

COMPONENT-BASED TOOLS FOR

EDUCATIONAL SIMULATIONS

A thesis submitted in partial fulfilment of the requirements for the

Degree

of Doctor of Philosophy in Computer Science and Software Engineering

in the University of Canterbury

by Ruzelan Khalid

University of Canterbury

2013

 i

ABSTRACT

e-Learning is an effective medium for delivering knowledge and skills. In spite of

improvements in electronic delivery technologies, e-Learning is still a long way away

from offering anything close to efficient and effective learning environments. To

improve e-Learning experiences, much literature supports simulation based e-

Learning. This thesis begins identifying various types of simulation models and their

features that induce experiential learning. We focus on designing and constructing an

easy-to-use Discrete Event Simulation (DES) tool for building engaging and

informative interactive DES models that allow learners to control the models’

parameters and visualizations through runtime interactions. DES has long been used

to support analysis and design of complex systems but its potential to enhance

learning has not yet been fully utilized. We first present an application framework

and its resulting classes for better structuring DES models. However, importing

relevant classes, establishing relationships between their objects and representing

lifecycles of various types of active objects in a language that does not support

concurrency demand a significant cognitive workload. To improve this situation, we

utilize two design patterns to ease model structuring and logic representation (both in

time and space) through a drag and drop component approach. The patterns are the

Delegation Event Model, used for linking between components and delegating tasks

of executing and updating active objects’ lifecycles, and the MVC (Model-View-

Controller) pattern, used for connecting the components to their graphical

instrumentations and GUIs. Components implementing both design patterns support

the process-oriented approach, can easily be tailored to store model states and

visualizations, and can be extended to design higher level models through hierarchical

simulation development. Evaluating this approach with both teachers and learners

using ActionScript as an implementation language in the Flash environment shows

that the resulting components not only help model designers with few programming

skills to construct DES models, but they also allow learners to conduct various

experiments through interactive GUIs and observe the impact of changes to model

behaviour through a range of engaging visualizations. Such interactions can motivate

learners and make their learning an enjoyable experience.

 ii

ACKNOWLEDGMENTS

I wish to sincerely thank my supervisor, Associate Professor Dr. Wolfgang

Kreutzer and my associate supervisor, Professor Dr. Tim Bell for all their constant

intellectual challenges and very kind guidance and encouragement during this study.

I would also like to thank all staff and postgraduate students at University of

Canterbury for whatever help they gave to complete this study.

To my family, thanks so much for giving your continuous moral support and

encouragement, and sharing your valuable time during our stay in New Zealand. You

all have always been my source of strength and inspiration.

Lastly, thanks to all of those who implicitly or explicitly committed until the

completion of this study.

 iii

TABLE OF CONTENTS

ABSTRACT i

ACKNOWLEDGEMENTS ii

LIST OF FIGURES vii

LIST OF TABLES ix

1. INTRODUCTION 1

1.1 Introduction 1

1.2 Statement of the Problem 4

1.3 Objectives and Motivations 4

1.4 Scope of the Research 12

1.5 Contributions to Knowledge 14

1.6 Thesis Overview 17

2. SIMULATION AND EDUCATION 19

2.1. Introduction 19

2.2. Simulation Models and Their Purposes 20

2.3. Types of Simulation Models 22

2.4. The Role of Simulation in Education and Learning 26

2.4.1 The Role of Simulation in Learning Theories 26

2.4.2 Empirical Evidence 32

2.4.3 Simulation and e-Learning 33

2.4.3.1 Promises and Problems of e-Learning 33

2.4.3.2 The Roles of Course Management Systems 35

2.4.3.3 Pedagogical Aspects of e-Learning 36

2.5. DES Development Tools 38

2.6. Animated DES Systems 40

2.7. Summary 44

 iv

3. A FRAMEWORK FOR DES AND ANIMATION 46

3.1. Introduction 46

3.2. DES and Queuing Scenarios 48

3.3. Modelling Time 50

3.2.1 The Event-Oriented Approach 51

3.2.2 The Process-Oriented Approach 52

3.4. The DES Framework 54

3.4.1 The Data Collector Package 56

3.4.2 The Distribution Package 57

3.4.3 The Monitor (Simulation Executive) Package 59

3.4.4 The Resource (Servers and Queues) Package 61

3.5. Graphical Objects in Discrete Event Models 62

4. USING FLASH FOR SIMULATION 67

4.1 Introduction 67

4.2 Visual Simulation and Visual Interactive Simulation 68

4.3 Animation Approaches 71

4.4 Managing Simulation and Animation 74

4.5 Flash as an Implementation Language for Simulation and Animation 77

4.5.1 Flash Features for VIS Development 78

4.5.2 Flash Component Construction 79

4.5.3 Other Advantages of Flash and Its Drawbacks 81

4.6 Flash Components for Queuing Systems 83

4.7 Flash Components for Visualizing Queuing Systems 89

4.8 Example 91

4.9 Problems and Pitfalls 96

4.10 Extensibility 99

5. COMPONENT-BASED MODELING FOR ANIMATED SIMULATION 102

5.1 Introduction 102

5.2 Component Based Simulation 104

5.3 The Environment of Animated Simulation Models 105

5.4 The Delegation Event Model for Linking Components 107

5.5 The MVC for Visualizing Component States 111

 v

5.6 Connecting External Data 114

5.7 Example 118

5.8 Towards Hierarchical Simulation Model Designs 122

5.9 Designing Mechanisms for Hierarchical DES Models 125

5.9.1 Monitor Delegation Mechanism 126

5.9.2 Monitor Communication Mechanism 130

5.10 Problems and Challenges 133

6. EVALUATION AND ANALYSIS 136

6.1 Introduction 136

6.2 Evaluating Models’ Attractiveness and Interactivity 137

6.2.1 Assessment and Evaluation Methods 137

6.2.2 Experiment Participants 139

6.2.3 Data Analysis and Results 142

6.2.3.1 General Information 142

6.2.3.2 General Questions 143

6.2.3.3 Model Rating 145

6.3 Evaluating the Tool’s Ease of Use, Usefulness and Enjoyment 159

6.3.1 Assessment and Evaluation Methods 159

6.3.2 Experiment Participants 160

6.3.3 Running the Experiment 162

6.3.4 Data Analysis and Results 164

6.3.4.1 General Information 164

6.3.4.2 Questionnaire Reliability and Validity 165

6.3.4.3 Usefulness, Ease of Use and Enjoyment of the Tool 166

6.3.4.4 Self Predicted Future Usage 168

6.3.4.5 Participants’ Cognitive Workload 171

7. CONCLUSION AND FUTURE RESEARCH 175

7.1 Introduction 175

7.2 Conclusion 175

7.3 Limitations of the Research 179

7.4 Recommendations for Future Research 181

 vi

BIBLIOGRAPHY 173

APPENDICES

Appendix A: Consent Form

Appendix B: Questionnaire Information Sheet

Appendix C: Learner Questionnaire

Appendix D: Model Builder Questionnaire

Appendix E: User Manual

Appendix F: Source Code (in CD)

 vii

LIST OF FIGURES

Figure 1.1 Interactions between Teachers, Learners, Models and LMSs 11

Figure 3.1 The Event-Oriented Approach Mechanism 52

Figure 3.2 The Process-Oriented Approach Mechanism 53

Figure 3.3 Package Diagram for Queuing Models 56

Figure 3.4 Class Diagram for the DataCollectors Package 56

Figure 3.5 Class Diagram for the Distribution Package 58

Figure 3.6 Class Diagram for the Monitor Package 59

Figure 3.7 Class Diagram for the Resource Package 61

Figure 3.8 Graphical Objects in DES 63

Figure 4.1 Visual Simulation Components 69

Figure 4.2 Three Approaches to Combine Simulation with Animation 71

Figure 4.3 DES’s Animated Objects 75

Figure 4.4 Transformation from Model to Animation Time 76

Figure 4.5 Component Architecture 79

Figure 4.6 Class Diagram of Components for Simulation Input and Output 84

Figure 4.7 Flash Component Panel 87

Figure 4.8 Samples of DES Visualization Tools 91

Figure 4.9 Sample of Interactions between Learners and a Model 95

Figure 4.10 Sample of Information Gained from a Model 96

Figure 4.11 Extended Components for Supporting Logistic and Manufacturing

Systems 99

Figure 5.1 Simulation and Animation Aspects of a Model 105

Figure 5.2 The DES Delegation Event Model Structure 108

Figure 5.3 The flow of a SimProcess Object in DES Components 110

Figure 5.4 The DES MVC Structure 112

Figure 5.5 Flash Development Environment 118

Figure 5.6 A Queuing Network System 119

Figure 5.7 A Server’s Properties and Default Values 120

Figure 5.8 A Final Model 121

Figure 5.9 Interactions with Component Instances 122

Figure 5.10 Hierarchical Construction of a DES Model 124

Figure 5.11 Submodel Architecture and Transferring Mechanisms 126

 viii

Figure 5.12 Monitor Delegation Mechanism 128

Figure 5.13 Submodel Class Definition 129

Figure 5.14 Simulation Class Definition 129

Figure 5.15 Agenda States 132

Figure 6.1 Simple Queuing Networks 141

Figure 6.2 More Complicated Queuing Networks 141

Figure 6.3 Participants’ Feedback on Simulation Knowledge 144

Figure 6.4 Arena Screenshot 161

Figure 6.5 Perceived Usefulness Results 167

 ix

LIST OF TABLES

Table 2.1 Classification of Constructive Computer Simulations 23

Table 2.2 Simulation Types and Learning Support 24

Table 2.3 Some Learning Theories and Their Features 28

Table 2.4 Available DES Simulation Tools 38

Table 2.5 Desirable Features for the Design of DES Tools 44

Table 3.1 Types of Directed Graphs 64

Table 3.2 Properties and Events for Dynamic Objects 65

Table 4.1 Aspects of Simulation-Animation Approaches 73

Table 4.2 Interaction Characteristics of Concurrent and Post-processed

 Animations 74

Table 4.3 Available Simulation Tools and Their Features 74

Table 4.4 Simulation to Animation Conversion 75

Table 4.5 Events and Model Time Difference in a Sample System 76

Table 4.6 VIS Graphic Displays and Flash Features 78

Table 4.7 DES Component Types 86

Table 4.8 Flash Components for Building DES Models and Their

 Functionalities 86

Table 4.9 Flash Components for Visualizing DES Models and Their

 Functionalities 90

Table 5.1 Server Properties and Description 120

Table 6.1 Items in Model Rating 140

Table 6.2 Time Spent (in minutes) for Each Score 144

Table 6.3 Good Simulation Knowledge Participants’ Feedback about

 the Models 146

Table 6.4 No Simulation Knowledge Participants’ Feedback about

 the Models 146

Table 6.5 Undecided Simulation Knowledge Participants’ Feedback about

 the Models 147

Table 6.6 Feedback on the Quality of Animation from the Participants

 Who Always Used Computer as a Learning Tool 149

Table 6.7 Sub-questions of “These tools help to understand the model

 better (Please write if you have any comments)” 153

Table 6.8 Good Simulation Knowledge Participants’ Feedback about

 the Model Tools 153

 x

Table 6.9 No Simulation Knowledge Participants’ Feedback about

 the Model Tools 154

Table 6.10 Undecided Simulation Knowledge Participants’ Feedback about

 the Model Tools 154

Table 6.11 TAM Factors and Their Variables 160

Table 6.12 Items of Perceived Ease of Use, Perceived Usefulness,

 Perceived Enjoyment and Self-predicted Future Usage

 of the Component-based Tool 163

Table 6.13 The Participants’ Gender 164

Table 6.14 The Participants’ Knowledge and Experiences 164

Table 6.15 Cronbach’s Alpha Values 165

Table 6.16 Factor Analysis of Perceived Usefulness, Perceived Ease

 of Use and Perceived Enjoyment 166

Table 6.17 Descriptive Statistics of the Items 167

Table 6.18 Descriptive Statistics of Self-Predicted Future Usage 168

Table 6.19 Correlations between Perceived Usefulness, Perceived Ease

 of Use and Perceived Enjoyment to Self-Predicted Future

 Usage 169

Table 6.20 Regression Analyses of the Effect of Perceived Usefulness

 and Perceived Ease of Use on Self-Predicted Future Usage 170

Table 6.21 Participants’ Feedback about the TLX Subscales 172

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

e-Learning (i.e., technologies that use digital technologies to deliver and facilitate

learning) is increasingly used in schools, higher education and training centres either

to support distance learning or to complement the traditional classroom environment.

Since it uses electronic media; e.g., the Internet, to support learning, this style of

knowledge transmission eases traditional constraints on time, space and distance. The

advantage to learners is that they can learn at anytime and anywhere. As a result, the

use of e-Learning has grown rapidly throughout the world. However, this technology

requires that learners themselves are responsible for gaining knowledge; a key

concept of learner-centred education.

The teacher-student ratios either for primary, secondary or tertiary education

in some countries (e.g., India, South Africa, Philippines, etc.) are still high. In India,

the teacher-student ratio for secondary school was reported 32.7 in 2004 and 25.33 in

2010 (http://www.tradingeconomics.com). Although the ratios have slightly been

improved in most countries during past few years, less time dedicated by teachers to

the needs of each individual student demands attractive and interactive learning

materials to promote and enhance their learning experiences. Learning materials that

focus on activities (i.e., some degree of interaction) during the learning process are

crucial in this and have proved to have more positive impacts on learning than static

materials, such as numbers, texts and pictures (Holzinger & Ebner, 2003; Neumann,

Page, Kreutzer, Kiesel, & Meyer, 2005; L. P. Rieber, 1996). Multimedia materials

that allow content navigation that integrate texts, pictures, diagrams, sound and

dynamic images (i.e., animations and movies) are increasingly integrated in learning

environments. More recently, techniques that make learning more enjoyable and fun

 2

(e.g., simulations and computer games) have also been proposed (e.g., see Aldrich,

2002, 2004, 2005; Prensky, 2001).

Simulation is a technique for experimenting with models of real or imaginary

systems (see Aldrich, 2002, 2004, 2005; Prensky, 2001). Since it allows learners to

manipulate parameters and directly observe the impact of modifications on model

behaviour and performances, it can be a powerful learning tool, whose “hands-on”

activities engage learners emotionally and help to improve understanding of complex

scenarios. There is a large body of literature (e.g., C. N. Quinn, 2005; Rosson &

Seals, 2001; Smialek, 2002; Syrjakow, Berdux, & Szczerbicka, 2000; Thomas &

Milligan, 2004) that corroborates these benefits of simulations in a learning and

teaching environment.

The main benefit of embedding simulations in an educational context is that it

stimulates a scientific discovery style of learning; i.e., learning based on self-directed

initiatives (Jong & Joolingen, 1998; Neumann et al., 2005; L. P. Rieber, 2002). This

learning style requires learners to initiate and control their knowledge acquisition

through designing and executing experiments, analyzing model feedback and

constructing hypotheses based on this information (River & Vockell, 1987). The

iterative cycle of experimentation and drawing conclusions from exploring a model

are believed to encourage critical thinking, scaffold a deeper and more structured

understanding of concepts, and encourage long lasting retention of a learned domain

(Aldrich, 2004, 2005; Schwartz, Bransford, & Sears, 2005).

In spite of its strengths, simulation-based learning is an unsupervised learning

environment whose effectiveness depends strongly on learners’ and models’

characteristics, and how much guidance can be provided. Learners’ characteristics

include learning styles (Martinez, 2000), motivation (Wittrock, 1989), prior

knowledge (Dochy, Segers, & Buehl, 1999; Hailikari, Katajavuori, & Lindblom-

Ylanne, 2008), meta-cognitive aspects (i.e., strategies for directing learning) and other

miscellaneous skills (Joolingen & Jong, 1991b; Njoo & Jong, 1993; White, Shimoda,

& Frederiksen, 1999). Among these factors, prior knowledge of a studied domain

tends to have the strongest influence on effective exploration (Lee, 1999; Mayer,

2003). Without such knowledge, learners tend to suffer ineffective and inadequate

exploration. Ineffective exploration leads learners to insignificant experimentations

and difficulties in drawing conclusions from model experiments, while inadequate

exploration tends to result in too shallow understanding. Thus, some researchers

 3

(e.g., J. R. Anderson, Corbett, Koedinger, & Pelletier, 1995; Kirschner, Sweller, &

Clark, 2006) urge teachers to support learners with guidance that directs learning and

aids their activities. Examples of suggested guidance are structuring tasks through

explicit instructions (Veermans, Jong, & Joolingen, 2000), requesting learners to

observe and describe interesting scenarios (Tan & Biswas, 2007), or guiding learners

at appropriate times; e.g., through Adaptive Coaching for Exploration (Bedor,

Mohamed, & Shedeed, 2004; Bunt, Conati, Huggett, & Muldner, 2001; Bunt, Conati,

& Muldner, 2004; Noguez & Sucar, 2005).

While guidance is important for directing learning, models should act as

platforms for testing hypotheses. Experimentation and deduction is only possible if

models contain these features:

 activities (e.g., mouse clicking/rolling, keyboard input, etc.) to motivate learners’

actions and challenge their imagination,

 informative and meaningful feedback and visualizations (e.g., through texts,

images, diagrams, graphs, sounds, etc.) that motivate learners to perform further

experiments,

 attractive responsive animations that demonstrate feedback of model behaviour,

and

 reflection of real world scenarios that stimulate learners’ imagination and connect

their mental models to the outside world.

To draw good conclusions, learners not only need to engage and interact with

a model, but also need to communicate with their peers and teachers. Fortunately,

facilities for this are widely available in modern Learning Management Systems

(LMSs). To fully complement e-Learning environments, they need attractive,

interactive and informative learning materials. Prior to 1996, the development of such

materials was highly dominated by Java (Arnold, Gosling, & Holmes, 2006; Lambert

& Osborne, 2004). Since then the development of highly interactive models has been

made easier by the introduction of the Adobe’s Flash animation tool (Castillo,

Hancock, & Hess, 2004; Stenalt & Godsk, 2006). However, this multimedia

 4

development tool has not been utilized to its full capabilities to support learning and

teaching.

