 3-connected matroid such that |E(N)| ≥ 4. If

M has an N -minor, then si(M) has an N -minor.
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Proof. Since |E(N)| ≥ 4, the matroid N is simple. Thus, removing parallel

elements or loops from M cannot destroy the N -minor, so the lemma holds.

Lemma 3.2.4. Let N be a 3-connected minor of a 3-connected matroid M

with |E(N)| ≥ 4. Let (X, {z}, Y ) be a vertical 3-separation of M such that

M/z has an N -minor, where Y ∪ {z} is closed and |X ∩ E(N)| ≤ 1. If

s ∈ cl∗(X) − X, then (X ′, {z}, Y ′) = (X ∪ {s}, {z}, Y − {s}) is a vertical

3-separation where Y ′ ∪ {z} is closed and |X ′ ∩ E(N)| ≤ 1.

Proof. Since X and X ∪ {z} are exactly 3-separating in M , and s ∈ cl∗(X),

it follows, by Lemma 2.1.4(i), that X ′ and X ′ ∪ {z} are 3-separating. In

particular, as r(Y ′) ≥ 2, the sets X ′ and X ′ ∪ {z} are exactly 3-separating.

By Lemma 2.1.4(ii), z ∈ cl(X ′) implies that z ∈ cl(Y ′). Now, since |Y ′| ≥ 2,

the partition (X ′, Y ′) is a 2-separation of M/z. Since s ∈ cl∗(X), we have

s /∈ cl(Y ′) by Lemma 2.1.3. Therefore, Y ′ ∪ {z} is closed in M . By

Lemma 3.2.2, either |X ′ ∩ E(N)| ≤ 1 or |Y ′ ∩ E(N)| ≤ 1. Suppose that

|X ′ ∩E(N)| ≥ 2. Then |X ∩E(N)| = 1 and |Y ∩E(N)| ≤ 2, so |E(N)| ≤ 3;

a contradiction. So |X ′ ∩ E(N)| ≤ 1.

To see that r(Y ′) ≥ 3, suppose that r(Y ′) = 2. Then Y ′∪{z} is a line of

at least three elements. But |E(N)| ≥ 4, so N is simple, thus si(M/z) has

an N -minor. Since |X ′ ∩E(N)| ≤ 1, the matroid N is isomorphic to U1,1 or

U1,2; a contradiction. Therefore, r(Y ′) ≥ 3 and the lemma holds.

Let M be a 3-connected matroid with a 3-connected minor N . An ele-

ment x of M is doubly N -labelled if M\x has an N -minor and M/x has an

N -minor. Now, let M1 and M2 be matroids, each with at least two elements,

such that E(M1) ∩ E(M2) = {p} and p is not a loop or a coloop of either

M1 or M2. Then the 2-sum of M1 and M2 with basepoint p is the matroid

whose ground set is (E(M1)∪E(M2))−{p} and whose set of circuits consists

of all circuits of M1\p together with all circuits of M2\p and all sets of the

form (C1 ∪ C2)− {p} where each Ci is a circuit of Mi containing p.

Lemma 3.2.5. Let N be a 3-connected minor of a 3-connected matroid M .

Let (X, {z}, Y ) be a vertical 3-separation of M such that M/z has an N -

minor, where |X∩E(N)| ≤ 1. If Y ∪{z} is closed, then there is at most one

element of X that is not doubly N -labelled. Moreover, if such an element x

exists, then x ∈ cl∗(Y ) and z ∈ cl(X − {x}).
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Proof. The matroid M/z is the 2-sum of two matroids, MX and MY with

basepoint z′ say. Note that (M/z)|X = MX\z′ and (M/z)|Y = MY \z′.
Let x ∈ X. Let Cx and C∗x be a maximum-sized circuit and a maximum-

sized cocircuit of MX containing {x, z′}, respectively. If |Cx| > 2, then

M/z/x, and hence M/x, has an N -minor. Dually, if |C∗x| > 2, then M\x
has an N -minor. Thus x is doubly N -labelled unless |Cx| = 2 or |C∗x| = 2.

But if |Cx| = 2, then x ∈ clM/z(Y ), so x ∈ clM (Y ∪ {z}), contradicting

the fact that Y ∪ {z} is closed. We deduce that x is doubly N -labelled

unless |C∗x| = 2. Moreover, E(MX)− {z′} cannot contain distinct elements

s and t that are not doubly N -labelled otherwise {z′, s, t} is contained in a

series class of MX and so {s, t} is a cocircuit of M ; a contradiction. Thus

X contains at most one element that is not doubly N -labelled. Moreover,

when such an element x exists, {x, z′} is a cocircuit of MX , so x ∈ cl∗M/z(Y )

and x /∈ clM/z(X −{x}). Hence, x ∈ cl∗M (Y ) and x /∈ clM ((X −{x})∪{z}).
As z ∈ clM (X), it follows from the MacLane-Steinitz exchange condition

that z ∈ clM (X − {x}).

Lemma 3.2.6. Let M be a 3-connected matroid, let N be a 3-connected

minor of M such that |E(N)| ≥ 4, and let B be a basis of M with an

element b ∈ B such that b is (N,B)-robust, but not (N,B)-strong. Let

(X, {b}, Y ) be a vertical 3-separation of M such that Y ∪ {b} is closed and

|X ∩ E(N)| ≤ 1. If there is a B-removable element s ∈ X, then s is an

(N,B)-strong element.

Proof. Let s be a B-removable element of X. By Lemma 3.2.5, at most

one element in X is not doubly N -labelled, so we may assume s is the

only element that is not (N,B)-robust in X, in which case s ∈ cl∗(Y ) and

b ∈ cl(X − {s}). Therefore, (X − {s}, Y ∪ {b}) is a 2-separation of M\s. If

s ∈ E(M)−B, then co(M\s) is 3-connected, so X − {s} is a series class in

M\s. But b ∈ cl(X − {s}), so co(M\s) contains a non-trivial parallel class;

a contradiction. Thus s ∈ B.

Suppose that s and b are contained in a triangle {s, b, q}. If q ∈ X, then

s ∈ cl((X − {s}) ∪ {b}), so s /∈ cl∗(Y ) by Lemma 2.1.3; a contradiction.

But if q ∈ Y , then s ∈ cl(Y ∪ {b}) = cl(Y ). Then {b, s} ⊆ cl(Y ) − Y and

s ∈ cl∗(Y )−Y , contradicting Lemma 2.3.7. Since s and b are not contained

in a triangle of M , no non-trivial parallel class of M/s contains b, and thus

by Lemma 3.2.1, M/s/b is connected. Since |X ∩E(N)| ≤ 1 and s ∈ X, by
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Lemma 3.2.2, M/s/b has an N -minor and, therefore, M/s has an N -minor.

Thus, by Lemma 3.2.3, the lemma holds.

When M has no Type I fans, |E(N)| ≥ 4, and at least one ele-

ment z ∈ E(M) is not B-removable, then there is a vertical 3-separation

(X, {z}, Y ) of M or M∗ such that “most” of the elements of N are contained

in Y , by Lemmas 2.1.6 and 3.2.2. The next proposition demonstrates that,

in this case, we can describe the location of the (N,B)-strong elements with

respect to this vertical 3-separation.

Proposition 3.2.7. Let M be a 3-connected matroid, let N be a 3-connected

minor of M such that |E(N)| ≥ 4, and let B be a basis of M . Suppose there

exists an element b ∈ B that is (N,B)-robust but not (N,B)-strong. Let

(X, {b}, Y ) be a vertical 3-separation of M such that |X ∩E(N)| ≤ 1. Then

one of the following holds:

(i) there exist distinct (N,B)-strong elements s1, s2 ∈ X, or

(ii) there exist distinct (N,B)-strong elements s1 ∈ X and s2 ∈ cl∗(X)∩B,

or

(iii) there exist distinct (N,B)-strong elements s1 ∈ X and s2, s3 ∈ cl(X)∩
(E(M)−B), or

(iv) M has a Type I fan F relative to B where the internal elements of F

are contained in X, or

(v) X ∪ {b} contains a Type II fan F and an (N,B)-strong element

s2 ∈ F ∩B.

Proof. By Lemma 2.1.7, there exists a vertical 3-separation (X ′, {b}, Y ′)
such that Y ′ ∪ {b} is closed and X ′ ⊆ X. If the proposition holds for the

vertical 3-separation (X ′, {b}, Y ′), then clearly it holds for the vertical 3-

separation (X, {b}, Y ); so we may assume that Y ∪ {b} is closed. If X ∪ {b}
contains a Type II fan F , then, by Lemma 2.3.5, there exists a removable

element in F ∩ B. By Lemma 3.2.6, such a removable element is (N,B)-

strong, satisfying (v).

Now assume that X ∪ {b} does not contain a Type II fan. By Propo-

sition 2.3.9, either (iv) holds, or there is an element s1 ∈ X and either a

distinct element s2 ∈ X, a distinct element s2 ∈ cl∗(X) ∩ B, or distinct
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elements s2, s3 ∈ cl(X) ∩ (E(M) − B), where each si is B-removable for

i ∈ {1, 2, 3}. By Lemma 3.2.6, the element s1 is (N,B)-strong, and if si ∈ X
for i ∈ {2, 3}, then si is also (N,B)-strong, in which case (i) holds. Consider

the case where s2 ∈ cl∗(X)∩B. By Lemma 3.2.4, (X∪{s2}, {b}, Y −{s2}) is

a vertical 3-separation where |(X ∪ {s2})∩E(N)| ≤ 1 and (Y − {s2})∪ {b}
is closed. By Lemma 3.2.6, s2 is (N,B)-strong, so (ii) holds. It remains

to consider the case where s2, s3 ∈ (cl(X) − X) ∩ (E(M) − B). Now,

{b, s2, s3} ⊆ cl(X) ∩ cl(Y ), and, by submodularity, r(cl(X) ∩ cl(Y )) ≤ 2,

so r({b, s2, s3}) = 2. The matroid M/b has an N -minor, and N has no 2-

circuits, but s2 and s3 are parallel elements in M/b. It follows that M/b\s2
and M/b\s3 have N -minors, so s2 and s3 are (N,B)-strong by Lemma 3.2.3,

satisfying (iii). We deduce that the proposition holds.

It remains to consider two “edge cases”: when |E(N)| ≤ 3, and when

M has a Type I fan relative to B. First, we examine the case where the

N -minor is small.

Lemma 3.2.8. Let M be a 3-connected matroid with |E(M)| ≥ 5, let B

be a basis of M , and suppose that M has a 3-connected N -minor such that

|E(N)| ≤ 3. If s ∈ E(M) is B-removable, then either

(i) s is an (N,B)-strong element, or

(ii) there exist distinct (N,B)-strong elements s1, s2 ∈ E(M), and at least

one of the following holds:

(a) r(M) = 2,

(b) r∗(M) = 2,

(c) s ∈ B and si(M/s) ∼= U2,3, or

(d) s ∈ E(M)−B and co(M\s) ∼= U1,3.

Proof. Since |E(N)| ≤ 3, the matroid N is a minor of U1,3 or U2,3. By

duality, we may assume that N is a minor of U2,3. First, assume that

s ∈ B, in which case si(M/s) is 3-connected. If si(M/s) has a U2,3-minor,

then (i) holds, so assume that si(M/s) does not have such a minor. Then

r(M) = 2. In particular, M ∼= U2,n, where n ≥ 5, in which case (ii) holds

by Lemma 2.1.8.

Now assume that s ∈ E(M) − B, and so co(M\s) is 3-connected. If

co(M\s) has a circuit of at least three elements, it has a U2,3-minor, thus
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(i) holds. Assuming otherwise, first consider the case where co(M\s) does

not have a circuit of one or two elements. Then co(M\s) ∼= U1,1, so

si(M∗/s) ∼= U0,1; a contradiction. Consider the case where co(M\s) has

a loop or a 2-circuit. If co(M\s) has a loop, then co(M\s) ∼= U0,1. That is,

M∗ ∼= U2,n, where n ≥ 5. For each element e ∈ E(M), M∗\e is 3-connected

and contains a U1,3-minor. In particular, for each e ∈ B, M/e is 3-connected

and contains a U2,3-minor. Since |B| ≥ 2, (ii) holds. If co(M\s) has a 2-

circuit, then either co(M\s) ∼= U1,2 or co(M\s) ∼= U1,3. If co(M\s) ∼= U1,2,

then si(M∗/s) ∼= U1,2; a contradiction. Thus co(M\s) ∼= U1,3, that is,

si(M∗/s) ∼= U2,3.

Now, in M∗, every element lies on one of three lines intersecting at s

and, as M∗ is 3-connected, at least two of the lines contain three or more

elements. Thus |E(M)| ≥ 6. If one of the lines, L say, containing s has

at least four elements, then, for each e ∈ L, we have M∗\e is 3-connected

by Lemma 2.1.8, and it is straightforward to check that M∗\e contains a

U1,3-minor. Since at least two elements in L are in B, we deduce that (ii)

holds. Therefore each of the lines containing s has at most three elements,

so |E(M)| ≤ 7.

If M∗ has precisely six elements, it is isomorphic to W3, M(K4) or Q6,

in which case it is routine to check that (ii) holds. Now we assume that each

of the three lines has precisely three elements. It follows that M∗ does not

contain a triad, so for all b ∈ B the matroid co(M∗\b) is isomorphic to the

3-connected matroid M∗\b. Thus, each such b is (U2,3, B)-strong in M , so

(ii) again holds.

In the case where M contains a Type I fan, the next lemma shows that

when we cannot guarantee that M has two (N,B)-strong elements, there

is a Type I fan F for which either every f ∈ F is not B-removable, or F

is contained in a maximal 5-element fan containing a single B-removable

element.

Lemma 3.2.9. Let M be a 3-connected matroid, let N be a 3-connected

minor of M such that |E(N)| ≥ 4, and let B be a basis of M . Suppose that

there exists an element b ∈ B that is (N,B)-robust but not (N,B)-strong.

Let (X, {b}, Y ) be a vertical 3-separation of M such that |X ∩ E(N)| ≤ 1.

Then one of the following holds:

(i) M has at least two (N,B)-strong elements contained in cl(X) or
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cl∗(X), or

(ii) X ∪ {b} contains a Type II fan F and an (N,B)-strong element

s2 ∈ F ∩B, or

(iii) M has a Type I fan F relative to B where the internal elements are

contained in X and either

(a) f is not B-removable for all f ∈ F , or

(b) there exists an element f ∈ E(M) − F such that F ∪ {f} is a

maximal 5-element fan with fan ordering (f, f1, f2, f3, f4) and f2

is the only B-removable element in F

Proof. By Proposition 3.2.7, either (i) or (ii) holds unless M has a Type I fan

relative to B. In the exceptional case, let F have fan ordering (f1, f2, f3, f4)

where F ∩ B = {f1, f3}, and f2, f3 ∈ X. By Lemma 2.3.5, f1 and f4 are

not removable. If both f2 and f3 are removable, then (i) holds, while if

neither f2 nor f3 is removable, then (iii) holds. So assume that precisely

one of f2 and f3 is removable. By Lemma 2.3.8, f2 is in a triad other than

T ∗ = {f2, f3, f4} or f3 is in a triangle other than T = {f1, f2, f3}.
First consider the case where co(M\f2) is 3-connected. By orthogonality,

if f3 is in a triangle, it contains either f2 or f4. But {f2, f3} is not contained

in a triangle other than T since E(M) − {f2, f3, f4} is closed. Moreover,

{f3, f4} is also not contained in a triangle, otherwise f2 is a rim and an

end element in a 4-element fan, so is not removable by Lemma 2.3.5; a

contradiction. So f2 is contained in a triad other than T ∗. By orthogonality,

if f2 is in a triad, it contains either f1 or f3. If a triad other than T ∗ contains

f3, then f3 is removable by the dual of Lemma 2.1.8; a contradiction. So

there exists an element f0 such that {f0, f1, f2} is a triad. If f0 ∈ B, then

f0 is B-removable, by Lemma 2.3.5. Since f2 ∈ X is a removable element, it

is an (N,B)-strong element by Lemma 3.2.6. As N is simple, co(M\f2) ∼=
co(M\f2/f0) has an N -minor, so f0 is strong, satisfying (i). So assume that

f0 ∈ E(M) − B. It follows that ({f0, f1, f2}, E(M) − {f0, f1, f2, f3}) is a

2-separation of M/f3, and |{f0, f1, f2} ∩ E(N)| ≤ 1, due to Lemma 3.2.2

and since |E(N)| ≥ 4. Now if F ∪{f0} is not maximal, then f2 is a rim and

an end of a 4-element fan; a contradiction. So (iii) holds.

Now we suppose that si(M/f3) is 3-connected. By duality, we can again

apply Lemmas 2.1.8 and 2.3.5, so {f1, f2} is not contained in a triad other
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than T ∗, and {f2, f3} is not contained in a triangle other than T . If {f2, f3}
is contained in a triad other than T ∗, then cl∗(X) contains two B-removable

elements and, by Lemmas 3.2.4 and 3.2.6, (i) holds. By orthogonality, in

the only remaining case there exists an element f5 such that {f3, f4, f5} is

a triangle. If f5 ∈ E(M) − B, then, by duality and the argument in the

previous paragraph, f5 is (N,B)-strong and (i) holds; whereas if f5 ∈ B,

then (iii) holds.

We are now in a position where we can prove Theorem 2.0.4. In partic-

ular, it is a special case of the next theorem.

Theorem 3.2.10. Let M be a 3-connected matroid such that |E(M)| ≥ 5,

let N be a 3-connected minor of M , and let B be a basis of M . If M has at

least two (N,B)-robust elements, then either

(i) M has at least two (N,B)-strong elements, or

(ii) M has a Type I fan F for which either

(a) f is not B-removable for all f ∈ F , or

(b) there exists an internal element of F that is the only B-removable

element in F , and there exists an element f ∈ E(M) − F such

that F ∪ {f} is a maximal 5-element fan.

Proof. We may assume that M has at least two removable elements by

Corollary 2.3.10. If |E(N)| ≤ 3, then it follows, by Lemma 3.2.8, that (i)

holds. So assume that |E(N)| ≥ 4. Let p1 and p2 be distinct (N,B)-robust

elements. If p1 and p2 are both (N,B)-strong elements, then (i) holds; so

assume otherwise. By duality, we may assume that p1, say, is not (N,B)-

strong, and is a member of B. Since si(M/p1) is not 3-connected, there

exists a vertical 3-separation (X, {p1}, Y ) such that |X ∩ E(N)| ≤ 1, by

Lemmas 2.1.6 and 3.2.2. Then, by Lemma 3.2.9, the theorem holds unless

X ∪ {p1} contains a Type II fan F .

Let (f1, f2, f3, f4) be a fan ordering of F such that {f2, f3, f4} ⊆ X,

f2 ∈ E(M) − B, and f4 ∈ B is (N,B)-strong, by Lemma 3.2.6. We next

show that co(M\f2) has an N -minor. We may assume, by Lemma 2.1.7,

that Y ∪{p1} is closed. By Lemma 3.2.5, at most one element of {f2, f3, f4}
is not doubly N -labelled. If f2 is doubly N -labelled, then co(M\f2) has an

N -minor. If f2 is not doubly N -labelled, then f3 is doubly N -labelled and so
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si(M/f3) ∼= si(M/f3\f2) has an N -minor. But then co(M\f2) again has an

N -minor. If co(M\f2) is 3-connected, then the theorem holds. So assume

that f2 is not strong, where f2 is a member of the basis E(M)− B of M∗.

By Lemmas 2.1.6 and 3.2.2, there exists a vertical 3-separation (P, {f2}, Q)

in M∗ such that |P ∩ E(N)| ≤ 1. By Lemma 3.2.9, either M∗ has at least

two (N∗, E(M)− B)-strong elements, in which case (i) holds, or M∗ has a

Type II fan F ∗ containing an (N∗, E(M)− B)-strong element. But, in the

latter case, the (N∗, E(M) − B)-strong element in M∗ is an (N,B)-strong

element in M , and is a member of the basis of M∗; that is, it is a member

of E(M)−B. Since f4 ∈ B is also (N,B)-strong, (i) holds.

3.2.2 An example with one robust element

In this section we demonstrate that Theorem 3.2.10 is best possible in the

sense that a 3-connected matroid may only have a single element, relative

to a fixed basis, that can be removed and retain an N -minor. In particular,

we give an example of a matroid M2, with a minor F7, where both the size

of the ground set of M2 and the difference in the sizes of the ground sets

of M2 and F7 is arbitrary, and M2 has only a single element that can be

removed relative to a fixed basis and retain the N -minor.

Let M and M+ be matroids such that M = M+\e where e ∈ E(M+).

The matroid M+ is a free extension of M if M+ has the same rank as M and

every circuit of M+ containing e is spanning. In what follows, we base our

argument on the Fano matroid F7, but any sufficiently structured matroid

would do. Our example is of a similar nature to that given by Oxley et al.

(2008a, Section 5) that demonstrated that one can construct a matroid that

has no elements, relative to a fixed basis, that can be removed and maintain

an N -minor. As in that example, we make use of the following lemma.

Lemma 3.2.11. Let M+ be a free extension of M .

(i) If an element a of M is not a coloop of M , then M+\a is a free

extension of M\a and M+/a is a free extension of M/a.

(ii) If M has no F7-minor, then M+ has no F7-minor.

Let k1 be a positive integer and let M1 be a matroid obtained by coex-

tending F7 k1 times such that r(M1) = k1 + 3 and M1 is 3-connected. One

way to obtain such a matroid M1 is to freely extend F ∗7 k1 times and dualise.
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Note that r∗(M1) = r∗(F7) so that, for all a ∈ E(M1), the matroid M1\a
does not have an F7-minor. Let k2 be an integer such that 0 ≤ k2 ≤ k1, and

let M2 be the matroid obtained by freely extending M1 k2 + 3 times.

Let X be a (k1 − k2)-element subset of E(M1) − E(F7) and let

B = (E(M2) − E(M1)) ∪ X. We can see that |B| = k1 + 3. We will

show that B is a basis of M2. Suppose it is not. Then B contains a circuit

C. If C contains an element in E(M2) − E(M1), then, since every circuit

containing this element is spanning, C is spanning, and thus |C| = k1 + 4; a

contradiction. So C ⊆ E(M1), and, since M1 is a restriction of M2, the set

C is a circuit of M1. It follows that E(M1)− C is a hyperplane of M∗1 , but

E(F7) ⊆ E(M1)− C and E(F ∗7 ) spans M∗1 ; a contradiction. So B is indeed

a basis of M2.

We can contract an element of X and retain the F7-minor, since

X ⊆ E(M1) − E(F7) and M2/(E(M1) − E(F7))\(E(M2) − E(M1)) = F7.

However, as observed earlier, M1\a has no F7-minor for any a ∈ E(M1),

so it follows, by Lemma 3.2.11, that M2\d has no F7-minor for

d ∈ E(M2) − B. Now let b ∈ E(M2) − E(M1) = B − X. To obtain

a corank-4 minor of M2/b, we must delete an element in E(M1), since

r∗(M2/b\(E(M2) − (E(M1) ∪ {b}))) = 5. But we have seen that if we

delete such an element then the matroid has no F7-minor. Thus we con-

clude that M2\d has no F7-minor for all d ∈ E(M2)−B and that M2/b has

no F7-minor for all b ∈ B −X, but M2/x has an F7-minor for x ∈ X.

If we consider the case where k2 = k1 − 1, so that |X| = 1, we see that

there is only a single element in E(M2)∩B that can be contracted from M2

and retain an F7-minor, and there are no elements in E(M2)−B that can be

deleted from M2 and retain an F7-minor. So M2 has just one (F7, B)-robust

element.

3.2.3 An example with two strong elements

Now we provide an example to demonstrate that Theorem 3.2.10 is best

possible in the sense that a 3-connected matroid M with a basis B and no

Type I fans relative to B can have precisely two (N,B)-strong elements.

The matroid, M4, is illustrated in Figure 3.2.

This example is a cross between those in Sections 2.3.3 and 3.1. Let

k ≥ 3. The rank-(k + 3) matroid Mk is constructed as follows. Let Uk,k be

the free k-element matroid Uk,k with ground set {b0, b1, . . . , bk−1}, and let
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t

b0

x1

b2
b3

c1

x2 c3

t2

t1

c4

Figure 3.2: A 3-connected rank-7 matroid M4 with only two (F−7 , B)-strong
elements: b0 and x1.

F−7 be the non-Fano matroid containing a triangle {t, t1, t2}. Construct the

direct sum Uk,k ⊕ F−7 . For each i ∈ {1, 2, . . . , k − 1} − {2}, freely add ci to

the flat {t, bi−1, bi}, and freely add ck to the flat {bk−1, t, t1, t2}. For each

i ∈ {1, 2}, freely add xi to the flat {bi−1, bi}. Finally, delete b1 to obtain

Mk.

Let A be a basis of F−7 such that t ∈ A. Then B = A ∪ {b0, x1} ∪
{b2, b3, . . . , bk−1} is a basis for Mk. The (F−7 , B)-robust elements P are

E(Mk) − E(F−7 ), and |P | = 2k ≥ 6. By the same argument as in Sec-

tion 2.3.3, the elements b0 and x1 are B-removable, but every other element

in P is not. Hence, b0 and x1 are the only (F−7 , B)-strong elements in Mk.

3.2.4 An example with a Type I fan

In this section, we describe a 3-connected rank-4 matroid M2 with an N -

minor, a fixed basis B, and containing a Type I fan relative to B. Even

though M2 has more than two (N,B)-robust elements, it has no (N,B)-

strong elements. More generally, we describe how to construct a matroid

Mk of rank k + 3, for some k ≥ 2, with no (N,B)-strong elements, but

containing a Type I fan. We base our argument on the Fano matroid F7,

but any sufficiently structured matroid with a 3-point line would work.

We require some definitions for the construction. A flat X of a matroid

N is a modular flat if, for every flat Y of N ,

r(X) + r(Y ) = r(X ∪ Y ) + r(X ∩ Y ).

Let N1 and N2 be matroids such that E(N1) ∩ E(N2) = T , where T is a
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triangle of both N1 and N2, and T is a modular flat in N1. Note that T is a

modular flat when N1 is binary. The generalised parallel connection of N1

and N2 across T is the matroid PT (N1, N2) on E(N1) ∪ E(N2) whose flats

are the subsets X ⊆ E(N1) ∪ E(N2) such that X ∩ E(N1) is a flat of N1,

and X ∩ E(N2) is a flat of N2 (Brylawski, 1975).

Let M(Wk+2) be the rank-(k+2) wheel, and let F7 be the Fano matroid,

where M(Wk+2) and F7 have a triangle T = {f1, x, f2k+3} in common.

We label the elements E(M(Wk+2)) − T as {f2, f3, . . . , f2k+2} such that

(f1, f2, f3, . . . , f2k+2, f2k+3) is a fan ordering where {f1, f2, f3} is a triangle.

Let Mk be the generalised parallel connection of M(Wk+2) and F7 across T .

The matroid M2 is illustrated in Figure 3.3.

f1 f7

f3 f5

f2

f4

f6

x

Figure 3.3: A 3-connected rank-5 matroid M2 with a Type I fan, and no
(N,B)-strong elements.

Let B be a basis of Mk that contains fi if and only if i is odd. Note

that {f1, f2, f3, f4} is a Type I fan relative to B, for example. Evidently, fi

is an (F7, B)-robust element for all i ∈ {2, 3, . . . , 2k + 2}, but every other

element of Mk is not (F7, B)-robust. By Lemma 2.3.5, none of the elements

{f2, f3, . . . , f2k+2} are (F7, B)-strong. Thus, even though Mk has at least

two (F7, B)-robust elements, Mk has no (F7, B)-strong elements.

3.3 The structure of matroids with two strong el-

ements

In this section, we consider the structure of matroids that have the minimum

number of strong elements. In particular, we establish the following:
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Theorem 3.3.1. Let M be a 3-connected matroid such that |E(M)| ≥ 5,

let B be a basis of M , and let N be a 3-connected minor of M . Suppose

that M has no Type I or Type II fans relative to B, and let P denote the

set of (N,B)-robust elements of M . If M has precisely two (N,B)-strong

elements, then (P,E(M)− P ) is a sequential 3-separation.

A path of 3-separations in a matroid M is an ordered partition

(P0, P1, . . . , Pk) of E(M) with the property that λ(P0 ∪ P1 ∪ · · · ∪ Pi) = 2

for all i ∈ {0, 1, . . . , k − 1}. Note that a vertical 3-separation (X, {z}, Y ) is

a path of 3-separations. The following lemma is elementary.

Lemma 3.3.2. A partition (X,Y ) of a matroid M with |X|, |Y | ≥ 3 is a

sequential 3-separation if and only if, for some U ∈ {X,Y }, there is a path

of 3-separations (P0, P1, . . . , Pk, U) in M such that |P0| = 2, and |Pi| = 1

for all i ∈ {1, 2, . . . , k}.

We also make use of the following result (Whittle and Williams, 2013,

Corollary 5.3).

Lemma 3.3.3. Let P = (P0, P1, . . . , Pk) be a path of 3-separations in a ma-

troid M . Suppose that e ∈ Pi, for some i ∈ {1, 2, . . . , k−1}, and there exists

a path of 3-separations (X, {e}, Y ) in M with P0 ⊆ X and Pk ⊆ Y . Then

P refines to a path of 3-separations (P0, . . . , Pi−1, P
′
i , {e}, P ′′i , Pi+1, . . . , Pk),

where P ′i ∪ {e} ∪ P ′′i = Pi.

Lemma 3.3.4. Let M be a 3-connected matroid with ground set E, and let

s1 and s2 be distinct elements of M . Let Z be a subset of E − {s1, s2}
where |E − (Z ∪ {s1, s2})| ≥ 2 and, for each z ∈ Z, there exists a

path of 3-separations (Xz, {z}, Yz) in M such that {s1, s2} ⊆ Xz and

Xz ⊆ Z ∪ {s1, s2}. Then,

({s1, s2}, {z1}, {z2}, . . . , {zk}, E − (Z ∪ {s1, s2}))

is a path of 3-separations in M .

Proof. Let S = {s1, s2}. If Z is empty, then the result holds immediately.

So assume that Z is non-empty. Let Z = {z1, z2, . . . , zk} be a subset of E−S
as described in the statement of the lemma. Now, for all i ∈ {1, 2, . . . , k},
the tuple (Xzi , {zi}, Yzi) is a path of 3-separations in M . Since S ⊆ Xzi

for all i, it follows that S ⊆ E − (Yz1 ∪ Yz2 ∪ · · · ∪ Yzk). In particular,
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∣∣E−(Yz1∪Yz2∪· · ·∪Yzk)
∣∣ ≥ 2 and so, by Corollary 2.1.2, Yz1∩Yz2∩· · ·∩Yzk =

E−(Z∪S) is 3-separating. Since |S| ≥ 2 and |E−(Z∪S)| ≥ 2, the partition

(S,Z,E − (Z ∪ S)) is a path of 3-separations in M . By repeatedly applying

Lemma 3.3.3, we deduce that the lemma holds.

Lemma 3.3.5. Let M be a 3-connected matroid, let B be a basis of M , and

let N be a 3-connected minor of M such that |E(N)| ≥ 4. Suppose that M

has no Type I or Type II fans relative to B, and suppose there are precisely

two distinct elements s1 and s2 that are (N,B)-strong in M . Let P denote

the set of (N,B)-robust elements of M . Then, for every z ∈ P − {s1, s2},
there exists a path of 3-separations (Xz, {z}, Yz) such that {s1, s2} ⊆ Xz and

Xz ⊆ P .

