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ABSTRACT 

 

 

e-Learning is an effective medium for delivering knowledge and skills.  In spite of 

improvements in electronic delivery technologies, e-Learning is still a long way away 

from offering anything close to efficient and effective learning environments.  To 

improve e-Learning experiences, much literature supports simulation based e-

Learning.  This thesis begins identifying various types of simulation models and their 

features that induce experiential learning.  We focus on designing and constructing an 

easy-to-use Discrete Event Simulation (DES) tool for building engaging and 

informative interactive DES models that allow learners to control the models’ 

parameters and visualizations through runtime interactions.  DES has long been used 

to support analysis and design of complex systems but its potential to enhance 

learning has not yet been fully utilized.  We first present an application framework 

and its resulting classes for better structuring DES models.  However, importing 

relevant classes, establishing relationships between their objects and representing 

lifecycles of various types of active objects in a language that does not support 

concurrency demand a significant cognitive workload.  To improve this situation, we 

utilize two design patterns to ease model structuring and logic representation (both in 

time and space) through a drag and drop component approach.  The patterns are the 

Delegation Event Model, used for linking between components and delegating tasks 

of executing and updating active objects’ lifecycles, and the MVC (Model-View-

Controller) pattern, used for connecting the components to their graphical 

instrumentations and GUIs.  Components implementing both design patterns support 

the process-oriented approach, can easily be tailored to store model states and 

visualizations, and can be extended to design higher level models through hierarchical 

simulation development.  Evaluating this approach with both teachers and learners 

using ActionScript as an implementation language in the Flash environment shows 

that the resulting components not only help model designers with few programming 

skills to construct DES models, but they also allow learners to conduct various 

experiments through interactive GUIs and observe the impact of changes to model 

behaviour through a range of engaging visualizations.  Such interactions can motivate 

learners and make their learning an enjoyable experience.   



 ii 

ACKNOWLEDGMENTS 

 

 

I wish to sincerely thank my supervisor, Associate Professor Dr. Wolfgang 

Kreutzer and my associate supervisor, Professor Dr. Tim Bell for all their constant 

intellectual challenges and very kind guidance and encouragement during this study.   

I would also like to thank all staff and postgraduate students at University of 

Canterbury for whatever help they gave to complete this study.   

To my family, thanks so much for giving your continuous moral support and 

encouragement, and sharing your valuable time during our stay in New Zealand.  You 

all have always been my source of strength and inspiration.   

Lastly, thanks to all of those who implicitly or explicitly committed until the 

completion of this study.   

 



 iii 

TABLE OF CONTENTS 

 

 

 

ABSTRACT             i 

ACKNOWLEDGEMENTS          ii 

LIST OF FIGURES          vii 

LIST OF TABLES           ix 

1. INTRODUCTION           1 

1.1 Introduction            1 

1.2 Statement of the Problem          4 

1.3 Objectives and Motivations          4 

1.4 Scope of the Research         12 

1.5 Contributions to Knowledge        14 

1.6 Thesis Overview          17 

2. SIMULATION AND EDUCATION        19 

2.1. Introduction           19 

2.2. Simulation Models and Their Purposes       20 

2.3. Types of Simulation Models        22 

2.4. The Role of Simulation in Education and Learning     26 

2.4.1 The Role of Simulation in Learning Theories     26 

2.4.2 Empirical Evidence         32 

2.4.3 Simulation and e-Learning        33 

2.4.3.1 Promises and Problems of e-Learning     33 

2.4.3.2 The Roles of Course Management Systems    35 

2.4.3.3 Pedagogical Aspects of e-Learning     36 

2.5. DES Development Tools         38 

2.6. Animated DES Systems         40 

2.7. Summary           44 



 iv 

3. A FRAMEWORK FOR DES AND ANIMATION      46 

3.1. Introduction           46 

3.2. DES and Queuing Scenarios        48 

3.3. Modelling Time          50 

3.2.1 The Event-Oriented Approach       51 

3.2.2 The Process-Oriented Approach       52 

3.4. The DES Framework         54 

3.4.1 The Data Collector Package       56 

3.4.2 The Distribution Package        57 

3.4.3 The Monitor (Simulation Executive) Package     59 

3.4.4 The Resource (Servers and Queues) Package     61 

3.5. Graphical Objects in Discrete Event Models      62 

4. USING FLASH FOR SIMULATION        67 

4.1 Introduction           67 

4.2 Visual Simulation and Visual Interactive Simulation     68 

4.3 Animation Approaches         71 

4.4 Managing Simulation and Animation       74 

4.5 Flash as an Implementation Language for Simulation and Animation   77 

4.5.1 Flash Features for VIS Development      78 

4.5.2 Flash Component Construction       79 

4.5.3 Other Advantages of Flash and Its Drawbacks     81 

4.6 Flash Components for Queuing Systems       83 

4.7 Flash Components for Visualizing Queuing Systems     89 

4.8 Example           91 

4.9 Problems and Pitfalls         96 

4.10 Extensibility           99 

5. COMPONENT-BASED MODELING FOR ANIMATED SIMULATION 102 

5.1 Introduction         102 

5.2 Component Based Simulation      104 

5.3 The Environment of Animated Simulation Models    105 

5.4 The Delegation Event Model for Linking Components   107 

5.5 The MVC for Visualizing Component States    111 



 v 

5.6 Connecting External Data       114 

5.7 Example          118 

5.8 Towards Hierarchical Simulation Model Designs    122 

5.9 Designing Mechanisms for Hierarchical  DES Models   125 

5.9.1 Monitor Delegation Mechanism     126 

5.9.2 Monitor Communication Mechanism    130 

5.10 Problems and Challenges       133 

6. EVALUATION AND ANALYSIS      136 

6.1 Introduction         136 

6.2 Evaluating Models’ Attractiveness and Interactivity   137 

6.2.1 Assessment and Evaluation Methods    137 

6.2.2 Experiment Participants      139 

6.2.3 Data Analysis and Results      142 

6.2.3.1 General Information     142 

6.2.3.2 General Questions      143 

6.2.3.3 Model Rating      145 

6.3 Evaluating the Tool’s Ease of Use, Usefulness and Enjoyment  159 

6.3.1 Assessment and Evaluation Methods    159 

6.3.2 Experiment Participants      160 

6.3.3 Running the Experiment      162 

6.3.4 Data Analysis and Results      164 

6.3.4.1 General Information     164 

6.3.4.2 Questionnaire Reliability and Validity   165 

6.3.4.3 Usefulness, Ease of Use and Enjoyment of the Tool 166 

6.3.4.4 Self Predicted Future Usage    168 

6.3.4.5 Participants’ Cognitive Workload   171 

7. CONCLUSION AND FUTURE RESEARCH     175 

7.1 Introduction         175 

7.2 Conclusion         175 

7.3 Limitations of the Research       179 

7.4 Recommendations for Future Research     181 



 vi 

BIBLIOGRAPHY         173 

APPENDICES 

Appendix A: Consent Form 

Appendix B: Questionnaire Information Sheet 

Appendix C: Learner Questionnaire 

Appendix D: Model Builder Questionnaire 

Appendix E: User Manual 

Appendix F: Source Code (in CD) 



 vii 

LIST OF FIGURES 

 

 

Figure 1.1 Interactions between Teachers, Learners, Models and LMSs    11 

Figure 3.1 The Event-Oriented Approach Mechanism      52 

Figure 3.2 The Process-Oriented Approach Mechanism      53 

Figure 3.3 Package Diagram for Queuing Models       56 

Figure 3.4 Class Diagram for the DataCollectors Package     56 

Figure 3.5 Class Diagram for the Distribution Package      58 

Figure 3.6 Class Diagram for the Monitor Package      59 

Figure 3.7 Class Diagram for the Resource Package      61 

Figure 3.8 Graphical Objects in DES        63 

Figure 4.1 Visual Simulation Components        69 

Figure 4.2 Three Approaches to Combine Simulation with Animation    71 

Figure 4.3 DES’s Animated Objects        75 

Figure 4.4 Transformation from Model to Animation Time     76 

Figure 4.5 Component Architecture        79 

Figure 4.6 Class Diagram of Components for Simulation Input and Output   84 

Figure 4.7 Flash Component Panel         87 

Figure 4.8 Samples of DES Visualization Tools       91 

Figure 4.9 Sample of Interactions between Learners and a Model     95 

Figure 4.10 Sample of Information Gained from a Model      96 

Figure 4.11 Extended Components for Supporting Logistic and Manufacturing 

Systems           99 

Figure 5.1 Simulation and Animation Aspects of a Model    105 

Figure 5.2 The DES Delegation Event Model Structure    108 

Figure 5.3 The flow of a SimProcess Object in DES Components   110 

Figure 5.4 The DES MVC Structure      112 

Figure 5.5 Flash Development Environment     118 

Figure 5.6 A Queuing Network System      119 

Figure 5.7 A Server’s Properties and Default Values    120 

Figure 5.8 A Final Model        121 

Figure 5.9 Interactions with Component Instances     122 

Figure 5.10 Hierarchical Construction of a DES Model    124 

Figure 5.11 Submodel Architecture and Transferring Mechanisms   126 



 viii 

Figure 5.12 Monitor Delegation Mechanism     128 

Figure 5.13 Submodel Class Definition      129 

Figure 5.14 Simulation Class Definition      129 

Figure 5.15 Agenda States        132 

Figure 6.1 Simple Queuing Networks      141 

Figure 6.2 More Complicated Queuing Networks     141 

Figure 6.3 Participants’ Feedback on Simulation Knowledge   144 

Figure 6.4 Arena Screenshot       161 

Figure 6.5 Perceived Usefulness Results      167 

 

 



 ix 

LIST OF TABLES 

 

 

Table 2.1 Classification of Constructive Computer Simulations     23 

Table 2.2 Simulation Types and Learning Support      24 

Table 2.3 Some Learning Theories and Their Features      28 

Table 2.4 Available DES Simulation Tools       38 

Table 2.5 Desirable Features for the Design of DES Tools     44 

Table 3.1 Types of Directed Graphs        64 

Table 3.2 Properties and Events for Dynamic Objects      65 

Table 4.1 Aspects of Simulation-Animation Approaches      73 

Table 4.2 Interaction Characteristics of Concurrent and Post-processed  

 Animations          74 

Table 4.3 Available Simulation Tools and Their Features     74 

Table 4.4 Simulation to Animation Conversion       75 

Table 4.5 Events and Model Time Difference in a Sample System    76 

Table 4.6 VIS Graphic Displays and Flash Features      78 

Table 4.7 DES Component Types         86 

Table 4.8 Flash Components for Building DES Models and Their  

 Functionalities          86 

Table 4.9 Flash Components for Visualizing DES Models and Their  

 Functionalities          90 

Table 5.1 Server Properties and Description     120 

Table 6.1 Items in Model Rating       140 

Table 6.2 Time Spent (in minutes) for Each Score    144 

Table 6.3 Good Simulation Knowledge Participants’ Feedback about  

 the Models        146 

Table 6.4 No Simulation Knowledge Participants’ Feedback about  

 the Models        146 

Table 6.5 Undecided Simulation Knowledge Participants’ Feedback about  

 the Models        147 

Table 6.6 Feedback on the Quality of Animation from the Participants  

 Who Always Used Computer as a Learning Tool   149 

Table 6.7 Sub-questions of “These tools help to understand the model  

 better (Please write if you have any comments)”   153 

Table 6.8 Good Simulation Knowledge Participants’ Feedback about  

 the Model Tools        153 

 



 x 

Table 6.9 No Simulation Knowledge Participants’ Feedback about  

 the Model Tools        154 

Table 6.10 Undecided Simulation Knowledge Participants’ Feedback about  

 the Model Tools        154 

Table 6.11 TAM Factors and Their Variables     160 

Table 6.12 Items of Perceived Ease of Use, Perceived Usefulness,  

 Perceived Enjoyment and Self-predicted Future Usage  

 of the Component-based Tool      163 

Table 6.13 The Participants’ Gender      164 

Table 6.14 The Participants’ Knowledge and Experiences    164 

Table 6.15 Cronbach’s Alpha Values      165 

Table 6.16 Factor Analysis of Perceived Usefulness, Perceived Ease  

 of Use and Perceived Enjoyment     166 

Table 6.17 Descriptive Statistics of the Items     167 

Table 6.18 Descriptive Statistics of Self-Predicted Future Usage   168 

Table 6.19 Correlations between Perceived Usefulness, Perceived Ease  

 of Use and Perceived Enjoyment to Self-Predicted Future  

 Usage         169 

Table 6.20 Regression Analyses of the Effect of Perceived Usefulness 

 and Perceived Ease of Use on Self-Predicted Future Usage  170 

Table 6.21 Participants’ Feedback about the TLX Subscales   172 

 



 1 

 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

e-Learning (i.e., technologies that use digital technologies to deliver and facilitate 

learning) is increasingly used in schools, higher education and training centres either 

to support distance learning or to complement the traditional classroom environment.  

Since it uses electronic media; e.g., the Internet, to support learning, this style of 

knowledge transmission eases traditional constraints on time, space and distance.  The 

advantage to learners is that they can learn at anytime and anywhere.  As a result, the 

use of e-Learning has grown rapidly throughout the world.  However, this technology 

requires that learners themselves are responsible for gaining knowledge; a key 

concept of learner-centred education.   

The teacher-student ratios either for primary, secondary or tertiary education 

in some countries (e.g., India, South Africa, Philippines, etc.) are still high.  In India, 

the teacher-student ratio for secondary school was reported 32.7 in 2004 and 25.33 in 

2010 (http://www.tradingeconomics.com).  Although the ratios have slightly been 

improved in most countries during past few years, less time dedicated by teachers to 

the needs of each individual student demands attractive and interactive learning 

materials to promote and enhance their learning experiences.  Learning materials that 

focus on activities (i.e., some degree of interaction) during the learning process are 

crucial in this and have proved to have more positive impacts on learning than static 

materials, such as numbers, texts and pictures (Holzinger & Ebner, 2003; Neumann, 

Page, Kreutzer, Kiesel, & Meyer, 2005; L. P. Rieber, 1996).  Multimedia materials 

that allow content navigation that integrate texts, pictures, diagrams, sound and 

dynamic images (i.e., animations and movies) are increasingly integrated in learning 

environments.  More recently, techniques that make learning more enjoyable and fun 
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(e.g., simulations and computer games) have also been proposed (e.g., see Aldrich, 

2002, 2004, 2005; Prensky, 2001).   

Simulation is a technique for experimenting with models of real or imaginary 

systems (see Aldrich, 2002, 2004, 2005; Prensky, 2001).  Since it allows learners to 

manipulate parameters and directly observe the impact of modifications on model 

behaviour and performances, it can be a powerful learning tool, whose “hands-on” 

activities engage learners emotionally and help to improve understanding of complex 

scenarios.  There is a large body of literature (e.g., C. N. Quinn, 2005; Rosson & 

Seals, 2001; Smialek, 2002; Syrjakow, Berdux, & Szczerbicka, 2000; Thomas & 

Milligan, 2004) that corroborates these benefits of simulations in a learning and 

teaching environment.   

The main benefit of embedding simulations in an educational context is that it 

stimulates a scientific discovery style of learning; i.e., learning based on self-directed 

initiatives (Jong & Joolingen, 1998; Neumann et al., 2005; L. P. Rieber, 2002).  This 

learning style requires learners to initiate and control their knowledge acquisition 

through designing and executing experiments, analyzing model feedback and 

constructing hypotheses based on this information (River & Vockell, 1987).  The 

iterative cycle of experimentation and drawing conclusions from exploring a model 

are believed to encourage critical thinking, scaffold a deeper and more structured 

understanding of concepts, and encourage long lasting retention of a learned domain 

(Aldrich, 2004, 2005; Schwartz, Bransford, & Sears, 2005).   

In spite of its strengths, simulation-based learning is an unsupervised learning 

environment whose effectiveness depends strongly on learners’ and models’ 

characteristics, and how much guidance can be provided.  Learners’ characteristics 

include learning styles (Martinez, 2000), motivation (Wittrock, 1989), prior 

knowledge (Dochy, Segers, & Buehl, 1999; Hailikari, Katajavuori, & Lindblom-

Ylanne, 2008), meta-cognitive aspects (i.e., strategies for directing learning) and other 

miscellaneous skills (Joolingen & Jong, 1991b; Njoo & Jong, 1993; White, Shimoda, 

& Frederiksen, 1999).  Among these factors, prior knowledge of a studied domain 

tends to have the strongest influence on effective exploration (Lee, 1999; Mayer, 

2003).  Without such knowledge, learners tend to suffer ineffective and inadequate 

exploration.  Ineffective exploration leads learners to insignificant experimentations 

and difficulties in drawing conclusions from model experiments, while inadequate 

exploration tends to result in too shallow understanding.  Thus, some researchers 
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(e.g., J. R. Anderson, Corbett, Koedinger, & Pelletier, 1995; Kirschner, Sweller, & 

Clark, 2006) urge teachers to support learners with guidance that directs learning and 

aids their activities.  Examples of suggested guidance are structuring tasks through 

explicit instructions (Veermans, Jong, & Joolingen, 2000), requesting learners to 

observe and describe interesting scenarios (Tan & Biswas, 2007), or guiding learners 

at appropriate times; e.g., through Adaptive Coaching for Exploration (Bedor, 

Mohamed, & Shedeed, 2004; Bunt, Conati, Huggett, & Muldner, 2001; Bunt, Conati, 

& Muldner, 2004; Noguez & Sucar, 2005).   

While guidance is important for directing learning, models should act as 

platforms for testing hypotheses.  Experimentation and deduction is only possible if 

models contain these features: 

 

 activities (e.g., mouse clicking/rolling, keyboard input, etc.) to motivate learners’ 

actions and challenge their imagination,  

 informative and meaningful feedback  and visualizations (e.g., through texts, 

images, diagrams, graphs, sounds, etc.) that motivate learners to perform further 

experiments,  

 attractive responsive animations that demonstrate feedback of model behaviour, 

and  

 reflection of real world scenarios that stimulate learners’ imagination and connect 

their mental models to the outside world.   

 

 

To draw good conclusions, learners not only need to engage and interact with 

a model, but also need to communicate with their peers and teachers.  Fortunately, 

facilities for this are widely available in modern Learning Management Systems 

(LMSs).  To fully complement e-Learning environments, they need attractive, 

interactive and informative learning materials.  Prior to 1996, the development of such 

materials was highly dominated by Java (Arnold, Gosling, & Holmes, 2006; Lambert 

& Osborne, 2004).  Since then the development of highly interactive models has been 

made easier by the introduction of the Adobe’s Flash animation tool (Castillo, 

Hancock, & Hess, 2004; Stenalt & Godsk, 2006).  However, this multimedia 
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development tool has not been utilized to its full capabilities to support learning and 

teaching.   

 

 

1.2 Statement of the Problem 

 

In spite of improvements in electronic delivery technologies, e-Learning is still a long 

way away from offering anything close to efficient and effective learning 

environments.  To be effective, electronic courseware management (e.g., through 

LMSs) requires high quality contents such as simulations and educational games to 

improve e-Learning experiences.  Unfortunately, common LMSs offer no support for 

this and little research has been done to ease the construction and customization of 

online simulation models and their integration into learning management systems.  As 

a result, e-Learning is still dominated by static materials (e.g., PDF, Microsoft Word 

and PowerPoint files, etc.), rather than more sophisticated and dynamic techniques; 

some detailed data is given in Wagner (2006).   

While much has been claimed about the benefits of simulations and games in 

supporting and enhancing learning and training, few investigations into how to 

develop and construct simulation tools, how to design attractive and interactive model 

graphical user interfaces (GUIs), how to store models’ intermediate states, and how to 

integrate simulations into LMSs have been performed.  To improve this state of 

affairs, it seems important to make both model construction and model deployment 

easy for teachers, so that the resulting models are attractive and interactive enough to 

motivate learners to explore and experiment, and so that tools can easily be extended 

to help model developers to construct libraries for painless construction of many 

different types of animations and visualizations.   

 

 

1.3 Objectives and Motivations 

 

This research assumes that simulation models are useful tools for clarifying ideas and 

showing flows of events.  It is therefore not our primary objective to demonstrate that 

simulations enhance student learning - an assumption that has already been 

corroborated by many empirical investigations (e.g., Gokhale, 1996; Liao & Miller, 
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1996; Michael, 2000; Renshaw & Taylor, 2000; L. P. Rieber, 1996).  Instead, this 

research investigates how simulation models can most easily be built and delivered 

within an e-Learning environment.  We focus on Discrete Event Simulation (DES) 

models.  Thus, the research plans are to: 

 

 design and construct a tool for animated simulation models for web based delivery 

and LMS integration 

 integrate the models with suggested model features that facilitate learning 

 analyse users’ feedback of the tool and its resulting models 

 extend the tool to support more complex models 

 

 

Our motivation is clear.  We found no tools that allow users to interact with 

their resulting models, customize the models’ visualizations during runtime and save 

the models’ states and animations at any point of interest for later uploading.  Thus, 

our particular interests centre is on exploration, construction and application of DES 

tools that can effectively support three groups of users: 

 

1. developers (i.e., those who are interested in extending these tools to new 

applications), 

2. teachers (i.e., model designers and implementers) and 

3. learners (i.e., model users). 

 

 

Developers should be conversant with the tools' internal architecture, so that 

extension is easy and not unduly limited.  Teachers, on the other hand, need easy-to-

use model construction tools, since they are probably lacking in programming 

knowledge and experiences.  Finally, learners should be presented with attractive and 

interactive animated models that support knowledge acquisition through 

experimentation.   

To satisfy all three parties' expectations, a visual modelling environment that 

offers component-based composition of simulation models has been designed and 

constructed.  It reduces model complexity through use of pre-assembled components, 
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each of which handles their specific functionality.  These components can be 

combined to form models.  This approach eases model construction since components 

can be reused over and over again.  Component development is based on an Object 

Oriented architecture (Eden, 2002; Lau, 2000) and the design of their code follows 

Object Oriented Programming (OOP) principles of good practice with regard to 

encapsulation, inheritance, polymorphism and exception handling.   

We identified two design patterns that suit the development and extension of 

the DES tool; i.e., the Delegate Event Model and the Model-View-Controller (MVC) 

interface architecture.  The Delegate Event Model was used to wire components to 

each other, since its style of event broadcasting is analogue to the flow of entities in 

DES components, so that that an entity (an event object) is passed from a component 

(an event source) to other components (event listeners).  The Model-View-Controller 

(MVC) interface architecture is used to support a component’s graphical interfaces 

(GUIs) and multiple visualizations of its states.  By following this design pattern, 

components can be loosely coupled to their GUIs (to receive inputs) and 

visualizations tools (to receive state notifications).  Adding or removing visualizations 

does not affect other component parts since each component only store a list of 

interested visualization instances - without any influence on a visualization’s 

implementation.  Since each component needs to perform two tasks; i.e., 

communicating with each other and notifying state changes to an observer, the 

component’s class must define both patterns in its implementation.   

The component-based modelling framework offers ease-of-use by allowing 

model designers to drag components from a library, drop them onto a worksheet and 

assemble them appropriately into models.  Four categories of simulation components 

have been designed and implemented: 

 

 components for modelling activities,  

 components for visualizing simulation results,  

 a component for controlling animation speed, and  

 a utility component for saving or refreshing model states and revealing their flows 

or lifecycles.   
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Various component properties can be customized through GUIs.  Since 

modelling components have output port properties (i.e., they store a list of interested 

components that wish to receive state change notifications), they must be wired to 

each other so that messages can be routed in the right order.  When all components 

have been wired together into a model, teachers can test and then distribute the model 

to learners.  Although the resulting model has a fixed structure, we have tailored the 

components to allow learners to change model parameters and explore the resulting 

chains of events without any need to change model code.  Since each component is 

also an object, the values for the output port properties can be specified during 

runtime.   

We have identified five elements that should exist in a DES model to help 

learners understand its behavior; i.e.: 

 

1. A model should provide easy-to-access runtime GUIs for changing component 

parameters.  These could employ mouse-over to allow learners to quickly view a 

component’s attribute values, text boxes to receive input-based interactions (e.g., 

time of an entity’s creation, a resource's capacity, etc.), combo boxes to permit 

learners to type a value directly into a field or choose a value from a list of 

existing options (e.g., queuing disciplines, distributions that specify time between 

arrivals, delays, resources' service times, etc.) and command buttons to activate 

visualization tools (e.g., graphs, histograms, box plots, etc.).  Data visualization 

tools should be easy to be added, removed, sized and positioned at any location 

through drag and drop gestures.  To make their display both more informative and 

attractive, some model components; e.g., servers, should be animated to depict 

their current states.   

2. A model should offer a display list of all past, current and next events, so that 

learners can obtain clarification on how it is executed and how component 

parameters affect event sequences in the model.  Without such a list, learners tend 

to just passively view animations rather than actively seeking an understanding of 

model behaviour; i.e., how events are affected by different model parameters.   

3. A model should animate message passing and movements of transient entities 

between components.  Arrows can depict a message’s or an entity’s travel 

direction, but learners should be able to remove this feature if it obscures other 

patterns or visualizations.   
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4. A model should provide a high degree of top-level control over a simulation and 

its animation; e.g., allowing learners to stop, restart, speed up or slow down the 

execution of models and their animations.  This gives learners a choice to look 

closer at aspects that catch their attention and skip over aspects that are of no 

current interest.  While such a capability is helpful in fostering understanding, 

proper synchronization of animation speed and simulation clock time is crucial to 

preserve a consistent correspondence of simulation and animation activities.   

5. A model should provide a utility component for allowing learners to save model 

visualizations and entities’ current states for restarts or reloads of a model without 

the need to exit from the program or refresh a web page. 

 

 

Embedding these functionalities in a model however poses a number of 

challenges.  These include: 

 

1. The construction of runtime GUIs is only possible through an Application 

Programming Interface (API).  Since component GUIs are based on the MVC 

pattern, this demands that each component must be equipped with its own GUI to 

handle its parameters.  When there are many components, this is a cumbersome 

task.   

2. While there could be many attractive and interactive third-party data visualization 

components on the market, they cannot be easily integrated with our components.  

The main reason once again lies in the implementation of the MVC pattern, which 

demands that all interested observers (i.e., visualization tools) define an update 

method in order to receive notifications from the components.  We have therefore 

opted to implement our own data visualization constructs.   

3. Implementing the Delegation Event Model pattern in an animated simulator 

requires to correctly trigger sorted events in the Monitor at appropriate times (i.e., 

to stop or delay events appropriately before attempting to trigger subsequent 

events) and to smoothly transfer entities along their life cycles so that they reach 

their next destination at times that are consistent with the viewing ratio (i.e., 

animation speed) specified by a learner.  This necessitated a nested design, where 

model time must be mapped onto animation time, and animation time then 

mapped onto real time.  We have therefore opted for concurrent animations to 
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immediately display the effect of viewing ratio changes, rather than a post-

processed animations or direct simulation-animation (Hill, 1996) architecture.   

4. Storing models requires storing all component instance identities (with their 

current states and all interested observers) and running the models requires 

continuation from their last saved positions (e.g., entities must continue travelling 

to their next location based on their current locations and leftover travel times).  

We therefore investigated methods to perform these.   

5. Since we also designed our components to support hierarchical simulations that 

can accommodate more complex model structures, we need to find a way to 

connect and synchronize models in a hierarchical fashion, where aspects of parent 

models may depend on their child model(s) states.  This demands a mechanism 

that not only synchronizes the flow of simulation entities in a child model, but can 

also transmit this information to its parent whenever its relevant events have been 

executed.   

 

 

Before providing such components, we had to construct core libraries for 

coordinating state transitions and processes in DES models; i.e., a DES monitor 

engine.  Its purpose is to keep track of all DES aspects, such as entities, resources, 

routing, buffering, scheduling, time management and statistical instrumentation.  To 

achieve this goal, it had to be possible to generate samples from a variety of 

distributions, maintain a list of events to be executed, offer a mechanism for 

generating and cancelling events, maintain a simulation clock, compute statistical 

performance measures (e.g., minima, maxima and averages of time spent in a system, 

waiting times in queues, resource utilization, throughput, etc.) and collect and display 

the results of a simulation run.   

Since these models are intended to be embedded in web pages and meant to 

drive animations, we have used Adobe’s Flash (Lopez, 2006; Peters & Yard, 2004; 

Sanders, 2004) for coding their implementation.  Flash was chosen as a delivery 

platform mainly because of its strength as an animation tool (Holzinger & Ebner, 

2003; Mohler, 2006; Peters & Yard, 2004; Shupe & Hoekman, 2006), and the fact 

that it can generate very compact .swf applets that can be played “off the shelf” in the 

vast majority of modern browsers.   
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Although there are a number of Java-based simulators; e.g., simjava (W. 

Kreutzer, J. Hopkins, & M. V. Mierlo, 1997), JSIM (J. A. Miller, Y. Ge, & J. Tao, 

1998), JavaSim (Kuljis & Paul, 2000; Tyan, 2002), Psim-J (Garrido, 2001) and 

Desmo-J (B. Page & Kreutzer, 2005) and some simple device modelling tools for 

operating cell phones, crane arms, etc. using Flash (e.g., Kaye & Castillo, 2003), we 

have not found any reports or references to a Flash-based discrete event modelling 

tool.  We have therefore coded our own Flash-based DES model executive.  This 

meant that we first needed to learn how to use Flash’s development environment, its 

object-oriented scripting language (ActionScript-2), both its generic and animation 

specific libraries, and its features for building and packaging collections of reusable 

components.  Although the construction of such a DES engine was not a primarily 

goal of this research, its development has been a necessary step in providing a suitable 

infrastructure for subsequent work.  Learning how to build such a DES monitor in 

ActionScript and how to package it so that its features can be easily used, took a 

significant amount of time.   

After coding the basic libraries, we fine-tuned our components so that they 

could support all aspects and model features we have mentioned above.  To test their 

effectiveness, two experiments were conducted.  First, we obtained feedback from 

learners about the attractiveness, interactivity and usefulness of our Flash components 

in the context of two DES sample models.  Secondly, we distributed the components 

to model developers to get their feedback about the tool’s usefulness, ease of use and 

enjoyment.  Here the information collected included whether the components 

provided interesting run time GUIs, whether the GUIs were easy to interact with, 

whether the learners liked the approach to display visualizations only when requested, 

which visualization tools (e.g., graphs, histograms, boxplots etc.) helped them to 

understand models better, whether the ability to change simulation parameters during 

run time and the ability to pause, slow down and speed up a model’s execution made 

learning easier and/or more enjoyable, etc.   

The resulting models should easily be embedded in LMSs.  Fortunately, Flash 

models can easily be tailored to handle communications between learners and LMSs 

compared to the use of JavaScript in HTML files as in the traditional approach.  The 

main justification for the integration was to take advantages of LMS facilities such as:  
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 collecting information of learners’ behaviour,  

 allowing access to online forums or chat rooms that increase collaboration 

between learners, or learners and teachers, and 

 improving integration with other learning materials.  

 

 

Additional reasons are to present learners with a uniform interface (thereby 

minimising any distractions from focussing on what they are meant to learn) and to 

ease model maintenance, so that models can regularly be updated without any need to 

distribute new copies to all learners.  Figure 1.1 shows a sketch of the interactions 

between teachers, learners, simulation models and a LMS.  Their interactions can 

briefly be described as follows.  Teachers translate their mental models to computer 

models using the right tools.  The computer models are then distributed into a LMS 

where they can be viewed by remote learners.  Learners interact with the models and 

the feedback from such interactions will automatically be displayed to them.  If they 

need further clarification on the feedback, they can use the LMS’s facilities (e.g., chat 

rooms, email, etc.) to interact with their teachers or peers.   

 

 

Create/Modify Preview/Testing

Teachers

View Display the impact
of modifications

Change parameters +
execute

Learner Learner Learner

 

Knowledge / mental model

Remote learners (observe and understand)

Interaction Interaction

 

Distribute / Interaction

Learning Management System

Simulation tools

Interaction

Action models
(Web-based and animated models)

 
 

Figure 1.1  Interactions between Teachers, Learners, Models and LMSs 
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1.4 Scope of the Research 

 

There are two types of simulation models: static and dynamic.  In a static model, time 

does not affect model behaviour.  Examples are device simulations (Kaye & Castillo, 

2003), equipment operation simulations (Towne, 2007) and so called “soft skill 

simulations” (Aldrich, 2005; Gaffney, Dagger, & Wade, 2008; Maldonado et al., 

2005; Vries, 2004).  These kinds of simulations are familiar to teachers and their use 

in educational environments has long been discussed (e.g., see Aldrich, 2004, 2005; 

Gibson, Aldrich, & Prensky, 2007).  Dynamic models trace behaviour that changes 

over time.  Examples are DES, where system behaviour spawns a sequence of discrete 

events, and system dynamics models, where the system behaviour is described 

through sets of equations that model how states fluctuate “quasi-continuously” over 

time.   

This research has concentrated on DES models, where the state of a model 

changes only at specified points in time, and more specifically on Queuing Networks, 

which explore the effects of capacity constrained resources on common performance 

measures; such as response time and throughput.  This choice was made because of 

their many fields of applications (e.g., in manufacturing, transportation, service 

systems and computer hardware and software analyses) and the fact that, although 

they have long been used to support analysis and design of complex systems, their 

potential to enhance e-Learning has not yet been fully utilized.   

Learners should be able to use animations to visually observe the effect of 

changes to transient system behaviour caused by manipulating model parameters or 

model structures.  Within this context, we have therefore investigated a range of tools 

that foster “modelling for insight” (i.e., those that improve understanding through 

observation) rather than making accurate quantitative performance predictions (i.e., 

those that measure how efficiently a system performs its functions).  In an e-Learning 

environment such models can be instructive, since they allow users to visually 

experiment with changes of model parameters and observe their effects on model 

behaviour.  By stressing qualitative effects of chains of events over quantitative 

analysis we also avoid a wide range of complex statistical modelling aspects.   

Within the discrete event modelling domain, two dominant modelling styles 

(world views) are typically used to control flows of events: event-orientation and 
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process-orientation.  While event orientation eases coding, process orientation offers 

a more natural framework for model development.  Our designs therefore use a 

process-oriented approach.  Unfortunately this causes some implementation issues 

(e.g., the lack of a built-in coroutine or continuation features in most common 

implementation languages).   

Since DES has the ability to model complex systems with relative ease, many 

commercial or research tools have been developed for constructing DES models.  

However, these tools are typically targeted at analysis rather than learning purposes.  

Many commercial simulation software; e.g., Arena (Kelton, Sadowski, & Sturrock, 

2004), Flexim (Nordgren, 2003) and SIMUL8 (Concannon, Elder, Tremble, & Tse, 

2006), are excellent tools for building sophisticated simulation models and observing 

model behaviour through animation.  However, the resulting models mostly lack 

support for user-experimentation during run time, are operating system dependent, 

must be run using a specialized proprietary software, and are not designed to execute 

on a web page; a very important element for incorporating models in e-Learning 

systems.  Thus, investigations on how these constraints can be catered are crucial.   

In order to support web-based models, most previous research tools in this 

domain have been developed in Java.  Two web-based approaches can be 

distinguished: Web-supported simulation and Web-enabled simulation.   

Web-supported simulation locates tools on a server that can then be accessed 

to create and run models.  Thus, users do not have to install software packages on 

their machines.  Examples include JSIM (J. A. Miller et al., 1998), Silk (Healy & 

Kilgore, 1998; Kilgore, 2000), JavaGPSS (Kazymyr & Demshevska, 2001; Klein, 

Straßburger, & Beikirch, 1998), WSE (Iazeolla & Ambrogio, 1998) and ASimJava 

(Sikora & Niewiadomska-Szynkiewicz, 2007).  JSIM and Silk ease model 

constructions using component-based technology with Java Beans.  However, among 

these tools, only JSIM integrates a simple animation for displaying queues.   

Web-enabled simulation requires the installation of software packages on 

users’ machines.  Examples are Psim-J (Garrido, 2001), SSJ (L’Ecuyer, Meliani, & 

Vaucher, 2002), JavaSim (Tyan, 2002) and DESMO-J (Meyer, Page, Kreutzer, 

Knaak, & Lechler, 2005a).  However, these packages, while giving experienced 

programmers the flexibility to code their own extensions, typically only support 

textual description and very simple data visualizations.   
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We chose the second approach.  The main reasons are that we believe the first 

approach would be a burden on servers, since all development processes (e.g., model 

construction, execution and animation) must all be performed on a central server, and 

also limit tool accessibility, since it depends on network availability, its speed and the 

number of concurrent users accessing the servers.   

 

 

1.5 Contributions to Knowledge 

 

This research has made some positive contributions to simulations in education 

especially in proposing a design of DES tools for engaging and helping learners to 

understand DES behaviour.  The design focused on methods of easing the 

construction of attractive, interactive and informative web-based simulation models.  

These contributions have been achieved through a various processes of investigating, 

analyzing and structuring how a DES tool can be provided with the right design.   

In proposing the tool, we first surveyed the current use of simulation models in 

the learning and teaching environment.  We then identified and made a critical 

analysis of model features that support learner-centred learning based on learning 

theories and previous literature review.  This deserves to be investigated since 

educationalists and tool developers are considerably separated in their own domains.  

Educationalists keep proposing and proving the benefits of using simulations as a tool 

for learning and teaching in the new era of education, and how these benefits can be 

gained using the right models.  The tool developers meanwhile concentrate more on 

the development of modelling and complete system analysis tools for measuring 

system performances.  Thus, they typically ignore the educationalists’ views of the 

right models that stress on the importance of interactions between learners and the 

models in ensuring learning.  We are trying to bring both parties closer.  Thus, we 

made an analysis of how simulation models could be better supported in the current 

learning and teaching environment by investigating and analysing the available DES 

software and packages to discover what tools and functions they provide and lack in 

facilitating learning and teaching.  This can be a reference for those who intend to 

provide such the right tool.   

The contribution that directly relates to the tool design was the proposal of 

strategies to construct and incorporate the tool with the suggested model features that 
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relieve learners’ cognitive processes during their learning; i.e., hypothesis test 

platforms, concurrent responsive animation and customized visualizations.  Before 

this work, no tools have been designed and constructed to support all the three 

features during model runtime.  Moreover, we designed the tool so that its resulting 

models support a high degree of simulation and animation control and provide a store 

capability of their states, animations and visualizations at any simulation time points 

for future use.  For this, we architected DES frameworks, extended them to various 

components (i.e., simulation building blocks) with well-defined interfaces and 

contracts that describe the input and output of entities and data flows, designed and 

tested the components, and recommended the use of appropriate design patterns for 

facilitating their constructions.  To prove this design works, we managed to develop a 

proof of concepts of a DES tool.  We believe that its use eases the constructions of 

attractive, interactive and informative DES models for self learning purposes.   

Our design focused on the integrations of simulation, animation and 

visualization to reflect change in the time (i.e., when simulation encounters delays), 

space dimension (i.e., when an entity moves) and model states (i.e., when an event is 

executed).  In an animated simulation environment, the time requires model time to be 

mapped onto animation time and animation time to be mapped onto real time, the 

space dimension requires a stage for constructing and locating animated entities and 

model structures, while model states require visualization tools (e.g., graphs, 

histograms, etc.) to display their abstract data.  Investigating what elements should 

exist to fulfil these requirements and how they were supported by Adobe Flash, and 

arguing how best the Adobe Flash as a platform for the DES tool development were 

another research contributions.   

To reflect users’ feedback on our tool and to obtain their recommendations for 

its future improvement, we conducted two experiments.  Conducting these 

experiments yielded two contributions.  The first contribution was the analyses of 

learners’ feedback about how significant relevant features (e.g., animations, 

visualizations, interactions, customized interfaces, etc.) of DES models helps them 

engage with and get insight into the models’ behaviour.  The analyses enabled us to 

compare and judge how consistent their feedback was with the previous claims that 

stress the importance of providing the features to ensure learning.  The second 

contribution was the analyses of model designers’ feedback about how good our tool 
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is in constructing DES models.  The analyses enabled us to evaluate how useful and 

easy our tool is for constructing the DES models for learning and teaching purposes.   

In addition to addressing the tool design for a single layer of DES models, we 

also architected how the design could be extended to manage the complexity of large 

and complex DES models.  This complexity can either relate to the cognitive aspect 

(i.e., how model logics can be split to smaller models for representing their functions) 

or the representational aspect (i.e., how many elements are used and how they are 

arranged to represent model structures).  Our approach of catering the complexity is 

through a hierarchical structured concept; i.e., by breaking up a model to relevant 

sub-models with each sub-model conceals the details of their lower levels.  The 

concept manages both aspects through its ability in controlling the level of details (in 

terms of structures and information) for better representing of the model and 

arranging animation and visualization for better viewing and grasping the dynamic 

parts of the model (as opposed to the crowdedness of graphical objects in a flat 

model).   

However, the main challenge for the design is the synchronization of each 

sub-model’s behaviour so that they can be executed in the right order.  For this, we 

present two mechanisms for coordinating event executions among layers in 

hierarchical DES models.  These are the Monitor Delegation Mechanism that 

delegates event executions to a relevant layer and the Monitor Communication 

Mechanism that transfers event executions to all visited layers.   

Our approaches differ from the approach proposed by Yi and Cho (Yi & Cho, 

2001, 2003).  We focused on how to extend our simulation engine and components 

based on the concurrent animations where a simulation monitor controls both 

simulation and animation aspects to guarantee animation accuracy.  Since our 

components allow interactions, the runtime interactions with all layers are 

automatically supported.  Their approach meanwhile is based on the direct-simulation 

animation where the simulator and the animator have their own activity scheduling 

lists.  Thus, besides considering event executions among layers in the simulator, they 

also need to find a method of communicating the simulator with animation scheduling 

in the animator.  The main drawback of their approach is that it only guarantees 

animation accuracy from event to event, not between them since the graphics 

rendering depends on the computer that simulator and animator reside.   
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1.6 Thesis Overview 

 

This thesis is organised as follows.  In Chapter 2, we first identify different types of 

simulation models, examine their roles in facilitating learning based on learning 

theories and collect some empirical evidence that establishes their effectiveness in e-

Learning environments.  Some available simulation tools and the current interests on 

animated DES models are also reviewed.   

Chapter 3 examines the mechanisms of two DES modelling styles: event-

oriented and process-oriented.  Realising the limitations of the event-oriented style, 

we architected a process-oriented DES framework to support various DES facilities 

(e.g., generating random numbers for various distributions, collecting statistics, 

managing simulation clocks, a list of future events, etc.).  This framework has guided 

the construction of our DES simulation libraries.  To symbolize the libraries’ 

functionalities and ease the building of DES models through symbol compositions, we 

then introduce relevant DES graphical objects.  However, it still demands 

programming effort and its resulting models offer no support for interactions.   

Chapter 4 briefly reviews Visual Interactive Modelling (VIM) and Visual 

Interactive Simulation (VIS) concepts and discusses their benefits in learning and 

teaching.  We then argue the use of Adobe Flash and its scripting language to create a 

tool to support both concepts.  Since VIS combines simulations and animations, some 

approaches for integrating these features are also discussed.  How VIS’s essential 

components can be created with the help of our framework is then presented.  We 

subsequently present how a series of our simulation components can be used to build 

queuing models.  This chapter ends with a discussion of some tricky issues in 

integrating an animated simulator to DES models specifically in permitting animation 

speed to dynamically be adjusted by learners during model runtime.   