1.2 Statement of the Problem

In spite of improvements in electronic delivery technologies, e-Learning is still a long

way away from offering anything close to efficient and effective learning

environments. To be effective, electronic courseware management (e.g., through

LMSs) requires high quality contents such as simulations and educational games to

improve e-Learning experiences. Unfortunately, common LMSs offer no support for

this and little research has been done to ease the construction and customization of

online simulation models and their integration into learning management systems. As

a result, e-Learning is still dominated by static materials (e.g., PDF, Microsoft Word

and PowerPoint files, etc.), rather than more sophisticated and dynamic techniques;

some detailed data is given in Wagner (2006).

While much has been claimed about the benefits of simulations and games in

supporting and enhancing learning and training, few investigations into how to

develop and construct simulation tools, how to design attractive and interactive model

graphical user interfaces (GUIs), how to store models’ intermediate states, and how to

integrate simulations into LMSs have been performed. To improve this state of

affairs, it seems important to make both model construction and model deployment

easy for teachers, so that the resulting models are attractive and interactive enough to

motivate learners to explore and experiment, and so that tools can easily be extended

to help model developers to construct libraries for painless construction of many

different types of animations and visualizations.

1.3 Objectives and Motivations

This research assumes that simulation models are useful tools for clarifying ideas and

showing flows of events. It is therefore not our primary objective to demonstrate that

simulations enhance student learning - an assumption that has already been

corroborated by many empirical investigations (e.g., Gokhale, 1996; Liao & Miller,

 5

1996; Michael, 2000; Renshaw & Taylor, 2000; L. P. Rieber, 1996). Instead, this

research investigates how simulation models can most easily be built and delivered

within an e-Learning environment. We focus on Discrete Event Simulation (DES)

models. Thus, the research plans are to:

 design and construct a tool for animated simulation models for web based delivery

and LMS integration

 integrate the models with suggested model features that facilitate learning

 analyse users’ feedback of the tool and its resulting models

 extend the tool to support more complex models

Our motivation is clear. We found no tools that allow users to interact with

their resulting models, customize the models’ visualizations during runtime and save

the models’ states and animations at any point of interest for later uploading. Thus,

our particular interests centre is on exploration, construction and application of DES

tools that can effectively support three groups of users:

1. developers (i.e., those who are interested in extending these tools to new

applications),

2. teachers (i.e., model designers and implementers) and

3. learners (i.e., model users).

Developers should be conversant with the tools' internal architecture, so that

extension is easy and not unduly limited. Teachers, on the other hand, need easy-to-

use model construction tools, since they are probably lacking in programming

knowledge and experiences. Finally, learners should be presented with attractive and

interactive animated models that support knowledge acquisition through

experimentation.

To satisfy all three parties' expectations, a visual modelling environment that

offers component-based composition of simulation models has been designed and

constructed. It reduces model complexity through use of pre-assembled components,

 6

each of which handles their specific functionality. These components can be

combined to form models. This approach eases model construction since components

can be reused over and over again. Component development is based on an Object

Oriented architecture (Eden, 2002; Lau, 2000) and the design of their code follows

Object Oriented Programming (OOP) principles of good practice with regard to

encapsulation, inheritance, polymorphism and exception handling.

We identified two design patterns that suit the development and extension of

the DES tool; i.e., the Delegate Event Model and the Model-View-Controller (MVC)

interface architecture. The Delegate Event Model was used to wire components to

each other, since its style of event broadcasting is analogue to the flow of entities in

DES components, so that that an entity (an event object) is passed from a component

(an event source) to other components (event listeners). The Model-View-Controller

(MVC) interface architecture is used to support a component’s graphical interfaces

(GUIs) and multiple visualizations of its states. By following this design pattern,

components can be loosely coupled to their GUIs (to receive inputs) and

visualizations tools (to receive state notifications). Adding or removing visualizations

does not affect other component parts since each component only store a list of

interested visualization instances - without any influence on a visualization’s

implementation. Since each component needs to perform two tasks; i.e.,

communicating with each other and notifying state changes to an observer, the

component’s class must define both patterns in its implementation.

The component-based modelling framework offers ease-of-use by allowing

model designers to drag components from a library, drop them onto a worksheet and

assemble them appropriately into models. Four categories of simulation components

have been designed and implemented:

 components for modelling activities,

 components for visualizing simulation results,

 a component for controlling animation speed, and

 a utility component for saving or refreshing model states and revealing their flows

or lifecycles.

 7

Various component properties can be customized through GUIs. Since

modelling components have output port properties (i.e., they store a list of interested

components that wish to receive state change notifications), they must be wired to

each other so that messages can be routed in the right order. When all components

have been wired together into a model, teachers can test and then distribute the model

to learners. Although the resulting model has a fixed structure, we have tailored the

components to allow learners to change model parameters and explore the resulting

chains of events without any need to change model code. Since each component is

also an object, the values for the output port properties can be specified during

runtime.

We have identified five elements that should exist in a DES model to help

learners understand its behavior; i.e.:

1. A model should provide easy-to-access runtime GUIs for changing component

parameters. These could employ mouse-over to allow learners to quickly view a

component’s attribute values, text boxes to receive input-based interactions (e.g.,

time of an entity’s creation, a resource's capacity, etc.), combo boxes to permit

learners to type a value directly into a field or choose a value from a list of

existing options (e.g., queuing disciplines, distributions that specify time between

arrivals, delays, resources' service times, etc.) and command buttons to activate

visualization tools (e.g., graphs, histograms, box plots, etc.). Data visualization

tools should be easy to be added, removed, sized and positioned at any location

through drag and drop gestures. To make their display both more informative and

attractive, some model components; e.g., servers, should be animated to depict

their current states.

2. A model should offer a display list of all past, current and next events, so that

learners can obtain clarification on how it is executed and how component

parameters affect event sequences in the model. Without such a list, learners tend

to just passively view animations rather than actively seeking an understanding of

model behaviour; i.e., how events are affected by different model parameters.

3. A model should animate message passing and movements of transient entities

between components. Arrows can depict a message’s or an entity’s travel

direction, but learners should be able to remove this feature if it obscures other

patterns or visualizations.

 8

4. A model should provide a high degree of top-level control over a simulation and

its animation; e.g., allowing learners to stop, restart, speed up or slow down the

execution of models and their animations. This gives learners a choice to look

closer at aspects that catch their attention and skip over aspects that are of no

current interest. While such a capability is helpful in fostering understanding,

proper synchronization of animation speed and simulation clock time is crucial to

preserve a consistent correspondence of simulation and animation activities.

5. A model should provide a utility component for allowing learners to save model

visualizations and entities’ current states for restarts or reloads of a model without

the need to exit from the program or refresh a web page.

Embedding these functionalities in a model however poses a number of

challenges. These include:

1. The construction of runtime GUIs is only possible through an Application

Programming Interface (API). Since component GUIs are based on the MVC

pattern, this demands that each component must be equipped with its own GUI to

handle its parameters. When there are many components, this is a cumbersome

task.

2. While there could be many attractive and interactive third-party data visualization

components on the market, they cannot be easily integrated with our components.

The main reason once again lies in the implementation of the MVC pattern, which

demands that all interested observers (i.e., visualization tools) define an update

method in order to receive notifications from the components. We have therefore

opted to implement our own data visualization constructs.

3. Implementing the Delegation Event Model pattern in an animated simulator

requires to correctly trigger sorted events in the Monitor at appropriate times (i.e.,

to stop or delay events appropriately before attempting to trigger subsequent

events) and to smoothly transfer entities along their life cycles so that they reach

their next destination at times that are consistent with the viewing ratio (i.e.,

animation speed) specified by a learner. This necessitated a nested design, where

model time must be mapped onto animation time, and animation time then

mapped onto real time. We have therefore opted for concurrent animations to

 9

immediately display the effect of viewing ratio changes, rather than a post-

processed animations or direct simulation-animation (Hill, 1996) architecture.

4. Storing models requires storing all component instance identities (with their

current states and all interested observers) and running the models requires

continuation from their last saved positions (e.g., entities must continue travelling

to their next location based on their current locations and leftover travel times).

We therefore investigated methods to perform these.

5. Since we also designed our components to support hierarchical simulations that

can accommodate more complex model structures, we need to find a way to

connect and synchronize models in a hierarchical fashion, where aspects of parent

models may depend on their child model(s) states. This demands a mechanism

that not only synchronizes the flow of simulation entities in a child model, but can

also transmit this information to its parent whenever its relevant events have been

executed.

Before providing such components, we had to construct core libraries for

coordinating state transitions and processes in DES models; i.e., a DES monitor

engine. Its purpose is to keep track of all DES aspects, such as entities, resources,

routing, buffering, scheduling, time management and statistical instrumentation. To

achieve this goal, it had to be possible to generate samples from a variety of

distributions, maintain a list of events to be executed, offer a mechanism for

generating and cancelling events, maintain a simulation clock, compute statistical

performance measures (e.g., minima, maxima and averages of time spent in a system,

waiting times in queues, resource utilization, throughput, etc.) and collect and display

the results of a simulation run.

Since these models are intended to be embedded in web pages and meant to

drive animations, we have used Adobe’s Flash (Lopez, 2006; Peters & Yard, 2004;

Sanders, 2004) for coding their implementation. Flash was chosen as a delivery

platform mainly because of its strength as an animation tool (Holzinger & Ebner,

2003; Mohler, 2006; Peters & Yard, 2004; Shupe & Hoekman, 2006), and the fact

that it can generate very compact .swf applets that can be played “off the shelf” in the

vast majority of modern browsers.

 10

Although there are a number of Java-based simulators; e.g., simjava (W.

Kreutzer, J. Hopkins, & M. V. Mierlo, 1997), JSIM (J. A. Miller, Y. Ge, & J. Tao,

1998), JavaSim (Kuljis & Paul, 2000; Tyan, 2002), Psim-J (Garrido, 2001) and

Desmo-J (B. Page & Kreutzer, 2005) and some simple device modelling tools for

operating cell phones, crane arms, etc. using Flash (e.g., Kaye & Castillo, 2003), we

have not found any reports or references to a Flash-based discrete event modelling

tool. We have therefore coded our own Flash-based DES model executive. This

meant that we first needed to learn how to use Flash’s development environment, its

object-oriented scripting language (ActionScript-2), both its generic and animation

specific libraries, and its features for building and packaging collections of reusable

components. Although the construction of such a DES engine was not a primarily

goal of this research, its development has been a necessary step in providing a suitable

infrastructure for subsequent work. Learning how to build such a DES monitor in

ActionScript and how to package it so that its features can be easily used, took a

significant amount of time.

After coding the basic libraries, we fine-tuned our components so that they

could support all aspects and model features we have mentioned above. To test their

effectiveness, two experiments were conducted. First, we obtained feedback from

learners about the attractiveness, interactivity and usefulness of our Flash components

in the context of two DES sample models. Secondly, we distributed the components

to model developers to get their feedback about the tool’s usefulness, ease of use and

enjoyment. Here the information collected included whether the components

provided interesting run time GUIs, whether the GUIs were easy to interact with,

whether the learners liked the approach to display visualizations only when requested,

which visualization tools (e.g., graphs, histograms, boxplots etc.) helped them to

understand models better, whether the ability to change simulation parameters during

run time and the ability to pause, slow down and speed up a model’s execution made

learning easier and/or more enjoyable, etc.

The resulting models should easily be embedded in LMSs. Fortunately, Flash

models can easily be tailored to handle communications between learners and LMSs

compared to the use of JavaScript in HTML files as in the traditional approach. The

main justification for the integration was to take advantages of LMS facilities such as:

 11

 collecting information of learners’ behaviour,

 allowing access to online forums or chat rooms that increase collaboration

between learners, or learners and teachers, and

 improving integration with other learning materials.

Additional reasons are to present learners with a uniform interface (thereby

minimising any distractions from focussing on what they are meant to learn) and to

ease model maintenance, so that models can regularly be updated without any need to

distribute new copies to all learners. Figure 1.1 shows a sketch of the interactions

between teachers, learners, simulation models and a LMS. Their interactions can

briefly be described as follows. Teachers translate their mental models to computer

models using the right tools. The computer models are then distributed into a LMS

where they can be viewed by remote learners. Learners interact with the models and

the feedback from such interactions will automatically be displayed to them. If they

need further clarification on the feedback, they can use the LMS’s facilities (e.g., chat

rooms, email, etc.) to interact with their teachers or peers.

Create/Modify Preview/Testing

Teachers

View Display the impact
of modifications

Change parameters +
execute

Learner Learner Learner

Knowledge / mental model

Remote learners (observe and understand)

Interaction Interaction

Distribute / Interaction

Learning Management System

Simulation tools

Interaction

Action models
(Web-based and animated models)

Figure 1.1 Interactions between Teachers, Learners, Models and LMSs

 12

1.4 Scope of the Research

There are two types of simulation models: static and dynamic. In a static model, time

does not affect model behaviour. Examples are device simulations (Kaye & Castillo,

2003), equipment operation simulations (Towne, 2007) and so called “soft skill

simulations” (Aldrich, 2005; Gaffney, Dagger, & Wade, 2008; Maldonado et al.,

2005; Vries, 2004). These kinds of simulations are familiar to teachers and their use

in educational environments has long been discussed (e.g., see Aldrich, 2004, 2005;

Gibson, Aldrich, & Prensky, 2007). Dynamic models trace behaviour that changes

over time. Examples are DES, where system behaviour spawns a sequence of discrete

events, and system dynamics models, where the system behaviour is described

through sets of equations that model how states fluctuate “quasi-continuously” over

time.

This research has concentrated on DES models, where the state of a model

changes only at specified points in time, and more specifically on Queuing Networks,

which explore the effects of capacity constrained resources on common performance

measures; such as response time and throughput. This choice was made because of

their many fields of applications (e.g., in manufacturing, transportation, service

systems and computer hardware and software analyses) and the fact that, although

they have long been used to support analysis and design of complex systems, their

potential to enhance e-Learning has not yet been fully utilized.

Learners should be able to use animations to visually observe the effect of

changes to transient system behaviour caused by manipulating model parameters or

model structures. Within this context, we have therefore investigated a range of tools

that foster “modelling for insight” (i.e., those that improve understanding through

observation) rather than making accurate quantitative performance predictions (i.e.,

those that measure how efficiently a system performs its functions). In an e-Learning

environment such models can be instructive, since they allow users to visually

experiment with changes of model parameters and observe their effects on model

behaviour. By stressing qualitative effects of chains of events over quantitative

analysis we also avoid a wide range of complex statistical modelling aspects.

Within the discrete event modelling domain, two dominant modelling styles

(world views) are typically used to control flows of events: event-orientation and

 13

process-orientation. While event orientation eases coding, process orientation offers

a more natural framework for model development. Our designs therefore use a

process-oriented approach. Unfortunately this causes some implementation issues

(e.g., the lack of a built-in coroutine or continuation features in most common

implementation languages).

Since DES has the ability to model complex systems with relative ease, many

commercial or research tools have been developed for constructing DES models.

However, these tools are typically targeted at analysis rather than learning purposes.

Many commercial simulation software; e.g., Arena (Kelton, Sadowski, & Sturrock,

2004), Flexim (Nordgren, 2003) and SIMUL8 (Concannon, Elder, Tremble, & Tse,

2006), are excellent tools for building sophisticated simulation models and observing

model behaviour through animation. However, the resulting models mostly lack

support for user-experimentation during run time, are operating system dependent,

must be run using a specialized proprietary software, and are not designed to execute

on a web page; a very important element for incorporating models in e-Learning

systems. Thus, investigations on how these constraints can be catered are crucial.

In order to support web-based models, most previous research tools in this

domain have been developed in Java. Two web-based approaches can be

distinguished: Web-supported simulation and Web-enabled simulation.

Web-supported simulation locates tools on a server that can then be accessed

to create and run models. Thus, users do not have to install software packages on

their machines. Examples include JSIM (J. A. Miller et al., 1998), Silk (Healy &

Kilgore, 1998; Kilgore, 2000), JavaGPSS (Kazymyr & Demshevska, 2001; Klein,

Straßburger, & Beikirch, 1998), WSE (Iazeolla & Ambrogio, 1998) and ASimJava

(Sikora & Niewiadomska-Szynkiewicz, 2007). JSIM and Silk ease model

constructions using component-based technology with Java Beans. However, among

these tools, only JSIM integrates a simple animation for displaying queues.

Web-enabled simulation requires the installation of software packages on

users’ machines. Examples are Psim-J (Garrido, 2001), SSJ (L’Ecuyer, Meliani, &

Vaucher, 2002), JavaSim (Tyan, 2002) and DESMO-J (Meyer, Page, Kreutzer,

Knaak, & Lechler, 2005a). However, these packages, while giving experienced

programmers the flexibility to code their own extensions, typically only support

textual description and very simple data visualizations.

 14

We chose the second approach. The main reasons are that we believe the first

approach would be a burden on servers, since all development processes (e.g., model

construction, execution and animation) must all be performed on a central server, and

also limit tool accessibility, since it depends on network availability, its speed and the

number of concurrent users accessing the servers.

1.5 Contributions to Knowledge

This research has made some positive contributions to simulations in education

especially in proposing a design of DES tools for engaging and helping learners to

understand DES behaviour. The design focused on methods of easing the

construction of attractive, interactive and informative web-based simulation models.

These contributions have been achieved through a various processes of investigating,

analyzing and structuring how a DES tool can be provided with the right design.

In proposing the tool, we first surveyed the current use of simulation models in

the learning and teaching environment. We then identified and made a critical

analysis of model features that support learner-centred learning based on learning

theories and previous literature review. This deserves to be investigated since

educationalists and tool developers are considerably separated in their own domains.

Educationalists keep proposing and proving the benefits of using simulations as a tool

for learning and teaching in the new era of education, and how these benefits can be

gained using the right models. The tool developers meanwhile concentrate more on

the development of modelling and complete system analysis tools for measuring

system performances. Thus, they typically ignore the educationalists’ views of the

right models that stress on the importance of interactions between learners and the

models in ensuring learning. We are trying to bring both parties closer. Thus, we

made an analysis of how simulation models could be better supported in the current

learning and teaching environment by investigating and analysing the available DES

software and packages to discover what tools and functions they provide and lack in

facilitating learning and teaching. This can be a reference for those who intend to

provide such the right tool.