Proof. Let S = {s1, s2}. Consider an element z ∈ P − S. By duality, we

may assume that z ∈ B. First we show the following:

3.3.5.1. There exists a vertical 3-separation (X ′, {z}, Y ′) such that S ⊆ X ′,
|X ′ ∩ E(N)| ≤ 1, and Y ′ ∪ {z} is closed.

Since si(M/z) is not 3-connected, it follows by Lemmas 2.1.6 and 2.1.7

that there exists a vertical 3-separation (X, {z}, Y ) such that Y ∪ {z} is

closed. By Lemma 3.2.2, either |X ∩E(N)| ≤ 1 or |Y ∩E(N)| ≤ 1. For the

latter, by applying Lemma 2.1.7 and relabelling, we can obtain a vertical

3-separation (X, {z}, Y ) such that Y ∪{z} is closed and |X∩E(N)| ≤ 1. By

Proposition 2.3.9, there is an element s′1 ∈ X and either a distinct element

s′2 ∈ cl∗(X) ∩ B, or distinct elements s′2, s
′
3 ∈ cl(X) ∩ (E(M) − B), where

each s′i is removable with respect to B for i ∈ {1, 2, 3}.
In the first case, there exists a vertical 3-separation (X ′, {z}, Y ′) such

that {s′1, s′2} ⊆ X ′, |X ′∩E(N)| ≤ 1, and Y ′∪{z} is closed by Lemma 3.2.4.

By Lemma 3.2.6, s′1 and s′2 are (N,B)-strong, so S = {s′1, s′2}, and (3.3.5.1)

holds. In the second case, as M has precisely two (N,B)-strong elements,

it follows by Lemma 3.2.6 that {s′2, s′3} * X. If exactly one of s′2 and

s′3 is in X, then this element is strong, so S consists of this element and

s′1, satisfying (3.3.5.1). So we can assume that {s′2, s′3} ⊆ cl(X) − X. It

follows that {z, s′2, s′3} ⊆ cl(X) ∩ cl(Y ), and so r({z, s′2, s′3}) = 2. Recall

that {s′2, s′3} ⊆ E(M) − B, the matroid M/z has an N -minor, and N has

no 2-circuits. Now s′2 and s′3 are parallel in M/z, thus M/z\s′2 and M/z\s′3
have N -minors, and, by Lemma 3.2.3, s′2 and s′3 are (N,B)-strong. But
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s′1 is also (N,B)-strong by Lemma 3.2.6; a contradiction. We deduce that

(3.3.5.1) holds.

Now, by Lemma 3.2.5, at most one element in X ′ is not doubly N -

labelled, and if such an element x exists, then x ∈ cl∗(Y ′). Suppose such

an x exists, and x is not (N,B)-robust. By Lemma 2.1.4, Y ′ ∪ {x} and

Y ′ ∪ {x, z} are 3-separating. Since |X ′| ≥ 3, these 3-separating sets are

exact. It follows that (X ′′, {z}, Y ′′) = (X ′ − {x}, {z}, Y ′ ∪ {x}) is a path of

3-separations such that S ⊆ X ′′ and X ′′ ⊆ P . Otherwise, when no such x

exists or x is (N,B)-robust, every element in X is robust, so X ′ ⊆ P . This

completes the proof of the lemma.

Proof of Theorem 3.3.1. Let S = {s1, s2} denote the set of (N,B)-strong

elements of M . First suppose that |E(N)| ≥ 4. By Lemma 3.3.5, for every

z ∈ P−S there exists a path of 3-separations (Xz, {z}, Yz) such that S ⊆ Xz

andXz ⊆ P . By Corollary 2.3.12, M has at least fourB-removable elements.

However, only two of these elements are (N,B)-strong, so |E(M)−P | ≥ 2. It

follows, by Lemma 3.3.4, that (S, {z1}, {z2}, . . . , {zk}, E(M)− P ) is a path

of 3-separations, where P − S = {z1, z2, . . . , zk}. Thus, by Lemma 3.3.2,

(P,E(M)− P ) is a sequential 3-separation.

It remains to consider when |E(N)| ≤ 3. We show that, in this case, M

has more than two (N,B)-strong elements, thereby resulting in a contradic-

tion. If r(M) ≤ 2, then M ∼= U2,n where n ≥ 5, and it is easily checked that

M has at least three (N,B)-strong elements. Thus, by duality, we can as-

sume that r(M) ≥ 3 and r∗(M) ≥ 3. By Lemma 3.2.8 and Corollary 2.3.12,

either

(I) there are at least three (N,B)-strong elements, or

(II) up to duality, there is a removable element s ∈ B and si(M/s) ∼= U2,3.

If (I) holds, then we obtain a contradiction. So assume that (II) holds.

Then M consists of three lines that intersect at the element s, at least two

of which contain three or more elements, since M is 3-connected. If one of

these lines, L say, consists of at least four elements, then, by Lemma 2.1.8,

the line L contains two elements in E(M) − B that are B-removable and

retain a U1,3- or a U2,3-minor. Furthermore, there exists at least one element

b ∈ B ∩ (E(M) − L) such that si(M/b) ∼= U2,n for some n ≥ 4. Thus, b is

(N,B)-strong, so M has more than two (N,B)-strong elements; a contra-

diction. If |E(M)| = 6, then M is isomorphic to one of W3, M(K4) and
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Q6. But each of these matroids has at least three (N,B)-strong elements

for every B and N such that |E(N)| ≤ 3. So each of the three lines consists

of precisely three elements that intersect in a single element s say. Now,

M does not contain a triad, so M\e = co(M\e) for all e ∈ E(M). More-

over, M\e is isomorphic to one of the 3-connected matroids W3, M(K4)

and Q6, which each have a U2,3- and U1,3-minor. So M has more than two

(N,B)-strong elements; a contradiction. This completes the proof of the

theorem.



Part II

Constructing a k-tree for a

k-connected matroid

Oxley et al. (2004), in their seminal paper, showed that every 3-connected

matroid M with at least nine elements has a 3-tree: a tree decomposition

that displays, up to a natural equivalence, all non-sequential 3-separations

of M . The approach taken in the proof of this result does not appear to

elicit an efficient algorithm for finding such a 3-tree. However, by taking

a different approach, and thereby reproving the result, Oxley and Semple

(2013) presented such an algorithm. Provided the rank of a subset of E(M)

can be found in constant time, this algorithm finds a 3-tree for M with

running time polynomial in the size of E(M).

Clark and Whittle (2013) generalised the main result of Oxley et al.

(2004), showing that every tangle of order k in a connectivity system that

satisfies a certain “robustness” property has a tree decomposition, called a

k-tree, that displays, up to equivalence, all the non-sequential k-separations

of the connectivity system with respect to the tangle. In particular, this

result specialises to k-connected matroids as follows:

Theorem 4.0.1 (Clark and Whittle, 2013). Let M be a k-connected ma-

troid, where k ≥ 3 and |E(M)| ≥ 8k − 15. Then there is a k-tree T for

M such that every non-sequential k-separation of M is equivalent to a k-

separation displayed by T .

As with the case where k = 3, although Theorem 4.0.1 ensures the exis-

tence of a k-tree for M , it does not guarantee the existence of a polynomial-

59



60

time algorithm for finding such a tree. In this part of the thesis, we present

an algorithm for finding a k-tree for M . The main result establishes that

the algorithm indeed outputs a k-tree, thereby giving an independent proof

of Theorem 4.0.1. Provided that the matroid M is specified in a way that

enables the rank of any subset of E(M) to be found in unit time, the algo-

rithm runs in time polynomial in the size of E(M). Such a matroid M is

said to be specified by a rank oracle.

Theorem 4.0.2. Let M be a k-connected matroid specified by a rank oracle,

where |E(M)| ≥ 8k − 15. Then there is a polynomial-time algorithm for

finding a k-tree for M .

Our overall approach is similar to that taken by Oxley and Semple (2013);

however, there are a number of additional hurdles to overcome when k ≥ 4.

This part of the thesis consists of three chapters, the first of which intro-

duces the theory required to describe the algorithm and prove its correctness

in the later chapters. In Section 4.1, we review the fundamental concepts re-

lating to connectivity, flowers, and k-trees, each in the setting of k-connected

matroids. In Section 4.2, we give an example to demonstrate why it is nec-

essary for a k-connected matroid M to consist of at least 8k−15 elements in

order for M to have a k-tree. Section 4.3 contains a number of preliminary

results concerning k-connectivity, k-flowers, and k-paths, where the latter

are a generalisation of 3-paths introduced by Oxley and Semple (2013). In

Section 4.4, we discuss one key situation that arises only when k ≥ 4.

In Chapter 5, we present the algorithm for constructing a k-tree for a

k-connected matroid. Throughout the algorithm, we repeatedly attempt to

find non-sequential k-separations where each side of the separation contains

certain subsets; in Section 5.1, we describe how to find such k-separations in

polynomial time. Section 5.2 contains a formal description of the algorithm.

We close the chapter by discussing, in Section 5.3, why a polynomial-time

algorithm is not forthcoming from the proof of Theorem 4.0.1 given by Clark

and Whittle (2013).

Finally, in Chapter 6, we prove the correctness of the algorithm and

that it runs in polynomial time. The proof is in three parts: in Section 6.1,

we prove that the algorithm outputs a conforming tree; in Section 6.2, we

demonstrate that each flower vertex of this tree is maximal; and the proof

of Theorem 4.0.2 is forthcoming in Section 6.3.
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Throughout, we assume that the matroid M for which we wish to con-

struct a k-tree is specified by a rank oracle.



Chapter 4

k-flowers, k-trees, and

k-paths

This chapter is an introduction to the theory of flowers, trees, and k-paths, in

the general setting of k-connected matroids. In Section 4.1, we define these

terms and some related concepts. By Theorem 4.0.1, a k-connected ma-

troid has a k-tree when its ground set consists of at least 8k − 15 elements.

We give an example in Section 4.2 to demonstrate why this constraint is

necessary. Section 4.3 contains a number of prerequisite results regarding

k-connectivity, k-flowers, and k-paths that will be used throughout Part II.

Finally, in Section 4.4, we discuss a technical detail regarding the relation-

ship between sequential petals of a k-flower, and ends of a k-path.

4.1 Definitions

4.1.1 k-connectivity

Let M be a k-connected matroid with ground set E, and let X be an exactly

k-separating subset of E. A partial k-sequence for X is a sequence (Xi)
m
i=1 of

pairwise-disjoint non-empty subsets of E −X such that |Xi| ≤ k− 2, for all

i ∈ {1, 2, . . . ,m}, and X∪(
⋃j

i=1Xi) is k-separating, for all j ∈ {1, 2, . . . ,m}.
A partial k-sequence (Xi)

m
i=1 forX is maximal if, for every partial k-sequence

(X ′i)
m′
i=1 for X, we have

⋃m′

i=1X
′
i ⊆

⋃m
i=1Xi.

Let (Xi)
m
i=1 be a maximal partial k-sequence for the exactly k-separating

set X. We define the full k-closure of X, denoted fclk(X), to be X∪
⋃m

i=1Xi.

For readers familiar with the work of Clark and Whittle (2013), note that
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this operator is a specialisation of the fclT operator, where T is the unique

tangle for a k-connected matroid. The fclk operator is a well-defined closure

operator on the set of exactly k-separating subsets of E (Clark and Whittle,

2013, Lemma 3.3). When k = 3, the operator is equivalent to the full clo-

sure operator for 3-connected matroids (as given by Oxley et al. (2004), for

example) and, when k = 4, it is equivalent to the full 2-span operator (Aikin

and Oxley, 2012). It is important to note that the full k-closure operator

is only well-defined on exactly k-separating sets, where it follows from the

definition of an exactly k-separating set that these are the k-separating sets

with at least k − 1 elements, but no more than |E| − (k − 1) elements.

An exactly k-separating set X is k-sequential if fclk(E −X) = E; oth-

erwise, it is not k-sequential. An exact k-separation (X,Y ) is k-sequential

if X or Y is k-sequential; otherwise, when X and Y are not k-sequential,

we say that (X,Y ) is not k-sequential. When there is no ambiguity, we

sometimes omit the “k-” and say that a k-separating set or k-separation is

sequential or non-sequential. When X is k-sequential and (X1, X2, . . . , Xm)

is a maximal partial k-sequence for E−X, we say that (Xm, Xm−1, . . . , X1)

is a k-sequential ordering of X.

Let (A1, B1) and (A2, B2) be exact k-separations of M ; then (A1, B1) is

k-equivalent to (A2, B2) if {fclk(A1), fclk(B1)} = {fclk(A2), fclk(B2)}.

4.1.2 k-flowers

The crossing k-separations of a k-connected matroid M are represented by

the k-flowers of M .

Let M be a k-connected matroid for some k ≥ 3 with ground set E.

For n > 1, a partition (P1, P2, . . . , Pn) of E is a k-flower with petals

P1, P2, . . . , Pn if each Pi is exactly k-separating, and each Pi ∪ Pi+1 is k-

separating, where subscripts are interpreted modulo n. We also view (E) as

a k-flower with a single petal E; we call this k-flower trivial. In the remain-

der of this thesis, for a flower (P1, P2, . . . , Pn), the subscripts will always

be interpreted modulo n. A k-flower Φ displays a k-separating set X or

a k-separation (X,Y ) if X is a union of petals of Φ. Let Φ1 and Φ2 be

k-flowers. Then Φ1 4 Φ2 if every non-sequential k-separation displayed by

Φ1 is k-equivalent to a k-separation displayed by Φ2. We say that Φ1 and

Φ2 are k-equivalent if Φ1 4 Φ2 and Φ2 4 Φ1. The order of a k-flower Φ is

the minimum number of petals in a k-flower k-equivalent to Φ.
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Let Φ = (P1, P2, . . . , Pn) be a k-flower of M . The k-flower Φ is a

k-anemone if
⋃

s∈S Ps is k-separating for every subset S of {1, 2, . . . , n};
whereas Φ is a k-daisy if Pi ∪ Pi+1 ∪ · · · ∪ Pi+j is k-separating for all

i, j ∈ {1, 2, . . . , n}, and no other union of petals is k-separating. Aikin and

Oxley (2008) showed that every non-trivial k-flower is either a k-anemone

or a k-daisy.

An element e ∈ E is loose if e ∈ fclk(Pi)− Pi for some i ∈ {1, 2, . . . , n},
otherwise e is tight. A petal Pi, for some i ∈ {1, 2, . . . , n}, is loose if every

e ∈ Pi is loose; otherwise, Pi is tight. A flower of order at least three is

tight if all its petals are tight; while a flower of order one or two is tight

if it has one or two petals, respectively. A k-daisy Φ is irredundant if, for

all i ∈ {1, 2, . . . , n}, there is a non-sequential k-separation (X,Y ) displayed

by Φ with Pi ⊆ X and Pi+1 ⊆ Y . A k-anemone Φ is irredundant if, for

all distinct i, j ∈ {1, 2, . . . , n}, there is a non-sequential k-separation (X,Y )

displayed by Φ with Pi ⊆ X and Pj ⊆ Y . Note that a tight 3-flower is

always irredundant, but this does not necessarily hold for tight k-flowers

where k ≥ 4 (Aikin and Oxley, 2012, Example 3.14). As the purpose of a

k-tree is to describe the non-sequential k-separations of a matroid, it is most

efficient to do so using irredundant flowers.

This definition of an irredundant k-flower Φ is stronger than that given

by Aikin and Oxley (2012) when Φ is a k-anemone. The stronger definition

ensures that for a tight irredundant k-anemone Φ with n petals, the order

of Φ is n. This is illustrated by considering the 4-flower (P1, P2, P4, P3)

as described by Aikin and Oxley (2012, Example 3.14), but with the last

two petals interchanged; this 4-flower is “irredundant” under the weaker

definition, but (P1, P2 ∪ P3, P4) is an equivalent 4-flower with fewer petals.

It is also worth noting that our terminology differs from that used by Clark

and Whittle (2013), where a k-flower in the unique tangle T for M is called

S-tight, where S is the set of all non-sequential k-separations of M , if no

k-flower displaying the same k-separations contained in S has fewer petals.

Thus, such an S-tight k-flower must be not only tight, as defined here, but

also irredundant.

4.1.3 k-trees

Let π be a partition of a finite set E. Let T be a tree such that every member

of π labels exactly one vertex of T ; some vertices may be unlabelled but no
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vertex is multiply labelled. We say that T is a π-labelled tree; labelled

vertices are called bag vertices and members of π are called bags. If B is a

bag vertex of T , then π(B) denotes the subset of E that labels it. If the

degree of B is at most one, then B is a terminal bag vertex; otherwise B is

non-terminal.

Let G be a subgraph of T with components G1, G2, . . . , Gm. Let Xi be

the union of those bags that label vertices of Gi. Then the subsets of E

displayed by G are X1, X2, . . . , Xm. In particular, if V (G) = V (T ), then

{X1, X2, . . . , Xm} is the partition of E displayed by G. Let e be an edge of

T . The partition of E displayed by e is the partition displayed by T\e. If

e = v1v2 for vertices v1 and v2, then (Y1, Y2) is the (ordered) partition of

E(M) displayed by v1v2 if Y1 is the union of the bags in the component of

T\v1v2 containing v1. Let v be a vertex of T that is not a bag vertex. The

partition of E displayed by v is the partition displayed by T − v. The edges

incident with v correspond to the components of T − v, and hence to the

members of the partition displayed by v. In what follows, if a cyclic ordering

(e1, e2, . . . , en) is imposed on the edges incident with v, this cyclic ordering

is taken to represent the corresponding cyclic ordering on the members of

the partition displayed by v.

Let M be a k-connected matroid with ground set E. Let T be a π-

labelled k-tree for M , where π is a partition of E such that:

(F1) For each edge e of T , the partition (X,Y ) of E displayed by e is k-

separating, and, if e is incident with two bag vertices, then (X,Y ) is

a non-sequential k-separation.

(F2) Every non-bag vertex v is labelled either D or A; if v is labelled D,

then there is a cyclic ordering on the edges incident with v.

(F3) If a vertex v is labelled A, then the partition of E displayed by v is a

k-anemone of order at least three.

(F4) If a vertex v is labelled D, then the partition of E displayed by v, with

the cyclic order induced by the cyclic ordering on the edges incident

with v, is a k-daisy of order at least three.

A vertex of T is referred to as a daisy vertex or an anemone vertex if it is

labelled D or A, respectively. A vertex labelled either D or A is a flower
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vertex. By conditions (F3) and (F4), the partition displayed by a flower

vertex v is a k-flower Φ of M ; we say that Φ is the flower corresponding to

v, and the k-separations displayed by Φ are the k-separations displayed by

v. A k-separation is displayed by T if it is displayed by some edge or some

flower vertex of T . A k-separation (R,G) of M conforms with T if either

(R,G) is equivalent to a k-separation that is displayed by a flower vertex

or an edge of T , or (R,G) is equivalent to a k-separation (R′, G′) with the

property that either R′ or G′ is contained in a bag of T .

A π-labelled k-tree T for M satisfying (F1)–(F4) is a conforming k-

tree for M if every non-sequential k-separation of M conforms with T . A

conforming k-tree T is a partial k-tree if, for every flower vertex v of T , the

partition of E displayed by v is a tight maximal k-flower of M .

We now define a quasi order on the set of partial k-trees for M . Let

T1 and T2 be partial k-trees for M . Define T1 4 T2 if every non-sequential

k-separation displayed by T1 is equivalent to one displayed by T2. If T1 4 T2

and T2 4 T1, then T1 and T2 are equivalent partial k-trees. A partial k-tree is

maximal if it is maximal with respect to this quasi order. We call a maximal

partial k-tree a k-tree.

4.2 An example

In this section, we give a generic example to demonstrate that the constraint

that |E(M)| ≥ 8k − 15, in Theorems 4.0.1 and 4.0.2, is sharp. Clark and

Whittle (2013, Section 5) showed that for each k > 3 there is a polymatroid

that has a tangle T of order k with a non-sequential k-separation that does

not conform with an S-tight S-maximal k-flower in T . Restricting our

attention to k-connected matroids, we show that for each k ≥ 3 there is

a k-connected matroid M with 8k − 16 elements that has a non-sequential

k-separation that does not conform with a tight irredundant maximal k-

flower of M . This is consistent with examples in the literature: the 8-

element 3-connected matroid R8 given by Oxley et al. (2004, Section 9) and

the 16-element 4-connected matroid H16 given by Aikin and Oxley (2012,

Section 4).

Let H8k−16 be the (8k − 16)-element binary affine k-dimensional hyper-

cube, or k-cube, of rank k + 1. The matroid H8k−16 is k-connected. For

k ∈ {3, 4}, these matroids are illustrated in Figure 4.1. When k = 4, this



4.2. AN EXAMPLE 67

e1

e2

e3

e4

e5

e6

e7

e8

(a) The rank-4 binary affine 3-cube.
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(b) The rank-5 binary affine 4-cube.

Figure 4.1: The binary affine k-cubes where k ∈ {3, 4}.

matroid coincides with the aforementioned example given by Aikin and Ox-

ley (2012). A representation of H8k−16 can be constructed as follows. Let

H ′8 be the matrix 
1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


over GF (2). Let H ′8J be the matrix

1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0


over GF (2) that is obtained by reversing the order of the columns of H ′8.

Recursively, for all k ≥ 3, define H ′8(k+1)−16 to be the matrix

(
H ′8k−16 H ′8k−16J

0T 1T

)
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over GF (2) where H ′8k−16J is the matrix obtained from H ′8k−16 by revers-

ing the order of the columns. Label the columns of H ′8k−16 from e1 to

e8k−16. We denote, for all k ≥ 2, the vector matroid arising from H ′8k−16
by H8k−16. Then, the partition Φ = ({e1, e2, . . . , e2k−4}, {e2k−3, . . . , e4k−8},
{e4k−7, . . . , e6k−12}, {e6k−11, . . . , e8k−16}) is an irredundant tight k-flower.

However, letting

X = {e1, e2, . . . , ek−2, e3k−5, e3k−4, . . . , e5k−10, e7k−13, e7k−12, . . . , e8k−16},

the non-sequential k-separation (X,E(H8k−16) − X) does not con-

form with Φ. For example, when k = 3, the non-sequential 3-

separation ({e1, e4, e5, e8}, {e2, e3, e6, e7}) does not conform with the 3-

flower ({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8}); when k = 4, the non-sequential

4-separation

({e1, e2, e7, e8, e9, e10, e15, e16}, {e3, e4, e5, e6, e11, e12, e13, e14})

does not conform with the 4-flower

({e1, e2, e3, e4}, {e5, e6, e7, e8}, {e9, e10, e11, e12}, {e13, e14, e15, e16}).

4.3 Preliminaries

4.3.1 k-connectivity

Heretofore, we have referred to an application of Lemma 2.1.1 as “uncross-

ing”. This lemma applies only to 3-connected matroids. More generally, for

a k-connected matroid we have the following:

Lemma 4.3.1. Let M be a k-connected matroid, and let X and Y be k-

separating subsets of E(M).

(i) If |X ∩ Y | ≥ k − 1, then X ∪ Y is k-separating.

(ii) If |E(M)− (X ∪ Y )| ≥ k − 1, then X ∩ Y is k-separating.

In the remainder of the thesis, we use the phrase “by uncrossing” to refer

to an application of Lemma 4.3.1.

The following results identify some elementary properties of sequential

k-separating sets. The first is a generalisation of results by Oxley et al.
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(2012, Lemma 2.7) and Aikin and Oxley (2012, Lemma 2.6). The proofs of

the subsequent corollaries are straightforward.

Lemma 4.3.2. In a k-connected matroid M , let X and Y be k-separating

sets such that |E(M) −X| ≥ k − 1 and Y ⊆ X. If X is k-sequential, then

so is Y .

Proof. Take a k-sequential ordering (X1, X2, . . . , Xt) of X. Then, by un-

crossing, for all i ∈ {1, 2, . . . , t}, the set Y ∩ (X1 ∪ X2 ∪ · · · ∪ Xi) is k-

separating.

Corollary 4.3.3. Let (X,Y ) be a k-separation in a k-connected matroid M

and let Y ′ be a non-sequential k-separating set in M . If Y ′ ⊆ Y , then Y is

non-sequential.

Corollary 4.3.4. Let M be a k-connected matroid, and let F be the collec-

tion of maximal k-sequential k-separating sets of M . Then, a k-separating

set X is non-sequential if and only if no member of F contains X.

The next lemma generalises a well-known property of non-sequential 3-

separating sets (Oxley et al., 2004, Lemma 3.4(i)).

Lemma 4.3.5. Let (X,Y ) be exactly k-separating in a k-connected matroid

M . If (X,Y ) is not k-sequential, then |X|, |Y | ≥ 2k − 2.

Proof. Suppose that |X| ≤ 2k−3. Clearly, |X| ≥ k−1. Every (k−1)-element

subset X1 of X is trivially k-separating. Therefore, as |X −X1| ≤ k− 2, we

have fclk(E(M)−X) = fclk(E(M)−X1) = E(M); a contradiction.

An ordered partition (Z1, Z2, . . . , Zt) of E(M) is a k-sequence if, for all

i ∈ {1, 2, . . . , t− 1}, the set
⋃i

j=1 Zj is k-separating.

Lemma 4.3.6. Let U and Y be disjoint subsets of the ground set

E of a k-connected matroid M . Suppose that U and U ∪ Y are k-

separating and Y ⊆ fclk(U). If fclk(U) 6= E, then there is a partition

(Y1, Y2, . . . , Ys) of Y such that |Yi| ≤ k − 2 for each i ∈ {1, 2, . . . , s} and

(U, Y1, Y2, . . . , Ys, E − (U ∪ Y )) is a k-sequence.

Proof. Let (U1, U2, . . . , Ul) be a partition of fclk(U) − U such that, for all

i ∈ {1, 2, . . . , l}, we have |Ui| ≤ k−2 and U∪U1∪U2∪· · ·∪Ui is k-separating.

Let (Y1, Y2, . . . , Ys) be the partition of the elements of Y induced by this
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partition of fclk(U) − U . As fclk(U) 6= E, we have |E − fclk(U)| ≥ 2k − 2

by Lemma 4.3.5. Thus, by uncrossing U ∪ Y and U ∪ U1 ∪ U2 ∪ · · · ∪ Ui

for i ∈ {1, 2, . . . , l}, we deduce that U ∪ Y1 ∪ Y2 ∪ · · · ∪ Yj is k-separating

for all j in {1, 2, . . . , s}. In particular, (U, Y1, Y2, . . . , Ys, E − (U ∪ Y )) is a

k-sequence.

The following corollary is a straightforward consequence of Lemma 4.3.6,

where (ii) follows from a result by Clark and Whittle (2013, Lemma 3.7).

Corollary 4.3.7. Let U and Y be disjoint subsets of the ground set E of

a k-connected matroid M . Suppose that U and U ∪ Y are k-separating and

Y ⊆ fclk(U). If fclk(U) 6= E, then

(i) Y ⊆ fclk(E − (U ∪ Y )), and

(ii) (U,E − U) is k-equivalent to (U ∪ Y,E − (U ∪ Y )).

4.3.2 k-flowers

The following lemma is a generalisation of a result due to Aikin and Ox-

ley (2012, Lemma 3.4). We say that a partial k-sequence (Xi)
m
i=1 for X

is fully refined if, for every partial k-sequence (X ′i)
m′
i=1 for X such that⋃m′

i=1X
′
i =

⋃m
i=1Xi, we have m ≥ m′.

Lemma 4.3.8. Let (P1, P2, . . . , Pn) be a tight k-flower Φ of order at least

three in a k-connected matroid M . Let (Yi)
m
i=1 be a fully refined partial k-

sequence of P1 ∪P2 ∪ · · · ∪Pj, where j ≤ n− 2. Let d be the largest member

of {1, 2, . . . ,m} such that, for all i ∈ {1, 2, . . . , d}, the set Yi is contained

in one of Pj+1, Pj+2, . . . , Pn, or let d = 0 if there is no such member. Let

Y ′ = Y1 ∪ Y2 ∪ · · · ∪ Yd.

(i) If d < m, then

(a) j = n− 2;

(b) Yd+1 meets both Pn−1 and Pn;

(c) each of Pn−1 − (Y ′ ∪ Yd+1) and Pn − (Y ′ ∪ Yd+1) has between 2

and k − 2 elements;

(d) each of Pn−1 − Y ′ and Pn − Y ′ has between k − 1 and 2k − 5

elements; and
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(e) fclk(P1 ∪ P2 ∪ · · · ∪ Pj) = E(M).

(ii) When i ≤ d,

(a) if Yi is contained in Pn, then Yi ⊆ fclk(P1)− P1; and

(b) if Yi is not contained in Pn, then Yi ⊆ fclk(Pj)− Pj.

(iii) The k-flower Φ is k-equivalent to

(P1 ∪ (Y ′ ∩ Pn), P2, . . . , Pj−1, Pj ∪ (Y ′ − Pn), Pj+1 − Y ′, . . . , Pn − Y ′).

Proof. We begin by establishing (ii) and (iii). As these hold trivially when

d = 0, we may assume that d ≥ 1. Suppose that Y1 ⊆ Pn. The sets

P1 ∪ P2 ∪ · · · ∪ Pj ∪ Y1 and P1 ∪ Pn are k-separating, and their union avoids

Pn−1, so their intersection, P1 ∪ Y1, is k-separating by uncrossing. Thus

Y1 ⊆ fclk(P1) if Y1 ⊆ Pn. Now suppose that Y1 is not contained in Pn.

Then Pn ∩ Y1 = ∅. Since P1 ∪ P2 ∪ · · · ∪ Pj ∪ Y1 and Pj ∪ Pj+1 ∪ · · · ∪ Pn−1

are k-separating, and their union avoids Pn, their intersection, Pj ∪ Y1, is

k-separating by uncrossing; that is, Y1 ⊆ fclk(Pj).

If Y1 ⊆ Pn, then we replace (P1, P2, . . . , Pn) by (P1∪Y1, P2, P3, . . . , Pn−1,

Pn − Y1). If Y1 ⊆ Pm, for j + 1 ≤ m ≤ n− 1, then we replace Pj by Pj ∪ Y1
and replace Pm by Pm−Y1. In each case, as Φ is tight, the resulting k-flower

(P ′1, P
′
2, . . . , P

′
n) is tight, and fclk(P ′1∪P ′2∪· · ·∪P ′j) = fclk(P1∪P2∪· · ·∪Pj)

and (Yi)
m
i=2 is a partial k-sequence for P ′1 ∪ P ′2 ∪ · · · ∪ P ′j . If d = 1, then (ii)

and (iii) hold. Otherwise, when d ≥ 2, we can repeat this process using Y2

rather than Y1 in our new k-flower, and we will get that Y2 is contained in

one of P ′j+1, P
′
j+2, . . . , P

′
n. Hence Y2 is contained in one of Pj+1, Pj+2, . . . , Pn.

Then, either P ′1∪Y2 or P ′j∪Y2 is k-separating. Continuing in this way, using

Y3, Y4, . . . , Yd, we obtain (ii) and (iii).

To prove (i), let Φ′′ = (P ′′1 , P
′′
2 , . . . , P

′′
n )

= (P1 ∪ (Y ′ ∩ Pn), P2, . . . , Pj−1, Pj ∪ (Y ′ − Pn), Pj+1 − Y ′, . . . , Pn − Y ′).

Recall that Yd+1 is not contained in any of Pj+1, Pj+2, . . . , Pn. Let

s ∈ {j + 1, j + 2, . . . , n} be the minimum index such that Yd+1 meets

P ′′s . The sets P ′′1 ∪ P ′′2 ∪ · · · ∪ P ′′j ∪ Yd+1 and P ′′1 ∪ P ′′2 ∪ · · · ∪ P ′′s are k-

separating. If their union avoids at least k−1 elements, then, by uncrossing,

P ′′1 ∪P ′′2 ∪· · ·∪P ′′j ∪(P ′′s ∩Yd+1) is k-separating, where P ′′s ∩Yd+1 is a non-empty
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proper subset of Yd+1, contradicting that the partial k-sequence is fully re-

fined. Thus we may assume that |(P ′′s+1 ∪ P ′′s+2 ∪ · · · ∪ P ′′n )− Yd+1| ≤ k − 2.