Chapter 5 discusses how to systematically design a tool for building attractive 

and interactive DES models.  We first review component-based tool principles and 

examine how these principles can ease model building.  We then suggest the 

Delegation Event Model for forging links between DES active and passive 

components.  Next, we present the MVC (Model-View-Controller) pattern and 

discuss how it can be utilized for loose coupling between components, their interfaces 

(GUIs) and their visualizations.  We further our discussion on how to cater with 



 18 

model complexity through model partitioning (i.e., hierarchical model development) 

and how to support such development using the two patterns.   

Chapter 6 reports two experiments that collected users’ feedback of the tool 

and its resulting models.  One experiment evaluated learners’ perceptions about the 

attractiveness and interactivity of the models.  We developed our own questionnaire 

for this based on model features proposed by relevant studies.  Another experiment 

evaluated model designers’ perceptions about the perceived usefulness, perceived 

ease of use and perceived enjoyment and their willingness to use the tool in the future.  

For this, we used the Technology Acceptance Model (TAM) and other extension 

models found in the literature.  We also assessed the participants’ workload while 

experiencing our tool using NASA Task Load Index (TLX).   

Last chapter, i.e., Chapter 7 concludes the findings of the research, lists some 

of its limitations and proposes some recommended future work.   
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CHAPTER 2 

 

SIMULATION AND EDUCATION 

 

 

2.1 Introduction 

 

Many studies (e.g., Charles, 2008; Kauchak & Eggen, 2007; Nigel, 2008; Wurdinger 

& Carlson, 2010) argue in favour of blended learning, which mixes different learning 

environments (face-to-face and computer-based materials) and approaches to teaching 

a subject.  Typically all of these require that teachers prepare a set of activities that 

support students’ cognitive styles and make learning an engaging activity.  Teaching 

approaches that are merely based on traditional lectures (which are typically 

constrained to one-way communication), static learning materials and individual or 

group assignments, will often result in only a shallow understanding of course 

contents and decrease students’ motivation and enthusiasm for the taught subjects.  

Better approaches seek to engage learners’ attention and actively involve them in the 

learning processes.   

To make learning enjoyable, several instructional methods have been 

suggested; e.g., collaborative learning (i.e., a group of learners cooperate in their 

learning activities), problem-based learning (i.e., a group of learners collaboratively 

solve assignments with the help of a teacher) and computer-supported instruction, 

such as simulations and educational computer games.  In this context simulations can 

act as important tools for discovery-based learning (Jong & Joolingen, 1998; Reid, 

Zhang, & Chen, 2003; W. R. Robinson, 2000; Zhang, Chen, Sun, & Reid, 2004) by 

offering a learning environment where learners learn by doing.  Swaak and Jones 

(2001a, 2001b) suggest that simulations have three characteristics that enhance 

discovery-based learning; i.e., 

 

 richness, where knowledge is obtained through various dynamic representations 

such as animations and numerical data displays,  
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 low transparency, where knowledge must be inferred by learners themselves, and 

 active interaction, where knowledge is obtained through experimentation.   

 

 

Many benefits of including simulation models in teaching and learning 

environments as part of learning materials or as complementary activities have been 

listed in many relevant publications; e.g., by Aldrich (2004, 2005), Fitzpatrick (2003) 

and Gibson, Aldrich, & Prensky (2007).  For example, active experimentation while 

exploring simulation models not only helps learners develop a mental model of real 

world processes or events, but can also support collaborative styles of learning (Beux 

& Fieschi, 2007; Jeffries, 2005) as well as problem-based learning through model 

building (Milrad, 2002).  To fully reap those benefits, learners need models that 

demand hands-on interactions (to stimulate learning by doing) and offer support 

whenever it may be needed.  How one can best integrate such models into appropriate 

approaches for knowledge construction and to enhance learning and problem solving 

skills has been investigated empirically by, e.g., Chang, Chen, Lin, & Sung (2008), 

Gokhale (1996), Kennepohl (2001), Liao & Miller (1996), Reid, Zhang & Chen 

(2003), Renshaw & Taylor (2000), and Rieber, Tzeng, & Tribble (2004).   

This chapter examines the use of simulations in education.  It scrutinizes 

different types of simulation models, their roles in education and learning, empirical 

evidence that establishes their effectiveness in e-Learning environments, some 

available simulation development tools, and current interests on animated DES 

models.   

 

 

2.2 Simulation Models and Their Purposes 

 

There are many different definitions of simulation.  From an educational perspective, 

Castillo, Hancock and Hess (2004) and Aldrich (2002, 2004, 2005) define simulation 

as digital learning material that allows learners to perform hands-on activities (e.g., 

mouse clicking, text entering, etc.) in order to receive additional tasks or information.  

From an engineering perspective, the term refers to a model which replicates a 

system’s characteristics and behaviour based on specified goals of a study (Flynt & 
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Vinson, 2005; Law, 2007; Shannon, 1998).  Since they permit learning through 

experimentation in a safe and effective environment, simulations have become an 

increasingly popular educational tool and have been used for four purposes; i.e., to:  

 

 train learners’ technical skills or to demonstrate and practice tasks that are too 

dangerous or impractical to be performed directly; e.g., surgery or operating 

dangerous equipment.  Since real environments are replaced with safe and cheap 

simulated environments, learners can freely explore their ideas, run a series of 

actions and examine the consequences.  Such virtual environments not only 

reduce costs, but also offer learners the freedom of deciding when and where they 

want to learn.   

 permit learners to practise decision making in situations where proposed actions 

cannot be directly and immediately observed, for example because their effects 

are delayed in time or/and dispersed in space.  Since simulations can represent 

such situations in attractive and interactive forms and give feedback from 

learners’ actions (i.e., allow them to stretch or compress time and space), learners 

can become more engaged and their learning experiences may be enhanced.  

Simplification while maintaining a high degree of fidelity is an important 

challenge for this use of simulation (Aldrich, 2004, 2005; Lunce, 2006).   

 explain concepts and complex interrelationships between variables; e.g., in 

economic or queuing systems.  In the traditional learning approach, teachers can 

only discuss complex interrelationships in verbal or textual forms.  Watching 

models in execution and interacting with them can, however, lead to better and 

deeper levels of understanding.   

 provide learners with a diversity of “soft skills” (Aldrich, 2005; Gaffney, Dagger, 

& Wade, 2008; Maldonado, Lee, Brave, Nass, Nakajima, Yamada, Iwamura, & 

Morishima, 2005; Vries, 2004); i.e., personal attributes (e.g., responsibility, 

common sense, motivation, etc.) that enhance an individual’s interactions, job 

performance and leadership.  Learners can use relevant models to practice a range 

of skills before applying them to the real world.   

 enhance materials to increase learners’ motivation to learn a subject (Castillo et 

al., 2004; Prensky, 2001).  It has often been claimed that learning by doing can 

cause knowledge to be retained longer compared to just reading static materials in 
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traditional classroom settings.  Within this context, simulations can offer more 

engaged and immersive learning materials for learners to learn about events, 

processes and activities.   

 

 

2.3 Types of Simulation Models 

 

We can classify simulations into three categories: 

 

1. live simulations (or role playing), where real people manipulate simulated 

operations of a real system using real equipment (e.g., a training exercise of a fire 

drill), 

2. virtual simulations, where real people operate simulated equipment in a simulated 

environment (e.g., flight and vehicle simulators), and  

3. constructive simulations, where real people operate computerised models from 

which they obtain feedback.   

 

 

While virtual simulations are well suited for some types of training, 

constructive simulations can move beyond simple rehearsal of skills and provide 

bases for easily analysing and comparing effectiveness and consequences of a wide 

range of physical or cognitive tasks.  Thus, constructive simulations have long been 

used in a variety of domains in education.  These include computer sciences (Aubidy, 

2007; Yin, Ogata, & Yano, 2007), engineering (Ledin, 2001), logistics (Ganapathy, 

Narayanan, & Srinivasan, 2003), biology (Keen & Spain, 1992), medicine 

(Hoppensteadt & Peskin, 2002), economics (Porter, Riley, & Ruffer, 2004), physics 

(Chang et al., 2008; Jong et al., 1999), management sciences (Pidd, 2004) and 

sociology (Halpin, 1999; Moretti, 2002).  Constructive simulations can generally be 

classified on the basis of the degree of learning support they offer: single concept, 

operational level or strategic level.  A description, some characteristics and examples 

of each type of constructive simulations are shown in Table 2.1.   
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Table 2.1  Classification of Constructive Computer Simulations 

Learning 

Support 
Description Characteristic Simulation Type 

Basic concept 

 Simulations dealing 

with a simple 

calculation or a 

specific aspect of 

theory 

 Model behaviour is 

not affected by time 

 Encourages 

learners to apply 

previous 

knowledge 

 Often found in 

educational 

simulations 

Soft skill simulations 

Procedural  simulations 

Operational 

level 

 Simulations dealing 

with specific 

operations 

 Model behaviour is 

changing at discrete 

points in time 

 Stimulates students 

to explore, 

experiment, 

predict and invent 

given phenomena 

 Often found in 

engineering and 

science studies 

Discrete Event 

simulations; e.g., 

queuing networks, 

manufacturing, logistic, 

etc.   

Strategic level 

 Simulations dealing 

with complex 

natural processes 

 Model behaviour 

keeps changing over 

time 

 Provoke systemic 

thinking about  

given phenomena 

 Often found in 

engineering and 

science studies 

Continuous 

simulations; e.g., 

biology, ecology, 

economics, sociology, 

etc.   

 

 

Based on this classification, Chwif and Barretto (2003) have argued that those 

that support operational or strategic levels are more effective but difficult to design 

than simulations that those intended to simply train people in basic (e.g., device 

simulations for training operators of industrial machinery (Kaye & Castillo, 2003)) or 

“soft skills” (e.g., teaching skills in communication, leadership or strategic thinking 

(Gaffney, Dagger, & Wade (2008)).  Table 2.2 shows how different types of 

simulations can be used to support learning in different domains.   
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Table 2.2  Simulation Types and Learning Support 

Type Learning support Example 

Soft skills simulations 

(also known as 

branching stories or 

situational 

simulations) (Gaffney 

et al., 2008; Idrus, 

Dahan, & Abdullah, 

2009; Radcliff, 2005) 

 

 Exposing learners to 

simulated work experiences 

in order to improve their 

communication and decision 

making skills before dealing 

with real situations 

 Exploring alternative paths 

through a task with  

additional information and 

instructions, based on 

learners’ responses 

 Software usage simulations 

 Situation-based simulations; 

e.g., in business and 

management training, 

customer and sales training, 

customer service training, 

doctor-patient interaction, 

etc. 

Procedural 

Simulations or  

Virtual products (Kaye 

& Castillo, 2003; 

Michelson & 

Manning, 2008) 

 Understanding the physical 

characteristics of real 

equipment 

 Learning to use costly 

equipment or perform 

complex tasks 

 Mechanical device 

simulations; e.g., medical, 

manufacturing, home 

electronic equipment, etc.   

Discrete Event 

Simulations (Banks, 

1998; Wainer & 

Mosterman, 2010) 

Understanding the operation of 

a system that traces ordered 

sequences of events 

 Queuing systems 

 Manufacturing systems 

 Logistic systems; e.g., 

warehouses, ports, airports 

etc.   

System Dynamics 

(Hannon, Ruth, & 

Meadows, 2001; 

Sterman, 2001) 

Understanding the behaviour of 

systems that contain feedback 

loops involving stocks (entities 

that accumulate or deplete 

quantities over time) and flows 

(rates of change) 

 Policy analysis and design 

 Population systems 

 Ecological systems 

 Economic systems 

 

 

Alternatively, Castillo, Hancock and Hess (2004) divide educational 

simulations into two basic categories: structured simulations and open-ended 

simulations.   

 

1. Structured simulations are used to support the understanding of system behaviour.  

Information is presented in a step by step fashion, where each step requires 

learners’ responses to progress to the next of a number of alternative steps.  Since 
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information is only delivered when requested, this approach has been claimed to 

enhance traditional learning styles.  It can be used in all learning domains.   

2. Open-ended simulations, on the other hand, leave learners to freely explore a 

simulated environment; this is typical for DES and system dynamics simulations.  

Although some studies (e.g., McKenna & Laycock, 2004; Michael, 2000) claim 

that there is no clear benefits of using open-ended simulations, other studies (e.g., 

Jong & Joolingen, 1998; Land, 2000; Lunce, 2006) have argued that great benefits 

can indeed arise from the fact that learners are not supported by additional 

instructions to overcome problems.  This may forces learners to adopt a scientific 

discovery style of learning; e.g., by performing experiments.  Opponents to this 

approach, however, assert that most students are unlikely to plan such experiments 

carefully enough, do not have sufficient skills to interpret outputs appropriately 

(particularly if models contain stochastic effects), and teachers may not state 

objectives or the learning outcomes clearly enough.   

 

 

By looking at the way in which simulation impacts students’ learning, Sahin 

(2006) clarifies the pedagogical difference between the two above mentioned 

approaches further.  He distinguishes between instructive and constructive strategies.   

Instructive strategies only consider learners as passive entities.  They simply 

consume information with multimedia support.  Such consumption and a limited 

degree of interactions can lead to some learning, but the impact on students’ problem 

solving skills may be minimal.  This is the case in structured simulations.   

Constructive strategies meanwhile permit learning by freely exploring the 

relationships between a system’s inputs and outputs through feedback obtained from a 

model.  This is the case in open-ended simulations.  The two-way interaction between 

experimentation and observation challenges learners’ thinking and may eventually 

lead to acquisition of higher order thinking skills.  Since such simulations are 

typically based on models of complex real-world systems, the knowledge or 

experiences gained from these interactions can later be transferred or applied to real-

life scenarios.  To make them effective, such simulations require some pre-

knowledge; i.e. a basic understanding of the modelled systems.  This must be supplied 

by teachers or appropriate instructions (Land, 2000; Min, 2003).   
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To either complement traditional classroom teachings or support distance 

education within a learning environment, two types of constructive simulations have 

been proposed by Neumann, Page, Kreutzer, Kiesel, & Meyer (2005).  These are: 

 

 Simulation-based learning; i.e., computer simulations are used to explain complex 

systems.  To support knowledge acquisition through simulated systems, the 

combination of simulation, animation, visualization and various other instructional 

techniques is crucial.   

 Simulation-focused learning; i.e., computer simulations are the vehicle through 

which all learning occurs.  In this approach all related modelling concepts and 

methodologies are explained in detail, which then enables learners to apply 

simulation to practical problems.  Simulation-focused learning is usually found in 

engineering and science courses.   

 

 

2.4 The Role of Simulations in Education and Learning 

 

2.4.1   The Role of Simulations in Learning Theories 

 

In order to prepare suitable learning materials for learners, an understanding of the 

learning process is required.  A learning process involves three main aspects: 

cognitive, emotional and experiential (Illeris, 2000; Livesey, 1986).  The explanation 

of how these three elements shape learning is called a learning theory.  Learning 

theories can be categorized into three main groups: behavioural, cognitive and 

constructive (two categories that will not receive further mention are andragogy 

(Knowles, 1984) and connectivism (Siemens, 2005)).  Learning theories are used as a 

guidance to design and prepare learning materials based on learning goals and 

outcomes, and the format and contents of learning materials must assure the desired 

effects on learners’ performance (R. C. Clark, Nguyen, & Swelle, 2006).   

Behaviourism only considers observable aspects of learning processes (i.e., by 

observing changes in learners’ responses), without allowing any speculation about 

processes that may occur in the learner’s mind.  Its main principle is that learning 

takes place through repetition and reinforcement.  Continuous reinforcement (i.e., by 
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penalizing undesired behaviour while rewarding desired behaviour) is used to 

promote learning, while intermittent reinforcement seeks knowledge retention.  While 

such strategies have been quite popular in conventional classroom teaching, they have 

proved only effective for teaching simple tasks.  Common applications include taking, 

reading and memorising notes, and recalling knowledge and skills in tests or 

examinations.  An example of educational technologies based on this theory is drill 

and practise software that delivers contents in small steps, with simple control 

questions at the end.  Such software relies heavily on right and wrong answers, where 

“right” answers lead learners to new information, while “wrong” answers spawn 

repetitions.  Since the Behaviourist theory does not explain learning and has failed to 

help understanding and acquisition of complex scenarios and skills, educators have 

looked for alternatives and cognitive theories, which attempt to take account of what 

may take place in a learner’s mind.   

Cognitivism asserts that the ability to construct new knowledge is strongly 

influenced by how well individual learners’ memory can map (structure) new 

information to already acquired information.  The new information (retained in a new 

logical slot) is then retrieved and modified to help process further new information.  

Each learner may have a different capacity for processing, retaining and using 

information.  In order to ease the process of integrating new knowledge into existing 

cognitive structures, learners must have acquired all pre-requisite lower-level 

information before being exposed to higher-level concepts.  An example of 

educational technologies based on this theory is an Intelligent Tutoring System (ITS), 

which guides learners throughout their learning processes.   

Constructivist theories strongly emphasize the importance of prior knowledge, 

and view learning as a process of actively constructing new knowledge based on three 

elements: prior knowledge, activities and experiences.  Active knowledge 

construction means that learners themselves are responsible to use and explore 

interactive learning materials and make use of all feedback to develop their mental 

models.  These iterative processes are supposed to promote active learning (i.e., 

learning by doing) and extend knowledge retention.  Since each learner differs from 

others in terms of pre-knowledge, experiences and relevant skills, the same learning 

materials will result in different knowledge structures and problem solving skills for 

different learners.  An example of educational technologies based on this theory is 

simulation.  Table 2.3 shows some features of learning theories.   
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Table 2.3  Some Learning Theories and Their Features 

Feature Behaviourist Cognitivist Constructivist 

Learning 

principle 

Observable objectives Problem solving Knowledge 

construction 

Learning 

focus 

Reflection Cognition Interaction 

Teacher’ s 

task 

Transmitter Helper or tutor Facilitator 

Instructional  

Design 

Direct instructions, 

course based 

measurement, 

sequenced tasks 

Problem solving 

through exploratory 

learning, project-based 

works 

Self-directed learning, 

case-based learning 

Learning 

material 

presentation 

Linear contents that 

move from simple to 

complex 

Dynamic, complex 

environments 

Dynamic, unstructured 

(not pre-specified) 

Human brain Passive knowledge 

container 

Linear information 

processor 

Closed information 

system 

Learning 

direction 

Controlled by teachers Controlled by learners 

with proper guidance 

from teachers 

Controlled by learners 

Learning 

outcome 

Predetermined and 

predictable 

Predictable Unpredictable, since 

instructions only foster, 

not control learning 

processes 

Evaluation Performance based on 

correct answers where 

each unit of content is 

treated and evaluated 

separately 

Knowledge based on 

discovering correct 

methods for finding 

answers 

Competence (degree of 

mastery) based on 

dealing with complex 

problems 

Learning 

measurement 

Easily measured by 

counting correct 

answers 

Indirect, based on 

active problem solving 

Not easily measured 

and much more 

subjective, usually 

based on on-going 

activities, experiences 

and attitudes; e.g., 

notes, drafts, journals 

or products 

Learners’ 

interaction 

Simple interactions 

with controlled 

presentation via verbal 

or graphical instruction 

Demands intelligence Demands more 

communicative and 

immersive contents to 

show how a model 

responds to individual 

assumptions through 

feedback 
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Criteria Closed system where 

learners are confined to 

the teachers’ world 

Solution-centred More dependent on 

learning than teaching 

approach 

Knowledge 

construction 

Encourages surface 

learning  

Creates deeper problem 

understanding 

Promotes deeper, 

transferable 

understanding and long 

term retention of 

knowledge 

Software 

development 

time 

More quickly 

constructed 

 

Time consuming Time consuming and 

much effort is needed, 

since it requires a 

significant amount of 

interactive and 

unstructured learning 

materials 

Knowledge 

retention 

Works well for short-

term transferable 

knowledge 

Better at long-term 

knowledge retention 

More long-term and 

applicable, since 

knowledge is obtained 

through interactions 

and activities (leaner-

learner and learner-

model), not through 

competition among 

learners 

Software 

characteristic 
 Rigidly structured 

 Dearth of content 

interactions and 

forms of 

presentations 

 Sequential 

exposition of 

information, 

followed by testing 

 Intelligent sequence 

 Modestly 

interactive. pre-

packaged problems 

 Unstructured, no 

pre-packaged 

problems, highly 

interactive 

 The use of 

animation and 

multimedia 

environments is 

common 

Ideal software Drill and practise 

programs, programmed 

instructions and 

tutorials 

Intelligent Tutoring 

System, Computer 

Based Training 

Simulations, 

microworlds (L. P. 

Rieber, 1995), 

modelling 

environment, 

hypermedia 

 

 

The development of e-Learning materials based on cognitive and 

constructivist theories is an important step towards better learning environments 

since:  
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1. curricula are now packed with many subjects and learner-teacher interactions are 

limited,  

2. the demand for education keeps rising, but time and space remain restricting 

factors, and  

3. learners are now familiar with modern technologies and expect their use.  

Interactive contents therefore become crucial.   

 

 

These factors favour a shift of responsibility from teacher-oriented (the 

behaviourist feature) to learner-oriented learning styles (the constructivist feature).  

Some approaches to transfer such responsibility are through guided discovery (R. E. 

Clark, Yates, Early, & Moulton, 2010; Leutner, 1993; Piaget, 1977), case-based 

learning (Aamodt & Plaza, 1994; Jonassen & Land, 2000) and microworlds 

(Brouwer, Muller, & Rietdijk, 2007; L. P. Rieber, 1992, 1995, 1996).   

Guided discovery enables learners to create their own understanding of a 

subject, using tools (e.g., simulations) with guidance from a teacher.  Since the role of 

a teacher changes from a transmitter of information to a promoter of higher-order 

thinking skills, this method has been claimed to be an ideal approach in education 

(Aldrich, 2004; Chwif & Barretto, 2003; Gibson et al., 2007; Gokhale, 1996) and is 

believed to produce “deeper” learning than teacher-centred approaches (e.g., 

demonstration, direct instructions, lectures or lecturer-discussion).   

The main strength of simulations in this context is that it enables a “situated 

learning” approach (Der-Thanq & David, 2002; Herrington & Oliver, 1995, 1997), 

which claims that realistic contexts will motivate learners to engage more strongly 

with the material.  Since this instructional methodology requires learners to be 

equipped with a substantial amount of pre-knowledge and skills, several studies (e.g., 

Kirschner, Sweller, & Clark, 2006; Tripp, 1993; Wineburg, 1989) criticize its 

implementation in traditional classrooms.  However, some other studies (e.g., Harley, 

1993; Ketelhut, Dede, Clarke, Nelson, & Bowman, 2007; Lunce, 2006; Young, 1995) 

report strong support for embedding situated learning through use of modern 

educational technologies.   

Simulations can be used in a variety of learning and training domains, since 

most aspects of real-life processes and job environments can be simulated in 

controlled settings.  Simulations are appropriate for teaching situations when learners 
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can gain high levels of knowledge and skills (i.e., application, analysis, synthesis and 

evaluation levels in Bloom’s taxonomy - Krathwohl, Bloom, & Masia (1996), 

Anderson & Krathwohl (2000)).  However, since simulations are associated with 

constructivist learning theories, they have some disadvantages, which include: 

 

 Simulations heavily depend on learners taking responsibility for their own 

learning.  Without motivation, significant learning will not take place.   

 Simulations require tacit knowledge and particular skills to enable learners to 

drive experiments, analyse and understand feedback, draw their own conclusions 

and predict a chain of actions throughout a learning activity (Whiteside, 2002).   

 Simulations demand coaching and scaffolding to offer learners hints at certain 

times (Min, 2003; Zhang et al., 2004).  Without these elements, learners might 

interact with simulation models without framing sensible hypotheses and may 

draw wrong conclusions.  However, too much guidance will stifle learners’ 

creativity, since they are now confined to a series of tasks (Herrington & Oliver, 

1995, 1997).   

 Simulations need collaboration (i.e., learner-learner and learner-teacher 

discussions) to promote critical thinking and problem solving skills.   

 Simulations may require more time for learners to abstract meaningful knowledge, 

since learners need time to immerse themselves into a problem and experiment 

with alternatives (Heinich, Molenda, Russell, & Smaldino, 1999).   

 If they are overly simplistic, simulations may create an imprecise understanding of 

real-life situations.   

 Simulations need tools that offer authentic contexts and activities (Herrington & 

Oliver, 1995, 1997; Lloyd P. Rieber et al., 2004) to engage learners’ attention.  

Authentic contexts reflect how knowledge can be used in real-life and motivate 

learners to use the model.  Authentic activities ask learner to find and solve 

problems themselves.  Thus, explorative models that allow manipulation of widest 

ranges of variables are crucial to stimulate learning by doing (Kolb, 1984; 

Whiteside, 2002).  However, designing, building and testing such simulations is 

time consuming and costly.   
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2.4.2   Empirical Evidence 

 

Simulations have long been claimed to have positive effects on learning (e.g., Lunce, 

2004; Min, 2003; Njoo & Jong, 1993; L. P. Rieber, 2002).  Some researchers have 

conducted experiments to evaluate the effectiveness of using simulations either as 

complement to or as a replacement for other learning materials and tools.  Such 

studies include Liao and Miller (1996), Gokhale (1996), Michael (2000), Renshaw 

and Taylor (2000) and Kennepohl (2001).  Eck and Dempsey (2002) meanwhile have 

examined the impact of embedding advisement and competition in computer 

simulations.   

Liao and Miller (1996) have studied the effects of using computer simulations 

as complementary learning materials on learning in a construction and architectural 

engineering technology course.  Analysis of the course examination results showed 

that the mean and median for the group supplied with both text-based course materials 

and a simulation game was higher than the group supplied only with the text-based 

materials, supporting the thesis that a computer simulator as a companion to reading 

materials could help learners learn better.   

Gokhale (1996) has examined the effectiveness of using computer simulations 

to teach problem-solving skills in an electrical course.  Data analysis showed that 

students exposed to a computer simulation in addition to lecture-lab activities were 

significantly better than students that only used traditional lecture lab activities.  The 

results therefore corroborated the assumption that simulations could be an effective 

learning approach to equip students with problem-solving skills that are transferable 

and applicable to real world problems.   

Michael (2000) has explored the possibility of using a computer simulation as 

a replacement for real-hands-on activities in creating a product.  They found that no 

significant difference in product creativity scores among the hands-on group and the 

computer simulation group. This suggests that it was possible to use a computer 

simulation in place of hands-on activities while maintaining student creativity.   

Renshaw and Taylor (2000) assessed the impact of using system dynamics 

simulations on students’ higher-order cognitive skills of environmental processes.  

Data analysis showed that the students who had been exposed to the simulation had a 

better understanding of what they had learnt (i.e., simulation had a positively impact 

on students’ higher-order cognitive skills), were less prone to cognitive errors in 
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decision making and demonstrated higher information retention compared to the 

students who obtained equivalent information through hands-out.   

Kennepohl (2001) examined the effectiveness of simulations in enhancing 

students’ chemistry laboratory experiences.  They found no difference in overall 

course performance between the students who fully attended supervised laboratory 

sessions and the students who were partially attended the sessions but were 

additionally exposed to individual laboratory simulations.  However, the later students 

completed laboratory work in a shorter time and achieved a slightly better 

performance in the practical laboratory component (lab reports and quizzes).  This 

suggests that computer simulations can enhance student lab experiences in spite of lab 

time reductions.   

Eck and Dempsey (2002) have studied the effect of embedding advisement 

and competition elements in a computer-based simulation to teach the concepts of 

geometric shapes.  Advice through interactive videos could be accessed whenever 

students were stuck at certain problems.  Competition refers to whether or not the 

students were playing against computer characters to encourage their learning.  The 

results showed that (1) the presence of advisement during simulation did not 

guarantee to help learning unless it was properly designed and used, (2) advisement 

was probably effective in promoting learning in a leisure environment, (3) the 

presence of advisement during competition could create additional cognitive load and 

hinder learning, and (4) knowledge transfer could be promoted as long as there was a 

connection between the learning context and students’ prior knowledge no matter 

which approach was used.   

 

 

2.4.3   Simulations and e-Learning 

 

2.4.3.1   Promises and Problems of e-Learning 

 

e-Learning utilizes electronic documents for facilitating learning.  It has been boosted 

by globalisation that forces people to regularly update their knowledge in order to 

compete in the current job market, technological improvement particularly in software 

that simplifies the development of attractive and interactive learning materials for 
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better learning experiences and internet speed that eases remote storing, updating and 

accessing of the materials.   

Recent research clearly shows the growth of e-Learning in educational 

institutions and training organizations worldwide to support traditional classrooms 

and/or offer virtual learning environments (Ala-Mutka, Gaspar, Kismihok, Suurna, & 

Vehovar, 2010; Garrot, Psillaki, & Rochhia, 2008; K. Kim, 2006).  This type of 

learning has been accepted as a typical teaching and learning platform since the 

development of learning management systems (LMSs) that offers various learning 

supports through the use of current technologies (e.g., online assessment, 

communication, etc.) and the familiarity of current learners with a self-directed 

learning environment through the use of computer.  The use of e-Learning as a virtual 

learning environment through the support of information and communication 

technologies (ICT) can promise: 

 

 Learning anytime, anyplace.  Learners can study learning materials without time 

constraints.  This gives learners opportunities to learn and access a much wider 

range of knowledge.  Study can take place either at home, work, libraries, etc. as 

long as learning materials can be accessed.   

 Collaboration through synchronous and asynchronous interactions.  This enables 

learners and teachers to discuss and exchange information at anytime and 

anywhere.  Such facilities are available in most LMSs.   

 Learning through new technology approaches.  Current learners are computer-

literate and familiar with learning through computers.  These opportunities can be 

utilized by e-Learning content designers to provide highly motivating attractive 

and interactive styles of presentation; e.g., interactive simulations and computer 

games.  Such methods when used properly are claimed to engage learners, 

enhance e-Learning experiences and decrease the amount of reading, which 

improves the retention of the materials (Aldrich, 2004, 2005; Neumann et al., 

2005).   

 Cost effective.  The use of technology can reduce costs related to teachers, 

physical spaces, hardcopy of learning contents, etc.  Learning can be delivered on 

time.   
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Improving the quality of e-Learning experiences remains a continual challenge 

for LMSs.  Most e-Learning materials have been constructed without much 

consideration of how learners learn (Dublin, 2004; McKenna & Laycock, 2004; 

Romiszowski, 2004) where the use of static graphics (e.g., e-book, Word documents, 

etc.) and simple online assessments (e.g., simple multiple-choice and true-false recall 

type of questions) is common (Neumann et al., 2005; Wahlstedt, Pekkola, & Niemelä, 

2008).  These materials cannot be considered quality e-Learning solutions since they 

only deliver facts and fail to engage and attract learners.  Consequently such materials 

typically fail to promote a constructive and cooperative learning style and fail to 

facilitate the transfer of knowledge to job environments; i.e., the utilization of the 

knowledge (Kühl, Scheiter, Gerjets, & Gemballa, 2011; Wilson, Jonassen, & Cole, 

1993).  The importance of interactivity, visual presentation and aesthetics in learning 

materials has long been suggested in the relevant literature (e.g., Bransford, 2000; 

Eppler & Burkhard, 2007; Mildrad, 2002).   

 

 

2.4.3.2   The Roles of Electronic Course Management Systems 

 

Most educational institutions and training organizations now support teaching and 

learning activities with LMSs.  LMSs (also sometimes called Course Management 

Systems (CMSs)) offer tools for both management and delivery of course materials 

and assessments.  Open source LMSs include Moodle (www.moodle.org) and .LRN 

(www.dotlrn.org).  Other LMSs, such as WebCT (www.webct.com), Blackboard 

(www.blackboard.com) and eCollege (www.ecollege.com) are sold as commercial 

products.  The roles of LMSs are to: 

 

 provide content management through attractive GUIs and layouts in order to ease 

store, structure and distribute learning materials.  Such characteristics are 

important to foster a pleasant experience when using and learning through the 

platform (Stenalt & Godsk, 2006).   

 provide advanced communication facilities through synchronous and 

asynchronous modes.  The synchronous mode tries to imitate traditional learning 

environments and assumes that a group of learners and their teachers will be 
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online at the same time.  It uses chat rooms or video conferencing technology as a 

communication.  In contrast to this approach, an asynchronous mode that uses 

email and bulletin board allows each learner to be online at times that depend on 

his or her preference.   

 track learners’ behaviour and performance, and record the number of times 

learners access certain content, as well as the time spent on studying different 

content materials.  In order to support this communication, learning materials 

must comply with a set of technical standards for e-learning; e.g., SCORM 

(Gonzalez-Barbone & Anido-Rifon, 2010; Vossen & Westerkamp, 2006).   

 

 

The development of LMSs to support virtual learning and teaching activities 

has increased the use of e-Learning in higher education institutions worldwide 

(Browne, Jenkins, & Walker, 2006; Falvo & Johnson, 2007).  However, providing 

right learning materials (based on learning pedagogy) and supporting them through 

various learning facilities available in LMSs are important in promoting student 

involvement and ensuring the success of e-Learning (Klobas & McGill, 2010).   

 

 

2.4.3.3   Pedagogical Aspects of e-Learning 

 

e-Learning shifts the medium of knowledge and skill transfer from a teacher to 

computer.  This transfer should imitate whatever important features in the traditional 

classrooms (e.g., activities that involve learners in the learning processes, two-way 

communication that allows learners to respond and get feedback, etc.) and incorporate 

them all into the virtual learning environment (Alonso, Lopez, Manrique, & Vies, 

2005).  The absent of teachers during learning time must be replaced with new 

methods of instruction design that stimulates student engagement and involvement.  

Instructional methods that are based on attractive and interactive materials (e.g., 

simulation, computer games, etc.) and that provide activities that will impart learners’ 

knowledge and skills are important in guaranteeing successful learning outcomes.   

Attractive and interactive materials that are based on dialoguing, controlling, 

manipulating, searching and navigating (Moreno & Mayer, 2007) play three important 

roles in virtual learning.  Firstly, they can replace the dialogues between learners and 
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their teacher and promote motivation for them to learn through multidirectional 

communication (i.e., actions and feedback).  Thus, learners will not be bored as 

reading static texts, viewing static graphics or navigating non-interactive materials 

(e.g., a narrated representation with animation, hypermedia, etc.).  Secondly, they can 

stimulate information acquisition and knowledge construction (Fletcher & Tobias, 

2005; Moreno, 2006) especially if they are designed to support different modes of 

presentation; e.g., verbal explanations (e.g., printed words, spoken words) and non-

verbal (e.g., animation) and mixed-modality representations (i.e., auditory and visual).  

The approach of using multiple representation to illustrate content of knowledge eases 

learners to utilize knowledge and enables meaningful learning to occur in their 

cognitive (Moreno & Mayer, 2007).  Thirdly, they stimulate meaningful 

communications among learners and increase the use of communication facilities 

provided by the LMSs to a maximum level since their activities will challenge 

learners’ understanding during their learning activities.  If the given outputs contradict 

with their hypotheses, learners will seek clarifications from their peers or teacher.   

Attractive and interactive learning materials however do not automatically 

create understanding.  Besides their effectiveness depends on learners’ prior 

knowledge and their cognitive factors (Kalyuga, Ayres, Chandler, & Sweller, 2003), 

the interactivity could also create the potential of cognitive overload that disrupts 

learning (Mayer & Moreno, 2003).  Thus, it is important to design learning materials 

that (1) manage the amount of information presented at a time, and (2) reduce 

extraneous processing, i.e., the cognitive processes that add burden to digest new 

information (e.g., asking learners to refer to information in other pages or computer 

screens) and representational holding, i.e., the cognitive processes that force learners 

to hold their mental models during the making process (e.g., presenting animation 

after narration) that waste learners’ cognitive capacities.  For this, Moreno & Mayer 

(2007) propose instructional design principles for interactive learning materials.  The 

design principles are guided activities to guide learning, reflection to encourage 

information acquisition, feedback to repair learners’ misconceptions, pacing that 

enables learners control their learning and pre-training to provide learners with 

relevant prior knowledge.   
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2.5 DES Development Tools 

 

Generally, DES models can either be built in general purpose programming 

languages, simulation packages, simulation languages or high level simulators as 

shown in Table 2.4.   

 

Table 2.4  Available DES Simulation Tools 

Tool Example Advantage/Drawback 

Simulation 

Packages 

Non Object Oriented 

 

CSIM (Schwetman, 1988), GASP (Rose, 1981), SimPack 

(Fishwick, 1992), SimTools (Seila, 1986), SIMPAS 

(Bryant, 1981).   

Advantage: 

 Reduce programming 

effort by providing 

simulation-specific 

features

 

Disadvantage: 

 Prone to logical and 

syntax errors

 Depend heavily on 

model developers’ 

programming skills 

 Do not usually offer 

animation capability 

Object Oriented 

 

CSIM19 (Schwetman, 2001), C++Sim (Little & McCue, 

1993), DESMO-J (Meyer et al., 2005a), JavaSim (the 

Java version of C++SIM) (Tyan, 2002), JSIM (allow 

simple VIM) (J. A. Miller et al., 1998), J-Sim (Kacer, 

2002), PSim (Garrido, 1999), Silk (Kilgore, 2000), 

simJAVA (W. Kreutzer, J. Hopkins, & M. C. Mierlo, 

1997), Simjava (E. H. Page, Moose, & P.Griffin, 1997), 

SimKit (Buss, 2002), Sim++ (based on SimPack) 

(Lomow & Baezner, 1989), SSJ (L’Ecuyer et al., 2002).   

Object Oriented and support animations 

 

D-SOL (Jacobs, Lang, & Verbraeck, 2002), Tomas 

(Duinkerken, Ottjes, & Lodewijks, 2002; Veeke & 

Ottjes, 1999), Psim-J (Garrido, 2001, Garrido and Im, 

2004).   

Simulation 

Languages 

Non Object Oriented 

 

GPSS/H (Crain & Henriksen, 1999), SIMAN (C. Dennis 

Pegden, 1989), SLAM (Claude Dennis Pegden, Alan, & 

Pritsker, 1978), SLAM II (Pritsker, Sigal, & 

Hammesfahr, 1994), SLX (Henriksen, 1997)   

Advantage: 

 Offer much flexibility 

for simulation model 

development

 

Disadvantage: 

 Still need substantial 

programming expertise 
Object Oriented 

 

SimPy (Matloff, 2008), SIMSCRIPT (Markowitz, 

Hausner, & Karr, 1963; Rice, Marjanski, M., & Bailey, 

2004), SIMSCRIPT II.5 (Kreiman & Mullarney, 1987), 

SIMSCRIPT III (Rice, Marjanski, Markowitz, & Bailey, 

2005), Simula (Birtwistle, 1979), MODSIM III (Goble, 

1997).   

High 

Level 

Simulators 

baseSIM, Extend (Krahl, 2003), ExtendSim7 (Krahl, 

2007), SIMUL8 (Concannon et al., 2006), AweSim 

(based on SLAM II) (O’Reilly, 2002; Pritsker & 

O'Reilly, 1999), Micro Saint (Barnes & Laughery, 1997), 

Arena (based on SIMAN) (Bapat & Sturrock, 2003; 

Kelton et al., 2004), WITNESS (Thompson, 1996), 

Advantage: 

 Easier to learn

 Speed up the model 

building process and the 

analysis of model output

 Much simpler to 
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Promodel (Harrel & Price, 2003), AutoMjod (LeBaron & 

Jacobson, 2007), Flexsim (Nordgren, 2003), 

SIMPROCESS ("Getting Started with SIMPROCESS," 

2006), Renque ("Renque Discrete Event Simulation: 

User’s Guide," 2008), em-Plant ("m-Plant: Empower for 

Manufacturing Process Management," 2003), Simple++ 

(Geuder, 1995), SIMFACTORY II.5 (Goble, 1991) 

 

maintain and change 

compared to simulation 

languages or simulation 

packages

 Can incorporate 

sophisticated animations 

to depict system 

behaviour

 

Disadvantage: 

 Commercial tools are 

expensive to buy and 

not so flexible 

 

 

 

General purpose programming languages (e.g., C, C++, Java, etc.) allow 

greater programming flexibility, but require model developers to be expert in a 

particular programming language.  Since models are developed from scratch, they 

take a longer time to be built and are prone to syntax and logical errors.  Developing 

DES models using this approach is far from ideal in learning and teaching 

environments, since both teachers and students typically need easy tools to quickly 

build and animate a model’s inner working.   

Simulation languages allow simulation models to be developed using 

customized modelling statements.  In spite of their strength in modelling almost any 

kind of complex system, a modeller still needs programming expertise, as well as 

knowledge of their specific features (e.g., linguistic abstractions) and representation 

of model logic.  Although most simulation languages support animation, the resulting 

models often do not allow interactions and cannot be embedded on web pages or be 

integrated with e-Learning systems.   

High level simulators allow models to be constructed by dragging and 

dropping readymade blocks onto a canvas.  These blocks are then linked with each 

other through pads (input and output points) using connectors.  The use of blocks to 

represent model logic facilitates model building and decreases model development 

time.  However, the manipulation of models is only allowed through whatever 

features the package provides.  Although most high level simulators support 

animation in 2D or 3D, the models can only be run in the system itself or by using the 

system’s player.  Few of them can be embedded in web pages.   
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2.6 Animated DES Systems 

 

DES models are implemented as sets of computer codes that represent their 

relevant complex system processes’ evolution through time.  In this context, 

animations are used to gain insight into the systems through animated scenarios or 

graphical displays of statistical measures.  Visually accurate animations can be crucial 

for better understanding of the models.   

The benefits of animated DES models have been extensively discussed in the 

literature (e.g., Belfore, Mielke, & Kunam, 2003; Gilman, 1985; Hill, 1996; Kamat & 

Martinez, 2007; Kelton, Sadowski, & Swets, 2010; Macal, 2001; Rekapalli & 

Martinez, 2007; Stahl, 2003; Wenzel & Jessen, 2001).  An animated model can: 

 

 present its simulation processes in a more user-friendly and more easily 

understood form than textual traces of event sequences to improve users’ 

understanding of a system 

 clearly illustrate its structure and logic and allow users to visually study and 

analyze its process flows 

 assist model developers in debugging (correcting syntax and logical errors), 

verifying (checking whether the model is functioning as intended) and validating 

(checking whether the model reasonable represents a real system being modelled) 

the model 

 make simulation results more comprehensible, which aids the analysis of 

simulation results to gain better understanding of system performance under 

various conditions 

 give insight into model behaviour during a simulation run in addition to numerical 

and statistical analyses at the end of a simulation run 

 

 

Animations to improve the display and analysis of model execution are 

considered a significant augmentation of DES methodology, caused by a shift towards 

graphical model building and process orientation in modelling worldviews (Pedgen, 

2007).  New simulation tools that incorporate high quality 2D animation (e.g., Arena 

or ProModel) or 3D visualization (e.g., AutoMod, QUEST or eM-Plant) capabilities 
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are preferred to older tools that do not offer such capabilities (e.g., SIMAN and 

MODSIM).  However, the high quality animations offered by these commercial tools 

fail to offer any means of interaction with their model; i.e., they do not allow users to 

change system conditions while the model is running.  One of the reasons for this is a 

loss of execution efficiency, a consideration that is much less relevant in educational 

contexts than in DES technology’s predominant commercial use for performance 

prediction.   