The contribution that directly relates to the tool design was the proposal of

strategies to construct and incorporate the tool with the suggested model features that

 15

relieve learners’ cognitive processes during their learning; i.e., hypothesis test

platforms, concurrent responsive animation and customized visualizations. Before

this work, no tools have been designed and constructed to support all the three

features during model runtime. Moreover, we designed the tool so that its resulting

models support a high degree of simulation and animation control and provide a store

capability of their states, animations and visualizations at any simulation time points

for future use. For this, we architected DES frameworks, extended them to various

components (i.e., simulation building blocks) with well-defined interfaces and

contracts that describe the input and output of entities and data flows, designed and

tested the components, and recommended the use of appropriate design patterns for

facilitating their constructions. To prove this design works, we managed to develop a

proof of concepts of a DES tool. We believe that its use eases the constructions of

attractive, interactive and informative DES models for self learning purposes.

Our design focused on the integrations of simulation, animation and

visualization to reflect change in the time (i.e., when simulation encounters delays),

space dimension (i.e., when an entity moves) and model states (i.e., when an event is

executed). In an animated simulation environment, the time requires model time to be

mapped onto animation time and animation time to be mapped onto real time, the

space dimension requires a stage for constructing and locating animated entities and

model structures, while model states require visualization tools (e.g., graphs,

histograms, etc.) to display their abstract data. Investigating what elements should

exist to fulfil these requirements and how they were supported by Adobe Flash, and

arguing how best the Adobe Flash as a platform for the DES tool development were

another research contributions.

To reflect users’ feedback on our tool and to obtain their recommendations for

its future improvement, we conducted two experiments. Conducting these

experiments yielded two contributions. The first contribution was the analyses of

learners’ feedback about how significant relevant features (e.g., animations,

visualizations, interactions, customized interfaces, etc.) of DES models helps them

engage with and get insight into the models’ behaviour. The analyses enabled us to

compare and judge how consistent their feedback was with the previous claims that

stress the importance of providing the features to ensure learning. The second

contribution was the analyses of model designers’ feedback about how good our tool

 16

is in constructing DES models. The analyses enabled us to evaluate how useful and

easy our tool is for constructing the DES models for learning and teaching purposes.

In addition to addressing the tool design for a single layer of DES models, we

also architected how the design could be extended to manage the complexity of large

and complex DES models. This complexity can either relate to the cognitive aspect

(i.e., how model logics can be split to smaller models for representing their functions)

or the representational aspect (i.e., how many elements are used and how they are

arranged to represent model structures). Our approach of catering the complexity is

through a hierarchical structured concept; i.e., by breaking up a model to relevant

sub-models with each sub-model conceals the details of their lower levels. The

concept manages both aspects through its ability in controlling the level of details (in

terms of structures and information) for better representing of the model and

arranging animation and visualization for better viewing and grasping the dynamic

parts of the model (as opposed to the crowdedness of graphical objects in a flat

model).

However, the main challenge for the design is the synchronization of each

sub-model’s behaviour so that they can be executed in the right order. For this, we

present two mechanisms for coordinating event executions among layers in

hierarchical DES models. These are the Monitor Delegation Mechanism that

delegates event executions to a relevant layer and the Monitor Communication

Mechanism that transfers event executions to all visited layers.

Our approaches differ from the approach proposed by Yi and Cho (Yi & Cho,

2001, 2003). We focused on how to extend our simulation engine and components

based on the concurrent animations where a simulation monitor controls both

simulation and animation aspects to guarantee animation accuracy. Since our

components allow interactions, the runtime interactions with all layers are

automatically supported. Their approach meanwhile is based on the direct-simulation

animation where the simulator and the animator have their own activity scheduling

lists. Thus, besides considering event executions among layers in the simulator, they

also need to find a method of communicating the simulator with animation scheduling

in the animator. The main drawback of their approach is that it only guarantees

animation accuracy from event to event, not between them since the graphics

rendering depends on the computer that simulator and animator reside.

 17

1.6 Thesis Overview

This thesis is organised as follows. In Chapter 2, we first identify different types of

simulation models, examine their roles in facilitating learning based on learning

theories and collect some empirical evidence that establishes their effectiveness in e-

Learning environments. Some available simulation tools and the current interests on

animated DES models are also reviewed.

Chapter 3 examines the mechanisms of two DES modelling styles: event-

oriented and process-oriented. Realising the limitations of the event-oriented style,

we architected a process-oriented DES framework to support various DES facilities

(e.g., generating random numbers for various distributions, collecting statistics,

managing simulation clocks, a list of future events, etc.). This framework has guided

the construction of our DES simulation libraries. To symbolize the libraries’

functionalities and ease the building of DES models through symbol compositions, we

then introduce relevant DES graphical objects. However, it still demands

programming effort and its resulting models offer no support for interactions.

Chapter 4 briefly reviews Visual Interactive Modelling (VIM) and Visual

Interactive Simulation (VIS) concepts and discusses their benefits in learning and

teaching. We then argue the use of Adobe Flash and its scripting language to create a

tool to support both concepts. Since VIS combines simulations and animations, some

approaches for integrating these features are also discussed. How VIS’s essential

components can be created with the help of our framework is then presented. We

subsequently present how a series of our simulation components can be used to build

queuing models. This chapter ends with a discussion of some tricky issues in

integrating an animated simulator to DES models specifically in permitting animation

speed to dynamically be adjusted by learners during model runtime.

Chapter 5 discusses how to systematically design a tool for building attractive

and interactive DES models. We first review component-based tool principles and

examine how these principles can ease model building. We then suggest the

Delegation Event Model for forging links between DES active and passive

components. Next, we present the MVC (Model-View-Controller) pattern and

discuss how it can be utilized for loose coupling between components, their interfaces

(GUIs) and their visualizations. We further our discussion on how to cater with

 18

model complexity through model partitioning (i.e., hierarchical model development)

and how to support such development using the two patterns.

Chapter 6 reports two experiments that collected users’ feedback of the tool

and its resulting models. One experiment evaluated learners’ perceptions about the

attractiveness and interactivity of the models. We developed our own questionnaire

for this based on model features proposed by relevant studies. Another experiment

evaluated model designers’ perceptions about the perceived usefulness, perceived

ease of use and perceived enjoyment and their willingness to use the tool in the future.

For this, we used the Technology Acceptance Model (TAM) and other extension

models found in the literature. We also assessed the participants’ workload while

experiencing our tool using NASA Task Load Index (TLX).

Last chapter, i.e., Chapter 7 concludes the findings of the research, lists some

of its limitations and proposes some recommended future work.

 19

CHAPTER 2

SIMULATION AND EDUCATION

2.1 Introduction

Many studies (e.g., Charles, 2008; Kauchak & Eggen, 2007; Nigel, 2008; Wurdinger

& Carlson, 2010) argue in favour of blended learning, which mixes different learning

environments (face-to-face and computer-based materials) and approaches to teaching

a subject. Typically all of these require that teachers prepare a set of activities that

support students’ cognitive styles and make learning an engaging activity. Teaching

approaches that are merely based on traditional lectures (which are typically

constrained to one-way communication), static learning materials and individual or

group assignments, will often result in only a shallow understanding of course

contents and decrease students’ motivation and enthusiasm for the taught subjects.

Better approaches seek to engage learners’ attention and actively involve them in the

learning processes.

To make learning enjoyable, several instructional methods have been

suggested; e.g., collaborative learning (i.e., a group of learners cooperate in their

learning activities), problem-based learning (i.e., a group of learners collaboratively

solve assignments with the help of a teacher) and computer-supported instruction,

such as simulations and educational computer games. In this context simulations can

act as important tools for discovery-based learning (Jong & Joolingen, 1998; Reid,

Zhang, & Chen, 2003; W. R. Robinson, 2000; Zhang, Chen, Sun, & Reid, 2004) by

offering a learning environment where learners learn by doing. Swaak and Jones

(2001a, 2001b) suggest that simulations have three characteristics that enhance

discovery-based learning; i.e.,

 richness, where knowledge is obtained through various dynamic representations

such as animations and numerical data displays,

 20

 low transparency, where knowledge must be inferred by learners themselves, and

 active interaction, where knowledge is obtained through experimentation.

Many benefits of including simulation models in teaching and learning

environments as part of learning materials or as complementary activities have been

listed in many relevant publications; e.g., by Aldrich (2004, 2005), Fitzpatrick (2003)

and Gibson, Aldrich, & Prensky (2007). For example, active experimentation while

exploring simulation models not only helps learners develop a mental model of real

world processes or events, but can also support collaborative styles of learning (Beux

& Fieschi, 2007; Jeffries, 2005) as well as problem-based learning through model

building (Milrad, 2002). To fully reap those benefits, learners need models that

demand hands-on interactions (to stimulate learning by doing) and offer support

whenever it may be needed. How one can best integrate such models into appropriate

approaches for knowledge construction and to enhance learning and problem solving

skills has been investigated empirically by, e.g., Chang, Chen, Lin, & Sung (2008),

Gokhale (1996), Kennepohl (2001), Liao & Miller (1996), Reid, Zhang & Chen

(2003), Renshaw & Taylor (2000), and Rieber, Tzeng, & Tribble (2004).

This chapter examines the use of simulations in education. It scrutinizes

different types of simulation models, their roles in education and learning, empirical

evidence that establishes their effectiveness in e-Learning environments, some

available simulation development tools, and current interests on animated DES

models.

2.2 Simulation Models and Their Purposes

There are many different definitions of simulation. From an educational perspective,

Castillo, Hancock and Hess (2004) and Aldrich (2002, 2004, 2005) define simulation

as digital learning material that allows learners to perform hands-on activities (e.g.,

mouse clicking, text entering, etc.) in order to receive additional tasks or information.

From an engineering perspective, the term refers to a model which replicates a

system’s characteristics and behaviour based on specified goals of a study (Flynt &

 21

Vinson, 2005; Law, 2007; Shannon, 1998). Since they permit learning through

experimentation in a safe and effective environment, simulations have become an

increasingly popular educational tool and have been used for four purposes; i.e., to:

 train learners’ technical skills or to demonstrate and practice tasks that are too

dangerous or impractical to be performed directly; e.g., surgery or operating

dangerous equipment. Since real environments are replaced with safe and cheap

simulated environments, learners can freely explore their ideas, run a series of

actions and examine the consequences. Such virtual environments not only

reduce costs, but also offer learners the freedom of deciding when and where they

want to learn.

 permit learners to practise decision making in situations where proposed actions

cannot be directly and immediately observed, for example because their effects

are delayed in time or/and dispersed in space. Since simulations can represent

such situations in attractive and interactive forms and give feedback from

learners’ actions (i.e., allow them to stretch or compress time and space), learners

can become more engaged and their learning experiences may be enhanced.

Simplification while maintaining a high degree of fidelity is an important

challenge for this use of simulation (Aldrich, 2004, 2005; Lunce, 2006).

 explain concepts and complex interrelationships between variables; e.g., in

economic or queuing systems. In the traditional learning approach, teachers can

only discuss complex interrelationships in verbal or textual forms. Watching

models in execution and interacting with them can, however, lead to better and

deeper levels of understanding.

 provide learners with a diversity of “soft skills” (Aldrich, 2005; Gaffney, Dagger,

& Wade, 2008; Maldonado, Lee, Brave, Nass, Nakajima, Yamada, Iwamura, &

Morishima, 2005; Vries, 2004); i.e., personal attributes (e.g., responsibility,

common sense, motivation, etc.) that enhance an individual’s interactions, job

performance and leadership. Learners can use relevant models to practice a range

of skills before applying them to the real world.

 enhance materials to increase learners’ motivation to learn a subject (Castillo et

al., 2004; Prensky, 2001). It has often been claimed that learning by doing can

cause knowledge to be retained longer compared to just reading static materials in

 22

traditional classroom settings. Within this context, simulations can offer more

engaged and immersive learning materials for learners to learn about events,

processes and activities.

2.3 Types of Simulation Models

We can classify simulations into three categories:

1. live simulations (or role playing), where real people manipulate simulated

operations of a real system using real equipment (e.g., a training exercise of a fire

drill),

2. virtual simulations, where real people operate simulated equipment in a simulated

environment (e.g., flight and vehicle simulators), and

3. constructive simulations, where real people operate computerised models from

which they obtain feedback.

While virtual simulations are well suited for some types of training,

constructive simulations can move beyond simple rehearsal of skills and provide

bases for easily analysing and comparing effectiveness and consequences of a wide

range of physical or cognitive tasks. Thus, constructive simulations have long been

used in a variety of domains in education. These include computer sciences (Aubidy,

2007; Yin, Ogata, & Yano, 2007), engineering (Ledin, 2001), logistics (Ganapathy,

Narayanan, & Srinivasan, 2003), biology (Keen & Spain, 1992), medicine

(Hoppensteadt & Peskin, 2002), economics (Porter, Riley, & Ruffer, 2004), physics

(Chang et al., 2008; Jong et al., 1999), management sciences (Pidd, 2004) and

sociology (Halpin, 1999; Moretti, 2002). Constructive simulations can generally be

classified on the basis of the degree of learning support they offer: single concept,

operational level or strategic level. A description, some characteristics and examples

of each type of constructive simulations are shown in Table 2.1.

 23

Table 2.1 Classification of Constructive Computer Simulations

Learning

Support
Description Characteristic Simulation Type

Basic concept

 Simulations dealing

with a simple

calculation or a

specific aspect of

theory

 Model behaviour is

not affected by time

 Encourages

learners to apply

previous

knowledge

 Often found in

educational

simulations

Soft skill simulations

Procedural simulations

Operational

level

 Simulations dealing

with specific

operations

 Model behaviour is

changing at discrete

points in time

 Stimulates students

to explore,

experiment,

predict and invent

given phenomena

 Often found in

engineering and

science studies

Discrete Event

simulations; e.g.,

queuing networks,

manufacturing, logistic,

etc.

Strategic level

 Simulations dealing

with complex

natural processes

 Model behaviour

keeps changing over

time

 Provoke systemic

thinking about

given phenomena

 Often found in

engineering and

science studies

Continuous

simulations; e.g.,

biology, ecology,

economics, sociology,

etc.

Based on this classification, Chwif and Barretto (2003) have argued that those

that support operational or strategic levels are more effective but difficult to design

than simulations that those intended to simply train people in basic (e.g., device

simulations for training operators of industrial machinery (Kaye & Castillo, 2003)) or

“soft skills” (e.g., teaching skills in communication, leadership or strategic thinking

(Gaffney, Dagger, & Wade (2008)). Table 2.2 shows how different types of

simulations can be used to support learning in different domains.

 24

Table 2.2 Simulation Types and Learning Support

Type Learning support Example

Soft skills simulations

(also known as

branching stories or

situational

simulations) (Gaffney

et al., 2008; Idrus,

Dahan, & Abdullah,

2009; Radcliff, 2005)

 Exposing learners to

simulated work experiences

in order to improve their

communication and decision

making skills before dealing

with real situations

 Exploring alternative paths

through a task with

additional information and

instructions, based on

learners’ responses

 Software usage simulations

 Situation-based simulations;

e.g., in business and

management training,

customer and sales training,

customer service training,

doctor-patient interaction,

etc.

Procedural

Simulations or

Virtual products (Kaye

& Castillo, 2003;

Michelson &

Manning, 2008)

 Understanding the physical

characteristics of real

equipment

 Learning to use costly

equipment or perform

complex tasks

 Mechanical device

simulations; e.g., medical,

manufacturing, home

electronic equipment, etc.

Discrete Event

Simulations (Banks,

1998; Wainer &

Mosterman, 2010)

Understanding the operation of

a system that traces ordered

sequences of events

 Queuing systems

 Manufacturing systems

 Logistic systems; e.g.,

warehouses, ports, airports

etc.

System Dynamics

(Hannon, Ruth, &

Meadows, 2001;

Sterman, 2001)

Understanding the behaviour of

systems that contain feedback

loops involving stocks (entities

that accumulate or deplete

quantities over time) and flows

(rates of change)

 Policy analysis and design

 Population systems

 Ecological systems

 Economic systems

Alternatively, Castillo, Hancock and Hess (2004) divide educational

simulations into two basic categories: structured simulations and open-ended

simulations.

1. Structured simulations are used to support the understanding of system behaviour.

Information is presented in a step by step fashion, where each step requires

learners’ responses to progress to the next of a number of alternative steps. Since

 25

information is only delivered when requested, this approach has been claimed to

enhance traditional learning styles. It can be used in all learning domains.

2. Open-ended simulations, on the other hand, leave learners to freely explore a

simulated environment; this is typical for DES and system dynamics simulations.

Although some studies (e.g., McKenna & Laycock, 2004; Michael, 2000) claim

that there is no clear benefits of using open-ended simulations, other studies (e.g.,

Jong & Joolingen, 1998; Land, 2000; Lunce, 2006) have argued that great benefits

can indeed arise from the fact that learners are not supported by additional

instructions to overcome problems. This may forces learners to adopt a scientific

discovery style of learning; e.g., by performing experiments. Opponents to this

approach, however, assert that most students are unlikely to plan such experiments

carefully enough, do not have sufficient skills to interpret outputs appropriately

(particularly if models contain stochastic effects), and teachers may not state

objectives or the learning outcomes clearly enough.

By looking at the way in which simulation impacts students’ learning, Sahin

(2006) clarifies the pedagogical difference between the two above mentioned

approaches further. He distinguishes between instructive and constructive strategies.

Instructive strategies only consider learners as passive entities. They simply

consume information with multimedia support. Such consumption and a limited

degree of interactions can lead to some learning, but the impact on students’ problem

solving skills may be minimal. This is the case in structured simulations.

Constructive strategies meanwhile permit learning by freely exploring the

relationships between a system’s inputs and outputs through feedback obtained from a

model. This is the case in open-ended simulations. The two-way interaction between

experimentation and observation challenges learners’ thinking and may eventually

lead to acquisition of higher order thinking skills. Since such simulations are

typically based on models of complex real-world systems, the knowledge or

experiences gained from these interactions can later be transferred or applied to real-

life scenarios. To make them effective, such simulations require some pre-

knowledge; i.e. a basic understanding of the modelled systems. This must be supplied

by teachers or appropriate instructions (Land, 2000; Min, 2003).