Since |Yd+1| ≤ k−2 and P ′′s ∩Yd+1 6= ∅, it follows that |
⋃n

i=s+1 P
′′
i | ≤ 2k−5.

But |P ′′i | ≥ k − 1 for all i ∈ {1, 2, . . . , n}, since Φ is tight. Thus

s + 1 = n, the set Yd+1 meets P ′′n , and k − 1 ≤ |P ′′n | ≤ 2k − 5. Like-

wise, by uncrossing (
⋃j

i=1 P
′′
i ) ∪ Yd+1 and (

⋃j
i=1 P

′′
i ) ∪ P ′′n , we deduce that

|(
⋃n−1

i=j+1 P
′′
i ) − Yd+1| ≤ k − 2, thus s = j + 1 and k − 1 ≤ |P ′′s | ≤ 2k − 5.

Hence j = n − 2 and, since |P ′′n − Yd+1|, |P ′′n−1 − Yd+1|, |Yd+1| ≤ k − 2,

it follows that |(P ′′n ∪ P ′′n−1) − Yd+1| ≤ 2k − 4. Thus the k-separating

set (P ′′n−1 ∪ P ′′n ) − Yd+1 is k-sequential, by Lemma 4.3.5. We deduce that

fclk(P1 ∪ P2 ∪ · · · ∪ Pj) = E(M). Thus (i) holds.

We now give three corollaries of the previous lemma. The first is analo-

gous to a result by Oxley and Semple (2013, Lemma 3.4(i)), which concerns

only 3-flowers. The requirement that fclk(P1 ∪ P2 ∪ · · · ∪ Pj) 6= E(M),

not present in the k = 3 case, is necessary, as will become evident in

Example 4.4.3. Corollary 4.3.10 generalises the corresponding results for

k = 3 (Oxley et al., 2004, Corollary 5.10) and k = 4 (Aikin and Oxley, 2012,

Corollary 3.15). Similarly, Corollary 4.3.11 is a generalisation of a result

by Oxley and Semple (2013, Corollary 3.5).

Corollary 4.3.9. Let (P1, P2, . . . , Pn) be a tight k-flower of order at least

three in a k-connected matroid M . If fclk(P1 ∪ P2 ∪ · · · ∪ Pj) 6= E(M) for

some 1 ≤ j ≤ n− 2, then

fclk(P1∪P2∪· · ·∪Pj)−(P1∪P2∪· · ·∪Pj) ⊆ (fclk(P1)−P1)∪(fclk(Pj)−Pj),

and every element of (fclk(P1)− P1) ∪ (fclk(Pj)− Pj) is loose.

Corollary 4.3.10. Let Φ = (P1, P2, . . . , Pn) be a tight irredundant k-flower.

Then the order of Φ is n.

Proof. By definition, the order of Φ is at most n. Towards a contradiction,

suppose Φ′ is a k-flower with n′ petals, where n′ < n, that is k-equivalent

to Φ. Without loss of generality, we may assume that Φ′ is tight. If n′ = 1,

then Φ displays no non-sequential k-separations, and it follows that Φ is not

tight; a contradiction. Thus n′ ≥ 2.

Let (U1, V1) be a non-sequential k-separation displayed by Φ. Then Φ′

displays a k-separation (U ′1, V
′
1) with fclk(U1) = fclk(U ′1) and fclk(V1) =
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fclk(V ′1). Since Φ′ has fewer petals than Φ, we may assume, without loss of

generality, that U1 is the union of p1 petals of Φ, and U ′1 is the union of p′1
petals of Φ′, where p′1 < p1. Suppose there is a petal P1 of Φ contained in U1

for which (U1−P1, V1∪P1) is a non-sequential k-separation. The k-flower Φ′

displays an equivalent k-separation (U ′2, V
′
2), with fclk(U1 − P1) = fclk(U ′2)

and fclk(V1 ∪ P1) = fclk(V ′2), where U ′2 is the union of p′2 petals of Φ′.

Since Φ is tight, it follows, by Corollary 4.3.9, that P1 * fclk(V1). Thus

fclk(V ′1) = fclk(V1) $ fclk(V1 ∪ P1) = fclk(V ′2). If there is a petal P ′ of Φ′

contained in V ′1 − V ′2 , then P ′ ⊆ fclk(V ′2)− V ′2 . As fclk(V ′2) 6= E(M), the set

U ′2 contains a petal of Φ′ other than P ′. By Corollary 4.3.9, P ′ is loose; a

contradiction. We deduce that V ′1 $ V ′2 . Since U ′1 is the union of p′1 petals,

it follows that U ′2 is the union of at most p′1 − 1 petals; that is, p′2 < p′1.

Let (U2, V2) = (U1 − P1, V1 ∪ P1). If there is a petal P2 contained in U2 for

which (U2−P2, V2∪P2) is a non-sequential k-separation, then we can repeat

this process until, for some i < n, we obtain a non-sequential k-separation

(Ui, Vi) where for each petal Pi of Φ contained in Ui, if (Ui − Pi, Vi ∪ Pi) is

a k-separation, then it is k-sequential. We relabel this k-separation (U, V ).

Observe that Φ′ displays a k-separation (U ′, V ′), with fclk(U) = fclk(U ′)

and fclk(V ) = fclk(V ′), such that U ′ is the union of p′ petals of Φ′, and U is

the union of p petals of Φ, with p′ < p.

Suppose that p′ ≥ 2, so p ≥ 3. Pick distinct petals Pa, Pb, and Pc

of Φ contained in U . Since Φ is irredundant, there exists a non-sequential

k-separation (A,B) displayed by Φ such that Pa ⊆ A and Pb ⊆ B. With-

out loss of generality, we may assume that Pc ⊆ B. The k-flower Φ′ dis-

plays a k-separation (A′, B′) equivalent to (A,B). We now consider petals

of Φ′ contained in U ′. For any such petal P ′a contained in A′, we have

P ′a ∩ (Pb ∪ Pc) ⊆ fclk(A) − A, and these elements are loose in Φ by Corol-

lary 4.3.9. As Φ is irredundant, there exists a non-sequential k-separation

(B2, C2) displayed by Φ such that Pb ⊆ B2 and Pc ⊆ C2, with an equivalent

k-separation (B′2, C
′
2) displayed by Φ′. Since Pb $ U and (B2, C2) is non-

sequential, B2 contains a petal of Φ other than Pb. Likewise, C2 contains

a petal other than Pc. Let P ′b be a petal of Φ′ contained in B′ and U ′. If

P ′b ⊆ C ′2, then P ′b ∩Pb ⊆ fclk(C2)−C2, and these elements are loose in Φ by

Corollary 4.3.9. Otherwise, P ′b ⊆ B′2, in which case P ′b ∩Pc ⊆ fclk(B2)−B2,

and, again, these elements are loose by Corollary 4.3.9. We deduce that

all the elements of U ′ ∩ (Pb ∪ Pc) are loose in Φ. If V ′ is a single petal of
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Φ′, then the only non-sequential k-separation displayed by Φ′ is (U ′, V ′), in

which case (A′, B′) is an equivalent k-separation, contradicting the fact that

Φ′ is tight. Thus, by Corollary 4.3.9, the elements of fclk(U ′)−U ′ are loose,

so Pb and Pc are loose; a contradiction.

We may now assume that p′ = 1. Let Px and Py be distinct petals of Φ

contained in U such that Px ∪ Py is k-separating. Since Φ is irredundant,

there exists a non-sequential k-separation (X,Y ) displayed by Φ such that

Px ⊆ X and Py ⊆ Y . The k-flower Φ′ displays an equivalent k-separation

(X ′, Y ′) for which, without loss of generality, the petal U ′ is contained in

X ′. Thus fclk(Px∪Py) ⊆ fclk(U ′) ⊆ fclk(X ′) = fclk(X). Now Py ⊆ fclk(Px∪
Py) ⊆ fclk(X), and Py ⊆ Y , so Py ⊆ fclk(X)−X. Since Y is non-sequential,

it contains a petal of Φ other than Py. Thus, by Corollary 4.3.9, Py is loose;

a contradiction. This completes the proof of the corollary.

Corollary 4.3.11. Let Φ be a tight irredundant flower in a k-connected

matroid M and let (U, V ) be a non-sequential k-separation displayed by Φ.

Then no petal of Φ is in the full k-closure of both U and V .

Proof. Let P be a petal of Φ such that P ⊆ U and P ⊆ fclk(V ). Then P

is a proper subset of U as (U, V ) is non-sequential. Hence Φ has at least

three petals. Therefore, by Corollary 4.3.10, Φ has order at least three.

Since fclk(V ) 6= E(M), it follows, by Corollary 4.3.9, that P is loose; a

contradiction.

The following lemma provides a straightforward way to verify that a

petal is tight.

Lemma 4.3.12. Let (P1, P2, . . . , Pn) be a k-flower in a k-connected ma-

troid M . If, for some i ∈ {1, 2, . . . , n}, the petal Pi is loose, then either

Pi ⊆ fclk(P1 ∪ P2 ∪ · · · ∪ Pi−1) or Pi ⊆ fclk(Pi+1 ∪ Pi+2 ∪ · · · ∪ Pn).

Proof. Let P−i = P1 ∪ P2 ∪ · · · ∪ Pi−1 and P+
i = Pi+1 ∪ Pi+2 ∪ · · · ∪ Pn.

If fclk(P+
i ) = E(M), then Pi ⊆ fclk(P+

i ); so assume otherwise. Let

A = Pi ∩ fclk(P−i ) and B = Pi − fclk(P−i ). Since Pi is loose, B ⊆ fclk(P+
i ).

Then, there exists a set B′ containing B where B′ ∪ P+
i is k-separating

and B′ ⊆ fclk(P+
i ). By Corollary 4.3.7(i), B′ ⊆ fclk((P−i ∪ Pi) − B′) ⊆

fclk(P−i ∪ A) ⊆ fclk(P−i ). Thus B ⊆ fclk(P−i ). We deduce that B = ∅,
completing the proof of the lemma.
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Let Φ = (P1, P2, . . . , Pn) be a k-flower of M . We can obtain a new flower

Φ′ from Φ = (P1, P2, . . . , Pn) in the following way. Let Φ′ = (P ′1, P
′
2, . . . , P

′
m)

where there are indices 0 = j0 < j1 < · · · < jm = n such that

P ′i = Pji−1+1 ∪ · · · ∪ Pji for all i ∈ {1, 2, . . . ,m}. Then we say that the

flower Φ′ is a concatenation of Φ, and that Φ refines Φ′.

4.3.3 k-paths

Oxley and Semple (2013) introduced the notion of a 3-path to facilitate

describing inequivalent non-sequential 3-separations. Here, we generalise

this notion to k-paths.

Let M be a k-connected matroid with ground set E. A k-path in M

is an ordered partition (X1, X2, . . . , Xm) of E into non-empty sets, called

parts, such that

(i)
(⋃i

j=1Xj ,
⋃m

j=i+1Xj

)
is a non-sequential k-separation of M for all

i ∈ {1, 2, . . . ,m− 1}; and

(ii) for all i ∈ {2, 3, . . . ,m − 1}, the set Xi is not in the full k-closure of

either
⋃i−1

j=1Xj or
⋃m

j=i+1Xj .

Condition (ii) is equivalent to the assertion that the non-sequential k-

separations
(⋃i

j=1Xj ,
⋃m

j=i+1Xj

)
and

(⋃i+1
j=1Xj ,

⋃m
j=i+2Xj

)
are inequiv-

alent for all i ∈ {1, 2, . . . ,m − 2}. We say X1 and Xm are the end parts

of the k-path. For each i ∈ {1, 2, . . . ,m}, we denote the sets
⋃i−1

j=1Xj and⋃m
j=i+1Xj by X−i and X+

i , respectively. In particular, X−1 = ∅ = X+
m. Ob-

serve that each of X1 and Xm has at least 2k−2 elements, by Lemma 4.3.5,

and each of X2, X3, . . . , Xm−1 has at least k − 1 elements by (ii).

For a subset X0 of E, an X0-rooted k-path is a k-path of the form

(X0 ∪X1, X2, . . . , Xm) where X0 ∩X1 = ∅. Thus a k-path is just a ∅-rooted

k-path. An X0-rooted k-path is maximal if

(I) none of the sets Xi with i ≥ 2 can be partitioned into sets

Xi,1, Xi,2, . . . , Xi,k for some k ≥ 2 such that (X0 ∪ X1, X2, . . . , Xi−1,

Xi,1, Xi,2, . . . , Xi,k, Xi+1, . . . , Xm) is a k-path; and

(II) X1 cannot be partitioned into sets X1,1, X1,2, . . . , X1,k for some k ≥ 2

such that (X0 ∪X1,1, X1,2, . . . , X1,k, X2, . . . , Xm) is a k-path.
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Observe that, in (II), the set X1,1 may be empty when X0 is non-empty

although all of X1,2, X1,3, . . . , X1,k must be non-empty. An X0-rooted k-

path is left-justified if, for all i ∈ {2, 3, . . . ,m}, no element of Xi is in the

full k-closure of
⋃i−1

j=0Xj .

In what follows, we shall frequently be referring to a k-separation (R,G)

in a k-connected matroid M . In general, we shall view (R,G) as a colouring

of the elements of E(M), the elements in R and G being coloured red and

green, respectively. A non-empty subset X of E(M) is bichromatic if it

meets both R and G; otherwise it is monochromatic. We shall view the

empty set as being monochromatic. A proof of the following lemma is given

by Clark and Whittle (2013, Lemma 3.7). We make repeated use of this

result in the subsequent lemmas.

Lemma 4.3.13. Let M be a k-connected matroid. If (R,G) is a non-

sequential k-separation of M and (R′, G′) is a k-separation of M such that

fclk(R′) = fclk(R) or fclk(R′) = fclk(G), then (R′, G′) is a non-sequential

k-separation of M that is k-equivalent to (R,G).

The following lemmas generalise the corresponding results for 3-

paths (Oxley and Semple, 2013, Lemmas 3.8–3.12, 3.14, and 3.15). The

proofs for Lemmas 4.3.14, 4.3.15 and 4.3.17–4.3.20 are uncomplicated up-

grades, but have been provided for completeness. On the other hand, the

proof for Lemma 4.3.16 is not a trivial upgrade, as the proof given by Oxley

and Semple (2013, Lemma 3.10) relies on properties specific to 3-sequences,

and Lemma 4.3.21 is new.

Lemma 4.3.14. Let (X0 ∪X1, X2, . . . , Xm) be a left-justified maximal X0-

rooted k-path in a k-connected matroid M . Let (R,G) be a non-sequential

k-separation in M . If, for some i in {2, 3, . . . ,m − 1}, both X−i and X+
i

contain at least k − 1 red and at least k − 1 green elements, then Xi is

monochromatic.

Proof. Assume that Xi is bichromatic. The set X+
i contains at least k − 1

green elements by hypothesis. Thus, by uncrossing, as both X−i ∪Xi and R

are k-separating, so is their intersection (X−i ∪Xi)∩R. Again by uncrossing,

the union of the last set withX−i , which equalsX−i ∪(Xi∩R), is k-separating.

By maximality, (X0∪X1, X2, . . . , Xi−1, Xi∩R,Xi∩G,Xi+1, . . . , Xm) is not

a k-path. If Xi ∩ R ⊆ fclk((Xi ∩ G) ∪ X+
i ), then Xi ∩ R ⊆ fclk(X−i ) by
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Corollary 4.3.7(i). But the original k-path is left-justified, so it follows that

Xi ∩ G ⊆ fclk(X+
i ). By symmetry, X−i ∪ (Xi ∩ G) is k-separating, yet

(X0 ∪ X1, X2, . . . , Xi−1, Xi ∩ G,Xi ∩ R,Xi+1, . . . , Xm) is not a k-path, so

Xi ∩R ⊆ fclk(X+
i ). We conclude that Xi ⊆ fclk(X+

i ); a contradiction.

Lemma 4.3.15. Let (X1, X2, . . . , Xm) be a k-path in a k-connected ma-

troid M . Let X0 be a subset of X1, and let (R,G) be a non-sequential

k-separation in M for which X0 is monochromatic and no equivalent k-

separation in which X0 is monochromatic has fewer bichromatic parts. Sup-

pose that, for some i in {1, 2, . . . ,m}, the set Xi is bichromatic. If, for some

Z in {X−i , X
+
i }, there is at least one red element in Z, then there are at

least k − 1 red elements in Z.

Proof. Suppose first that 1 ≤ |X+
i ∩R| ≤ k−2. As (X−i ∪Xi, X

+
i ) and (R,G)

are non-sequential, |X+
i | ≥ 2k − 2 and |R| ≥ 2k − 2 by Lemma 4.3.5. Thus

|R∩ (X−i ∪Xi)| ≥ k− 1, and, by uncrossing, G∩X+
i is k-separating. Since

X+
i is also k-separating and |X+

i ∩R| ≤ k−2, the red elements in X+
i can be

recoloured green, producing a k-separation equivalent to (R,G) with fewer

bichromatic parts; a contradiction. Hence |X+
i ∩ R| ≥ k − 1. A symmetric

argument establishes that if |X−i ∩ R| ≥ 1, then |X−i ∩ R| ≥ k − 1, but

additional care is needed to handle X0. In particular, if 1 ≤ |X−i ∩R| ≤ k−2

and this set has non-empty intersection with X0, then X0 ⊆ X−i ∩R as X0

is monochromatic. Thus X0 stays monochromatic after recolouring and,

as X0 ⊆ X1, we produce a k-separation equivalent to (R,G) with fewer

bichromatic parts.

Lemma 4.3.16. Let (X0 ∪X1, X2, . . . , Xm) be a left-justified maximal X0-

rooted k-path in a k-connected matroid M . Let (R,G) be a non-sequential

k-separation in M for which X0 is monochromatic and no equivalent k-

separation in which X0 is monochromatic has fewer bichromatic parts. Sup-

pose, for some i ∈ {2, 3, . . . ,m− 1}, the set Xi is bichromatic. Then either

Xi is not k-separating, or X−i ∪X
+
i is monochromatic.

Proof. Assume that Xi is k-separating and that X−i ∪ X
+
i is bichromatic.

By Lemma 4.3.14, X−i or X+
i contains at most k−2 elements of some colour,

red say. But if this set has at least one red element, then, by Lemma 4.3.15,

it has at least k−1 red elements; a contradiction. We deduce that X−i or X+
i

is green. Then, by Lemma 4.3.15, X+
i or X−i , respectively, contains at least
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k−1 red elements. If Xi contains at most k−2 red elements, then, for some

Y in {X−i ∪Xi, Xi ∪X+
i }, there are at most k − 2 red elements contained

in Y . By uncrossing Y and G, we see that Y ∪ G, which equals Xi ∪ G, is

k-separating, so Xi ∩ R can be recoloured green to produce a k-separation

equivalent to (R,G) with fewer bichromatic parts. Thus Xi contains at least

k− 1 red elements. Suppose that Xi contains at most k− 2 green elements.

Now, by uncrossing, Xi ∩R is k-separating, so Xi ∩G ⊆ fclk(Xi ∩R) as Xi

is k-separating. Since Xi ∪R is k-separating, by uncrossing, it follows that

we can recolour the elements in Xi ∩G red to obtain a k-separation that is

k-equivalent to (R,G) and which reduces the number of bichromatic parts;

a contradiction. We conclude that both Xi ∩R and Xi ∩G contain at least

k − 1 elements.

Recall that either X−i or X+
i is green. In the first case, by uncross-

ing X−i ∪ Xi and G, we deduce that X−i ∪ (Xi ∩ G) is k-separating. As

(X0 ∪ X1, X2, . . . , Xi−1, Xi ∩ G,Xi ∩ R,Xi+1, . . . , Xm) is not a k-path,

but (X0 ∪ X1, X2, . . . , Xm) is a left-justified k-path, it follows, by Corol-

lary 4.3.7(i), that Xi ∩ R ⊆ fclk(X+
i ) or Xi ∩ R ⊆ fclk(X−i ∪ (Xi ∩ G)).

Again by Corollary 4.3.7(i), Xi ∩ R ⊆ fclk(X−i ∪ (Xi ∩ G)) ⊆ fclk(G) in

either case. Since Xi ∪G is k-separating, Xi ∩R can be recoloured green to

give a k-separation that is equivalent to (R,G) but has fewer bichromatic

parts; a contradiction. Similarly, if X+
i is green, then (Xi ∩ G) ∪X+

i is k-

separating by uncrossing G and Xi∪X+
i . As the original k-path is maximal

and left-justified, it follows, by Corollary 4.3.7(i), that Xi∩G ⊆ fclk(X+
i ) ⊆

fclk(G−Xi), where G−Xi is k-separating by uncrossing G and E(M)−Xi.

It now follows that the elements in Xi ∩ G can be recoloured red to give a

k-separation that is equivalent to (R,G) but has fewer bichromatic parts; a

contradiction. This completes the proof of the lemma.

Lemma 4.3.17. Let (X0 ∪X1, X2, . . . , Xm) be a left-justified maximal X0-

rooted k-path in a k-connected matroid M . Let (R,G) be a non-sequential

k-separation in M for which X0 is monochromatic and no equivalent k-

separation in which X0 is monochromatic has fewer bichromatic parts. If,

for some i in {2, 3, . . . ,m − 1}, the set X−i is monochromatic but Xi is

bichromatic, then X−i ∪X
+
i is monochromatic.

Proof. Assume that X−i is green and Xi is bichromatic, but X−i ∪ X
+
i is

bichromatic. Then, by Lemma 4.3.15, X+
i contains at least k − 1 red el-
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ements. Thus, by uncrossing X−i ∪ Xi and G, the set X−i ∪ (Xi ∩ G) is

k-separating. As the k-path (X0 ∪ X1, X2, . . . , Xm) is maximal and left-

justified, it follows, by Corollary 4.3.7(i), that Xi∩R ⊆ fclk(X−i ∪ (Xi∩G)),

so Xi∩R ⊆ fclk(G). Moreover, Xi∪G is k-separating by uncrossing X−i ∪Xi

and G. It follows that (R,G) and (R−Xi, G∪Xi) are k-equivalent. Hence

we can recolour all the elements in Xi∩R green thereby reducing the number

of bichromatic parts; a contradiction.

Lemma 4.3.18. Let (Z0, Z1, Z2, . . . , Zm) be a k-path in a k-connected ma-

troid M where m ≥ 2. Let (R,G) be a non-sequential k-separation of M

such that

(i) each of Z1, Z2, . . . , Zm−1 is monochromatic;

(ii) either

(a) Z0 is monochromatic but Z0 ∪ Z1 is not, or

(b) Z0 is bichromatic and min{|Z0 ∩R|, |Z0 ∩G|} ≥ k − 1; and

(iii) either

(a) Zm is monochromatic but Zm−1 ∪ Zm is not, or

(b) Zm is bichromatic and min{|Zm ∩R|, |Zm ∩G|} ≥ k − 1.

Then M has a k-flower (Z0, Zi,1, Zi,2, . . . , Zi,s, Zm, Zj,t, Zj,t−1, . . . , Zj,1)

where

(I) both Zi,1∪Zi,2∪· · ·∪Zi,s and Zj,t∪Zj,t−1∪· · ·∪Zj,1 are monochromatic;

(II) each of (Zi,1, Zi,2, . . . , Zi,s) and (Zj,1, Zj,2, . . . , Zj,t) is a subsequence of

(Z1, Z2, . . . , Zm−1); and

(III) {Z1, Z2, . . . , Zm−1} = {Zi,1, Zi,2, . . . , Zi,s} ∪ {Zj,1, Zj,2, . . . , Zj,t}.

Moreover, when Zm is bichromatic, this k-flower can be refined so

that (Z0, Zi,1, Zi,2, . . . , Zi,s, Z
′
m, Z

′′
m, Zj,t, Zj,t−1, . . . , Zj,1) is a k-flower where

{Z ′m, Z ′′m} = {Zm ∩R,Zm ∩G} and Zi,s ∪ Z ′m and Z ′′m ∪ Zj,t are monochro-

matic. When Z0 is also bichromatic, this k-flower can be refined so that

(Z ′0, Z
′′
0 , Zi,1, Zi,2, . . . , Zi,s, Z

′
m, Z

′′
m, Zj,t, Zj,t−1, . . . , Zj,1) is a k-flower where

{Z ′0, Z ′′0 } = {Z0∩R,Z0∩G} and Z ′′0 ∪Zi,1 and Z ′0∪Zj,1 are monochromatic.
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Proof. If Zm is bichromatic, let (Z ′m, Z
′′
m) = (Zm ∩ R,Zm ∩ G); otherwise,

let (Z ′m, Z
′′
m) = (Zm−1, Zm). Without loss of generality, we may assume

that Z ′m ⊆ R and Z ′′m ⊆ G. By assumption, Z0 ∪ Z1 is bichromatic

containing at least k − 1 red elements and at least k − 1 green elements.

Let the subsequence of (Z2, Z3, . . . , Zm−1, Z
′
m, Z

′′
m) consisting of red sets be

(Zp1 , Zp2 , . . . , Zpu , Z
′
m). By uncrossing R and Zl∪Zl+1∪· · ·∪Zm−1∪Z ′m∪Z ′′m,

for appropriate l ∈ {2, 3, . . . ,m}, we deduce that Z ′m and Zpa ∪Zpa+1 ∪ · · · ∪
Zpu ∪ Z ′m are k-separating for all a in {1, 2, . . . , u}. As Z0 ∪ Z1 ∪ · · · ∪ Zb

is k-separating for all b in {1, 2, . . . ,m− 1}, we deduce, by uncrossing, that

each of Zp1 , Zp2 , . . . , Zpu , Z
′
m, Zp1 ∪Zp2 , Zp2 ∪Zp3 , . . . , Zpu−1 ∪Zpu , Zpu ∪Z ′m

is k-separating. Moreover, Z ′m ∪ Z ′′m is either Zm or Zm−1 ∪ Zm, so this set

is also k-separating.

Now let the subsequence of (Z2, Z3, . . . , Zm−1, Z
′
m, Z

′′
m) consisting of

green sets be (Zq1 , Zq2 , . . . , Zqv , Z
′′
m). Then Z ′′m is k-separating and, by

uncrossing again, we deduce that each of Zq1 , Zq2 , . . . , Zqv , Zq1 ∪ Zq2 ,

Zq2 ∪ Zq3 , . . . , Zqv−1 ∪ Zqv , Zqv ∪ Z ′′m is k-separating.

As each of Zp1 ∪ Zp2 , Zp2 ∪ Zp3 , . . . , Zpu−1 ∪ Zpu , Zpu ∪ Z ′m, Z ′m ∪ Z ′′m,
Z ′′m ∪ Zqv , Zqv ∪ Zqv−1 , . . . , Zq2 ∪ Zq1 is k-separating, the union of all but

the last of these sets is k-separating, and hence so is its complement

Z0 ∪ Z1 ∪ Zq1 . Similarly, Z0 ∪ Z1 ∪ Zp1 is k-separating. We deduce that

(Z0 ∪ Z1, Zp1 , Zp2 , . . . , Zpu , Z
′
m, Z

′′
m, Zqv−1 , . . . , Zq1) is a k-flower. If Z1 is

red, then, by uncrossing, Z1 ∪ Zp1 ∪ · · · ∪ Zpu ∪ Z ′m is k-separating, as are

Z0 ∪ Z1 and Z0 ∪ Z1 ∪ Zp1 , so Z1 and Z1 ∪ Zp1 are k-separating. Also,

E − (Z1 ∪ Zp1 ∪ · · · ∪ Zpu ∪ Z ′m) is k-separating and, by uncrossing, so

too is Z0∪Zq1 . Hence (Z0, Z1, Zp1 , Zp2 , . . . , Zpu , Z
′
m, Z

′′
m, Zqv , Zqv−1 , . . . , Zq1)

is a k-flower. If Z1 is green, then, as Z ′m is red, a similar argu-

ment gives that (Z0, Zp1 , Zp2 , . . . , Zpu , Z
′
m, Z

′′
m, Zqv , Zqv−1 , . . . , Zq1 , Z1) is a

k-flower. We conclude, using the notation in the statement of the lemma,

that (Z0, Zi,1, Zi,2, . . . , Zi,s, Zm, Zj,t, Zj,t−1, . . . , Zj,1) is a k-flower when Zm

is monochromatic, or (Z0, Zi,1, Zi,2, . . . , Zi,s, Z
′
m, Z

′′
m, Zj,t, Zj,t−1, . . . , Zj,1) is

a k-flower when Zm is bichromatic where {Z ′m, Z ′′m} = {Zm ∩R,Zm ∩G}.
Finally, assume that Z0 is bichromatic. Then, by uncrossing, Z0 ∩ R

and Z0 ∩G are both k-separating, and the argument at the end of the last

paragraph implies that (Z ′0, Z
′′
0 , Zi,1, Zi,2, . . . , Zi,s, Zm, Zj,t, Zj,t−1, . . . , Zj,1)

is a k-flower, where {Z ′0, Z ′′0 } = {Z0 ∩G,Z0 ∩R}.
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Lemma 4.3.19. Let (X0 ∪X1, X2, . . . , Xm) be a left-justified maximal X0-

rooted k-path in a k-connected matroid M . Let (R,G) be a non-sequential

k-separation in M for which X0 is monochromatic and no equivalent k-

separation in which X0 is monochromatic has fewer bichromatic parts. Sup-

pose that {2, 3, . . . ,m− 1} contains an element j such that Xj and X−j are

bichromatic, but X+
j is red. Then R∩Xj ⊆ fclk(X+

j ). Furthermore, there is

a k-separation (R′, G′) equivalent to (R,G) such that R′∩Xj = Xj∩fclk(X+
j )

while, for all i 6= j, the set R′ ∩Xi = R ∩Xi and G′ ∩Xi = G ∩Xi.

Proof. By Lemma 4.3.15, |G∩X−j | ≥ k−1 as G∩X−j is non-empty. There-

fore, as R and Xj∪X+
j are both k-separating and avoid G∩X−j , it follows, by

uncrossing, that (X−j ∪(G∩Xj), (R∩Xj)∪X+
j ) is a k-separation. By Corol-

lary 4.3.3, this k-separation is non-sequential. But (X0∪X1, X2, . . . , Xm) is

maximal and left-justified, so R∩Xj ⊆ fclk(X+
j ). Now (Xj∩ fclk(X+

j ))∪X+
j

is k-separating, and thus, by uncrossing, (Xj ∩ fclk(X+
j )) ∪ R is as well.

Since the latter set is equal to R∪ (G∩Xj ∩ fclk(X+
j )), it follows, by Corol-

lary 4.3.7(ii), that recolouring all the elements inG∩Xj∩fclk(X+
j ) red results

in a k-separation equivalent to (R,G) with the desired properties.

Lemma 4.3.20. Let (X0 ∪X1, X2, . . . , Xm) be a left-justified maximal X0-

rooted k-path in a k-connected matroid M . Let (R,G) be a non-sequential

k-separation in M for which X0 is monochromatic and no equivalent k-

separation in which X0 is monochromatic has fewer bichromatic parts. Sup-

pose that m ≥ 2, and that Xm and X−m are bichromatic. Then both R ∩Xm

and G ∩Xm are sequential k-separating sets.