Many researches that aim to add 2D or 3D visualization and animation 

capabilities to conventional simulation tools have also been many conducted (e.g., see 

Belfore et al., 2003; Kamat & Martinez, 2007; Zhong & Shirinzadeh, 2004).  Most of 

them are based a post-processing approach that only enables an animator to enhance 

the visualization of objects, their states and behaviour after a simulation run.  

Moreover, model developers need to (1) learn how to use a particular simulation tool 

before generating customized simulation output files, (2) have enough programming 

knowledge to generate such files from within the model, and (3) modify the files; e.g., 

by inserting necessary commands for driving animations.  Although this approach 

offers the capability to jump back and forth in simulated time during animation 

playback and to accelerate or slow viewing speeds, it is incapable of supporting 

runtime interactions with its animations.   

Largely for marketing reasons, many simulation tools now focus on 3D 

visualizations since they promise to enhance presentation of simulation results.  From 

a more practical perspective, 3D animations have not proved all that useful (Alam, 

Oloruntegbe, Oluwatelure, Alake, & Ayeni, 2010; Oloruntegbe & Alam, 2010) unless 

they are for simulators meant to train system operators (e.g., flight simulators).  In 

other cases, 2D animation is usually adequate to capture essential system behaviour.  

Animations that offer interfaces that allow users to be animation directors (i.e., they 

can completely control each animated object rather than just viewing it, moving it, or 

changing its shape or appearance) are able to add more realism to simulated scenarios 

here.  However, there must still be a clear separation of simulation and animation 

concepts.   

Although not directly related to the mapping between a simulation model and 

its visual representation, Benjamin, Mazziotti and Armstrong (1994) suggest some 

significant requirements for offering attractive animation models.  These include: 
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 appropriate icons or symbols with names that correctly represent the purpose of 

animated objects in a predefined library 

 icons placed on an animation stage should have user-customizable label names to 

ease cross referencing and undefined icons 

 statistical reports that can be customized with headings, labels, etc. 

 graphical interaction windows for receiving input from users 

 multiple windows to view information in different formats 

 zooming ability to view details of a specific area of interest 

 

 

While items (i) to (v) can be programmed, item (vi) places stricter demands on 

a programming language environment.  It is therefore important to choose a language 

environment that supports the capability.   

As stated, many researchers have investigated software that animates 

simulation results generated by separate simulation tools.  This is a simplest way to 

graft animation capabilities onto existing systems.  If no interaction is needed this 

may be a viable approach.  However, such an animated model only suits users with 

concrete concepts of the represented system and typically fails to be used in a learning 

environment (Arbaugh & Benbunan-Fich, 2007; Su, Bonk, Magjuka, Liu, & Lee, 

2005; Woo & Reeves, 2007).  Thus, models for teaching and learning purposes should 

at least implement some kinds of interaction features to engage users and foster their 

learning.   

Below are some attempts for connecting simulation and animation.  Since the 

tools are separated, animated models based on this approach have two distinct 

limitations: (1) interaction features that allow two-way communication (i.e., 

animation that reacts to users’ actions and any means that allow users to respond to 

model information) cannot be supported, thus users are constantly served with the 

same data driven animation, and (2) users are confined with static model graphical 

user interfaces as no visualization tools can be attached during model execution since 

simulation performance data is stored externally in the simulation tool.   

Shi and Zhang (1999) create a platform for simulating and animating an 

activity-based model using simple 2D icons.  In this context, models are built using 

activities blocks.  Each block has its own dialog box for specifying its attribute values, 
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resource requirement, activity duration and an icon for presenting resources.  Blocks 

are connected using an arrow to represent logical sequences of activities.  To animate 

a resource’s states, one or more pre-created bitmap icons can be chosen from a 

library, which stores common construction resources (e.g., trucks, cranes, etc.).  

During animation, icons move along specified paths and change shapes.  However, 

animation of construction activities can only be performed after a simulation is 

finished.  Although the tool does not allow user interactions with animated objects, 

the system offers some run-time control, such as starting and stopping a simulation 

and adjusting its animation speed.   

Kamat and Martinez (2001) create a system called Dynamic Construction 

Visualizer (DCV) for animating construction operations in a 3D virtual space.  The 

system reads a trace as an ASCII text file, which contains commands such as PATH 

(for defining paths between two locations in 3D coordinates), CLASS (for importing a 

3D file in VRML format that represents resources and system entities), TIME (for 

driving animations at appropriate times), CREATE (for creating simulation objects), 

PLACE (for placing objects at appropriate positions), MOVE (for objects that may 

encounter time delays) and ROTATION (for rotating objects along specified planes).  

This file can be generated manually or written by simulation software.  At an 

appropriate simulation time, DCV reads and performs the commands to drive 

animation.  Animation is stopped when no more statements are found in the file, or 

when a viewer interrupts the animation.  DCV allows animation to be run at any 

speed.   

Belfore et al. (2003) describe an approach for producing 3D visualizations that 

can be played in the form of VRML (a standard file format for presenting 3D objects 

in a web browser) animations.  The VRML contains a VRML scene (background 

transformation), VRML nodes (3D animated object transformation) and simulation 

model information and results obtained from a simulation tool with added information 

to create and animate 3D worlds (e.g., position, path, etc.).   

Zhong and Shirinzadeh (2004) create an analyzer to convert important 

processes in simulation models (developed using whatever simulation tools) to 

animation events.  The analyzer will group a sequence of events into events that 

belongs to an object based on their source objects and the event sequence it 

participates in.  Events that are not important (e.g., no change in an object’s position) 

will be filtered out.  Each object is firstly positioned at its proper location in a 3D 
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layout editor and is then animated based on its animation events using animation 

viewer.   

 

 

2.7 Summary 

 

Previous work on DES construction tools has simplified model building that 

initially demands a substantial of programming effort to model building that only 

requires dragging and dropping blocks of code.  Approaches to connect DES models 

with animations and visualizations that help learners to get insight into the models’ 

processes and behaviour by showing their sequences of events have also been 

proposed.  At the same time, commercial software has provided excellent tools for 

modelling, animating and analyzing DES models.  However, none of the current tools 

have considered how learners’ learn.  The main lesson from this chapter is that 

models for learning purposes should support runtime interactions since interactions 

through various engaging activities can help learners to construct and develop their 

mental models of a domain.  Additionally, the models should have relevant features to 

help learners engage in their learning.  Table 2.5 show the features identified from the 

literature review as being desirable for the design of DES tools.   

 

Table 2.5  Desirable Features for the Design of DES Tools 

Feature Purpose 

Illustration of model 

structures and logic 

Help learners visualize process flows 

Feedback and performance 

visualizations 

Aid learners to gain better understanding of system 

performance 

Activities through easy-to-

access GUIs 

Allow learners to input simulation parameters 

Attractive animation of 

simulation processes 

Facilitate learners to get insight into model behaviour 

and improve their understanding 

Multiple visualization 

windows 

Enable learners to view information in different 

perspectives 

Appropriate symbols and 

names 

Represent the function of animated objects 

Top level control of 

simulations and animations 

Provide learners a choice to control simulation speed 

Zooming Ability Offer learners to view details of a specific area of 

interest 
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These models should also be web based models so that they can be embedded 

in a web page and LMS-compatible models so that they can easily be integrated with 

an LMS to take full advantages offered by the system.  The next chapter will discuss 

how to properly design DES tools for building informative interactive DES models 

(that contain interactive and attractive GUIs, statistical tables, information windows, 

animation control, etc.) that are ideal for learning and how Flash supports the 

development of the tools.   
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CHAPTER 3 

 

A FRAMEWORK FOR DES AND ANIMATION 

 

 

3.1 Introduction 

 

Dynamic systems contain various time-dependent processes and interconnected 

elements.  There are two techniques used to study and evaluate such stochastic time-

oriented systems: analytic and numeric.  While analytical models can offer accurate 

solutions, it is unpractical (and typically fails) to model systems with very complex 

structures.  A numerical technique (e.g., simulation) that uses numerical 

approximation is always a choice.   

Time-oriented simulation imitates a system’s behaviour over a period of time.  

There are two types of simulations under this classification: discrete event simulation 

(DES) where state variables change values at discrete time and continuous simulation 

where state variables change values throughout time.  The main advantage of using 

DES to analyze discrete event systems over analytical models is that we only consider 

elements and their interactions that influence the system’s behaviour, based on the 

objectives of our study.  Essential elements that simplify model development in many 

types of DES systems have long been studied and presented.   

DES has two different purposes.  One focuses on decision making where 

simulation is used as a prediction tool for estimating performances of limited, risky 

and costly systems.  Thus, the quality of a simulation model is paramount for feasible 

predictions.  For this, its modelling approach must go through a number of cycles: 

system identification, model design, data collection, model implementation, model 

verification, model validation, model experimentation and model output analysis.  

Model implementation involves a transformation of a set of system significant 

features to a computer program.  Model verification ensures that the program contains 

no errors and logically represents the system in terms of its functionality and 

structures.  Model validation ensures that the program reasonably represents the 
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system behaviour (up to a certain level of confidence) in terms of accuracy of outputs 

it generates.  If both conditions are satisfied, the model can be used for exploration.  

This includes changing model parameters (e.g., random numbers of arrival, routing 

policy, priority rules, server scheduling strategies, etc.) and/or model structures to 

improve its performance.  Detail explanations of the modelling cycles can be found in 

most DES textbooks (Banks, 1998; Garrido, 2001; Kelton et al., 2004; Law, 2007) 

with Law (Law, 2007) give detail explanations on simulation analysis.   

Other focuses on teaching about complex (natural, organizational or technical) 

processes.  Compared to the first purpose that focuses on a quantitative aspect, the 

second purpose focuses more on a qualitative aspect.  In this context, a simulation 

model is mainly used as an exploration tool for gaining insight into a system; i.e., to 

help users to understand aspects that influence its behaviour and sensitivity.  Thus, 

providing a graphical representation of its structures, any means for its parameter 

manipulations and facilities for observing the effect of the manipulations (preferably 

without re-running the model) to current simulation results (e.g., through animations 

and visualizations of its state values) are particularly useful in offering many 

cognitive advantages for achieving this purpose.   

Both purposes require basic tools for model implementation (i.e., constructing 

and running simulation models).  The only different is that the extension of the tool, 

where one stresses more on providing tools for statistical analysis while the other one 

stresses more on providing tools for structural and behaviour visualizations.   

Developing simulation tools is not an easy task.  It must be well designed and 

structured in a reliable fashion based on an appropriate framework for preserving its 

flexibility and extensibility.  This framework consists of segments; each of which 

handles its own functionality and cooperates with each other to accomplish a further 

task.  The segments are later translated into computer code (i.e., simulation libraries) 

that can be called, initialized and assembled to construct a model.   

Although the library-based approach offers ease of coding, they only support 

model construction using text descriptions.  Thus, a component-based approach that 

offers a drag and drop fashion for model building and GUIs for easy accessing 

libraries’ parameters while still supporting API (Application Programming Interface) 

has been introduced.  The use of relevant symbols to depict components’ functionality 

have been proved to offer some advantages especially in visualizing model structures 

and processes (Repenning, Ioannidou, Payton, Ye, & Roschelle, 2001; Roschelle et 



 48 

al., 1999).  However, runtime experimentations through the symbols’ parameter 

modifications and responsive animation and model visualization customization for 

observing the effects of the modifications are still uncommon.  This chapter focuses 

on a framework that leads to the construction of our component-based tools for 

animated interaction-driven DES models.   

This chapter starts with a brief introduction to DES and queuing networks.  A 

good understanding of DES mechanisms eases the development of our DES tools.  

We first discuss basic mechanisms of two available DES modelling styles, i.e., event-

oriented and process-oriented and their suitability in implementing a DES engine.  

Because of some limitations of the event-oriented, we have architected our own 

process-oriented DES framework to support various DES facilities (e.g., generating 

random numbers for various distributions, collecting statistics, managing simulation 

clocks, a list of future events, etc).   

This framework has been designed so that a collection of classes for providing 

simulation libraries can be constructed easily using any programming languages.  

While there are many programming languages that can be used to implement this 

framework, the use of appropriate programming languages that offers a user-friendly 

environment, supports OOP and eases integration of animation (e.g., facilities for 

creating new images, importing outside images, attaching those images to classes and 

animating objects through built-in animation methods) is important to support its 

further extension and to guarantee users’ acceptance and satisfaction.  For these 

reasons, we argue that Flash is a suitable implementation tool for any kinds of 

simulations (details on this will be discussed in Chapter 4).   

 

 

3.2 DES and Queuing Scenarios 

 

DES is a mathematical model that operates a system using a chronological sequence 

of events; each of which happens at discrete time.  The execution of each event (e.g., 

the arrival and departure times of customers in a service system) will update model 

states, advance model time and consequently lead to a new event.  Anything happens 

between the two consecutive events are ignored since they will not affect model 

behaviour.  The change of state values is used to calculate various system 

performances.   
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Such a computational mechanism can be found in a wide variety of systems.  

Examples include manufacturing, transportation, service, network, inventory and 

computer systems with the main focus is to study and analyse queuing networks that 

explore the effects of capacity constrained resources and routing strategies on 

common performance measures; e.g., the average waiting time in a queue, resource 

utilization, throughput, etc.  Results from this can be used to manage queues 

especially in deciding scheduling strategies and the number of resources needed to 

provide particular services.  Analyses of queuing networks using simulations can be 

found in much literature (e.g., Fan, 1976; Guan, Woodward, & Awan, 2006; 

Raatikainen, 1997; Zhuang, Wong, Fuh, & Yee, 1998).   

DES is generally built up by objects known as entities that move through 

simulated time.  There are two types of entities: transient and resident.  Transient 

entities enter and depart from a system with relative frequencies and may seek for 

services.  In other applications, they are sometimes called as tokens, jobs, 

transactions, temporary entities, etc.  Examples include customers in a service system, 

parts in a manufacturing system, vehicles in a transportation system, etc.  Resident 

entities stay in a system for limitless times.  They may offer services for transient 

entities and are sometimes called as resources, servers, facilities, permanent entities, 

etc.  Examples include workers, machines, etc.  The interaction among these entities 

will create other concepts such as scheduling (the availability of resources), routing, 

sequencing (queuing discipline) strategies and buffers (waiting spaces).   

Each entity performs an operation at a finite time (either constant or random) 

called an activity.  Activating and executing a sequence of activities (called lifecycle) 

will generate events and consequently change the entity’s states (i.e., its attribute 

values).  Detail explanations on how such activities consume model time (i.e., tracing 

model execution) and how model states are used to measure various system 

performance can be found in many textbooks (e.g., Banks, 1998; Harrell, Ghosh, & 

Bowden, 2004; Kelton et al., 2004; Law, 2007).   

There are two paradigms to study the dynamic behaviour of a system.  One 

focuses on transient entities’ lifecycles called material-driven.  Another one focuses 

on resident entities’ lifecycles called resource-driven.  Both paradigms have their own 

advantages and disadvantages in terms of execution speed and simulation output 

accuracy.   
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The material-driven paradigm is used for a system with few transient entities 

but with numerous resident entities.  Since this system is examined based on the flow 

of transient entities (that their lifecycles are typically detail than resident entities), we 

can collect experiences of individual transient entities in much more detail.  The 

advantage of this is that entities’ animations and statistical output analysis can be 

more interesting.  However, the increment number of transient entities will consume a 

lot of computer memory and consequently cause simulation execution becomes so 

slow.   

The resource-driven paradigm is typically used for a large and highly 

congested system; i.e., a system that contains various transient entities demanding 

some services.  This scenario could be found in a transportation system with many 

vehicles or a service system with many customers.  Since there are relatively many 

transient entities compared to resident entities, it is more efficient to view model 

behaviour based on resident entities’ lifecycles.  The advantage of this paradigm is 

that since resident entities lifecycles typically involve few phases (e.g., idle or busy) 

and variables (e.g., their capacities, queue sizes, etc.), computer memory requirements 

and simulation execution speed are insensitive to system congestion caused by the 

increment number of transient entities.  However, statistical outputs related to 

individual transient entities are limited since their lifecycles are not in focus in the 

model development.  The material-driven paradigm is a better choice for animated 

DES models that focus more on entities’ animations and state value visualizations.   

 

 

3.3 Modelling Time 

 

To sequence state transitions in DES, two dominant modelling styles (world views) 

are used: event-oriented and process-oriented.  The choice of which modelling style 

should be used depends on a developer’s familiarity with these concepts, their 

programming expertise (procedural or OOP) and time constraints.   

Updating model time needs a component called a monitor.  The monitor 

updates model time by jumping from event to event.  During these processes of 

activating and cancelling events, various model statistical performances can be 

computed.  The ideas of how model events are stored in an Agenda or an Event List 
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(i.e., a component for maintaining a list of events to be executed) make both 

approaches different.   

 

 

3.3.1 The Event-Oriented Approach 

 

The event-oriented (or event-scheduling) models a system’s behaviour based on a set 

of events triggered by entities.  Instead of grouping a series of events into a process 

description, it only lists events (no matter to which entity it belongs) based on their 

time of occurrence.  Executing relevant event routines will simulate the system’s 

processes and consequently update its model states.   

This approach is well suite to model a system with a few types of entities since 

all relevant aspects of scheduling can be coded explicitly.  This approach however 

becomes complicated and difficult to program when there are different types of 

transient and resident entities in a system (that introduce various kinds of events).  

Simulation tools that implement this approach include SIMAN (C. Dennis Pegden, 

1989), SLAM (Pritsker et al., 1994) and SLX (Henriksen, 1997).   

Figure 3.1 shows the execution mechanisms of the event-oriented approach.  

The Event List consists of a set of time-sorted event references (Event ID); each of 

which points to an event routine (Event_1, Event_2, etc.).  At a particular point of 

time, the Monitor invokes the imminent event pointer in the Event List and activates 

its appropriate event routine.  Executing a segment of code (Descriptions) for this 

event routine will schedule a new event that will later be inserted back to an 

appropriate location in the Event List.  Consequently, the Monitor updates the 

Simulation Clock.   

There are two options for advancing a model clock under this approach: next-

event time and fixed-increment time.  The next-event time advances model time to the 

most imminent future event time.  At this point of time, the computer executes event 

routines, updates model states and determines the next scheduled event time.  The 

advantage of this is that it saves computer time to run simulation since model time 

jumps from event to event.  The fixed-increment time meanwhile advances model 

time to a fix amount of time unit.  Model states (if one or more events have occurred) 

that have happened between these intervals will only be updated at the end of the 

intervals.  The main downsides of this are: (1) the use of small time intervals but no 



 52 

events occurred during the interval will only cause wasteful scanning and additionally 

impose computational costs, and (2) the use of big time steps but many events have 

occurred during the interval will suffer output accuracy since all state changes are 

only updated at the end of intervals.   
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Figure 3.1  The Event-Oriented Approach Mechanism 

 

 

3.3.2 The Process-Oriented Approach 

 

The process-oriented approach is based on SIMULA (Birtwistle, 1980).  It represents 

system behaviour from the point of view of active entities (called processes); each of 

which has its own lifecycle; i.e., a sequence of activities to be performed.  Each 

process can either be in one of three phases: active (i.e., when its relevant activities 

are being executed), passive (i.e., when the process is suspended) or death (i.e., when 

the process has exhausted its actions).  Only active phases (i.e., phases with time 

delays) update simulation time and model states.   

A process can either be suspended for a definite time (delayed until a certain 

amount of time) or an indefinite time (delayed until some conditions are true; e.g., 

waiting to be re-activated by other processes).  When a process is suspended, the 

Monitor retrieves the next imminent process from the Event List and then reactivates 

it.  The process then flows itself to the next phase of its lifecycle.   
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Figure 3.2 illustrates the process-oriented mechanisms.  Compared to the 

event-oriented approach that its Event List stores a set of time-sorted event routine 

pointers, the Event List in the process-oriented stores a time-ordered set of process 

identifications and their activation times (Process ID, time).  At a particular point of 

time, the Monitor retrieves the imminent process from the Event List and updates its 

Simulation Clock.  Once, the process receives notification from the Monitor, it 

activates the current activation point (reactivation point A, reactivation point B, etc.), 

executes appropriate activities under the phase (Activities), stores the next reactivation 

pointer and re-schedule itself to the Event List.  It is the task of the Event List to insert 

the process at an appropriate location.  The process is then suspended.  This cycle is 

repeated until simulation length has been reached, the Event List is empty or a certain 

condition has been met.   
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Figure 3.2  The Process-Oriented Approach Mechanism 

 

 

The process-oriented approach is usually implemented using languages that 

support co-routine that allows multiple entry points for suspending and resuming 

execution at a certain location of a subroutine (e.g., C#, Python, etc.) or 
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multithreading that allows more than one activities to be performed in parallel within 

an application (e.g., Java, Ruby, etc.).  However, any object-oriented languages can be 

used to implement this approach.  Handling the process-oriented using object-

orientation offers some benefits: (1) object-orientation is a natural framework for 

handling the complexity of the process-oriented framework through its concepts of 

objects, classes, properties, methods and messages thus easing the creation a class of 

entities, (2) object-orientation ensures that information is localized through the 

encapsulation concept thus simplifying the maintenance of entities’ states and 

behaviour, and (3) object-orientation promises flexibility than conventional 

procedures by supporting inheritance, polymorphism and composition concepts thus 

easing the creation of various types of entities and their class maintenances.   

The object-oriented approach eases the implementation of the process-oriented 

approach that views a system as a set of entities that interacts with each other to 

accomplish specific goals.  In the object-oriented framework, a group of processes can 

be presented as a class that encapsulates attributes (class properties) that can only be 

accessed from the outside world through operations (class methods).  Instantiating this 

class will create a process instance with its own values of properties (states).  Because 

of these, the process-oriented approach offers an advantage when a model contains 

many kinds of interacting objects.  Thus, it has been regarded as the best predominant 

modelling worldview for structuring DES models (Kreutzer, 1986; Law, 2007) and 

has been implemented in many DES tools; e.g., SIMULA (Birtwistle, 1979), 

SIMSCRIPT (Rice et al., 2005) and SimPy (Matloff, 2008).   

 

 

3.4 The DES Framework 

 

No matter which modelling style we choose, five main components have to be 

provided to structure and execute DES models: entities to represent objects, a 

simulation clock to manage current model time, distributions to generate entities’ 

stochastic behaviour and drive model probability (i.e., for sampling model-time 

consuming activities), a monitor to manage interactions between entities, and 

statistical instrumentation to gather, analyze and report relevant aspects of simulation 

results.   
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Constructing these components should be based on an appropriate framework.  

This framework must be transparent to support extensibility (i.e., further extension to 

its base structures) and well-designed to avoid future amendments of its base 

structures.  Thus, we constructed our own framework to serve as a base for the 

development of our DES tools.  This design was based on the functionality of certain 

class libraries such as DEMOS (Birtwistle, 1979) and Psim-J (Garrido, 2001), and 

available frameworks such as SIMFONE (Rossetti, Aylor, Jacoby, Prorock, & White, 

2000) and DESMO-J (Meyer, Page, Kreutzer, Knaak, & Lechler, 2005b).   

We designed our own framework because of two reasons.  First, most 

simulation textbooks and literature use available tools to build DES models.  The 

tools’ frameworks are hidden, making their reliability and extensibility to support our 

tool’s objectives is restricted.  Second, although some simulation textbooks that focus 

on simulation programming present their foundation frameworks (e.g., SIMFONE and 

DESMO-J), these frameworks (especially the entity and the Monitor classes) can only 

be implemented in languages that support co-routine or multi-threading (to continue 

and interrupt entities’ lifecycles).  Although this offers some advantages especially in 

allowing simulation to operate faster on computer systems that have multiple CPUs, 

they cannot serve as the base of the development of simulation libraries in any OOP 

programming languages.  Thus, OOP languages that do not support co-routine and 

multi-threading (e.g., C++, ActionScript, etc.) cannot implement the frameworks.  

Our framework is divided into four packages based on their functionality: 

 

 Data Collectors 

 Distributions 

 Monitor (Simulation Executive) 

 Resource (Servers and Queues) 

 

 

Figure 3.3 shows a package diagram that depicts the dependencies between 

these packages in order to create queuing network models.  Note that this framework 

has been presented in Khalid, Kreutzer and Bell (2009).   
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DESTool

Monitor

Resource

DataCollectors

Distributions

«import»

«import»

Models

«import»

«import»

«import»

«import»

«import»

 

Figure 3.3  Package Diagram for Queuing Models 

 

 

3.4.1 The Data Collectors Package 

 

Facilities for statistical instrumentation and reporting are essential features in DES 

models.  Thus, to gather, analyze and report statistical information generated during 

simulation runs, the Data Collectors package must be available.  This package should 

consist of seven classes: Collector, Counter, Tally, Histogram, Boxplot, Graph and 

GraphEntry (see Figure 3.4).   

 

Counter

numCount:Number

increment (amount:Number):Void
decrement (amount:Number):Void

Tally

numCount:Number
numMin:Number
numMax::Number
numSum:Number
numSumSquare:Number
numCount:Number

minimum ( ):Void
maximum ( ):Void
mean ( ):Void
stdDeviation( ):Void

Histogram

numMin:Number
numMax:Number
numIntervalSize:Number
numTotalNumOfInterval:Number

minimum ( ):Void
maximum ( ):Void
numberOfIntervals (value:Number)
update (value:Number):Void

Graph

numNumberOfPoints:Number
arrEntries:TimePlotEntry

update (time:Number, value:Number):Void

GraphEntry

Collector

strName:String

show ( ):String
reset ( ):Void
setName( ):Void

Boxplot

numMedian:Number
numFirstQuantile:Number
numThirdQuantile:Number
numIQR:Number
numUpperLimit:Number
numLowerLimit:Number
numMinValue:Number
numMaxValue:Number

median():Void
firstQuantile():Void
thirdQuantile():Void
IQR():Void
findLowerLimit():Void
findUpperLimit():Void

 
Figure 3.4  Class Diagram for the DataCollectors Package 
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The Collector class forms the base of the data collector hierarchy.  Counters 

record relevant changes in model states; e.g., occurrences of significant events.  They 

can, for example, be used to record the number of entities that have entered or left a 

model, the number of entities that have joined or left a queue, or the number of 

entities that have been serviced by a resource.  This class consists of two methods: 

increment(amount) and decrement(amount).  While the increment(amount) is used to 

increase the counter with a certain value, decrement(amount) should also be provided 

to decrease the counter with a specified value.  The combination of the two methods is 

always used in an object; e.g., to report the number of entities in a queue object or in a 

resource object.  Note that we have to provide flexibility for users to specify the 

amount number in case they want to represent a batch arrival or departure.   

A Tally reports the minimum, maximum, mean and standard deviation of a 

series of values.  It can, for example, be used to gather reports on delays; e.g., time 

spent waiting in queues or residence times in the model.  Histograms assign values to 

intervals and show frequency counts for each interval in graphical forms (bar charts).  

They can be used to gather and report, for examples, time between arrival of entities, 

time waiting in a queue, service times of a resource and cycle times.  Boxplots provide 

descriptive statistics of data variation.  They can be used to graphically report 

information about the smallest, largest and median values of observations, and the 

lower and upper quartiles of a series of data.  The use of Histograms in conjunction 

with Boxplots will help users to understand data better.   

TimePlots (chronological graphs) are used to track the temporal evolution of a 

variable’s values; i.e., how they change over time.  Plotting the number of entities in a 

queue or showing changes to a resource’s utilization during some model time 

intervals can serve as examples.  The TimePlot class uses an instance of the 

TimePlotEntry class as data points; i.e., a set of model time and its value.  Each class 

(except TimePlotEntry) should implement show( ) and reset( ) methods to display 

information of a series of observed data and to discard all these data, respectively.   

 

 

3.4.2 The Distribution Package 

 

DES models typically are stochastic; i.e., their elements occur in a random pattern that 

eventually generates random events.  For example, each entity has its own arrival time 
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and travel times (from location to location) that will generate non-deterministic 

results.  Experimentations with these inputs to find the best possible outputs in various 

scenarios are one of the purposes of DES.  Simulating this random behaviour requires 

a component that has capabilities for generating samples from a variety of 

distributions.   

The Distributions package provides a selection of pre-packaged distribution 

objects.  These may, for example, be used to schedule the time between workload 

items’ arrivals or service times of resources.  Note that the term “RNG”, used in 

Figure 3.5, stands for random number generator.  There are two methods to generate 

computer random numbers: the middle square method (Knuth, 1981) and the 

congruental method (Boyar, 1989; Hull & Dobell, 1962).  The main limitations of the 

first method are the iterations for generating new random numbers cannot be longer 

than 10
n
, where n is the number of digit random numbers and if the first half digits of 

generated numbers are zeros, the subsequent numbers will then be decreasing to zero 

and this will eventually stuck the generator.  The advantages of the second method are 

that (1) this method is easy to understand and be implemented in addition to 

producing decent random numbers with the right choice of its coefficients, and (2) 

this method only needs minimal computer memory to retain its state.   

 

Boolean

Cauchy

Constant

Exponential

Gamma

LogNormal

Normal

Triangular

Uniform

Weibull

RNG

nextRN ( ):Number

Tally

minimum ( ):Void
maximum( ):Void
stdDeviation ( ):Void
show ( ):Void

Distribution

numRNGSeed:Number
rngInstance:RNG
tlySampleTally:Tally

sample ( ):Number
reset ( ):Void
show ( ):String

 

Figure 3.5  Class Diagram for the Distribution Package 

 

 

We use Actionscript’s generator, which is based on the standard congruential 

method, for this purpose.  The nextRN( ) method is used to create random numbers 

uniformly distributed between 0 and 1, which are then used in distribution functions.  

Examples are Boolean, Exponential, Gamma, etc.; each of which represents a 
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statistical analysis of empirical data either collected from a real system or an 

approximation of sample data for an imagination system.  More comprehensive 

discussion on estimating an input distribution and its characteristics can be found in 

any textbooks; e.g., by Banks (1998) and Law (2007).   

Each distribution class has a sample( ) method that implements a function of a 

random number for generating distribution samples.  These samples can be updated in 

a Tally instance (through a composition technique) to report basic information (e.g., 

the minimum, maximum, etc.) of a series of generated data.  Options to show and 

remove these data should be available through show( ) and reset( ) methods.   

 

 

3.4.3 The Monitor (Simulation Executive) Package 

 

The Monitor package provides the infrastructure for sequencing state transitions in 

DES models.  Its main focus is on the creation, scheduling and termination of 

processes.  This package consists of five classes: SimProcess, Monitor, Agenda, 

Clock, and Event as shown in Figure 3.6.  The SimProcess class describes the life 

cycles (i.e. the sequence of events such an entity moves through) of active entities.   

 

Clock

numTime:Number

set  (time:Number):Void
getTime ( ):Number
reset ( ):Void
show ( ):String

Event

smpProc:SimProcess
numTime:Number
strEventType:String

show ( ):Void

SimProcess

strName:String
strPhase:String
static eventType:Array

schedule (time:Number):Void
hold (time:Number):Void
addPhase (phase:String):Void
lifeCycle (phase:String):Void
initLocation (X:Number, Y:Number):Void
moveTo (X:Number, Y:Number):Void

Monitor

agdAgenda:Agenda
simClock:Clock

terminatingCondition ():Boolean
setSimulateFor (time:Number):Void
schedule (proc:SimProcess, time:Number):Void
getCurrentObject ():SimProcess
run ( ):Void
reset ( ):Void

Agenda

arrEvent:Array

insertEvent  (proc:SimProcess, time:Number):Void
getNextEvent ():Event
isEmpty ( ):Boolean
reset ( ):Void
show ( ):String

 

Figure 3.6  Class Diagram for the Monitor Package 
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Two important methods should be provided in the SimProcess class: 

schedule(time) and hold(time).  The schedule(time) method is to schedule an instance 

of SimProcess with a specific time value.  The hold(time) method is to delay this 

process until a specific value of future time (i.e., current model time plus a specified 

amount of delay time).  When the time is reached, this process will be activated so 

that it can flow to the next phase of its lifecycle and once again one of the two 

methods will be called again until it is destroyed.  Since Actionscript 2 does not offer 

any features for implementing co-routines or threads, each SimProcess instance needs 

to keep track of its current phase (i.e., the current stage of its lifecycle) using a class 

variable.  This property is updated whenever the process encounters a model time 

delay.  Tracking SimProcess instances’ current phases needs the SimProcess class to 

compose a Monitor instance so that they can insert themselves to the Monitor’s 

Agenda.   

The Monitor owns an Agenda (or known as an Event List) that maintains a 

time-ordered list of future events.  Whenever a new event is scheduled, the Monitor 

inserts a process and its time reference (event notice) at an appropriate agenda 

position and will then wake and remove this process whenever its time of occurrence 

is reached.  Thus, the Monitor should have two encapsulated methods; i.e., 

schedule(proc:SimProcess, time:Number) and getCurrentObjects( ) to insert and 

remove processes from the Agenda (by delegating tasks to the Agenda’s 

insertEvent(proc:SimProcess, time:Number) and getNextEvent( ) methods), 

respectively.   

Instances of the Event class are used as agenda entries that store a process 

reference and its wake-up time.  An awakened process’ phase value ensures that the 

process’ execution continues from just after the point at which it incurred a delay and 

then passes the control back to the Monitor.  The Agenda can be implemented using 

arrays, linked lists, trees, etc.  Arrays are adequate; the Monitor will however 

consume more computer time to insert a process at a proper location in its Agenda 

whenever its array size is getting larger.   

A simulation’s temporal progress is controlled by the Monitor class’ single 

instance, which owns all model components and whose functionality selects the next 

imminent event from an agenda, updates the model clock (an instance of a Clock 

class) to the relevant time value, and activates the appropriate process, instructing it to 

execute its next phase.  This executing process is repeated until the Agenda is empty 
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(isEmpty( )), a certain condition has been met (terminatingCondition( )) or simulation 

time has been reached (setSimulateFor(time)).  Thus, to avoid an empty Agenda for 

the first run, it is important to ensure that at least one process has been placed in the 

Agenda.  Executing this process will transfer it to other phases and/or create a new 

process.   

 

 

3.4.4 The Resource (Servers and Queues) Package 

 

Figure 3.7 shows a class diagram for the Resource package.  This package consists of 

two classes: Server and Queue.  Both the Server and Queue classes can compose 

instances of Tally, Graph, Histogram and Boxplot to report their states in various 

formats.   

 

Queue

tlyQWaiting:Tally
tpQLength:TimePlot
htQWaiting:Histogram
htQWaiting:Boxplot

enter (simProcess:SimProcess)
leave ( ):SimProcess
show ( ):String
getQueueLength():Number

Server

numTotalUnits:Number
numFreeUnits:Number
mon:Monitor
waiting:Queue
tlyServeTime:Tally
tpServerCapacity:TimePlot
htServeTime:Histogram
htServeTime:Boxplot

fileIntoQueue (simProcess:SimProcess):SimProcess
request (simProcess:SimProcess):Void
takeFirstFromQueue ( ):SimProcess
seizeServer (simProcess:SimProcess):Void
release ( ):Void
show ( ):String

 

Figure 3.7  Class Diagram for the Resource Package 

 

 

Servers allocate limited capacity resources to service requests.  If a server’s 

capacity is exhausted, the requesting entity will be placed in a service queue - an 

instance of the Queue class.  As the SimProcess class, the Server class must compose 

a Monitor instance so that its lifecycle can be tracked.   

The Queue class should implement two methods: enter(simProcess) and 

leave( ).  The enter(simProcess) method is to insert a SimProcess instance to a queue 

while the leave( ) method is to retrieve the head of the queue.  These two methods are 

used in the Server class through a composition technique.  Among methods that 

should be provided for the Server class include:  
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 fileIntoQueue(simProcess) is to insert a SimProcess instance into a queue before 

allocating the instance with a certain unit of the server.  This method uses the 

Queue’s enter(simProcess) method to accomplish this task.   

 request(simProcess) is to check if the Server is ready to allocate its service; i.e., if 

it can supply a certain amount of unit for a requested SimProcess instance.   

 takeFirstFromQueue( ) is to enable the Server to retrieve the first SimProcess 

instance from a queue .  It calls the Queue’s leave( ) method to accomplish this 

task.   

 seizeServer(simProcess) is to allocate a certain unit of the Server ‘s capacity to a 

requested SimProcess instance.   

 release( ) is to enable the Server to get back a certain amount of unit that it has 

allocated to a SimProcess instance, so that the next SimProcess instance can 

request for its service.  Once again, the request(simProcess) method will be 

called.   

 

 

3.5 Graphical Objects in DES Models 

 

Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7 show class diagrams for creating 

queuing networks’ classes.  Implementing these classes in any computer languages 

eases model building through API.  The resulting models are however limited to text 

description models; i.e., a list of texts that describes their logic and behaviour.  

Creating graphical structures and animated versions of the models needs the concept 

of graphical objects that symbolize their functionalities and ease access to model 

properties.   

Graphical objects for animating DES models can be split into two different 

categories.  The first one is independent of the simulation domain or Domain 

Independent Objects, while the second one is specific to a particular type of 

simulation or Domain Dependant Objects; see Figure 3.8.   

Domain Independent Objects can be further divided into two subgroups: static 

objects and dynamic objects.  Static objects do not move or change visual appearances 

during animation; e.g., simulation inputs (i.e., different types of distributions under 

the Distribution package) or symbols for the simulation controller (i.e., the Monitor).  
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Dynamic graphical objects, on the other hand, change their appearances and/or 

locations.  This category includes clocks (under the Monitor package), histograms, 

graphs and boxplots (under the Collector package) and queues (under the Resource 

package).   

 

Graphical Object

Input

Distribution

Controller

Domain Independent Object

Static

HistogramClock Timer Graph

Output

Setup Control

Dynamic

StockBin

Logistic

Domain Dependent Object

Transporter

Non-accumulating Conveyer

Static Transporter

Accumulating Conveyer

Machine

Free-path Vehicle

Dynamic Transporter

Guided Vehicle

Service

Customer Worker

Manufacturing

 

Figure 3.8  Graphical Objects in DES 

 

 

Domain Dependent Objects are often dynamic objects that represent 

SimProcesses’ changing location (e.g., moving customers or vehicles) and/or 

appearance (e.g., machines or conveyor belts).  Figure 3.8 depicts some examples of 

domain dependant objects for service, manufacturing and logistic systems.  In 

manufacturing systems, transporters are used for transporting entities from location to 

location based on a mean velocity value.  Transporters are of two types: static 

(conveyers) and dynamic (vehicles).  While vehicles move along with entities, 

conveyers remain at the same places; i.e., they only move entities from location to 

location using belts based on the velocity of the belts.   

As shown in Figure 3.8, there are two types of vehicles: free-path and guided.  

Free-path vehicles can move freely between stations and are not influenced by other 

transporters’ traffic.  Examples are trucks, forklifts, etc.  Guided vehicles (e.g., 

automated guided vehicles) run on fixed networks (tracks or rails) and are influenced 
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by traffic congestion.  Conveyers meanwhile are of two types: accumulating and non-

accumulating.  Accumulating conveyers will keep moving although they have been 

accessed by entities.  On the other hand, non-accumulating conveyers will stop their 

belts for loading or unloading entities.   

In logistic systems, bins and stocks are used for holding goods.  A bin object 

represents an unlimited capacity container while a stocks object has a fix capacity.  

Chapter 4 discusses how these objects can be created in the Flash environment by 

attaching symbols and key frames to their classes.   

As mentioned earlier, each dynamic object has to go through a sequence of 

events; each of which associates with a list of activities that changes their states and 

affects other objects’ states; e.g., changing a server’s status from idle to busy.  We can 

link the events using a directed graph (Kalra & Barr, 1992).  Table 3.1 shows 

different types of directed graphs, their descriptions and how they can be used to 

connect various events in DES objects.  Based on these directed graphs, we have 

identified some properties and events that should be included in dynamic objects as 

shown in Table 3.2.   

 

Table 3.1  Types of Directed Graphs 

Directed 

Graphs 
Descriptions Examples 

Time line 

A linear arrangement of events.  Each object 

must follow a fix sequence of events; i.e., 

one event will only lead to one other event.   

 

Event_1

Activities

Event_2

Activities

Event_3

Activities

 
 

Entities with a fix path. 

Time tree 

A few alternatives of events.  An event can 

traverse to several possibilities of the next 

events.   

 

Event_3

Activities

Event_4

Activities

Event_1

Activities

Event_2

Activities

 
 

Entities with a diverse 

sequence of events; e.g., 

a model that considers 

decision points, balking 

(arriving entities that do 

not join a queue but go 

away), reneging (entities 

that join a queue at first 

but decide to leave the 

queue later) or jockeying 

(switching queues).   
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Time 

graph 

A loop of events; i.e., a series of events that 

is repeated by an object.   

 

Event_2

Activities

Event_4

Activities

Event_3

Activities

Event_1

Activities

 
 

Servers, transporters 

conveyers, bins and 

stocks.   

 

 

Table 3.2  Properties and Events for Dynamic Objects 

Objects Properties Events/Phases 

Entity 

Initial location 

Current location 

Target location 

Arrival time 

Departure time 

Arrive, Depart and events associated 

with other communicated objects 

Server 

Capacity 

Service Time 

Status: idle or busy 

Utilization 

Request, Seize, Delay (Busy), Release 

(Idle), Inactive and Fail 

Transporter 

 

Status: idle, busy or 

inactive 

Velocity 

Time unit 

Capacity 

Current load 

Initial position 

Distance set: beginning 

station, ending station, 

distance 

Request, Load, Transport, Free and 

Stop 

Conveyer 

Velocity 

Units 

Cell size 

Segment: beginning 

station, next station, 

length 

Access, Convey, Exit and Halt 

Stock and Bin 

Initial stock 

Inventory levels: 

minimum, current, 

desired 

Costs: keeping, ordering, 

unfulfilled 

Request, Product Delivery and Stock 

Order 
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Time graph entities can be hard coded by tool designers while time tree 

entities that traverse to several paths of events must flexibly be coded by model 

developers.  However, leaving this task in their hand could create certain problems.  

First, they have to code the events using if-else or switch-case statements with 

descriptions of activities.  The process of creating, extending and saving entity classes 

and writing such selection structure statements may burden and cause tension.  

Second, at certain levels of if-else or switch-case statements, they again have to write 

another selection structures so that at the relevant stage certain entities can skip linear 

events to represent an alternative flow; e.g., based on certain probability, queue 

length, work in process, etc.  These processes tend to make code clumsier and lead to 

logical errors.  This problem is getting worse if there are many classes of entities in a 

model, each of which has their own alternative paths.  Third, they have to carefully 

study a segment of relevant code if they plan to modify entities’ lifecycles to ensure 

that the modification will flow the entities along the right paths.  We have catered 

these problems by generating events during runtime instead of specifying events 

during design time.  This approach will be discussed in details in Chapter 5.   

 

 



 67 

 

 

 

CHAPTER 4 

 

USING FLASH FOR SIMULATION 

 

 

4.1 Introduction 

 

The use of simulations in education and training is an attractive idea since it allows 

learners to gain access to and experiment with dynamic models under different 

scenarios.  However, to take full advantages of the technology’s potential, simulations 

must be interactive enough to allow learners to fully immerse themselves rather than 

tediously studying lists of results or just watching pre-recorded animations of 

simulation experiments.   