 26

To either complement traditional classroom teachings or support distance

education within a learning environment, two types of constructive simulations have

been proposed by Neumann, Page, Kreutzer, Kiesel, & Meyer (2005). These are:

 Simulation-based learning; i.e., computer simulations are used to explain complex

systems. To support knowledge acquisition through simulated systems, the

combination of simulation, animation, visualization and various other instructional

techniques is crucial.

 Simulation-focused learning; i.e., computer simulations are the vehicle through

which all learning occurs. In this approach all related modelling concepts and

methodologies are explained in detail, which then enables learners to apply

simulation to practical problems. Simulation-focused learning is usually found in

engineering and science courses.

2.4 The Role of Simulations in Education and Learning

2.4.1 The Role of Simulations in Learning Theories

In order to prepare suitable learning materials for learners, an understanding of the

learning process is required. A learning process involves three main aspects:

cognitive, emotional and experiential (Illeris, 2000; Livesey, 1986). The explanation

of how these three elements shape learning is called a learning theory. Learning

theories can be categorized into three main groups: behavioural, cognitive and

constructive (two categories that will not receive further mention are andragogy

(Knowles, 1984) and connectivism (Siemens, 2005)). Learning theories are used as a

guidance to design and prepare learning materials based on learning goals and

outcomes, and the format and contents of learning materials must assure the desired

effects on learners’ performance (R. C. Clark, Nguyen, & Swelle, 2006).

Behaviourism only considers observable aspects of learning processes (i.e., by

observing changes in learners’ responses), without allowing any speculation about

processes that may occur in the learner’s mind. Its main principle is that learning

takes place through repetition and reinforcement. Continuous reinforcement (i.e., by

 27

penalizing undesired behaviour while rewarding desired behaviour) is used to

promote learning, while intermittent reinforcement seeks knowledge retention. While

such strategies have been quite popular in conventional classroom teaching, they have

proved only effective for teaching simple tasks. Common applications include taking,

reading and memorising notes, and recalling knowledge and skills in tests or

examinations. An example of educational technologies based on this theory is drill

and practise software that delivers contents in small steps, with simple control

questions at the end. Such software relies heavily on right and wrong answers, where

“right” answers lead learners to new information, while “wrong” answers spawn

repetitions. Since the Behaviourist theory does not explain learning and has failed to

help understanding and acquisition of complex scenarios and skills, educators have

looked for alternatives and cognitive theories, which attempt to take account of what

may take place in a learner’s mind.

Cognitivism asserts that the ability to construct new knowledge is strongly

influenced by how well individual learners’ memory can map (structure) new

information to already acquired information. The new information (retained in a new

logical slot) is then retrieved and modified to help process further new information.

Each learner may have a different capacity for processing, retaining and using

information. In order to ease the process of integrating new knowledge into existing

cognitive structures, learners must have acquired all pre-requisite lower-level

information before being exposed to higher-level concepts. An example of

educational technologies based on this theory is an Intelligent Tutoring System (ITS),

which guides learners throughout their learning processes.

Constructivist theories strongly emphasize the importance of prior knowledge,

and view learning as a process of actively constructing new knowledge based on three

elements: prior knowledge, activities and experiences. Active knowledge

construction means that learners themselves are responsible to use and explore

interactive learning materials and make use of all feedback to develop their mental

models. These iterative processes are supposed to promote active learning (i.e.,

learning by doing) and extend knowledge retention. Since each learner differs from

others in terms of pre-knowledge, experiences and relevant skills, the same learning

materials will result in different knowledge structures and problem solving skills for

different learners. An example of educational technologies based on this theory is

simulation. Table 2.3 shows some features of learning theories.

 28

Table 2.3 Some Learning Theories and Their Features

Feature Behaviourist Cognitivist Constructivist

Learning

principle

Observable objectives Problem solving Knowledge

construction

Learning

focus

Reflection Cognition Interaction

Teacher’ s

task

Transmitter Helper or tutor Facilitator

Instructional

Design

Direct instructions,

course based

measurement,

sequenced tasks

Problem solving

through exploratory

learning, project-based

works

Self-directed learning,

case-based learning

Learning

material

presentation

Linear contents that

move from simple to

complex

Dynamic, complex

environments

Dynamic, unstructured

(not pre-specified)

Human brain Passive knowledge

container

Linear information

processor

Closed information

system

Learning

direction

Controlled by teachers Controlled by learners

with proper guidance

from teachers

Controlled by learners

Learning

outcome

Predetermined and

predictable

Predictable Unpredictable, since

instructions only foster,

not control learning

processes

Evaluation Performance based on

correct answers where

each unit of content is

treated and evaluated

separately

Knowledge based on

discovering correct

methods for finding

answers

Competence (degree of

mastery) based on

dealing with complex

problems

Learning

measurement

Easily measured by

counting correct

answers

Indirect, based on

active problem solving

Not easily measured

and much more

subjective, usually

based on on-going

activities, experiences

and attitudes; e.g.,

notes, drafts, journals

or products

Learners’

interaction

Simple interactions

with controlled

presentation via verbal

or graphical instruction

Demands intelligence Demands more

communicative and

immersive contents to

show how a model

responds to individual

assumptions through

feedback

 29

Criteria Closed system where

learners are confined to

the teachers’ world

Solution-centred More dependent on

learning than teaching

approach

Knowledge

construction

Encourages surface

learning

Creates deeper problem

understanding

Promotes deeper,

transferable

understanding and long

term retention of

knowledge

Software

development

time

More quickly

constructed

Time consuming Time consuming and

much effort is needed,

since it requires a

significant amount of

interactive and

unstructured learning

materials

Knowledge

retention

Works well for short-

term transferable

knowledge

Better at long-term

knowledge retention

More long-term and

applicable, since

knowledge is obtained

through interactions

and activities (leaner-

learner and learner-

model), not through

competition among

learners

Software

characteristic
 Rigidly structured

 Dearth of content

interactions and

forms of

presentations

 Sequential

exposition of

information,

followed by testing

 Intelligent sequence

 Modestly

interactive. pre-

packaged problems

 Unstructured, no

pre-packaged

problems, highly

interactive

 The use of

animation and

multimedia

environments is

common

Ideal software Drill and practise

programs, programmed

instructions and

tutorials

Intelligent Tutoring

System, Computer

Based Training

Simulations,

microworlds (L. P.

Rieber, 1995),

modelling

environment,

hypermedia

The development of e-Learning materials based on cognitive and

constructivist theories is an important step towards better learning environments

since:

 30

1. curricula are now packed with many subjects and learner-teacher interactions are

limited,

2. the demand for education keeps rising, but time and space remain restricting

factors, and

3. learners are now familiar with modern technologies and expect their use.

Interactive contents therefore become crucial.

These factors favour a shift of responsibility from teacher-oriented (the

behaviourist feature) to learner-oriented learning styles (the constructivist feature).

Some approaches to transfer such responsibility are through guided discovery (R. E.

Clark, Yates, Early, & Moulton, 2010; Leutner, 1993; Piaget, 1977), case-based

learning (Aamodt & Plaza, 1994; Jonassen & Land, 2000) and microworlds

(Brouwer, Muller, & Rietdijk, 2007; L. P. Rieber, 1992, 1995, 1996).

Guided discovery enables learners to create their own understanding of a

subject, using tools (e.g., simulations) with guidance from a teacher. Since the role of

a teacher changes from a transmitter of information to a promoter of higher-order

thinking skills, this method has been claimed to be an ideal approach in education

(Aldrich, 2004; Chwif & Barretto, 2003; Gibson et al., 2007; Gokhale, 1996) and is

believed to produce “deeper” learning than teacher-centred approaches (e.g.,

demonstration, direct instructions, lectures or lecturer-discussion).

The main strength of simulations in this context is that it enables a “situated

learning” approach (Der-Thanq & David, 2002; Herrington & Oliver, 1995, 1997),

which claims that realistic contexts will motivate learners to engage more strongly

with the material. Since this instructional methodology requires learners to be

equipped with a substantial amount of pre-knowledge and skills, several studies (e.g.,

Kirschner, Sweller, & Clark, 2006; Tripp, 1993; Wineburg, 1989) criticize its

implementation in traditional classrooms. However, some other studies (e.g., Harley,

1993; Ketelhut, Dede, Clarke, Nelson, & Bowman, 2007; Lunce, 2006; Young, 1995)

report strong support for embedding situated learning through use of modern

educational technologies.

Simulations can be used in a variety of learning and training domains, since

most aspects of real-life processes and job environments can be simulated in

controlled settings. Simulations are appropriate for teaching situations when learners

 31

can gain high levels of knowledge and skills (i.e., application, analysis, synthesis and

evaluation levels in Bloom’s taxonomy - Krathwohl, Bloom, & Masia (1996),

Anderson & Krathwohl (2000)). However, since simulations are associated with

constructivist learning theories, they have some disadvantages, which include:

 Simulations heavily depend on learners taking responsibility for their own

learning. Without motivation, significant learning will not take place.

 Simulations require tacit knowledge and particular skills to enable learners to

drive experiments, analyse and understand feedback, draw their own conclusions

and predict a chain of actions throughout a learning activity (Whiteside, 2002).

 Simulations demand coaching and scaffolding to offer learners hints at certain

times (Min, 2003; Zhang et al., 2004). Without these elements, learners might

interact with simulation models without framing sensible hypotheses and may

draw wrong conclusions. However, too much guidance will stifle learners’

creativity, since they are now confined to a series of tasks (Herrington & Oliver,

1995, 1997).

 Simulations need collaboration (i.e., learner-learner and learner-teacher

discussions) to promote critical thinking and problem solving skills.

 Simulations may require more time for learners to abstract meaningful knowledge,

since learners need time to immerse themselves into a problem and experiment

with alternatives (Heinich, Molenda, Russell, & Smaldino, 1999).

 If they are overly simplistic, simulations may create an imprecise understanding of

real-life situations.

 Simulations need tools that offer authentic contexts and activities (Herrington &

Oliver, 1995, 1997; Lloyd P. Rieber et al., 2004) to engage learners’ attention.

Authentic contexts reflect how knowledge can be used in real-life and motivate

learners to use the model. Authentic activities ask learner to find and solve

problems themselves. Thus, explorative models that allow manipulation of widest

ranges of variables are crucial to stimulate learning by doing (Kolb, 1984;

Whiteside, 2002). However, designing, building and testing such simulations is

time consuming and costly.

 32

2.4.2 Empirical Evidence

Simulations have long been claimed to have positive effects on learning (e.g., Lunce,

2004; Min, 2003; Njoo & Jong, 1993; L. P. Rieber, 2002). Some researchers have

conducted experiments to evaluate the effectiveness of using simulations either as

complement to or as a replacement for other learning materials and tools. Such

studies include Liao and Miller (1996), Gokhale (1996), Michael (2000), Renshaw

and Taylor (2000) and Kennepohl (2001). Eck and Dempsey (2002) meanwhile have

examined the impact of embedding advisement and competition in computer

simulations.

Liao and Miller (1996) have studied the effects of using computer simulations

as complementary learning materials on learning in a construction and architectural

engineering technology course. Analysis of the course examination results showed

that the mean and median for the group supplied with both text-based course materials

and a simulation game was higher than the group supplied only with the text-based

materials, supporting the thesis that a computer simulator as a companion to reading

materials could help learners learn better.

Gokhale (1996) has examined the effectiveness of using computer simulations

to teach problem-solving skills in an electrical course. Data analysis showed that

students exposed to a computer simulation in addition to lecture-lab activities were

significantly better than students that only used traditional lecture lab activities. The

results therefore corroborated the assumption that simulations could be an effective

learning approach to equip students with problem-solving skills that are transferable

and applicable to real world problems.

Michael (2000) has explored the possibility of using a computer simulation as

a replacement for real-hands-on activities in creating a product. They found that no

significant difference in product creativity scores among the hands-on group and the

computer simulation group. This suggests that it was possible to use a computer

simulation in place of hands-on activities while maintaining student creativity.

Renshaw and Taylor (2000) assessed the impact of using system dynamics

simulations on students’ higher-order cognitive skills of environmental processes.

Data analysis showed that the students who had been exposed to the simulation had a

better understanding of what they had learnt (i.e., simulation had a positively impact

on students’ higher-order cognitive skills), were less prone to cognitive errors in

 33

decision making and demonstrated higher information retention compared to the

students who obtained equivalent information through hands-out.

Kennepohl (2001) examined the effectiveness of simulations in enhancing

students’ chemistry laboratory experiences. They found no difference in overall

course performance between the students who fully attended supervised laboratory

sessions and the students who were partially attended the sessions but were

additionally exposed to individual laboratory simulations. However, the later students

completed laboratory work in a shorter time and achieved a slightly better

performance in the practical laboratory component (lab reports and quizzes). This

suggests that computer simulations can enhance student lab experiences in spite of lab

time reductions.

Eck and Dempsey (2002) have studied the effect of embedding advisement

and competition elements in a computer-based simulation to teach the concepts of

geometric shapes. Advice through interactive videos could be accessed whenever

students were stuck at certain problems. Competition refers to whether or not the

students were playing against computer characters to encourage their learning. The

results showed that (1) the presence of advisement during simulation did not

guarantee to help learning unless it was properly designed and used, (2) advisement

was probably effective in promoting learning in a leisure environment, (3) the

presence of advisement during competition could create additional cognitive load and

hinder learning, and (4) knowledge transfer could be promoted as long as there was a

connection between the learning context and students’ prior knowledge no matter

which approach was used.

2.4.3 Simulations and e-Learning

2.4.3.1 Promises and Problems of e-Learning

e-Learning utilizes electronic documents for facilitating learning. It has been boosted

by globalisation that forces people to regularly update their knowledge in order to

compete in the current job market, technological improvement particularly in software

that simplifies the development of attractive and interactive learning materials for

 34

better learning experiences and internet speed that eases remote storing, updating and

accessing of the materials.

Recent research clearly shows the growth of e-Learning in educational

institutions and training organizations worldwide to support traditional classrooms

and/or offer virtual learning environments (Ala-Mutka, Gaspar, Kismihok, Suurna, &

Vehovar, 2010; Garrot, Psillaki, & Rochhia, 2008; K. Kim, 2006). This type of

learning has been accepted as a typical teaching and learning platform since the

development of learning management systems (LMSs) that offers various learning

supports through the use of current technologies (e.g., online assessment,

communication, etc.) and the familiarity of current learners with a self-directed

learning environment through the use of computer. The use of e-Learning as a virtual

learning environment through the support of information and communication

technologies (ICT) can promise:

 Learning anytime, anyplace. Learners can study learning materials without time

constraints. This gives learners opportunities to learn and access a much wider

range of knowledge. Study can take place either at home, work, libraries, etc. as

long as learning materials can be accessed.

 Collaboration through synchronous and asynchronous interactions. This enables

learners and teachers to discuss and exchange information at anytime and

anywhere. Such facilities are available in most LMSs.

 Learning through new technology approaches. Current learners are computer-

literate and familiar with learning through computers. These opportunities can be

utilized by e-Learning content designers to provide highly motivating attractive

and interactive styles of presentation; e.g., interactive simulations and computer

games. Such methods when used properly are claimed to engage learners,

enhance e-Learning experiences and decrease the amount of reading, which

improves the retention of the materials (Aldrich, 2004, 2005; Neumann et al.,

2005).

 Cost effective. The use of technology can reduce costs related to teachers,

physical spaces, hardcopy of learning contents, etc. Learning can be delivered on

time.

 35

Improving the quality of e-Learning experiences remains a continual challenge

for LMSs. Most e-Learning materials have been constructed without much

consideration of how learners learn (Dublin, 2004; McKenna & Laycock, 2004;

Romiszowski, 2004) where the use of static graphics (e.g., e-book, Word documents,

etc.) and simple online assessments (e.g., simple multiple-choice and true-false recall

type of questions) is common (Neumann et al., 2005; Wahlstedt, Pekkola, & Niemelä,

2008). These materials cannot be considered quality e-Learning solutions since they

only deliver facts and fail to engage and attract learners. Consequently such materials

typically fail to promote a constructive and cooperative learning style and fail to

facilitate the transfer of knowledge to job environments; i.e., the utilization of the

knowledge (Kühl, Scheiter, Gerjets, & Gemballa, 2011; Wilson, Jonassen, & Cole,

1993). The importance of interactivity, visual presentation and aesthetics in learning

materials has long been suggested in the relevant literature (e.g., Bransford, 2000;

Eppler & Burkhard, 2007; Mildrad, 2002).

2.4.3.2 The Roles of Electronic Course Management Systems

Most educational institutions and training organizations now support teaching and

learning activities with LMSs. LMSs (also sometimes called Course Management

Systems (CMSs)) offer tools for both management and delivery of course materials

and assessments. Open source LMSs include Moodle (www.moodle.org) and .LRN

(www.dotlrn.org). Other LMSs, such as WebCT (www.webct.com), Blackboard

(www.blackboard.com) and eCollege (www.ecollege.com) are sold as commercial

products. The roles of LMSs are to:

 provide content management through attractive GUIs and layouts in order to ease

store, structure and distribute learning materials. Such characteristics are

important to foster a pleasant experience when using and learning through the

platform (Stenalt & Godsk, 2006).

 provide advanced communication facilities through synchronous and

asynchronous modes. The synchronous mode tries to imitate traditional learning

environments and assumes that a group of learners and their teachers will be

 36

online at the same time. It uses chat rooms or video conferencing technology as a

communication. In contrast to this approach, an asynchronous mode that uses

email and bulletin board allows each learner to be online at times that depend on

his or her preference.

 track learners’ behaviour and performance, and record the number of times

learners access certain content, as well as the time spent on studying different

content materials. In order to support this communication, learning materials

must comply with a set of technical standards for e-learning; e.g., SCORM

(Gonzalez-Barbone & Anido-Rifon, 2010; Vossen & Westerkamp, 2006).

The development of LMSs to support virtual learning and teaching activities

has increased the use of e-Learning in higher education institutions worldwide

(Browne, Jenkins, & Walker, 2006; Falvo & Johnson, 2007). However, providing

right learning materials (based on learning pedagogy) and supporting them through

various learning facilities available in LMSs are important in promoting student

involvement and ensuring the success of e-Learning (Klobas & McGill, 2010).