Proof. By Lemma 4.3.15, |R∩X−m|, |G∩X−m| ≥ k−1. Therefore, as R andXm

are k-separating, R ∩Xm is k-separating by uncrossing. Similarly, G ∩Xm

is k-separating. If (E(M) − (R ∩Xm), R ∩Xm) is non-sequential, then, as

(X0∪X1, X2, . . . , Xm) is left-justified and maximal, G∩Xm ⊆ fclk(R∩Xm).

But then, by Corollary 4.3.7(i), G ∩Xm ⊆ fclk(X−m); a contradiction. Thus

(E(M)− (R∩Xm), R∩Xm) is sequential; in particular, by Corollary 4.3.3,

R ∩Xm is sequential. Similarly, G ∩Xm is sequential.

Lemma 4.3.21. Let (X1, X2) be a left-justified maximal k-path in a k-

connected matroid M . Let (R,G) be a non-sequential k-separation in M for

which X1 and X2 are bichromatic, and there is no equivalent k-separation
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where X1 or X2 is monochromatic. Then each of R ∩X1, G ∩X1, R ∩X2,

and G ∩X2 are sequential k-separating sets.

Proof. The sets R ∩ X2 and G ∩ X2 are sequential by Lemma 4.3.20. If

R ∩X1 is non-sequential, then as (X1, X2) is a maximal k-path, G ∩X1 ⊆
fclk(R ∩ X1), and so G ∩ X1 ⊆ fclk(R). But G ∩ X2 is sequential, so

G ⊆ fclk(R); a contradiction. We deduce that R∩X1, and similarly G∩X1,

are sequential.

4.4 Sequential petals at the ends of k-paths

In our algorithm for constructing a k-tree, we shall construct maximal k-

flowers from k-paths. Although an end part of a k-path is a non-sequential k-

separating set, a tight maximal k-flower may have k-sequential petals. When

k = 3, Oxley and Semple (2013, Lemma 3.13) showed that a non-sequential

3-separating set displayed by an end part of a 3-path breaks into at most two

petals in a tight 3-flower. However, the same does not necessarily hold for

the ends of k-paths when k ≥ 4, as we shall demonstrate in Examples 4.4.3

and 4.4.4. Nevertheless, the number of petals that such an end part breaks

into does not depend on k. In this section, we will show that, for all k ≥ 3, a

non-sequential k-separating set displayed by an end part of a k-path breaks

into at most three petals in a tight k-flower.

Let M be a k-connected matroid. The truncation of M , denoted T (M),

is the matroid obtained by freely adding an element e to M , and then

contracting e. It can be shown that for a subset X ⊆ E(M), the rank

of X in T (M) is given by rT (M)(X) = min{rM (X), r(M) − 1}. We can

truncate a k-connected matroid of sufficiently high rank, and with no “small”

circuits, in order to obtain a (k + 1)-connected matroid, as the next lemma

demonstrates.

Lemma 4.4.1. Let M be a k-connected matroid with r(M) > k and no

k-circuits. Then T (M) is (k + 1)-connected.

Proof. Let E = E(M). Towards a contradiction, suppose that T (M) has a

j-separation for 1 ≤ j ≤ k. Then there exists a subset X ⊆ E(M) such that

|X|, |E −X| ≥ j and λT (M)(X) ≤ j − 1; that is,

j − 1 ≥ rT (M)(X) + rT (M)(E −X)− r(T (M)).
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First, suppose that rM (X), rM (E −X) ≤ r(M)− 1. Then,

j − 1 ≥ rM (X) + rM (E −X)− (r(M)− 1) = λM (X) + 1,

so (X,E−X) is a (j−1)-separation in M ; a contradiction. Now, if rM (X) =

rM (E−X) = r(M), then λT (M)(X) = r(M)−1, so r(M) ≤ j ≤ k; a contra-

diction. Thus, we may assume that precisely one of rM (X) and rM (E −X)

is equal to r(M), so rT (M)(X) + rT (M)(E −X) = rM (X) + rM (E −X)− 1.

Therefore,

j − 1 ≥ (rM (X) + rM (E −X)− 1)− (r(M)− 1) = λM (X),

so (X,E−X) is also a j-separation inM . SinceM is k-connected, (X,E−X)

is an exact k-separation in M . As either X or E−X has rank r(M), either

E−X or X, respectively, has rank k−1, and consists of at least k elements.

As M has no (k − 1)-separations, this set contains a k-element subset of

rank k − 1; a contradiction. This completes the proof of the lemma.

We can truncate a k-flower to obtain a (k+1)-flower, due to the following

result of Aikin (2009, Lemma 2.5.2).

Lemma 4.4.2. Let (P1, P2, . . . , Pn) be a k-flower Φ in a k-connected ma-

troid M , with n ≥ 3. If r(E(M)−Pi) < r(M) for all i ∈ {1, 2, . . . , n}, then

Φ is a (k + 1)-flower in T (M).

Shortly, we give two examples of 4-connected matroids for which an end

part of a maximal 4-path breaks into three petals in a tight irredundant

4-flower. In the first example we construct a 4-anemone by modifying a

type of 3-anemone called a paddle. Informally, one can obtain a paddle

by gluing together sufficiently structured matroids along a common line,

called the spine. Further details are given by Oxley et al. (2004, Section 4).

The free (n, j)-swirl is a 3-connected matroid obtained by beginning with

a basis {1, 2, . . . , n}, adding j points freely on each of the n lines spanned

by {1, 2}, {2, 3}, . . . , {n, 1}, and then deleting {1, 2, . . . , n}. In the second

example we construct a k-daisy from the free (5, 3)-swirl.

A set Z in a k-connected matroid M is a k-pod if 1 < |Z| ≤ k − 2

and there is a partition (X,Z, Y ) of E(M) such that both X and Y are

k-separating, but for all non-empty proper subsets Z1 of Z, the set X ∪ Z1
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is not k-separating. The partition (X,Z, Y ) is a k-pod partition. A k-pod Z

is weak if there is a non-empty proper subset Z1 of Z such that M has a

non-sequential k-separation (A,B) with Z1 ⊆ A and Z −Z1 ⊆ B; otherwise

it is strong. It is worth noting that the situation evident in the following

examples arises due to the presence of a weak k-pod that crosses two petals,

Pn−1 and Pn say, of a k-flower (P1, P2, . . . , Pn). Moreover, in this situation

Lemma 4.3.8(i) holds when j = n− 2.

Example 4.4.3. Let (P1, P2, P3, P4, P5) be a paddle in a 3-connected ma-

troid N , where P1 and P2 each consist of eight points freely placed in rank

four, the petal Pi is a triad {xi, yi, zi} for each i ∈ {3, 4, 5}, and each of

{x3, y3, x4, y4}, {x4, y4, x5, y5}, and {x3, y3, x5, y5} is a circuit of N . Then

Φ = (P1, P2, P3, P4, P5) is a tight 3-flower in N . A geometric representation

of N is given in Figure 4.2, where the elements of P1 and P2 are suppressed.

The rank-8 matroid T (N) is 4-connected by Lemma 4.4.1, and Φ is a tight

4-flower in T (N) by Lemma 4.4.2. It is easily verified that Φ is irredun-

dant. The set P3 ∪ P4 is 4-sequential, since it has a 4-sequential ordering

({x3, y3}, {x4}, {y4}, {z3, z4}); likewise, P4∪P5 and P3∪P5 are 4-sequential.

Furthermore, (P1, P2, P3 ∪ P4 ∪ P5) is a left-justified maximal 4-path. We

also note that, for i, j ∈ {3, 4, 5} with i 6= j, the partition ({xi, yi, xj , yj},
{zi, zj}, E(N)−(Pi∪Pj)) is a 4-pod partition where {zi, zj} is a weak 4-pod.

P1
P2

P3

P4

P5

y3
x3

y4

x4

y5x5

z3

z4

z5

Figure 4.2: A representation of the 3-connected rank-9 paddle N .
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Example 4.4.4. Let Ψ be the free (5, 3)-swirl with ai, bi, ci ∈ E(Ψ)

such that r({ai, bi, ci}) = 2 and r({ai, bi, ci, ai+1, bi+1, ci+1}) = 3, for all

i ∈ {1, 2, 3, 4, 5}, where the subscripts are interpreted modulo five. Let

Ψ′ be the coextension of this matroid by an element e where {a1, b1, a2, b2},
{a2, b2, a3, b3} and {a1, b1, a2, b2, a3, b3} are the only dependent flats not con-

taining e in the coextension. Let M ′ = Ψ′\e. An illustration of the resulting

rank-6 matroid M ′ is given in Figure 4.3, where the elements {ai, bi, ci} for

i ∈ {4, 5} are suppressed. Take the direct sum of M ′ with a copy of U2,2

having ground set {d4, d5}. Then, for each i ∈ {4, 5}, freely add the elements

ei, fi, gi, and hi, in turn, to the flat spanned by {ai, bi, ci, di}. The resulting

rank-8 matroid M is 4-connected, and Φ = (P1, P2, P3, P4, P5) is a swirl-like

4-flower, where Pi = {ai, bi, ci} for i ∈ {1, 2, 3} and Pi = {ai, bi, . . . , hi} for

i ∈ {4, 5}.

a2 b2

c2

P2

a1

b1

c1

P1

a3

b3

c3

P3

e

Figure 4.3: A representation of the 4-connected rank-6 matroid M ′ = Ψ′\e.

It is easy to check that the 4-flower Φ is tight and irredundant.

The set P1 ∪ P2 is 4-sequential, since it has a 4-sequential ordering

({a1, b1}, {a2}, {b2}, {c1, c2}); likewise, P2∪P3 is 4-sequential. Furthermore,

(P1 ∪ P2 ∪ P3, P4, P5) is a left-justified maximal 4-path. We also note that

the partition ({a1, b1, a2, b2}, {c1, c2}, E(M) − (P1 ∪ P2)) is a 4-pod parti-

tion where {c1, c2} is a weak 4-pod, and, similarly, ({a2, b2, a3, b3}, {c2, c3},
E(M)− (P2 ∪ P3)) is a 4-pod partition where {c2, c3} is a weak 4-pod.

The k-flowers in these examples both have the property that a weak

k-pod crosses two petals of the k-flower. It will become evident, in
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Lemma 4.4.10, that this is precisely the situation where an end part of

a k-path can break into three petals in a tight k-flower. By definition, a

weak k-pod is only possible when k ≥ 4. As a quick aside, the next lemma,

which is a generalisation of a result of Aikin and Oxley (2012, Lemma 2.9),

demonstrates that when (X,Z, Y ) is a k-pod partition where Z is a weak

k-pod, it is also necessary that either |X| ≤ 2k − 4 or |Y | ≤ 2k − 4.

Lemma 4.4.5. Let M be a k-connected matroid. If (X,Z, Y ) is a k-pod

partition of E(M) with |X|, |Y | ≥ 2k − 3, then Z is a strong k-pod.

Proof. Suppose there is a k-separation (A,B) of M that is not k-sequential

with Z1 ⊆ A and Z − Z1 ⊆ B for some non-empty proper subset Z1 of Z.

Let Z2 = Z − Z1. Without loss of generality, |A ∩ X| ≥ k − 1. Thus, by

uncrossing, (B ∩ Y ) ∪Z2 is k-separating. If |B ∩ Y | ≥ k− 1, then Y ∪Z2 is

k-separating, by uncrossing (B ∩Y )∪Z2 and Y , contradicting the fact that

(X,Z, Y ) is a k-pod partition. So |B ∩Y | ≤ k− 2. Now, since |Y | ≥ 2k− 3,

we have |A ∩ Y | ≥ k − 1. By symmetry, |B ∩ X| ≤ k − 2. Recall that

(B ∩ Y ) ∪ Z2 is k-separating; it follows that since |B ∩X| ≤ k − 2, we have

X ⊆ fclk(A). But then |B−fclk(A)| ≤ |(B∩Y )∪Z2| ≤ 2k−5, so B−fclk(A)

is k-sequential by Lemma 4.3.5; a contradiction.

Corollary 4.4.6. Let M be a k-connected matroid. If (X,Z, Y ) is a k-pod

partition of M where X and Y are non-sequential k-separating sets, then Z

is a strong k-pod.

Examples 4.4.3 and 4.4.4 showed that an end part of a 4-path can break

into three petals of a tight k-flower, even if the k-flower is also irredundant.

Recall that an end part of a 3-path can break into at most two petals of a

tight 3-flower. Thus, one might expect that an end part of a k-path could

break into k−1 petals in a tight k-flower. Fortunately, this is not the case; an

end part cannot break into more than three petals, even when k ≥ 5. This

follows from the fact that, for all k ≥ 3, the union of three consecutive petals

in a tight k-flower is not k-sequential. We shall prove this as Corollary 4.4.9.

First, we require the following two lemmas.

Lemma 4.4.7. Let (U, Y, V ) and (R,G) be partitions of the ground set

E of a k-connected matroid. Suppose that U , V , and R are k-separating,

Y ⊆ fclk(U) ∩ R, and fclk(U) 6= E. If |U ∩ R|, |V ∩ G| ≥ k − 1, then

Y ⊆ fclk(U ∩R).
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Proof. By Lemma 4.3.6, there exists a partition (Y1, Y2, . . . , Ys) of Y

such that (U, Y1, Y2, . . . , Ys, V ) is a k-sequence with |Yi| ≤ k − 2 for all

i ∈ {1, 2, . . . , s}. As |V ∩ G| ≥ k − 1, it follows, by uncrossing, that U ∩ R
and (U ∩ R) ∪ Y1 ∪ Y2 ∪ · · · ∪ Yi are k-separating for each i in {1, 2, . . . , s}.
So Y ⊆ fclk(U ∩R).

Lemma 4.4.8. Let M be a k-connected matroid, and let A and B be k-

separating subsets of E(M) such that |A∩B|, |E(M)− (A∪B)| ≥ k−1, and

A∪B is a sequential k-separating set. Then, up to interchanging A and B,

either

(i) B −A ⊆ fclk(A ∩B), where A ∩B is k-separating, or

(ii) A∩B ⊆ fclk(B−A), where B−A is k-separating and |B−A| ≥ k−1.

Proof. Let (Z1, Z2, . . . , Zs) be a sequential ordering of A ∪ B. We denote

Z1∪Z2∪· · ·∪Zx as Z[x]. Let i be the greatest index such that |A∩Z[i]| ≤ k−2

and |B ∩ Z[i]| ≤ k − 2. Since |A|, |B| ≥ k − 1, we have i ≤ s − 1. Without

loss of generality, we may assume that |A ∩ Z[i+1]| ≥ k − 1. Suppose that

|(B − A) ∩ Z[i+1]| ≤ k − 2. By uncrossing, A ∩ Z[i+1] is k-separating, so

(B − A) ∩ Z[i+1] ⊆ fclk(A ∩ Z[i+1]). Since B − A ⊆ fclk(Z[i+1]), we have

that B − A ⊆ fclk(A ∩ Z[i+1]) ⊆ fclk(A). It follows, by Lemma 4.4.7, that

(i) holds. So we may assume that |(B − A) ∩ Z[i+1]| ≥ k − 1. Now, if

|(A−B) ∩ Z[i+1]| ≤ k − 2, then, as above, (i) holds but with the roles of A

and B interchanged. Thus we may assume that |(A− B) ∩ Z[i+1]| ≥ k − 1.

Then, by uncrossing B and E(M)−A, we deduce that B−A is k-separating.

Furthermore, since |(A∪B)∩Z[i]| = |B∩Z[i]|+|A∩Z[i]|−|B∩A∩Z[i]| ≤ 2k−4,

and |Zi+1| ≤ k − 2, it follows that |(A ∪ B) ∩ Z[i+1]| ≤ 3k − 6. Thus

|A ∩B ∩ Z[i+1]| ≤ k − 2, in which case (ii) holds.

The next corollary generalises a result of Aikin and Oxley regarding

4-flowers in 4-connected matroids (Aikin and Oxley, 2012, Corollary 3.5).

Corollary 4.4.9. Let (P1, P2, . . . , Pn) be a k-flower Φ of order at least three

in a k-connected matroid. Then no union of three consecutive tight petals of

Φ is a k-sequential set.

Proof. Suppose that (P1, P2, . . . , Pn) is a k-flower where n ≥ 3, the petals

P1, P2 and P3 are tight, and P1 ∪ P2 ∪ P3 is k-sequential. If n = 3, then, by

Lemma 4.3.2, P2∪P3 is k-sequential, so P2∪P3 ⊆ fclk(P1). Hence P2 and P3
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are loose; a contradiction. So we may assume that n ≥ 4. By Lemma 4.3.2,

P1 ∪ P2 and P2 ∪ P3 are k-sequential sets. It follows, by Lemma 4.4.8, that

P1 ⊆ fclk(P2) or P2 ⊆ fclk(P1), up to swapping P1 and P3. Thus one of P1,

P2 or P3 is loose; a contradiction. Hence the corollary holds.

Recall that a non-sequential 3-separating set displayed by an end part

of a 3-path breaks into at most two petals in a tight 3-flower (Oxley and

Semple, 2013, Lemma 3.13). The following lemma is an analogue of this

result for general k. When (ii) holds, the end part breaks into more than

two petals in a tight k-flower. Corollary 4.4.11 shows that, in this case, the

end part breaks into precisely three petals.

Lemma 4.4.10. Let (X1, X2, . . . , Xm) be a maximal k-path in a k-connected

matroid M with at least 8k − 15 elements. Let (U, V ) be a non-sequential

k-separation where U ∩ Xm and V ∩ Xm are k-separating sets, U − Xm

and V − Xm are k-separating sets consisting of at least k − 1 elements,

and U ∩ Xm * fclk(U − Xm) and V ∩ Xm * fclk(V − Xm). Let (R,G)

be a non-sequential k-separation such that both R ∩ Xm and G ∩ Xm are

sequential k-separating sets. Then, by recolouring elements of Xm, there is

a k-separation (R′, G′) equivalent to (R,G) such that either

(i) U ∩Xm and V ∩Xm are monochromatic, or

(ii) up to swapping R′ and G′, and swapping U and V , each of the following

holds:

(a) U ∩Xm ⊆ R′ and V ∩Xm is bichromatic;

(b) there is a sequential ordering (Z1, Z2, . . . , Zq) of R′ ∩Xm where,

for some i ≤ q, the set Zi is a weak k-pod,
∣∣⋃i−1

j=1 Zj ∩ U
∣∣,∣∣⋃i−1

j=1 Zj ∩V
∣∣ ≤ k− 2 and

∣∣⋃i
j=1 Zj ∩U

∣∣, ∣∣⋃i
j=1 Zj ∩V

∣∣ ≥ k− 1;

and

(c) for each x ∈ R′ ∩ V ∩Xm, x /∈ fclk(G′).

Proof. We begin by proving two sublemmas.

4.4.10.1. At least one of the sets R ∩ U ∩Xm, G ∩ U ∩Xm, R ∩ V ∩Xm

and G ∩ V ∩Xm has at least k − 1 elements.

Suppose each of R∩U ∩Xm, G∩U ∩Xm, R∩V ∩Xm, and G∩V ∩Xm

has at most k − 2 elements. Then |Xm| ≤ 4k − 8. Since |E(M)| ≥ 8k − 15,
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we may assume, without loss of generality, that |U − Xm| ≥ 2k − 3 and

|R∩ (U −Xm)| ≥ k−1. Suppose |G∩V | ≤ k−2. If |G∩ (U −Xm)| ≤ k−2,

then, by uncrossing R and U −Xm, it follows that G∩ (U −Xm) ⊆ fclk(R).

Moreover, as R ∪ U is also k-separating, by uncrossing, (G ∩ (U − Xm),

G∩U ∩Xm, G∩V ) is a partial k-sequence for R, contradicting the fact that

(R,G) is non-sequential. Thus |G∩ (U −Xm)| ≥ k− 1. Since |V | ≥ 2k− 2,

by Lemma 4.3.5, |R∩V | ≥ k− 1, so G∩U is k-separating by uncrossing. It

follows that (G∩U ∩Xm, G∩V ∩Xm, R∩U ∩Xm, R∩V ∩Xm) is a partial

k-sequence for X−m, so X−m is k-sequential; a contradiction. Now suppose

|G∩V | ≥ k−1. By uncrossing, R∩U is k-separating. Thus X−m∪ (R∩U) is

k-separating. It follows that (R∩U∩Xm, G∩U∩Xm, R∩V ∩Xm, G∩V ∩Xm)

is a partial k-sequence for X−m; a contradiction. We deduce that (4.4.10.1)

holds.

4.4.10.2. If |R∩U∩Xm| ≥ k−1 and G∩V ∩Xm 6= ∅, then either (U∪R)∩Xm

is a sequential k-separating set, or G∩V ∩Xm can be recoloured red to obtain

a k-separation equivalent to (R,G) where V ∩Xm is monochromatic.

Since U∩Xm and R∩Xm are k-separating, it follows, by uncrossing, that

(U ∪R) ∩Xm is k-separating. Suppose (U ∪R) ∩Xm is non-sequential. As

(U ∪R)∩Xm $ Xm and the k-path (X1, X2, . . . , Xm) is maximal, the non-

empty set G∩V ∩Xm is contained in either fclk(X−m) or fclk((U ∪R)∩Xm).

By Corollary 4.3.7(i), G ∩ V ∩ Xm is contained in both of these sets. If

|R∩V ∩Xm| ≤ k−2, then R∩V ∩Xm ⊆ fclk(U ∩Xm). Since G∩V ∩Xm ⊆
fclk((U ∪ R) ∩Xm), we deduce that V ∩Xm ⊆ fclk(U ∩Xm) ⊆ fclk(U). It

follows, by Corollary 4.3.7(i), that V ∩Xm ⊆ fclk(V −Xm); a contradiction.

So |R ∩ V ∩Xm| ≥ k − 1. Thus, since G ∩ V ∩Xm ⊆ fclk((U ∪ R) ∩Xm),

and |U − Xm| ≥ k − 1, it follows, by Lemma 4.4.7, that G ∩ V ∩ Xm ⊆
fclk(R ∩ V ∩ Xm) ⊆ fclk(R). Thus G ∩ V ∩ Xm can be recoloured red to

obtain a k-separation equivalent to (R,G), thereby completing the proof of

(4.4.10.2).

4.4.10.3. Up to swapping U and V , there is a k-separation (R1, G1) equiv-

alent to (R,G) such that U ∩Xm is monochromatic.

By (4.4.10.1), we can swap U and V , if necessary, so that either

R∩U ∩Xm or G∩U ∩Xm consists of at least k− 1 elements. Without loss

of generality, we assume that |R∩U ∩Xm| ≥ k−1. If G∩V ∩Xm = ∅, then
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(4.4.10.3) holds. Thus we may assume, by (4.4.10.2), that (U ∪R)∩Xm is a

sequential k-separating set. By Lemma 4.3.2, the k-separating set U ∩Xm

is also sequential. Hence, by Lemma 4.4.8, one of the following holds, where

the set to which the full k-closure operator is applied is k-separating and

consists of at least k − 1 elements.

(I) G ∩ U ∩Xm ⊆ fclk(R ∩ U ∩Xm), or

(II) R ∩ U ∩Xm ⊆ fclk(G ∩ U ∩Xm), or

(III) R ∩ V ∩Xm ⊆ fclk(R ∩ U ∩Xm), or

(IV) R ∩ U ∩Xm ⊆ fclk(R ∩ V ∩Xm).

If (I) or (II) holds, then G ∩ U ∩Xm or R ∩ U ∩Xm is in the full k-closure

of R or G respectively, in which case this set can be recoloured to obtain

(R1, G1) where U ∩Xm is monochromatic, satisfying (4.4.10.3).

We now consider (III) and (IV). If G ∩ U ∩ Xm consists of at most

k − 2 elements, then this set can be recoloured red, satisfying (4.4.10.3); so

assume otherwise. Suppose that (IV) holds. By uncrossing, G∪ (U ∩Xm) is

k-separating. Thus R−(U∩Xm) is k-separating. It follows that R∩U∩Xm ⊆
fclk(R ∩ V ∩ Xm) ⊆ fclk(R − (U ∩ Xm)). Then, by Corollary 4.3.7(i), the

set R ∩U ∩Xm can be recoloured green, satisfying (4.4.10.3). In case (III),

if |G ∩ V ∩ Xm| ≤ k − 2, then, by Corollary 4.3.7(i), V ∩ Xm ⊆ fclk(U)

implies that V ∩ Xm ⊆ fclk(V − Xm); a contradiction. Now, by a similar

argument as for (IV) but with U and V interchanged, the set R− (V ∩Xm)

is k-separating, R ∩ V ∩Xm ⊆ fclk(R− (V ∩Xm)), and hence R ∩ V ∩Xm

can be recoloured green. This completes the proof of (4.4.10.3).

To complete the proof of the lemma, we may assume, by (4.4.10.3), that

U ∩ Xm is red and V ∩ Xm is bichromatic with respect to (R1, G1). Now

|(R1 − fclk(G1)) ∩ X−m| ≥ k − 1; otherwise, as R1 ∩ Xm is k-sequential,

fclk(G1) = E(M). Therefore, by uncrossing, fclk(G1) ∩Xm is k-separating.

As |U − Xm| ≥ k − 1, the set fclk(G1) ∩ V ∩ Xm is also k-separating, by

uncrossing. If |G1 ∩Xm| ≤ k − 2, then Xm is k-sequential; a contradiction.

So |G1∩Xm| ≥ k−1, hence G1∪ (fclk(G1)∩V ∩Xm) is k-separating. Thus,

we can recolour (fclk(G1) − G1) ∩ V ∩ Xm green to obtain an equivalent

k-separation (R2, G2), where each x ∈ R2 ∩ V ∩Xm has the property that

x /∈ fclk(G2).
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Let (Z1, Z2, . . . , Zt) be a sequential ordering of R2 ∩ Xm such that

(Zt, Zt−1, . . . , Z1) is a fully refined partial k-sequence for E − (R2 ∩ Xm).

In the remainder of this proof, we denote Z1 ∪ Z2 ∪ · · · ∪ Zl as Z[l] for

l ∈ {1, 2, . . . , t}. Pick the maximum i ∈ {1, 2, . . . , t − 1} such that

V ∩Z[i] $ V ∩Z[t]. Note that |R2∩V ∩Xm| ≥ k−1, otherwise (i) holds. Sup-

pose |U ∩Z[i]| ≥ k−1 and |V ∩Z[i]| ≤ k−2. Since |V −Xm| ≥ k−1, the set

U ∩Z[i] is k-separating by uncrossing. Moreover, as G2 ∩Xm, which is con-

tained in V , has at least k−1 elements, R2−(V ∩Xm) is k-separating. Thus,

V ∩ Z[i] ⊆ fclk(U ∩ Z[i]) ⊆ fclk(R2 − (V ∩Xm)). Since R2 ∩Xm ⊆ fclk(Z[i]),

it follows that R2 ∩ V ∩Xm ⊆ fclk(R2 − (V ∩Xm)). By Corollary 4.3.7(i),

R2∩V ∩Xm ⊆ fclk(G2); a contradiction. Now suppose that |U ∩Z[i]| ≤ k−2

and |V ∩Z[i]| ≥ k−1. Then U∩Z[i] ⊆ fclk(V ∩Z[i]). As U∩Xm ⊆ fclk(Z[i]), it

follows that U∩Xm ⊆ fclk(V ). By Corollary 4.3.7(i), U∩Xm ⊆ fclk(U−Xm);

a contradiction.

Now suppose that |U ∩ Z[i]|, |V ∩ Z[i]| ≥ k − 1. Recall that V ∩ Zi+1

is non-empty, and Zi+2, Zi+3, . . . , Zt are contained in U . By uncrossing,

Z[i] ∪ (U ∩Xm) is k-separating, and V ∩Zi+1 ⊆ fclk(Z[i] ∪ (U ∩Xm)). Since

|U∩Z[i]|, |U−Xm| ≥ k−1, it follows, by two applications of uncrossing, that

U ∪Z[i]∪X−m is k-separating. Thus the complement of this set, (V ∩Zi+1)∪
(G2 ∩ Xm), is k-separating. Again by uncrossing, (V ∩ Zi+1) ∪ G2 is k-

separating. But then, as |Zi+1| ≤ k − 2, the set V ∩ Zi+1 is contained in

fclk(G2); a contradiction. We deduce that |U ∩Z[i]| ≤ k− 2 and |V ∩Z[i]| ≤
k − 2.

Recall that V ∩Z[i+1] = R2∩V ∩Xm, and this set consists of at least k−1

elements. It follows, by uncrossing, that V ∪ Z[i+1] is k-separating. Now, if

|U ∩Z[i+1]| ≤ k− 2, then U ∩Z[i+1] ⊆ fclk(V ), and hence U ∩Xm ⊆ fclk(V ).

Then, by Corollary 4.3.7(i), U ∩ Xm ⊆ fclk(U − Xm); a contradiction.

Thus, |U ∩ Z[i+1]| ≥ k − 1. Finally, we observe that Zi+1 is a k-pod, since

(Zt, Zt−1, . . . , Z1) is a fully refined partial k-sequence for E − (R2 ∩ Xm),

and, since (U, V ) is a non-sequential k-separation, the k-pod is weak. Thus

(ii) holds, completing the proof of the lemma.

Corollary 4.4.11. Let (X1, X2, . . . , Xm) be a maximal k-path in a k-

connected matroid M with at least 8k − 15 elements. Let (U, V ) be a non-

sequential k-separation where U ∩ Xm and V ∩ Xm are k-separating sets,

U − Xm and V − Xm are k-separating sets consisting of at least k − 1 el-
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ements, and U ∩ Xm * fclk(U − Xm) and V ∩ Xm * fclk(V − Xm). Let

(R,G) be a non-sequential k-separation such that both R∩Xm and G∩Xm

are sequential k-separating sets. Suppose there is no recolouring of elements

of Xm that gives a k-separation equivalent to (R,G) such that both U ∩Xm

and V ∩Xm are monochromatic. Then, up to swapping U and V , for some

(R′, G′) equivalent to (R,G) obtained by recolouring elements of Xm and

possibly swapping R′ and G′:

(i) U ∩Xm ⊆ R′ and V ∩Xm is bichromatic, and

(ii) (V ∩X−m, U ∩X−m, U ∩Xm, R
′ ∩ V ∩Xm, G

′ ∩ V ∩Xm) is a k-flower

where the last three petals are tight.

Proof. By Lemma 4.4.10, and by swapping U and V , and R′ and G′, if neces-

sary, (i) holds. Let Φ = (V ∩X−m, U∩X−m, U∩Xm, R
′∩V ∩Xm, G

′∩V ∩Xm).

Since each of Xm, U , R′ ∩Xm, and V ∩Xm is k-separating, we deduce that

Φ is a flower (Clark and Whittle, 2013, Lemma 4.2). If U ∩Xm ⊆ fclk(V ),

then U ∩Xm ⊆ fclk(U −Xm) by Corollary 4.3.7(i); a contradiction. Thus,

by a cyclic shift of the petals and Lemma 4.3.12, U ∩Xm is tight. Similarly,

if G′ ∩ V ∩ Xm ⊆ fclk(X−m), then G′ ∩ V ∩ Xm can be recoloured red by

Corollary 4.3.7(i); a contradiction. Thus, by Lemma 4.3.12, G′ ∩ V ∩ Xm

is tight. Since this petal consists of at least k − 1 elements, R′ ∩ U is k-

separating by uncrossing. Suppose R′ ∩ V ∩ Xm ⊆ fclk(V − (R′ ∩ Xm)).