Visualizing DES models in an attractive and interactive environment is 

suspected to help learners to learn and understand DES systems better.  While most 

DES tools offer some capabilities to generate animations, simulators with a strong 

feature set for animation design typically stress qualitative understanding of system 

behaviour rather than statistically well corroborated predictions of system 

performance.  Thus, supplying teachers with easy-to-use tools (e.g., through a drag 

and drop approach) that create highly animated models to motivate learners, 

equipping the models with dynamic displays and means of interactions to engage 

learners and easing the deployment of the models either on the web or modern LMSs 

to serve communities of learners are crucial.  Unfortunately, no single current DES 

tools have been fashioned for these.   

Attractive and interactive DES models integrate simulations and animations to 

reflect change in either the time or space dimension.  Temporal change, for example, 

occurs whenever a simulation encounters delays (in model time) and whenever an 

animated object changes appearance.  Spatial change occurs whenever a visual entity 

moves.  To support animated simulations requires a nested design, where model time 

must be mapped onto animation time, and animation time must be mapped onto real 

time.  There are a number of strategies for connecting such layers of representation.  
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We have however opted for a concurrent (synchronous) approach, where model time 

is always proportional to animation time and animation time is always proportional 

to real time.   

The design of DES tools should be based on Visual Interactive Simulation 

(VIS) fundamental concepts.  For this reason, we start this chapter with a brief review 

of the concepts and the benefits they offer to learning and teaching.  Some available 

approaches for integrating simulation and animation in VIS models will also be 

introduced.  Based on the concepts and a selected integration approach, we then argue 

that Adobe Flash is a suitable development environment for constructing tools of VIS 

models.  A proposal of how VIS’s essential components can be created with the help 

of our framework (discussed in Chapter 3); i.e., how we relate all the four packages to 

a single overall class diagram for VIS models is then presented.  We then present a 

series of simulation components that have been developed to build queuing models.  

We further our discussion by listing some tricky issues in integrating an animated 

simulator to DES models specifically in permitting animation speed to be dynamically 

adjusted during runtime.  This chapter ends with a presentation of an overall class 

diagram that supports DES for logistic and manufacturing systems.   

 

 

4.2 Visual Simulation and Visual Interactive Simulation 

 

Interactive simulations use tools that focus on either model developers (e.g., teachers) 

or consumers (e.g., learners).  The first type of tool helps developers to specify model 

structures and model parameters within a graphical programming environment; e.g., 

through blocks and symbols, or by answering a series of questions.  The second type 

of tool uses animation and interaction for showing a model’s behaviour either during 

or after a simulation run.   

Model building through blocks and symbols typically gives developers more 

flexibility in constructing models than answering a series of questions that constrains 

developers in only choosing models from a set of pre-fabricated models, considered 

by the mindset of tool designers.  Since both approaches focus on building a model 

using some means of interactions, it is well-known as Visual Interactive Modelling 

(VIM).  Au & Paul (1996), Odhabi, Paul, & Macredie (1998) and Sargent (2004) 

discuss such simulation software.   
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The resulting models can be of two types: Visual Interactive Simulation (VIS) 

or Visual Simulation.  While simulation models that permit users to interact with them 

during their execution are referred to as Visual Interactive Simulation, any simulation 

model that only allows users to view its behaviour through animations without any 

capability for interaction is known as Visual Simulation (see Bell, 1989; 

Mascarenhas, Rego, & Sang, 1995; S. Narayanan et al., 1997; S. L. Robinson, 1994; 

Sargent, 2004).  Visual Simulation focuses on the attractiveness of simulation by 

tracing and surfacing the dynamic behaviour of models through graphical forms.  

They typically support two types of graphic displays: abstract displays and 

representative displays; see Rooks (1991) and Figure 4.1.   

 

Visual Simulation

Abstract Displays

Representative Displays

Cumulative

Continous

Scale

Schematic

Static Elements

Concrete

Abstract

Dynamic Element

Figure 4.1  Visual Simulation Components 

 

 

Abstract displays stress on data visualization of model states.  They are used 

for interpreting and enhancing the presentation of statistical data (e.g., the Data 

Collector package in Chapter 3) in the simplest form that can be comprehended by 

consumers.  Various visualization methods (e.g., the use of colour, appropriate texts, 

etc.) that engage them and promote their understanding could be implemented.  

Abstract displays can be further divided into two groups; i.e. cumulative and 

instantaneous displays.  As the name suggests, cumulative displays increase the 

amount of data shown during a simulation’s execution.  Past data points will remain 

on display until removed by model developers or consumers.  Cumulative displays 

help document the values of model variables’ change over time; e.g., the number of 

entities in a queue.  Examples are graphs, progress bars and scatter plots.  

Instantaneous displays, on the other hand, only expose current states of model 
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variables during a simulation run, without showing their previous states.  Examples 

include histograms, bar charts, pie charts, gauges that indicate levels, etc.   

Representative displays offer pictorial views of a model in a simplified form.  

They can be of two types: a scale model or schematic.  A scale model gives a pictorial 

view of a system drawn prior to starting a simulation and will not change during a 

simulation experiment.  It typically offers the physical layout of a model, trying to 

offer a realistic background in front of which the simulation takes place.  Schematic 

displays are more abstract.  They are used to visualize the topology and paths of 

movement within a simulation and are typically required for animations.  While a 

scale model is completely static, schematic displays serve to frame changes during a 

simulation run.   

Schematic consists of two types of components: static elements and dynamic 

elements.  Static elements remain at a specific location, but can change their 

appearance during a simulation.  Using different dynamic icons to picture idle or busy 

states of a server can serve as an example.  Dynamic elements represent objects that 

actively move (e.g., entities) over a static background (scale model).  These objects 

can be split further into two groups: concrete dynamic displays are objects that do not 

change their appearance while moving and abstract dynamic displays are objects that 

change their appearance while moving (e.g., walking customers with moving legs).  

Henriksen (2000) further differentiates these objects based on their types of motion; 

i.e., objects that only move in a linear form between two fixed points (absolute 

movement), or objects that move along defined paths (guided movement); see (Kamat 

& Martinez, 2007).   

Animations create and change the appearance of images at different points in 

time to convey visual information to viewers.  In DES, animations are used mainly to 

observe patterns of movement of entities including their transformation from one state 

to another, their interactions with other objects, and the occurrence of queues 

whenever capacity-constrained resources cannot be seized.  To attain advantages over 

traditional DES models, some researchers (e.g., Belfore et al., 2003; Gilman, 1985; 

Hill, 1996; Macal, 2001; Rekapalli & Martinez, 2007; Stahl, 2003; Wenzel & Jessen, 

2001) suggest a few alternatives.  This includes presenting a model in a more user-

friendly and understood form (e.g., model developers should clearly illustrate model 

structures with appropriate symbols and label names on a stage, and display 

simulation results in a graphical form with appropriate headings, labels, etc.), 
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providing graphical interaction windows for receiving input from their users (model 

consumers) and designing multiple windows to display simulation information so that 

users can customize their views of the model.   

Simulation, animation and interaction are core components for VIS.  

Basically, VIS models allow learners to (1) initialize simulation parameters and run 

the model, (2) observe the simulation behaviour through animation, (3) experiment by 

making changes to model parameters while a model is running, (4) re-observe the 

impact of the changes, and (5) customize model visualization during a model 

execution.  Since the very notion of simulation implies experimentation with models 

(Rooks, 1991), such runtime interaction capabilities should be an integral part of any 

advanced computer-based simulation development tools.  Providing the interaction 

requires us to examine some DES animation approaches.   

 

 

4.3 Animation Approaches 

 

Dynamic elements focus on object movement from location to location, satisfying 

their time delays.  For this, relevant information from simulation needs to be mapped 

with animation.  This mapping process can be based on three available approaches; 

i.e. post-processed animation, direct simulation-animation and concurrent animation 

(see Figure 4.2).   

Simulation

Create Patient#1 0
Place Patient#1 Door 0
Move Patient#1 Counter#1 10

...

...
Animation

Trace file

Animation

Post-processed Animation

Simulation

Direct Simulation Animation

Animation

Simulation

Concurrent Animation

Learner

 

Figure 4.2  Three Approaches to Combine Simulation with Animation 
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Post-processed animations separate simulation and its animation.  An animation is 

performed after a simulation has been run to completion (Hill, 1996; Rohrer, 2000).  

To drive an animated model, an animation tool needs to read a simulation trace file 

that contains relevant data as well as time-ordered command sequences; e.g., 

commands for creating, moving or destroying entities.  Trace files can be written 

using a simulation package that provides the capability of writing to text files during a 

simulation run, general purpose programming tools or a text editor.  Because of their 

reliance on pre-collected data, post-processed animations cannot support any runtime 

interaction between users and a simulation model.  Despite this drawback, they offer 

some advantages such as (1) animation tools and simulation tools can be independent 

in terms of software and operating systems, (2) no computer memory is shared 

between simulation and animation tools that causes their executions become efficient, 

and (3) animation viewers can still jump backward and forward in the model time 

dimension and speed or slow down the rate at which sequences of events are 

displayed since all relevant simulation data has been collected.   

Direct simulation-animation is a form of real time animation, in which a trace 

of simulation events and their visual displays are created on the fly; i.e., during a 

simulation run.  Animation tools that support this approach must be based on some 

means that allow interaction with the simulation software at execution time; e.g., a 

Dynamic Link Library (DLL) in case of the Proof (Henriksen, 2000) software.  Since 

the simulation and animation tools are still separated processes, the technique does 

not usually allow user interaction with models.  Some researchers have however 

begun to investigate how this constraint may be overcome (e.g., see Strassburger, 

Schulze, Lemessi, & Rehn, 2005).   

Concurrent animations couple animations with simulation engines; i.e., their 

interactions must be directly programmed into the simulation scheduler’s (the 

Monitor’s) operation.  Simulation events and animation events are both activated 

whenever the model changes its states; i.e., the scheduler sends event relevant 

animation commands to the animator at the model time that such changes should be 

displayed.  This approach is a suitable for supporting VIS.  Although altering a 

model’ parameters during its execution may seriously harm the validity of simulation 

results (Hill, 1996; Matwiczak, 1990), the tight synchronization between event 

scheduler and animator permits flexible patterns of interaction with running models; 
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an often essential element for enhanced understanding of complex systems in training 

and education (S. Narayanan et al., 1997) and making the distribution of the models 

on the web or LMSs much easier.  However, the proper connection between 

simulation (model) time (i.e., a set of important points of time (events) abstracted 

from a continuous process system where model behaviour and state changes take 

place) and animation time (i.e., a set of interval time to animate and move entities) is 

a challenge for developing the kind of tool.   

Table 4.1 shows some aspects of simulation and animation approaches.  Table 

4.2 meanwhile lists interaction characteristics of concurrent and post-processed 

animations.  Based on these characteristics, we have categorised some DES tools as in 

Table 4.3.  As we can see, most of the tools are based on a unidirectional 

characteristic; i.e., their resulting models do not support runtime interactions and the 

models cannot also be executed on web pages.  DES tools that are concurrent, 

bidirectional, homogeneous and integrated are important for building models for 

learning purposes.   

 

 

Table 4.1  Aspects of Simulation-Animation Approaches 

Aspect Feature 

Mapping Approach 

Concurrent: Animations are 

directly coupled with a 

simulation engine 

Direct, Post-processed: 

Animation is performed 

after the entire model has 

been processed 

Interaction 

Bidirectional: Simulation and 

animation can react to each 

other 

Unidirectional: Simulation 

controls animation 

Hardware Platform 

Homogeneous: Simulation and 

animation are executed on the 

same platform 

Distributed: Simulation and 

animation can be executed 

on different platforms 

Animation 

Integrated: Animation is 

integrated in a simulation 

engine 

External: Animation and 

simulation are independent 
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Table 4.2  Interaction Characteristics of Concurrent and Post-processed Animations 

Interaction Characteristic Concurrent Post-processed 

Ability to change simulation parameters and 

directly observe simulation results 
Yes No 

Animation performance (speed, smooth 

motion) 
Variable Excellent 

Ability to fast forward Yes Yes 

Ability to rewind No Yes 

Ability to run large models Variable Excellent 

 

 

Table 4.3  Available DES Tools and Their Features 

Simulation Tool Feature 

Proof  Concurrent/Direct, unidirectional, 

homogeneous/distributed, external 

SLAM 

 

Concurrent/Post-processed, unidirectional, 

homogeneous/distributed, integrated 

Arena, AutoMOD, 

ProModel, Simul8, Extend, 

GPSS 

Concurrent, unidirectional, homogeneous, integrated 

SIMAN/CINEMA, 

SEEWHY/WITNESS, 

SLAM/TESS 

Concurrent, unidirectional, homogeneous, external 

 

 

4.4 Managing Simulation and Animation 

 

Animated DES deals with animation of various entities in a system.  Each entity is 

animated independently in terms of its dynamic appearance (transformation of 

physical displays from state to state), motion (movement from location to location) 

and interactions with other objects at appropriate instances of time; see Figure 4.3.  

The motion of DES’ entities only employs descriptive motion (i.e., motion without 

considering factors that cause it) and behavioural motion (i.e., reactions of the object 

based on its communications with its environment during temporal interval) rather 

than generative motion (i.e., motion caused by some external factors; e.g., forces or 

torques that effect objects’ position and orientation); see Donakian and Cozot (1995).   
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Linking a simulation model to its animation requires a conversion of three 

types of simulation information; see Table 4.4.  The time difference between two 

consecutive events (see Table 4.5) and the resulting delay (in a model time unit) are 

the only information available for an animator to display changes of simulation 

entities’ activities, location or appearance; e.g., to show a smooth glide between 

screen coordinates or changing an icon representing a server’s idle state to one 

showing that it’s now busy.  Thus, anything happening between two consecutive 

events is considered irrelevant (i.e., outside the brief of the model) and therefore 

ignored.   

 

 

 

 

Animated 

entity 

Visual physical dynamic appearance in 2D (images, geometries) or 3D 

(geometries) formats 

Properties with temporal states (values of properties) 

that change during simulation to adapt the current 

situation.  Properties can be scalars (e.g., the current 

location, a transformation value, a velocity value, etc.) 

or vectors (the direction of movement) 

Interfaces 

Activities 

(functions/operations) 

Animation methods to define 

actions in response to events; 

e.g., creation, movement, 

translation, rotation, 

modification, communication, 

elimination, etc.   

Event handlers to support 

runtime interactions with users; 

e.g., onClick, onMouseOver, 

etc.   

Events that modify entities’ behaviour (internal states) 

Figure 4.3  DES’s Animated Objects 

 

 

Table 4.4  Simulation to Animation Conversion 

Simulation Animation 

Delay (time) Continuous movement between two 

locations (time and space) 

Events (state changes) Visual appearance of objects’ behaviour 

Numerical output that is typically 

difficult to understand by learners 

Visual format reports to ease learners’ 

understanding 
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Table 4.5  Events and Model Time Difference in a Sample System 

Model Time Difference

2

1
Delay time for
Customer 1

2

3

1

0

Time

0

2

3

5

8

9

9

Process

Customer 1

Customer 2

Customer 1

Customer 2

Customer 1

Customer 3

Customer 2

Event

Arrival

Arrival

Seize Teller

Join Queue

Release Teller

Arrival

Seize Teller

Delay time for
Customer 2

 
 

 

Consistent transformations of model time to animation time (see Figure 4.4) 

are essential for maintaining the realistic illusion of a real system either its model is 

consistently running at a default rate or variably running at a user-specified rate.  

However, animated models that allow users to flexibility adjust their execution speed 

(i.e., to speed up, slow down or halt their model time) at any time they wish need to 

embed a term called a viewing ratio.  A viewing ratio is used to map the given number 

of model time units into a corresponding number of seconds of animation time.  For 

example, if the viewing ratio is set to 10, then 1 second of animation time is equal to 

10 units of simulation time.   

 

0 1 2 3 4 55 6 7 8 9 10 Animation Time
(continuous process)

2 3 55 8 9 Model Time
(discrete points)

0

Transformation

 

Figure 4.4  Transformation from Model to Animation Time 

 

 

Equation 4.1 can be used to smoothly animate all transactions between events.  

This equation ensures that all state changes will be visible at their proper time, no 

matter what viewing ratio has been selected by users.   

 

Animation time =  model time difference between two consecutive 

events * (1 / viewing ratio) 
(Eq. 4.1) 
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Equation 4.2 can meanwhile be used to show smooth movement of an object 

from location to location.  It ensures that the object arrives at its target location at a 

specified point of time, with a condition that a viewing ratio is smaller or equal to 

model delay.  If the viewing ratio is greater than a certain entity’s delay time, we need 

to set the movement to 1 to make sure that the object will arrive at one second 

animation time.   

 

Movement (per unit 

animation time) 

 =  distance * (viewing ratio / delay to location) 
(Eq. 4.2) 

 

 

4.5 Flash as an Implementation Language for Simulation and Animation 

 

Adobe Flash (H. M. Deitel, Deitel, & Goldberg, 2004; Lopez, 2006; Mohler, 2006; 

Shupe & Hoekman, 2006) offers a tool for creating attractive, interactive and 

multimedia affect models.  However, we have not found any reports on Flash-based 

DES models or Flash libraries for DES model construction.   

We have therefore investigated Flash’s features for its suitability as a DES 

development tool.  In spite of the fact that Flash does not support coroutine that 

requires us to write the lifecycle of each type of active entity using selection structures 

(if-else or switch-case statements), we found that it provides a good base for DES 

framework development for four main reasons: (1) Flash offers various features for 

VIS development and we consider this as a very important aspect of providing highly 

animated DES models, (2) Flash facilitates the construction of DES components and 

this simplifies model building in terms of their structures and logic, (3) Flash enables 

model developers to locate animated objects on a relevant layer of multiple layers and 

this eases the management of various objects and GUIs, and (4) Flash automatically 

creates web-based models and supports web interactions and these ease model 

distribution.  Additionally, its scripting language ActionScript is syntactically similar 

to Java and C++ in many ways; e.g., object-oriented structure, package, class, method, 

properties, data types etc.  Thus, anyone who knows the languages and has some 

background in DES frameworks could easily implement the frameworks using Flash.  

Note that other tools exist or may appear that meet these criteria.  However, at the 

time the research was done, Flash was a widely used tool that met these criteria.  A 
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recent candidate would also be HTML5, although this is nowhere near as mature as 

Flash.  It does have the advantage of working on Apple mobile products.   

 

 

4.5.1 Flash Features for VIS Development 

 

Flash supports the development of some typical graphic displays in VIS through its 

facilities (e.g., text, sound, video, animated graphics, etc.) and built-in methods (e.g., 

rotation, movement, etc.).  Its scripting language, ActionScript (Donatis, 2006; 

Hamlin, Tarbell, & Williams, 2003) can be used to support interactive contents and 

enhance model presentation that make simulations to come alive.  Table 4.5 relates 

VIS Graphic Displays to relevant Flash features.   

 

Table 4.6  VIS Graphic Displays and Flash Features 

VIS Graphic Display Flash Feature 

Abstract displays (e.g., 

graphs, histograms, etc.) 

Flash runtime drawing methods such as lineTo( ), lineStyle( 

), beginFill( ), endFill( ), beginGradientFill( ), etc.  These 

methods can be written in an ActionScript class and 

associated with a movie clip symbol as a component.   

Scale models  Flash Drawing Tools 

 Flash import facilities to import various kinds of image 

and geometry files.  Supported files include AutoCAD 

DXF (*.dxf), Silicon Graphic Image (*.sgi), JPEG 

Image (*.jpg), etc.   

Static elements (e.g., 

servers or animated 

symbols) 

A movie clip associated with an ActionScript file.  The file 

controls Keyframes to animate the status of static elements.   

Concrete dynamic 

displays 

A movie clip associated with an ActionScript file.  The 

movement of the movie clip onstage is controlled by a 

movie clip’s instance's _x and _y properties.   

Abstract dynamic 

displays 

An animated movie clip that uses multiple frames and 

layers associated with an ActionScript file.   

Tools for enhancing 

model presentation (e.g., 

audio, video and text) 

Audio, video and other Flash Tools (e.g., Text, Rectangle, 

Line, etc.) and Flash built-in components (e.g., Button, 

MediaController, Label, TextInput, etc.).   
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4.5.2 Flash Component Construction 

 

Flash supports architectures for component development.  A Flash component is a 

compiled movie clip that contains a symbol that depicts its functionality and an 

ActionScript file that defines its operations as in Figure 4.5.  Dragging and dropping 

this symbol onto the Flash stage will automatically create an instance of its class.   

A component is often broken up to smaller components to reduce its 

implementation complexity.  These smaller components are then tied to other 

components (e.g., through a composition technique) to form a more complex 

structure.  By doing this, a component can now delegate relevant tasks to other 

components to perform the whole application functionality and this simplifies 

application development.  In order to encapsulate its internal information and 

structures (i.e., its properties and behaviour), property accessing and behaviour 

triggering are only possible through messages specified by signatures; i.e., publicly 

accessible methods.  This ensures that the component’s internal modifications can 

extensively be made as long as its signatures are not altered.   
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Figure 4.5  Component Architecture 
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Accessing component properties is typically through API.  As an alternative, 

GUIs that compose of other types of objects (e.g., text boxes, combo boxes, buttons, 

sliders, etc.) are used as attractive platforms to parameterise the properties.  In Flash, 

the interactive property changing can be done through Property Inspector.  However, 

this facility is only available during design time and does not integrate any 

mechanism to verify input values (e.g., to force correct data types or limit the range of 

data values to avoid any logical errors).  To address this, Flash allows designers to 

construct their own GUIs using the API approach either for filtering input data (e.g., 

displaying a warning for invalid data), easing data input processes (e.g., displaying 

step by step GUIs) or supporting component parameter manipulation during run time.  

Each GUI should be located in a relevant layer so that users can freely turn it on or off 

anytime they wish.   

Showing the instant effect of data manipulations (e.g., scale, colour, 

description, etc.) on a component at design time can be done through a Live Preview 

facility.  This facility can be utilized for providing interactive DES components that 

their current visual appearance can instantly be observed.  Developers however need 

to embed the component with an external relevant movie file that consumes the 

component’s parameters.   

All Flash’s components are movie clips (Moock, 2002).  Thus, all 

ActionScript classes that control components’ properties and behaviour are created by 

extending the MovieClip class.  This inheritance technique enables the subclasses to 

utilize the entire API of the MovieClip class especially methods related to animations.   

A MovieClip is a generic animation object whose changes in visual 

appearance are defined on a timeline.  Movie clips may contain graphics, audio or 

video, and can be nested recursively; i.e., clips inside clips, inside clips, etc. that can 

be controlled programmatically.  A rapid succession of the clips’ visual changes at run 

time creates animations.  For example, a movie clip representing a customer in a bank 

simulation may move across a stage, from a source (door) to a server (teller), while a 

clip embedded inside it may play an animation (i.e., walking by moving arms and 

feet).   

Movie clips are suited for creating simulation objects (entities, servers, 

components, etc.) in DES.  In addition to adding specific features, their classes should 

extend the MovieClip class to inherit its (1) properties (e.g., location, visibility, etc.), 

(2) methods (e.g., moving, rotation, etc.), and (3) built-in events (e.g., click, rollover, 
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drag and drop, etc.) to support interactive dialogues between users and the objects 

during run time; e.g., to change their parameters, to drag and drop the objects or their 

GUIs to other locations, etc.  Furthermore, Flash allows tool developers to attach the 

objects with symbols to portray their functionalities.  The use of appropriate symbols 

can help model builders to differentiate various objects and their tasks in a library.   

Flash only considers components as reusable movie clips that simplify the 

creation of a Flash movie.  Thus, many of its stand alone components (e.g., Label, 

TextArea, DataGrid, etc.) that do not offer cooperation with each other can be seen in 

its Component Panel.  Such components do not suit the real definition of component-

based development (CBD) that views components as customizable building blocks; 

each of which needs to offer specific services and can be aggregated visually or 

programmatically with each other to form an application.  The aggregation could be 

through a coupling mechanism that wires components together using interfaces; i.e., 

ports that allow communications among them to perform the application’s logic (see 

Figure 4.5).   

The component approach suits DES model constructions since entities flow 

from component to component to receive different services.  Analogue to these entity 

flows, signals can be used as activation mechanisms for certain components to 

support more complex DES; e.g., a transportation system.  In this case, signals are 

sent by relevant components to activate transporter or conveyer components.   

We focused on the development of DES components and approaches for 

wiring them together and manipulating their parameters during runtime.  Combining 

these approaches and the facilities that allow learners to view component states using 

various data visualization tools may offer advantages especially in easing learning.  

Details about this are discussed in Chapter 5.   

 

 

4.5.3 Other Advantages of Flash and Its Drawbacks 

 

Besides supporting architectures for component development, Flash offers other 

advantages for building VIS models particularly and any types of simulations 

generally over other multimedia-development applications.  These include: 
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 Flash makes it easy to animate smooth motion of simulation entities at a default 

rate of 12 frames per second (fps).  This is adequate for web-based animations, but 

model users can easily change this to control the animation speed (i.e., up to 120 

fps).  Higher rates smooth visual changes but will increasingly tax the host CPU.  

Slower rates reveal more detail, but may make animations less smooth.  Note that 

this specified fps value only acts as the maximum speed limit; i.e., the animation 

should not play faster than the fps value.  However, the minimum limit of its 

execution is uncontrollable since it depends on CPU speed.   

 Flash animates a sequence of images using key frames.  Each key frame can 

represent a critical point of animation; e.g., the change of shapes or visual 

appearances.   

 Flash offers a large stage for drawing and composing objects and playing 

animations.  Its run-time player offers the ability to pan, zoom out and zoom in to 

look at interesting locations around the stage.   

 Flash employs vector graphics that use line segments to form figures.  Thus, these 

figures can be scaled without loss in resolution and clarity.  However, raster 

graphics that represent images as an array of pixels are still supported.   

 Flash produces executable files that can be played on both PCs and Mac 

platforms.  These files can be distributed via Internet without any modifications.   

 Flash allows model builders to control the visual depth of an object.  This eases 

the arrangement of various simulation objects and their GUIs on a stage.   

 Flash provides some supports for student assessments (Castillo et al., 2004).  

Teachers can use these to create exercises that gauge students’ understanding of a 

certain topic.   

 ActionScript syntax is similar to Java; which again similar to the C family.  For 

those who are familiar with these languages, ActionScript can be learnt without 

much effort.   

 

 

Besides these advantages, Flash also has some drawbacks; i.e.: 

 

 Flash is not supported on Apple mobile devices.  This limits the delivery of Flash-

based contents to Apple tablets and the Iphone.  However, there are now some 
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applications (e.g., iSwifter) which claimed to run Flash contents directly on the 

Ipad and Iphone.   

 Flash applications require an updated plug-in to play.  Downloading the plug-in 

may consume time.   

 Flash applications may be slow to download.  This situation may frustrate users 

with slow bandwidth or internet speed.   

 Flash applications cannot be indexed by most search engines.  This may limit its 

visibility or rank in web browsers.   

 Flash applications should be developed to serve a specific purpose of its site.  The 

use of Flash to only decorate a webpage will annoy users and cause them to leave 

the site.   

 

 

4.6 Flash Components for Queuing Systems 

 

Based on the process-oriented modelling style (Castagna, 1997; Craig, 2007; Garrido, 

1999, 2001), we have structured an overall class diagram for creating Flash-based 

components that can be used to construct animated queuing models as in Figure 4.6.  

This structure is the combination of the class diagrams discussed in Chapter 3 with 

some additional classes.   

We extend all these classes from the MovieClip class for two reasons.  First, 

extending the MovieClip class allows us to utilize its built-in events to provide drag 

and drop and interaction environments during runtime.  By default, Flash allows its 

components to be dragged and dropped at authoring time.  However, supporting this 

capability during runtime needs us to implement the startDrag(this) and 

stopDrag(this) events in relevant classes.  Allowing learners to have their own model 

GUIs through creating, customizing and positioning visualization components is 

important for learning (Ebner & Taraghi, 2010).  The same thing applies to providing 

an interaction environment where the onRelease( ) event is used for accessing 

component GUIs during runtime.  Second, extending the MovieClip class allows us to 

rightly control the depth of each component instance on the stage using the 

createEmptyMovieClip(instanceName, depth) method.  For example, entity instances 

should have smaller depth values compared to other movie clips to guarantee that they 
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are always on bottom of other component instances; e.g., visualization components.  

This method can also be used to create a container; on which other movie clips (e.g., 

textboxes, buttons, labels, etc.) can reside.  This ease the construction of component 

GUIs since the depth of their child is now controlled by its parent and dragging the 

parent movie clip to other locations will automatically retract its entire child.   

 

MovieClip

_x:Number
_y:Number

onRelease( ):Void
startDrag(this)
stopDrag(this)
createEmptyMovieClip(instanceName, depth)

MediaControllerButton TexInput Label
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Timer

SimProcess
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moveContainer (addX:Number, addY:Number)
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Sink Report

getReport ( ):Void
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DIstributionComponent

Exponential Normal Triangular

Distribution

DynamicObject

setPriorityt ( ):Void

Clock

BaseClock

drawHourTick ( )
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Create

 

Figure 4.6  Class Diagram of Components for Simulation Input and Output 

 

 

We designed and created three other components; i.e., the 

DistributionComponent, the Source and the Sink components to ease DES model 

constructions.  The DistributionComponent is used to provide a combo box of a list of 

distribution types.  Its main purpose is to ease the selection process of random 

samples in other components; e.g. the Source, the Queue, the Station and the Server.  

The Source component is a component that receives parameters that control the 

creation of entities; e.g., time for the first arrival, time between arrival, priority, entity 

type, etc.  These parameters are fed to the Create class through a composition 

technique.  In order to generate entities appropriately, the Create class has to compose 

two classes; i.e., the SimProcess class to create entity instances and the 
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DistributionComponent to control the creation of entities based on a specified 

distribution type.  Since code for creating entities has been embedded in the Source 

component, model builders do not need to write any code to perform this task as in 

any simulation languages.  The Sink component is to destroy the SimProcess instances 

that have been created so that computer memory allocated for these instances can be 

freed and reclaimed by the Flash’s garbage collector.   

All Flash components including our DES components are represented by 

symbols in the Flash’s Component panel.  By dragging these symbols onto the stage 

and customizing the resulting simulation entities’ appearance and properties, teachers 

can quickly assemble web-based VIS models.  Graphical displays and interfaces 

attached to these entities show and animate relevant information and allow learners to 

interact with a simulation while it is running.  Since Flash also provides good support 

for multiple media (e.g., text, sound, video, and animated graphics), simulations can 

be made to come “alive” and attract learners’ attention and interest.   

Modifying simulation parameters requires only a click on a component 

(without any need for stopping the simulation) and any impact on changes to model 

behaviour can immediately be observed.  A variety of statistics counters with suitable 

functionality and representation are built into components, so that teachers need not 

worry about this, which is often time consuming aspect of DES model design and 

construction.  These features are important for the computer based learning 

environment (Min, 2003).  Since the components have been developed in Flash, VIS 

models can draw on its functionality to easily integrate with a learning management 

system (LMS).  Access from remote locations through internet browsers is a further 

benefit that can be attributed to this architecture.   

Table 4.7 shows three types of Flash DES components that have been 

developed for supporting the construction of queuing networks.  All three types of 

queuing networks are supported: open queuing that studies a system in which 

transactions are generated, flow through a model and disappear (e.g., in most service 

systems), closed queuing that examines a system in which transactions are permanent 

(e.g., in a computer system) and a mixture of open and closed queuing (e.g., in a 

healthcare system).  The functionality and features of these components that support 

both teachers and learners are detailed in Table 4.8.  Figure 4.7 meanwhile shows the 

location of DES components in the Flash component panel.   
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Table 4.7  DES Component Types 

Component Type Description Example 

Active 
Components which involve 

cooperation with entities 

Source, Queue, Sink, 

Monitor, Server 

Passive 

Components which do not 

involve cooperation with 

entities 

Station 

Visualization 
Components which show 

states of active components 

Counter, Graph, Histogram, 

Boxplot 

 

 

Table 4.8  Flash Components for Building a DES Model and Their Functionalities 

Component Functionality/Feature 

Source 

Animates the arrival of entities.   

 

 Teachers can specify the time of the first entity's creation, priority 

value and the default distribution of time between successive arrivals.   

 Learners can click on the Source’s instances, pick a list of available 

distributions and change the default parameter of entities' time 

between arrivals.  They can directly observe the effect of the changes 

to the model’s behaviour.  Each instance automatically collects and 

displays the number of entities that have entered the model at the 

current simulation time.   

Queue 

Graphically animates queues with priority rules such as FIFO (First In 

First Out), LIFO (Last In First Out), lowest priority value, highest priority 

value, or a random order.  The removal of entities from a queue is 

controlled by the priority rule at the time of removal.  All Queue 

instances automatically collect statistics, such as the number of entities 

which have left a queue, maximum, minimum, sum, mean, variance and 

standard deviation of times spent in the queue.   

 

 Teachers can initialize a default priority rule and specify what 

visualization instances will report queue statistics.   

 Learners can change a queue rule anytime time they wish and observe 

the effect of priority rules on a model’s behaviour through the 

changes in queuing statistics.   

Sink 

Collects and graphically displays entities leaving a model.   

 

 Teachers can attach visualization instances to display statistics about 

time entities spent in a model.   

 Learners can mouse over a Sink instance to obtain maximum, 

minimum, sum, mean, variance and standard deviation statistics for 

times entities spent in a model.   
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Station 
Represents points to which entities are transferred in a model; i.e., points 

on the stage they can move to.   

Distribution 

Generates random samples from a list of specified distributions.   

 

 Teachers can use this component to sample the duration of various 

model-time consuming activities.   

Monitor 

Acts as a simulation engine and controls viewing ratio and simulation 

length.   

 

 Teachers can initialize viewing ratio and simulation length. They can 

also link Clock and Timer instances to graphically represent 

simulation current simulation time and its proportion to simulation 

length respectively.   

 Learners can click the Monitor’s instance to observe simulation 

events that have been executed, a current event being executed, and 

the list of events still to be executed in future. They can also stop and 

resume animations and adjust animation speed by only clicking 

appropriate sub-symbols.   

 

 

 

Figure 4.7  Flash Component Panel 

 

Simulating DES entities in the Flash environment requires model builders to 

create an ActionScript class that extends our SimProcess class.  The class describes 

the entities’ lifecycles using if-else or switch-case statements.  This task could not be 

avoided since ActionScript does not support coroutines or threads.  Adobe’s official 

reasons for this are that threads will induce very different behaviour on different 
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machines especially in performance intense platforms and race conditions in threading 

will led to performance problems on the Flash player.   

Flash imposes model builders to convert an image to a movie clip symbol 

before it can be attached to an ActionScript class in order to animate these entities.  

For example, to associate a movie clip with a Customer class that extends our 

SimProcess class, the following actions must be stepped through: 

 

1. Draw a picture on (or import a picture in any format onto) the Flash stage.   

2. Convert the picture to a symbol and give it a name.  This symbol will appear in 

the Flash Library.   

3. Select a movie clip symbol in the Flash Library.   

4. Right-click on the symbol and choose “Linkage”.   

5. In the resulting dialog, enter the symbol’s name (e.g., Customer) and its associated 

class (i.e., the Customer class).  

6. Select “Export for ActionScript” as “linkage type”.   

 

 

Once the movie clip is in the Flash library, we can make the Customer objects’ 

visual appearance more attractive by providing keyframes named onMoving, inQueue 

and inProcess to depict the Customer’s states.  All code that animates these states 

together with code to handle their movement from component to component and halt 

at a queue or being processed by a server has been defined in the SimProcess class.  

Note that these frames are defined on the Customer symbol’s timeline and not 

globally on the stage.  This gives us a local animation for Customers (i.e., their 

change of appearance in different states) that is nested inside the main animation 

(tween movements across the stage).  To create this local animation, we must step 

through the following actions: 

 

1. Right-click the Customer movie clip symbol in the Flash Library and select Edit 

from the resulting pop up menu.   

2. Select frame 10 on the timeline.   

3. Select Insert > Timeline > Keyframe.   

4. In the Properties panel, change Frame Label to onMoving.   

5. Draw a suitable picture of a customer’s movement on the current Flash stage. 
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6. Repeat steps 3 to 5 for frame 20, 30 and 40, and make appropriate changes at each 

step.   

 

 

The entity movie objects can be clicked during execution time to display a 

variety of relevant information; e.g., its number in a model, its creation time, the time 

spent in queues or servers that it has visited.   

The server objects can be animated in a similar way; i.e., by assigning 

different symbols to keyframes Idle and Busy and attaching each symbol to our Server 

class.  Note that we leave this task in the hands of model builders instead of providing 

a compiled Server clip in order to give them flexibility in animating server objects 

using any images they wish.  Actually, a set of Server components with different 

symbols can be provided.  The server’s capacity and service time can be changed 

during a simulation run by clicking its symbol and then picking up one type of 

distribution from a list of available distributions.   

 



4.7 Flash Components for Visualizing Queuing Systems 

 

Table 4.9 shows Flash components for visualizing model states and their 

functionality.  Figure 4.8 meanwhile shows some sample instances of visualization 

components (e.g., histogram, graph, boxplot and timer) on the Flash stage during a 

simulation run.  Visualization components are connected to active components (i.e., 

Source, Queue, Sink and Server) through a composition technique (see Figure 4.6).   

Embedding visualization components in an active component through a hard-

coded composition approach has two distinct drawbacks.  First, this approach requires 

us to explicitly declare the name of the visualization instance in the active 

component’s class variables so that we can access its methods and properties and 

update its states.  This problem is getting worse if we want to embed many types of 

visualization instances to provide a platform for learners to flexibly create various 

visualization tools during runtime.   

We can use an array to store each type of the visualization instances.  

However, an array is not a suitable data type for storing such a variable size of 

visualization instances since in certain languages this may cause space wasting (if we 
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do not fully use the array’s size) and an insertion problem (if the array size has been 

exceeded).  We can alternatively store a list of array objects of type Collector (see 

Figure 4.6) or general objects, but treating a base-class object as a derived-class object 

is a bad programming practice and may cause errors; e.g., when we cast a base-class 

as a derived-class and then refer to derived-class members that do not exist in that 

object.  Second, this approach tends to contribute to syntax errors since any 

modification of the visualizations’ method or property names will impose the changes 

of code in the active component’s class.   

 

Table 4.9  Flash Components for Visualizing DES Models and Their Functionalities 

Component Functionality/Feature 

Graph 

Dynamically animates patterns of changes in simulation outputs, such as 

the current number of entities in a queue versus simulation time, or the 

number of a server’s busy units versus simulation time.   

 

 Teachers can specify width and height, a title, a colour for graph lines, 

background and fill area for each Graph’s instance.   

 Learners can clear the previous data, drag the Graph’s instances to any 

location and resize them at any time they wish.   

Histogram 

Dynamically animates frequency information, such as the time spent by 

entities in a queue, the operation time of a server, the time between 

arrivals, the successive time between departures, etc.   

 

 Teachers can specify width and height, a title, a colour for text, 

background, bar fill area, maximum value, minimum value and the 

number of intervals.  They can also activate drop-shadows for each 

instance of the Histogram component.   

 Learners can change maximum value, minimum value and the number 

of intervals at any time to see a new distribution of frequency 

information, drag the Histogram’s instances to any location and resize 

them at any time they wish.   

Boxplot 

Dynamically animates groups of numerical data through its five-number 

summaries.  It is a complementary tool for the Histogram component.   

 

 Teachers can specify width and height, a title, a colour for graph lines, 

background and fill area for each Boxplot’s instance.   

 Learners can drag the Boxplot’s instances to any location and resize 

them at any time they wish.   
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Clock 

Dynamically animates the current simulation time while a simulation is 

running.   

 

 Teachers can specify a title, fill colour, initial time value and 

simulation time unit.   

 Learners can drag the Clock’s instances to any location and resize them 

at any time they wish.   

Timer 

Animates the proportion of the current simulation time to its total 

duration.   

 

 Teachers can specify title, fill colour and elapsed time fill colour.   

  Learners can drag the Timer’s instances to any location and resize 

them at any time they wish.   

 

  
(a) Graph (b) Histogram 

  

 

 

 

(c) Boxplot (d) Timer 

  

Figure 4.8  Samples of DES Visualization Tools 

 

 

4.8 Example 

 

This section presents a simple example of how the DES libraries and components may 

be used to model a queuing scenario.  The example simulates a bank, where 

customers arrive, walk to a counter, get served by a teller and finally exit from the 

bank.  The corresponding model uses a single Server object for the teller, a stream of 
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SimProcess instances representing customers, and a number of active and 

visualization components for structuring the model and visualizing its states.  As 

mentioned earlier, some active components embed Distribution objects for sampling 

the duration of various model-time consuming activities.   

To represent customers, we must first create a new ActionScript class and save 

it under an appropriate name (in this case Customer.as) to the simulation tools folder.  

Here we define a Customer class based on the SimProcess class, declare various class 

variables and define its lifecycle method; see Listing 4.1.   

 

1   // import packages 

2   import Monitors.*; 

3   import Resources.Server; 

4    

5   class Customer extends SimProcess { 

6     // route times 

7     public static var walkToCounterTime; 

8     public static var walkToExitTime; 

9     // active components 

10    public static var myEntry; 

11    public static var myBench; 

12    public static var myExit; 

13    public static var teller; 

14   

15    private function init ():Void { 

16      addPhase("ARRIVAL, ARRIVE_COUNTER, SEIZE_TELLER, DELAY_TELLER,  

17      RELEASE_TELLER, DISPOSE"); 

18    } 

19 

20    public function lifeCycle (phase) { 

21 

22      switch (phase) { 

23        case "ARRIVAL": 

24          delay(Customer.walkToCounterTime.sample()); 

25          moveTo(myBench); 

26          break; 

27       case "ARRIVE_COUNTER": 

28          teller.request(this); 

29          break; 

30       case "SEIZE_TELLER": 

31          delay(0); 

32          moveTo(teller); 

33          break; 

34       case "DELAY_TELLER": 

35          delay(teller.serviceTime.sample()); 

36          break; 

37      case "RELEASE_TELLER": 

38          teller.release(); 

39          delay(Customer.walkToExitTime.sample()); 

40          moveTo(myExit); 

41          break; 

42      case "DISPOSE": 

43          myExit.remove(this);// remove this object 

44          break; 

45      } //end switch 

46    }  

47   } // end Customer class 

 

Listing 4.1  The Customer Class 
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In lines 7 and 8, we declare two class variables for representing customers’ 

route times; i.e., a walkToCounterTime distribution for sampling the time taken by 

customers to walk from an entry to a counter, and a walkToExitTime distribution for 

sampling walking time from the counter to exit.  In line 13, we declare a teller 

variable representing an object of the Server class.  Note that visualization 

components (e.g., Graph, Histogram, Boxplot, etc.) can be composed to the active 

component instances using the Flash’s Properties panel.  Line 10 to 13 stores 

instances of Source, Queue and Sink component respectively.   

The init method (line 15) initializes Customer objects.  Here we must specify a 

sequence of phases (i.e., a lifecycle) that all Customers instances step through.  The 

addPhase method in line 16 attends to this requirement.  The lifecycle method’s 

description begins with a description of what will happen when the control returns to 

this object, based on the phase it is in (lines 23 to 44).  Customer objects are generated 

by a Source instance based on specified time between arrivals.  Upon arrival; i.e., the 

first phase of the lifecycle (line 23), a Customer object advances itself to the next 

phase by calling delay.  The Source instance (i.e., myEntry) instantiates a new 

Customer object, whose associated movie clip is then used to animate it on the stage.  

delay (line 24) schedules the current customer to continue to its next phase and inserts 

a corresponding event notice at the appropriate point on the agenda.  At the right 

model time instant, the monitor will later remove this event notice from the head of 

the agenda, retrieve the associated object and direct it to continue its execution from 

the relevant point on its lifecycle.  The monitor will terminate the simulation when the 

end of the requested duration is reached or when no more events can be found on the 

agenda.   