2.4.3.3 Pedagogical Aspects of e-Learning

e-Learning shifts the medium of knowledge and skill transfer from a teacher to

computer. This transfer should imitate whatever important features in the traditional

classrooms (e.g., activities that involve learners in the learning processes, two-way

communication that allows learners to respond and get feedback, etc.) and incorporate

them all into the virtual learning environment (Alonso, Lopez, Manrique, & Vies,

2005). The absent of teachers during learning time must be replaced with new

methods of instruction design that stimulates student engagement and involvement.

Instructional methods that are based on attractive and interactive materials (e.g.,

simulation, computer games, etc.) and that provide activities that will impart learners’

knowledge and skills are important in guaranteeing successful learning outcomes.

Attractive and interactive materials that are based on dialoguing, controlling,

manipulating, searching and navigating (Moreno & Mayer, 2007) play three important

roles in virtual learning. Firstly, they can replace the dialogues between learners and

 37

their teacher and promote motivation for them to learn through multidirectional

communication (i.e., actions and feedback). Thus, learners will not be bored as

reading static texts, viewing static graphics or navigating non-interactive materials

(e.g., a narrated representation with animation, hypermedia, etc.). Secondly, they can

stimulate information acquisition and knowledge construction (Fletcher & Tobias,

2005; Moreno, 2006) especially if they are designed to support different modes of

presentation; e.g., verbal explanations (e.g., printed words, spoken words) and non-

verbal (e.g., animation) and mixed-modality representations (i.e., auditory and visual).

The approach of using multiple representation to illustrate content of knowledge eases

learners to utilize knowledge and enables meaningful learning to occur in their

cognitive (Moreno & Mayer, 2007). Thirdly, they stimulate meaningful

communications among learners and increase the use of communication facilities

provided by the LMSs to a maximum level since their activities will challenge

learners’ understanding during their learning activities. If the given outputs contradict

with their hypotheses, learners will seek clarifications from their peers or teacher.

Attractive and interactive learning materials however do not automatically

create understanding. Besides their effectiveness depends on learners’ prior

knowledge and their cognitive factors (Kalyuga, Ayres, Chandler, & Sweller, 2003),

the interactivity could also create the potential of cognitive overload that disrupts

learning (Mayer & Moreno, 2003). Thus, it is important to design learning materials

that (1) manage the amount of information presented at a time, and (2) reduce

extraneous processing, i.e., the cognitive processes that add burden to digest new

information (e.g., asking learners to refer to information in other pages or computer

screens) and representational holding, i.e., the cognitive processes that force learners

to hold their mental models during the making process (e.g., presenting animation

after narration) that waste learners’ cognitive capacities. For this, Moreno & Mayer

(2007) propose instructional design principles for interactive learning materials. The

design principles are guided activities to guide learning, reflection to encourage

information acquisition, feedback to repair learners’ misconceptions, pacing that

enables learners control their learning and pre-training to provide learners with

relevant prior knowledge.

 38

2.5 DES Development Tools

Generally, DES models can either be built in general purpose programming

languages, simulation packages, simulation languages or high level simulators as

shown in Table 2.4.

Table 2.4 Available DES Simulation Tools

Tool Example Advantage/Drawback

Simulation

Packages

Non Object Oriented

CSIM (Schwetman, 1988), GASP (Rose, 1981), SimPack

(Fishwick, 1992), SimTools (Seila, 1986), SIMPAS

(Bryant, 1981).

Advantage:

 Reduce programming

effort by providing

simulation-specific

features

Disadvantage:

 Prone to logical and

syntax errors

 Depend heavily on

model developers’

programming skills

 Do not usually offer

animation capability

Object Oriented

CSIM19 (Schwetman, 2001), C++Sim (Little & McCue,

1993), DESMO-J (Meyer et al., 2005a), JavaSim (the

Java version of C++SIM) (Tyan, 2002), JSIM (allow

simple VIM) (J. A. Miller et al., 1998), J-Sim (Kacer,

2002), PSim (Garrido, 1999), Silk (Kilgore, 2000),

simJAVA (W. Kreutzer, J. Hopkins, & M. C. Mierlo,

1997), Simjava (E. H. Page, Moose, & P.Griffin, 1997),

SimKit (Buss, 2002), Sim++ (based on SimPack)

(Lomow & Baezner, 1989), SSJ (L’Ecuyer et al., 2002).

Object Oriented and support animations

D-SOL (Jacobs, Lang, & Verbraeck, 2002), Tomas

(Duinkerken, Ottjes, & Lodewijks, 2002; Veeke &

Ottjes, 1999), Psim-J (Garrido, 2001, Garrido and Im,

2004).

Simulation

Languages

Non Object Oriented

GPSS/H (Crain & Henriksen, 1999), SIMAN (C. Dennis

Pegden, 1989), SLAM (Claude Dennis Pegden, Alan, &

Pritsker, 1978), SLAM II (Pritsker, Sigal, &

Hammesfahr, 1994), SLX (Henriksen, 1997)

Advantage:

 Offer much flexibility

for simulation model

development

Disadvantage:

 Still need substantial

programming expertise
Object Oriented

SimPy (Matloff, 2008), SIMSCRIPT (Markowitz,

Hausner, & Karr, 1963; Rice, Marjanski, M., & Bailey,

2004), SIMSCRIPT II.5 (Kreiman & Mullarney, 1987),

SIMSCRIPT III (Rice, Marjanski, Markowitz, & Bailey,

2005), Simula (Birtwistle, 1979), MODSIM III (Goble,

1997).

High

Level

Simulators

baseSIM, Extend (Krahl, 2003), ExtendSim7 (Krahl,

2007), SIMUL8 (Concannon et al., 2006), AweSim

(based on SLAM II) (O’Reilly, 2002; Pritsker &

O'Reilly, 1999), Micro Saint (Barnes & Laughery, 1997),

Arena (based on SIMAN) (Bapat & Sturrock, 2003;

Kelton et al., 2004), WITNESS (Thompson, 1996),

Advantage:

 Easier to learn

 Speed up the model

building process and the

analysis of model output

 Much simpler to

 39

Promodel (Harrel & Price, 2003), AutoMjod (LeBaron &

Jacobson, 2007), Flexsim (Nordgren, 2003),

SIMPROCESS ("Getting Started with SIMPROCESS,"

2006), Renque ("Renque Discrete Event Simulation:

User’s Guide," 2008), em-Plant ("m-Plant: Empower for

Manufacturing Process Management," 2003), Simple++

(Geuder, 1995), SIMFACTORY II.5 (Goble, 1991)

maintain and change

compared to simulation

languages or simulation

packages

 Can incorporate

sophisticated animations

to depict system

behaviour

Disadvantage:

 Commercial tools are

expensive to buy and

not so flexible

General purpose programming languages (e.g., C, C++, Java, etc.) allow

greater programming flexibility, but require model developers to be expert in a

particular programming language. Since models are developed from scratch, they

take a longer time to be built and are prone to syntax and logical errors. Developing

DES models using this approach is far from ideal in learning and teaching

environments, since both teachers and students typically need easy tools to quickly

build and animate a model’s inner working.

Simulation languages allow simulation models to be developed using

customized modelling statements. In spite of their strength in modelling almost any

kind of complex system, a modeller still needs programming expertise, as well as

knowledge of their specific features (e.g., linguistic abstractions) and representation

of model logic. Although most simulation languages support animation, the resulting

models often do not allow interactions and cannot be embedded on web pages or be

integrated with e-Learning systems.

High level simulators allow models to be constructed by dragging and

dropping readymade blocks onto a canvas. These blocks are then linked with each

other through pads (input and output points) using connectors. The use of blocks to

represent model logic facilitates model building and decreases model development

time. However, the manipulation of models is only allowed through whatever

features the package provides. Although most high level simulators support

animation in 2D or 3D, the models can only be run in the system itself or by using the

system’s player. Few of them can be embedded in web pages.

 40

2.6 Animated DES Systems

DES models are implemented as sets of computer codes that represent their

relevant complex system processes’ evolution through time. In this context,

animations are used to gain insight into the systems through animated scenarios or

graphical displays of statistical measures. Visually accurate animations can be crucial

for better understanding of the models.

The benefits of animated DES models have been extensively discussed in the

literature (e.g., Belfore, Mielke, & Kunam, 2003; Gilman, 1985; Hill, 1996; Kamat &

Martinez, 2007; Kelton, Sadowski, & Swets, 2010; Macal, 2001; Rekapalli &

Martinez, 2007; Stahl, 2003; Wenzel & Jessen, 2001). An animated model can:

 present its simulation processes in a more user-friendly and more easily

understood form than textual traces of event sequences to improve users’

understanding of a system

 clearly illustrate its structure and logic and allow users to visually study and

analyze its process flows

 assist model developers in debugging (correcting syntax and logical errors),

verifying (checking whether the model is functioning as intended) and validating

(checking whether the model reasonable represents a real system being modelled)

the model

 make simulation results more comprehensible, which aids the analysis of

simulation results to gain better understanding of system performance under

various conditions

 give insight into model behaviour during a simulation run in addition to numerical

and statistical analyses at the end of a simulation run

Animations to improve the display and analysis of model execution are

considered a significant augmentation of DES methodology, caused by a shift towards

graphical model building and process orientation in modelling worldviews (Pedgen,

2007). New simulation tools that incorporate high quality 2D animation (e.g., Arena

or ProModel) or 3D visualization (e.g., AutoMod, QUEST or eM-Plant) capabilities

 41

are preferred to older tools that do not offer such capabilities (e.g., SIMAN and

MODSIM). However, the high quality animations offered by these commercial tools

fail to offer any means of interaction with their model; i.e., they do not allow users to

change system conditions while the model is running. One of the reasons for this is a

loss of execution efficiency, a consideration that is much less relevant in educational

contexts than in DES technology’s predominant commercial use for performance

prediction.

Many researches that aim to add 2D or 3D visualization and animation

capabilities to conventional simulation tools have also been many conducted (e.g., see

Belfore et al., 2003; Kamat & Martinez, 2007; Zhong & Shirinzadeh, 2004). Most of

them are based a post-processing approach that only enables an animator to enhance

the visualization of objects, their states and behaviour after a simulation run.

Moreover, model developers need to (1) learn how to use a particular simulation tool

before generating customized simulation output files, (2) have enough programming

knowledge to generate such files from within the model, and (3) modify the files; e.g.,

by inserting necessary commands for driving animations. Although this approach

offers the capability to jump back and forth in simulated time during animation

playback and to accelerate or slow viewing speeds, it is incapable of supporting

runtime interactions with its animations.

Largely for marketing reasons, many simulation tools now focus on 3D

visualizations since they promise to enhance presentation of simulation results. From

a more practical perspective, 3D animations have not proved all that useful (Alam,

Oloruntegbe, Oluwatelure, Alake, & Ayeni, 2010; Oloruntegbe & Alam, 2010) unless

they are for simulators meant to train system operators (e.g., flight simulators). In

other cases, 2D animation is usually adequate to capture essential system behaviour.

Animations that offer interfaces that allow users to be animation directors (i.e., they

can completely control each animated object rather than just viewing it, moving it, or

changing its shape or appearance) are able to add more realism to simulated scenarios

here. However, there must still be a clear separation of simulation and animation

concepts.

Although not directly related to the mapping between a simulation model and

its visual representation, Benjamin, Mazziotti and Armstrong (1994) suggest some

significant requirements for offering attractive animation models. These include:

 42

 appropriate icons or symbols with names that correctly represent the purpose of

animated objects in a predefined library

 icons placed on an animation stage should have user-customizable label names to

ease cross referencing and undefined icons

 statistical reports that can be customized with headings, labels, etc.

 graphical interaction windows for receiving input from users

 multiple windows to view information in different formats

 zooming ability to view details of a specific area of interest

While items (i) to (v) can be programmed, item (vi) places stricter demands on

a programming language environment. It is therefore important to choose a language

environment that supports the capability.

As stated, many researchers have investigated software that animates

simulation results generated by separate simulation tools. This is a simplest way to

graft animation capabilities onto existing systems. If no interaction is needed this

may be a viable approach. However, such an animated model only suits users with

concrete concepts of the represented system and typically fails to be used in a learning

environment (Arbaugh & Benbunan-Fich, 2007; Su, Bonk, Magjuka, Liu, & Lee,

2005; Woo & Reeves, 2007). Thus, models for teaching and learning purposes should

at least implement some kinds of interaction features to engage users and foster their

learning.

Below are some attempts for connecting simulation and animation. Since the

tools are separated, animated models based on this approach have two distinct

limitations: (1) interaction features that allow two-way communication (i.e.,

animation that reacts to users’ actions and any means that allow users to respond to

model information) cannot be supported, thus users are constantly served with the

same data driven animation, and (2) users are confined with static model graphical

user interfaces as no visualization tools can be attached during model execution since

simulation performance data is stored externally in the simulation tool.

Shi and Zhang (1999) create a platform for simulating and animating an

activity-based model using simple 2D icons. In this context, models are built using

activities blocks. Each block has its own dialog box for specifying its attribute values,

 43

resource requirement, activity duration and an icon for presenting resources. Blocks

are connected using an arrow to represent logical sequences of activities. To animate

a resource’s states, one or more pre-created bitmap icons can be chosen from a

library, which stores common construction resources (e.g., trucks, cranes, etc.).

During animation, icons move along specified paths and change shapes. However,

animation of construction activities can only be performed after a simulation is

finished. Although the tool does not allow user interactions with animated objects,

the system offers some run-time control, such as starting and stopping a simulation

and adjusting its animation speed.

Kamat and Martinez (2001) create a system called Dynamic Construction

Visualizer (DCV) for animating construction operations in a 3D virtual space. The

system reads a trace as an ASCII text file, which contains commands such as PATH

(for defining paths between two locations in 3D coordinates), CLASS (for importing a

3D file in VRML format that represents resources and system entities), TIME (for

driving animations at appropriate times), CREATE (for creating simulation objects),

PLACE (for placing objects at appropriate positions), MOVE (for objects that may

encounter time delays) and ROTATION (for rotating objects along specified planes).

This file can be generated manually or written by simulation software. At an

appropriate simulation time, DCV reads and performs the commands to drive

animation. Animation is stopped when no more statements are found in the file, or

when a viewer interrupts the animation. DCV allows animation to be run at any

speed.

Belfore et al. (2003) describe an approach for producing 3D visualizations that

can be played in the form of VRML (a standard file format for presenting 3D objects

in a web browser) animations. The VRML contains a VRML scene (background

transformation), VRML nodes (3D animated object transformation) and simulation

model information and results obtained from a simulation tool with added information

to create and animate 3D worlds (e.g., position, path, etc.).

Zhong and Shirinzadeh (2004) create an analyzer to convert important

processes in simulation models (developed using whatever simulation tools) to

animation events. The analyzer will group a sequence of events into events that

belongs to an object based on their source objects and the event sequence it

participates in. Events that are not important (e.g., no change in an object’s position)

will be filtered out. Each object is firstly positioned at its proper location in a 3D

 44

layout editor and is then animated based on its animation events using animation

viewer.

2.7 Summary

Previous work on DES construction tools has simplified model building that

initially demands a substantial of programming effort to model building that only

requires dragging and dropping blocks of code. Approaches to connect DES models

with animations and visualizations that help learners to get insight into the models’

processes and behaviour by showing their sequences of events have also been

proposed. At the same time, commercial software has provided excellent tools for

modelling, animating and analyzing DES models. However, none of the current tools

have considered how learners’ learn. The main lesson from this chapter is that

models for learning purposes should support runtime interactions since interactions

through various engaging activities can help learners to construct and develop their

mental models of a domain. Additionally, the models should have relevant features to

help learners engage in their learning. Table 2.5 show the features identified from the

literature review as being desirable for the design of DES tools.

Table 2.5 Desirable Features for the Design of DES Tools

Feature Purpose

Illustration of model

structures and logic

Help learners visualize process flows

Feedback and performance

visualizations

Aid learners to gain better understanding of system

performance

Activities through easy-to-

access GUIs

Allow learners to input simulation parameters

Attractive animation of

simulation processes

Facilitate learners to get insight into model behaviour

and improve their understanding

Multiple visualization

windows

Enable learners to view information in different

perspectives

Appropriate symbols and

names

Represent the function of animated objects

Top level control of

simulations and animations

Provide learners a choice to control simulation speed

Zooming Ability Offer learners to view details of a specific area of

interest

 45

These models should also be web based models so that they can be embedded

in a web page and LMS-compatible models so that they can easily be integrated with

an LMS to take full advantages offered by the system. The next chapter will discuss

how to properly design DES tools for building informative interactive DES models

(that contain interactive and attractive GUIs, statistical tables, information windows,

animation control, etc.) that are ideal for learning and how Flash supports the

development of the tools.

 46

CHAPTER 3

A FRAMEWORK FOR DES AND ANIMATION

3.1 Introduction

Dynamic systems contain various time-dependent processes and interconnected

elements. There are two techniques used to study and evaluate such stochastic time-

oriented systems: analytic and numeric. While analytical models can offer accurate

solutions, it is unpractical (and typically fails) to model systems with very complex

structures. A numerical technique (e.g., simulation) that uses numerical

approximation is always a choice.

Time-oriented simulation imitates a system’s behaviour over a period of time.

There are two types of simulations under this classification: discrete event simulation

(DES) where state variables change values at discrete time and continuous simulation

where state variables change values throughout time. The main advantage of using

DES to analyze discrete event systems over analytical models is that we only consider

elements and their interactions that influence the system’s behaviour, based on the

objectives of our study. Essential elements that simplify model development in many

types of DES systems have long been studied and presented.

DES has two different purposes. One focuses on decision making where

simulation is used as a prediction tool for estimating performances of limited, risky

and costly systems. Thus, the quality of a simulation model is paramount for feasible

predictions. For this, its modelling approach must go through a number of cycles:

system identification, model design, data collection, model implementation, model

verification, model validation, model experimentation and model output analysis.

Model implementation involves a transformation of a set of system significant

features to a computer program. Model verification ensures that the program contains

no errors and logically represents the system in terms of its functionality and

structures. Model validation ensures that the program reasonably represents the

 47

system behaviour (up to a certain level of confidence) in terms of accuracy of outputs

it generates. If both conditions are satisfied, the model can be used for exploration.