Then R′ ∩ V ∩ Xm ⊆ fclk(U), by Corollary 4.3.7(i), and it follows, by

Lemma 4.4.7, that R′ ∩ V ∩ Xm ⊆ fclk(R′ ∩ U). By uncrossing the sets

U ∪ X−m and R′, we deduce that R′ − (V ∩ Xm) is k-separating. Hence

R′ ∩V ∩Xm ⊆ fclk(R′− (V ∩Xm)), so R′ ∩V ∩Xm can be recoloured green

by Corollary 4.3.7(i); a contradiction. Thus, by Lemma 4.3.12, R′ ∩V ∩Xm

is tight, so (ii) holds.



Chapter 5

A polynomial-time algorithm

for constructing a k-tree

Let M be a k-connected matroid consisting of at least 8k− 15 elements, for

a fixed constant k. In this chapter we present our algorithm for constructing

a k-tree for M . We first address, in Section 5.1, the crucial task of finding a

non-sequential k-separation satisfying certain criteria, in polynomial time.

The algorithm is described, both informally and formally, in Section 5.2.

Lastly, Section 5.3 discusses why an algorithm is not forthcoming from the

proof of Theorem 4.0.1 (Clark and Whittle, 2013, Theorem 7.1).

5.1 Finding a non-sequential k-separation

Our approach for constructing a k-tree for a k-connected matroid depends

on being able to repeatedly find non-sequential k-separations, in time poly-

nomial in |E(M)|. We can do this by extending an algorithm of Cunningham

and Edmonds that, in polynomial time, finds a k-separation if one exists. In

order to find k-separations that are also non-sequential, we require a charac-

terisation of non-sequential k-separations, which we prove as Lemma 5.1.3.

Towards this result, we begin by considering the complexity of constructing

maximal k-sequential k-separating sets.

Let M be a k-connected matroid, where |E(M)| = n, and let X be a

subset of E(M). Since there are O(nk−2) subsets of E(M) of size at most

k−2, we can find a non-empty subset X1 of E(M) such that (X1) is a partial

k-sequence for X, or determine that no such X1 exists, by making O(nk−2)

93
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calls to the rank oracle. By repeating this process O(n) times, we find a

maximal partial k-sequence for X. Thus, we can find fclk(X) by making at

most O(nk−1) calls to the rank oracle. We make use of this fact in the proof

of the next lemma.

Lemma 5.1.1. Let M be a k-connected matroid specified by a rank ora-

cle, where |E(M)| = n. Then, the collection F of maximal k-sequential

k-separating sets of M can be constructed in time polynomial in n.

Proof. All (k−1)-element subsets of E(M) are sequential k-separating sets,

and every sequential k-separating set Y is a subset of fclk(X) for some

(k − 1)-element set X ⊆ E(M). Thus, the collection F consists of all the

maximal members of {fclk(X) : |X| = k− 1}. As there are O(nk−1) subsets

of E(M) consisting of k − 1 elements, and we can find the full k-closure of

such a subset by making O(nk−1) calls to the rank oracle, we deduce that

the lemma holds.

Recall that, up to k-equivalence, a k-tree displays each non-sequential

k-separation of a k-connected matroid. From an algorithmic viewpoint, one

reason we are interested in k-separations that are not sequential is that

the sequential k-separations are easy to find, as shown by Lemmas 4.3.2

and 5.1.1.

We now work towards an efficient algorithm for finding a non-sequential

k-separation. The following is due to Cunningham (1973), building on the

Matroid Intersection Theorem of Edmonds (1970).

Theorem 5.1.2 (Cunningham, 1973). Let M be a k-connected matroid

specified by a rank oracle, and let X ′ and Y ′ be disjoint subsets of E(M)

each having at least k elements. Then, there is a polynomial-time algorithm

for either finding a k-separation (X,Y ) such that X ′ ⊆ X and Y ′ ⊆ Y , or

identifying that no such k-separation exists.

The algorithm referred to in Theorem 5.1.2 is known as the Matroid Inter-

section Algorithm. For details of the algorithm, we refer the reader to the

book by Cook et al. (1998).

The Matroid Intersection Algorithm allows us to find a k-separation

(X,Y ) such that X ′ ⊆ X and Y ′ ⊆ Y for some disjoint sets X ′ and Y ′, or

determine that none exists, in polynomial time. However, for our purposes

we want to find, in polynomial time, such a k-separation (X,Y ) that is
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non-sequential, if one exists. The next lemma, which characterises non-

sequential k-separations, allows us to do this. The result generalises the

characterisation of non-sequential 3-separations by Oxley and Semple (2013,

Lemma 4.4). However, as the proof of that result relies on properties specific

to 3-sequential sets, a different approach is taken in the proof below.

Lemma 5.1.3. Let (U, V ) be a k-separation in a k-connected matroid M ,

let F be the collection of maximal sequential k-separating sets of M , and let

j ∈ {k, k + 1, . . . , 2k − 2}. Then (U, V ) is not k-sequential if and only if

there are j-element subsets U ′ and V ′ of U and V , respectively, such that

no member of F contains U ′ or V ′.

Proof. Suppose that (U, V ) is not k-sequential. Then (U − fclk(V ), fclk(V ))

is also not k-sequential. We will show that there is a subset U ′ of U−fclk(V )

satisfying the conditions of the lemma; then, symmetrically, there is a subset

V ′ of V − fclk(U). Thus, in what follows, we may assume, without loss of

generality, that V is fully closed.

By Lemma 4.3.5, |U |, |V | ≥ 2k − 2. Let U1 be a j-element subset of U .

Take U ′ = U1, unless U1 ⊆ F1 for some F1 ∈ F . Consider the exceptional

case. Let i = 1. If |V −Fi| ≤ k− 2, then |V ∩Fi| ≥ k− 1, so, by uncrossing,

V ⊆ fclk(Fi); a contradiction. It follows that, since |E(M) − (Fi ∪ U)| =

|V −Fi| ≥ k− 1, the set Fi ∩U is k-separating by uncrossing. Furthermore,

Fi∩U is k-sequential, by Lemma 4.3.2. Thus there is a (k−1)-element subset

Qi of Fi ∩ U such that Fi ∩ U ⊆ fclk(Qi). Note that |U − fclk(Qi)| ≥ k − 1,

otherwise U ⊆ fclk(Qi) by uncrossing; a contradiction. Recall that j is fixed

and j − k + 1 ∈ {1, 2, . . . , k − 1}. Let Ci be a (j − k + 1)-element subset

of U − fclk(Qi) and let Ui+1 = Ci ∪ Qi. If Ui+1 is not contained in some

Fi+1 ∈ F , then we have the desired U ′ = Ui+1. Otherwise, observe that for

all i ≥ 1 such that Ui+1 ⊆ Fi+1 ∈ F , we have Fi ∩ U ⊆ fclk(Ui+1) ⊆ Fi+1

and Ci ⊆ Ui+1− fclk(Ui), so |Fi+1 ∩U | > |Fi ∩U |. Therefore, we can repeat

the process with i = 2, 3, . . . , i′ until for i′ ≤ |U | − k + 1 either U ′ = Ui′ is

not contained in F for all F ∈ F , or |U− fclk(Qi′)| < j−k+1, contradicting

the fact that U is not k-sequential.

The converse is a consequence of Corollary 4.3.4.

Now to obtain a non-sequential k-separation of M , we apply Theo-

rem 5.1.2 where the disjoint sets X ′ and Y ′ are chosen to be k-element

sets that are not contained in any member of F . Then, by Lemma 5.1.3,
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if there exists a k-separation (X,Y ) such that X ′ ⊆ X and Y ′ ⊆ Y , the

k-separation (X,Y ) is non-sequential. As k is fixed, there are polynomially

many k-element subsets not contained in a member of F . If, after searching

through all such pairs of sets {X ′, Y ′}, no k-separation (X,Y ) with X ′ ⊆ X
and Y ′ ⊆ Y is found, then M has no non-sequential k-separations.

5.2 The algorithm

At last we present the algorithm k-Tree for constructing a k-tree given a

k-connected matroid M with |E(M)| ≥ 8k − 15. We begin by describing

the algorithm informally, then we give some additional definitions that are

required for the subsequent formal description. We finish the section with

an example to illustrate the algorithm.

Informally, the algorithm works as follows. Consider a k-connected ma-

troid M with ground set E, for which we wish to construct a k-tree. We start

with a single unmarked bag vertex labelled E as our π-labelled tree. The

algorithm repeatedly selects an unmarked bag vertex B, and decides if there

is a non-sequential k-separation (Y,Z) such that Y ⊆ π(B) or Z ⊆ π(B). If

there is no such k-separation, the vertex is marked, another unmarked bag

vertex B is selected, and the process repeats. If there is such a k-separation,

the algorithm first finds a left-justified maximal (E−π(B))-rooted k-path by

calling the first of its two subroutines, ForwardSweep. Starting with the

k-path (Y,Z), this subroutine repeatedly finds non-sequential k-separations

that are not equivalent to a k-separation currently displayed by the k-path.

By refining the k-path methodically from the “rooted” end, outwards, we

ensure that the k-path returned by ForwardSweep is maximal. Then the

second subroutine, BackwardSweep, is called. This subroutine starts at

the unrooted end of the k-path, and works towards the rooted end, un-

covering flower structure along the way. We use a “generalised k-path” to

represent the k-path together with the related uncovered flower structure.

Loosely speaking, a generalised k-path allows us to describe a number of

flowers in series; thus describing the k-tree structure in one direction. From

the generalised k-path τ , we obtain the corresponding k-tree, which we call

the “path realisation” of τ . We formally define these terms presently. The

algorithm adjoins the path realisation to the bag vertex B, and then recur-

sively proceeds by finding another unmarked bag vertex. Finally, when all
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bag vertices are marked, it outputs the k-tree for M .

We require some additional terminology in order to present the algo-

rithm. Our definition of a generalised k-path is consistent with a generalised

3-path as defined by Oxley and Semple (2013); however, we need to allow

for an end of a k-path to break into three petals, rather than just two, for

the reasons discussed in Section 4.4.

Let M be a k-connected matroid with ground set E. Suppose that

τ = (P1, P2, . . . , Pn) is an ordered tuple where, for each i ∈ {1, 2, . . . , n},
either

(i) Pi is a subset of E, or

(ii) 2 ≤ i ≤ n−1 and Pi = [(Pi,1, Pi,2, . . . , Pi,j), (Pi,l, Pi,l−1, . . . , Pi,j+1)] for

some 1 ≤ j ≤ l, where the Pi,x are mutually disjoint subsets of E for

x ∈ {1, 2, . . . , l}.

We say that Pi is a term of τ for any i ∈ {2, 3, . . . , n − 1}, and Pi

is a flower part when (ii) holds for some i ∈ {2, 3, . . . , n − 1}. Let

µ = (X1, X2, . . . , Xn) be the ordered sequence obtained from τ by replac-

ing each flower part Pi with the union Xi of all the sets enclosed by its

square brackets; we say that µ is the flattening of τ . Suppose that for

each flower part Pi = [(Pi,1, Pi,2, . . . , Pi,j), (Pi,l, Pi,l−1, . . . , Pi,j+1)], the par-

tition Φ = (X−i , Pi,1, Pi,2, . . . , Pi,j , X
+
i , Pi,j+1, Pi,j+2, . . . , Pi,l) is a k-flower,

where X−i = X1 ∪ X2 ∪ · · · ∪ Xi−1 and X+
i = Xi+1 ∪ Xi+2 ∪ · · · ∪ Xn.

We call X−i and X+
i the entry and exit petals, respectively, of Φ rela-

tive to τ , and we call (Pi,1, Pi,2, . . . , Pi,j) and (Pi,l, Pi,l−1, . . . , Pi,j+1) the

clockwise and anticlockwise petals, respectively, of Φ relative to τ . If

j = l, then the flower part Pi is of the form [(Pi,1, Pi,2, . . . , Pi,l)] and we

say that Φ has no anticlockwise petals relative to τ . There are four vari-

ants of a generalised k-path. First, if µ is a k-path, then τ is a gener-

alised k-path. Second, if µ is not a k-path, but P1 is k-sequential and

P2 = [(P2,1, P2,2, . . . , P2,j), (P2,l, P2,l−1, . . . , P2,j+1)] is a flower part such that

(P1 ∪ P2,1, X2 − P2,1, X3, . . . , Xn) or (P1 ∪ P2,1 ∪ P2,2, X2 − (P2,1 ∪ P2,2),

X3, . . . , Xn) is a k-path, then τ is a generalised k-path, and we say that τ is

obtained from the k-path via an end move, and P1 ∪P2,1 or P1 ∪P2,1 ∪P2,2,

respectively, is the split part. Symmetrically, if Pn is k-sequential and

Pn−1 = [(Pn−1,1, Pn−1,2, . . . , Pn−1,j)(Pn−1,l, Pn−1,l−1, . . . , Pn−1,j+1)] is a

flower part such that either (X1, . . . , Xn−2, Xn−1 − Pn−1,j , Pn−1,j ∪ Xn) or
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(X1, . . . , Xn−2, Xn−1−(Pn−1,j−1∪Pn−1,j), Pn−1,j−1∪Pn−1,j∪Xn) is a k-path,

then τ is also a generalised k-path, and again we say τ is obtained from the

k-path via an end move, and Pn−1,j ∪Xn or Pn−1,j−1 ∪Pn−1,j ∪Xn, respec-

tively, is the split part. A combination of the last two generalised k-paths

also can arise: if τ = (P1, [(P2,1, P2,2, . . . , P2,p)], P3), where p ∈ {2, 3, 4},
and (P1 ∪ P2,1 ∪ P2,2 ∪ · · · ∪ P2,j , P2,j+1 ∪ · · · ∪ P2,p ∪ P3) is a k-path for

some j ∈ {1, . . . , p − 1}, then τ is a generalised k-path, we say τ is ob-

tained from the k-path by end moves, and P1 ∪ P2,1 ∪ P2,2 ∪ · · · ∪ P2,j and

P2,j+1 ∪ · · · ∪ P2,p ∪ P3 are the split parts.

Let τ be a generalised k-path. We say that τ is left-justified if the

flattening of τ is left-justified. Let Z be a term in τ . We can then write τ as

(τ(Z−), Z, τ(Z+)), so τ(Z−) and τ(Z+) denote, respectively, the portions of

τ that occur before and after Z. In this case, as in a k-path, we shall denote

by Z− and Z+ the union of all of the sets in τ that occur, respectively, before

and after Z. If τ = (τ(Z−i ), Zi, Zi+1, τ(Z+
i+1)), where Zi and Zi+1 are terms

for which (i) or (ii) holds, then we sometimes write τ(Z+
i+1) as τ(Z++

i ).

Let τ1 = (P1, P2, . . . , Pn) be a generalised k-path of M . Suppose that τ2

is obtained from τ1 in one of the following ways:

(I) for some 1 ≤ i < i′ ≤ n, where each of Pi, Pi+1, . . . , Pi′ are subsets

of E, τ2 = (P1, P2, . . . , Pi−1, Pi ∪ Pi+1 ∪ · · · ∪ Pi′ , Pi′+1, Pi′+2, . . . , Pn);

or

(II) for some 2 ≤ i ≤ n − 1, where Pi = [(Pi,1, Pi,2, . . . , Pi,j),

(Pi,l, Pi,l−1, . . . , Pi,j+1)] is a flower part, τ2 = (P1, P2, . . . , Pi−1,

Pi,1 ∪ Pi,2 ∪ · · · ∪ Pi,l, Pi+1, Pi+2, . . . , Pn).

Clearly, τ2 is a generalised k-path. We say that τm, for some m ≥ 1, is

a concatenation of τ1 if there is a sequence τ1, τ2, . . . , τm where each τi+1

is obtained from τi by either (I) or (II). Conversely, we say that τ1 is a

refinement of τm.

Let τ be a generalised k-path in a k-connected matroid M with ground

set E, and let µ = (Y1, Y2, . . . , Yp) be the flattening of τ . Note that µ is a

k-path unless Y1 or Yp is k-sequential as may occur if we apply an end move

or end moves. Let P denote the π-labelled tree consisting of a path of p

bag vertices labelled, in order, Y1, Y2, . . . , Yp. Now modify P as follows. For

each Yj that is the union of s clockwise petals and t anticlockwise petals of

a flower, replace the bag vertex labelled Yj with a flower vertex v and adjoin
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s+ t new bag vertices to v, each via a new edge, so that the cyclic ordering

induced by the cyclic ordering on the edges incident with v preserves the

ordering of the flower Φj to which Yj corresponds. Label the vertex v by D

or A depending on whether Φj is a daisy or an anemone, respectively. We

refer to the resulting modification of P as a path realisation of τ .

The algorithm k-Tree is given on the next page, while the subroutine

ForwardSweep is on page 101, and the subroutine BackwardSweep

begins on page 102. The algorithm follows the approach taken by Oxley

and Semple (2013); indeed, it generalises their algorithm 3-tree. However,

because of the additional hurdles in going from k = 3 to arbitrary k, mod-

ifications have been necessary, resulting in extra length in the description

of the algorithm. These modifications are required in order to handle the

more-complicated end moves, and to ensure the resulting k-flower is irredun-

dant. The notable changes are in BackwardSweep, at lines 4–18, 29–32,

and 67–70.
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Algorithm 1 k-Tree(M)

Input: A k-connected matroid M with ground set E and |E| ≥ 8k−15.
Output: A k-tree for M .

1: Construct the collection F of maximal sequential k-separating sets of
M .

2: Let T0 denote the π-labelled tree consisting of a single unmarked bag
vertex labelled E.

3: if there exists a k-separation (U, V ) for which U and V contain mutually
disjoint k-element subsets U ′ and V ′, respectively, such that no member
of F contains U ′ or V ′, then

4: Set X0 = ∅, set X1 = fclk(U), set X2 = V − fclk(U), and set i = 1.
5: Call ForwardSweep(M , (X0 ∪ X1, X2), F) and let (X0 ∪ Z1,

Z2, . . . , Zm) be the resulting k-path.
6: Call BackwardSweep(M , (X0 ∪Z1, Z2, . . . , Zm), F), and let T1 be

the path realisation of the resulting generalised k-path, with each bag
vertex unmarked.

7: while there is an unmarked bag vertex B of Ti, do
8: if B is a non-terminal bag vertex, then
9: Find a k-separation (Y,Z) such that Y contains fclk(E−π(B)),

and Z contains a k-element subset Z ′ ⊆ π(B)− fclk(E−π(B))
with no member of F containing Z ′.

10: else . B is a terminal bag vertex
11: Find a k-separation (Y, Z) such that Y contains fclk(E−π(B))

and an element y ∈ π(B)− fclk(E − π(B)), and Z contains a
k-element subset Z ′ ⊆ π(B) − fclk(E − π(B)) − {y} with no
member of F containing Z ′.

12: if there exists such a k-separation (Y, Z), then
13: Set X0 = E − π(B), set X1 = π(B) ∩ fclk(Y ), set

X2 = π(B)− fclk(Y ), and increase i by 1.
14: Call ForwardSweep(M , (X0∪X1, X2), F), and let (X0∪Z1,

Z2, . . . , Zm) be the resulting k-path.
15: Call BackwardSweep(M , (X0 ∪ Z1, Z2, . . . , Zm), F).
16: Find the path realisation T ′i of resulting generalised k-path.
17: Identify the vertex X0 ∪ Z1 of T ′i with the vertex B of Ti−1,

label the resulting composite vertex Z1, and, if Z1 = ∅ and
Z1 has degree two, then suppress this vertex. Let Ti be the
resulting tree, where each bag vertex originating from the path
realisation, including the identified vertex, is unmarked.

18: else . There is no such k-separation (Y,Z)
19: Mark B.
20: output Ti.
21: else . There is no such k-separation (U, V )
22: Mark E and output T0.
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Algorithm 2 ForwardSweep(M , (X0 ∪X1, X2), F)
Input: A k-connected matroid M with ground set E and |E| ≥ 8k−15,
a k-path (X0∪X1, X2) of M , and the collection F of maximal sequential
k-separating sets of M .
Output: A k-path (X0 ∪X ′1, X ′2, . . . , X ′m) of M that is a refinement of
(X0 ∪X1, X2).

1: Let τ0 = (X0 ∪ X1, X2), set (i, s,m) = (0, 1, 2), and set (X ′1, X
′
2) =

(X1, X2).
2: while s ≤ m, do
3: . See if we can refine X ′s in τi = (X0 ∪X ′1, X ′2, . . . , X ′m)
4: if s = 1 and X0 = ∅, then
5: Find a k-separation (Y,Z) such that Y contains a k-element

subset Y ′ of X ′1 with no member of F containing Y ′, and Z
contains X ′2 ∪ · · · ∪ X ′m and an element z of X ′1 with z 6∈
fclk(X ′2 ∪ · · · ∪X ′m) ∪ Y ′.

6: else if s = 1 and X0 6= ∅, then
7: Find a k-separation (Y,Z) such that Y contains fclk(X0), and

Z contains X ′2 ∪ · · · ∪ X ′m and an element z of X ′1 with z 6∈
fclk(X ′2 ∪ · · · ∪X ′m).

8: else if s < m, then
9: Find a k-separation (Y,Z) such that Y contains X0 ∪

X ′1∪· · ·∪X ′s−1 and an element y of X ′s−fclk(X0∪X ′1∪· · ·∪X ′s−1),
and Z contains X ′s+1 ∪ · · · ∪ X ′m and an element z of X ′s with
z 6∈ fclk(X ′s+1 ∪ · · · ∪X ′m) ∪ {y}.

10: else . s = m
11: Find a k-separation (Y,Z) such that Y contains

X0 ∪ X ′1 ∪ · · · ∪ X ′s−1 and an element y of X ′s −
fclk(X0 ∪ X ′1 ∪ · · · ∪ X ′s−1), and Z contains a k-element
subset Z ′ of X ′s− fclk(X0∪X ′1∪· · ·∪X ′s−1)−{y} with no member
of F containing Z ′.

12: if there exists such a k-separation (Y,Z), then
13: Increase m by 1 and, for each t > s, set X ′t to be X ′t+1.
14: Set X ′s+1 to be X ′s ∩ (E− fclk(Y )) and set X ′s to be X ′s ∩ fclk(Y ).
15: Increase i by 1 and set τi to be (X0 ∪X ′1, X ′2, . . . , X ′m).
16: else
17: Increase s by 1.

18: output τi.
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Algorithm 3 BackwardSweep(M , (X0 ∪ Z1, Z2, . . . , Zm), F)
Input: A k-connected matroid M with ground set E and |E| ≥ 8k−15,
a left-justified maximal k-path (X0∪Z1, Z2, . . . , Zm) of M , where m ≥ 2,
and the collection F of maximal sequential k-separating sets of M .
Output: A generalised k-path of M .

1: if m = 2, then
2: if X0 is empty and there exists a k-separation (U, V ) for which U

contains a subset U ′ and V contains a subset V ′ such that no member
of F contains U ′ or V ′, and |U ′ ∩ Z1| = |U ′ ∩ Z2| = |V ′ ∩ Z1| =
|V ′ ∩ Z2| = k − 1, then

3: . See if Z2 breaks into three petals.
4: if there exists a k-separation (S, T ) for which S contains U ∩ Z2

and an element s′ ∈ Z2 − fclk(U ∩ Z2), and T contains Z1 and
|T ∩ Z2| ≥ k − 1; and there exists a k-separation (S1, T1) for
which S1 contains S and an element s ∈ Z1 − fclk(S), and T1
contains a subset T ′ such that no member of F contains T ′ and
|T ′ ∩ Z1| = |T ′ ∩ Z2| = k − 1, then

5: Set τ2 = (Z1, [(U ∩ Z2, S1 ∩ V )], T1 ∩ Z2).
6: else if there exists a k-separation (S, T ) for which T contains

V ∩ Z2 and an element t′ ∈ Z2 − fclk(V ∩ Z2), and S contains
Z1 and |S ∩ Z2| ≥ k − 1; and there exists a k-separation (S1, T1)
for which T1 contains T and an element t ∈ Z1 − fclk(T ), and S1
contains a subset S′ such that no member of F contains S′ and
|S′ ∩ Z1| = |S′ ∩ Z2| = k − 1, then

7: Set τ2 = (Z1, [(S1 ∩ Z2, T1 ∩ U)], V ∩ Z2).
8: else
9: Set τ2 = (Z1, [(U ∩ Z2)], V ∩ Z2).

10: Let τ2 = (Z1, [(P1, . . . , Pp)], Q) with p ∈ {1, 2}, and P =
⋃p

i=1 Pi.
11: . See if Z1 breaks into three petals.
12: if there exists a k-separation (S, T ) such that S contains both

V −P and an element s ∈ Z1− fclk(V −P ); and T contains P , an
element t ∈ Z1 − (fclk(P ) ∪ {s}), and a k-element subset T ′ such
that no member of F contains T ′, then

13: . (S, T ) non-sequential, so corresponding flower irredundant.
14: output (V ∩ Z1, [(S ∩ U, T ∩ Z1, P1, . . . , Pp)], Q).
15: else if there exists a k-separation (S, T ) such that S contains

both (Z1 ∩ U) ∪ P1 and an element s ∈ Z1 − fclk((Z1 ∩ U) ∪ P1);
and T contains Z2−P1, an element t ∈ Z1− (fclk(Z2−P1)∪{s}),
and a k-element subset T ′ such that no member of F contains T ′,
then

16: output (T ∩ Z1, [(S ∩ V,U ∩ Z1, P1, . . . , Pp)], Q).
. Algorithm continues on the next page.
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17: else
18: output (V ∩ Z1, [(U ∩ Z1, P1, . . . , Pp)], Q).

19: else . No such (U, V ) exists
20: output (X0 ∪ Z1, Z2). . This completes the m = 2 case.

21: else . m ≥ 3
22: Let τm = (X0 ∪ Z1, Z2, . . . , Zm).
23: if Zm−1 is k-separating, then
24: . See if Zm breaks into at least two petals.
25: if there exists a k-separation (U, V ) such that U contains Zm−1,

the set V contains Z−m−1, and |U ∩ Zm|, |V ∩ Zm| ≥ k − 1, then
26: . Ensure that the corresponding flower is irredundant.
27: if there exists a k-separation (U1, V1) such that U1 contains

both U and a k-element subset U ′, and V1 contains a k-element
subset V ′ and |V1∩Zm| ≥ k−1, where no member of F contains
U ′ or V ′, then

28: . See if Zm breaks into three petals.
29: if there exists a k-separation (S, T ) such that S contains

both U1−Z−m−1 and an element s ∈ Zm− fclk(U1−Z−m−1),
and T contains Z−m−1 and |T ∩ Zm| ≥ k − 1, then

30: Set τm−1 =
(
τm(Z−m−1), [(Zm−1, U1∩Zm, S ∩V1∩Zm)],

T ∩ Zm

)
.

31: else if there exists a k-separation (S, T ) such that S
contains both Zm−1 and a k-element subset S′, and
|S∩U1∩Zm| ≥ k−1, and T contains a k-element subset T ′

and |T ∩U1∩Zm| ≥ k−1, where no member of F contains
S′ or T ′ then

32: Set τm−1 =
(
τm(Z−m−1), [(Zm−1, S ∩ U1 ∩ Zm,

T ∩ U1 ∩ Zm)], V1 ∩ Zm

)
.

33: else . No such (S, T ) exists
34: Set τm−1 =

(
τm(Z−m−1), [(Zm−1, U1 ∩ Zm)], V1 ∩ Zm

)
.

35: else . No such non-sequential (U1, V1)
36: τm−1 =

(
τm(Z−m−1), [(Zm−1)], Zm

)
.

37: else . No such (U, V ) exists
38: Set τm−1 =

(
τm(Z−m−1), [(Zm−1)], Zm

)
.

39: else if Zm−1 − fclk(Zm) is k-separating, then
40: τm−1 =

(
τm(Z−m−1), [(Zm−1 − fclk(Zm))], Zm−1 ∩ fclk(Zm), Zm

)
.

41: else
42: Set τm−1 = τm. . Continued on the next page.
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43: . Uncover flower structure in Zm−2, Zm−3, . . . , Z2.
44: for each i from m− 2 down to 2, do
45: if Zi is k-separating, then
46: if τi+1(Z

+
i ) = ([(P1, . . . , Pp), (Q1, . . . , Qq)], . . . ), where p ≥ 1

and q ≥ 0, then

47: if Zi ∪ P1 is k-separating, then
48: Set τi =

(
τi+1(Z

−
i ), [(Zi, P1, . . . , Pp), (Q1, . . . , Qq)],

τi+1(Z
++
i )

)
.

49: else if q ≥ 1 and Zi ∪Q1 is k-separating, then
50: Set τi =

(
τi+1(Z

−
i ), [(P1, . . . , Pp), (Zi, Q1, . . . , Qq)],

τi+1(Z
++
i )

)
.

51: else if q = 0 and Zi ∪ τi+1(Z
++
i ) is k-separating, then

52: Set τi =
(
τi+1(Z

−
i ), [(P1, . . . , Pp), (Zi)], τi+1(Z

++
i )

)
.

53: else
54: Set τi =

(
τi+1(Z

−
i ), [(Zi)], [(P1, . . . , Pp), (Q1, . . . , Qq)],

τi+1(Z
++
i )

)
.

55: else . τi+1(Z
+
i ) = (Zi+1, . . . )

56: Set τi =
(
τi+1(Z

−
i ), [(Zi)], τi+1(Z

+
i )
)
.

57: else . Zi is not k-separating
58: if Zi − fclk(Z+

i ) is k-separating, then
59: τi =

(
τi+1(Z

−
i ), [(Zi− fclk(Z+

i ))], Zi ∩ fclk(Z+
i ), τi+1(Z

+
i )
)
.

60: else
61: Set τi = τi+1. . Continued on the next page.
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62: . See if Z1 breaks into at least two petals.
63: if X0 is empty, and τ2 = (Z1, [(P1, . . . , Pp), (Q1, . . . , Qq)], . . . ) for

some p ≥ 1 and q ≥ 0, and there exists a k-separation (U, V ) for
which U contains P1 and an element u ∈ Z1−fclk(E−Z1), and V con-
tains both E−(Z1∪P1) and an element v ∈ Z1−(fclk(E−Z1)∪{u}),
then

64: . Ensure that the corresponding flower will be irredundant.
65: if there exists a k-separation (U1, V1) such that U1 contains both

U and a k-element subset U ′, and V1 contains a k-element subset
V ′ and an element v ∈ Z1 − fclk(E −Z1), where no member of F
contains U ′ or V ′, then

66: . See if Z1 breaks into three petals.
67: if there exists a k-separation (S, T ) such that S contains both

U1 ∩ (Z1 ∪P1) and an element s ∈ Z1− (fclk(U1 ∩ (Z1 ∪P1))∪
fclk(E−Z1)), and T contains both E−(Z1∪P1) and an element
t ∈ Z1 − (fclk(E − Z1) ∪ {s}), then

68: output
(
T ∩ Z1, [(S ∩ V1 ∩ Z1, U1 ∩ Z1, P1, . . . , Pp),

(Q1, . . . , Qq)], τ2(Z
++
1 )

)
.

69: else if there exists a k-separation (S, T ) such that S con-
tains both an element s ∈ (U1 ∩ Z1) − fclk(E − Z1) and
a k-element subset S′, and T contains both an element
t ∈ (U1∩Z1)− (fclk(E−Z1)∪{s}) and a k-element subset T ′,
where no member of F contains S′ or T ′, then

70: output
(
V1 ∩ Z1, [(S ∩ U1 ∩ Z1, T ∩ U1 ∩ Z1, P1, . . . , Pp),

(Q1, . . . , Qq)], τ2(Z
++
1 )

)
.

71: else . No such (S, T ) exists
72: output

(
V1 ∩ Z1, [(U1 ∩ Z1, P1, . . . , Pp), (Q1, . . . , Qq)],

τ2(Z
++
1 )

)
.

73: else
. No non-sequential (U1, V1) where U ⊆ U1 and V ∩ Z1 ⊆ V1.

74: output τ2.