In preparation for the model’s animated display, the location of the Source 

instance is the initial location for arriving Customer objects and the moveTo method 

(e.g., in line 25) moves a customer’s picture to a given location (e.g., that of a Server 

object).  While the previously described actions prescribe simulation activities, this 

method serves animation.  Note that moveTo uses a motion tween, whose duration is 

controlled by the ratio of animation to simulation time, a value that can be 

dynamically adjusted by the model users.   

Server objects have two methods: request and release.  request (line 28) 

allocates any free unit to a requesting customer.  If all available capacity has been 

used, a Customer object has to wait in a queue.  A call on release (line 47) reactivates 
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a Customer object, returns however many capacity units it holds, and gives the next 

waiting customer a chance to acquire those units.  In the final phase of a Customer 

object’s lifecycle, the remove method (line 43) destroys the Customer object, whose 

storage will eventually be reclaimed by the Flash’s garbage collector.   

Notice that we had to use a switch case statement to execute different sections 

of code, based on the phase a currently executing instance of the Customer class was 

in.  Phase’s value was stored in a phase attribute and the addPhase method listed six 

valid phases (i.e., ARRIVAL, ARRIVE_COUNTER, SEIZE_TELLER, 

DELAY_TELLER, RELEASE_TELLER and DISPOSE).  While this construction is 

arguably a rather clumsy way to implement a process oriented modelling framework, 

it was forced by ActionScript 2’s lack of support for either coroutine, threads or any 

other control abstraction which would allow the persistence of state that could store 

one of multiple entry points to a method.   

In addition to Customer objects, which arrive, request services and leave, we 

need to specify the environment these dynamic objects are to operate in; i.e., we need 

to add  relevant components to the Flash’ stage (see Figure 4.8), specify their names 

and link the visualization components to the active components.  We then initialize 

the active components’ properties; e.g., simulation length, server capacity, time-

between arrival, etc.   

To complete our model’s definition and use the Customer class, we must first 

create a new Flash document.  For this example, we need just two keyframes: 

Parameter and Animation.  The Parameter keyframe displays a form for choosing 

statistical distributions for Customer objects’ route times.  Distribution components 

are dragged from the Components panel and dropped at appropriate places on the 

Flash’s stage.  They are then used to initialize the Customer’s walkToCounterTime 

and walkToExitTime variables.  This keyframe can be ignored if model developers 

choose not to give model users flexibility in customizing their own Customer objects’ 

route times.   

The Animation keyframe is used as a stage to assemble the visual 

representation of the model’s animation.  Here we use active components (i.e., 

Source, Server, Queue and Sink) and visualization components (i.e., Timer, Clock, 

Graph and Histogram), whose properties (e.g., time between arrival, service capacity, 

colour, width, etc.) can be changed through a Component Inspector.  For each change 

in properties, the component’s appearance on the stage will be automatically adjusted.  
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Note that each component should be given a unique identifier that corresponds to the 

names used by the Customer class (e.g., myEntry, myBench, etc.; see line 10 to 13) to 

make sure that these variables are correctly assigned with their relevant component 

instances.  To animate the Customer and Server objects, the approach discussed in 

Section 4.6 needs to be followed.  A model layout as a base for model structures and 

animation can either be drawn using Flash’s drawing tools, or we can import external 

graphic files in JPEG or DXF formats.   

Figure 4.9 shows an example of a VIS model built using our DES 

components.  It is indeed the model constructed using the previous code and 

procedures, with an addition of one more Source and Server instances and another 

class of entities.  These entities need two servers, the second of which is the same one 

that processes the Customer objects.  As shown in this figure, learners can change the 

distribution of time between arrivals, server capacities and service time and queue 

priority rules (queuing disciplines) by clicking relevant component instances.  Figure 

4.10 meanwhile shows sample information that can be obtained from the underlying 

VIS model.  This includes statistics on queues and servers, as well as what previous 

events have been executed, what current event is being executed and what further 

events are still scheduled for execution.   

 

 

Figure 4.9  Sample of Interactions between Learners and a Model 
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Figure 4.10  Sample of Information Gained from a Model 

 

 

4.9 Problems and Pitfalls 

 

Flash controls movie contents over time using a timeline.  Rapidly running the 

timeline forms an illusion of animated images.  All animated images in Flash are 

organized using frames and layers.  Frames control the sequence of various images in 

definite length of time along the timeline.  They can contain key frames; i.e., control 

points that change images’ appearance along with their behaviour.  Layers meanwhile 

support the organization of these images so that their structures can be broken up to 

smaller parts.   

Key frames are analogue to simulation events in DES models.  Thus, 

simulation events could possibly be attached to key frames on Flash’ timeline.  In this 

fashion, an animation describing an entity’s visual transformations along its timeline 

would be in charge of describing the dynamics of both model (i.e., changes in the 

entity’s abstract states) and animation (i.e., changes in the entity’s appearance and 

location).  However, since the timeline typically belongs to a whole movie (i.e., 

model) rather than a single object (i.e., entity), programming DES models on this way 

is unpractical.  The use of timeline to stage model and animation methods (e.g., its 
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movement, rotation, etc.) to control the object’s behaviour will make model code 

unmanageable.   

For this reason, a component-based approach can minimize the effort of 

creating animated DES models.  Although our Flash-based simulation and 

visualization components strive to provide easily used drag-and-drop components and 

visually supported environments for developing VIS interfaces, and although these 

interfaces automatically collect and display statistical and other data and allow 

learners to flexibly interact with an underlying VIS model, model builders need to 

program Flash ActionScript classes to annotate lifecycles of dynamic objects (i.e., to 

flow entities from component to component) and attach visualization tools.  In spite of 

the fact that classes for different types of processes often follow a common pattern, 

this is still tedious and difficult for occasional teachers with little programming skills.  

As mentioned earlier, this is due to the fact that ActionScript does not support suitable 

semantic abstractions for providing a coroutine feature.  While we believe that our 

first iteration of a Flash-based “DES with animation” toolbox is a step in the right 

direction, its use is still short of the level of ease that we hope to achieve.   

Ideally there should be no need for Actionscript coding at all, so that models 

and animations could both be constructed by dropping and linking components from 

libraries while cloaking them in appropriate visual representations.  Unfortunately 

Actionscript currently offers no support for turning text into code (i.e., there is no 

equivalent to an eval statement) and a small compiler would need to be written to 

allow users the flexibility to alter dynamic components’ behaviour through visual 

interfaces.  In Chapter 5, we introduce one approach for building interactive visual 

components that will cater the current need to annotate the lifecycles of dynamic 

objects and easily connect the components.   

The main tricky issue in integrating an animated simulator to a DES model is 

to correctly trigger sorted events based on a viewing ratio specified by learners (i.e., 

to stop, continue or proportionally decrease or increase model time before attempting 

to trigger next events in the Event List) since they are free to stop or change the ratio 

at any time they wish.  This includes precisely animating two consecutive events at 

appropriate time and moving entities within specified time frames.  In the Flash 

environment, animating such entities’ active and passive states can be accomplished 

using the setInterval and clearInterval functions.   
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We use the Flash’s setInterval function that periodically calls a move method 

to update an entity’s locations during its movement to a target location (see Equation 

4.1 and Equation 4.2 in Section 4.4) and the clearInterval function to clear the 

interval once the entity has reached its destination.  Flash claims that this function is 

accurate since it is not influenced by any frame rate values and can thus be used to 

update object properties at a specified time interval.  To check this, we conducted 

some tests and found that it was only 2% to 6% different for one second interval in 

various frame rates.  Tests on other machines also confirmed the claims in spite of the 

fact that the execution of frame rates depends on CPU speeds.   

However, a pitfall occasionally arises when a viewing ratio for a certain model 

(changed using a slider) reaches at a certain value.  This is especially true when we 

want to update an object’s locations in very small steps (that typically needs a very 

small interval time; i.e., less than a second) so that it can move smoothly.  For 

example, let say the distance between two locations is 10 distance units and its route 

time is 2 time units.  If we assume that a viewing ratio is 1, the entity then needs to 

reach its destination in 2 seconds.  Since it only needs 2 movement steps (i.e., 5 

distance units for each second), the animation looks jumpy. To make it look smoother, 

we need a smaller time interval so that we can get smaller steps, but still within 2 

seconds time frame.  For example, if we use a 100 milliseconds time interval, we can 

have 20 steps with each step causes 0.5 increment from its previous location.  If users 

increase a viewing ratio, the time interval must be decreased; e.g., for a viewing ratio 

value of 2, the interval should be 50 milliseconds since model time must be 

maintained but animation is now changed (so that the object can reach the target 

location in a second animation time, refer to Equation 4.1).  However, we notice that 

entities do not exactly reach at their target locations within specified animation time, 

making our animation engine looks like it is not working accurately.   

We found that the setInterval function will only start executing a called 

method after it has completely finished executing the previous called method.  This 

problem becomes worse when a called method has intensive code that needs an 

amount of time to be processed (e.g., it contains repetition structures) or when the 

animation is running in slow CPUs.  As a result, the elapsed time of the handler 

function gets added to the overall interval, making accumulated delays in executing 

the method within the specified time frame.  In our case, this delays the update of 

objects’ locations and consequently delays the arrival of the object.  To cater this 
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problem, we checked the time elapse and adjusted the motion accordingly based on 

that current time.   

 

 

4.10 Extensibility 

 

Figure 4.11 extends the overall class diagram in Figure 4.6 to support DES for logistic 

and manufacturing systems.  As discussed in Section 3.5, logistic systems require two 

types of objects, i.e., Bin and Stock while manufacturing systems require two types of 

objects, i.e., Transporter and Conveyer.   
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Figure 4.11  Extended Components for Supporting Logistic and Manufacturing  

          Systems 

 

 

If we compare the patterns of synchronization in producer/consumer 

relationships with capacity constrained resources, their operations are similar.  A 
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Server object stores a number of units to be allocated for competing processes (i.e., 

the SimProcess objects) and takes back the unit(s) once they have been released.  

Thus, we need to declare a variable in a Server class for storing the current available 

units and a Queue object for holding requested processes.   

In a Bin object’s operations, a producer deposits items through a store 

operation while a bin object supplies the stored items for requested consumers 

through a deliver operation.  If the stored items are not enough, consumers must be 

queued and will be treated using a FIFO rule.  Thus, a Bin class also needs to declare 

a variable for storing the current available items and a Queue object for holding 

blocked consumers.   

Compared to Bin objects that can store unlimited items, Stock objects limit 

their holding items.  Thus, in addition to a variable that stores the current available 

items and a queue object that holds blocked consumers as in the Bin object, a Stock 

object needs another variable for storing its item capacity and queue object for storing 

blocked producers.  Producers will be blocked from storing their items if the capacity 

limits has been exceeded.  Thus, a Stock class is actually a derived-class of a Bin 

class.  Standard statistics for Bin and Stock objects involves only initial, current, 

maximum and average number of units held by the Bin and Stock objects, besides the 

standard statistics of a queue.   

The SimProcess class in Figure 4.5 can be extended to create Transporter and 

Conveyer objects.  Their classes should extend the SimProcess class and have 

lifecycles to sequence its operations.  For example, transporters should support 

request, load, transport, stop and free operations (refer to Table 3.2 in Chapter 3).  

Other entities (e.g., parts or customers) that would like to use its facilities should 

request the transporter by calling its request operation.  If it is in an idle state and its 

available capacity is enough, then it will proceed to other operations; i.e., it can move 

from its default location, load the entities, transport the entities to a target location 

based on its velocity, and stop and release the entities when arriving at its destination.  

Otherwise, the requested entities need to be hold in a queue until both conditions are 

true.  For this, we need a queue that listens to the transporter’ states; e.g., by receiving 

the transporter’s signal message.  Ability to send and receive signals to or from other 

types of objects (that notifies a certain event has happened in the object) is a better 

communication approach among objects that enables us to provide a component that 

handles these processes internally.   
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However, using a composition technique to achieve such a communication 

between classes (i.e., by storing other instances) without implementing a relevant 

mechanism is not a suitable approach.  For example, a tool designer needs to ask one 

type of objects to regularly check if its interested objects change states; and this 

process will incur execution penalty.  As there are many other types of objects that are 

interested to listen to a single source object, the programming process is getting 

harder since the synchronization process is getting complex.  In Chapter 5, we will 

introduce such an interaction between DES components that allows us to flexibly 

registered interested objects to an object, while maintaining a loose coupling between 

these components.   
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CHAPTER 5 

 

COMPONENT-BASED MODELING FOR ANIMATED SIMULATION 

 

 

5.1 Introduction 

 

Ease of use and flexibility are essential criteria for DES tools.  Unfortunately, both 

often conflict with each other.  General-purpose DES simulators such as PSim-J 

(Garrido, 2001), SSJ (L’Ecuyer et al., 2002), J-Sim (Kacer, 2002), DESMO-J (Meyer 

et al., 2005b) and others can be difficult to master, since they typically require 

significant programming effort for model construction.  Visual and interactive 

commercial modelling tools; e.g., Arena (Kelton et al., 2004) and ProModel (Harrel 

& Price, 2003) offer a user-friendly environment for construction and initialization of 

simulation models.  Unfortunately, they often lack flexibility since their architectures 

are hidden and difficult to extend with additional simulation logic.   

Although object oriented simulation libraries have long been used in providing 

a flexible and powerful simulation environment, they do not usually promote ease of 

use.  Component-based simulation tools that provide links between simulation 

libraries have been proposed to solve this problem and have been adopted by 

commercial simulation tools and other complex software.   

Our primary focus is to design and construct easy-to-use and extensible DES 

simulation tools that foster learning through insight; i.e., models that improve 

understanding through observation.  Such models should incorporate interfaces to 

visualize model structures, activities to request interactions and challenge learners’ 

understanding, interesting scenarios to attract learners’ activities and challenge their 

imagination, animation to depict processes and dynamic behaviour, informative and 

meaningful feedback to reflect learners’ actions and motivate them for further 

experimentations and saving ability to record interesting scenarios.  The runtime 

interaction demands the implementation of concurrent animations to immediately 
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display the effect of changes rather than post-processed animations or direct 

simulation-animation (Hill, 1996).   

Based on the benefits offered by component technologies and the importance 

of animations and visualizations in learning, we have identified two design patterns 

(i.e., generic solutions to systematically structure classes in object oriented 

applications) that are useful for the construction of interactive DES components.  

These patterns are the Delegation Event Model, which is used to link components 

together, and the Model-View-Controller (MVC) pattern, which is used to support 

GUIs and multiple visualizations of component states for providing a complete 

picture of model performance over time.   

In Chapter 4, we designed and constructed DES components using Flash 

ActionScript (Moock, 2004).  Besides its strengths as an animation tool (Mohler, 

2006) and its support for component design (e.g., a default GUI, live preview, 

symbolizing a class, packaging facilities, etc.) and cross-platform distribution (i.e., 

through the WWW) and integration (i.e., through LMSs), a sample of ActionScript 

basic classes and interfaces (i.e., a group of related methods with empty bodies that 

defines common functionalities across various classes) for implementing many useful 

design patterns are also well documented (e.g., see Lott & Patterson, 2007; Sanders & 

Cumaranatunge, 2007).   

This chapter presents the concepts related to the design and development of 

our interactive DES components for eliminating the need to write entities’ lifecycles 

during design time and supporting the creation of various model visualizations during 

runtime.  We first review the principles of component-based simulation.  We then 

relate these principles with our model architecture to provide a graphical environment 

for building, visualizing and experimenting with the models.  The strengths and 

weaknesses of some existing component-based simulators are also discussed.  Based 

on the architecture, we identified the combination of two design patterns that fit the 

design of interactive DES components; i.e., the Delegation Event Model used to forge 

links between DES active and passive components and the MVC (Model-View-

Controller) pattern used to loosely couple between components, their GUIs and their 

visualizations to provide facilities for model customization.  The explanation of how 

both design patterns can be implemented in the Flash environment (including 

interfaces and classes that are used to create our components and their connections) is 

also presented.  This chapter continues with the discussion of how to store a model’s 
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states so that its visualizations and parameter settings can be saved for future use.  To 

show the benefits of the combination of both the design patterns in providing a truly 

attractive and interactive environment, an example of a DES model is then presented.  

We further our discussion on how to cater with the model complexity by partitioning 

the model.  This chapter ends with some discussions of problems and challenges that 

we faced during the design and implementation of our DES components.   

 

 

5.2 Component Based Simulation 

 

When describing his DEVS (Discrete Event System Specification) formalism, Zeigler 

(1984, 1990, 2000) proposed that a simulation model should be built in a hierarchical 

and modular fashion; i.e., a model is a collection of interconnected components, each 

of which deals with its own input, state transitions and output.  These basic 

components can be combined to form “higher level” components, which can then be 

further connected and aggregated to construct a new sub-model.  For building a 

complex model, this process can be repeated recursively.  Such component 

architectures have since been used to develop many different types of simulators and 

other complex software systems or applications (e.g., see Alejandra, Mario, & 

Antonio, 2003; Atkinson, Bunse, Gross, & Peper, 2005).  Some important concepts of 

component software development including methods for designing and composing 

them can be found in Jifeng, Li and Liu (2005).   

Zeigler’s DEVS formalism has bred two types of component technologies; 

those that focus on visual modelling such as the use of JavaBeans (Praehofer, 

Sametinger, & Stritzinger, 2001) and those that focus on distributed simulation 

environments such as CORBA (Yahiaoui, Hensen, & Soethout, 2004) and Microsoft’s 

COM (Cho & Kim, 2002).   

Visual modelling environments often organize components in a library (with 

its own internal logic) and offer a GUI for easy access to their properties and methods.  

Interfaces in which icons or blocks are attached to components and simulation 

structures can be quickly constructed via “drag and drop” interactions are often 

provided (Odhabi et al., 1998).  Since the underlying library is typically based on an 

OOP metaphor, components support encapsulation, inheritance, polymorphism and 

exception handling.  The advantages and disadvantages of such software architectures 
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have been discussed in detail elsewhere (e.g., Oses, Pidd, & Brooks, 2004; Valentine, 

Verbraeck, & Sol, 2003).   

Each component is designed to guide messages’ flows and to control their 

movements.  Messages are generated by the first “upstream” components and then 

transferred to other “downstream” (listener) components; e.g., through output ports.  

Since downstream components are configured by upstream components (either at 

design time or during runtime), the only task of the downstream components is to 

react to messages they receive; e.g., by updating their own states, other components’ 

states and/or the messages’ states.  To do this, they need no knowledge of where the 

messages have come from.   

 

 

5.3 The Environment of Animated Simulation Models 
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Figure 5.1  Simulation and Animation Aspects of a Model 

 

 

Figure 5.1 shows the architecture of an animated simulation model.  Note that we 

propose a clear separation between a model’s simulation aspect (which describes 

model structures and logic) and its animation aspect (which traces model dynamics by 

showing the sequence of generated events and how its components’ appearance and 

location will change over time).  Although animation is optional (i.e., not all models 

need to be animated), it is an essential feature for observing and understanding 
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dynamic behaviour, verifying and validating models (Law & Kelton, 2000) and can 

prove particularly useful to generate insights rather than simply predictions.   

As discussed earlier, the logic for a simulation model can easily be structured 

using a component approach.  Recognizing the benefits offered by this approach, 

many component-based simulators have been built and reported; e.g., XCELL+ 

(Conway & Maxwell, 1987), SIMFACTORY (Tumay, 1987), simjava (McNab & 

Howell, 1996, 1998), JSIM (John A. Miller, Youngfu Ge, & Junxin Tao, 1998), 

Simkit (Buss, 2000, 2002), COST (Chen & Szymanski, 2002), JDEVS (Filippi, 

Delhom, & Bernardi, 2002), Viskit (Buss & Blais, 2007) and BPSim++ (Melão & 

Pidd, 2007).  A common thread of all these tools is that they use input and output 

ports (either specifying through code or a GUI) to permit interactions between their 

components.   

In term of ease-of-use, Simkit and COST are not user-friendly, since they only 

allow a model builder to construct models through an API.  XCELL+ and 

SIMFACTORY, on the other hand, provide easy-to-use GUIs with which simulation 

models can be constructed by dragging and connecting components and initializing 

their properties through graphical interactions.  Since their internal architectures are 

hidden from users, however, these tools’ extension capabilities are rather limited.  To 

solve this problem, BPSIM++ tries to combine techniques for offering both ease of 

use and flexibility, but its resulting models are written in C++ and can therefore not be 

accessed through a web browser.  JDEVS, JSIM and Viskit are easy-to use and 

extensible tools with support for web-based simulation since they were developed 

using Java, but do not incorporate any animation and visualization facilities.  The 

animation of displaying message passing between components was emerged in 

simjava but the visualization of model states was limited to text labels only which are 

placed over the components.  Many modern simulation software, e.g., Arena (Kelton 

et al., 2004), Flexim (Nordgren, 2003), SIMUL8 (Concannon et al., 2006) and 

ProModel (Harrell, Ghosh, & Bowden, 2004) meanwhile are excellent tools for 

building sophisticated DES models and analyzing system performances through 

animation and various visualization tools.  However, their capabilities to support 

learning through user-directed experimentations during run time are rather limited.   
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5.4 The Delegation Event Model for Linking DES Components 

 

The Delegation Event Model suggests a generic design for how to broadcast many 

different events (about which information is stored in an event object) from an event 

source to all registered event listener objects and invoke an appropriate method on 

them.  This pattern offers flexibility since (1) a single event source can broadcast any 

number of events, (2) its listeners can register to receive any interesting events by just 

implementing interfaces that define the events, and (3) each listener can respond to a 

received event(s) in its own special way.  To enable the event source class to 

broadcast many different events, it just needs to provide separate registration methods 

and listener lists for each class of event.   

This style of event broadcasting is analogous to the flow of entities in DES 

components, where a temporary entity (an event object) is passed from an upstream 

component (an event source) to downstream components (the event listeners).  Any 

downstream component can then act as an event source to further downstream 

components.  Entities’ and visited components’ states will be updated during this 

process, which will continue until a message’s path is completed and the message is 

removed.  Thus, entities should have properties to store their current source 

component and target component; and optionally an array to store all their visited 

components.   

The Delegation Event Model plays two important roles in building DES 

simulators.  First, without implementing this pattern, model developers (e.g., teachers) 

must create a class which defines an entity type’s lifecycle as discussed in Chapter 4.  

Writing such lifecycle descriptions become more complicated if entities need to be 

split (e.g., using conditional statements to represent probabilities and/or conditions) 

when they reach at a certain phase of their lifecycles.  Second, through sub-classing, 

other tool designers can extend our existing architecture and create new high level 

components to support additional requirements (e.g., other simulation metaphors and 

styles).  An example for these is a record component used to collect and report 

various types of observational statistics.  Implementation of this would be easy, since 

a component can broadcast events to many interested listeners.  Another example is a 

renege component that listens to a queue, removes relevant entities from the queue if 

their waiting time’s tolerance threshold has been exceeded and then transfers the 

entities to certain locations.   
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Based on this pattern for tracing events triggered by message flows, DES 

components can be constructed to simulate and animate the transfer of many types of 

entities from one component to another, using the upstream components’ output ports.  

We have used class and interface structures suggested by Moock (2004) to build a 

suitable implementation of DES components in Flash ActionScript, which is 

illustrated in Figure 5.2.  DES classes in Chapter 4 will again be used for our 

discussion here.  Note that these structures can easily be applied to implementations in 

other programming languages.   
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SimProcessListener
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Figure 5.2  The DES Delegation Event Model Structure 

 

 

We use five basic classes and two interfaces to implement DES components 

based on the Delegation Event Model; i.e., ComponentSource, EventListenerList, 

EventObject, SimProcess, ComponentListener, EventListener and 

SimProcessListener.  The ComponentSource (an event source) represents classes that 

schedule an instance of the SimProcesss class (a SimProcess object) and broadcast 

this object to its registered listeners.  Simulation specific ComponentSource classes 

include Sources, Queues, Servers, Sinks, etc.  A ComponentSource object should be 

composed of EventListenerList objects; i.e., it should manage a list of the 

ComponentSource’s event listeners. The ComponentSource class can be equipped 

with a GUI to provide easy access points to its properties, including a point to specify 

its listener objects.   

The SimProcess (an event object) class encodes entities that can be placed on 

an Agenda (a list to store the next scheduled event for a particular SimProcess object) 
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and will be broadcasted to ComponentListener objects when its scheduled event time 

is reached (i.e., when it should be activated by the simulation Monitor).  The 

SimProcess class is derived from the EventObject class; a base class that holds a 

reference to the class that has scheduled it.  In order to receive event notifications 

from a ComponentSource object, the ComponentListener class must implement the 

SimProcessListener interface; an interface that specifies a set of event methods.   

The SimProcessListener interface implements the EventListener interface; a 

marker (empty) interface that enables event listener classes to be notified by 

ComponentSource objects. When an event occurs, the ComponentSource invokes a 

handleMsg (SimProcess, Time) method for each ComponentListener object.   

Based on these structures, we can now provide output ports that should be 

easily accessed by model builders to link active components (refer to Table 4.7 in 

Chapter 4).  These output ports substitute the need for declaring a class of entities’ 

lifecycles since the sequence phases of the entities are now internally controlled by 

components.  Since entities’ lifecycles can now be created during runtime rather than 

design time, we have constructed a Decide or Routing component that couples a 

component with a set of its listeners to support decision forward flow based on certain 

control strategies; e.g., their types, probabilities, a shorter queue and server status.   

Figure 5.3 traces a simple flow of a SimProcess object in an M/M/1 queuing 

scenario.  An instance of the SimProcess class (which contains data about its birth 

time, current phase, current location, etc.) is first created and scheduled in the Event 

List by invoking a delay (time:Number, source:Component) method on a Source 

component (which then becomes the highest upstream component).  The time 

argument is the time that the next event for this SimProcess object is scheduled to 

occur and the source argument refers to the ComponentSource object that scheduled 

it.  When the scheduled time comes, the SimProcess object is removed from the Event 

List by the Monitor.  During the removal activity, the SimProcess object makes a call 

back to the event source that scheduled it (in this case a Source object) and invokes an 

executeMsg (SimProcess) method on the event source.  This event source then 

executes relevant code (e.g., an animation method to move the SimProcess object to 

its downstream component or animate its physical appearance) and broadcasts the 

SimProcess object to its all registered listeners by invoking handleMsg (SimProcess, 

Time).   
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Figure 5.3  The flow of a SimProcess Object in DES Components 

 

 

All registered listeners can respond to the SimProcess object in different ways, 

but one of them should instruct the SimProcess object to proceed to its next phase; 

i.e., by reinserting it into a suitable location in the Event List.  When the next 

scheduled time is reached, the SimProcess object has to call the event source that 

scheduled it.  The event source then executes executeMsg (SimProcess) and 

broadcasts the SimProcess object to all of its downstream components.  This 

mechanism is repeated until the SimProcess object departs from the system; i.e., when 

it arrives at a Sink; i.e., its lowest downstream component.   

Implementing the Delegation Event Model in DES classes not only enables us 

to link active components with each others, but it also allows us to control and 

simulate entities’ delay time to their downstream components; i.e., to represent travel 

time from location to location.  The travel time should then again be made accessible 

for modifications through the components’ GUIs during design time and runtime.  

Permitting learners to change entities’ travel time at any time they wish will help them 

to understand the effect of delay time to model performance.   
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5.5 The MVC for Visualizing DES Component States 

 

The MVC pattern prescribes how to structure classes that create and manage user 

interfaces based on input-process-output cycles.  In doing so, it implements the 

Observer pattern; i.e., a pattern which notifies a group of interested objects (the 

observers) whenever a single object (the subject) changes its state.  The MVC patterns 

main concern is to clearly structure an application’s code into three major 

components: a model to store an application’s current states and logic, views that 

reflect (e.g., visualize) changes of its states, and a controller that modifies the model 

based on inputs made in a view.  In order to receive notifications from the model, all 

views must implement an interface that provides a suitable update method.   

There are three reasons why the MVC pattern is so useful for building 

attractive and interactive DES components.  Firstly, component views can be added or 

removed at design time or runtime without affecting any other components’ parts.  

Learners can therefore freely customize model visualizations.  Secondly, all views are 

concurrently notified through an info object; i.e., an object that contains information 

about its subject’s current states.  This allows the synchronous display of all of a DES 

component’s current states, either graphically (e.g., histograms, graphs, etc.) or in a 

more abstract fashion (e.g., texts, tables, etc.).  Thirdly, when designed properly, 

many visualization tools (e.g., histograms, graphs, etc.) can be reused by different 

types of DES components (e.g., sources, servers, etc.).   

Figure 5.4 shows generic MVC implementation structures for a single DES 

component.  This involves seven basic classes and four interfaces that cooperate with 

each other to provide a GUI and suitable visualizations.  The ComponentModel (e.g., 

sources, queues, servers, sinks, etc.) class broadcasts its states to all registered 

observers through its ComponentUpdate object (info object).  This is an object that 

stores its current states.  Each ComponentModel class should have its own 

ComponentUpdate class with a unique name (e.g., SourceUpdate, QueueUpdate, 

ServerUpdate, SinkUpdate, etc.).   
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Figure 5.4  The DES MVC Structure 

 

 

The ComponentModel class implements the Observable interface to provide 

abstract methods for maintaining and notifying Observer objects.  The 

implementation for the Observable interface is provided by the ObservableSubject 

class.  An instance of the ObservableSubject class is used in the ComponentModel to 

broadcast updates to its observers whenever its internal states have changed.  By 

implementing the Observable interface, the ComponentModel class can freely inherit 

from any other class; i.e., it can be a subclass of other class.   

To receive input from its views, each ComponentModel class must have its 

own controller (e.g., SourceController, QueueController, ServerController, 

SinkController, etc.).  The model’s controller must extend the AbstractController 

class; a class that provides basic services specified in the Controller interface.  The 

Controller interface in turn contains references to the model and its view.  To receive 

notifications about state changes in the ComponentModel, all interested views must 

extend the AbstractView class; a generic implementation of the View and Observer 

interfaces.  The View interface contains abstract methods to set and retrieve the model 

and controller objects observed by this view, while the Observer interface contains an 

abstract update( ) method.  It is up to a view’s update method to react to the 

information object sent by a ComponentModel.   

We can now make some modifications so that the visualization components 

(e.g., Clocks, Histograms, Graphs, BoxPlots, Levels and Tables) to be derived-classes 

(subclasses) of the AbstractView class; i.e., the class that extends the MovieClip class.  
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Note that the ObserverObject class is to provide common methods for all 

visualization components; e.g., to set location, size, title, etc. and to attach related 

event handlers that allow dragging, pressing, etc. for the component.  The benefit of 

this is that many visualization components can now be registered or removed at any 

time during design time or runtime to trace state notifications from its active or 

passive components.  Since these components must communicate with each other 

(using the Event Delegation Model) and report its states to observers (using the MVC 

pattern), their classes must implement both the ComponentListener for handling a 

SimProcess object and Observable  interfaces for notifying state changes to its 

observers.  Note that a visualization instance only receives the notification of its 

active or passive component states from the time point it is created.  This could offer 

some benefits; e.g., learners can inspect in detail the performance of the model and 

compare its performance from various simulation times.  To receive the notification at 

simulation time zero, learners must create all interested instances before running the 

model.   

Implementing both design patterns in a DES component permits a loose 

coupling among DES components and its visualization components.  Because of this 

flexibility, we have created a utility component called visualization palette that floats 

on the top of a model during runtime and holds various types of visualization tools to 

allow learners to customize the model’s GUIs.  Various model GUIs can be created 

by instantiating a new visualization instance (i.e., clicking its symbol on the palette), 

registering it to receive the notification from a relevant component’s state changes 

(i.e., dragging a point on it and dropping the point onto the component) and dragging 

it to any location on the stage.  However, since these processes demand some efforts 

from learners and not all visualization tools can be associated to a component (e.g., a 

Clock component can only be used with the Monitor component), this approach is not 

so effective for a learning environment.   

To overcome this problem, we directly embedded a list of visualization tools 

on the components’ GUIs.  Learners only need to click a command button (each of 

which associates to a new type of visualization tools) to instantiate a new 

visualization tool.  We believe this approach will help them to understand the 

dynamic behaviour of a DES model.   
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5.6 Connecting External Data 

 

Allowing learners to save the current states of a model offers some benefits in 

learning and teaching.  These include permitting them to retain the model’s 

visualization and parameter settings and mark time points of interesting scenarios.  

Unfortunately, this feature is not offered by existing DES tools.  As a result, learners 

are always presented with a new fresh model each time it is loaded.   

Saving a DES model requires us to store model relevant structures and states 

to a file.  Generally, there are three types of files for storing application data: text 

files, databases (Rob & Semaan, 2000) and XML (Hunter et al., 2000).  These files 

will be accessed to reflect the current behaviour of an application and can be updated 

to save the application’s latest information during running time.   

Text files are supported by many applications, easy to create and use and 

readable by humans.  However, they cannot store complex data structures as in DES 

models since information storing is restricted in a sequence of lines (i.e., a list of 

name-value pairs).  Databases ease an application to access data through the use of 

query languages.  They have been used for storing DES static structures as 

implemented in Arena software.  However, designing, creating and linking dynamic 

tables that store DES temporary entities and data fields for updating (storing or 

deleting) timely changed DES model components (especially visualization tools) is 

unpractical.   

XML provides a good data storage for DES models due to its ability to support 

complex data structures for storing entities and components with their own properties.  

Additionally, the current structures can easily be extended to support additional levels 

of more complex DES data structures.  However, the process of creating and updating 

these structures can only be done in the server for a security reason.  As a result, XML 

is usually used for storing and accessing data than updating the data, unless the 

updating process is done manually (Castillo et al., 2004).   

To eliminate these constraints, Flash has introduced Local Shared Objects 

(LSOs) that store an application’s relevant information (especially its parameter 

settings) on users’ computers.  Thus, each time they access the application through 

their computer, they will get the updated version of the application.  This makes the 

application looks like it has been customized for each user.   
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The main advantage of LSOs is that data can be stored in various data types 

(e.g., number, array, boolean, date, XML objects, etc.), making the storing processes 

of various objects are quite straight forward.  However, little Flash interactive movies 

have exploited its potential since it is usually used for storing basic data; e.g., user 

names.  For this reason, we used LSOs for storing our DES models’ states, animation 

and visualization instances.  The ideas behind this implementation can easily be 

applied in XML with little effort.   

Each DES component and entity should have its own LSO file (with a “.SOL” 

extension) and be named based on its instance name on the Flash stage.  The main 

storage location for LSO files is operating system-dependent but it is typically located 

under the Flash Player\#SharedObjects folder.  All LSO files belonging to a DES 

model are saved under a subfolder (under the main storage location) named based on 

its DES model file name to avoid conflicts with other models’ LSO files.  We thus 

need to retrieve the DES file name using ActionScript code whenever the model is 

reloaded.  Since the LSO name exactly follows its object name, entities (i.e., 

SimProcess objects) and visualization instances that are created during runtime must 

be coded so that each of these objects has their own unique names.  However, Flash 

will automatically assign a default unique name for an unspecified object name.  

Thus, the issue of an object without a name will not arise.   

We created a Utility component as a means to save component instances and 

their states.  It has a Save button for instructing all objects (in the form of MovieClips) 

on the Flash stage to detect the existence of their associated LSO files.  This can be of 

two cases.   

If their LSO files have not existed (i.e., the model has not been saved, or new 

SimProcess or visualization instances have been created since the last save), we need 

to command the objects to create their LSO files and store their relevant property 

values.  In case of active or passive components, we can directly transfer information 

in their info objects to their LSO files.   

If the LSO files exist (i.e., the model has been saved before), we only need to 

update these LSO files with their latest property values.  Note that the updating 

processes will only take place at the points where learners opt to save or resave the 

model, not during the whole process of model running.  This is to ensure that 

information in the LSO files is preserved until the next saving point so that learners 

will only be presented with a model of the latest saving point.  The Utility component 
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has other buttons; the first one is to flush all LSO files for a model, i.e., to get a fresh 

model with its default values and the second one is to show all the paths of entity 

movement for clarifying the sequence of events in the model.  The paths are presented 

by arrows that link active or passive components based on their output port 

parameters.   

Supporting such a saving capability needs all components to have certain 

features.  First, each active and passive component needs to transfer the current list of 

its observers (we have had an array for this since we implement the MVC pattern) into 

its own LSO file and consequently instruct all these observers to create (or update) 

and store relevant information in their LSO files every time the model is saved.  

Second, a Source component needs to have an array for holding a current list of its 

created SimProcess objects that are still available on the stage at certain points of 

time.  Note that we do not have this in our previous Source components.  This array 

needs to be updated each time a SimProcess object is created or destroyed (i.e., all 

SimProcess objects will remain in the list until they are destroyed by a Sink 

component).   

If learners opt to save the DES model, the current list must be transferred into 

its Source’s LSO file.  Sequentially, each of the SimProcess objects is to create its 

own LSO file (or update if its LSO file has existed) to store their current information; 

e.g., their latest locations, birth times, left time to finish a certain activity, etc.  The 

Source component also needs a variable to store the latest number of generated 

entities so that it can extent this number when the model is re-run.  Third, all 

scheduled events in the Monitor (i.e., events that have not been cancelled in the 

Agenda) need to be transferred to respective SimProcess’s LSO files whenever 

learners save the model.  Thus, we have to make sure that the SimProcess’s LSO files 

have already existed before transferring a list of their unexecuted events (with their 

time of occurrence) to their LSO files.   

Whenever a model is loaded or refreshed (after saving the model using the 

save button in a Utility component) in a web-browser, a Source component will first 

get its current list of SimProcess objects from its associated LSO file and then create 

those entities.  Each time a SimProcess object is created, all scheduled events stored 

in its LSO file will be retrieved and inserted to the model’s Agenda.  Consequently, 

each active and passive component reads its LSO file to initialize its parameter 

settings and creates visualization instances based on its list of observers.  Each 
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visualization instance will then be matched with its LSO file and fed with the data 

stored in the file.  Through these processes, learners will obtain the model with the 

previous animation, visualization and component parameter settings.   

A tricky issue arose when we wanted to resave a model; i.e., the model that 

has previously been saved is loaded and re-run.  During this point onward, some 

objects (e.g., entities that have left the model or certain visualization instances that 

have been removed by learners) have to be destroyed to save computer memory.  If 

we automatically destroy the LSO files along with their associated objects and 

learners opt to discard any changes during this time interval, we will lose the LSO 

files.  As a result, if the model is re-loaded, some objects will be reinitialized with 

their default values due to the missing of their LSO files.  However, if we just destroy 

the objects (i.e., we do not automatically destroy their LSO files) and learners opt to 

resave the models, we will keep a number of worthless LSO files; i.e., a list of orphan 

LSO files without their owners.  This is particularly true for a model that contains 

many active entities and/or has been extensively experimented with various 

visualization tools.   

To solve this problem, we programmed SimProcess objects so that they 

destroy themselves when they exit a model but their associated LSO files are still 

available until a certain point of time.  For this, the SimProcess objects should 

communicate with its creator; i.e. the Source instance that creates them.  To do this, 

the Source instance temporarily stores a list of destroyed objects.  If learners want to 

resave the model, this list will destroy all stored objects’ associated files, else nothing 

will happen.  The same thing applies to any removed visualization instances where 

each active component needs a temporary array to store its removed observers, and 

then removes the relevant visualization instance’ LSO file in case learners opt to save 

the model.   

We also need to maintain the smoothness of animation whenever a model that 

has previously been saved is loaded to be run for the first time.  At any saving point, 

the model is bound to have some entities that have not completed movement to their 

destinations.  These entities can be at any path; each of which has used some amount 

of its route time to reach its destination.  Anytime we load and re-run the model, we 

have to ensure that each entity continues its movement from the previous stopping 

location to its destination using only the remaining time left.   
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We handle these entities’ residual movements by delaying the execution of the 

model’s Event List.  Using this approach, the entity that has the smallest remaining 

time can finish its movement based on its residual time.  Other entities meanwhile use 

this time to step toward their destinations before the Monitor executes the next 

scheduled event and updates model time.  Without delaying the execution of the 

Monitor, the entity will jump directly to its destination while other entities remain 

static in their previous locations until their scheduled times have been reached that 

denote the times for them to jump to their destinations.  Since we move SimProcess 

objects based on movement steps (the partition of these steps depends on its time 

delay and a viewing ratio; refer to Chapter 4), delaying the Monitor only needs us to 

store the number of remaining steps left to reach the destination in the entity’s LSO 

file.   

 

 

5.7 Example 

 

This section discusses the ease of use aspects of our components in building queuing 

networks and how final queuing models allow learners to conduct various 

experiments and visualize model behaviour through their GUIs.  Figure 5.5 shows a 

snapshot of the DES components and their locations within the Flash environment.   

 

 

Figure 5.5  Flash Development Environment 
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All components reside in the Flash’s Components panel and can be 

instantiated by dragging them onto the Flash’s Stage to construct any types of queuing 

networks; i.e., open networks, closed networks or mixed networks (see Bose, 2002; 

Gelenbe & Pujolle, 1998).  The construction of these networks is accomplished by 

utilizing Decide component instances that route entities to their downstream 

components based on three options: probabilities, a shortest queue or entity types.   

To demonstrate the ease of use of our DES components, we will develop a 

sample of a queuing network as illustrated in Figure 5.6.  This sample simulates two 

types of entities arriving into a system.  The first type joints a single queue and will 

then be served if one of the two available servers is idle.  Upon completion, these 

entities need to go to another queue before leaving the system.  The second type 

chooses the shortest queue between the two available queues.  After being served, 

some percentage of the entities exits the system while others need to go to the servers 

that process the first type of entities.  They are then free to leave the system.   

 

Source

Source
Decide

(Shortest Queue)

Server

Decide
(Entity Type)

Sink

Queue

Decide
(Probabilities)  

Figure 5.6  A Queuing Network System 

 

 

These queuing network structures can easily be transferred to a computer 

simulation model using our components.  Based on these structures, teachers need two 

instances of the Source component, four instances of the Queue component, five 

instances of the Resource component, three instances of the Decide components, one 

instance of the Sink component and one instance of the Monitor component.  Note 

that a Monitor instance is needed by all simulation models.  Its functionality is to 

coordinate the sequence of entities in a model so that entities can be invoked and 

transferred between components at appropriate times and in the right orders.   
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All of these component instances need to be dragged and dropped onto Flash’s 

Stage.  Once they are on the Stage, teachers can arrange the component instances’ 

locations accordingly, give them a name and access their properties through the 

Properties layout panel (see Figure 5.7).  The process of dragging, dropping, naming 

an instance, initializing its parameter values and specifying its targeted components is 

repeated until the simulation model structure has been constructed.   

All components must have unique names to correctly link them with each 

other; i.e., these names are specified in their upstream components’ output port 

properties so that these upstream components can route entities to their downstream 

components.  This approach avoids us from writing case statements to represent the 

entities’ lifecycles as in our example in Chapter 4.  All components have their default 

property values that specify their behaviour during runtime and can be changed by 

clicking the appropriate row in the Properties layout panel.  For example, a Server 

instance has properties as listed in Table 5.1.  Once the simulation structure has been 

built, other visualization tools can then dragged, dropped at appropriate locations and 

connected to the DES components to provide a default GUI for the model.   