This includes changing model parameters (e.g., random numbers of arrival, routing

policy, priority rules, server scheduling strategies, etc.) and/or model structures to

improve its performance. Detail explanations of the modelling cycles can be found in

most DES textbooks (Banks, 1998; Garrido, 2001; Kelton et al., 2004; Law, 2007)

with Law (Law, 2007) give detail explanations on simulation analysis.

Other focuses on teaching about complex (natural, organizational or technical)

processes. Compared to the first purpose that focuses on a quantitative aspect, the

second purpose focuses more on a qualitative aspect. In this context, a simulation

model is mainly used as an exploration tool for gaining insight into a system; i.e., to

help users to understand aspects that influence its behaviour and sensitivity. Thus,

providing a graphical representation of its structures, any means for its parameter

manipulations and facilities for observing the effect of the manipulations (preferably

without re-running the model) to current simulation results (e.g., through animations

and visualizations of its state values) are particularly useful in offering many

cognitive advantages for achieving this purpose.

Both purposes require basic tools for model implementation (i.e., constructing

and running simulation models). The only different is that the extension of the tool,

where one stresses more on providing tools for statistical analysis while the other one

stresses more on providing tools for structural and behaviour visualizations.

Developing simulation tools is not an easy task. It must be well designed and

structured in a reliable fashion based on an appropriate framework for preserving its

flexibility and extensibility. This framework consists of segments; each of which

handles its own functionality and cooperates with each other to accomplish a further

task. The segments are later translated into computer code (i.e., simulation libraries)

that can be called, initialized and assembled to construct a model.

Although the library-based approach offers ease of coding, they only support

model construction using text descriptions. Thus, a component-based approach that

offers a drag and drop fashion for model building and GUIs for easy accessing

libraries’ parameters while still supporting API (Application Programming Interface)

has been introduced. The use of relevant symbols to depict components’ functionality

have been proved to offer some advantages especially in visualizing model structures

and processes (Repenning, Ioannidou, Payton, Ye, & Roschelle, 2001; Roschelle et

 48

al., 1999). However, runtime experimentations through the symbols’ parameter

modifications and responsive animation and model visualization customization for

observing the effects of the modifications are still uncommon. This chapter focuses

on a framework that leads to the construction of our component-based tools for

animated interaction-driven DES models.

This chapter starts with a brief introduction to DES and queuing networks. A

good understanding of DES mechanisms eases the development of our DES tools.

We first discuss basic mechanisms of two available DES modelling styles, i.e., event-

oriented and process-oriented and their suitability in implementing a DES engine.

Because of some limitations of the event-oriented, we have architected our own

process-oriented DES framework to support various DES facilities (e.g., generating

random numbers for various distributions, collecting statistics, managing simulation

clocks, a list of future events, etc).

This framework has been designed so that a collection of classes for providing

simulation libraries can be constructed easily using any programming languages.

While there are many programming languages that can be used to implement this

framework, the use of appropriate programming languages that offers a user-friendly

environment, supports OOP and eases integration of animation (e.g., facilities for

creating new images, importing outside images, attaching those images to classes and

animating objects through built-in animation methods) is important to support its

further extension and to guarantee users’ acceptance and satisfaction. For these

reasons, we argue that Flash is a suitable implementation tool for any kinds of

simulations (details on this will be discussed in Chapter 4).

3.2 DES and Queuing Scenarios

DES is a mathematical model that operates a system using a chronological sequence

of events; each of which happens at discrete time. The execution of each event (e.g.,

the arrival and departure times of customers in a service system) will update model

states, advance model time and consequently lead to a new event. Anything happens

between the two consecutive events are ignored since they will not affect model

behaviour. The change of state values is used to calculate various system

performances.

 49

Such a computational mechanism can be found in a wide variety of systems.

Examples include manufacturing, transportation, service, network, inventory and

computer systems with the main focus is to study and analyse queuing networks that

explore the effects of capacity constrained resources and routing strategies on

common performance measures; e.g., the average waiting time in a queue, resource

utilization, throughput, etc. Results from this can be used to manage queues

especially in deciding scheduling strategies and the number of resources needed to

provide particular services. Analyses of queuing networks using simulations can be

found in much literature (e.g., Fan, 1976; Guan, Woodward, & Awan, 2006;

Raatikainen, 1997; Zhuang, Wong, Fuh, & Yee, 1998).

DES is generally built up by objects known as entities that move through

simulated time. There are two types of entities: transient and resident. Transient

entities enter and depart from a system with relative frequencies and may seek for

services. In other applications, they are sometimes called as tokens, jobs,

transactions, temporary entities, etc. Examples include customers in a service system,

parts in a manufacturing system, vehicles in a transportation system, etc. Resident

entities stay in a system for limitless times. They may offer services for transient

entities and are sometimes called as resources, servers, facilities, permanent entities,

etc. Examples include workers, machines, etc. The interaction among these entities

will create other concepts such as scheduling (the availability of resources), routing,

sequencing (queuing discipline) strategies and buffers (waiting spaces).

Each entity performs an operation at a finite time (either constant or random)

called an activity. Activating and executing a sequence of activities (called lifecycle)

will generate events and consequently change the entity’s states (i.e., its attribute

values). Detail explanations on how such activities consume model time (i.e., tracing

model execution) and how model states are used to measure various system

performance can be found in many textbooks (e.g., Banks, 1998; Harrell, Ghosh, &

Bowden, 2004; Kelton et al., 2004; Law, 2007).

There are two paradigms to study the dynamic behaviour of a system. One

focuses on transient entities’ lifecycles called material-driven. Another one focuses

on resident entities’ lifecycles called resource-driven. Both paradigms have their own

advantages and disadvantages in terms of execution speed and simulation output

accuracy.

 50

The material-driven paradigm is used for a system with few transient entities

but with numerous resident entities. Since this system is examined based on the flow

of transient entities (that their lifecycles are typically detail than resident entities), we

can collect experiences of individual transient entities in much more detail. The

advantage of this is that entities’ animations and statistical output analysis can be

more interesting. However, the increment number of transient entities will consume a

lot of computer memory and consequently cause simulation execution becomes so

slow.

The resource-driven paradigm is typically used for a large and highly

congested system; i.e., a system that contains various transient entities demanding

some services. This scenario could be found in a transportation system with many

vehicles or a service system with many customers. Since there are relatively many

transient entities compared to resident entities, it is more efficient to view model

behaviour based on resident entities’ lifecycles. The advantage of this paradigm is

that since resident entities lifecycles typically involve few phases (e.g., idle or busy)

and variables (e.g., their capacities, queue sizes, etc.), computer memory requirements

and simulation execution speed are insensitive to system congestion caused by the

increment number of transient entities. However, statistical outputs related to

individual transient entities are limited since their lifecycles are not in focus in the

model development. The material-driven paradigm is a better choice for animated

DES models that focus more on entities’ animations and state value visualizations.

3.3 Modelling Time

To sequence state transitions in DES, two dominant modelling styles (world views)

are used: event-oriented and process-oriented. The choice of which modelling style

should be used depends on a developer’s familiarity with these concepts, their

programming expertise (procedural or OOP) and time constraints.

Updating model time needs a component called a monitor. The monitor

updates model time by jumping from event to event. During these processes of

activating and cancelling events, various model statistical performances can be

computed. The ideas of how model events are stored in an Agenda or an Event List

 51

(i.e., a component for maintaining a list of events to be executed) make both

approaches different.

3.3.1 The Event-Oriented Approach

The event-oriented (or event-scheduling) models a system’s behaviour based on a set

of events triggered by entities. Instead of grouping a series of events into a process

description, it only lists events (no matter to which entity it belongs) based on their

time of occurrence. Executing relevant event routines will simulate the system’s

processes and consequently update its model states.

This approach is well suite to model a system with a few types of entities since

all relevant aspects of scheduling can be coded explicitly. This approach however

becomes complicated and difficult to program when there are different types of

transient and resident entities in a system (that introduce various kinds of events).

Simulation tools that implement this approach include SIMAN (C. Dennis Pegden,

1989), SLAM (Pritsker et al., 1994) and SLX (Henriksen, 1997).

Figure 3.1 shows the execution mechanisms of the event-oriented approach.

The Event List consists of a set of time-sorted event references (Event ID); each of

which points to an event routine (Event_1, Event_2, etc.). At a particular point of

time, the Monitor invokes the imminent event pointer in the Event List and activates

its appropriate event routine. Executing a segment of code (Descriptions) for this

event routine will schedule a new event that will later be inserted back to an

appropriate location in the Event List. Consequently, the Monitor updates the

Simulation Clock.

There are two options for advancing a model clock under this approach: next-

event time and fixed-increment time. The next-event time advances model time to the

most imminent future event time. At this point of time, the computer executes event

routines, updates model states and determines the next scheduled event time. The

advantage of this is that it saves computer time to run simulation since model time

jumps from event to event. The fixed-increment time meanwhile advances model

time to a fix amount of time unit. Model states (if one or more events have occurred)

that have happened between these intervals will only be updated at the end of the

intervals. The main downsides of this are: (1) the use of small time intervals but no

 52

events occurred during the interval will only cause wasteful scanning and additionally

impose computational costs, and (2) the use of big time steps but many events have

occurred during the interval will suffer output accuracy since all state changes are

only updated at the end of intervals.

Event_2

Descriptions

Event_n

Descriptions

Event List (Agenda)

...

insert a new event

execute current
Event ID

Event

Event ID

Event ID

Time

Event Time

Event Time

Event ID

Event ID

Event ID

Event Time

Event Time

Event Time

Event_1

Descriptions

The Monitor

The Simulation Clock

trigger next event

Figure 3.1 The Event-Oriented Approach Mechanism

3.3.2 The Process-Oriented Approach

The process-oriented approach is based on SIMULA (Birtwistle, 1980). It represents

system behaviour from the point of view of active entities (called processes); each of

which has its own lifecycle; i.e., a sequence of activities to be performed. Each

process can either be in one of three phases: active (i.e., when its relevant activities

are being executed), passive (i.e., when the process is suspended) or death (i.e., when

the process has exhausted its actions). Only active phases (i.e., phases with time

delays) update simulation time and model states.

A process can either be suspended for a definite time (delayed until a certain

amount of time) or an indefinite time (delayed until some conditions are true; e.g.,

waiting to be re-activated by other processes). When a process is suspended, the

Monitor retrieves the next imminent process from the Event List and then reactivates

it. The process then flows itself to the next phase of its lifecycle.

 53

Figure 3.2 illustrates the process-oriented mechanisms. Compared to the

event-oriented approach that its Event List stores a set of time-sorted event routine

pointers, the Event List in the process-oriented stores a time-ordered set of process

identifications and their activation times (Process ID, time). At a particular point of

time, the Monitor retrieves the imminent process from the Event List and updates its

Simulation Clock. Once, the process receives notification from the Monitor, it

activates the current activation point (reactivation point A, reactivation point B, etc.),

executes appropriate activities under the phase (Activities), stores the next reactivation

pointer and re-schedule itself to the Event List. It is the task of the Event List to insert

the process at an appropriate location. The process is then suspended. This cycle is

repeated until simulation length has been reached, the Event List is empty or a certain

condition has been met.

Event List

Process ID

Process ID

Process ID

Process ID

Process ID

Process ID

Activation Time

Time

Time

Time

Time

Time

reactivation point B

reactivation point C

reactivation point D

Active Process

Phase A:
 Activities

Phase B:
 Activities

Phase C:
 Activities
 .
 .
 .
Phase N:
 Activities

reinsert the process

reactivation point A

The Monitor

Simulation Clock

resume next process

.

.

. .

Entity's lifecycle

Figure 3.2 The Process-Oriented Approach Mechanism

The process-oriented approach is usually implemented using languages that

support co-routine that allows multiple entry points for suspending and resuming

execution at a certain location of a subroutine (e.g., C#, Python, etc.) or

 54

multithreading that allows more than one activities to be performed in parallel within

an application (e.g., Java, Ruby, etc.). However, any object-oriented languages can be

used to implement this approach. Handling the process-oriented using object-

orientation offers some benefits: (1) object-orientation is a natural framework for

handling the complexity of the process-oriented framework through its concepts of

objects, classes, properties, methods and messages thus easing the creation a class of

entities, (2) object-orientation ensures that information is localized through the

encapsulation concept thus simplifying the maintenance of entities’ states and

behaviour, and (3) object-orientation promises flexibility than conventional

procedures by supporting inheritance, polymorphism and composition concepts thus

easing the creation of various types of entities and their class maintenances.

The object-oriented approach eases the implementation of the process-oriented

approach that views a system as a set of entities that interacts with each other to

accomplish specific goals. In the object-oriented framework, a group of processes can

be presented as a class that encapsulates attributes (class properties) that can only be

accessed from the outside world through operations (class methods). Instantiating this

class will create a process instance with its own values of properties (states). Because

of these, the process-oriented approach offers an advantage when a model contains

many kinds of interacting objects. Thus, it has been regarded as the best predominant

modelling worldview for structuring DES models (Kreutzer, 1986; Law, 2007) and

has been implemented in many DES tools; e.g., SIMULA (Birtwistle, 1979),

SIMSCRIPT (Rice et al., 2005) and SimPy (Matloff, 2008).

3.4 The DES Framework

No matter which modelling style we choose, five main components have to be

provided to structure and execute DES models: entities to represent objects, a

simulation clock to manage current model time, distributions to generate entities’

stochastic behaviour and drive model probability (i.e., for sampling model-time

consuming activities), a monitor to manage interactions between entities, and

statistical instrumentation to gather, analyze and report relevant aspects of simulation

results.

 55

Constructing these components should be based on an appropriate framework.

This framework must be transparent to support extensibility (i.e., further extension to

its base structures) and well-designed to avoid future amendments of its base

structures. Thus, we constructed our own framework to serve as a base for the

development of our DES tools. This design was based on the functionality of certain

class libraries such as DEMOS (Birtwistle, 1979) and Psim-J (Garrido, 2001), and

available frameworks such as SIMFONE (Rossetti, Aylor, Jacoby, Prorock, & White,

2000) and DESMO-J (Meyer, Page, Kreutzer, Knaak, & Lechler, 2005b).

We designed our own framework because of two reasons. First, most

simulation textbooks and literature use available tools to build DES models. The

tools’ frameworks are hidden, making their reliability and extensibility to support our

tool’s objectives is restricted. Second, although some simulation textbooks that focus

on simulation programming present their foundation frameworks (e.g., SIMFONE and

DESMO-J), these frameworks (especially the entity and the Monitor classes) can only

be implemented in languages that support co-routine or multi-threading (to continue

and interrupt entities’ lifecycles). Although this offers some advantages especially in

allowing simulation to operate faster on computer systems that have multiple CPUs,

they cannot serve as the base of the development of simulation libraries in any OOP

programming languages. Thus, OOP languages that do not support co-routine and

multi-threading (e.g., C++, ActionScript, etc.) cannot implement the frameworks.

Our framework is divided into four packages based on their functionality:

 Data Collectors

 Distributions

 Monitor (Simulation Executive)

 Resource (Servers and Queues)

Figure 3.3 shows a package diagram that depicts the dependencies between

these packages in order to create queuing network models. Note that this framework

has been presented in Khalid, Kreutzer and Bell (2009).

 56

DESTool

Monitor

Resource

DataCollectors

Distributions

«import»

«import»

Models

«import»

«import»

«import»

«import»

«import»

Figure 3.3 Package Diagram for Queuing Models

3.4.1 The Data Collectors Package

Facilities for statistical instrumentation and reporting are essential features in DES

models. Thus, to gather, analyze and report statistical information generated during

simulation runs, the Data Collectors package must be available. This package should

consist of seven classes: Collector, Counter, Tally, Histogram, Boxplot, Graph and

GraphEntry (see Figure 3.4).

Counter

numCount:Number

increment (amount:Number):Void
decrement (amount:Number):Void

Tally

numCount:Number
numMin:Number
numMax::Number
numSum:Number
numSumSquare:Number
numCount:Number

minimum ():Void
maximum ():Void
mean ():Void
stdDeviation():Void

Histogram

numMin:Number
numMax:Number
numIntervalSize:Number
numTotalNumOfInterval:Number

minimum ():Void
maximum ():Void
numberOfIntervals (value:Number)
update (value:Number):Void

Graph

numNumberOfPoints:Number
arrEntries:TimePlotEntry

update (time:Number, value:Number):Void

GraphEntry

Collector

strName:String

show ():String
reset ():Void
setName():Void

Boxplot

numMedian:Number
numFirstQuantile:Number
numThirdQuantile:Number
numIQR:Number
numUpperLimit:Number
numLowerLimit:Number
numMinValue:Number
numMaxValue:Number

median():Void
firstQuantile():Void
thirdQuantile():Void
IQR():Void
findLowerLimit():Void
findUpperLimit():Void

Figure 3.4 Class Diagram for the DataCollectors Package

 57

The Collector class forms the base of the data collector hierarchy. Counters

record relevant changes in model states; e.g., occurrences of significant events. They

can, for example, be used to record the number of entities that have entered or left a

model, the number of entities that have joined or left a queue, or the number of

entities that have been serviced by a resource. This class consists of two methods:

increment(amount) and decrement(amount). While the increment(amount) is used to

increase the counter with a certain value, decrement(amount) should also be provided

to decrease the counter with a specified value. The combination of the two methods is

always used in an object; e.g., to report the number of entities in a queue object or in a

resource object. Note that we have to provide flexibility for users to specify the

amount number in case they want to represent a batch arrival or departure.

A Tally reports the minimum, maximum, mean and standard deviation of a

series of values. It can, for example, be used to gather reports on delays; e.g., time

spent waiting in queues or residence times in the model. Histograms assign values to

intervals and show frequency counts for each interval in graphical forms (bar charts).

They can be used to gather and report, for examples, time between arrival of entities,

time waiting in a queue, service times of a resource and cycle times. Boxplots provide

descriptive statistics of data variation. They can be used to graphically report

information about the smallest, largest and median values of observations, and the

lower and upper quartiles of a series of data. The use of Histograms in conjunction

with Boxplots will help users to understand data better.

TimePlots (chronological graphs) are used to track the temporal evolution of a

variable’s values; i.e., how they change over time. Plotting the number of entities in a

queue or showing changes to a resource’s utilization during some model time

intervals can serve as examples. The TimePlot class uses an instance of the

TimePlotEntry class as data points; i.e., a set of model time and its value. Each class

(except TimePlotEntry) should implement show() and reset() methods to display

information of a series of observed data and to discard all these data, respectively.