75: else . Either X0 non-empty, τ2 not of the
correct form, or no such (U, V ) exists

76: output τ2.
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We now give an example of a k-connected matroid M , its corresponding

k-tree T , and a brief walk-through of the algorithm when applied to M .

This example is inspired by the corresponding example of a 3-tree for a

3-connected matroid given by Oxley and Semple (2013).

The Higgs lift of a matroid N , denoted L(N), is obtained by freely

coextending N by a non-loop element e, and then deleting e. Note

that L(N) = (T (N∗))∗. By the next lemma, which is a consequence of

Lemma 4.4.1 and duality, we can obtain a (k + 1)-connected matroid by

performing the Higgs lift on an appropriate k-connected matroid.

Lemma 5.2.1. Let M be a k-connected matroid with r∗(M) > k and no

k-cocircuits. Then L(M) is (k + 1)-connected.

The Higgs lift turns k-flowers into (k + 1)-flowers, due to the following

result of Aikin (2009, Lemma 2.6.2).

Lemma 5.2.2. Let (P1, P2, . . . , Pn) be a k-flower Φ in a k-connected ma-

troid M , with n ≥ 4. If every petal of Φ is a dependent set, then Φ is a

(k + 1)-flower in L(M).

We start by constructing the matroid M ′. Fix j ≥ k− 1, and let S be a

free (5, j)-swirl (V1, V2, V3, V4, L), where each of V1, V2, V3, V4, and L is a line

of S. Use L as the spine of a paddle to which we attach three free (4, j)-swirls

(X1, X2, X3, L), (Y1, Y2, Y3, L), and (Z1, Z2, Z3, L). The resulting matroid

M ′ is 3-connected.

We now repeatedly perform the Higgs lift to obtain L(M ′),

L2(M ′), . . . , Lk−3(M ′), for some k ≥ 4. It is easily verified that for

i ∈ {0, 1, 2, . . . , k − 4}, the matroid Li(M ′) has corank greater than i + 3

and has no (i + 3)-cocircuits, so Lk−3(M ′) is a k-connected matroid.

Moreover, for each 3-flower Φ in M ′, every petal of Φ is dependent in

L(M ′), L2(M ′), . . . , Lk−4(M ′), so Φ is a k-flower in Lk−3(M ′). A possi-

ble k-tree for this matroid, irrespective of the precise value of k, is given in

Figure 5.1, where large open circles represent bag vertices.

Now suppose that k-Tree is applied to M = Lk−3(M ′). Let X =

X1∪X2∪X3, let Y = Y1∪Y2∪Y3, and let Z = Z1∪Z2∪Z3. If (V2∪V3∪V4,
V1 ∪ L ∪X ∪ Y ∪ Z) is the k-separation found in line 3 of k-Tree, then a

possible k-path returned by the first call to ForwardSweep is

(V2 ∪ V3, V4, V1 ∪ L,X,Z, Y1, Y2 ∪ Y3).



5.2. THE ALGORITHM 107
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Y1

Y2

Y3
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Z3
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V4
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D

D

D

D

Figure 5.1: A k-tree for M .

Observe that the k-path is left-justified and maximal. With this k-path, a

possible generalised k-path returned by the immediate subsequent call to

BackwardSweep is

(V3, [(V2, V1), (V4)], L, [(X,Z)], [(Y1, Y2)], Y3).

Comparing the k-path and the generalised k-path, both V2 ∪V3 and Y2 ∪Y3
are split parts. The splitting of Y2 ∪ Y3 and V2 ∪ V3 is the result of end

moves performed due to k-separations being found as described in lines 25

and 63 of BackwardSweep, respectively. The path realization T1 of this

generalised k-path, produced in line 6 of k-Tree, is shown in Figure 5.2,

where we note that X and Z are petals of an anemone. The algorithm now

enters the loop in line 7 of k-Tree.

L

Y1

Y2

Y3V1

V2

V3

V4

X

Z

A D

D

Figure 5.2: The path realization T1.

Since all bag vertices in T1 are unmarked, line 9 of k-Tree selects a
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bag vertex and, depending on whether it is a non-terminal or terminal bag,

attempts to find a particular type of k-separation. If there is no such k-

separation, such as when one of the bag vertices labelled V1, V2, V3, V4, L,

Y1, Y2, or Y3 is selected, the bag vertex is marked at line 19 of k-Tree. On

the other hand, if there is such a k-separation, such as when one of the bag

vertices labelled X or Z is selected, then lines 13–17 are invoked, so k-Tree

calls ForwardSweep, BackwardSweep, and then updates the current

π-labelled tree. For example, assume the bag vertex labelled X is selected

before the bag vertex labelled Z. When this happens, k-Tree finds an ap-

propriate k-separation in line 9, and then, in line 14, calls ForwardSweep

using this k-separation. The subroutine BackwardSweep is subsequently

called and a possible generalised k-path returned by this call is

(
E(M)−X, [(X1, X2)], X3

)
.

A path realization of this generalised k-path is then merged with the current

π-labelled tree, in this case T1, in line 17 of k-Tree to produce the π-labelled

tree T2 shown in Figure 5.3. This process continues until all bag vertices are

marked. The k-tree finally returned by k-Tree is as shown in Figure 5.1.

L

X1

X2

X3

Y1

Y2

Y3V1

V2

V3

V4

Z

A

D

D

D

Figure 5.3: The π-labelled tree T2.

5.3 An alternative approach

It was noted earlier that the proof of Theorem 4.0.1 (Clark and Whittle,

2013, Theorem 7.1) does not appear to yield an efficient algorithm for finding

a k-tree for a k-connected matroid. We now describe the approach taken in
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this proof, and the difficulty in using this approach to obtain an algorithm

for constructing a k-tree.

Let M be a k-connected matroid. A tight irredundant maximal k-flower

is a partial k-tree T for M (Clark and Whittle, 2013, Lemma 5.10). If there

exists a k-separation that is not equivalent to a k-separation displayed by T ,

we can modify T to obtain a partial k-tree T ′ where T 4 T ′ and T ′ displays

a k-separation not displayed by T (Clark and Whittle, 2013, Lemma 6.3).

Thus, we can eventually obtain a k-tree for M . The difficulty in using a

similar approach to obtain an algorithm for constructing a k-tree lies in

finding a tight irredundant maximal k-flower for M . Given a 3-separation

(X,Y ), it seems difficult to detect in polynomial time whether it can be

refined to a 3-flower with at least three petals (Oxley and Semple, 2013,

Section 7). Similarly, it is not clear whether a k-separation (X,Y ) can be

refined to a k-flower with at least three petals.



Chapter 6

Correctness of the algorithm

Let M be a k-connected matroid where |E(M)| ≥ 8k− 15, and let T be the

π-labelled tree returned by k-Tree when applied to M . In this chapter, we

prove that T is a k-tree for M , and that k-Tree runs in time polynomial in

|E(M)|. The crux is Lemma 6.1.4, where we prove that T is a conforming

tree. Lemma 6.1.5 demonstrates that, additionally, each flower vertex of T

corresponds to a tight irredundant flower. We prove these two lemmas in

Section 6.1. Subsequently, for T to be a partial k-tree it remains to show

that each flower vertex corresponds to a maximal flower, which we address

in Section 6.2. Again, the situation is more complex for general k, but we

prove, as Proposition 6.2.5, that T is indeed a partial k-tree. Finally, in

Section 6.3, we prove Theorem 4.0.2 by showing that T is a k-tree and that

the algorithm runs in polynomial time.

6.1 Conformance

The goals of this section are two-fold. First, we show that the tree returned

by k-Tree is a conforming tree. Second, we prove that each flower vertex

of this tree corresponds to a tight irredundant flower.

We begin by showing that ForwardSweep outputs a left-justified max-

imal k-path. Lemmas 6.1.1 and 6.1.2 are straightforward generalisations of

the case when k = 3 (Oxley and Semple, 2013, Lemmas 6.1 and 6.2), but

we provide the proofs for completeness.

Lemma 6.1.1. Let M be a k-connected matroid with |E(M)| ≥ 8k−15. Let

(X0∪X1, X2) be a k-path in M with X0∪X1 fully closed and let F be the set

110
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of maximal sequential k-separating sets of M . Let (X0 ∪ X ′1, X ′2, . . . , X ′m)

be the output of ForwardSweep when applied to (M, (X0 ∪ X1, X2),F).

Then (X0 ∪X ′1, X ′2, . . . , X ′m) is a left-justified maximal X0-rooted k-path of

M .

Proof. By construction, (X0 ∪X ′1, X ′2, . . . , X ′m) is a left-justified X0-rooted

k-path. Thus, if the lemma fails, then there is a partition (Yj , Zj) of

X ′j for some j in {1, 2, . . . ,m} such that (X0 ∪ X ′1 ∪ · · · ∪ X ′j−1 ∪ Yj ,
Zj∪X ′j+1∪· · ·∪X ′m) is a non-sequential k-separation of M . We need to show

that this k-separation is equivalent to (X0 ∪X ′1 ∪ · · · ∪X ′j−1, X ′j ∪ · · · ∪X ′m)

or (X0 ∪X ′1 ∪ · · · ∪X ′j , X ′j+1 ∪ · · · ∪X ′m).

If j = m, then the result follows immediately from lines 10–15 of For-

wardSweep. Thus, in what follows we assume that j < m.

SupposeX0 = ∅ and j = 1. Then, because (X0∪Y1, Z1∪X ′2∪· · ·∪X ′m) is a

non-sequential k-separation of M , there is a k-element subset Y ′1 of Y1 that is

not contained in any member of F , by Lemma 5.1.3. Since Z1∪X ′2∪· · ·∪X ′m
contains X ′2∪· · ·∪X ′m, line 5 of ForwardSweep implies that every element

of Z1 is in fclk(X ′2∪· · ·∪X ′m), otherwise lines 13–15 will further refine the k-

path. Hence every element of Z1 is in fclk(Y1) and (X0∪Y1, Z1∪X ′2∪· · ·∪X ′m)

is equivalent to (X0 ∪X ′1, X ′2 ∪ · · · ∪X ′m), by Corollary 4.3.7, as required.

We may now assume that either X0 6= ∅ or j ≥ 2. Then, to prevent lines

13–15 of ForwardSweep from further refining the k-path, either every

element of Yj is in fclk(X0 ∪ X ′1 ∪ · · · ∪ X ′j−1) or every element of Zj is in

fclk(X ′j+1∪· · ·∪X ′m). Hence (X0∪X ′1∪· · ·∪X ′j−1∪Yj , Zj∪X ′j+1∪· · ·∪X ′m)

is equivalent to (X0 ∪X ′1 ∪ · · · ∪X ′j−1, X ′j ∪ · · · ∪X ′m) or (X0 ∪X ′1 ∪ · · · ∪X ′j ,
X ′j+1 ∪ · · · ∪X ′m), as required.

Lemma 6.1.2. Let M be a k-connected matroid with ground set E, where

|E| ≥ 8k−15. Let Ti and Ti+1 be π-labelled trees constructed by k-Tree(M)

in line 6 or 17, where i ≥ 0. Suppose that Ti is a conforming tree for

M , and Ti+1 satisfies (F1)–(F4) but is not a conforming tree for M . Let

(X0 ∪X ′1, X ′2, . . . , X ′m) be the k-path returned when ForwardSweep is ap-

plied in line 5 or 14 of k-Tree depending on whether i = 0 or i is positive.

Let (R,G) be a non-sequential k-separation in M that does not conform with

Ti+1 for which X0 is monochromatic and no equivalent k-separation in which

X0 is monochromatic has fewer bichromatic parts in (X0∪X ′1, X ′2, . . . , X ′m).

Then X0∪X ′1 is monochromatic unless i = 0. In the exceptional case, either
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X ′1 is monochromatic, or both R∩X ′1 and G∩X ′1 are sequential k-separating

sets with |R ∩X ′1|, |G ∩X ′1| ≥ k − 1.

Proof. Assume that X0 ∪ X ′1 is bichromatic. First suppose that i ≥ 1.

Then X0 is non-empty. As X0 is monochromatic, we may assume that

X0 ⊆ G. Furthermore, as (R,G) does not conform with Ti+1, the set

X ′2 ∪ · · · ∪X ′m contains at least one red element. Since X0 ∪X ′1 is bichro-

matic, |R ∩ (X ′2 ∪ · · · ∪ X ′m)| ≥ k − 1 by Lemma 4.3.15. Thus, since

G and X0 ∪ X ′1 are both k-separating, it follows, by uncrossing, that

G ∩ (X0 ∪ X ′1), which equals X0 ∪ (G ∩ X ′1), is k-separating. Therefore

(X0 ∪ (G ∩ X ′1), (R ∩ X ′1) ∪ X ′2 ∪ · · · ∪ X ′m) is a k-separation. If this

k-separation is non-sequential, then, by Lemma 6.1.1, it is equivalent to

(X0 ∪X ′1, X ′2 ∪ · · · ∪X ′m). Thus, we can recolour all the elements in R∩X ′1
green thereby reducing the number of bichromatic parts; a contradiction.

Therefore, either X0 ∪ (G∩X ′1) or (R∩X ′1)∪X ′2 ∪ · · · ∪X ′m is k-sequential.

By Lemma 4.3.2, the last set is non-sequential as X ′2∪X ′3∪ · · · ∪X ′m is non-

sequential. Thus X0 ∪ (G∩X ′1) is sequential. But, as i ≥ 1, the set X0 con-

tains at least one non-sequential k-separation, contradicting Lemma 4.3.2.

Hence X0 ∪X ′1 is monochromatic when i ≥ 1.

Now suppose that i = 0. Then X0 is empty. If |R ∩X ′1| ≤ k − 2, then

|R−X ′1| ≥ k−1, by Lemma 4.3.5, and so, as G and X ′1 are both k-separating,

by uncrossing, G ∩X ′1 is k-separating. Therefore, as X ′1 is k-separating, it

follows that R ∩ X ′1 ⊆ fclk(G ∩ X ′1). Thus we can recolour R ∩ X ′1 green

thereby reducing the number of bichromatic parts; a contradiction. Hence

|R ∩X ′1| ≥ k − 1 and, by symmetry, |G ∩X ′1| ≥ k − 1. If R −X ′1 is empty,

then, as (X0 ∪ X ′1, X ′2, . . . , X ′m) is a maximal X0-rooted k-path, (R,G) is

equivalent to (X ′1, E−X ′1). Hence G∩X ′1 ⊆ fclk(R) and so we can recolour

the elements in G ∩ X ′1 red, reducing the number of bichromatic parts; a

contradiction. Thus |R−X ′1| ≥ 1 and so, by Lemma 4.3.15, |R−X ′1| ≥ k−1.

Similarly, |G−X ′1| ≥ k − 1. It now follows by uncrossing that both G ∩X ′1
and R ∩X ′1 are k-separating.

Consider the k-separation (G ∩X ′1, E − (G ∩X ′1)). If this k-separation

is non-sequential, then, by Lemma 6.1.1, it is equivalent to (X ′1, E − X ′1)
and so R ∩ X ′1 ⊆ fclk(G ∩ X ′1) ⊆ fclk(G). Thus we can recolour all the

elements in R∩X ′1 green thereby reducing the number of bichromatic parts;

a contradiction. Hence either G ∩ X ′1 or E − (G ∩ X ′1) is sequential. As

E− (G∩X ′1) contains the non-sequential set X ′2 ∪X ′3 ∪ · · · ∪X ′m, it follows,
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by Lemma 4.3.2, that G ∩ X ′1 is sequential. By symmetry, R ∩ X ′1 is also

sequential, and the lemma follows.

In order to prove Lemma 6.1.4, we require one more lemma. We omit

the proof, which follows directly from results of Clark and Whittle (2013,

Lemmas 5.5 and 5.9).

Lemma 6.1.3. Let Φ = (P1, P2, . . . , Pn) be a tight k-flower of order at

least three in a k-connected matroid M . Let (R,G) be a non-sequential

k-separation such that P1 is bichromatic, P2 is red, and no equivalent k-

separation has fewer bichromatic petals. Then, there is a tight k-flower

(G ∩ P1, R ∩ P1, P2, . . . , Pn) that refines Φ.

The next two lemmas collectively generalise a result by Oxley and Sem-

ple (2013, Lemma 6.3). As the proof of that result is sizeable, we present

the generalisation as two lemmas. When proving the result for arbitrary k,

the main difference is that we have to deal with the possibility of end parts

breaking into three and not just two petals. In the proof of Lemma 6.1.4,

these are the cases where (6.1.4.1)(ii) or (6.1.4.2)(ii) hold. In Lemma 6.1.5,

the last two paragraphs of (6.1.5.1) handle this possibility. Recall that a

k-flower Φ = (P1, P2, . . . , Pn) is irredundant if Φ is a k-daisy and, for all

i ∈ {1, 2, . . . , n}, there is a non-sequential k-separation (X,Y ) displayed

by Φ with Pi ⊆ X and Pi+1 ⊆ Y ; or Φ is a k-anemone and, for all distinct

i, j ∈ {1, 2, . . . , n}, there is a non-sequential k-separation (X,Y ) displayed

by Φ with Pi ⊆ X and Pj ⊆ Y . As we are interested in the non-sequential

k-separations of a matroid, it is most efficient for the tree to display irredun-

dant flowers. Whereas every tight 3-flower is irredundant, the same cannot

be said of tight k-flowers for arbitrary k. However, in (6.1.5.2) we show

that every k-flower corresponding to a flower vertex of the tree returned by

k-Tree is irredundant.

Lemma 6.1.4. Let M be a k-connected matroid with |E(M)| ≥ 8k − 15.

The tree returned by k-Tree, when applied to M , is a conforming tree for

M .

Proof. Let E denote the ground set of M . We prove the lemma by showing

that each of the π-labelled trees Tp constructed in lines 6 and 17 of k-Tree

is a conforming tree for M . Since T0 consists of a single bag vertex labelled

E, the result holds trivially if p = 0. Now suppose that p ≥ 0 and Tp is a
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conforming tree for M . We will eventually show that Tp+1 is a conforming

tree for M . The structure of the proof is as follows. First we show that Tp+1

satisfies (F1)–(F4). Then, we suppose towards a contradiction that (R,G) is

a non-sequential k-separation that does not conform with Tp+1. End moves

require special attention: we show, as (6.1.4.1) and (6.1.4.2), that when one

is performed, we can assume the end part breaks into two or three petals in

a flower displayed by Tp+1, and these petals are monochromatic with respect

to (R,G). To derive the contradiction, we handle the cases where p ≥ 1 and

p = 0 separately, as (6.1.4.3) and (6.1.4.4) respectively.

It follows by induction, Lemma 6.1.1, and the construction in Back-

wardSweep that Tp+1 satisfies (F1) in the definition of a conforming tree.

Furthermore, Tp+1 trivially satisfies (F2) in this definition. To see that (F3)

and (F4) hold for Tp+1, let Φ = (Q1, Q2, . . . , Qk) be a k-flower in M cor-

responding to a flower vertex v in the path realisation of the generalised

k-path returned by BackwardSweep in the construction of Tp+1 from Tp.

By induction, to show that (F3) and (F4) hold for Tp+1, it suffices to show

that v satisfies either (F3) or (F4) depending upon whether it is labelled A

or D, respectively. Without loss of generality, we may assume that, relative

to the generalised k-path, Q1 is the entry petal. By construction, each petal

of Φ is k-separating and, apart from at most one of Q1 ∪Q2 and Q1 ∪Qk,

each pair of consecutive petals is k-separating. Thus, by symmetry, it suf-

fices to check that Q1 ∪Q2 is k-separating. This check is done by induction

by showing, for all i in {3, 4, . . . , k}, that Q3 ∪Q4 ∪ · · · ∪Qi is k-separating.

In particular, this will show that Q3 ∪ Q4 ∪ · · · ∪ Qk is k-separating, so

Q1 ∪Q2 is k-separating. Clearly, Q3 and Q3 ∪Q4 are k-separating. Now let

i ≥ 5 and assume that Q3 ∪Q4 ∪ · · · ∪Qi−1 is k-separating. As Qi−1 ∪Qi is

also k-separating, and Qi−1 contains at least k − 1 elements, it follows, by

uncrossing, that Q3 ∪Q4 ∪ · · · ∪Qi is k-separating, as desired.

To complete the proof that Tp+1 is a conforming tree for M , suppose

there is a non-sequential k-separation (R′, G′) that does not conform with

Tp+1. Because this k-separation does conform with Tp, it is equivalent to a

k-separation (R,G) such that R or G is contained in a bag of Tp. Only one

bag of Tp is affected in the construction of Tp+1, so we may assume that R

or G is contained in this bag B. As X0 = E − π(B), which may be empty,

we deduce that, with respect to (R,G), the set X0 is monochromatic. Thus

(R,G) is a non-sequential k-separation that does not conform with Tp+1 and
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has X0 monochromatic. From among the collection of choices for (R,G)

satisfying these conditions, choose one such that no equivalent k-separation

in which X0 is monochromatic has fewer bichromatic parts with respect to

the X0-rooted k-path (X0 ∪ Z1, Z2, . . . , Zm) returned by ForwardSweep

during the construction of Tp+1 from Tp. By Lemma 6.1.1, the k-path is

left-justified and maximal. By Lemma 6.1.2, we may further assume that if

p ≥ 1, then X0 ∪ Z1 is monochromatic, and if p = 0, in which case X0 is

empty, then either Z1 is monochromatic, or each of R ∩ Z1 and G ∩ Z1 is a

sequential k-separating set consisting of at least k − 1 elements.

Shortly, we handle the case where X0∪Z1 is monochromatic, as (6.1.4.3).

First, we show that when m ≥ 3 and Zm or Z1 is bichromatic, then we can

assume the generalised k-path returned by BackwardSweep during the

construction of Tp+1 from Tp breaks Zm or Z1, respectively, into monochro-

matic petals.

6.1.4.1. Consider the call to BackwardSweep while constructing Tp+1

from Tp. If Zm and Z−m are bichromatic and Zm−1 is monochromatic, where

m ≥ 3, then, up to recolouring elements of Zm to give a k-separation equiv-

alent to (R,G), the generalised k-path τm−1 is of the form

(i) (. . . , [(Zm−1, X)], Y ), where (X,Y ) is a partition of Zm such that X

and Y are monochromatic, or

(ii) (. . . , [(Zm−1, A,B)], C), where (A,B,C) is a partition of Zm such that

A, B, and C are monochromatic.

As |G ∩ Z−m| ≥ k − 1, by Lemma 4.3.15, and both Zm and R are k-

separating, R∩Zm is k-separating by uncrossing. Now, if |G∩Zm| ≤ k− 2,

then G ∩ Zm ⊆ fclk(R ∩ Zm), so we can recolour G ∩ Zm red to obtain a

k-separation equivalent to (R,G) with fewer bichromatic parts; a contradic-

tion. Thus |G∩Zm| ≥ k−1. A similar argument shows that |R∩Zm| ≥ k−1.

We next show that line 25 of BackwardSweep is invoked. If Zm−1 ⊆ R,

then, as R and Zm−1 ∪ Zm are both k-separating and |G ∩ Z−m−1| ≥ k − 1,

the set R∩ (Zm−1∪Zm) is k-separating by uncrossing. As |G∩Zm| ≥ k−1,

it follows that Zm−1 is k-separating by uncrossing R∩ (Zm−1∪Zm) and Z−m.

Using the fact that Z−m is bichromatic, the same argument shows that Zm−1

is k-separating when Zm−1 ⊆ G. Thus line 25 is invoked. Furthermore, as

Zm−1∪(R∩Zm) is k-separating if Zm−1 ⊆ R and, similarly, Zm−1∪(G∩Zm)
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is k-separating if Zm−1 ⊆ G, it follows that BackwardSweep finds a k-

separation (U, V ) as described in this line.

Suppose that both U ∩ Zm and V ∩ Zm are monochromatic in an

(R,G)-equivalent k-separation obtained by recolouring elements of Zm.

Then, since (R,G) is non-sequential, BackwardSweep finds a k-separation

(U1, V1) as described in line 27. It follows that τm−1 is of the form

(. . . , [(Zm−1, U ∩ Zm)], V ∩ Zm) or (. . . , [(Zm−1, A,B)], C), where either

(A,B ∪ C) = (U ∩ Zm, V ∩ Zm) or (A ∪ B,C) = (U ∩ Zm, V ∩ Zm). Thus

(i) or (ii) holds.

Now we may assume that no recolouring of elements in Zm gives a

k-separation equivalent to (R,G) such that both U ∩ Zm and V ∩ Zm

are monochromatic. First, we show that BackwardSweep finds a non-

sequential k-separation (U1, V1) as described in line 27. If U is non-

sequential, then (U, V ) is such a k-separation, so let U be k-sequential.

Without loss of generality we may assume that Zm−1 is red. Suppose that

no recolouring of elements in Zm gives an (R,G)-equivalent k-separation

such that U ∩ Zm is monochromatic. Since Z−m is bichromatic, it follows

that |G ∩ V | ≥ k − 1 by Lemma 4.3.15. By uncrossing and Lemma 4.3.2,

R∩U and U ∩Zm are sequential k-separating sets. If |R∩U ∩Zm| ≤ k− 2,

then, since R∩U is k-separating, R∩U ∩Zm ⊆ fclk(Zm−1); a contradiction.

It follows, by Lemma 4.4.8, that since no recolouring of elements of Zm gives

an (R,G)-equivalent k-separation where U ∩ Zm is monochromatic, either

Zm−1 ⊆ fclk(R ∩ U ∩ Zm) or R ∩ U ∩ Zm ⊆ fclk(Zm−1). But if the for-

mer holds, then Zm−1 ⊆ fclk(Zm); a contradiction. If the latter holds, then

(Z1, Z2, . . . , Zm) is not a left-justified k-path; a contradiction. Now we may

assume that U ∩ Zm is monochromatic. If U is monochromatic, then the

non-sequential k-separation (R,G) satisfies the requirements of (U1, V1) in

line 27, so we may assume that U ∩Zm is green. Recall that, as Zm−1 ⊆ R,

the set R∩ (Zm−1 ∪Zm) is k-separating. Thus U ∪ (R∩Zm) is k-separating

by uncrossing U and R ∩ (Zm−1 ∪ Zm). Suppose that U ∪ (R ∩ Zm) is k-

sequential. Then R∩ (Zm−1 ∪Zm) and U are k-sequential by Lemma 4.3.2.

Thus, we can apply Lemma 4.4.8. However, since (Z1, Z2, . . . , Zm) is a k-

path, Zm−1 * fclk(R ∩ Zm) and Zm−1 * fclk(U ∩ Zm). Moreover, if either

R ∩ Zm ⊆ fclk(Zm−1) or U ∩ Zm ⊆ fclk(Zm−1), then the k-path is not left-

justified; a contradiction. We deduce that U ∪ (R ∩ Zm) is non-sequential,

so a k-separation (U1, V1) is found as described in line 27.
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By Lemma 4.3.20, R ∩Zm and G ∩Zm are sequential k-separating sets.

If V1∩Zm is non-sequential, then, as (Z1, Z2, . . . , Zm) is a left-justified max-

imal k-path, U1 ∩ Zm ⊆ fclk(V1 ∩ Zm) ⊆ fclk(V1). But then, by Corol-

lary 4.3.7(i), U1 ∩ Zm ⊆ fclk(U1 − Zm); a contradiction. It follows that

V1 ∩Zm is k-sequential and, by a similar argument, U1 ∩Zm is k-sequential.

By Lemma 4.4.10, we may assume, by recolouring elements of Zm if neces-

sary, that one of U1 ∩ Zm and V1 ∩ Zm is monochromatic and the other is

bichromatic.

Suppose, up to swapping R and G, that U1 ∩ Zm is red and V1 ∩ Zm

is bichromatic. Since |V1 ∩ Z−m−1| ≥ k − 1, as V1 ∩ Zm is k-sequential,

U1∩ (Zm−1∪Zm) is k-separating, by uncrossing. By a further application of

uncrossing, it follows that since |U1∩Zm| ≥ k−1, the set Zm−1∪(R∩Zm) is

k-separating. Moreover, R∩Zm has an element that is not in fclk(U1−Z−m−1),
by Lemma 4.4.7, since no (R,G)-equivalent recolouring of elements in Zm

has both U ∩Zm and V ∩Zm monochromatic. As |G∩Zm| ≥ k−1, it follows

that BackwardSweep finds a k-separation (S, T ) as described in line 29.

We are almost ready to invoke Corollary 4.4.11 with (S, T ) in the

role of (R,G). First, we show that (S, T ) is non-sequential. By Corol-

lary 4.3.3, T is non-sequential as it contains Z−m−1. Suppose that S is

k-sequential, and let U2 = U1 − Z−m−1. Then U2 and S ∩ Zm are also k-

sequential by Lemma 4.3.2. Next, we apply Lemma 4.4.8. If U2 − Zm ⊆
fclk(U2 ∩ Zm), then U2 − Zm ⊆ fclk(Zm) where U2 − Zm = Zm−1; a contra-

diction. By line 29 of BackwardSweep, S − U2 * fclk(U2 ∩ Zm). Since

(Z1, Z2, . . . , Zm) is a left-justified k-path, U2 ∩ Zm * fclk(U2 − Zm). More-

over, if U2 ∩ Zm ⊆ fclk(S − U2), then U2 ∩ Zm ⊆ fclk(V2 ∩ Zm), so, by

Corollary 4.3.7(i), U2 ∩ Zm ⊆ fclk(Z−m); a contradiction. We deduce that S

is also non-sequential.

By applying Lemma 4.3.20, but with (S, T ) in the role of (R,G), we

deduce that S ∩ Zm and T ∩ Zm are k-sequential sets. It follows, by Corol-

lary 4.4.11, that Φ = (V1−Zm, U1−Zm, U1 ∩Zm, S ∩ V1 ∩Zm, T ∩Zm) is a

tight k-flower. If possible, recolour elements of V1∩Zm to give a k-separation

equivalent to (R,G) such that Φ has fewer bichromatic petals. Now, if

S∩V1∩Zm is bichromatic, then, by Lemma 6.1.3, there exists a tight refine-

ment Φ′ = (V1−Zm, U1−Zm, U1∩Zm, R∩S∩V1∩Zm, G∩S∩V1∩Zm, T∩Zm)

of Φ. But V1 ∩ Zm is sequential, so Φ′ has three consecutive petals whose

union is a sequential set, contradicting Corollary 4.4.9. Thus S ∩ V1 ∩Zm is
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monochromatic and, by the same argument, T ∩Zm is monochromatic. We

deduce, by line 30 of BackwardSweep, that (ii) holds.

Now suppose, up to swapping R and G, that U1 ∩ Zm is bichromatic

and V1 ∩Zm is green. By Corollary 4.4.11, and a reversal and cyclic shift of

the petals, Φ = (V1 − Zm, U1 − Zm, R ∩ U1 ∩ Zm, G ∩ U1 ∩ Zm, V1 ∩ Zm) is

a tight k-flower. It follows, by Lemma 6.1.3, that if there is a k-separation

as described in line 29 of BackwardSweep, then Φ has a tight refinement

with three consecutive petals, G ∩ U1 ∩ Zm, S ∩ V1 ∩ Zm, and T ∩ V1 ∩ Zm,

whose union is the sequential set G ∩ Zm; a contradiction. Therefore, the

algorithm reaches line 31. If Zm−1 ⊆ R, then (R,G) is a k-separation

that satisfies the requirements of this line, while if Zm−1 ⊆ G, then (G,R)

is such a k-separation; so the algorithm finds a k-separation (S, T ) as de-

scribed. Suppose S ∩ Zm is non-sequential. Since (Z1, Z2, . . . , Zm) is a

left-justified maximal k-path, T ∩ Zm ⊆ fclk(S ∩ Zm) ⊆ fclk(S). It fol-

lows, by Corollary 4.3.7(i), that T ∩ Zm ⊆ fclk(T − Zm); a contradiction.