 

 

Figure 5.7  A Server’s Properties and Default Values 

 

Table 5.1  Server Properties and Description 

Properties Description 

capacity Number of resources that can be seized by entities in a queue 

delayToNextStation Time taken (based on a distribution type; e.g., Constant, 

Exponential, etc.) for entities to reach the next component 

graphInstance Name of a graph instance to display capacity used vs. 

simulation time 

histogramInstance Name of a histogram instance to display service times 

monitorName Name of a monitor instance that sequences state transitions of 

all types of entities in a model 

outPort Name of the next component to transfer entities 

serviceTime Type of distribution specifying processing time 
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Figure 5.8 shows a sample of the final model constructed in this manner with 

its own customized visualizations.  The model allows learners to stop, increase and 

decrease the animation speed for their best visualization effect (Figure 5.9a), conduct 

various experiments through an interactive GUI and observe the impact of changes to 

model behaviour through a range of engaging visualizations.  Conducting experiments 

are easy since they can change any component’s parameters at any time they wish 

(i.e., by clicking the component and typing appropriate values into text boxes and/or 

choosing one of several options in combo boxes) and directly visualize the 

component’s internal states by clicking available command buttons.  For example, 

learners can change priority rules (queuing disciplines) for queues (Figure 5.9b), alter 

the distribution of time between arrivals for the two types of entities, modify 

capacities and service times for servers (Figure 5.9c) and interact with data 

visualizations; e.g., changing minimum and maximum values, and the number of 

intervals of histograms (Figure 5.9d).  The ability to change histogram parameters 

enables learners to view the distribution of data in a variety of formats.  Labels of 

important components’ current parameter values are also displayed during runtime for 

model clarification.   

 

 

 

Figure 5.8  A Final Model 
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(a) Monitor (b) Queue 
 

  

 

 
 

(c) Server (d) Histogram 

Figure 5.9  Interactions with Component Instances 

 

All data visualization (that reports the model’s performance during the 

simulation run) selected by learners can be located at any location on the model stage 

or closed when unneeded.  This approach enables learners to customize the model’s 

visualizations based on their interest to ease their learning.   

 

 

5.8 Towards Hierarchical Simulation Model Design 

 

Systems are usually large and complex.  However, their complexity can be well 

structured if we partition them to many sub-systems; each of which focuses on its own 

function.  The use of a hierarchical model to break up a system to smaller functions 

not only help learners to understand the model, but it also allows learners to control 

the display of model information based on their ability to digest the information.   

Hierarchical simulation models offer some advantages for the learning and 

teaching environment.  First, teachers can structure a large and complex simulation 

model to different layers of abstraction; i.e., by building and representing the model 
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from a basic, general model to more detail sub-models (its child models).  Thus, a 

complex model can now be constructed and managed easily.  Second, learners can 

have a better view of a model since its complexity (i.e., simulation components, their 

interconnections, animation and data visualization) is now well controlled to limit its 

crowdedness on a limited computer screen space.  Thus, learners can control their 

learning by concentrating on a certain sub-model at a time in which they are 

interested.  For example, if they have understood a basic model, they can now 

transverse to the model’s children that hide more details of their structures and 

functions.  Additionally, understanding the model can be boosted if at each layer, 

learners are allowed to conduct various model experiments and customize the layer’s 

visualization.  Third, using layer by layer model design can ease the development of 

various simulation models.  The main reason for this is that each component, 

visualization tool and sub-model can be reused to construct a new type of simulation 

model.  This will expedite the creation of simulation based learning materials.   

However, designing the architecture that supports the development of 

hierarchical simulation models and implementing them on computer will post some 

challenges.  These include: 

 

1) How to connect and synchronize a model with its children in a hierarchical 

fashion since parent models are dependent on their child model(s).  This requires 

us to design a mechanism not only to synchronize the flow of entities in a relevant 

layer but also to properly transfer these entities to its child model and back to the 

layer whenever the entities exit the last components of the child model.   

2) How to hide and display animation and visualization of sub-models at an 

appropriate time so that the model abstraction can be controlled properly.   

3) How to store model states, animation, learners’ experiment parameters and their 

customized visualization for each model layer so that when they revisit the layer, 

they will get back the settings they have had before.   

 

 

Figure 5.10 shows an example of a hierarchical construction of a DES model.  

The model is partitioned to four layers (Layer 1 to Layer 4).  The execution of a 

particular layer depends on other layers.  The top layer (i.e., Layer 1) represents the 

overall function of the model while the lower layers give more information about their 
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upper layers’ functions.  Each layer except the lowest layer has a sub-model symbol 

that hides its structures (components and their connections) that perform its function.  

Clicking this sub-model symbol will take learners to a lower layer (i.e., the layer’s 

structures) while hiding the layer (e.g., through a button or a menu) will bring learners 

back to its upper layer.  At any layer, there could be a sub-model that generates and 

handles their own type of entities, but these entities will not be transferred to any 

other layers.  The flow of these entities must also be synchronized with the whole 

model time.   
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Figure 5.10  Hierarchical Construction of a DES Model 
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Each layer has its own window for locating its component structures and 

supporting its animation and visualization development.  Entities that flow on this 

window must be well synchronized with its lower layers; i.e., entities should appear at 

a sub-model symbol at the right time once they exit their lower layer based on their 

time delays.   

 

 

5.9 Designing Mechanisms for Hierarchical DES Models 

 

We have designed two mechanisms for coordinating event executions in hierarchical 

DES models.  The main trick for these is sorting events in all hierarchies and 

executing them accordingly.  First of all, we need to introduce these objects: 

 

1. (*, t) Messages 

(*, t) messages are additional messages to entity messages (i.e., dynamic entities 

flowing in DES models).  They are also inherited from the entity class; e.g., the 

SimProcess class.  The main differences are:   

 

 entities flow from component to component while (*, t) messages flow from 

layer to layer to coordinate event executions in the layers, 

 flowing entities from component to component typically consumes some 

delays while flowing (*, t) messages does not incur delay, 

 entities contain personal information (e.g., birth time, delay time, etc.) while 

(*, t) messages only contain the lowest simulation time of the source layers 

and the t value is not used to update simulation time, and 

 entities are created by a Source component (i.e., a type of component that 

creates entity instances) while (*, t) messages are created by a Submodel 

object.   

 

 

The insertion of (*, t) messages to an Agenda makes it looks clumsy.  

However, their existence is important to tally all event executions.   
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2. Submodel Objects 

A Submodel object encloses another layer.  Entities arriving at a Submodel object 

could be in one of two cases: (1) the entities are from the same layer’s previous 

component, or (2) the entities are from a lower layer’s last component; see Figure 

5.11.  To differentiate these entities, the entity class needs to have a property; e.g., 

named fromLayer that takes a value of current (the first case) or child (the second 

case).   

 

Submodel
input port output port

entity

(*, t)

component

received from the child 's
last component

component

transfer to the child's
first component

entity

(*, t)

child port

 

Figure 5.11  Submodel Architecture and Transferring Mechanisms 

 

 

For the first case, the entities continue their flows to a lower layer’s first 

component through a child port; i.e., a port specifying the child model’s first 

component.  For the second case, the entities flow to the same layer’s next 

component through an output port; i.e., a port storing its downstream component.   

 

3. Local monitor 

Each layer has its own local monitor that executes the layer’s activities stored in 

its Agenda in the right order.   

 

 

5.9.1 Monitor Delegation Mechanism 

 

When a model is loaded, each Submodel inserts a (*, t) message to its local monitor.  

This is to find the layer that has the lowest simulation time; e.g., in case of a 

Submodel object contains its own types of entities, or a Submodel object is the first 

component that locates a Source component under it.  The model execution starts with 

the top layer’s monitor removes the (*, t) message and transfer it to its lower layer’s 

first component which then inserts the message to its local monitor.  This process 
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continues until the imminent entity is found in a relevant layer.  The entity will then 

be executed so that it can flow to the same layer or to another layer.  Their flows to 

another layer must be accompanied by a (*, t) message.   

The imminent item after this first iteration can be of two types: (*, t) object or 

entity object.  If it is a (*, t) object, the execution of the current local monitor is 

passed to either its lower or upper layer’ monitor depending on the source of the (*, t) 

message.  Otherwise, it is flowed to the next destination; i.e., a component or a 

Submodel object.  For a Submodel object, the entity with a (*, t) message is 

transferred to a lower layer that will then be inserted into an appropriate location in 

the layer’s local monitor by its child’s first component.  This monitor then executes 

and removes the imminent item from its Agenda.   

Transferring the model execution to other layer’s local monitor implies that 

the layer contains lower next schedule time compared to the previous layer.  The 

execution of this current layer’s local monitor continues until another (*, t) message is 

found in its Agenda.  These processes are illustrated in Figure 5.12.  Figure 5.13 and 

Figure 5.14 meanwhile show some code under the handleMsg(SimProcess, time) and 

executeMsg(SimProcess) methods for the Submodel class and the simulation 

component class.   

Basically, the Monitor Delegation Mechanism coordinates the execution of 

events in a hierarchical DES model through these mechanisms: 

 

1. Instruct Submodel objects to insert (*, t) to each local monitor.  Execute the top 

layer’s monitor, followed by other layers.   

2. Determine the imminent item type and the component that executes it.   

3. (a) Flow the item to its next component in the same layer if the item is the type of 

entity and the component that executes it is a simulation component, or  

(b) Transfer the item and a (*, t) message if the item is the type of entity and the 

component that executes it is a Submodel object; see Layer 1 in Figure 5.12.  

Insert them at appropriate locations in the layer’s local monitor.  This process 

should be done by the child’s first component upon receiving the messages.  

Transfer the model execution to the layer’s monitor.   

4. Retrieve and remove the next imminent item from the current layer’s local 

monitor.  If the item is the type of (*, t) message, transfer the monitor execution to 
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the layer where the (*, t) is from and then repeat this step 4.  Else, repeat the step 

2.   
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Figure 5.12  Monitor Delegation Mechanism 
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private function handleMsg (entityInstance:SimProcess, time:Number) { 

 /* schedule the entity to its Agenda */ 

entityInstance.delay(this, time) 

} 

 

private function executeMsg (entityInstance:SimProcess) { 

 /* if the entity is from the current layer* / 

if (entityInstance.fromLayer( ) = = “current”) { 

  /* send the entity to its lower layer */ 

child.handleMsg(entityInstance, 0) 

/*create a new instance of externalMsg*/ 

extMsg = externalMsg.createNew( ); 

child.handleMsg(extMsg, 0) 

 /* if the entity is received from a lower layer */ 

} else { 

/* send the entity with some delay to the next component in the current 

layer */ 

  outport.handleMsg(entityInstance, delay); 

 } 

} 

 

Figure 5.13  Submodel Class Definition 

 

 

 

private function handleMsg (entityInstance:SimProcess, time:Number) { 

 /* schedule the entity to its Agenda */ 

entityInstance.delay(this, time) 

} 

 

private function executeMsg (entityInstance:SimProcess) { 

 if (entityInstance typeOf ExternalMsg) { 

  /*transfer the monitor execution to the Source of the extMsg monitor*/ 

  entityInstance.getSource( ).handleMsg(entityInstance, 0); 

 } else { 

  /* transfer the message with some delay to the next component */ 

outport.handleMsg(entityInstance, delay); 

 } 

} 

 

Figure 5.14  Simulation Class Definition 
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5.9.2 Monitor Communication Mechanism 

 

The Monitor Communication Mechanism differs from the Monitor Delegation 

Mechanism in two ways.  First, (*, t) messages are sent by a monitor, not by a 

Submodel.  However, a Submodel object and the last simulation component in a layer 

still transfer entities (i.e., SimProcess objects) to its lower and upper layer 

respectively.  Second, for each iteration, monitors located above the source of a (*, t) 

message must all be executed sequentially rather than transferring monitor execution 

to a relevant layer.  Such monitor communications through broadcasting (*, t) 

messages demand the monitor to implement the Delegate Event Model.   

The purpose of broadcasting (*, t) messages down to a certain layer where the 

(*, t) comes from is to find the model’s lowest simulation time in all visited layers’ 

Agendas.  For this, two types of iterations are needed.  The first iteration broadcasts a 

(*, t) message from the top layer until the lowest layer to consider the cases of Source 

components are located in the lowest layer or certain layers have their own types of 

entities.  The second iteration onward only involves broadcasting a (*, t) message 

until a relevant layer since any lowest next scheduled time below this layer definitely 

has a bigger value.  This can be achieved by detecting the origin of a (*, tn) message.   

The (*, tn) message is actually a (*, t) message containing the latest value of 

the lowest next scheduled time.  This value is collected during its traversal to the top 

layer.  By broadcasting the (*, tn) message up from layer to layer, a parent layer 

acknowledges its child layer’s lowest next scheduled time.  For example, Layer 1 

stores the lowest next scheduled time for Layer 2; Layer 2 stores the lowest schedule 

time for the Layer 3 and so on.  Thus, the execution of the child layer is controlled by 

its parent monitor.  The details of the Monitor Communication Mechanism are as 

follows: 

 

1. Insert a default (*, t) message in the root Agenda whenever the model is first run.   

2. Broadcast the (*, t) message from monitor to monitor in a sequence order (Layer 

1, Layer 2, Layer 3, …) until it reaches the lowest monitor.   

3. Execute the local monitor to coordinate events in the layer each time the layer 

receives the (*, t) message.  For example, execute the local monitor in the Layer 2, 

followed by the Layer 3 and so on.  Consequently, send the (*, t) message to 

lower monitors.   
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4. Once the (*, t) message reaches the lowest layer’s local monitor, retrieve the 

imminent item in its Agenda.  Take its lowest scheduled time.  Update the (*, t) 

message with a (*, tn), where tn is the lowest next scheduled time for the layer.  

Broadcast the (*, tn) to its parent monitor; i.e., the local monitor in its upper layer.  

Note that the (*, tn) message is supposed to traverse up to the top layer.   

5. Once the (*, tn) reaches its upper layer’s local monitor, insert the message at an 

appropriate location in its Agenda based on the tn value.  Retrieve the imminent 

item from the Agenda.  Broadcast a new (*, tn) message (could be the previous (*, 

tn) message if it is the imminent item) to its upper local monitor.  Repeat these 

processes until the (*, tn) reaches the top layer.  This will guarantee that each layer 

stores its child’s lowest next scheduled time.   

6. Once the (*, tn) reaches and has been inserted to the top layer’s Agenda (i.e., root 

Agenda), execute the root monitor.  If the imminent item in its Agenda is the type 

of (*, tn), send another (*, t) message down to the layer where the (*, tn) message 

is from.  During this traversal, execute all visited layers’ Agendas to remove the 

(*, tn) messages.  Note that only the layer that has generated the (*, tn) message 

will create a new event (i.e., flowing a relevant entity); other layers only remove 

the message from their Agendas.  Broadcast another (*, tn) message.  Repeat step 

5.   

7. Stop the processes if the length of simulation time has been reached.   

 

 

Figure 5.15 traces a sample of Agendas based on the Monitor Communication 

Mechanism.  The figure is split up to (a), (b) and (c); each one shows the Agendas at 

simulation time 0, 10 and 14 respectively.   

 



 132 

Time

0

2

Process

Customer#1

Customer#1

Event

Arrival

JoinQueue1

(*, t)

(*, t)

(*, t)

3 Customer#2 Arrival

(*, 0)

(*, 0)

(*, 0)

Time

0

Process

(*, t=0)

Event

Layer 4

Time

0

Process

(*, t=0)

Event

Layer 3

(a)

(*, t)

(*, t)

(*, t)

(*, 14)

(*, 14)

(b)

(*, t)

(*, t) (*, 16)

(*, 16)

(c)

(*, 16)

Time

16

19

Time

0

0

Process

(*, t)

(*, t=0)

Event

Execute

Layer 2

Time

10

14

Process

(*, t=10)

(*, t=14)

Event

Layer 2

Layer 2

21

26

27

Time

10

14

Process

(*, t=0)

(*, t=14)

Event

Layer 3

Layer 3

18

20

23

Time

10

14

Process

(*, t=0)

Event

Layer 4

16

22

29

(*, t=16) Layer 4

Time

14

16

Process

(*, t=14)

(*, t=16)

Event

Layer 2

Layer 2

21

26

27

Time

14

16

Process

(*, t=14)

(*, t=16)

Event

Layer 3

Layer 3

18

20

23

Time

10

16

19

24

30

Process

Customer#20

Event

JoinTellerQueue

Customer#20 SeizedTeller

24

30

Process Event

Time

14

16

Process

Customer#12

Event

DelayATM

22

29

31 Customer#12 ReleaseATM

 

Figure 5.15  Agenda States 

 

 

At simulation time 0 (i.e., at initial run time), broadcasting a (*, t) message 

down to the lowest layer (i.e., Layer 4) is compulsory to find the lowest next 

scheduled time for the model.  This example locates a Source component in the Layer 

4.  However, if it were located in other layers, broadcasting the (*, t) message down to 

the lowest layer would ensure the lowest next scheduled time is collected among the 

Agendas.   

When the (*, t) message reaches the lowest layer, the (*, t) is converted to a (*, 

t=0); we assume that 0 is the first event; i.e., the creation of first entity.  The (*, t=0) 

is then transferred up to the top layer since it is the lowest next scheduled time in the 

whole hierarchy.  After this first iteration, each time a (*, t) goes down toward its 

origin layer, all the visited layers’ monitors need to execute their Agendas by 

removing their imminent item; i.e., the (*, t=value) message.  For example, executing 

the monitors in Layer 2 and Layer 3 at simulation time 0 removes the (*, t=0) from 

their Agendas.  Only Layer 4 that contains a default entity (which is inserted by the 

Source component) removes the (*, t=0) and schedules a new event for the entity.   

At simulation time 10, a (*, t) message is broadcasted to Layer 4 from which 

the (*, t=10) has come.  During this (*, t) broadcasting, all visited Agendas’ imminent 
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items are removed (denoted by italic words).  However, only Layer 4 schedules a new 

event for its imminent entity (denoted the bold words).  Its new lowest scheduled 

time, i.e., (*, t=16) is then transferred to Layer 3 and inserted to the layer’s Agenda 

(denoted by underlined words).  This value is then compared with its lowest next 

scheduled time; i.e., t=14.  Since t=14 is smaller than t=16, the (*, t=14) is 

transferred up to Layer 2.  The processes of broadcasting a (*, tn) message, inserting it 

to an Agenda, comparing the value with the lowest value of the Agenda and re-

broadcasting the smallest value are repeated until the top layer in order to ensure that 

all parent layers know their child layers’ next scheduled time.   

At simulation time 14, traversing down until Layer 4 is not needed since its 

lowest next scheduled time is bigger than the lowest next scheduled time in Layer 3.  

Layer 3 then transfers a (*, t=16) message to Layer 2 since t=16 is smaller than t=22.  

Layer 2 transfers a (*, t=16) message to Layer 1 after comparing the value of t=16 

with t=18.  However, at simulation time 16, a (*, t) will again need to traverse down 

to the Layer 4.  These processes will continue until the length of simulation time has 

been reached.   

 

 

5.10 Problems and Challenges 

 

The ability to create many visualization instances during runtime can slow model 

execution and could create awkward model visualization.  Model execution is 

dependent on the number of visualization instances on the stages and more 

visualization instances will definitely demand more time to render the data on the 

instances.  Awkward model visualization happens when we do not control the depth 

of the objects on the stage properly.  For example, DES components or entity 

instances that have higher depth than a visualization instance will disturb learners’ 

view of data rendered on the visualization instance whenever it is dragging over them.  

Thus, we need to specify a range of depth numbers that a certain object type can take 

whenever it is created.   

In order to properly stack objects on the stage, we first gave a lower range of 

depth numbers for active and passive components, followed by a Monitor, a Utility, 

entities and then visualization components.  This ensures that all visualization 

components are always on the top of the stage wherever they are dragged.  Entities 
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should have higher depth compared to simulation components for a reason that they 

should move over the model structures fabricated by the simulation components.   

Based on the Delegation Event Model, we can actually permit learners to 

modify or expand model structures during runtime.  This is possible since a 

simulation component’ output port only needs to be fed with the name of its listener 

in order to transfer entities to the listener.  For this, we need to provide a palette that 

hosts various simulation components (as in our first approach of providing 

visualization components) where a relevant component can be instantiated with a 

default ID name by clicking its associated symbol, dragged onto a certain location and 

linked to its upstream component; e.g., through dragging a point from the instance to 

the upstream component.   

Permitting model configuration during runtime can create interesting activities 

that engage learners with the model.  Observing and analyzing the effect of change of 

model structures to model behaviour will help learners to understand the model better.  

However, allowing learners to drag simulation components during runtime will pose a 

problem; i.e., the animation of entity movement between a component and a dragged 

component could not be simulated properly.  This is true when entities are moving 

toward the component and at the same time the target component is dragged to other 

places.  As a result, the entities will not properly reach their destination since the 

distance calculated when they started moving has already changed.   

We sometimes need auxiliary messages (in addition to entity messages) for 

accomplishing relevant tasks in DES; e.g., in activating transporter or handling 

reneging and jockeying activities in a queue.  Handling reneging and jockeying needs 

a queue to acknowledge a component that handles these activities, i.e., by sending 

messages that contain entity names whenever the entities enter the queue.  The 

component needs two main properties: (1) tolerance time that employs a list of 

distributions for representing the time limit that the entity is willing to wait in the 

queue, and (2) destination port for specifying the destination that the entity will go 

after being retrieved from the queue.  A message received from the queue will be 

delayed based on its tolerance time.  When the message has consumed the time, it will 

search its associated entity in the queue.  If its associated entity is still available, the 

entity will retrieved from the queue and moved to the destination specified in the 

destination port.  The message will then be destroyed.  If its associated entity is 

missing (i.e., its associated entity has been removed from the queue), the message will 
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just be destroyed.  We have to insert these auxiliary entities into the model’s Agenda 

to tally their execution with the model time.  However their existence in the Agenda 

could make the Agenda looks clumsy.   

We could use Flash’s keyframes to form layers in a hierarchical DES model.  

Each keyframe handles a sub-model’s structures and provides a platform for learners 

to conduct experiments and customize its visualization.  However, Flash treats each 

keyframe as a totally new program.  It only provides a basic transition between 

keyframes; i.e., moving an execution point from keyframe to keyframe without a 

support for either accessing objects in or transferring objects to other keyframes.  In 

case of the development of hierarchical DES model, this hinders us from passing 

entities or other types of messages to other keyframes.  Such an approach is totally 

difference with Microsoft Visual Basic (Wright, 1998) since this language allows the 

use of FormName.ObjectName.Property to access objects that reside in other forms 

and objects can be passed from form to form freely.   

The only way to implement the discussed mechanisms is the use of only one 

keyframe, but with a number of main movie clips.  Each movie clip represents a layer 

and can contain many other movie clips; i.e., simulation components, visualization 

components, etc.  Since all movie clips now reside in the same keyframe, the 

simulation components can easily be accessed from other movie clips and the 

lifecycles of entities and (*, t) messages can be maintained.  To prevent the 

clumsiness of many main movie clips on a stage, learners should be allowed to hide or 

display the main movie clips.   
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CHAPTER 6 

 

EVALUATION AND ANALYSIS 

 

 

6.1 Introduction 

 

Learners should acquire knowledge and experiences during their learning.  

Knowledge can be delivered using various media (e.g., communications, texts, etc.) in 

classrooms or through online environments.  However, experiences can only be 

gained when learners are exposed to real applications of the knowledge; e.g., through 

the use of models that implicitly embed the knowledge.   

Interactive models can offer learners valuable experiences in two ways: 

providing information explicitly or implicitly during model exploration and 

challenging learners’ judgment during model interaction.  For example, the 

explanation of how various variables affect DES systems can offer basic knowledge 

to learners.  However, allowing them to explore and interact with relevant models of 

the systems will really fill in and clarify their mental models.  Thus, the use of various 

teaching modalities to meet various types of learners’ needs is important in learning 

and teaching settings (Fenrich, 2006; Smith & Renzulli, 1984).   

Learning and understanding DES concepts is a challenging task.  This is 

especially true when the availability of teachers in assisting learning is rather limited; 

e.g., in online environments.  There are a lot of static materials that completely 

explain DES concepts.  Although their use in the learning environment has been 

claimed to have at least equal learning outcomes as interactive materials (e.g., 

Hegarty, Kriz, & Cate, 2003; Mayer, Hegarty, Mayer, & Campbell, 2005; N. H. 

Narayanan & Hegarty, 2002; Tversky & Morrison, 2002), they typically fail to attract 

and engage learners, especially visual learners who learn by seeing and visualizing, 

and kinaesthetic learners who learn by doing relevant activities.  There are also a lot 

of attractive DES models.  However, they were developed for specific real systems 

that typically focus on system performance analysis.  Since their focuses are more on 
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final outputs rather than getting insight into model behaviour, interactions with the 

models are considered as irrelevant aspects.   

We believe that queuing models created using our components are attractive, 

interactive, informative and useful to be used in the learning and teaching 

environment.  The main premise for this claim is that we have designed DES 

components that are capable of providing models that fulfil characteristics of 

educational models as suggested in literature (e.g., Bransford, 2000; Lunce, 2004, 

2006; Mildrad, 2002).  These include activities through variable manipulations, 

informative and meaningful feedback through various visualization tools, attractive 

animation of various objects that depicts model behaviour and flexibility in 

replicating of real systems.  However, this assumption needs to be assessed through 

experiments; i.e., by obtaining feedback from a sample of learners about knowledge 

and insight they gain while experiencing samples of our models.  Analyzing the 

feedback will truly indicate if our tool can construct queuing models that have a 

positive effect on learning.   

We conducted two types of experiments.  The first experiment evaluated 

learners’ perceptions about the attractiveness and interactivity of samples of our DES 

models.  For this, we designed our own questionnaire based on model characteristics 

argued important in literature.  The second experiment evaluated model designers’ 

perceptions about the usefulness, ease of use and enjoyment of the tool and their 

willingness to use the tool in the future.  To measure these factors, we used the 

Technology Acceptance Model (TAM) and other extension models found in 

literature.  We also assessed the participants’ workload while experiencing our tool 

using NASA Task Load Index (TLX).   

 

 

6.2 Evaluating Models’ Attractiveness and Interactivity 

 

6.2.1. Assessment and Evaluation Methods 

 

We developed our own questionnaire to evaluate the attractiveness and interactivity of 

models constructed using our component-based tool.  The questionnaire was divided 

into four main sections: general information, general questions, model ratings and 

additional questions.   
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The general information section contained two questions: how much computer 

experience our participants had and how much they used computers as a learning tool.  

The general questions also consisted of two questions.  The first question was based 

on a five-point Likert-type scale that requested the participant to circle one of 

available options (i.e., 1 = strongly disagree; 2 = disagree; 3 = neither disagree nor 

agree; 4 = agree; 5 = strongly agree) that they had good knowledge on simulation.  

The second question requested them to specify how long they had spent exploring the 

given models.  Thus, during our briefing each participant was reminded to record how 

long they used the models.   

The model ratings are shown in Table 6.1.  Items in this section were all based 

on a five-point Likert-type scale.  However, they were invited to write any comment 

on each of these items.  All items were always asked from the positive aspects (i.e., 

we did not mix positive and negative aspects of items).  This makes it easier for them 

to understand the items and avoids them making any inadvertent mistakes when 

circling the options from strongly disagree to strongly agree.   

The development of the items were based on educational model characteristics 

that were argued to be important in literature (e.g., Beux & Fieschi, 2007; Gredler, 

2003; Jeffries, 2005; Jong, 1991; Joolingen & Jong, 1991a; Swaak & Jong, 2001a).  

We embedded all these characteristics in our components to produce such types of 

models.  Samples of resulting models were then tested to obtain learners’ levels of 

satisfaction for each criterion so that we can judge the attractiveness, interactivity and 

usefulness of the models.  Note that we did not include item number 12 in Table 6.1 

since it contained a list of sub-items that requested the participants to rate if each 

visualization tool (e.g., graphs, histograms and boxplots) and each facility provided 

by the models (e.g., ability to pause, resume and adjust animation speed, table of 

events, etc.) helped them to understand the models better.  The item and its sub-items 

were displayed in Table 6.5.   

The additional question section also consisted of two items.  The first item 

asked the participant if they had ever used other animated queuing models.  The 

second item invited the participants to provide additional suggestions on how to make 

learning through simulation easier.   
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Table 6.1  Items in Model Rating 

1. I am clear about the objectives of the model.   

2. The model is useful for information visualization and observing animated objects 

and events.   

3. The model is interactive, inviting input and providing appropriate feedback.   

4. The model contains high quality animation which makes learning enjoyable and 

interesting.   

5. The animation helps me to understand scenarios in the model.   

6. The various performance visualizations (graphs and other data displays) are 

meaningful.   

7. The model provides a graphical user interface (GUI) which is easy to interact 

with.   

8. I like the design of the GUI.   

9. It is good that the visualizations (e.g., graphs, histograms, etc.) are only displayed 

when requested.   

10. The interaction with the model by changing the model’s parameters during 

model execution (e.g., arrival rate, queue rule, server unit) is important in order 

to understand model behaviour.   

11. The change of the representation of animated objects based on their current states 

is important for me.   

13. The model is considerably out of bugs.  Please specify if you found any bugs 

while running the model.   

14. Overall, the attractiveness and interactivity of the model is good.  Any 

suggestions to improve the attractiveness and interactivity of the model?   

15. I would like to use this kind of model for understanding queuing scenarios.   

 

 

6.2.2. Experiment Participants 

 

Our objective is to obtain as much as possible of learners’ honest feedback about their 

experiences while using the given models.  Thus, we only distributed the models to 

volunteer participants.  Additionally, we did not impose them any time limit and time 

specification to use the models (i.e., they could explore the models how long the 

wished at their leisure time).  These approaches allowed them to interact with the 

models and observed the impacts of any changes they had made in a convenient way 

without any constraints (e.g., unfocused mind, bad mood, etc.).  However, since 

simulations are under constructivist learning, their feedback about the usefulness, 

attractiveness and interactivity of the models could be influenced by certain factors.  

These include their types of learners whether they are visual learners, auditory 

learners, kinaesthetic learners or read-write learners (Aragon, Johnson, & Shaik, 

2002; Haapala, 2006), their prior knowledge on a relevant domain (Dochy et al., 
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1999; Hailikari et al., 2008; Johnson, Aragon, Shaik, & Palma-Rivas, 2000), etc.  

Above all, the feedback analyses could give us hints on the participants’ acceptance of 

the models.   

We conducted this experiment in a two-week time interval.  Participants were 

approached in the laboratories of the Computer Science and Software Engineering 

Department, and the laboratories of the Mathematics and Statistics Department (both 

at the University of Canterbury) for their willingness to participate in the experiment.  

They were offered an incentive; i.e., two bars of chocolate.  A total of 28 participants 

volunteered to experience our sample models.  They were from various year students 

and programmes; e.g., Computer Sciences, Engineering, Mathematics, Commerce, 

etc.  Six of them were female and the rest were male.  We purposely distributed our 

models to various students so that we had flexibility in analyzing the feedback from 

various learners about the models’ attractiveness and interactivity, irrespective of their 

knowledge on simulation.  This enabled us to analyze the feedback in various angles; 

e.g., analyzing the data based on overall participants, gender and/or their knowledge 

levels of simulation.   

All of the participants were provided with two models.  The first model 

(Figure 6.1) simulated a simple queuing network.  It populated two types of 

simulation entities using two Source components.  The first type only required a 

single server to be processed.  The second type needed two servers, the second of 

which was the same one that processed the first type of entities.  The second model 

(Figure 6.2) just added complexities into the first model.  The first type selected an 

idle server from two parallel servers.  After going through one of the parallel servers, 

they needed to visit another server before leaving the model.  The second type 

selected a server with a shorter queue.  After going through this process, only 30% of 

them directly leave the system.  Another 70% went through the servers that processed 

the first type of entities.  However, they did not need to go through another server as 

for the first type of entities; instead they directly left the model.  See Appendix C.   

The purposes of the experiment and the description with a snapshot of each 

model were provided on an information sheet and attached to the questionnaire.  

Additionally, we demonstrated the models to each participant and explained what they 

were requested to do during and after the experiment (e.g., clicking components, 

changing their variables, instantiating visualization tools, changing animation speed, 

etc.) so that they had some strategies in their exploration.  This was important since 
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the models were open-ended simulation models that needed the participants to at least 

be equipped with basic mental models before they were left free to explore the models 

themselves.  They were also briefly introduced to all items in the questionnaire in 

order to make sure that they understood the items and answered them appropriately.  

Any relevant questions regarding the models and the questionnaire were then 

welcomed and answered.   

 

 

Figure 6.1  Simple Queuing Networks 

 

Figure 6.2  More Complicated Queuing Networks 
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The participants were encouraged to experience with both of the models.  

They were then left to use the models as long as they wished either in the laboratories 

or at their homes.  By leaving the models to be experienced at their leisure they had 

and no time limits imposed, we hoped that we would get as honest feedback as 

possible.   

 

 

6.2.3. Data Analysis and Results 

 

6.2.3.1 General Information 

 

When we asked the participants to specify how much computer experience including 

programming they had, only five participants (18%) considered that they did not have 

much experience in that.  When we looked at the data, four of them were first year 

students of the programmes of Engineering (two students), Commerce (one student) 

and Geophysics (one student).  The other one was a third year student of the 

Geography programme.  They were probably familiar with computers but likely 

confused when seeing the phrase “including programming”.  Two students (7%) 

skipped this question; i.e., they did not write anything in the provided space.  

However, we believed that both of them had quite experience in programming since 

they were a fifth year Engineering programme student and a third year Mathematics 

and Physics programme student.  Three participants (11%) considered that they only 

had average experience in computing in spite of the fact that they were third year 

students of Engineering (two students) and Computer Science programmes.  Other 

participants (64%) stated they had excellent experience in computer.   

For the second question, four participants (14%) stated that they did not use the 

computer much as a learning tool.  Two of them were the same participants that 

claimed they did not have much experience in computer.  One participant (4%) 

skipped this question and he was the same participant that skipped the first question.  

Two participants (7%) claimed they used computer moderately as a learning tool.  

Other participants (75%) considered that they used a computer as a learning tool a lot 

based on the key answers they gave; e.g., very often, a lot, everyday, most of the time, 

etc.   
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6.2.3.2 General Questions 

 

Simulation is a learning environment where its contents are not explicitly exposed to 

learners.  Its usefulness in providing the opportunity to learn in a more realistic 

context heavily depends on students’ prior knowledge.  There are two types of 

knowledge that learners should have: specific conceptual knowledge; i.e., the domain-

specific knowledge about concepts and facts that a model represents, and general 

knowledge; i.e., quantitative and qualitative aspects to read information and draw 

conclusions from the model’s outputs.  The importance of both types of knowledge in 

structuring and accommodating learning through models has been argued in much 

literature (e.g., Dochy et al., 1999; Hailikari et al., 2008).   

Operating a simulation model without the knowledge may create three distinct 

problems.  First, learners tend to conduct inefficient experiments, thus any 

interactions with the model seems not to be important.  Second, learners may have 

trouble in interpreting information, thus animations and data visualizations seem to 

give insignificant impacts and eventually demotivate them to learn.  Third, learners 

may not be able to regulate their learning processes, thus the model seems not to be 

useful.  Therefore, collecting participants’ prior knowledge to properly judge their 

feedback about the usefulness of our models and their relevant features in ensuring 

the participants’ learning is important.   

Based on the participants’ responses, only six participants (21%) were 

confident (agreed/strongly agreed) that they had good knowledge on simulation.  Nine 

participants (32%) considered that they did not have good knowledge on simulation 

based on their choices of strongly disagree/disagree options.  The other thirteen 

participants (46%) stated that they were undecided about their knowledge on 

simulation.  Figure 6.3 shows the frequencies of the participants’ scores for the first 

general question.   

Table 6.2 shows the summary reports of estimated time spent on the models 

by all participants grouped by their knowledge levels on simulation.  The average 

time spent by all of the participants was 17.61 minutes.  The minimum and the 

maximum time spent were 3 minutes and 60 minutes respectively.  Both the minimum 

and the maximum values were from the participants that were undecided about their 

knowledge on simulation.   
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Figure 6.3  Participants’ Feedback on Simulation Knowledge 

 

 

Table 6.2  Time Spent (in minutes) for Each Level of Knowledge on Simulation 

Score N Minimum Maximum Mean Std. Deviation 

1 1 10 10 10 - 

2 8 5 30 13.75 7.44 

3 13 3 60 19.08 19.26 

4 5 10 30 23 9.75 

5 1 10 10 10 - 

 

 

It is interesting to observe that the participants who agreed that they had good 

knowledge on simulation were in fact the group that used the models for the longest 

time in average (i.e., 23 minutes), followed by the group of participants that neither 

disagreed nor agreed that they had good knowledge on simulation (i.e., 19.08 

minutes).  This perhaps signals that the use of simulation models in learning settings 

is effective for learners for whom their knowledge levels on simulation are between 

moderate and good.  One possible reason for this is that learners in this group more 

often have hypotheses in mind to be tested during their exploration.  These induce 

them to engage with the models through conducting and understanding the models’ 

relevant outputs.   

If we look at Table 6.2, the use of simulation models could probably fail to 

engage the extreme point participants; i.e., the participants that had little knowledge 

on the concepts that the models represented and the participants that had already had 
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concrete mental models about the concepts.  One reason for the former is that this 

type of learners probably did not have ideas of what the models try to represent.  

Thus, they had no strategies in designing experiments and understanding the models’ 

outputs.  The reason for the latter is that this type of learners probably felt bored with 

the models because their outputs could well be predicted for each experiment.   

 

 

6.2.3.3 Model Rating 

 

Some researchers (e.g., Jong & Joolingen, 1998, 2008; Land, 2000; Landriscina, 

2009; Lunce, 2006; J. Quinn & Alessi, 1994) claim that learners that have relevant 

mental models or been equipped with some basic knowledge can effectively 

experience and evaluate open-ended simulation models.  Based on this argument, we 

separated our analyses based on the participants’ knowledge on simulation.  Table 6.3 

reports the experienced participants’ (i.e., who had good simulation knowledge) 

feedback about the models.  Table 6.4 and Table 6.5 meanwhile report the 

inexperienced participants’ feedback about the models; i.e., who were undecided and 

who did not consider that they have good simulation knowledge respectively.  By 

separating the results, we can effectively evaluate and judge the usefulness of our 

models in offering the opportunity to learn DES concepts and the significance of their 

features in ensuring the participants’ learning.   

Question 1 asked the participants if they were clear about the objectives of the 

models; i.e., what situations the models represented and what they were expected to 

gain while exploring the models.  Interestingly, all the six experienced participants 

were clear about the objectives of the models.  This indicated that they had a clear 

picture about the principles of the models.  Of the nine participants who claimed that 

they did not have knowledge on simulation, only one participant (11%) was unclear 

about the objectives of the models.  There were two participants (22%) undecided 

while the remaining six participants (67%) stated that they understood the model 

objectives.  Of the group that were undecided about their knowledge on simulation, 

six participants (46%) confirmed that they were clear about the objectives of the 

models.  Only two participants disagreed with this statement.  In general, most of the 

inexperienced participants (55%) understood the purposes of the models.  We 

believed that our approach of providing a description sheet of the models, 
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demonstrating the models and handling a question and answer session with the 

participants before they started their explorations gave some mental images for most 

of the participants in these two groups.   

 

Table 6.3  Good Simulation Knowledge Participants’ Feedback about the Models 

Item SD D NDA A SA Mode Mean 
Std. 

Deviation 

Clear 

objectives  

0 0 0 4 2 4 4.33 0.21 

(0%) (0%) (0%) (67%) (33%)    

Model useful  
0 0 0 3 3 4, 5 4.50 0.22 

(0%) (0%) (0%) (50%) (50%)    

Model 

interactive  

0 0 1 2 3 5 4.33 0.33 

(0%) (0%) (17%) (33%) (50%)    

Quality 

animation  

0 0 1 4 1 4 4.00 0.26 

(0%) (0%) (17%) (67%) (17%)    

Animation 

helpful  

0 0 0 3 3 4 4.50 0.22 

(0%) (0%) (0%) (50%) (50%)    

Visualization 

meaningful  

0 0 0 4 2 4 4.33 0.21 

(0%) (0%) (0%) (67%) (33%)    

GUI 

interactive 

0 0 1 4 1 4 4.00 0.26 

(0%) (0%) (17%) (67%) (17%)    

GUI 

acceptable  

0 0 1 5 0 4 3.83 0.17 

(0%) (0%) (17%) (83%) (0%)    

Pop-up 

visualization 

0 0 1 2 3 5 4.33 0.33 

(0%) (0%) (17%) (33%) (50%)    

Interaction 

helpful  

0 0 1 3 2 4 4.17 0.31 

(0%) (0%) (17%) (50%) (33%)    

Animation 

important  

0 1 0 3 2 4 4.00 0.45 

(0%) (17%) (0%) (50%) (33%)    

Model out of 

bugs  

0 0 3 2 1 3 3.67 0.33 

(0%) (0%) (50%) (33%) (17%)    

Model good  
0 0 1 2 3 5 4.33 0.33 

(0%) (0%) (17%) (33%) (50%)    

Model 

preference  

0 0 1 2 3 5 4.33 0.33 

(0%) (0%) (17%) (33%) (50%)    

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree 

 

Table 6.4  No Simulation Knowledge Participants’ Feedback about the Models 

Item SD D NDA A SA Mode Mean 
Std. 

Deviation 

Clear 

objectives  

0 1 2 6 0 4 3.56 0.24 

(0%) (11%) (22%) (67%) (0%)    

Model useful  
0 1 0 7 1 4 3.89 0.26 

(0%) (11%) (0%) (78%) (11%)    

Model 

interactive  

0 1 1 6 1 4 3.77 0.28 

(0%) (11%) (11%) (67%) (11%)    

Quality 

animation  

0 0 3 4 2 4 3.89 0.26 

(0%) (0%) (33%) (44%) (22%)    

Animation 

helpful  

0 0 3 5 1 4 3.78 0.22 

(0%) (0%) (33%) (56%) (11%)    

Visualization 

meaningful  

0 2 1 6 0 4 3.44 0.29 

(0%) (22%) (11%) (67%) (0%)    

GUI 

interactive 

0 1 4 3 1 3 3.44 0.29 

(0%) (11%) (44%) (33%) (11%)    
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GUI 

acceptable  

0 0 5 3 1 3 3.56 0.24 

(0%) (0%) (56%) (33%) (11%)    

Pop-up 

visualization  

0 1 2 5 1 4 3.67 0.29 

(0%) (11%) (22%) (56%) (11%)    

Interaction 

helpful  

0 0 1 6 2 4 4.11 0.20 

(0%) (0%) (11%) (67%) (22%)    

Animation 

important  

0 2 2 5 0 4 3.33 0.29 

(0%) (22%) (22%) (56%) (0%)    

Model out of 

bugs  

0 0 5 1 3 3 3.78 0.32 

(0%) (0%) (56%) (11%) (33%)    

Model good  
0 0 2 6 1 4 3.89 0.20 

(0%) (0.00%) (22%) (67%) (11%)    

Model 

preference  

0 1 2 3 3 4 3.89 0.35 

(0%) (11%) (22%) (33%) (33%)    

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree 

 

Table 6.5  Undecided Simulation Knowledge Participants’ Feedback about the 

                        Models 

Item SD D NDA A SA Mode Mean 
Std. 