3.4.2 The Distribution Package

DES models typically are stochastic; i.e., their elements occur in a random pattern that

eventually generates random events. For example, each entity has its own arrival time

 58

and travel times (from location to location) that will generate non-deterministic

results. Experimentations with these inputs to find the best possible outputs in various

scenarios are one of the purposes of DES. Simulating this random behaviour requires

a component that has capabilities for generating samples from a variety of

distributions.

The Distributions package provides a selection of pre-packaged distribution

objects. These may, for example, be used to schedule the time between workload

items’ arrivals or service times of resources. Note that the term “RNG”, used in

Figure 3.5, stands for random number generator. There are two methods to generate

computer random numbers: the middle square method (Knuth, 1981) and the

congruental method (Boyar, 1989; Hull & Dobell, 1962). The main limitations of the

first method are the iterations for generating new random numbers cannot be longer

than 10
n
, where n is the number of digit random numbers and if the first half digits of

generated numbers are zeros, the subsequent numbers will then be decreasing to zero

and this will eventually stuck the generator. The advantages of the second method are

that (1) this method is easy to understand and be implemented in addition to

producing decent random numbers with the right choice of its coefficients, and (2)

this method only needs minimal computer memory to retain its state.

Boolean

Cauchy

Constant

Exponential

Gamma

LogNormal

Normal

Triangular

Uniform

Weibull

RNG

nextRN ():Number

Tally

minimum ():Void
maximum():Void
stdDeviation ():Void
show ():Void

Distribution

numRNGSeed:Number
rngInstance:RNG
tlySampleTally:Tally

sample ():Number
reset ():Void
show ():String

Figure 3.5 Class Diagram for the Distribution Package

We use Actionscript’s generator, which is based on the standard congruential

method, for this purpose. The nextRN() method is used to create random numbers

uniformly distributed between 0 and 1, which are then used in distribution functions.

Examples are Boolean, Exponential, Gamma, etc.; each of which represents a

 59

statistical analysis of empirical data either collected from a real system or an

approximation of sample data for an imagination system. More comprehensive

discussion on estimating an input distribution and its characteristics can be found in

any textbooks; e.g., by Banks (1998) and Law (2007).

Each distribution class has a sample() method that implements a function of a

random number for generating distribution samples. These samples can be updated in

a Tally instance (through a composition technique) to report basic information (e.g.,

the minimum, maximum, etc.) of a series of generated data. Options to show and

remove these data should be available through show() and reset() methods.

3.4.3 The Monitor (Simulation Executive) Package

The Monitor package provides the infrastructure for sequencing state transitions in

DES models. Its main focus is on the creation, scheduling and termination of

processes. This package consists of five classes: SimProcess, Monitor, Agenda,

Clock, and Event as shown in Figure 3.6. The SimProcess class describes the life

cycles (i.e. the sequence of events such an entity moves through) of active entities.

Clock

numTime:Number

set (time:Number):Void
getTime ():Number
reset ():Void
show ():String

Event

smpProc:SimProcess
numTime:Number
strEventType:String

show ():Void

SimProcess

strName:String
strPhase:String
static eventType:Array

schedule (time:Number):Void
hold (time:Number):Void
addPhase (phase:String):Void
lifeCycle (phase:String):Void
initLocation (X:Number, Y:Number):Void
moveTo (X:Number, Y:Number):Void

Monitor

agdAgenda:Agenda
simClock:Clock

terminatingCondition ():Boolean
setSimulateFor (time:Number):Void
schedule (proc:SimProcess, time:Number):Void
getCurrentObject ():SimProcess
run ():Void
reset ():Void

Agenda

arrEvent:Array

insertEvent (proc:SimProcess, time:Number):Void
getNextEvent ():Event
isEmpty ():Boolean
reset ():Void
show ():String

Figure 3.6 Class Diagram for the Monitor Package

 60

Two important methods should be provided in the SimProcess class:

schedule(time) and hold(time). The schedule(time) method is to schedule an instance

of SimProcess with a specific time value. The hold(time) method is to delay this

process until a specific value of future time (i.e., current model time plus a specified

amount of delay time). When the time is reached, this process will be activated so

that it can flow to the next phase of its lifecycle and once again one of the two

methods will be called again until it is destroyed. Since Actionscript 2 does not offer

any features for implementing co-routines or threads, each SimProcess instance needs

to keep track of its current phase (i.e., the current stage of its lifecycle) using a class

variable. This property is updated whenever the process encounters a model time

delay. Tracking SimProcess instances’ current phases needs the SimProcess class to

compose a Monitor instance so that they can insert themselves to the Monitor’s

Agenda.

The Monitor owns an Agenda (or known as an Event List) that maintains a

time-ordered list of future events. Whenever a new event is scheduled, the Monitor

inserts a process and its time reference (event notice) at an appropriate agenda

position and will then wake and remove this process whenever its time of occurrence

is reached. Thus, the Monitor should have two encapsulated methods; i.e.,

schedule(proc:SimProcess, time:Number) and getCurrentObjects() to insert and

remove processes from the Agenda (by delegating tasks to the Agenda’s

insertEvent(proc:SimProcess, time:Number) and getNextEvent() methods),

respectively.

Instances of the Event class are used as agenda entries that store a process

reference and its wake-up time. An awakened process’ phase value ensures that the

process’ execution continues from just after the point at which it incurred a delay and

then passes the control back to the Monitor. The Agenda can be implemented using

arrays, linked lists, trees, etc. Arrays are adequate; the Monitor will however

consume more computer time to insert a process at a proper location in its Agenda

whenever its array size is getting larger.

A simulation’s temporal progress is controlled by the Monitor class’ single

instance, which owns all model components and whose functionality selects the next

imminent event from an agenda, updates the model clock (an instance of a Clock

class) to the relevant time value, and activates the appropriate process, instructing it to

execute its next phase. This executing process is repeated until the Agenda is empty

 61

(isEmpty()), a certain condition has been met (terminatingCondition()) or simulation

time has been reached (setSimulateFor(time)). Thus, to avoid an empty Agenda for

the first run, it is important to ensure that at least one process has been placed in the

Agenda. Executing this process will transfer it to other phases and/or create a new

process.

3.4.4 The Resource (Servers and Queues) Package

Figure 3.7 shows a class diagram for the Resource package. This package consists of

two classes: Server and Queue. Both the Server and Queue classes can compose

instances of Tally, Graph, Histogram and Boxplot to report their states in various

formats.

Queue

tlyQWaiting:Tally
tpQLength:TimePlot
htQWaiting:Histogram
htQWaiting:Boxplot

enter (simProcess:SimProcess)
leave ():SimProcess
show ():String
getQueueLength():Number

Server

numTotalUnits:Number
numFreeUnits:Number
mon:Monitor
waiting:Queue
tlyServeTime:Tally
tpServerCapacity:TimePlot
htServeTime:Histogram
htServeTime:Boxplot

fileIntoQueue (simProcess:SimProcess):SimProcess
request (simProcess:SimProcess):Void
takeFirstFromQueue ():SimProcess
seizeServer (simProcess:SimProcess):Void
release ():Void
show ():String

Figure 3.7 Class Diagram for the Resource Package

Servers allocate limited capacity resources to service requests. If a server’s

capacity is exhausted, the requesting entity will be placed in a service queue - an

instance of the Queue class. As the SimProcess class, the Server class must compose

a Monitor instance so that its lifecycle can be tracked.

The Queue class should implement two methods: enter(simProcess) and

leave(). The enter(simProcess) method is to insert a SimProcess instance to a queue

while the leave() method is to retrieve the head of the queue. These two methods are

used in the Server class through a composition technique. Among methods that

should be provided for the Server class include:

 62

 fileIntoQueue(simProcess) is to insert a SimProcess instance into a queue before

allocating the instance with a certain unit of the server. This method uses the

Queue’s enter(simProcess) method to accomplish this task.

 request(simProcess) is to check if the Server is ready to allocate its service; i.e., if

it can supply a certain amount of unit for a requested SimProcess instance.

 takeFirstFromQueue() is to enable the Server to retrieve the first SimProcess

instance from a queue . It calls the Queue’s leave() method to accomplish this

task.

 seizeServer(simProcess) is to allocate a certain unit of the Server ‘s capacity to a

requested SimProcess instance.

 release() is to enable the Server to get back a certain amount of unit that it has

allocated to a SimProcess instance, so that the next SimProcess instance can

request for its service. Once again, the request(simProcess) method will be

called.

3.5 Graphical Objects in DES Models

Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7 show class diagrams for creating

queuing networks’ classes. Implementing these classes in any computer languages

eases model building through API. The resulting models are however limited to text

description models; i.e., a list of texts that describes their logic and behaviour.

Creating graphical structures and animated versions of the models needs the concept

of graphical objects that symbolize their functionalities and ease access to model

properties.

Graphical objects for animating DES models can be split into two different

categories. The first one is independent of the simulation domain or Domain

Independent Objects, while the second one is specific to a particular type of

simulation or Domain Dependant Objects; see Figure 3.8.

Domain Independent Objects can be further divided into two subgroups: static

objects and dynamic objects. Static objects do not move or change visual appearances

during animation; e.g., simulation inputs (i.e., different types of distributions under

the Distribution package) or symbols for the simulation controller (i.e., the Monitor).

 63

Dynamic graphical objects, on the other hand, change their appearances and/or

locations. This category includes clocks (under the Monitor package), histograms,

graphs and boxplots (under the Collector package) and queues (under the Resource

package).

Graphical Object

Input

Distribution

Controller

Domain Independent Object

Static

HistogramClock Timer Graph

Output

Setup Control

Dynamic

StockBin

Logistic

Domain Dependent Object

Transporter

Non-accumulating Conveyer

Static Transporter

Accumulating Conveyer

Machine

Free-path Vehicle

Dynamic Transporter

Guided Vehicle

Service

Customer Worker

Manufacturing

Figure 3.8 Graphical Objects in DES

Domain Dependent Objects are often dynamic objects that represent

SimProcesses’ changing location (e.g., moving customers or vehicles) and/or

appearance (e.g., machines or conveyor belts). Figure 3.8 depicts some examples of

domain dependant objects for service, manufacturing and logistic systems. In

manufacturing systems, transporters are used for transporting entities from location to

location based on a mean velocity value. Transporters are of two types: static

(conveyers) and dynamic (vehicles). While vehicles move along with entities,

conveyers remain at the same places; i.e., they only move entities from location to

location using belts based on the velocity of the belts.

As shown in Figure 3.8, there are two types of vehicles: free-path and guided.

Free-path vehicles can move freely between stations and are not influenced by other

transporters’ traffic. Examples are trucks, forklifts, etc. Guided vehicles (e.g.,

automated guided vehicles) run on fixed networks (tracks or rails) and are influenced

 64

by traffic congestion. Conveyers meanwhile are of two types: accumulating and non-

accumulating. Accumulating conveyers will keep moving although they have been

accessed by entities. On the other hand, non-accumulating conveyers will stop their

belts for loading or unloading entities.

In logistic systems, bins and stocks are used for holding goods. A bin object

represents an unlimited capacity container while a stocks object has a fix capacity.

Chapter 4 discusses how these objects can be created in the Flash environment by

attaching symbols and key frames to their classes.

As mentioned earlier, each dynamic object has to go through a sequence of

events; each of which associates with a list of activities that changes their states and

affects other objects’ states; e.g., changing a server’s status from idle to busy. We can

link the events using a directed graph (Kalra & Barr, 1992). Table 3.1 shows

different types of directed graphs, their descriptions and how they can be used to

connect various events in DES objects. Based on these directed graphs, we have

identified some properties and events that should be included in dynamic objects as

shown in Table 3.2.

Table 3.1 Types of Directed Graphs

Directed

Graphs
Descriptions Examples

Time line

A linear arrangement of events. Each object

must follow a fix sequence of events; i.e.,

one event will only lead to one other event.

Event_1

Activities

Event_2

Activities

Event_3

Activities

Entities with a fix path.

Time tree

A few alternatives of events. An event can

traverse to several possibilities of the next

events.

Event_3

Activities

Event_4

Activities

Event_1

Activities

Event_2

Activities

Entities with a diverse

sequence of events; e.g.,

a model that considers

decision points, balking

(arriving entities that do

not join a queue but go

away), reneging (entities

that join a queue at first

but decide to leave the

queue later) or jockeying

(switching queues).

 65

Time

graph

A loop of events; i.e., a series of events that

is repeated by an object.

Event_2

Activities

Event_4

Activities

Event_3

Activities

Event_1

Activities

Servers, transporters

conveyers, bins and

stocks.

Table 3.2 Properties and Events for Dynamic Objects

Objects Properties Events/Phases

Entity

Initial location

Current location

Target location

Arrival time

Departure time

Arrive, Depart and events associated

with other communicated objects

Server

Capacity

Service Time

Status: idle or busy

Utilization

Request, Seize, Delay (Busy), Release

(Idle), Inactive and Fail

Transporter

Status: idle, busy or

inactive

Velocity

Time unit

Capacity

Current load

Initial position

Distance set: beginning

station, ending station,

distance

Request, Load, Transport, Free and

Stop

Conveyer

Velocity

Units

Cell size

Segment: beginning

station, next station,

length

Access, Convey, Exit and Halt

Stock and Bin

Initial stock

Inventory levels:

minimum, current,

desired

Costs: keeping, ordering,

unfulfilled

Request, Product Delivery and Stock

Order

 66

Time graph entities can be hard coded by tool designers while time tree

entities that traverse to several paths of events must flexibly be coded by model

developers. However, leaving this task in their hand could create certain problems.

First, they have to code the events using if-else or switch-case statements with

descriptions of activities. The process of creating, extending and saving entity classes

and writing such selection structure statements may burden and cause tension.

Second, at certain levels of if-else or switch-case statements, they again have to write

another selection structures so that at the relevant stage certain entities can skip linear

events to represent an alternative flow; e.g., based on certain probability, queue

length, work in process, etc. These processes tend to make code clumsier and lead to

logical errors. This problem is getting worse if there are many classes of entities in a

model, each of which has their own alternative paths. Third, they have to carefully

study a segment of relevant code if they plan to modify entities’ lifecycles to ensure

that the modification will flow the entities along the right paths. We have catered

these problems by generating events during runtime instead of specifying events

during design time. This approach will be discussed in details in Chapter 5.

 67

CHAPTER 4

USING FLASH FOR SIMULATION

4.1 Introduction

The use of simulations in education and training is an attractive idea since it allows

learners to gain access to and experiment with dynamic models under different

scenarios. However, to take full advantages of the technology’s potential, simulations

must be interactive enough to allow learners to fully immerse themselves rather than

tediously studying lists of results or just watching pre-recorded animations of

simulation experiments.

Visualizing DES models in an attractive and interactive environment is

suspected to help learners to learn and understand DES systems better. While most

DES tools offer some capabilities to generate animations, simulators with a strong

feature set for animation design typically stress qualitative understanding of system

behaviour rather than statistically well corroborated predictions of system

performance. Thus, supplying teachers with easy-to-use tools (e.g., through a drag

and drop approach) that create highly animated models to motivate learners,

equipping the models with dynamic displays and means of interactions to engage

learners and easing the deployment of the models either on the web or modern LMSs

to serve communities of learners are crucial. Unfortunately, no single current DES

tools have been fashioned for these.

Attractive and interactive DES models integrate simulations and animations to

reflect change in either the time or space dimension. Temporal change, for example,

occurs whenever a simulation encounters delays (in model time) and whenever an

animated object changes appearance. Spatial change occurs whenever a visual entity

moves. To support animated simulations requires a nested design, where model time

must be mapped onto animation time, and animation time must be mapped onto real

time. There are a number of strategies for connecting such layers of representation.

 68

We have however opted for a concurrent (synchronous) approach, where model time

is always proportional to animation time and animation time is always proportional

to real time.

The design of DES tools should be based on Visual Interactive Simulation

(VIS) fundamental concepts. For this reason, we start this chapter with a brief review

of the concepts and the benefits they offer to learning and teaching. Some available

approaches for integrating simulation and animation in VIS models will also be

introduced. Based on the concepts and a selected integration approach, we then argue

that Adobe Flash is a suitable development environment for constructing tools of VIS

models. A proposal of how VIS’s essential components can be created with the help

of our framework (discussed in Chapter 3); i.e., how we relate all the four packages to

a single overall class diagram for VIS models is then presented. We then present a

series of simulation components that have been developed to build queuing models.

We further our discussion by listing some tricky issues in integrating an animated

simulator to DES models specifically in permitting animation speed to be dynamically

adjusted during runtime. This chapter ends with a presentation of an overall class

diagram that supports DES for logistic and manufacturing systems.

4.2 Visual Simulation and Visual Interactive Simulation

Interactive simulations use tools that focus on either model developers (e.g., teachers)

or consumers (e.g., learners). The first type of tool helps developers to specify model

structures and model parameters within a graphical programming environment; e.g.,

through blocks and symbols, or by answering a series of questions. The second type

of tool uses animation and interaction for showing a model’s behaviour either during

or after a simulation run.

Model building through blocks and symbols typically gives developers more

flexibility in constructing models than answering a series of questions that constrains

developers in only choosing models from a set of pre-fabricated models, considered

by the mindset of tool designers. Since both approaches focus on building a model

using some means of interactions, it is well-known as Visual Interactive Modelling

(VIM). Au & Paul (1996), Odhabi, Paul, & Macredie (1998) and Sargent (2004)

discuss such simulation software.

 69

The resulting models can be of two types: Visual Interactive Simulation (VIS)

or Visual Simulation. While simulation models that permit users to interact with them

during their execution are referred to as Visual Interactive Simulation, any simulation

model that only allows users to view its behaviour through animations without any

capability for interaction is known as Visual Simulation (see Bell, 1989;

Mascarenhas, Rego, & Sang, 1995; S. Narayanan et al., 1997; S. L. Robinson, 1994;

Sargent, 2004). Visual Simulation focuses on the attractiveness of simulation by

tracing and surfacing the dynamic behaviour of models through graphical forms.

They typically support two types of graphic displays: abstract displays and

representative displays; see Rooks (1991) and Figure 4.1.