Thus S ∩ Zm is non-sequential. By a similar argument, T ∩ Zm is also

non-sequential. If, up to recolouring elements of Zm to give an (R,G)-

equivalent k-separation, S ∩ Zm and T ∩ Zm are monochromatic, then (ii)

holds, so assume otherwise. By applying Corollary 4.4.11 with (V1, U1)

and (S, T ) in the roles of (U, V ) and (R,G) respectively, we deduce that

Φ′ = (U1 − Zm, V1 − Zm, V1 ∩ Zm, S ∩ U1 ∩ Zm, T ∩ U1 ∩ Zm) is a tight k-

flower. If possible, recolour elements of U1∩Zm to give an (R,G)-equivalent

k-separation such that Φ′ has fewer bichromatic petals. Now, if S ∩U1∩Zm

is bichromatic, then, by Lemma 6.1.3, there exists a tight refinement of Φ′

with three consecutive petals G∩S∩U1∩Zm, R∩S∩U1∩Zm, and T∩U1∩Zm.

But the union of these petals, U1 ∩ Zm, is sequential, contradicting Corol-

lary 4.4.9. So S ∩ U1 ∩ Zm is monochromatic and, by a similar argument,

T ∩U1∩Zm is monochromatic. We deduce, by line 32 of BackwardSweep,

that (ii) holds in this case, completing the proof of (6.1.4.1).

6.1.4.2. Consider the call to BackwardSweep while constructing T1 in

line 6 of k-Tree. If Z1 and E − Z1 are bichromatic, m ≥ 3, and τ2 starts

with (Z1, [(P1, . . . , Ps), (Q1, . . . , Qt)], . . . ) where s ≥ 1, t ≥ 0, and P1 is

monochromatic, then, up to recolouring elements of Z1 to give a k-separation

equivalent to (R,G), BackwardSweep returns a generalised k-path that

starts with either
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(i) (X, [(Y, P1, . . . , Ps), (Q1, . . . , Qt)], . . . ), where (X,Y ) is a partition of

Z1 such that X and Y are monochromatic, or

(ii) (A, [(B,C, P1, . . . , Ps), (Q1, . . . , Qt)], . . . ), where (A,B,C) is a parti-

tion of Z1 such that A, B and C are monochromatic.

As P1 is monochromatic, and Z1 and E − Z1 are bichromatic, it fol-

lows, by uncrossing Z1 ∪ P1 and either R or G, that the call to Back-

wardSweep reaches line 63 and finds a k-separation (U, V ) as described

in that line. If we can recolour elements of Z1 to give an (R,G)-

equivalent k-separation where both U ∩ Z1 and V ∩ Z1 are monochro-

matic, then, since (R,G) is non-sequential, a k-separation is found as de-

scribed in line 65. It follows that the generalised k-path returned by Back-

wardSweep starts with (V ∩ Z1, [(U ∩ Z1, P1, . . . , Ps), (Q1, . . . , Qt)], . . . )

or (A, [(B,C, P1, . . . , Ps), (Q1, . . . , Qt)], . . . ), where (A,B ∪ C) = (V ∩ Z1,

U ∩ Z1) or (A ∪ B,C) = (V ∩ Z1, U ∩ Z1), in which case either (i) or (ii)

holds.

Now we may assume that there is no k-separation equivalent to (R,G)

such that both U ∩ Z1 and V ∩ Z1 are monochromatic. First, we show

that BackwardSweep finds a non-sequential k-separation (U1, V1) as de-

scribed in line 65. If U is non-sequential, then (U, V ) is such a k-separation,

so let U be k-sequential. Without loss of generality we may assume that

P1 is red. Suppose that no recolouring of elements in Z1 gives an (R,G)-

equivalent k-separation such that U ∩ Z1 is monochromatic. By uncrossing

and Lemma 4.3.2, R∩U and U∩Z1 are sequential k-separating sets. Towards

a contradiction, suppose that R∩U ∩Z1 ⊆ fclk(P1). Then, by the construc-

tion of U in line 63 of BackwardSweep, G∩U ∩Z1 * fclk(P1) and, in par-

ticular, |G∩U∩Z1| ≥ k−1. If |R∩V ∩Z1| ≤ k−2, then R∩Z1 ⊆ fclk(R−Z1),

so R ∩ Z1 ⊆ fclk(G) by Corollary 4.3.7(i); a contradiction. Hence, by un-

crossing, V ∪ (R∩Z1) is k-separating. Thus R∩U ∩Z1 ⊆ fclk(U− (R∩Z1)).

By applying Lemma 4.4.7 with (Z1, E − Z1) in the role of (R,G), we de-

duce that R ∩ U ∩ Z1 ⊆ fclk(G ∩ U ∩ Z1) ⊆ fclk(G); a contradiction. So

R ∩ U ∩ Z1 * fclk(P1). It follows that |R ∩ U ∩ Z1| ≥ k − 1. Now we can

apply Lemma 4.4.8 with R ∩ U and U ∩ Z1 in the roles of A and B respec-

tively. Since no (R,G)-equivalent k-separation has U ∩ Z1 monochromatic,

it follows that P1 ⊆ fclk(R ∩ U ∩ Z1). Thus, P1 ⊆ fclk(Z1); a contradiction.

Now suppose that there is a recolouring of elements in Z1 that results in
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an (R,G)-equivalent k-separation for which U ∩ Z1 is monochromatic. If U

is monochromatic, then the non-sequential k-separation (R,G) satisfies the

requirements of (U1, V1) in line 65, so we may assume that U ∩ Z1 is green.

As P1 is red, the set P1∪ (R∩Z1) is k-separating by uncrossing Z1∪P1 and

R. Thus, by uncrossing P1∪ (R∩Z1) and U , we deduce that U ∪ (R∩Z1) is

k-separating. Suppose that U ∪ (R∩Z1) is k-sequential. Then P1∪ (R∩Z1)

and U are k-sequential by Lemma 4.3.2. Thus, we can apply Lemma 4.4.8.

However, since (Z1, Z2, . . . , Zm) is a left-justified k-path, P1 * fclk(R ∩ Z1)

and P1 * fclk(U ∩Z1), and, moreover, U ∩Z1 * fclk(P1) by the construction

of U in line 63 of BackwardSweep. Therefore, R ∩ Z1 ⊆ fclk(P1), in

which case R∩Z1 ⊆ fclk(R−Z1), so, by Corollary 4.3.7(i), we can recolour

R ∩ Z1 green to give an (R,G)-equivalent k-separation where U ∩ Z1 and

V ∩ Z1 are monochromatic; a contradiction. We deduce that U ∪ (R ∩ Z1)

is non-sequential, so a k-separation (U1, V1) is found as described in line 65.

By Lemma 6.1.2, R ∩ Z1 and G ∩ Z1 are sequential k-separating sets.

If V1 ∩ Z1 is non-sequential, then, as (Z1, Z2, . . . , Zm) is a left-justified

maximal k-path, U1 ∩ Z1 ⊆ fclk(V1 ∩ Z1) ⊆ fclk(V1). Thus, by Corol-

lary 4.3.7(i), U1 ∩ Z1 ⊆ fclk(U1 − Z1), contradicting the construction of

U and U1 in lines 63 and 65. Thus V1 ∩ Z1 is k-sequential, and, by

a similar argument, U1 ∩ Z1 is k-sequential. Now we may assume, by

Lemma 4.4.10, that, up to recolouring elements of Z1 to give an (R,G)-

equivalent k-separation, one of U1 ∩ Z1 and V1 ∩ Z1 is monochromatic and

the other is bichromatic. Suppose, up to swapping R and G, that U1 ∩ Z1

is red and V1 ∩ Z1 is bichromatic. Since |V1 − (Z1 ∪ P1)| ≥ k − 1, as

V1 ∩Z1 is k-sequential, (U1 ∩Z1)∪ P1 is k-separating by uncrossing U1 and

Z1∪P1. By a further application of uncrossing, it follows that P1∪ (R∩Z1)

is k-separating. If G ∩ Z1 ⊆ fclk(E − Z1), then, by Corollary 4.3.7(i),

G ∩ Z1 can be recoloured red in an (R,G)-equivalent k-separation; a con-

tradiction. Likewise, if R ∩ V1 ∩ Z1 ⊆ fclk(U1 ∩ (Z1 ∪ P1)), then, by

Lemma 4.4.7, R ∩ V1 ∩ Z1 ⊆ fclk(R ∩ U1 ∩ (Z1 ∪ P1)) ⊆ fclk(R− (V1 ∩ Z1)),

so R∩V1∩Z1 ⊆ fclk(G) by Corollary 4.3.7(i); a contradiction. Thus Back-

wardSweep finds a k-separation (S, T ) as described in line 67.

We are almost ready to invoke Corollary 4.4.11 with (S, T ) in the

role of (R,G). First, we show that (S, T ) is non-sequential. By Corol-

lary 4.3.3, T is non-sequential as it contains Zm. Suppose that S is

k-sequential. Let (U2, V2) = (U1 ∩ (Z1 ∪ P1), V1 ∪ (E − (Z1 ∪ P1))).



6.1. CONFORMANCE 121

Then U2 and S ∩ Z1 are also k-sequential by Lemma 4.3.2. By lines 63

and 67, U2 ∩ Z1 * fclk(U2 − Z1) and S − U2 * fclk(U2 ∩ Z1), and, since

(Z1, Z2, . . . , Zm) is a left-justified k-path, U2 − Z1 * fclk(U2 ∩ Z1). Hence,

by Lemma 4.4.8, U2∩Z1 ⊆ fclk(S−U2) ⊆ fclk(V2∩Z1). By Corollary 4.3.7(i),

U2 ∩ Z1 ⊆ fclk(E − Z1). By an application of Lemma 4.4.7 with (U2, V2) in

the role of (R,G), we deduce that U2 ∩Z1 ⊆ fclk(U2 −Z1); a contradiction.

Hence S is also non-sequential.

Next we show that S ∩ Z1 and T ∩ Z1 are k-sequential. Suppose that

S∩Z1 is non-sequential. Since (Z1, Z2, . . . , Zm) is maximal and left-justified,

we deduce that T ∩ Z1 ⊆ fclk(S ∩ Z1), so T ∩ Z1 ⊆ fclk(S). As T is non-

sequential, it follows, by Corollary 4.3.7(i), that T ∩ Z1 ⊆ fclk(T − Z1),

contradicting the construction of (S, T ) in line 67. We deduce that S ∩Z1 is

k-sequential and, by a similar argument, T ∩ Z1 is also k-sequential. Thus,

by Corollary 4.4.11, Φ = (T ∩Z1, S ∩V1 ∩Z1, U1 ∩Z1, U1−Z1, V1−Z1) is a

k-flower where the first three petals are tight, and thus Φ is tight. If possible,

recolour elements of V1∩Z1 to give a k-separation equivalent to (R,G) such

that Φ has fewer bichromatic petals. Now, if S ∩ V1 ∩ Z1 is bichromatic,

then, by Lemma 6.1.3, there exists a refinement of Φ with consecutive tight

petals T ∩Z1, G∩S ∩V1 ∩Z1 and R∩S ∩V1 ∩Z1. The union of these three

petals, V1∩Z1, is k-sequential, contradicting Corollary 4.4.9. So S ∩V1∩Z1

is monochromatic and, by a similar argument, T ∩Z1 is monochromatic. We

deduce, by line 68 of BackwardSweep, that (ii) holds.

Now suppose, up to swapping R and G, that U1 ∩Z1 is bichromatic and

V1 ∩ Z1 is green. By Corollary 4.4.11, Φ = (V1 − Z1, U1 − Z1, R ∩ U1 ∩ Z1,

G ∩U1 ∩Z1, V1 ∩Z1) is a tight k-flower. It follows, by Lemma 6.1.3, that if

there is a k-separation as described in line 67, then Φ has a tight refinement

with three consecutive petals G ∩ U1 ∩ Z1, S ∩ V1 ∩ Z1 and T ∩ V1 ∩ Z1

whose union is G ∩ Z1, contradicting Corollary 4.4.9. Thus, the algorithm

reaches line 69. If P1 ⊆ R, then (R,G) is a non-sequential k-separation that

satisfies the requirements of line 69, while if P1 ⊆ G, then (G,R) is such a

k-separation; so a k-separation (S, T ) is found as described. If S∩Z1 is non-

sequential, then T ∩ Z1 ⊆ fclk(S ∩ Z1), since (Z1, Z2, . . . , Zm) is a maximal

k-path. But then T ∩ Z1 ⊆ fclk(S), so T ∩ Z1 ⊆ fclk(T − Z1) by Corol-

lary 4.3.7(i), contradicting the construction of (S, T ) in line 69. We deduce

that S ∩Z1 and, similarly, T ∩Z1 are k-sequential. If, up to recolouring ele-

ments of Z1 to give an (R,G)-equivalent k-separation, S∩Z1 and T ∩Z1 are
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monochromatic, then (ii) holds, by line 70, so assume otherwise. By apply-

ing Corollary 4.4.11, Φ′ = (E−(Z1∪P1), P1, S∩U1∩Z1, T ∩U1∩Z1, V1∩Z1)

is a tight k-flower. If possible, recolour elements of U1∩Z1 to give an (R,G)-

equivalent k-separation such that Φ′ has fewer bichromatic petals. Now, if

T ∩ U1 ∩ Z1 is bichromatic, then, by Lemma 6.1.3, there exists a refine-

ment of Φ′ with three consecutive petals S ∩ U1 ∩ Z1, R ∩ T ∩ U1 ∩ Z1 and

G ∩ T ∩ U1 ∩ Z1. But the union of these petals, U1 ∩ Z1 is k-sequential,

contradicting Corollary 4.4.9. So T ∩U1 ∩Z1 is monochromatic and, by the

same argument, S ∩ U1 ∩ Z1 is monochromatic. Thus (6.1.4.2) holds.

6.1.4.3. If X0 ∪ Z1 is monochromatic, then Tp+1 displays (R,G).

Suppose that X0 ∪ Z1 is monochromatic. Without loss of generality,

we may assume that X0 ∪ Z1 ⊆ G. Let b be the number of bichromatic

parts amongst Z2, . . . , Zm. Assume that b ≥ 2 and let Zi be the bichro-

matic part with the smallest subscript. If Z−i ∩ R is non-empty, then, by

Lemmas 4.3.14 and 4.3.15, Zi is monochromatic; a contradiction. Therefore

Z−i ⊆ G. But then, by Lemma 4.3.17, Z+
i is monochromatic; a contradic-

tion. Thus b ∈ {0, 1}.
Assume that b = 1 and Zi is bichromatic. We first consider i 6= m. If

Z+
i is bichromatic, then, by Lemma 4.3.17, Z−i is bichromatic, and so, by

Lemma 4.3.15, |R∩Z−i |, |G∩Z
−
i |, |R∩Z

+
i |, |G∩Z

+
i | ≥ k− 1. But then, by

Lemma 4.3.14, Zi is monochromatic; a contradiction. Thus we may assume

that Z+
i is monochromatic.

Suppose that Z−i is monochromatic. As X0 ∪Z1 ⊆ G, we have Z−i ⊆ G.

Then, by Lemma 4.3.17, Z+
i ⊆ G, so R ⊆ Zi. The only lines in Back-

wardSweep that do not leave Zi intact are lines 40 and 59. As (R,G) does

not conform with Tp+1, we may assume that one of these is invoked. Then,

both R ∩ (Zi − fclk(Z+
i )) and R ∩ (Zi ∩ fclk(Z+

i )) are non-empty. But, as

R∩ (Zi∩ fclk(Z+
i )) ⊆ fclk(Z+

i ), it follows that R∩ (Zi∩ fclk(Z+
i )) ⊆ fclk(G).

Therefore we can recolour all the elements in R ∩ (Zi ∩ fclk(Z+
i )) green

thereby obtaining an equivalent k-separation in which all the red elements

are in Zi − fclk(Z+
i ), a single bag of Tp+1. This contradiction implies that

Z−i is bichromatic.

By Lemma 4.3.15, |R∩Z−i |, |G∩Z
−
i | ≥ k−1. Without loss of generality,

we may assume that Z+
i ⊆ R. By Lemma 4.3.19, R ∩ Zi ⊆ fclk(Z+

i ).

Furthermore, by recolouring if necessary, we may assume that R ∩ Zi =
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Zi ∩ fclk(Z+
i ). Since |R ∩ Z−i | ≥ k − 1, it follows, by uncrossing G and

Zi ∪Z+
i , that G∩Zi is k-separating. Moreover, by Lemma 4.3.16, Zi is not

k-separating. Therefore the generalised k-path τi at the end of the iteration

of BackwardSweep in which Zi is considered is

τi =
(
X0 ∪ Z1, Z2, . . . , Zi−1, [(Zi − fclk(Z+

i ))], Zi ∩ fclk(Z+
i ), τi+1(Z

+
i )
)
.

Now Zi − fclk(Z+
i ) ⊆ G and (Zi ∩ fclk(Z+

i )) ∪ Z+
i ⊆ R. Let h be the

smallest index for which Z−h ⊆ G, but Zh ⊆ R. Since X0 ∪ Z1 ⊆ G and

|R ∩ Z−i | ≥ k − 1, we have 2 ≤ h ≤ i − 1. By applying Lemma 4.3.18 to

the k-path
(
Z−h , Zh, Zh+1, . . . , Zi−1, Zi− fclk(Z+

i ), (Zi ∩ fclk(Z+
i ))∪Z+

i

)
, we

deduce that M has a k-flower in which the parts of the k-path are petals

of the flower. It now follows by Lemma 4.3.18 and the construction in

BackwardSweep that Tp+1 displays (R,G), so (6.1.4.3) is satisfied when

b = 1 and i 6= m.

Now consider i = m. If Z−m is monochromatic, that is, Z−m ⊆ G,

then either (X0 ∪ Z1, Z2, . . . , Zm) is not left-justified or it is not maxi-

mal; a contradiction. Therefore Z−m is bichromatic, and so m ≥ 3. Let

h denote the smallest index for which Z−h ⊆ G, but Zh ⊆ R. Then, by

Lemma 4.3.18, M has a flower with petals Z−h , Zh, Zh+1, . . . , Zm−1, Z
′
m, Z

′′
m,

where {Z ′m, Z ′′m} = {Zm ∩ R,Zm ∩ G}. Thus, by Lemma 4.3.18, (6.1.4.1),

and the construction in BackwardSweep, Tp+1 displays (R,G).

We may now assume that b = 0. Let h denote the smallest index for

which Z−h ⊆ G, but Zh ⊆ R. Say Zh ∪ Z+
h is bichromatic. Let h′ de-

note the largest index for which Zh′ ∪ Z+
h′ is not monochromatic, but Z+

h′ is

monochromatic. Note that h′ ≥ h. Then it follows, by Lemma 4.3.18, that

each of the sets Zh, Zh+1, . . . , Zh′ is k-separating and so, by the construc-

tion in BackwardSweep and Lemma 4.3.18, Tp+1 displays (R,G) as the

petals of a k-flower. Now say Zh ∪ Z+
h is monochromatic. It follows from

the construction in BackwardSweep that if (R,G) does not conform with

Tp+1, then h ≥ 3 and line 59 of BackwardSweep is invoked when Zh−1 is

considered. But then we can recolour all the elements in Zh−1∩fclk(Zh∪Z+
h )

red, resulting in a k-separation equivalent to (R,G); so Tp+1 displays (R,G).

This completes the proof of (6.1.4.3).

6.1.4.4. If p = 0, then T1 displays (R,G).

Suppose that p = 0, in which case X0 is empty. If Z1 is monochromatic,
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then (6.1.4.4) holds by (6.1.4.3). Thus we may assume that Z1 is bichro-

matic, in which case both R∩Z1 and G∩Z1 are sequential k-separating sets

consisting of at least k−1 elements. Let b denote the number of bichromatic

parts amongst Z1, . . . , Zm. By Lemmas 4.3.14 and 4.3.15, b ∈ {1, 2}.
First assume that b = 2, and let Zi denote the bichromatic part with

i > 1. Say i 6= m. By Lemmas 4.3.14 and 4.3.15, Z+
i is monochromatic.

Without loss of generality, we may assume that Z+
i ⊆ R. By Lemma 4.3.16,

Zi is not k-separating. Furthermore, by Lemma 4.3.19, R ∩ Zi ⊆ fclk(Z+
i ).

By recolouring elements of Xi, if necessary, we may assume that R ∩ Zi =

Zi ∩ fclk(Z+
i ). Since |R ∩ Z−i | ≥ k − 1, it follows, by uncrossing G and

Zi ∪Z+
i , that G∩Zi, which equals Zi − fclk(Z+

i ), is k-separating. Thus, by

the construction in BackwardSweep, the generalised k-path τi at the end

of the iteration in which Zi is considered is

τi =
(
Z1, Z2, . . . , Zi−1, [(Zi − fclk(Z+

i ))], Zi ∩ fclk(Z+
i ), τi+1(Z

+
i )
)
.

Now Zi − fclk(Z+
i ) ⊆ G and (Zi ∩ fclk(Z+

i )) ∪ Z+
i ⊆ R and so, by

Lemma 4.3.18, M has a flower with petals R ∩ Z1, G ∩ Z1, Z2, . . . , Zi−1,

Zi− fclk(Z+
i ), (Zi∩ fclk(Z+

i ))∪Z+
i . It follows, by the construction in Back-

wardSweep, that τ2 is eventually constructed and is of the form

τ2 =
(
Z1, [(P1, . . . , Pp), (Q1, . . . , Qq)], Zi ∩ fclk(Z+

i ), τi+1(Z
+
i )
)
,

where {P1, . . . , Pp, Q1, . . . , Qq} = {Z2, . . . , Zi−1, Zi − fclk(Z+
i )}. Therefore,

by Lemma 4.3.18, (6.1.4.2), and construction, (R,G) is displayed by Tp+1.

So (6.1.4.4) holds when Z1 and Zi are bichromatic, for i ∈ {2, 3, . . . ,m− 1}.
Now say i = m. There are two cases depending upon whether m = 2 or

m ≥ 3. If m ≥ 3, then Zm−1 is monochromatic. Lemma 4.3.18 implies that

M has a flower with petals R∩Z1, G∩Z1, Z2, . . . , Zm−1, R∩Zm, G∩Zm. It

follows, by the construction in BackwardSweep and (6.1.4.1), that eventu-

ally we construct τ2 and it is of the form (Z1, [(P1, . . . , Pp), (Q1, . . . , Qq)],W ),

where either {P1, . . . , Pp, Q1, . . . , Qq,W} = {Z2, . . . , Zm−1, X, Y } or

{P1, . . . , Pp, Q1, . . . , Qq,W} = {Z2, . . . , Zm−1, A,B,C}, for some partition

(X,Y ) or (A,B,C), respectively, of Zm with monochromatic parts. As P1

is monochromatic, we can apply (6.1.4.2). It follows that Z1 either breaks

into two petals or three petals, each of which is monochromatic. Thus (R,G)

is displayed by Tp+1.
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Consider the case where m = 2. Since |G ∩ Z1| ≥ k − 1, it follows,

by uncrossing, that R ∩ Z2 is k-separating. If |G ∩ Z2| ≤ k − 2, then

Z2 ⊆ fclk(R∩Z2), in which case we can recolour G∩Z2 red thereby obtaining

an (R,G)-equivalent k-separation with fewer bichromatic parts; a contradic-

tion. Hence |G∩Z2| ≥ k−1 and, by symmetry, |R∩Z2| ≥ k−1. As (R,G) is

non-sequential, it follows, by Lemma 5.1.3, that BackwardSweep finds a

k-separation (U, V ) as described in line 2. If, up to a k-separation equivalent

to (R,G), the sets U ∩Z1, V ∩Z1, U ∩Z2, and V ∩Z2 are monochromatic,

then, as lines 2–18 output a refinement of (V ∩ Z1, U ∩ Z1, U ∩ Z2, V ∩ Z2)

up to a cyclic shift, (R,G) is displayed by Tp+1.

We may now assume that there is no k-separation equivalent to (R,G)

such that both U ∩ Zi and V ∩ Zi are monochromatic for some i ∈ {1, 2}.
By Lemma 4.4.10, we can assume, for such an i, that one of U ∩ Zi and

V ∩Zi is monochromatic and the other is bichromatic. Suppose that U ∩Z2

is monochromatic; without loss of generality, we may assume that U ∩ Z2

is red. Recall that R ∩ Z2 is k-separating. If R ∩ V ∩ Z2 ⊆ fclk(U ∩ Z2),

then R ∩ V ∩ Z2 ⊆ fclk(R− (V ∩ Z2)), in which case, by Corollary 4.3.7(i),

R ∩ V ∩ Z2 ⊆ fclk(G); a contradiction. So R ∩ V ∩ Z2 contains an element

not in fclk(U ∩Z2). Since (R,G) is non-sequential, BackwardSweep finds

a k-separation as described in line 4. By Corollaries 4.4.9 and 4.4.11, it fol-

lows that, up to an equivalent recolouring of (R,G), the last three petals of

the generalised k-path output by BackwardSweep are monochromatic. If

V ∩Z2 is monochromatic, a similar argument applies, where line 6 of Back-

wardSweep is invoked instead of line 4. Likewise, a similar argument

applies when V ∩ Z1 or U ∩ Z1 is monochromatic and the other is bichro-

matic, where line 12 or 15 of BackwardSweep, respectively, is invoked

in this case. As each of the petals in the generalised k-path returned by

BackwardSweep is monochromatic, we deduce that (R,G) is displayed

by Tp+1. So (6.1.4.4) holds when Z1 and Zm are bichromatic, and, more

generally, when b = 2.

Now assume that b = 1, so Z1 is the only bichromatic part. Since R∩Z1

and G∩Z1 are sequential k-separating sets and (R,G) is non-sequential, we

deduce that Z+
1 is bichromatic and m ≥ 3. Let h denote the largest index

for which Zh ∪ Z+
h is not monochromatic, but Z+

h is monochromatic. By

Lemma 4.3.18, M has a flower with petals R ∩ Z1, G ∩ Z1, Z2, . . . , Zh, Z
+
h .

Therefore, by construction and Lemma 4.3.18, τ2 is eventually con-
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structed and begins with τ2 = (Z1, [(P1, . . . , Pp), (Q1, . . . , Qq)], . . . ), where

{P1, . . . , Pp, Q1, . . . , Qq} = {Z2, . . . , Zh}. Since P1 is monochromatic, we

can apply (6.1.4.2). Thus Tp+1 displays (R,G), completing the proof of

(6.1.4.4).

When p ≥ 1, X0 ∪ Z1 is monochromatic so, by (6.1.4.3), Tp+1 displays

(R,G); a contradiction. Otherwise, p = 0 and we can apply (6.1.4.4); again

we derive the contradiction that Tp+1 displays (R,G). Thus we deduce that

Tp+1 is a conforming tree for M . By induction, this completes the proof of

the lemma.

Lemma 6.1.5. Let M be a k-connected matroid with |E(M)| ≥ 8k − 15,

and let T be the conforming tree returned by k-Tree when applied to M .

If v is a flower vertex of T , then the flower corresponding to v is tight and

irredundant.

Proof. Let E denote the ground set of M . We prove the lemma by showing

that each of the π-labelled trees Tp constructed in lines 6 and 17 of k-Tree

has the property that for each flower vertex, the corresponding flower is

tight and irredundant. Since T0 consists of a single bag vertex labelled E,

the result holds trivially if p = 0. Now suppose that p ≥ 0 and Tp has the

property that if v is a flower vertex of Tp, then the flower corresponding to

v is tight and irredundant. We show, as (6.1.5.1) and (6.1.5.2), that the

flower corresponding to each flower vertex of Tp+1 is tight and irredundant,

respectively.

6.1.5.1. If v is a flower vertex of Tp+1, then the flower corresponding to v

is tight.

By induction, Tp has this property on its flower vertices. There-

fore, by construction, it suffices to consider only the flower vertices in

the path realisation T ′p+1 of the generalised k-path returned by Back-

wardSweep in the construction of Tp+1 from Tp, in line 16 of k-Tree.

Let (X0 ∪ X1, X2, . . . , Xm) be the left-justified maximal X0-rooted k-path

returned by ForwardSweep in the construction of Tp+1 from Tp in k-Tree.

Let v be a flower vertex of T ′p+1 and let Φ be the flower corresponding to v.

Suppose that Φ is not tight. By construction, we may assume that v has

degree at least three. For clarity, we shall assume that line 59 in Back-

wardSweep is not invoked in the construction of Φ. The straightforward
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extension of the proof below to include the case when this line is invoked is

omitted.

It follows from the description of BackwardSweep that if no end moves

are performed, then, for some i and j with 1 ≤ i ≤ j ≤ m, the entry and exit

petals of Φ are X−i and X+
j respectively, and the union of the set of clockwise

petals and the set of anticlockwise petals of Φ is {Xi, Xi+1, . . . , Xj}. Ignoring

the possibility of end moves for now, ifX−i is loose, thenX−i ⊆ fclk(Xi∪X+
i ),

and so (X−i , Xi∪X+
i ) is sequential; a contradiction. Similarly, if X+

j is loose,

then we deduce a contradiction. Assume that, for some i ≤ s ≤ j, the petal

Xs is loose. Since the clockwise and anticlockwise petals are each subse-

quences of {Xi, Xi+1, . . . , Xj} that induce a partition of this set, there is a

cyclic shift of the petals of Φ that results in a flower Φ′ equivalent to Φ with a

concatenation (X−s , Xs, X
+
s ). Thus, by Lemma 4.3.12, either Xs ⊆ fclk(X−s )

or Xs ⊆ fclk(X+
s ), contradicting the fact that (X0 ∪ X1, X2, . . . , Xm) is a

k-path.

Now consider the possibility of end moves. First suppose that m ≥ 3.

If Xm breaks into two petals Ym and Y ′m in BackwardSweep, then the

algorithm finds a k-separation as described in line 25. It follows, by

Lemma 4.3.20, that Ym and Y ′m are both sequential. If Ym ⊆ fclk(Y ′m),

then Ym ⊆ fclk(E − Xm) by Corollary 4.3.7(i), so Xm is sequential; a

contradiction. Thus, by Lemma 4.3.12, Ym is tight and, by symmetry,

Y ′m is also tight. Similarly, if X1 breaks into two petals Y1 and Y ′1 ,

then BackwardSweep finds a non-sequential k-separation (U1, V1) as de-

scribed on line 65, where {U1 ∩ X1, V1 ∩ X1} = {Y1, Y ′1}. If U1 ∩ X1 is

non-sequential, then, since (X1, X2, . . . , Xm) is a left-justified maximal k-

path, V1 ∩ X1 ⊆ fclk(U1 ∩ X1) ⊆ fclk(U1). Thus, by Corollary 4.3.7(i),

V1 ∩ X1 ⊆ fclk(V1 − X1), contradicting the construction of V1 in line 65.

Thus U1 ∩ X1 is k-sequential and, by a similar argument V1 ∩ X1 is k-

sequential. Since Y1 and Y ′1 are sequential, Y1 and Y ′1 are tight by the same

argument as for Ym and Y ′m. If Xm breaks into three petals, then line 29

or line 31 is invoked and a k-separation (S, T ) is found as described on that

line. It follows, by Corollary 4.4.11, that the three petals, whose union is

Xm, are tight. The same argument applies if X1 breaks into three petals,

where, in this case, the k-separation (S, T ) is found at line 67 or line 69 of

BackwardSweep.