Deviation 

Clear 

objectives  

0 2 5 2 4 3 3.62 0.31 

(0%) (15%) (38%) (15%) (31%)    

Model useful  
0 0 2 10 1 4 3.92 0.14 

(0%) (0%) (15%) (77%) (8%)    

Model 

interactive  

0 1 4 5 3 4 3.76 0.26 

(0%) (8%) (31%) (38%) (23%)    

Quality 

animation  

0 4 4 4 1 2, 3, 4 3.15 0.27 

(0%) (31%) (31%) (31%) (8%)    

Animation 

helpful  

0 0 2 7 4 4 4.15 0.19 

(0%) (0%) (15%) (54%) (31%)    

Visualization 

meaningful  

0 1 5 5 2 3, 4 3.62 0.24 

(0%) (8%) (38%) (38%) (15%)    

GUI 

interactive 

0 3 5 3 2 3 3.31 0.29 

(0%) (23%) (38%) (23%) (15%)    

GUI 

acceptable  

1 2 4 5 1 4 3.23 0.30 

(8%) (15%) (31%) (38%) (8%)    

Pop-up 

visualization  

0 0 1 6 6 4, 5 4.38 0.18 

(0%) (0%) (8%) (46%) (46%)    

Interaction 

helpful  

0 0 3 6 4 4 4.08 0.21 

(0%) (0%) (23%) (46%) (31%)    

Animation 

important  

0 2 3 7 1 4 3.54 0.24 

(0%) (15%) (23%) (54%) (8%)    

Model out of 

bugs  

0 1 4 5 3 4 3.77 0.26 

(0%) (8%) (31%) (38%) (23%)    

Model good  
0 2 3 6 2 4 3.62 0.27 

(0%) (15%) (23%) (46%) (15%)    

Model 

preference  

0 1 2 9 1 4 3.77 0.20 

(0%) (8%) (15%) (69%) (8%)    

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree 

 

 

Much literature (e.g., Falvo, 2008; Hegarty, 2004; Hegarty et al., 2003; Lowe, 

2004) stresses the usefulness of embedding animations and data visualizations in 

educational models.  Animations motivate learners to learn and help them get insight 
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into complicated phenomena and understand the relationships between various model 

variables.  The effect of these variables to model behaviour is then made visible 

through various data visualizations.  However, the usefulness of animations and data 

visualizations is much influenced by whether or not a learner has been equipped with 

basic domain specific knowledge for understanding model outputs, generic 

knowledge of quantitative and qualitative methods for interpreting the outputs and 

skills for performing further experiments.   

Question 2 tested if our models were useful for information visualizations and 

observing animated objects and events in order to understand the models’ states and 

behaviour.  All of the six experienced participants believed that the models were 

useful for these.  This reflected that our DES components could build models with 

good animations and data visualizations.  Data also revealed that eight of the 

participants (89%) who did not have good knowledge on simulation and eleven of the 

participants (85%) who were undecided about their simulation knowledge considered 

that our models provided useful animations and information visualizations.  Of these 

inexperienced participants, only one participant disagreed with the statement.  The 

high percentage of agree/strongly agree opted by the participants in this group showed 

that information visualizations and animations of objects and events in our models 

helped them understand DES concepts better.   

Interaction plays an important role in any learning processes (Arbaugh & 

Benbunan-Fich, 2007; Su et al., 2005; Woo & Reeves, 2007).  In the traditional 

classroom environment, interactions between learners and their teachers can stimulate 

their knowledge acquisition and clarify their judgment.  In case of virtual classrooms 

and online learning environments that use models as mediums of instructions, model 

interactivity can replace the teachers’ role.  Although this feature does not guarantee 

learning through models (Davies, 2002; Pilkington & Parker-Jones, 1996), its 

significance in motivating and engaging learning has been corroborated in many 

studies (e.g., Beux & Fieschi, 2007; Bransford, 2000; Mildrad, 2002; Schank, 

Berman, & Macpherson, 1999).  Question 3 tested if our models were interactive, 

inviting input and providing appropriate feedback.   

Based on the data, five experienced participants (83%) agreed/strongly agreed 

that our models were interactive and provided appropriate feedback.  The other one 

participant circled an undecided option.  This indicated that DES models built using 

our components provided an interactive platform for stimulating active explorations 
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and showing cause and effect of the participants’ relevant actions.  Of the 

inexperienced participants, only two participants (9%) disagreed with the statement; 

one was from the participants that disagreed that she had good knowledge on 

simulation while the other one was the participant that was undecided about his 

knowledge on simulation.  A majority of participants that did not have knowledge on 

simulation (i.e., 78%) and were undecided about their knowledge on simulation (i.e., 

62%) agreed that the models were interactive.  Once again, the feedback reflected that 

our models were interactive and informative to be used as DES learning tools even 

though they were used by the participants that did not have adequate prior knowledge 

on DES.   

Flash has been claimed to produce high quality animated applications (Castillo 

et al., 2004; Mohler, 2006; Shupe & Hoekman, 2006).  This was a reason why we 

used Flash to build DES models and animate their behaviour.  Question 4 tried to 

obtain feedback from the participants about the animation quality of our models.  Five 

experienced participants (83%) considered that the models contained high quality 

animations.  Of the inexperienced participants, only four participants (18%) disagreed 

with the statement and they were the participants that were undecided about their 

simulation knowledge.   

Table 6.6 shows in details the feedback of the participants that claimed they 

often used computer as a learning tool (21 participants) about the animation quality of 

our models.  Eleven participants (52%) from this group considered that the models 

contained high quality animations.  Only three participants (14%) disagreed with the 

statement.  The majority of agreed/strongly agreed participants indicated that our 

components produced high quality animated models that could effectively represent 

the DES concepts which were difficult to be explained in static materials.  The 

animations offered exciting learning materials that motivated their learning and 

attracted them to engage with the models.   

Table 6.6  Feedback on the Quality of Animation from the Participants Who 

       Always Used Computer as a Learning Tool 

Scale Frequency Percent 
Valid 

Percent 

Cumulative 

Percent 

2 3 14.3 14.3 14.3 

3 7 33.3 33.3 47.6 

4 8 38.1 38.1 85.7 

5 3 14.3 14.3 100.0 

Total 21 100.0 100.0  
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Model presentation is important to attract and engage learners (Djajadiningrat, 

Matthews, & Stienstra, 2007; Parrish, 2009).  The use of meaningful animations for 

showing model behaviour can offer many benefits.  These include facilitating 

learners’ understanding about dynamic processes in a model, making the learning 

experience enjoyable and enriching.  Some studies have also shown that learning 

through meaningful animations typically motivates learners to learn and induce them 

to retain information longer (Teoh & Neo, 2007; Vogel-Walcutt, Gebrim, & 

Nicholson, 2010).  Question 5 tested if our embedded animations helped them to 

understand scenarios in the models.  Interestingly, all the experienced participants 

agreed/strongly agreed with this statement.  The feedback reflected that our approach 

of demonstrating the behavior of the models through meaningful animations (e.g., 

showing a sequence of events, animating the movement of entities and their current 

states, changing the pictures of a server based on its status, etc.) was very useful for 

understanding the models.  Data also revealed that six of the participants (67%) who 

did not have knowledge on simulation and eleven of the participants (85%) who were 

undecided about their knowledge on simulation agreed/strongly agreed with the 

statement.  This suggested that we successfully integrated animations in our DES 

models and the animations helped this inexperienced group understand scenarios in 

the models.   

When asked if various performance visualizations were meaningful for 

learning (Question 6), all the experienced participants gave positive feedback on the 

item.  This showed that graphs and other data displays used to report the detailed 

performance of the models over simulation time were meaningful and should be used 

to complement animations.  This is expected since this group of learners knows the 

importance of the visualization tools in measuring the performance of the models.  

However, three of the inexperienced participants (14%) disagreed and six of them 

(27%) were undecided about the meaningful of the various performance visualization 

tools.  This probably signaled that the visualization tools may not so useful unless 

learners would like to understand in details the current performances of the models.   

GUIs play important roles in data-driven simulations; i.e., to capture learners’ 

inputs and send them to particular model processes.  We partitioned the processes to 

relevant components, each of which has its own GUI that can be accessed by clicking 

on it.  The GUIs have two functions: (1) displaying all editable variables and their 

current values, and (2) instantiating data visualization tools that graphically chart the 
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component behavior in real time.  We expected this approach enabled learners to 

easily interact with the models (Question 7).  Data analysis showed that five of the 

experienced participants (83%) agreed/strongly agreed with us.  Of the inexperienced 

participants, only four (18%) disagreed that the GUIs provided by our tools were easy 

to interact with.  The results might indicate that the use of a mouse clicking approach 

to access components offered an easy platform for learners to explore and experiment 

with the models.  However, a better approach to access the GUIs should be 

investigated since about half of the inexperienced participants were still undecided if 

the GUIs were easy to access.   

When asked if they liked the design of the GUIs (Question 8), five of the 

experienced participants (83%) agreed with the statement.  This might reflect that our 

approach of providing simple interfaces using text boxes, command buttons, combo 

boxes, etc. and presenting simulation results in various windows that can be dragged 

to any locations was effective.  However, three inexperienced participants (14%) did 

not like the design of the GUIs.  One of them was the same participant that disagreed 

the GUIs were easy to interact with.  The other two participants were from the 

participants that could not decide if the GUIs were easy to interact with.  Interestingly, 

there were no participants that agreed/strongly agreed that the GUIs were easy to 

interact with did not like the design of the GUIs.   

There has been a substantial amount of evidence that proves the use of 

multiple representations through different choices of data presentations and different 

forms of feedback can significantly enhance learning in complex domains (e.g., see 

Ainsworth, 1999; Ainsworth, Bibby, & Wood, 2002; Bodemer & Faust, 2006; 

Goldman, 2003; Kozma, 2003; Schnotz & Bannert, 2003; Seufert, 2003).  

Unfortunately, this desirable feature has not been integrated in DES models.  Our 

DES models allow visualization customizations; i.e., learners can dynamically create 

a number of visualization instances from many available types of visualization tools 

(e.g., graphs, tables, clocks, etc.) during a simulation run.  Thus, our models can be 

represented by many interfaces, with each interface containing many representations 

that show various angles of model information and variable relationships.  For 

examples, texts are used to represent certain contexts, graphs (or other visualization 

tools) or tables of numeric values are used to represent quantitative aspects of the 

models and animations are used to represent qualitative information of their inner 

processes.  Data analysis of Question 9 showed that five experienced participants 
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(83%) considered that the approach of displaying visualizations only when requested 

was a good approach.  Of the inexperienced participants, only one participant 

disagreed with this approach.  A majority of them showed their strong support for the 

approach.  The feedback reflected that our approach of allowing learners to customize 

their own visualizations was deemed as a good idea since they could control the 

display of model information based on their ability to understand the models’ 

behaviour.   

As mentioned earlier, interactions during model execution are important to 

understand model behaviour.  However, most DES models provide no support for 

model variable alterations during runtime.  This is totally different with our DES 

models that allow learners to interact with DES variables (e.g., by changing arrival 

rates, queue rules, server units, etc.) on the fly and observe the effect of those 

variables to model behaviour.  Question 10 tests if this approach is important in 

learning.  Five experienced participants (83%) stated that this feature helped their 

learning.  Of the inexperienced participants, there was no one who was negative about 

the importance of this approach (although there were four participants (18%) could 

not decide).  This proved that providing an interaction platform for learners to clarify 

their ideas was a desirable feature for learning through models.   

The change of animated object representations explicitly shows the change of 

model states.  We suspected that these tiny changes may not help learners to 

understand model behaviour so much.  However, analyses of Question 11 showed that 

four experienced participants (67%) agreed/strongly agreed that such changes were 

important for them to understand model behaviour.  Of the inexperienced participants, 

there were thirteen participants (59%) agreed/strongly agreed while only four 

participants (18%) disagreed with the statement.  This indicated that animations of 

objects based on their states might assist learning and offered the advantage of 

delivering better representations of relevant concepts.  Thus, animations should be 

used to explicitly explain dynamic and complicated processes such as DES and 

system dynamic.   

While visualization tools are important to graphically chart the pattern of 

numerical data, other relevant tools can also offer benefits in easing learning.  For 

example, we provided a slider to allow learners to control animation speed based on 

their abilities in extracting information from the models (i.e., time scale of events), a 

table of events to show a list of types of the previous, current and next events with 
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their occurrence time in relation to model variables, tables of statistical information to 

report the current statistics of each component, a description table of each entity to 

display a list of its performed activities in the models, and a facility button to hide and 

display paths of entity movement.  This feature enables them to clearly view the 

lifecycles of various entities especially for more complex structure models.   

The usefulness of these tools in helping learners to understand queuing models 

was investigated in Question 12.  The question was divided into sub-questions, each 

of which requested the participants to rank the tool’s usefulness in model exploration.  

The sub-questions and their associated tools are shown in Table 6.7.  Table 6.8, Table 

6.9 and Table 6.10 meanwhile show the descriptive analysis of the participants’ 

feedback about the tools based on their knowledge on simulation.   

Table 6.7  Sub-questions of “These tools help to understand the model better (Please  

        write if you have any comments)” 

Sub-question Tool 

12.1 Graphs 

12.2 Histograms 

12.3 BoxPlots 

12.4 Ability to pause, resume and adjust animation speed 

12.5 Table of events (previous, current and future) 

12.6 
Table of component’s statistical information (e.g., queue, server, 

etc.) 

12.7 
Entities’ information window showing activities they have 

performed in the model 

12.8 Ability to hide and show the path of entities 

 

Table 6.8  Good Simulation Knowledge Participants’ Feedback about the Model 

           Tools 

Tool SD D NDA A SA Mode Mean 
Std. 

Deviation 

Graphs 
0 0 0 4 2 4 4.33 0.21 

(0%) (0%) (0%) (67%) (33%)     

Histograms 
0 0 1 3 2 4 4.16 0.31 

(0%) (0%) (17%) (50%) (33%)     

Boxplots 
0 0 1 4 1 4 4.00 0.26 

(0%) (0%) (17%) (67%) (17%)     

Animation 

control  

0 0 1 1 4 5 4.50 0.34 

(0%) (0%) (17%) (17%) (67%)     

Event table 
0 1 1 4 0 4 3.50 0.34 

(0%) (17%) (17%) (67%) (0%)     

Statistical 

tables 

0 0 1 2 3 5 4.33 0.33 

(0%) (0%) (17%) (33%) (50%)     

Information 

windows 

0 0 2 3 1 4 3.83 0.31 

(0%) (0%) (33%) (50%) (17%)     

Path 

visibility 

0 0 4 1 1 3 3.50 0.34 

(0%) (0%) (67%) (17%) (17%)     

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree 
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Table 6.9  No Simulation Knowledge Participants’ Feedback about the Model Tools 

Tool SD D NDA A SA Mode Mean 
Std. 

Deviation 

Graphs 
1 0 1 6 1 4 3.66 0.37 

(11%) (0%) (11%) (67%) (11%)     

Histograms 
1 0 4 3 1 3 3.33 0.37 

(11%) (0%) (44%) (33%) (11%)     

Boxplots 
1 1 4 2 1 3 3.11 0.39 

(11%) (11%) (44%) (22%) (11%)     

Animation 

control  

0 0 0 4 5 5 4.56 0.18 

(0%) (0%) (0%) (44%) (56%)     

Event table 
1 2 1 3 2 4 3.33 0.47 

(11%) (22%) (11%) (33%) (22%)     

Statistical 

tables 

0 0 3 4 2 4 3.89 0.26 

(0%) (0%) (33%) (44%) (22%)     

Information 

windows 

0 1 5 2 1 3 3.33 0.29 

(0%) (11%) (56%) (22%) (11%)     

Path 

visibility 

0 4 2 1 2 2 3.11 0.42 

(0%) (44%) (22%) (11%) (22%)     

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree 

 

Table 6.10  Undecided Simulation Knowledge Participants’ Feedback about the 

 Model Tools 

Tool SD D NDA A SA Mode Mean 

Std. 

Deviat

ion 

Graphs 
0 2 2 9 0 4 4.57 0.97 

(0%) (15%) (15%) (69%) (0%)     

Histograms 
0 1 5 6 1 4 3.54 0.22 

(0%) (8%) (38%) (46%) (8%)     

Boxplots 
0 3 4 6 0 4 3.23 0.23 

(0%) (23%) (31%) (46%) (0%)     

Animation 

control  

1 0 1 7 4 4 4.00 0.30 

(8%) (0%) (8%) (54%) (31%)     

Event table 
0 4 2 5 2 4 3.38 0.31 

(0%) (31%) (15%) (38%) (0%)     

Statistical 

tables 

0 1 3 6 3 4 3.84 0.25 

(0%) (8%) (23%) (46%) (23%)     

Information 

windows 

1 1 2 8 1 4 3.54 0.30 

(8%) (8%) (15%) (62%) (8%)     

Path 

visibility 

1 2 1 5 4 4 3.69 0.36 

(8%) (15%) (8%) (38%) (31%)     

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree 

 

Based on Table 6.8, graphs were rated as the most important visualization tool 

by the experienced participants (i.e., all of them agreed/strongly agreed that graphs 

helped them understand the models better), followed by an animation control (five 

participants with four of them strongly agreed), statistical tables (five participants 

with three of them strongly agreed), histograms (five participants with two of them 

strongly agreed), boxplots (five participants with one of them strongly agreed), event 

tables (four participants) and lastly the path visibility facility (two participants).  This 

reflected that graphs plotting relevant variables (e.g., number of entities in a queue, 
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number of units of a resource used, etc.) over simulation time and an animation 

control slider providing a feature for pausing, resuming and adjusting animation speed 

based on the participants’ abilities to retrieve information from simulation were the 

two most desirable visualization tools to get insight to the models’ behaviour.  The 

two visualization tools that received minimum scores were the path visibility facility 

and event tables.  The probable reason why the facility to hide and display received 

the lowest score was because the models’ structures were not so complicated.  This 

tool would be useful if the models’ structures were complicated; i.e., they contained 

many types of entities, each of which has its own paths.  The participants that 

disagreed with the usefulness of the table of events in helping them understand the 

models claimed that the table was not very human readable.  The table was actually 

used by the models to update their behaviour and it could be used by interested 

participants to trace how the models’ behaviour and their animations have been and 

will be simulated over time.   

For the inexperienced participants, the animation slider was rated as the most 

important tool (i.e., twenty participants with nine of them strongly agreed), followed 

by graphs (sixteen participants), statistical tables (fifteen participants), path visibility 

(twelve participants with five of them strongly agreed), event tables (twelve 

participants with four of them strongly agreed), information windows (twelve 

participants with two of them strongly agreed), histograms (eleven participants) and 

boxplots (nine participants).  One inexperienced participant that felt the entity’s 

information window was not an essential feature complained that the windows were 

hard to locate while in use.  This is probably true since the images of the entities in 

our models are quite small.   

When asked if the models were free of bugs (Question 13), fifteen of the 

participants (three experienced participants and twelve inexperienced participants) 

agreed/strongly agreed with the statement.  Twelve of the participants (three 

experienced participants and nine inexperienced participants) could not decide while 

one participant disagreed.  Five participants reported two bugs during their 

exploration.  However, two of them still agreed that the models were considerably 

free of bugs, while the other three participants opted to choose neither disagree nor 

agree options.  These two bugs were: (1) arrows depicting paths of entity movement 

disappeared after certain simulation time, and (2) certain components sometimes 

could not be clicked to access their GUIs.  One participant complained that the 
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description texts of some components in the second model were located under other 

components and this hindered him to properly read the texts.  Overall, only one 

participant disagreed that the models were free of bugs.  This reflected that our 

approach of structuring all classes for the DES components prior to writing their code 

led to relatively few syntax and logical errors.   

We scrutinized our code to find the reasons for these bugs.  The first bug 

happened because we did not properly control the depths of arrow clips connecting 

the components.  After a particular number of depths, the arrows would disappear 

whenever their depths were replaced by the depths of newly generated entities.  We 

corrected this bug.  We however could not find the reasons for the second bug.  For 

the complaint that there were some texts under certain components, we actually 

overlooked the arrangement of the components in the second model.  When 

simulation structures are getting complex, all simulation components have to be 

compacted in a limited stage to give learners enough spaces to customize the models’ 

visualization during run time.  As a result, texts for some components may be located 

under some other components.   

When asked to rate the overall attractiveness and interactivity of the models 

(Question 14), five experienced participants (83%) chose agree/strongly agree 

options.  Of the inexperienced participants, fifteen of them (68%) agreed with the 

statement.  This showed that a good balance between quantitative analyses through 

data visualizations and qualitative aspects through animations, clear presentation and 

attractive interfaces could improve learners’ understanding on DES concepts.  There 

were two participants who disagreed that our models were attractive and interactive, 

and they were actually the same participants that disagreed that the models contained 

high quality animations.   

Question 15 asked if the participants would like to use these types of models 

for understanding queuing networks.  Five experienced participants and sixteen 

inexperienced participants (six participants were from the participants that did not 

consider to have good knowledge on simulation and ten participants were from the 

participants that were undecided about their knowledge on simulation) would like to 

do so.  A majority of the participants that agreed with the attractiveness and 

interactivity of the models reflected that our models could be used as self-study or 

supplementary materials to learn DES concepts.  However, there were two 

inexperienced participants who disagreed that they would use the models.  One of 
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them was the same participant that felt the overall attractiveness and interactivity of 

the models was not good.  This might signal that without basic knowledge, attractive 

and interactive models would not help and improve students’ learning through 

models.   

For the first additional question that asked the participants if they had ever 

used any other animated simulation models for queuing scenarios, only one 

participant claimed that she used to use animated simulation models.  She stated that 

the other models that she had used had better graphics but with no exploration 

capabilities.  Five participants (two experienced participants and three inexperienced 

participants) explicitly noted that our models helped them to understand DES 

concepts.  One participant said that it was so interesting to see the mechanism of 

queuing networks that were difficult to illustrate using traditional paper-based or 

static materials.   

We invited the participants to suggest how to make simulation learning easier.  

Some participants responded to this request.  Their suggestions included (1) showing 

the functionality of each component used in the models (e.g., in the form of tool tip 

texts, pop-up windows, etc.) whenever learners selected the component, (2) providing 

editable models so that their structures can be changed or modified (e.g., learners can 

arrange the flow of entities during runtime), (3) providing tutorials or helping menus 

to assist them whenever they were stuck in their learning processes, (4) providing 3D 

versions of the models to make them more attractive, and (5) displaying overall 

results whenever simulation had finished.  Some participants noted that our approach 

of allowing them to create multiple visualizations themselves (i.e., controlling the 

amount of visualization tools to be displayed and dragging them to wherever locations 

on the model stage) was really a good approach in helping them to understand model 

behaviour.   

The first suggestion is easy to implement.  In fact, we used this approach for 

showing an entity’s activities.  Since we implemented a click event in a component’s 

code to access its GUI, a mouse-over event (that activates a new movie clip and holds 

a description of its functionality) and a mouse-out event (that removes the movie clip 

whenever a mouse pointer is not on the component region) can be used.  The second 

suggestion can also be accomplished since we implemented the Delegate Event Model 

pattern that uses ports to link components.  For this, we need to reveal all 

components’ names and provide fields in their GUIs to accept their downstream 
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component names during runtime.  However, this will make the models look clumsy 

with component names and prone to logical errors if the output ports are not specified 

correctly by learners.   

We agree that providing a textual tutorial, integrating other multimedia 

resources or supplying a list of instructions (i.e.; some suggested hands-on 

experiments) is important to assist learning through models.  Examples of hands-on 

experiments include investigation experiments that request learners to investigate the 

effects of various variables to model behaviour and optimization experiments that 

request learners to identify and vary simulation variable values so that specified 

model constraints are not broken.   

The suggestion of using 3D models to make learning through simulation 

models easier is not always true.  Such models could attract and engage learners since 

they are close to their actual systems.  However, their use in education has been 

claimed to only benefit some learners while other learners may suffer additional 

cognitive workloads (Huk, 2006; Korakakis, Pavlatou, Palyvos, & Spyrellis, 2009).  

To be effective, a simulation model should offer an interactive platform for 

hypotheses testing (i.e., an experimentation platform for clarifying learners’ ideas) 

instead of graphic sophistication that is fun to look (Prensky, 2001).   

We have to stress the danger of misinterpretation of DES results by learners 

manipulating model parameters interactively during simulation run.  The animations 

and visualizations of our models only reflect the impacts of the parameter settings to 

their current behaviour.  They are not supposed to be used as an analysis tool for 

measuring model performances which strictly requires unchanged parameter values 

until the end of simulation.  The statistical analyses in our models is to help learners 

understand how a relevant parameter (e.g., time between arrival, route time, queue 

rule, process time, etc.) affects the models’ current states and performance.  Some of 

the analyses can be viewed through animations and visualizations.  For example, 

learners can observe the animations of the current number of entities in a queue and 

visualize the current utilization of a server.  Other analyses are to give the detail of the 

models’ current performance measures over simulation time, and these are typically 

reported using tables; e.g., throughput, waiting time in a queue (average, minimum 

and maximum), length in a queue (average, minimum and maximum), time spent in 

the system (average, minimum and maximum), resource utilization, etc.   
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6.3 Evaluating the Tool’s Ease of Use, Usefulness and Enjoyment 

 

6.3.1 Assessment and Evaluation Methods 

 

Human behaviour has long been claimed as an important element that determines the 

acceptance of a technological innovation (Greenbaum & Kyng, 1991; Isomaki, 

Pekkola, & Bannon, 2011).  In order to empirically assess model builders’ perception 

towards our component-based tool, we have conducted an experiment by adapting the 

Technology Acceptance Model (TAM) developed by Davis (1989).  Results of this 

can signal the acceptance of our tool and can be used to improve it in the future.   

TAM consists of a list of items (variables) discriminated under two cognitive 

responses (factors); i.e., perceived usefulness and perceived ease of use.  Perceived 

usefulness relates to significant functions that the innovation provides while perceived 

ease of use generally relates to interfaces and attractiveness of the innovation.  These 

responses were originally proposed by the Theory of Reasoned Action (Ajzen & 

Fishbein, 1980; Fishbein & Ajzen, 1975) and significantly determine users’ 

acceptance (i.e., their attitudes and behaviour) of an innovation.   

Variables for each factor in TAM were derived from previous empirical 

studies on the self-efficiency theory (Banduras, 1977), the cost-benefit paradigm 

(Payne, 1982) and the adoption of innovations (Tornatzky & Klein, 1982).  Each 

factor initially consisted of 14 candidate variables.  However, after being tested for 

reliability and content validity, the variables were then cut out to only six variables 

(see Table 6.11) that are adequate for testing perceived usefulness and perceived ease 

of use of an innovation.   

TAM has been tested as a valid and reliable model for measuring users’ 

acceptance of an innovation (e.g., by Adams, Nelson, & Todd, 1992; Davis & 

Venkatesh, 1996; Mathieson, 1991).  The significance of each factor and its variables 

in determining the acceptance of an innovation have been corroborated by other 

researches (e.g., Legris, Ingham, & Collerette, 2003; Saadé & Bahli, 2005; Teo, Lim, 

& Lai, 1999; Venkatesh & Morris, 2000).  At the same time, TAM has also widely 

been adapted without modification or with minor extensions (i.e., by adding other 

factors that affect users’ point of views, e.g., perceived enjoyment, work contexts, etc. 

or that directly affect users’ perceived usefulness, e.g., social influence and cognitive 

instrumental processes) by many researchers to assess users’ acceptance about various 
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technological innovations.  These include tools or software (Babar, Winkler, & Biffi, 

2007; Chau, 1996; Davis & Venkatesh, 1996; Laitenberger & Dreyer, 1998) and 

applications (Henderson & Divett, 2003; Jahangir & Begum, 2008; Pikkarainen, 

Pikkarainen, Karjaluoto, & Pahnila, 2004; Saadé & Bahli, 2005; Teo et al., 1999).   

 

Table 6.11  TAM Factors and Their Variables 

Factor Variable 

Usefulness 

1. Work more quickly 

2. Job performance 

3. Increase productivity 

4. Effectiveness 

5. Makes Job Easier 

6. Useful 

Ease of use 

1. Easy to learn 

2. Controllable 

3. Clear and understandable 

4. Flexible 

5. Easy to become skillful 

6. Easy to use 

 

 

6.3.2 Experiment Participants 

 

Our participants were volunteer students at Universiti Utara Malaysia, Malaysia 

(http://www.uum.edu.my) who enrolled for the Computer Modelling in Business 

course.  This course focuses on the concepts and analyses of DES and uses Arena 

(Kelton et al., 2004; Kelton et al., 2010) as the implementation software.  It is a 

compulsory course for the students of the Bachelor of Decision Science programme 

and can be taken in the second or third year of the programme.  However, other 

programme students can enrol it as an elective course.   

Arena is DES software that uses the SIMAN language (C. Dennis Pegden, 

Shannon, & Sadowski, 1995) as its simulation engine.  DES models are created using 

modules and connectors to represent their processes and logic.  Animation that shows 

the models’ behaviour can be provided using its animation tools.  Simulation outputs 

will automatically be displayed when simulation ends.  Figure 6.4 shows a screenshot 

of Arena.   
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Figure 6.4  Arena Screenshot 

 

 

We intentionally chose these students since they had been equipped with 

knowledge on DES concepts and had experiences in using Arena for DES model 

development.  This choice was made since participants with tacit knowledge and 

experiences of particular contexts can effectively evaluate a tool since they exactly 

know what they and other users want (Davis & Venkatesh, 1996; Whitworth, Banuls, 

Sylla, & Mahinda, 2008).  The effect of experiences and job relevance on users’ 

perceived usefulness and perceived ease of use, and eventually on their acceptance of 

a tool has well been documented (e.g., in Venkatesh & Davis, 2000; Whitworth et al., 

2008).   

40 students participated in this experiment.  Besides their knowledge on DES, 

the participants also had knowledge on programming, particularly on Visual Basic 

(Harvey M. Deitel, 2006; Zak, 2009) that they learned in the first year of their 

programmes.  We collected their own assessments of their knowledge on DES and 

programming so that we could properly assess their perceptions of our tool.   
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6.3.3 Running the Experiment 

 

We first provided a training session for the participants.  They were first briefed about 

Adobe Flash software.  The explanation included the reasons we have used Flash as 

an implementation environment, its GUI environment (e.g., the locations and the 

functionalities of tool, component, properties and library panels, etc.) and how to 

create Flash and ActionScript files.  The participants were then introduced to our DES 

components and their functionalities in DES models.  All relevant ActionScript files 

(although most of the files were already converted to relevant components) were also 

presented.  All these files and components had been fixed from bugs reported in the 

first experiment.   

We then assisted the participants in constructing a simple DES model (i.e., an 

M/M/1 model).  The significant step was the creation of a SimProcess class file and its 

attachment to an animation object to represent entity arrival.  When they were familiar 

with the model construction processes, they were asked to either add complexity to 

the model or create a new model of their own.  During model building, we were 

available to answer their questions and were ready to guide them whenever they were 

stuck.  After experiencing with various components for an hour, they were asked to 

fill out the questionnaire.   

As stated earlier, users’ experiences can influence their perceived usefulness, 

perceived ease of use and perceived enjoyment of a tool and eventually affect their 

acceptance of the tool.  Thus, our questionnaire first collected their perceived 

knowledge on DES concepts, experiences in programming and familiarity with Adobe 

Flash and its environment.   

Items for measuring the perceived usefulness and the perceived ease of use of 

our tool are shown in Table 6.12.  Note that we modified the work and job keywords 

in the original items in Davis (1989) and replaced them with construct words (see the 

complete questionnaire in Appendix D).  We also included one more factor, perceived 

enjoyment, which has been claimed (e.g., by Pikkarainen et al., 2004; Saadé & Bahli, 

2005; Teo et al., 1999) to influence users’ acceptance of a tool (denoted as Perceived 

Enjoyment in the questionnaire).  All items under these three factors used a five-point 

Likert-scale that asked the participants to indicate their disagreement or agreement 

about the items from (1) strongly disagree to (5) strongly agree.   
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Table 6.12  Items of Perceived Ease of Use, Perceived Usefulness, Perceived 

Enjoyment and Self-predicted Future Usage of the Component-based Tool 

Perceived Usefulness (PU) 

PU1: The component-based tool enables me to construct DES models that help 

learn and understand DES concepts more quickly.   

PU2: The component-based tool improves my construction performance on DES 

models.   

PU3: The component-based tool increases my productivity of constructing DES 

models.   

PU4: The component-based tool enhances my effectiveness of constructing DES 

models.   

PU5: The component-based tool makes the construction of DES models easier.   

PU6: Overall, the component based tool is useful for constructing DES models.   

Perceived Ease of Use (PEU) 

PEU1: Learning to use the component-based tool is easy for me.   

PEU2: I find the processes of using the component-based tool were controllable 

(clear, understandable and straight forward).   

PEU3: My interaction with the component-based tool is clear and understandable.   

PEU4: I find the component-based tool to be flexible to interact with.   

PEU5: It is easy to become skillful at using the component-based tool.   

PEU6: Overall, the component-based tool is easy to use.   

Perceived Enjoyment (PE): 

PE1: I have fun interacting with the component-based tool.   

PE2: I enjoy using the component-based tool.   

Self-Predicted Future Usage (SP): 

SP1: I intend to use the component-based tool to construct DES models in the 

future   

SP2: I intend to show others this component-based tool. 

 

 

Based on the participants’ responses, we performed two tests.  First, we 

assessed the reliability of the items in the questionnaire.  Second, we evaluated model 

builders’ perceptions on our component-based tool.  High responses for the three 

factors would imply that the tool was useful, easy to use and enjoy to be used.   
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6.3.4 Data Analysis and Results 

 

6.3.4.1 General Information 

 

Table 6.13 shows the number and the percentage of the participants grouped by their 

gender.  10.00% of the participants were male while 90.00% were female.  Data also 

revealed that most of the participants were between 20 to 24 years old.   

 

Table 6.13  The Participants’ Gender 

Gender N Percentage 

Male 4 10.00% 

Female 36 90.00% 

 

 

As mentioned earlier, relevant knowledge and experiences could influence the 

participants’ cognitive responses (i.e., their perceived usefulness, perceived ease of 

use, perceived enjoyment, etc.) about the tool (Davis & Venkatesh, 1996; Stoel & 

Lee, 2003; Taylor & Todd, 1995).  Table 6.14 reports how the participants rated their 

knowledge on DES, their experiences in programming and their familiarity with 

Adobe Flash and its environment.   

 

Table 6.14  The Participants’ Knowledge and Experiences 

Experience 
Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 
Mode Mean 

Std. 

Deviation 

DES 
1 8 23 8 0 3 2.95 0.714 

(2.50%) (20.00%) (57.50%) (20.00%) (0.00%)    

Programming 
3 10 15 12 0 3 2.90 0.928 

(7.50%) (25.00%) (37.50%) (30.00%) (0.00%)    

Adobe Flash 
2 11 17 10 0 3 2.88 0.853 

(5.00%) (27.50%) (42.50%) (25.00%) (0.00%)    

 

 

The data revealed that only 22.50% of the participants perceived that that they 

did not have good knowledge on DES.  We can also see that 32.50% of the 

participants disagreed/strongly disagreed that they had good programming 

experiences and were familiar with Adobe Flash and its environment, respectively.  

Of the 40 participants, only 25.00% of them perceived that they were familiar with 
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Adobe Flash.  However, most of them stated that they used Adobe Flash to only 

create a simple animation with little or no ActionScript programming.   

 

 

6.3.4.2 Questionnaire Reliability and Validity 

 

Based on the participants’ feedback, we first measured the reliability of the items in 

the questionnaire.  For this, we conducted a Cronbach’s alpha test.  Table 6.15 reports 

the Cronbach’s alpha values for perceived usefulness, perceived ease of use and 

perceived enjoyment factors.  All factors showed values higher than 0.8 (the overall 

reliability was 0.927).  Thus, perceived usefulness, perceived ease of use and 

perceived enjoyment scales showed high levels of reliability (George & Mallery, 

2009).  This indicates that the questionnaire is a reliable measurement instrument.   

 

Table 6.15  Cronbach’s Alpha Values 

Factor Cronbach’s Alpa Value 

Perceived Usefulness 0.933 

Perceived Ease of use 0.890 

Perceived Enjoyment 0.823 

 

 

We also checked the factorial validity of the questionnaire; i.e., whether 

perceived usefulness, perceived ease of use and perceived enjoyment form distinct 

constructs.  For this, we performed factor analysis with varimax rotation that checks 

which items tend to cluster together.  Table 6.16 shows the factor analysis results.   

Each value in the Table 6.16 shows the correlation of the variable with the 

three factors respectively.  This value is called a variable’s loading factor.  It can 

range between -1 (a perfect negative association with the factor) and 1 (a perfect 

positive association with the factor).  A value that closes to 0 indicates that there is no 

relationship between the variable and the factor.  A loading factor of at least 0.7 

shows a strong correlation of a variable with a considered factor (J. O. Kim & 

Mueller, 1978).  However, a lower value of 0.5 is sometimes considered important for 

the factor (Coakes, 2007).   
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Table 6.16  Factor Analysis of Perceived Usefulness, Perceived Ease of Use and 

 Perceived Enjoyment 

Variable 
Factor 

Usefulness Ease of use Enjoyment 

Work more quickly (PU1) .714 .206 .359 

Job performance (PU2) .772 .390 .174 

Increase productivity (PU3) .873 .235 .058 

Effectiveness (PU4) .896 .154 .136 

Makes Job Easier (PU5) .826 .351 .046 

Useful (PU6) .820 .089 .203 

Easy to learn (PEU1) .236 .761 .130 

Controllable (PEU2) .226 .777 .312 

Clear and understandable (PEU3) .372 .827 .166 

Flexible (PEU4) .261 .649 .492 

Easy to become skilful (PEU5) .119 .777 .141 

Easy to use (PEU6) .241 .368 .649 

Fun (PE1) .115 .271 .864 

Enjoy (PE2) .142 .090 .872 

 

 

We can see that all variables except two variables loaded greater than 0.7 on 

one of the factors.  The first variable, i.e., Flexible (PEU4) only had a value of 0.649 

on the perceived ease of use factor.  However, since this variable had a value greater 

than 0.5 and loaded higher on the perceived ease of use factor than the other two 

factors, we could attribute this variable to the perceived ease of use factor.  The 

second variable, i.e., easy to use (PEU6) loaded higher on the perceived enjoyment 

factor (loading factor = 0.649).  Data showed that the easy to use variable had strength 

correlation with the perceived enjoyment factor.   

 

 

6.3.4.3 Usefulness, Ease of Use and Enjoyment of the Tool 

 

Table 6.17 shows the descriptive statistics for all items in the questionnaire.  As we 

can see, in general, most participants were positive about the tool.  Few of the 

participants (less than 7.50%) disagreed/strongly disagreed with the items related to 

perceived usefulness, perceived ease of use and perceived enjoyment of the tool (see 

the last column in Table 6.14).   
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Table 6.17  Descriptive Statistics of the Items 

Variable Mean Std. Dev. Mode 
N of Strongly 

Disagree/Disagree 

Work more quickly (PU1) 4.03 0.768 4 (23) 2 (5.00%) 

Job performance (PU2) 3.98 0.733 4 (22) 1 (2.50%) 

Increase productivity (PU3) 4.00 0.716 4 (20) 0 (0.00%) 

Effectiveness (PU4) 3.88 0.822 4 (16) 1 (2.50%) 

Makes Job Easier (PU5) 3.93 0.730 4 (22) 1 (2.50%) 

Useful (PU6) 4.15 0.700 4 (20) 0 (0.00%) 

Perceived Usefulness 23.95 3.876 24 - 

Easy to learn (PEU1) 3.65 0.834 4 (19) 3 (7.50%) 

Controllable (PEU2) 3.68 0.797 4 (17) 2 (5.00%) 

Clear and understandable (PEU3) 3.75 0.840 4 (19) 3 (7.50%) 

Flexible (PEU4) 3.83 0.781 4 (18) 1 (2.50%) 

Easy to become skillful (PEU5) 3.85 0.700 4 (23) 1 (2.50%) 

Easy to use (PEU6) 3.75 0.809 4 (21) 3 (7.50%) 

Perceived Ease of Use 22.50 3.830 22 - 

Fun (PE1) 3.93 0.572 4 (27) 0 (0.00%) 

Enjoy (PE2) 4.08 0.526 4 (29) 0 (0.00%) 

Perceived Enjoyment 8.00 1.013 8.00 - 

 

Figure 6.5 reports the results of the tool’s perceived usefulness in graphical 

formats.  It shows the summative results (Figure 6.5(a)) and the detail results of each 

item (Figure 6.5(b)) under this factor.  The rating of summative results ranged 

between 15 and 30 with the mean of 23.95.  Considering the maximum rating was 30, 

we could conclude that most of the participants considered the tool were useful for 

constructing educational DES models.  All variables received good scores (mean 

above 3.88) with the useful variable (PU6) received the highest score with the mean 

of 4.15.   

 

  
(a) (b) 

Figure 6.5  Perceived Usefulness Results 
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The sum of items under the perceived ease of use factor ranged between 14 

and 30, with the mean value of 22.50.  This mean value showed the participants 

perceived the tool was easy to use.  A close examination of different items revealed 

that all items received positive feedback from most of the participants.  The easy to 

become skilful variable (PEU5) was rated with the highest value (with the mean of 

3.85).  This probably indicates that the drag and drop fashion eases model 

constructions and demands little guidance.  Most of the participants also perceived 

our tool was flexible (mean: 3.83) and easy to become skilful (mean: 3.85).  The two 

items that received low ratings from the participants were easy to learn (PEU1) and 

controllable (PEU2) with the mean values of 3.65 and 3.68 respectively.   

The sum of items under the perceived of enjoyment factor ranged between 6 

and 10 with the mean value of 8.  This indicated that most of the participants enjoyed 

using the tool.  They also stated that they had fun (mean: 3.93) and enjoyed using the 

tool and its resulting models (mean: 4.08).   

 

 

6.3.4.4 Self-predicted Future Usage 

 

The participants were requested to predict their future usage of the tool; i.e., whether 

they will use the tool if it is available in the future.  Such self predictions are among 

the most accurate predictors available for measuring an individual’s future behaviour 

of an innovation (Sheppard, Hartwick, & Warshaw, 1998; Warshaw & Davis, 1985).  

Table 6.18 reports the participants’ self-predicted future usage of the tool.  As we can 

see, both variables received good feedback from them.   

 

Table 6.18  Descriptive Statistics of Self-Predicted Future Usage 

Variable Mean 
Std. 

Dev. 
Mode 

N of participants 

strongly disagreed/ 

disagreed 

Intend to use (SP1) 4.08 0.730 4 (22) 1 (2.00%) 

Intend to show to others (SP2) 4.05 0.714 4 (20) 0 (0.00%) 

Self-predicted Future Usage 8.125 1.381 8  - 
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According to the Theory of Reasoned Action (Ajzen & Fishbein, 1980; 

Fishbein & Ajzen, 1975), user’s perceived usefulness and perceived ease of use are 

significantly correlated to the acceptance of an innovation.  The acceptance has also 

been proved by other studies (e.g., Pikkarainen et al., 2004; Saadé & Bahli, 2005; Teo 

et al., 1999) to be influenced by their perceived enjoyment.   