It remains to consider end moves when m = 2 and X0 is empty. In this
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case, line 2 of BackwardSweep is invoked and a k-separation (U, V ) is

found as described in that line. It follows, by Lemma 4.3.21, that U ∩X1,

V ∩X1, U ∩X2 and V ∩X2 are sequential. Since (X1, X2) is non-sequential,

neither U ∩X2 nor V ∩X2 is a subset of fclk(X1), and so, by Lemma 4.3.12,

if U ∩X2 and V ∩X2 are petals of Φ, then they are tight. Similarly, if U ∩X1

and V ∩X1 are petals of Φ, then they are tight. We deduce that when line 9

is invoked, the last two petals of Φ are tight; and when line 18 is invoked,

the first two petals of Φ are tight. If line 4 or 6 is invoked and the condition

is satisfied, then the last three petals of Φ are tight by Corollary 4.4.11.

Similarly, if line 12 or 15 is invoked and the condition is satisfied, then the

first three petals of Φ are tight by Corollary 4.4.11. This completes the proof

of (6.1.5.1).

6.1.5.2. If v is a flower vertex of Tp+1, then the flower corresponding to v

is irredundant.

By induction, Tp has this property on its flower vertices. Hence, it

suffices to consider only the flower vertices in the path realisation T ′p+1 of

the generalised k-path returned by BackwardSweep in the construction

of Tp+1 from Tp in line 16 of k-Tree. Let (X0 ∪ X1, X2, . . . , Xm) be the

left-justified maximal X0-rooted k-path returned by ForwardSweep in the

construction of T ′p+1 in line 14 of k-Tree. Let v be a flower vertex of T ′p+1

and let Φ be the flower corresponding to v.

First, assume that no end moves are performed in the construction of

the generalised k-path. It follows from the description of BackwardSweep

that if line 59 in BackwardSweep is not invoked, then, for some i and j

with 1 ≤ i ≤ j ≤ m, the entry and exit petals of Φ are X−i and X+
j , re-

spectively, and the clockwise petals (Xa,1, Xa,2, . . . , Xa,p) and anticlockwise

petals (Xb,1, Xb,2, . . . , Xb,q) of Φ are subsequences of (Xi, Xi+1, . . . , Xj) that

induce a partition of {Xi, Xi+1, . . . , Xj}. For any l such that i− 1 ≤ l ≤ j,

the non-sequential k-separation
(
X−i ∪ (

⋃l
s=iXs), (

⋃j
s=l+1Xs)∪X+

j

)
is dis-

played by Φ. Since Φ = (X−i , Xa,1, Xa,2, . . . , Xa,p, X
+
j , Xb,1, Xb,2, . . . , Xb,q),

it follows that Φ is irredundant. When line 59 in BackwardSweep is

invoked,

Φ =
(
X−i , Xa,1, Xa,2, . . . , Xa,p, (Xj ∩ fclk(X+

j )) ∪X+
j , Xb,1, Xb,2, . . . , Xb,q

)
where (Xa,1, Xa,2, . . . , Xa,p) and (Xb,1, Xb,2, . . . , Xb,q) are subsequences of
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(Xi, Xi+1, . . . , Xj−1, Xj − fclk(X+
j )). By the same argument, Φ is irredun-

dant.

Now consider the possibility of end moves. First suppose that m ≥ 3

and that Xm comprises at least two petals of Φ. Then the algorithm reaches

line 25 of BackwardSweep, and finds both a k-separation (U, V ) as de-

scribed on that line, and a k-separation (U1, V1) as described on line 27. By

Lemma 5.1.3, (U1, V1) is non-sequential. Let Φ = (P1, P2, . . . , Pn). Since

(Xm, X
−
m) is a non-sequential k-separation displayed by Φ, it suffices to

show that for each pair of distinct petals A,B contained in Xm, there is a

non-sequential k-separation (A′, B′) displayed by Φ such that A ⊆ A′ and

B ⊆ B′. By construction, there exists an index i ∈ {n− 2, n− 1} such that

Pi ⊆ U1 ∩Xm ⊆ U1 and Pi+1 ⊆ V1 ∩Xm ⊆ V1. If a k-separation (S, T ) is

found at line 29, then it follows that Φ has a concatenation (X−m−1, Xm−1,

U1∩Xm, S∩V1∩Xm, T∩Xm) that is tight, by (6.1.5.1). As T contains X−m−1
and S contains Xm−1 ∪ (U1 ∩Xm), the k-separation (S, T ) is non-sequential

by Corollary 4.4.9. If, instead, line 31 of BackwardSweep is invoked and

a k-separation (S, T ) is found as described, then (S, T ) is non-sequential by

Lemma 5.1.3. Thus, for distinct petals A,B of Φ contained in Xm, there is

a non-sequential k-separation (A′, B′) displayed by Φ such that A ⊆ A′ and

B ⊆ B′.
We can argue in a similar fashion when X1 comprises at least two petals

of Φ. In this case, k-separations (U, V ) and (U1, V1) are found as described

in lines 63 and 65 of BackwardSweep, respectively. Furthermore, (U1, V1)

and (X1, X
+
1 ) are non-sequential. If line 67 is invoked and a k-separation

(S, T ) is found as described on that line, then (S, T ) is non-sequential by

(6.1.5.1) and Corollary 4.4.9. If, instead, line 69 of BackwardSweep is

invoked and a k-separation (S, T ) is found as described on that line, then

(S, T ) is non-sequential by Lemma 5.1.3. It now follows that when m ≥ 3

and an end move, or end moves, is performed, the flower Φ is irredundant.

It remains to consider when m = 2 and, in particular, line 2 of Back-

wardSweep is invoked and a non-sequential k-separation (U, V ) is found

as described in that line. If the algorithm invokes lines 9 and 18 of Back-

wardSweep, so Φ has four petals, then Φ is irredundant. Otherwise, at

least one of X1 and X2 breaks into three petals of Φ.

First we consider the case where X2 breaks into three petals. Suppose

line 4 is invoked, and k-separations (S, T ) and (S1, T1) are found as de-
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scribed. Thus Φ = (. . . , Pn−2, Pn−1, Pn) = (. . . , U ∩ X2, S1 ∩ V, T1 ∩ X2).

Now, by construction, the non-sequential k-separation (U, V ) is displayed

by Φ with Pn−2 ⊆ U and Pn−1 ⊆ V . Moreover, (S1, T1) is a k-

separation with Pn−2 ∪ Pn−1 ⊆ S1 and Pn ⊆ T1; we will show that

(S1, T1) is a non-sequential k-separation displayed by Φ. By Corollary 4.4.11,

(X1, U∩X2, S1∩V ∩X2, T1∩X2) is a tight flower. It follows, by Lemma 6.1.3,

that (T1 ∩X1, S1 ∩X1, U ∩X2, S1 ∩ V ∩X2, T1 ∩X2) is a tight flower where

U ∩ X2 ⊆ S1. Thus, by Corollary 4.4.9, the set S1 is non-sequential. If

T1 is sequential, then, by Corollary 4.3.4, it is contained in a member F of

F . It follows that any subset T ′ of T1 will also be contained in F , contra-

dicting the construction of T1 in line 4. So (S1, T1) is non-sequential. Since

(S1, T1) conforms with Φ, by Lemma 6.1.4, either (S1, T1) is displayed by Φ

or (S1, T1) is equivalent to a k-separation (S2, T2) where S2 or T2 is contained

in a petal of Φ. Suppose the latter. Then such a petal is non-sequential by

Corollary 4.3.3. But Φ is a refinement of (V ∩X1, U ∩X1, U ∩X2, V ∩X2),

where each part of this partition is sequential by Lemma 4.3.21, so we have

a contradiction. We deduce that (S1, T1) conforms with Φ.

Suppose instead that line 6 is invoked and k-separations (S, T )

and (S1, T1) are found as described, so Φ = (. . . , Pn−2, Pn−1, Pn) =

(. . . , S1 ∩X2, T1 ∩U, V ∩X2). Then (U, V ) is a non-sequential k-separation

displayed by Φ such that Pn−1 ⊆ U and Pn ⊆ V , and, by a similar argument

as in the previous paragraph, (S, T ) is a non-sequential k-separation such

that Pn−2 ⊆ S and Pn−1 ∪ Pn ⊆ T .

Now we consider the two cases where X1 breaks into three petals. First

we suppose that line 12 is invoked and a k-separation (S, T ) is found as

described, so Φ = (P1, P2, P3, . . . ) = (V ∩ X1, S ∩ U, T ∩ X1, . . . ). Since

T ∩ X1 ⊆ U , the non-sequential k-separation (U, V ) displayed by Φ has

P1 ⊆ V and P2 ⊆ U . Moreover, the k-separation (S, T ) has P1∪P2 ⊆ S and

P3 ⊆ T ; we will show that this k-separation is non-sequential and is displayed

by Φ. By Corollary 4.4.11 and Lemma 6.1.3, (V ∩X1, S ∩U, T ∩X1, T ∩X2,

S ∩X2) is a tight k-flower. Since V ∩X1 ⊆ S, the set S is non-sequential by

Corollary 4.4.9. If T is sequential, then, by Corollary 4.3.4, the subset T ′

of T is contained in a member of F ; a contradiction. Hence (S, T ) is non-

sequential and, since Tp+1 is conforming by Lemma 6.1.4, is displayed by Φ.

Suppose instead that line 15 is invoked and a k-separation (S, T ) is found

as described. Now Φ = (P1, P2, P3, . . . ) = (T ∩X1, S∩V,U ∩X1, . . . ). Then
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(U, V ) is a non-sequential k-separation displayed by Φ such that P2 ⊆ V

and P3 ⊆ U , and, by a similar argument as earlier in the paragraph, (S, T )

is a non-sequential k-separation displayed by Φ such that P1 ⊆ T and

P2 ∪ P3 ⊆ S. Finally, since (X1, X2) is also a non-sequential k-separation,

we deduce that Φ is irredundant when X1 or X2 is the union of three petals

of Φ. So (6.1.5.2) holds, thus completing the proof of the lemma.

6.2 Maximality

In this section, we show that each flower vertex of a conforming tree returned

by k-Tree is maximal. In other words, the tree is a partial k-tree.

The next lemma is a straightforward consequence of the way in which

flowers are constructed in k-Tree.

Lemma 6.2.1. Let M be a k-connected matroid with |E(M)| ≥ 8k − 15.

The tree T returned by k-Tree(M) has the property that every k-flower

corresponding to a flower vertex in T displays at least two inequivalent non-

sequential k-separations.

It now follows, by Lemmas 6.1.4, 6.1.5 and 6.2.1, that if T is a π-labelled

tree returned by k-Tree, then T is conforming, and every flower Φv cor-

responding to a flower vertex v of T is tight, irredundant, and displays at

least two inequivalent non-sequential k-separations. The following lemma,

which is implicit in a result by Oxley and Semple (2013, Lemma 6.5), says

that, when k = 3, these are sufficient conditions for each Φv to be a maximal

flower.

Lemma 6.2.2. Let M be a 3-connected matroid and let T be a conforming

3-tree for M . If, for every flower vertex v of T , the 3-flower corresponding to

v is tight and displays at least two inequivalent non-sequential 3-separations,

then T is a partial 3-tree for M .

When k ≥ 4, however, a conforming tree T , where every flower Φv

corresponding to a flower vertex v of T is tight and displays at least two

inequivalent non-sequential k-separations, is not necessarily a partial k-tree.

This remains the case even if, additionally, each Φv is irredundant. The

next example demonstrates this. In this example we construct a 4-flower in

a similar manner to Example 4.4.4.
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Example 6.2.3. Let Ψ be the free (4, 3)-swirl with xi, yi, zi ∈ E(Ψ)

such that r({xi, yi, zi}) = 2 and r({xi, yi, zi, xi+1, yi+1, zi+1}) = 3, for all

i ∈ {1, 2, 3, 4}, where the subscripts are interpreted modulo four. Let Ψ′

be the coextension of Ψ by an element e where {x3, y3, x4, y4} is the only

dependent flat not containing e in the coextension. Take the direct sum

of Ψ′\e with a copy of U2,2 having ground set {w1, w2}. Then, for each

i ∈ {1, 2}, freely add the elements si, ti, ui, and vi, in turn, to the flat

spanned by {wi, xi, yi, zi}. The resulting rank-7 matroid M is 4-connected,

and Φ′ = (Q1, Q2, Q3, Q4) is a swirl-like 4-flower, where Qi = {xi, yi, zi} for

i ∈ {3, 4}, and Qi = {si, ti, . . . , zi} for i ∈ {1, 2}. An illustration of M is

given in Figure 6.1, where the elements in Q1 and Q2 are suppressed. Note

that as {x3, y3, x4, y4} is 4-separating in M , the set Q3 ∪Q4 is 4-sequential.

Q1 Q2

x4

y4

z4

Q4
x3

y3

z3

Q3

Figure 6.1: The 4-connected rank-7 matroid M .

Let T be a tree consisting of a single flower vertex, labelled D, with cor-

responding 4-flower Φ = (Q1 ∪Q4, Q2, Q3). Then T is a conforming 4-tree,

and Φ is tight, irredundant, and displays the inequivalent non-sequential 4-

separations (Q1∪Q4, Q2∪Q3) and (Q2, E(M)−Q2). However Φ is not max-

imal since Φ′ is a 4-flower that displays all the non-sequential 4-separations

displayed by Φ, as well as the non-sequential 4-separation (Q1, E(M)−Q1).

Fortunately, all tight irredundant non-maximal flowers displaying at least

two inequivalent non-sequential k-separations have the same predominant

structure as the 4-flower Φ in Example 6.2.3. We make this more precise in

the next lemma.

We say that a k-separation (X,Y ) crosses a k-separation (U, V ) if each

of X ∩ U,X ∩ V, Y ∩ U, Y ∩ V is non-empty.
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Lemma 6.2.4. Let M be a k-connected matroid with ground set E and let

T be a conforming k-tree for M . Suppose that, for every flower vertex v

of T , the k-flower corresponding to v is tight, irredundant, and displays at

least two inequivalent non-sequential k-separations. Then, either

(i) T is a partial k-tree for M , or

(ii) there is a flower vertex of T for which the corresponding k-flower is

k-equivalent to (Q1 ∪ Q4, Q2, Q3), but (Q1, Q2, Q3, Q4) is a maximal

tight irredundant k-flower and the only non-sequential k-separations

displayed by this maximal k-flower are (Q1, E − Q1), (Q2, E − Q2),

and (Q1 ∪Q4, Q2 ∪Q3).

Proof. Let Φ be a k-flower corresponding to a flower vertex v of T . By

hypothesis, Φ is tight, irredundant, and displays at least two inequivalent

non-sequential k-separations. Assume that Φ is not maximal. We will

show that v satisfies (ii). Since Φ is not maximal, there exists a tight ir-

redundant maximal k-flower Φ′ that displays, up to k-equivalence, all the

non-sequential k-separations displayed by Φ, as well as at least one non-

sequential k-separation (R,G) that, up to k-equivalence, is not displayed by

Φ. In particular, for every union U of petals of Φ such that (U,E − U) is

a non-sequential k-separation in M , there is a union U ′ of petals of Φ′ such

that (U,E − U) is k-equivalent to (U ′, E − U ′).
We may assume that Φ′ = (Q1, Q2, . . . , Qn), where R = Q1∪Q2∪· · ·∪Ql

for some 1 ≤ l ≤ n − 1. Let Φ = (P1, P2, . . . , Pm). As T is a conform-

ing k-tree for M , there is an (R,G)-equivalent k-separation (R′, G′) that

conforms with T and, without loss of generality, we may assume that R′

is properly contained in some petal Pr of Φ. By Corollary 4.3.3, Pr is

non-sequential. If E − Pr is sequential, then it follows, by Lemma 4.3.2,

that Φ displays no non-sequential k-separations; a contradiction. Hence

(Pr, E − Pr) is non-sequential and Φ′ displays an equivalent k-separation(⋃
i∈I Qi,

⋃
j∈{1,2,...,n}−I Qj

)
for some proper subset I of {1, 2, . . . , n}, where

fclk(Pr) = fclk(
⋃

i∈I Qi).

6.2.4.1. There are no non-sequential k-separations displayed by Φ′ that cross(⋃
i∈I Qi,

⋃
j∈{1,2,...,n}−I Qj

)
.

Suppose there is a non-sequential k-separation (Q,E −Q) displayed by

Φ′ such that Q contains the petals Qi1 and Qj1 , and E − Q contains the



6.2. MAXIMALITY 134

petals Qi2 and Qj2 , for some i1, i2 ∈ I and j1, j2 ∈ {1, 2, . . . , n} − I. Now

(Q,E − Q) is k-equivalent to a non-sequential k-separation (Q′, E − Q′),

where fclk(Q) = fclk(Q′), that conforms with T . Hence either

(I) (Q′, E −Q′) is displayed by Φ, or

(II) Q′ or E −Q′ is contained in a petal of Φ.

Recall that fclk(Pr) = fclk(
⋃

i∈I Qi). Suppose that (I) holds. Then we

may assume that Q′ =
⋃

i∈K Pi for some proper subset K of {1, 2, . . . ,m}.
Now fclk(Q′) contains the petal Qi1 , so fclk(E − Q′) does not contain Qi1

by Corollary 4.3.11. But Qi1 ⊆ fclk(Pr), so Pr ⊆ Q′. Then Qi2 ⊆ fclk(Pr) ⊆
fclk(Q′) = fclk(Q). Since Qi2 ⊆ E − Q, it follows, by Corollary 4.3.9, that

Qi2 is loose; a contradiction. Thus we deduce that (II) holds.

Without loss of generality, either Q′ ⊆ P1 or E − Q′ ⊆ P1. First as-

sume that Q′ ⊆ P1. Then Qj1 ⊆ fclk(Q) = fclk(Q′) ⊆ fclk(P1). But

Qj1 ⊆ fclk(E − Pr), so Qj1 * fclk(Pr), by Corollary 4.3.11. Hence

Pr 6= P1. As Q′ ⊆ P1 and R′ ⊆ Pr ⊆ E − P1, it follows, by

Corollary 4.3.3, that (P1, E − P1) is non-sequential. Thus, there is a

union
⋃

w∈W Qw of petals of Φ′ such that (P1, E − P1) is equivalent to(⋃
w∈W Qw,

⋃
w∈{1,2,...,n}−W Qw

)
, where fclk(P1) = fclk(

⋃
w∈W Qw). Now

Qi1 ⊆ fclk(Q) = fclk(Q′) ⊆ fclk(P1) = fclk(
⋃

w∈W Qw) and Qi1 ⊆ fclk(Pr) ⊆
fclk(E − P1) ⊆ fclk(

⋃
w∈{1,2,...,n}−W Qw), contradicting Corollary 4.3.11.

Thus, we may assume that E − Q′ ⊆ P1. Suppose that Pr 6= P1.

Then Pr ⊆ Q′, so Qi2 ⊆ fclk(Pr) ⊆ fclk(Q′) = fclk(Q). Hence, by Corol-

lary 4.3.9, Qi2 is loose; a contradiction. We deduce that Pr = P1. Thus

Qj2 ⊆ fclk(E −Q′) ⊆ fclk(Pr) = fclk(
⋃

i∈I Qi), so, by Corollary 4.3.9 again,

Qj2 is loose; a contradiction. This completes the proof of (6.2.4.1).

6.2.4.2. Φ′ = (Q1, Q2, Q3, Q4), and the only non-sequential k-separations

displayed by Φ′ are (Q1, E −Q1), (Q2, E −Q2) and (Q1 ∪Q4, Q2 ∪Q3).

Suppose that |I| = n−1. By assumption, Φ displays a non-sequential k-

separation (O,E−O) that is not equivalent to (Pr, E−Pr). As Pr is a petal

of Φ, it follows that fclk(Pr) is a proper subset of either fclk(O) or fclk(E−O).

Let (O′, E − O′) be the k-separation displayed by Φ′ that is equivalent to

(O,E − O). Since Φ′ has only one petal Qj such that j /∈ I, either O′ or

E − O′ is contained in
⋃

i∈I Qi. Hence fclk(
⋃

i∈I Qi) contains fclk(O′) or
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fclk(E − O′), so fclk(Pr) contains fclk(O) or fclk(E − O); a contradiction.

Thus |I| ≤ n− 2.

Since fclk(R) = fclk(Q1 ∪ Q2 ∪ · · · ∪ Ql) = fclk(R′) ⊆ fclk(
⋃

i∈I Qi) and

Φ′ is a tight flower, it follows, by Corollary 4.3.9, that {1, 2, . . . , l} ⊆ I.

Moreover, I contains at least one element in {l + 1, l + 2, . . . , n}, since no

k-separation equivalent to (R,G) is displayed by Φ. Thus we may assume

that

I = {n− s+ 1, . . . , n, 1, 2, . . . , l, l + 1, . . . , l + t},

where s ≥ 1 and l + t ≤ n− s− 2, and hence n ≥ 4.

Let (Q,E−Q) = (Q1∪Q2∪· · ·∪Ql+t+1, Ql+t+2∪· · ·∪Qn). Since {1, n} ⊆
I and {l + t+ 1, l + t+ 2} ⊆ {1, 2, . . . , n} − I, the k-separation (Q,E −Q)

crosses
(⋃

i∈I Qi,
⋃

j∈{1,2,...,n}−I Qj

)
. By (6.2.4.1), and since fclk(Q) contains

fclk(R), the set E − Q is k-sequential. Thus, by Corollary 4.4.9, we may

assume that l + t+ 1 = n− 2 and Qn−1 ∪Qn is k-sequential.

Since Φ′ is irredundant, there exists a non-sequential k-separation

(Q′, E − Q′) displayed by Φ′ where Ql+t+1 = Qn−2 ⊆ Q′ and Qn−1 ⊆
E − Q′. If Qn ⊆ Q′, then we obtain a contradiction to (6.2.4.1) unless

Q1 ∪Q2 ∪ · · · ∪Ql+t ⊆ Q′, in which case Qn−1 is non-sequential. But then

Qn−1 ∪ Qn is non-sequential by Corollary 4.3.3; a contradiction. Thus we

may assume that Qn ⊆ E −Q′. But now the existence of (Q′, E −Q′) con-

tradicts (6.2.4.1) unless Q1 ∪Q2 ∪ · · · ∪Ql+t ⊆ E −Q′, in which case Qn−2

is non-sequential. In the exceptional case, when n ≥ 5, the k-separation

(Q2∪· · ·∪Qn−2, Qn−1∪Qn∪Q1) is non-sequential by Corollary 4.4.9, again

contradicting (6.2.4.1). In the remaining case, Φ′ = (Q1, Q2, Q3, Q4) and the

k-separations (Q2, E −Q2) and (Q1 ∪Q4, Q2 ∪Q3) are non-sequential, but

Q3∪Q4 is k-sequential. Since Φ′ is irredundant, there exists a non-sequential

k-separation (U, V ) displayed by Φ′ with Q1 ⊆ U and Q4 ⊆ V . Since Q3∪Q4

is k-sequential, either (U, V ) = (Q1∪Q3, Q2∪Q4) or (U, V ) = (Q1, E−Q1).

But if the former, then (U, V ) crosses
(⋃

i∈I Qi,
⋃

j∈{1,2,...,n}−I Qj

)
, contra-

dicting (6.2.4.1). Thus (Q1, E−Q1) is a non-sequential k-separation, and Φ

displays no other non-sequential k-separations apart from (Q2, E−Q2) and

(Q1 ∪Q4, Q2 ∪Q3). This completes the proof of (6.2.4.2).

Since T is a conforming tree and Φ displays at least two inequivalent non-

sequential k-separations, the k-separation (R,G) displayed by Φ′, but not Φ,

is either (Q1, E−Q1) or (Q2, E−Q2). Thus, up to swapping Q1 and Q2, the
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flower Φ displays the same non-sequential k-separations as (Q1∪Q4, Q2, Q3).

Hence, when Φ is not maximal, (ii) holds. This completes the proof of the

lemma.

Proposition 6.2.5. Let M be a k-connected matroid with |E(M)| ≥ 8k−15.

The tree returned by k-Tree(M) is a partial k-tree for M .

Proof. By Lemma 6.1.4, the tree T returned by k-Tree(M) is a conforming

tree for M and, by Lemmas 6.1.5 and 6.2.1, for each flower vertex u of T ,

the flower corresponding to u is tight, irredundant, and displays at least

two inequivalent non-sequential k-separations. Suppose T is not a partial

k-tree for M . Then, by Lemma 6.2.4, T has a flower vertex for which

the corresponding k-flower Φ is (Q1 ∪ Q4, Q2, Q3). Furthermore, the non-

sequential k-separations displayed by this k-flower are precisely (Q2, E−Q2)

and (Q1∪Q4, Q2∪Q3), but (Q1, E−Q1) is also a non-sequential k-separation.

By construction, the algorithm k-Tree at some stage invokes Back-

wardSweep, either in line 6 or line 15, at which point a generalised k-path

τ is returned with a concatenation τ ′ that is, up to a reversal of the parts,

one of (Q3, [(Q1∪Q4)], Q2), (Q1∪Q4, [(Q2)], Q3), and (Q2, [(Q3)], Q1∪Q4).

Since Q3 is k-sequential and no other petal is k-sequential, it follows that

Q3 is not an entry or exit petal of Φ. Thus τ ′ = (Q2, [(Q3)], Q1 ∪ Q4) or

τ ′ = (Q1 ∪Q4, [(Q3)], Q2).

Let (Z0 ∪ Z1, Z2, . . . , Zm) be the left-justified maximal k-path pro-

vided to the call to BackwardSweep. First, assume that τ ′ =

(Q2, [(Q3)], Q1 ∪ Q4). Since (Q1, E − Q1) conforms with T , and Q4

is k-sequential, it follows, by BackwardSweep, that, up to equiv-

alence, τ is a refinement of (Q2, [(Q3)], Q4, Q1). Suppose that τ =

(. . . , [(Q3)], [(S1, . . . , Ss), (T1, . . . , Tt)], . . . ), where s ≥ 1 and t ≥ 0. Then

Q3 = Zj for some j ∈ {2, 3, . . . ,m−1}. By construction, (Q4∪Q1)−S1 and

(Q4 ∪Q1)− T1 are k-separating and, up to equivalence, either S1 or T1 is a

subset of Q4. If S1 is a subset of Q4, then, by uncrossing (Q4∪Q1)−S1 and

Q1 ∪Q2, we deduce that (Q4−S1)∪Q1 ∪Q2 is k-separating, hence Q3 ∪S1
is k-separating. Then, line 48 of BackwardSweep is invoked when i = j,

so τ is of the form (. . . , [(Q3, S1, . . . , Ss), (T1, . . . , Tt)], . . . ); a contradiction.

Otherwise, T1 is a subset of Q4, and, similarly, Q3 ∪ T1 is k-separating, so

line 50 is invoked; a contradiction. Now suppose τ = (. . . , [(Q3)], Zj+1, . . . ).

Then, up to equivalence, Zj+1 ⊆ Q4. Hence line 61 of BackwardSweep is
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invoked when i = j + 1, so Zj+1 is not k-separating. But Q2 ∪Q3 ∪ Zj+1 is

k-separating by construction, and it follows, by uncrossing Q2 ∪Q3 ∪ Zj+1

and Q4, that Zj+1 is k-separating; a contradiction.

Now assume that τ ′ = (Q1∪Q4, [(Q3)], Q2). Since (Q1, E−Q1) conforms

with T , and Q4 is k-sequential, τ is a refinement of (Q1, Q4, [(Q3)], Q2), up

to equivalence. Consider the construction of τi in BackwardSweep where

i ∈ {2, 3, . . . ,m − 2} such that τi+1(Z
+
i ) = ([(Q3)], . . . ). The algorithm

reaches line 45 of BackwardSweep and Zi ⊆ Q4. Since Zi ∪Q3 ∪Q2 and

Q4 are k-separating, Zi is also k-separating, by uncrossing. Moreover, by

uncrossing Zi∪Q3∪Q2 and Q4∪Q3, we deduce that Zi∪Q3 is k-separating.

Hence line 48 is invoked, and τi is of the form (. . . , [(Zi, Q3)], . . . ); a contra-

diction. Thus T has no flower vertex as described in Lemma 6.2.4(ii), so T

is a partial k-tree as required.

6.3 The proof of correctness

The proof of Theorem 4.0.2 is a simple upgrade of the k = 3 case (Oxley

and Semple, 2013, Theorem 2.2).

Proof of Theorem 4.0.2. To prove the theorem, we show that k-Tree is a

polynomial-time algorithm for finding a k-tree for M . Let T be the tree

returned by a call to k-Tree(M). Then every vertex of T is marked. More-

over, by Proposition 6.2.5, T is a partial k-tree for M . Now T is a k-tree

for M unless there is a non-sequential k-separation of M with the property

that no equivalent k-separation is displayed by T . Suppose there is such a

k-separation (R,G). Since T is conforming, we may assume, by taking an

equivalent k-separation if necessary, that G is contained in a bag B of T .

If T consists of the single bag vertex B, then line 3 of k-Tree would have

found a non-sequential k-separation (Y, Z) of M ; a contradiction. But if T

consists of at least two vertices, then line 9 of k-Tree would have found a

non-sequential k-separation (Y,Z) of M with the property that Z ⊆ π(B),

contradicting the fact that B is marked. Hence T is a k-tree for M .

We next show that k-Tree runs in polynomial time in the size n of

E(M). By Lemma 5.1.1, the collection F of maximal sequential k-separating

sets ofM can be constructed in polynomial time in n, and, by Theorem 5.1.2,

for fixed disjoint subsets Y ′ and Z ′ of E(M), we can find a k-separation

(Y,Z) with Y ′ ⊆ Y and Z ′ ⊆ Z in polynomial time in n, or determine
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that none exists. Thus, by Lemma 5.1.3, we can find a non-sequential k-

separation by iterating over all k-element subsets of E(M) not contained

in a member of F . As there are O(nk) such subsets, where k is fixed, this

can be done in polynomial time in n. Extending this, whenever k-Tree,

or one of the two subroutines, is called upon to find a k-separation where

each part contains particular subsets, it either finds such a k-separation or

correctly determines that there is no such k-separation in time polynomial

in n. Therefore, as every k-path of M has length O(n), it follows that each

call to ForwardSweep takes time polynomial in n.

Now consider a call from k-Tree to the subroutine BackwardSweep.

When m ≥ 3, this subroutine considers each of the following subsets of

E(M) in turn: the subsets Zm and Zm−1, a subset Zi where i ∈ {m − 2,

m − 3, . . . , 2}, and finally the subset X0 ∪ Z1. For each of the subsets

Z2, Z3, . . . , Zm−2, it is clear that their consideration takes polynomial time

in n. Note that finding the full closure of a subset X of E(M), as in line 58

of BackwardSweep, takes time O(nk−1). For the subsets Zm and X0 ∪
Z1, BackwardSweep may, up to five times, attempt to find k-separations

where each part contains particular subsets. As mentioned above, each call

takes time polynomial in n, so the time taken for BackwardSweep to

consider each of Zm and X0 ∪ Z1 is also polynomial in n. Since m ≤ n, it

follows that, when m ≥ 3, BackwardSweep takes time polynomial in n.

Similarly, the subroutine takes time polynomial in n when m = 2, so each

call to BackwardSweep takes time polynomial in n.

At the completion of each call to BackwardSweep, the algorithm k-

Tree extends the current π-labelled tree to a new π-labelled tree in poly-

nomial time in n. This extension is non-trivial in that at least one new edge

is created. Since the terminal bags of each such constructed π-labelled tree

contain at least k−1 elements of E(M) and there is no empty bag vertex of

degree two, the number of edges of each constructed π-labelled tree is linear

in n, and so there are O(n) calls to ForwardSweep and BackwardSweep

from k-Tree. As marked bags are never reconsidered, we deduce that k-

Tree terminates in time polynomial in n. This completes the proof of the

theorem.
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