To investigate the degree (strength) of relationships between each of these 

three factors and the participants’ acceptance of our tool, we ran a Pearson 

correlation analysis.  For this, we correlated the three summative results of the 

perceived usefulness, perceived ease of use and perceived enjoyment to the 

summative results of the participants’ predicted future usage.  Table 6.19 reports the 

results of the analysis.   

 

Table 6.19  Correlations between Perceived Usefulness, Perceived Ease of Use and 

           Perceived Enjoyment to Self-Predicted Future Usage 

  
Usefulness 

Ease of 

Use 
Enjoyment 

Future 

Usage 

Usefulness 
Pearson Correlation 1 .594

**
 .366

*
 .428

**
 

Sig. (2-tailed)   .000 .020 .006 

Ease of Use 
Pearson Correlation .594

**
 1 .562

**
 .298 

Sig. (2-tailed) .000   .000 .062 

Enjoyment 
Pearson Correlation .366

*
 .562

**
 1 .605

**
 

Sig. (2-tailed) .020 .000   .000 

Future Usage 
Pearson Correlation .428

**
 .298 .605

**
 1 

Sig. (2-tailed) .006 .062 .000   

**  Correlation is significant at the 0.01 level (2-tailed). 

*  Correlation is significant at the 0.05 level (2-tailed). 

 

 

The results showed that each perceived usefulness and perceived enjoyment 

was positively correlated with self-predicted future usage.  This indicated that both of 

the factors were important determinants influencing the participants’ future usage of 

the tool.  The correlation coefficient between perceived enjoyment and self-predicted 

future usage was much higher than the correlation coefficient between perceived 

usefulness and self-predicted future usage; i.e., 0.605 (p < 0.005) compared to 0.428 

(p < 0.010).  However, we are not confident that there was a correlation between 

perceived ease of use and self predicted future usage since the p-value was greater 

than 0.05.  This hints that the participants opted to use the tool primarily because of its 

usefulness and perceived enjoyment compared to its ease of use.  We can also see that 
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there was a correlation between usefulness and ease of use (r = 0.594, p < 0.005), 

usefulness and enjoyment (r = 0.366, p < 0.010) and ease of use and enjoyment (r = 

0.562, p < 0.005).   

To reveal predictive power between self-predicted usage of the tool and the 

three individual factors, regression analyses were conducted.  Table 6.20 shows the 

regression analysis results.  The results clearly showed that perceived usefulness and 

perceived enjoyment had positive effects on self-predicted future usage.   

 

Table 6.20  Regression Analyses of the Effect of Perceived Usefulness and Perceived 

        Ease of Use on Self-Predicted Future Usage 

 
Model Summary 

Model R R Square 

Adjusted 

R Square 

Std. Error of 

the Estimate 

1 .671(a) .451 .405 1.06543 

Predictors: (Constant), EaseOfUse, Enjoy, Usefulness 

 

 

Coefficients 

Model   

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .429 1.486   .289 .775 

Usefulness .127 .055 .356 2.317 .026 

Enjoyment .849 .204 .623 4.165 .000 

Ease of Use -.095 .062 -.264 -1.523 .136 

    Dependent Variable: Future Usage 

 

 

The R
2
 of the regression was 0.451.  However, the R

2
 value is generally of 

secondary importance unless the regression model will be used to make accurate 

predictions.  To tell how confidence we are that each of the independent variables 

(i.e., perceived usefulness, perceived ease of use and perceived enjoyment) has some 

correlation with the dependant variable (i.e., future usage), we should observe the p-

values of each variable.   

The p-values for perceived usefulness (p = 0.026) and perceived enjoyment (p 

= 0.000) were smaller than 0.05.  This indicated that both of the factors were useful 

predicators for self predicted future usage.  The analysis also revealed that perceived 

enjoyment was the most influential factor to self-predicted usage (t = 4.165, p < 0.05).  

Note that the t-value suggests the relative importance of each variable in the model 
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and t-value between -2 and 2 reflects a useful predicator.  Our finding of perceived 

enjoyment has significant effect on an innovation is tally with some researchers’ 

finding (e.g., by Pikkarainen et al., 2004; Saadé & Bahli, 2005; Teo et al., 1999).  

However, this finding is in contrast with that of other researchers (e.g., Igbaria, Livari, 

& Maragahh, 1995) that claimed perceived enjoyment was not related to the 

acceptance of an innovation.   

Perceived usefulness was also found to be the influential factor to self-

predicted usage (t = 2.317, p < 0.005).  This finding is in line with other TAM studies 

(e.g., Davis, 1989; Davis, Bagozzi, & Warshaw, 1989; Igbaria, Zinatelli, Cragg, & 

Cavaye, 1997; Keil, Beranek, & Konsynski, 1995) that found perceived usefulness 

had more impact on technology acceptance than perceived ease of use since perceived 

ease of use impinges on acceptance through perceived of usefulness.  However, some 

researchers claim the opposite (Chau, 1996; Venkatesh & Morris, 2000).  We can see 

that the ease of use factor had small relation with the self predicted future usage as 

indicated by its non-significant t-value (p > 0.05).   

 

 

6.3.4.5 Participants’ Cognitive Workloads 

 

It is important to measure the participants’ cognitive workloads while using our tool.  

There are two approaches for measuring this: Short Subjective Instrument (SSI) (Paas, 

Tuovinen, Tabbers, & Gerven, 2003) and the NASA TLX mental workload 

instrument (Hart, Stavenland, Hancock, & Meshkati, 1988).   

The SSI assesses a participant’s overall cognitive workload using a single 

question that requests him/her to rate a given task from extremely easy (1) to 

extremely difficult (7).  We chose the NASA TLX since it can assess the level of the 

participant’s various cognitive loads, based on the combination of his/her extraneous 

load (i.e., his/her memory load while using a material but this can be controlled by the 

material’s designer; e.g., through the use of graphics or relevant presentation formats) 

and intrinsic load (i.e., the level of perceived difficulty of a material and this can be 

influenced by his/her knowledge and experience).  Both types of workloads are 

measured using the NASA TLX instruments based on six factors: 
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 Mental demand; i.e., if the task affects the participant’s attention 

 Physical demand; i.e., if the task affects the participant’s health 

 Temporal demand; i.e., if the task consumes a lot of time that the participant 

cannot afford 

 Performance; i.e., if the task is heavy or light in terms of workload 

 Frustration; i.e., if the task makes the participant unhappy 

 Effort; i.e., if the participant has spent a lot of effort on the task 

 

 

In our case, the physical demand factor reflects the participants’ physical 

tension and stress while and after developing DES models using our tool.  We have 

explained this term to them during the experiment.  The more they use keyboards and 

mice, the more physical activities they have to perform and these may cause pain in 

the back, neck, shoulder and muscle, strain on the eyes and strain on fingers, etc.  We 

would like them to rate how the activities affected their health.   

Originally, the NASA TLX calculates the participants’ overall cognitive 

workloads based on their responses to pair-wise comparisons among the six factors 

and their ratings on each of these factors.  However, the factor rating is the most 

important element in calculating the overall workload score; and removing the pair-

wise comparisons may increase the experimental validity and reduce the experimental 

error (Bustamante, 2008).  Since our purpose was to generally assess our participants’ 

cognitive workloads while using our tool, we only requested them to rate the six 

factors based on a 7-point scale (1 = low, 7 = high).  Table 6.21 shows their feedback 

for each of the factors.  The overall cognitive workload for all of the participants were 

close to average with mean = 3.642 and standard deviation = 1.104.  This value 

indicated that the participant’s mental requirement for building DES sample models 

using our tool was not so simple since they had to do some hands-on tasks (e.g., 

creating class files, attaching the files to their relevant objects, dragging, dropping and 

connecting the components, etc.) and was not so complex since they had been 

equipped with knowledge on and experiences in the domain.   
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Table 6.21  Participants’ Feedback about the TLX Subscales 

Factor 1 2 3 4 5 6 7 Mode Mean SD 

Mental demand 
2 8 7 4 11 7 1 5 3.98 1.641 

(5.00%) (20.00%) (7.50%) (10.00%) (27.50%) (17.50%) (2.50%)    

Physical 

demand 

2 7 11 9 8 3 0 3 3.58 1.338 

(5.00%) (17.50%) (27.50%) (22.50%) (20.00%) (7.50%) (0.00%)    

Temporal 

demand 

0 7 6 16 6 4 1 4 3.93 1.289 

(0.00%) (17.50%) (15.00%) (40.00%) (15.00%) (10.00%) (2.50%)    

Performance 
2 10 13 9 5 1 0 3 3.20 1.181 

(5.00%) (25.00%) (32.50%) (22.50%) (12.50%) (2.50%) (0.00%)    

Frustration 
2 9 4 7 13 5 0 5 3.88 1.522 

(5.00%) (22.50%) (10.00%) (17.50%) (32.50) (12.50%) (0.00%)    

Effort 
1 8 18 5 7 1 0 3 3.30 1.137 

(2.50%) (20.00%) (45.00%) (12.50%) (17.50%) (2.50%) (0.00%)     

 

 

There were two main complaints noted by the participants about the tool.  

First, some of the participants complained that the approach of linking components 

based on their specified names during design time tended to create logical errors.  

Many of them experienced this.  These hard-to-trace errors happened when specified 

downstream component names were misspelled in their upstream component’s 

outport property.  As a result, entity flows to the upstream components would be 

broken.  They suggested that the components should easily be connected during 

design time; e.g., using arrows.  Secondly, the requirement processes of creating an 

entity class file and attaching it to an animation object really burdened them and 

should be simplified.  We explained that we could actually create a library that 

consists of various considered entities.  However, permitting model builders to define 

and create their own entities would give flexibility for them in animating the entities.   

The analyses of various feedback in the first experiment confirmed that our 

component-based tools produced attractive, interactive and informative DES models 

which were suitable for learning and teaching purposes.  Its attractiveness in terms of 

animations (e.g., high quality animated objects and events, different images of objects 

based on their states, etc.) makes learning enjoyable and fun.  Its interactiveness in 

relation to permitting learners to manipulate the models’ parameters through easy-to-

access GUIs, controlling the speed of simulation and customizing the models’ 

visualizations by adding, removing and relocating relevant data visualizations (e.g., 

graphs, tables, etc.) to any locations during runtime helps learners to understand the 

model’s behaviour.  Its informative feature that provides feedback on the impact of 
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parameter changing through various meaningful animations and animated data 

visualizations aids learners to clarify their ideas and understand various scenarios in 

the models.  The analyses of various feedback in the second experiment reflected that 

our DES components were useful, easy to use and enjoy to be used to build these 

kinds of models.  However, there is still a room for their future improvements.  These 

include investigating how to easily link the components instead of typing the names 

of their downstream components in a layout property and providing various libraries 

of entities and resources for model developers to easily animate the objects without 

the need to create their appropriate classes.   
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CHAPTER 7 

 

CONCLUSION AND FUTURE RESEARCH 

 

 

7.1 Introduction 

 

This chapter consists of three sections: Conclusions, Limitations of the Research and 

Recommendations for Future Research.  The Conclusions section summarizes and 

discusses the findings of this research.  The Limitations of the Research section lists 

and discusses some weaknesses of this research.  The Recommendations for Future 

Research section proposes some ideas for future research.   

 

 

7.2 Conclusion 

 

Many studies have expressed strong support for the use of games and simulations as 

educational tools.  Their support is mainly based on the hypothesis that learners 

implicitly acquire target knowledge during their engagement and interactions with the 

models.  Although such interactions can create different motivation levels of learning 

(e.g., learners with good mental models of a domain may lose interest since its 

model’s outputs can well be predicted, while other learners with less detailed models 

may lose motivation since the outputs induces no significance cognitive responses), 

many educators believe that the right design of a model can facilitate learning.  

Examining the benefits of using various types of simulation models and dealing with 

their potential constraints in the learning and teaching environment were one of the 

research contributions.   

The main contribution of this research is the proposal of how to construct DES 

tools for building attractive, interactive and informative DES models to be used as 

learning and teaching materials.  Before this work, DES was typically used as an 

analysis tool for system performance prediction and its outputs were only usable for 
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system modellers.  Thus, in order to offer the benefits of DES to the education 

community especially in helping learners understand the effect of capacity constraints 

on the performance of a system, we proposed a component-based tool approach.  This 

approach allows DES tool developers to directly embed the three model features 

suggested in literature review (i.e., hypothesis test platforms, concurrent responsive 

animations and customized visualizations) that help to get insight into DES behaviour 

during their learning through models.   

The use of attractive and interactive models of soft skill simulations or 

procedural simulations to support basic concepts of relevant theories is common in 

educational settings.  In fact, these types of models can easily be constructed even 

without using a commercial tool, since the rules regulating their logic are fully 

structured.  However, educational models of open-ended simulations (i.e., DES that 

analyses a system’s performances or continuous simulations that deal with complex 

natural processes) that allow learners to get insight into most of real world systems are 

uncommon.  One reason for this is that their operations involve a lot of computation 

that hinders model builders from constructing their own models without the help of 

the right tool.   

Current DES tools have some distinct weaknesses.  Most of the free research 

tools are not easy to use since model construction requires a lot of programming and 

their resulting models offer no animation and visualized structures.  Better research 

tools, although supporting model construction through a drag and drop fashion to a 

certain extent, do not typically integrate good animation and visualization capabilities.  

Commercial tools provide high quality animation and visualization.  However, the 

tools restrict further extension.  Their resulting models must also be played using the 

software’s player and this hinders the models from being accessed through internet or 

integrated with LMSs.  Additionally, no single tool generates models with runtime 

interactions and visualization customization capabilities; i.e., two important 

characteristics that facilitate learning according to many educational studies.   

This thesis focuses on designing and developing a DES tool to help model 

builders to construct educational DES models.  These models facilitate learners to get 

insight into DES concepts through model interactions, customized state visualization, 

entities’ and resources’ animation and animation speed manipulation during runtime.  

Model interactions help learners to perform what-if experiments without the need to 

modify models’ source code.  Customized state visualizations ease them to control the 
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amount of information displayed on computer screen at a time; i.e., each learner can 

construct his/her own model GUIs by adding or removing particular state 

visualization during runtime.  Additionally, the GUIs and any interesting scenario 

(i.e., its current models’ states, animation and visualization) can be saved at any time 

to be loaded in the future.  Speed manipulation gives flexibility to learners to look 

closer at aspects that catch their attention and skip over aspects that are of no current 

interest.  Furthermore, arrows that depict paths of entity movements for viewing 

various entities’ lifecycles that would be helpful for more complex models are also 

supported.  These features are important in the learning environment, but often 

neglected in the current DES tools, since their main focus is on system performance 

analyses.   

To systematically design such a tool, we first architected a framework that 

consists of classes with their own functionalities.  We have shown that this framework 

was flexible enough to support the construction of various queuing models and their 

specific logics, and extensible to cater various types of DES models.  Model 

construction tasks have now been relieved from the many of the routine tasks 

associated with DES models using an object-oriented style that supports the concepts 

of inheritance, encapsulation and polymorphism.  However, the model building is 

only through Application Programming Interface (API); i.e., an amount of 

programming that uses to show relationships between objects of the classes is still 

needed to represent their logics.   

To support the tool’s ease of use feature through a component drag and drop 

fashion and to ensure that its resulting models are informative, useful and enjoyable to 

be used in the learning and teaching environment, we proposed the combination of 

two design patterns; i.e., the Delegation Event Model (DEM) which is used to link the 

models’ components together, and the Model-View-Controller (MVC) pattern which is 

used to support their GUIs and customisable visualizations during runtime.  

Implementing the DEM pattern in the DES components allows us to flexibly specify 

various entities’ lifecycles during design time without the need to write conditional 

statements, while implementing the MVC pattern allows us to freely link various 

visualization tools with the components without the need to refer them in the 

components’ code.  Thus, various visualization facilities that render generated data 

during simulation can be automated or integrated with ease.  We later showed how a 

component’s states and its relevant animation and visualization can be saved for 
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future use.  How these two design patterns support the development of a hierarchical 

simulation model (i.e., how to connect and synchronize the model with its children so 

that entities can be transferred between layers in the right orders) has also been 

architected and discussed in detail.   

We used Adobe Flash as the tool’s implementation language for two reasons.  

First, it expedites the development processes of the components; e.g., through its 

layout properties, facilities to attach objects with their classes and animate them based 

on their states, stage for composing the components, etc.  Second, it automatically 

generates web-based and LMS-compatible models.  With the right design and 

environment, we believe that our tool eases the construction of useful DES models.   

As mentioned earlier, we designed and constructed DES tools to effectively 

support three groups of users; i.e., developers, teachers and learners.  We did not 

investigate how easily developers could expend the tools to support other DES 

applications; e.g., manufacturing, logistic, etc.  However, we believed the tools could 

easily be extended since their development are based on UML (Unified Modelling 

Language) class diagrams (that clearly shows its relevant classes, methods attributes 

and the relationships among the classes) and two well-known designed patterns, i.e.,  

the Delegation Event Model and the Model-View-Controller which are common 

approaches to all software developers.  We however investigated the feedback from 

teachers about the tools’ usefulness and the ease of use and learners about the tools’ 

attractiveness and interactivity through experiments.   

Perceived usefulness, perceived ease of use and perceived enjoyment have 

been claimed as crucial factors that determine the acceptance of a tool.  To assess if 

our component-based tool and its resulting models support these three factors, we 

conducted two experiments.  The first experiment basically evaluated if the tool’s 

resulting models were attractive, interactive, informative and useful enough to be used 

for learning and understanding DES concepts.  The results of the experiment showed 

that a majority of the 28 participants gave positive feedback for all items in our 

questionnaire.  The items were constructed based on essential model features claimed 

by previous studies.  The second experiment assessed usefulness, ease of use and 

enjoyment of the tool from model builders’ perspectives; i.e., their experiences while 

using the tool to construct DES models.  Items for measuring these factors were 

designed based on the Technology Acceptance Model (TAM) and other previous 

relevant studies.  Participants were from those that had knowledge on DES and 
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programming.  Analyses of their feedback showed that a majority of the 40 

participants found that the tool was useful, easy to use and enjoyable.  They were also 

very positive about the regular use of the tool for constructing DES models in the 

future.   

The feedback analyses of the second experiment also revealed that perceived 

enjoyment and perceived usefulness were important determinants for the tool 

acceptance.  However, perceived enjoyment was discovered to be a critical factor for 

its acceptance.  Perceived ease of use meanwhile was found to have a relatively weak 

relationship with the participants’ acceptance.  We also assessed the level of the 

participants’ perceived cognitive workloads while experiencing the tool using the 

NASA Task Load IndeX (TLX) instrument.  The results showed that the overall 

workload for all participants based on a 7-point scale (1 = low, 7 = high) was 3.642 

(standard deviation = 1.104); i.e., their mental requirements while using the tool were 

not too simple and not too complex.   

 

 

7.3 Limitations of the Research 

 

We only focused on the design and development of DES components for building 

DES educational models.  Each component symbolises the location where relevant 

events and their occurrence time may take place while their linkages provide 

visualization structures of various entity flows.  This logic can suit many types of 

real-life systems; e.g., service, transportation and manufacturing systems.   

In case of a continuous system where its states change continuously, the ideas 

of components that simplify its model building and allow exploring its behaviour 

through various GUIs and visualizations are still relevant.  However, representing its 

operational logic may only need three types of components; i.e., level or stock that 

stores variables of continuous processes that are always changing, rate or flow that 

defines the rates of change of the variables over time and these rates may depend on 

other continuous processes, and setup (a continuous simulation engine) that 

configures all continuous simulation calculation (e.g., size of increment time steps, 

the numerical method to be used, etc.).  The linkage between level and rate 

components is much simpler since it only involves the assignments of variables with 

their relevant differential equations that represent the rates of change of the variables.  
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However, specifying the equations is only possible through an API.  This requires 

model builders to have some basic programming knowledge besides their mental 

model of a system being constructed.   

Our tool’s resulting models do not offer model construction capabilities at run 

time.  Right now, learners can only experiment with the models and customize their 

visualizations.  Allowing them to alter the existing model structures or create a new 

model during runtime may offer some educational benefits especially in facilitating 

their understanding of various DES aspects from model building to model analyses.  

This can be achieved through providing a palette that floats around the models during 

runtime and contains various model construction components, entity and resource 

objects.   

We used the Flash environment and its ActionScript as an implementation 

language for constructing DES components.  The use of other languages although 

possible may introduce additional burdens since they may not provide facilities for 

simplifying component development (e.g., facilities for attaching an object to a class, 

embedding default GUIs to the components, etc.) and animation capabilities.  

However, the design and development techniques that have been discussed in this 

thesis can be implemented and extended in any other object oriented programming 

languages.   

Other limitations of the research relate to the experiment limitations.  Firstly, 

both of the experiments used small sample sizes of participants.  The number of 

participants in the first experiment was only 28 while the number of participants in the 

second experiments was 40.  Such small sample sizes definitely had an effect on the 

ability to generalize the findings.  As a result, we could not give conclusive evidence 

about learners’ perceptions on attractiveness and interactivity of our tool’s sample 

models and model builders’ perceptions on the usefulness, ease of use and enjoyment 

of the tool for constructing DES models.  However, we believe that these sample sizes 

were sufficient enough for obtaining and reporting users’ feedback about the tool.  In 

order to have greater confidence that the experiment results are representative, we 

should have a large number of voluntary participants.  Secondly, both experiments 

also suffered from other possible factors; i.e., social influence processes that directly 

affected the participants’ acceptance of the tool and cognitive instrumental processes 

that influenced perceived usefulness and perceived ease of use of the tool (see 

Venkatesh & Davis, 2000).   
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7.4 Recommendations for Future Research 

 

Continuous systems can be found anywhere in our life; e.g., plant and animal growth, 

human population, weather changes, etc.  However, relevant models that ease learning 

of their behaviour are uncommon.  Current tools not only require an amount of 

programming code to represent the systems’ dynamic processes, but their resulting 

models do not also allow adjustment of different aspects of their parameters and 

customization of their visualizations during runtime.  In this case, component-based 

tools may ease the construction of attractive and interactive continuous simulation 

models.  However, how to properly structure such components to continuously track 

system responses over time according to a set of differential equations and how to 

support the resulting models’ GUIs so that their parameters and relevant equations can 

be changed on the fly are worth to be investigated.  Hopefully, there will be research 

that will investigate this matter.   

Many studies claim that interactions during classroom enhance learning.  

However, few researchers focus on studying learners’ interactions while using an 

open-ended simulation model for making judgement about their learning.  

Investigating various factors (e.g., how long they have used the model, how many 

times they have clicked relevant objects, what model parameters they have changed, 

what additional evaluation need to embedded in the model, how to judge their 

understanding, etc.) may signal their learning are worth exploring.  This is possible 

since all relevant data about their interactions while using the model can be captured 

and analysed (either using LMS facilities or by the model itself).  The next step is just 

to develop mechanisms that relate all the data to induce relevant conclusions about the 

effective use of the model.   

Guiding exploration on open-ended models through a list of structured 

activities may help learning and decrease their sense of being lost during exploration.  

For this, the models must have quality and aesthetics values to support various 

exploration capabilities.  Finding a way of how to judge or measure the quality of a 

model based on educational perspectives and how to better structure more flexible 

objects that enable learners to deeply drill down their hierarchies (i.e., their internal 

structures, operations and possibly into their source code) step by step via modal 

windows is another possibility of a future research.  This feature will not only enable 

learners to visualize and analyse the model (e.g., through its multiple views of 
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structures, states, abstraction levels, composition, etc.), but also help them to easily 

understand how important processes and properties of a real system are presented in a 

computer environment.   

Our future work includes upgrading our components to support the proposed 

hierarchical models discussed in Chapter 5.  If they function as outlined, this will be a 

great enhancement to our component-based simulation tool since the tool now 

supports both of the construction of attractive and interactive a single layer and multi 

layer DES models.   
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I have read and understood the description of the above-named project. On this basis I 

agree to participate as a subject in the project, and I consent to publication of the 

results of the project with the understanding that anonymity will be preserved.   

 

I understand also that I may at any time withdraw from the project, including 

withdrawal of any information I have provided, until my questionnaire has been 

added to the others collected.   

 

I note that the project has been reviewed and approved by the University of 

Canterbury Human Ethics Committee. 
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QUESTIONNAIRE 
 

 

Component Based Tools for Educational Simulations 
 
 
Please read the following note before completing the questionnaire. 

 

NOTE: You are invited to participate in the research project Component Based Tools 

for Educational Simulations by completing the following questionnaire. The aim of 

the project is to design and develop tools for constructing visual interactive 

simulation (VIS) models that help teachers to build simulation models for educational 

purpose.   

 

The project is being carried out as a requirement for a Ph.D. in Computer Science 

and Software Engineering by Ruzelan Khalid under the supervision of Associate Prof. 

Dr. Wolfgang Kreutzer and Associate Prof. Dr. Tim Bell, who can be contacted 03 

364 2987 ext 7769/7727. They will be pleased to discuss any concerns you may have 

about participation in the project. 

 

The questionnaire is anonymous, and you will not be identified as a participant 

without your consent.  

 

You may withdraw your participation, including withdrawal of any information you 

have provided, until your questionnaire has been added to the others collected. 

Because it is anonymous, it cannot be retrieved after that. 

 

By completing the questionnaire it will be understood that you have consented to 

participate in the project, and that you consent to publication of the results of the 

project with the understanding that anonymity will be preserved. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

 

LEARNER QUESTIONAIRE 

 

 



 

 

COMPONENT BASED TOOLS FOR EDUCATIONAL SIMULATIONS 

 

Model_1 and Model_2 show simple examples of visual interactive simulation (VIS) 

models built using Flash Discrete Event Simulation (DES) components developed by 

the researchers.  You are invited to give feedback about the interactivity and 

attractiveness of the models.  In order to run the models, your computer must have the 

Flash player.  Alternatively, you can run the models using the FlashPlayer.exe 

(Windows) or FlashPlayer.app (Macintosh) located on the \FlashPlayer\Players 

subdirectory of the supplemented CD.  The descriptions of the Model_1 and Model_2 

are as follows: 

 

Model_1 

 

Two types of simulation entities populate this model.  The first type (generated by the 

SourceA) only requires a single resource to be processed, while the second (generated 

by the SourceB) needs two resources, the second of which is the same one that 

processes the first type of entity.  You can change the distribution of time between 

arrivals for the two types of entities, capacities and service times for servers, priority 

rules (queuing disciplines) for queues and other parameters during the simulation run, 

and observe the impact of the changes to the model behavior.  You can also view 

many forms of visualization which depict the model’s performance as shown in 

Figure 1.   

 

 
Figure 1:  Sample interaction and visualization provided by the model 

 

Model_2 

 

Model_2 adds some complexities to Model_1.  The first type selects an idle server 

from two parallel servers, while the second selects a server with a shorter queue.  70% 

of the second type of entities will need to go through servers which process the first 

type of entities, while another 30% will leave the system.  After going through one of 

the parallel servers, the first type of entities will need to be processed by one more 

resource while the second type of entities will directly leave the system.  



 

COMPONENT BASED TOOLS FOR EDUCATIONAL SIMULATIONS 

LEARNERS’ EVALUATION FORM 

 

 

Note:  This experiment is to obtain feedback from learners about the interactivity and 

attractiveness of visual interactive simulation models built using Flash components 

developed by the researcher.  The objective of these components is to help teachers to 

build simulation models for educational purpose.   

 

 

GENERAL INFORMATION 

 

1. How much computer experience do you have (including programming)? 

 

 

 

 

 

2. How much do you use computers as a tool for learning? 

 

 

 

 

 

 

 

GENERAL QUESTIONS 

 

1. I have good knowledge in simulation.   

 

 

 

 

 

 

 

 

 

2. How long did you spend using the model? 

 

 

 

 

 

 

 

 

 

 

Strongly 

disagree 

1 2 3 4 5 

| | | | | 

Strongly 

agree 



 

MODEL RATING 

 

Rate these items with a score  

 

1. Strongly disagree 

2. Disagree 

3. Neither agree nor disagree 

4. Agree 

5. Strongly agree 

 

 

 

1. I am clear about the objectives of the model. 

 

 

 

 

 

 

 

 

 

2. The model is useful for information visualization and observing animated objects 

and events.   

 

 

 

 

 

 

 

 

 

 

3. The model is interactive, inviting input and providing appropriate feedback.   

 

 

 

 

 

 

 

 

 

 

4. The model contains high quality animation which makes learning enjoyable and 

interesting.   

 

 

Strongly  

agree 

 

Strongly  

disagree 
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agree 
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disagree 
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5. The animation helps me to understand scenarios in the model.   

 

 

 

 

 

 

 

 

 

 

 

6. The various performance visualizations (graphs and other data displays) are 

meaningful.   

 

 

 

 

 

 

 

 

 

 

7. The model provides a graphical user interface (GUI) which is easy to interact 

with.   

 

 

 

 

 

 

 

 

 

 

8. I like the design of the GUI.   
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agree 
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disagree 
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agree 
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disagree 
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disagree 
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9. It is good that the visualizations (e.g. graphs, histograms, etc.) are only displayed 

when requested.   

 

 

 

 

 

 

 

 

 

 

 

10. The interaction with the model by changing the model’s parameters during model 

execution (e.g. arrival rate, queue rule, server unit) is important in order to 

understand model behaviour.  (Any other parameters that you like to change?) 

 

 

 

 

 

 

 

 

 

 

11. The change of the representation of animated objects based on their current states 

is important for me.   

 

 

 

 

 

 

 

 

12. These tools help to understand the model better (Please write if you have any 

comments): 

 

12.1 Graphs 

 

 

 

 

 

 

 

 

 

Strongly  
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Strongly  

disagree 

 

1 2 3 4 5 

| | | | | 

Strongly  

agree 

 

Strongly  

disagree 

 

1 2 3 4 5 

| | | | | 

Strongly  
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Strongly  

disagree 

 

1 2 3 4 5 

| | | | | 

Strongly  

agree 

 

Strongly  

disagree 

 

1 2 3 4 5 

| | | | | 



 

12.2 Histograms 

 

 

 

 

 

 

 

 

 

 

 

12.3 BoxPlots 

 

 

 

 

 

 

 

 

 

 

12.4 Ability to pause, resume and adjust animation speed. 

 

 

 

 

 

 

 

 

 

 

12.5 Table of events (previous, current and future). 

 

 

 

 

 

 

 

 

 

 

12.6 Table of components’ statistical information (e.g. queue, server, etc.) 

 

 

 

 

Strongly  
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Strongly  

disagree 
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| | | | | 

Strongly  
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Strongly  

disagree 

 

1 2 3 4 5 

| | | | | 

Strongly  

agree 

 

Strongly  

disagree 

 

1 2 3 4 5 

| | | | | 



 

12.7 Entities’ information window showing activities they have performed in 

the model.   

 

 

 

 

 

 

 

 

 

 

 

12.8 Ability to hide and show the path of entities.   

 

 

 

 

 

 

 

 

 

 

13. The model is considerably out of bugs.  Please specify if you found any bugs 

while running the model. 

 

 

 

 

 

 

 

 

 

 

 

 

14. Overall, the attractiveness and interactivity of the model is good.  Any suggestions 

to improve the attractiveness and interactivity of the model? 

 

 

 

 

 

 

 

 

 

Strongly  
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Strongly  
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Strongly  
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| | | | | 



 

15. I would like to use this kind of model for understanding queuing scenarios.  

 

 

 

 

 

 

 

 

 

 

 

ADDITIONAL QUESTIONS 

 

Have you ever used other animated simulation models for queuing scenarios? 

(If yes, please specify, and comment on how it compares to this model) 

 

 

 

 

Do you have any suggestions for making learning simulation much easier? 

 

 

 

 

 

 

 

Thank you very much! 

Strongly  

agree 

 

Strongly  

disagree 

 

1 2 3 4 5 

| | | | | 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX D 

 

MODEL BUILDER QUESTIONAIRE 

 

 



 

 

1. Gender 

a.  Male  b.  Female 

 

2.  Age:  __________ 

 

 

 

RESEARCH QUESTIONS 

 

Please indicate your agreement or disagreement by circling the appropriate score for 

each of these following statements.   

 

Statement Short form Score 

Strongly Disagree SD 1 

Disagree D 2 

Neutral N 3 

Agree A 4 

Strongly Agree SA 5 

 

 

 

SECTION B – EXPERIENCE 

 

Item Argument SD D N A SA 

1 I have considerably good knowledge on DES 

concepts.   

1 2 3 4 5 

2 I have considerably good experiences in 

programming.   

1 2 3 4 5 

3 I am familiar with Adobe Flash and its 

environment.   

1 2 3 4 5 

 

 

 

SECTION C – PERCEIVED USEFULNESS AND PERCEIVED EASE OF USE 

 

C1.  Perceived Usefulness 

Item Statement SD D N A SA 

1 The component-based tool enables me to 

construct DES models that help learn and 

understand DES concepts more quickly.   

1 2 3 4 5 

2 The component-based tool improves my 

construction performance on DES models.   

1 2 3 4 5 

3 The component-based tool increases my 

productivity of constructing DES models.   

1 2 3 4 5 

4 The component-based tool enhances my 1 2 3 4 5 



 

effectiveness of constructing DES models.   

5 The component-based tool makes the 

construction of DES models easier.   

1 2 3 4 5 

6 Overall, the component based tool is useful for 

constructing DES models.   

1 2 3 4 5 

 

 

C2.  Perceived Ease of Use 

Item Statement SD D N A SA 

1 Learning to use the component-based tool is 

easy for me.   

1 2 3 4 5 

2 I find that the processes of using the component-

based tool were controllable (clear, 

understandable and straight forward).   

1 2 3 4 5 

3 My interaction with the component-based tool 

would be clear and understandable 

1 2 3 4 5 

4 I find the component-based tool to be flexible to 

interact with.   

1 2 3 4 5 

5 It is easy to become skillful at using the 

component-based tool.   

1 2 3 4 5 

6 Overall, the component-based tool is easy to 

use.   

1 2 3 4 5 

 

 

C3.  Perceived Enjoyment 

Item Statement SD D N A SA 

1 I have fun building DES models using the 

component-based tool   

1 2 3 4 5 

2 I enjoy using the component-based tool and the 

resulting model. 

1 2 3 4 5 

 

 

C4.  Self-Predicted Future Usage 

Item Statement SD D N A SA 

1 I intend to use the component-based tool in the 

future   

1 2 3 4 5 

2 I intend to show others this component-based 

tool. 

1 2 3 4 5 

 



 

SECTION D – TASK WORKLOAD 

 

Please indicate your workload while using the component-based tool by circling the 

appropriate score for each of these following statements.   

 

 

1. Mental demand: How mentally demanding (e.g., thinking, deciding, etc.) was the 

task? 

 

1 2 3 4 5 6 7 

Low      High 

 

 

2. Physical demand: How physically demanding was the task? 

 

1 2 3 4 5 6 7 

Low      High 

 

 

3. Temporal demand: How hurried or rushed was the pace of the task? 

 

1 2 3 4 5 6 7 

Low      High 

 

 

4. Performance: How successful were you in accomplishing what you were asked 

to do? 

 

1 2 3 4 5 6 7 

Good      Poor 

 

 

5. Effort: How hard did you have to work to accomplish your level of performance? 

 

1 2 3 4 5 6 7 

Low      High 

 

 

6. Frustration: How insecure, discourage, irritated, stressed and annoyed were you? 

 

1 2 3 4 5 6 7 

Low      High 

 

 

 

Thank you! 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX E 

 

USER MANUAL 

 



 

COMPONENTS’ PROPERTIES AND DESCRIPTIONS 

 

 

Source: Animates the arrival of entities 

 
Properties Description 

backGroundColor Color for this component instance on the Flash stage 

className Associated class name that represents its entity type 

delayToNextStation Time taken (based on a distribution type; e.g., Constant, Exponential, etc.) 

for entities to reach its next component 

firstArrival Time for the first entity to arrive into a model 

identifierName Identifier for an entity type (under Linkage properties when associating an 

ActionScript class with a symbol) 

monitorInstanceName Name of a monitor instance that sequences state transitions of all types of 

entities in a model 

outPort Name of the next component that entities will visit 

priority Priority of this type of entities in a queue to be serviced 

textColor Color of a title for this component instance 

timeBetweenArrival Time between created entities 

title Title for this component to be displayed on the Flash stage 

 

 

Monitor Component: Acts as a simulation engine and controls a simulation’s length 

and its viewing ratio 

 
Properties Description 

clockInstance Name of this clock instance 

simulateFor Amount of simulation time used to evaluate a model 

timerInstance Name of its relevant timer instance 

 

 

Queue Component: Animates queue discipline 

 
Properties Description 

associatedServer Name of a server instance to serve this queue 

graphInstance Name of a graph instance to display the number of entities vs. simulation 

time 

histogramInstance Name of a histogram instance to display time spent in queue for entities 

queueType Logical ordering of entities in this queue; e.g., FIFO (First in first out), LIFO 

(Last in first out), LOWEST PRIORITY, HIGHEST PRIORITY and 

RANDOM  

title Title for this component to be displayed on the Flash stage 

 

 

Server Component: Processes entities in a model 

 
Properties Description 

capacity Number of resources that can be seized by entities in a queue 

delayToNextStation Time taken (based on a distribution type; e.g., Constant, Exponential, etc.) 

for entities to reach its next component 

graphInstance Name of a graph instance to display capacity used vs. simulation time 

histogramInstance Name of a histogram instance to display service times 

monitorName Name of a monitor instance that sequences state transitions of all types of 

entities in a model 

outPort Name of the next component that entities will visit 



 

serviceTime Type of distribution that specifies its processing time 

 

 

Decide: Transfer entities in a model based on rules 

 
Properties Description 

backGroundColor Color for this component instance on the Flash stage 

chance Probabilities to go to the next components 

delayToNextStation Time taken (based on a distribution type; e.g., Constant, Exponential, etc.) 

for entities to reach the next components 

entityType Name of entity type if decision processes are based on entity types 

outPort Name of the next component that entities will visit 

textColor Color of a title for this component instance 

title Title for this component to be displayed on the Flash stage 

type Decision-making processes in a model.  These include options to make 

decisions based on one or more probabilities (e.g., 65% true; 35% false), 

shortest Queue and entity types 

 

 

Station: Points to which entities are transferred in a model 

 
Properties Description 

backGroundColor Color for this component instance on the Flash stage 

delayToNextStation Time taken (based on a distribution type; e.g., Constant, Exponential, etc.) 

for entities to reach the next components 

outPort Name of the next component that entities will visit 

textColor Color of a title for this component instance 

title Title for this component to be displayed on the Flash stage 

 

 

Sink: Collects entities leaving a model 

 
Properties Description 

backGroundColor Color for this component instance on the Flash stage 

textColor Color of a title for this component instance 

title Title to be displayed for this component on the Flash stage 

 

 

 

HOW TO CREATE A DISCRETE EVENT SIMULATION MODEL 

 

Constructing Model Structures 

 

Macromedia Flash software is compulsory to use our tool.  Once it has been installed, 

all our DES components must be copied to a relevant folder in order to access them 

through the software’s component panel.  For the Windows operating system, they 

should be copied to  

 

C:\Documents and Settings\user\Local Settings\Application Data\Macromedia\Flash 

MX 2004\en\Configuration\Components\Discrete Event Simulation Component 

 



 

Panel Stack 

Properties Inspector 

Tool 

panels 

Timeline Stage 

Note that the Discrete Event Simulation Component is our created folder.  The folder 

can freely be changed to any names and the name will appear in the Flash’s 

component panel.   

 

Follow these steps to create a model’s structures: 

1) Open Macromedia Flash software.   

2) Click File > New > Flash Document to begin a new Flash project as shown in 

Figure 1.  Once it is clicked, various major sections for the Flash’s development 

environment will be displayed; see Figure 2.   

 

 

 

Figure 1  A New Flash Project 

 

 

 

 

 
 

 

Figure 2  The Flash’s Development Environment 



 

 

3) Go to the Components panel (under the Panel Stack).  Click on the Discrete Event 

Simulation Components to display all available components under this category as 

shown in Figure 3.   

 

 

 

Figure 3  Discrete Event Simulation Components 

 

4) Drag any components onto the Flash Stage to instantiate the component.  Once 

they are on the stage, give them an appropriate name through the Properties panel 

(see Figure 4).  Change any default values of the instance by clicking a relevant 

row in the Properties layout panel.   

 

 

 

Figure 4  Dragging and Dropping a Component onto the Stage 

 

5) Repeat the processes of dragging an instance, dropping them, renaming its name 

and changing its parameter values until a simulation model has been constructed.   

DES Components 

Stage for composing 

components 

Properties 

layout 



 

6) Connect all components on the Stage to each other by specifying their 

downstream components through their outPort (output port) properties.  Figure 5 

shows a sample of a model constructed through this manner.   

 

 

 

Figure 5  A DES Model’s Structures 

 

 

7) To represent a type of entities, a new ActionScript class needs to be created and 

saved using an appropriate name (e.g., Customer.as) to the DESTool folder.  Note 

that the DESTool folder is a folder that stores all our DES libraries.  The code for 

the class file is as follows: 

 

 
import Monitors.SimProcess; 

 

class CustomerA extends SimProcess { 

   

 public function lifeCycle () { 

  transferToNextPhase(); 

  }  

} // end of Customer class 

 

 

8) To animate customer objects, we must attach the file to a visual image.  The 

image must first be converted to a movie clip symbol (see Figure 6) and then 

associated with the Customer class (see Figure 7).  In brief, the following actions 

must be stepped through: 

 

a) Select a movie clip symbol in the Flash Library.   

b) Right-click on the symbol and choose “Linkage”.   

c) In the resulting dialog, enter the symbol’s name (for example Customer) 

and its associated class (e.g., Customer.as).   

d) Select “Export for ActionScript” as linkage type.  



 

 

 

 
Figure 6  Converting an Image to a Movie Clip Symbol 

 

 

 
Figure 7  Associating a Movie Clip Symbol with Its Relevant Class 

 

9) Once the movie clip is in the Flash Library panel, we can define the customer 

objects’ visual appearance based on keyframes named onMoving, inQueue and 

inProcess.  These frames are defined on the Customer symbol’s timeline and not 

globally on the stage to give us a local animation for the customers; i.e., their 

change of appearance in different states that is nested inside the main animation.  

To create this local animation, we must step through the following actions: 

 

a) Right-click the Customer movie clip symbol in the Flash Library panel and 

select Edit from the resulting pop up menu.   

b) Select frame 10 on the timeline.   

c) Select Insert > Timeline > Keyframe.   

d) In the Properties panel, change Frame Label to onMoving.   

e) Draw a suitable picture of the customer’s movement on the current Flash 

stage. 

f) Repeat steps 3 to 5 for frame 20, 30 and 40, and make appropriate changes at 

each step.   

 



 

10) Animate server objects in a similar way, i.e., by assigning different 

representations to keyframes Idle and Busy.   

11) Once we have finished structuring the model and setting its parameters, specify 

the simulation length using its server component instance and run the model.   

12) During running time, if we notice any broken flows of entities at any 

component, check the component’ outPort and make sure that we have correctly 

specified its next target component’s name since the entities will exactly flow 

from component to component.   