Visual Simulation

Abstract Displays

Representative Displays

Cumulative

Continous

Scale

Schematic

Static Elements

Concrete

Abstract

Dynamic Element

Figure 4.1 Visual Simulation Components

Abstract displays stress on data visualization of model states. They are used

for interpreting and enhancing the presentation of statistical data (e.g., the Data

Collector package in Chapter 3) in the simplest form that can be comprehended by

consumers. Various visualization methods (e.g., the use of colour, appropriate texts,

etc.) that engage them and promote their understanding could be implemented.

Abstract displays can be further divided into two groups; i.e. cumulative and

instantaneous displays. As the name suggests, cumulative displays increase the

amount of data shown during a simulation’s execution. Past data points will remain

on display until removed by model developers or consumers. Cumulative displays

help document the values of model variables’ change over time; e.g., the number of

entities in a queue. Examples are graphs, progress bars and scatter plots.

Instantaneous displays, on the other hand, only expose current states of model

 70

variables during a simulation run, without showing their previous states. Examples

include histograms, bar charts, pie charts, gauges that indicate levels, etc.

Representative displays offer pictorial views of a model in a simplified form.

They can be of two types: a scale model or schematic. A scale model gives a pictorial

view of a system drawn prior to starting a simulation and will not change during a

simulation experiment. It typically offers the physical layout of a model, trying to

offer a realistic background in front of which the simulation takes place. Schematic

displays are more abstract. They are used to visualize the topology and paths of

movement within a simulation and are typically required for animations. While a

scale model is completely static, schematic displays serve to frame changes during a

simulation run.

Schematic consists of two types of components: static elements and dynamic

elements. Static elements remain at a specific location, but can change their

appearance during a simulation. Using different dynamic icons to picture idle or busy

states of a server can serve as an example. Dynamic elements represent objects that

actively move (e.g., entities) over a static background (scale model). These objects

can be split further into two groups: concrete dynamic displays are objects that do not

change their appearance while moving and abstract dynamic displays are objects that

change their appearance while moving (e.g., walking customers with moving legs).

Henriksen (2000) further differentiates these objects based on their types of motion;

i.e., objects that only move in a linear form between two fixed points (absolute

movement), or objects that move along defined paths (guided movement); see (Kamat

& Martinez, 2007).

Animations create and change the appearance of images at different points in

time to convey visual information to viewers. In DES, animations are used mainly to

observe patterns of movement of entities including their transformation from one state

to another, their interactions with other objects, and the occurrence of queues

whenever capacity-constrained resources cannot be seized. To attain advantages over

traditional DES models, some researchers (e.g., Belfore et al., 2003; Gilman, 1985;

Hill, 1996; Macal, 2001; Rekapalli & Martinez, 2007; Stahl, 2003; Wenzel & Jessen,

2001) suggest a few alternatives. This includes presenting a model in a more user-

friendly and understood form (e.g., model developers should clearly illustrate model

structures with appropriate symbols and label names on a stage, and display

simulation results in a graphical form with appropriate headings, labels, etc.),

 71

providing graphical interaction windows for receiving input from their users (model

consumers) and designing multiple windows to display simulation information so that

users can customize their views of the model.

Simulation, animation and interaction are core components for VIS.

Basically, VIS models allow learners to (1) initialize simulation parameters and run

the model, (2) observe the simulation behaviour through animation, (3) experiment by

making changes to model parameters while a model is running, (4) re-observe the

impact of the changes, and (5) customize model visualization during a model

execution. Since the very notion of simulation implies experimentation with models

(Rooks, 1991), such runtime interaction capabilities should be an integral part of any

advanced computer-based simulation development tools. Providing the interaction

requires us to examine some DES animation approaches.

4.3 Animation Approaches

Dynamic elements focus on object movement from location to location, satisfying

their time delays. For this, relevant information from simulation needs to be mapped

with animation. This mapping process can be based on three available approaches;

i.e. post-processed animation, direct simulation-animation and concurrent animation

(see Figure 4.2).

Simulation

Create Patient#1 0
Place Patient#1 Door 0
Move Patient#1 Counter#1 10

...

...
Animation

Trace file

Animation

Post-processed Animation

Simulation

Direct Simulation Animation

Animation

Simulation

Concurrent Animation

Learner

Figure 4.2 Three Approaches to Combine Simulation with Animation

 72

Post-processed animations separate simulation and its animation. An animation is

performed after a simulation has been run to completion (Hill, 1996; Rohrer, 2000).

To drive an animated model, an animation tool needs to read a simulation trace file

that contains relevant data as well as time-ordered command sequences; e.g.,

commands for creating, moving or destroying entities. Trace files can be written

using a simulation package that provides the capability of writing to text files during a

simulation run, general purpose programming tools or a text editor. Because of their

reliance on pre-collected data, post-processed animations cannot support any runtime

interaction between users and a simulation model. Despite this drawback, they offer

some advantages such as (1) animation tools and simulation tools can be independent

in terms of software and operating systems, (2) no computer memory is shared

between simulation and animation tools that causes their executions become efficient,

and (3) animation viewers can still jump backward and forward in the model time

dimension and speed or slow down the rate at which sequences of events are

displayed since all relevant simulation data has been collected.

Direct simulation-animation is a form of real time animation, in which a trace

of simulation events and their visual displays are created on the fly; i.e., during a

simulation run. Animation tools that support this approach must be based on some

means that allow interaction with the simulation software at execution time; e.g., a

Dynamic Link Library (DLL) in case of the Proof (Henriksen, 2000) software. Since

the simulation and animation tools are still separated processes, the technique does

not usually allow user interaction with models. Some researchers have however

begun to investigate how this constraint may be overcome (e.g., see Strassburger,

Schulze, Lemessi, & Rehn, 2005).

Concurrent animations couple animations with simulation engines; i.e., their

interactions must be directly programmed into the simulation scheduler’s (the

Monitor’s) operation. Simulation events and animation events are both activated

whenever the model changes its states; i.e., the scheduler sends event relevant

animation commands to the animator at the model time that such changes should be

displayed. This approach is a suitable for supporting VIS. Although altering a

model’ parameters during its execution may seriously harm the validity of simulation

results (Hill, 1996; Matwiczak, 1990), the tight synchronization between event

scheduler and animator permits flexible patterns of interaction with running models;

 73

an often essential element for enhanced understanding of complex systems in training

and education (S. Narayanan et al., 1997) and making the distribution of the models

on the web or LMSs much easier. However, the proper connection between

simulation (model) time (i.e., a set of important points of time (events) abstracted

from a continuous process system where model behaviour and state changes take

place) and animation time (i.e., a set of interval time to animate and move entities) is

a challenge for developing the kind of tool.

Table 4.1 shows some aspects of simulation and animation approaches. Table

4.2 meanwhile lists interaction characteristics of concurrent and post-processed

animations. Based on these characteristics, we have categorised some DES tools as in

Table 4.3. As we can see, most of the tools are based on a unidirectional

characteristic; i.e., their resulting models do not support runtime interactions and the

models cannot also be executed on web pages. DES tools that are concurrent,

bidirectional, homogeneous and integrated are important for building models for

learning purposes.

Table 4.1 Aspects of Simulation-Animation Approaches

Aspect Feature

Mapping Approach

Concurrent: Animations are

directly coupled with a

simulation engine

Direct, Post-processed:

Animation is performed

after the entire model has

been processed

Interaction

Bidirectional: Simulation and

animation can react to each

other

Unidirectional: Simulation

controls animation

Hardware Platform

Homogeneous: Simulation and

animation are executed on the

same platform

Distributed: Simulation and

animation can be executed

on different platforms

Animation

Integrated: Animation is

integrated in a simulation

engine

External: Animation and

simulation are independent

 74

Table 4.2 Interaction Characteristics of Concurrent and Post-processed Animations

Interaction Characteristic Concurrent Post-processed

Ability to change simulation parameters and

directly observe simulation results
Yes No

Animation performance (speed, smooth

motion)
Variable Excellent

Ability to fast forward Yes Yes

Ability to rewind No Yes

Ability to run large models Variable Excellent

Table 4.3 Available DES Tools and Their Features

Simulation Tool Feature

Proof Concurrent/Direct, unidirectional,

homogeneous/distributed, external

SLAM

Concurrent/Post-processed, unidirectional,

homogeneous/distributed, integrated

Arena, AutoMOD,

ProModel, Simul8, Extend,

GPSS

Concurrent, unidirectional, homogeneous, integrated

SIMAN/CINEMA,

SEEWHY/WITNESS,

SLAM/TESS

Concurrent, unidirectional, homogeneous, external

4.4 Managing Simulation and Animation

Animated DES deals with animation of various entities in a system. Each entity is

animated independently in terms of its dynamic appearance (transformation of

physical displays from state to state), motion (movement from location to location)

and interactions with other objects at appropriate instances of time; see Figure 4.3.

The motion of DES’ entities only employs descriptive motion (i.e., motion without

considering factors that cause it) and behavioural motion (i.e., reactions of the object

based on its communications with its environment during temporal interval) rather

than generative motion (i.e., motion caused by some external factors; e.g., forces or

torques that effect objects’ position and orientation); see Donakian and Cozot (1995).

 75

Linking a simulation model to its animation requires a conversion of three

types of simulation information; see Table 4.4. The time difference between two

consecutive events (see Table 4.5) and the resulting delay (in a model time unit) are

the only information available for an animator to display changes of simulation

entities’ activities, location or appearance; e.g., to show a smooth glide between

screen coordinates or changing an icon representing a server’s idle state to one

showing that it’s now busy. Thus, anything happening between two consecutive

events is considered irrelevant (i.e., outside the brief of the model) and therefore

ignored.

Animated

entity

Visual physical dynamic appearance in 2D (images, geometries) or 3D

(geometries) formats

Properties with temporal states (values of properties)

that change during simulation to adapt the current

situation. Properties can be scalars (e.g., the current

location, a transformation value, a velocity value, etc.)

or vectors (the direction of movement)

Interfaces

Activities

(functions/operations)

Animation methods to define

actions in response to events;

e.g., creation, movement,

translation, rotation,

modification, communication,

elimination, etc.

Event handlers to support

runtime interactions with users;

e.g., onClick, onMouseOver,

etc.

Events that modify entities’ behaviour (internal states)

Figure 4.3 DES’s Animated Objects

Table 4.4 Simulation to Animation Conversion

Simulation Animation

Delay (time) Continuous movement between two

locations (time and space)

Events (state changes) Visual appearance of objects’ behaviour

Numerical output that is typically

difficult to understand by learners

Visual format reports to ease learners’

understanding

 76

Table 4.5 Events and Model Time Difference in a Sample System

Model Time Difference

2

1
Delay time for
Customer 1

2

3

1

0

Time

0

2

3

5

8

9

9

Process

Customer 1

Customer 2

Customer 1

Customer 2

Customer 1

Customer 3

Customer 2

Event

Arrival

Arrival

Seize Teller

Join Queue

Release Teller

Arrival

Seize Teller

Delay time for
Customer 2

Consistent transformations of model time to animation time (see Figure 4.4)

are essential for maintaining the realistic illusion of a real system either its model is

consistently running at a default rate or variably running at a user-specified rate.

However, animated models that allow users to flexibility adjust their execution speed

(i.e., to speed up, slow down or halt their model time) at any time they wish need to

embed a term called a viewing ratio. A viewing ratio is used to map the given number

of model time units into a corresponding number of seconds of animation time. For

example, if the viewing ratio is set to 10, then 1 second of animation time is equal to

10 units of simulation time.

0 1 2 3 4 55 6 7 8 9 10 Animation Time
(continuous process)

2 3 55 8 9 Model Time
(discrete points)

0

Transformation

Figure 4.4 Transformation from Model to Animation Time

Equation 4.1 can be used to smoothly animate all transactions between events.

This equation ensures that all state changes will be visible at their proper time, no

matter what viewing ratio has been selected by users.

Animation time = model time difference between two consecutive

events * (1 / viewing ratio)
(Eq. 4.1)

 77

Equation 4.2 can meanwhile be used to show smooth movement of an object

from location to location. It ensures that the object arrives at its target location at a

specified point of time, with a condition that a viewing ratio is smaller or equal to

model delay. If the viewing ratio is greater than a certain entity’s delay time, we need

to set the movement to 1 to make sure that the object will arrive at one second

animation time.

Movement (per unit

animation time)

 = distance * (viewing ratio / delay to location)
(Eq. 4.2)

4.5 Flash as an Implementation Language for Simulation and Animation

Adobe Flash (H. M. Deitel, Deitel, & Goldberg, 2004; Lopez, 2006; Mohler, 2006;

Shupe & Hoekman, 2006) offers a tool for creating attractive, interactive and

multimedia affect models. However, we have not found any reports on Flash-based

DES models or Flash libraries for DES model construction.

We have therefore investigated Flash’s features for its suitability as a DES

development tool. In spite of the fact that Flash does not support coroutine that

requires us to write the lifecycle of each type of active entity using selection structures

(if-else or switch-case statements), we found that it provides a good base for DES

framework development for four main reasons: (1) Flash offers various features for

VIS development and we consider this as a very important aspect of providing highly

animated DES models, (2) Flash facilitates the construction of DES components and

this simplifies model building in terms of their structures and logic, (3) Flash enables

model developers to locate animated objects on a relevant layer of multiple layers and

this eases the management of various objects and GUIs, and (4) Flash automatically

creates web-based models and supports web interactions and these ease model

distribution. Additionally, its scripting language ActionScript is syntactically similar

to Java and C++ in many ways; e.g., object-oriented structure, package, class, method,

properties, data types etc. Thus, anyone who knows the languages and has some

background in DES frameworks could easily implement the frameworks using Flash.

Note that other tools exist or may appear that meet these criteria. However, at the

time the research was done, Flash was a widely used tool that met these criteria. A

 78

recent candidate would also be HTML5, although this is nowhere near as mature as

Flash. It does have the advantage of working on Apple mobile products.

4.5.1 Flash Features for VIS Development

Flash supports the development of some typical graphic displays in VIS through its

facilities (e.g., text, sound, video, animated graphics, etc.) and built-in methods (e.g.,

rotation, movement, etc.). Its scripting language, ActionScript (Donatis, 2006;

Hamlin, Tarbell, & Williams, 2003) can be used to support interactive contents and

enhance model presentation that make simulations to come alive. Table 4.5 relates

VIS Graphic Displays to relevant Flash features.

Table 4.6 VIS Graphic Displays and Flash Features

VIS Graphic Display Flash Feature

Abstract displays (e.g.,

graphs, histograms, etc.)

Flash runtime drawing methods such as lineTo(), lineStyle(

), beginFill(), endFill(), beginGradientFill(), etc. These

methods can be written in an ActionScript class and

associated with a movie clip symbol as a component.

Scale models  Flash Drawing Tools

 Flash import facilities to import various kinds of image

and geometry files. Supported files include AutoCAD

DXF (*.dxf), Silicon Graphic Image (*.sgi), JPEG

Image (*.jpg), etc.

Static elements (e.g.,

servers or animated

symbols)

A movie clip associated with an ActionScript file. The file

controls Keyframes to animate the status of static elements.

Concrete dynamic

displays

A movie clip associated with an ActionScript file. The

movement of the movie clip onstage is controlled by a

movie clip’s instance's _x and _y properties.

Abstract dynamic

displays

An animated movie clip that uses multiple frames and

layers associated with an ActionScript file.

Tools for enhancing

model presentation (e.g.,

audio, video and text)

Audio, video and other Flash Tools (e.g., Text, Rectangle,

Line, etc.) and Flash built-in components (e.g., Button,

MediaController, Label, TextInput, etc.).

 79

4.5.2 Flash Component Construction

Flash supports architectures for component development. A Flash component is a

compiled movie clip that contains a symbol that depicts its functionality and an

ActionScript file that defines its operations as in Figure 4.5. Dragging and dropping

this symbol onto the Flash stage will automatically create an instance of its class.

A component is often broken up to smaller components to reduce its

implementation complexity. These smaller components are then tied to other

components (e.g., through a composition technique) to form a more complex

structure. By doing this, a component can now delegate relevant tasks to other

components to perform the whole application functionality and this simplifies

application development. In order to encapsulate its internal information and

structures (i.e., its properties and behaviour), property accessing and behaviour

triggering are only possible through messages specified by signatures; i.e., publicly

accessible methods. This ensures that the component’s internal modifications can

extensively be made as long as its signatures are not altered.

Coupling

GUI

Symbol

Visualization

GUI
(Property Inspector)

Design Time

Run Time

GUI

Symbol

Viisualization

GUI
(Property Inspector)

Design Time

Run Time

Component

Properties (states)

Methods (operations)

Signature (behaviour)

messages

Component

Properties (states)

Methods (operations)

Signature (behaviour)

Figure 4.5 Component Architecture

 80

Accessing component properties is typically through API. As an alternative,

GUIs that compose of other types of objects (e.g., text boxes, combo boxes, buttons,

sliders, etc.) are used as attractive platforms to parameterise the properties. In Flash,

the interactive property changing can be done through Property Inspector. However,

this facility is only available during design time and does not integrate any

mechanism to verify input values (e.g., to force correct data types or limit the range of

data values to avoid any logical errors). To address this, Flash allows designers to

construct their own GUIs using the API approach either for filtering input data (e.g.,

displaying a warning for invalid data), easing data input processes (e.g., displaying

step by step GUIs) or supporting component parameter manipulation during run time.

Each GUI should be located in a relevant layer so that users can freely turn it on or off

anytime they wish.

Showing the instant effect of data manipulations (e.g., scale, colour,

description, etc.) on a component at design time can be done through a Live Preview

facility. This facility can be utilized for providing interactive DES components that

their current visual appearance can instantly be observed. Developers however need

to embed the component with an external relevant movie file that consumes the

component’s parameters.

All Flash’s components are movie clips (Moock, 2002). Thus, all

ActionScript classes that control components’ properties and behaviour are created by

extending the MovieClip class. This inheritance technique enables the subclasses to

utilize the entire API of the MovieClip class especially methods related to animations.

A MovieClip is a generic animation object whose changes in visual

appearance are defined on a timeline. Movie clips may contain graphics, audio or

video, and can be nested recursively; i.e., clips inside clips, inside clips, etc. that can

be controlled programmatically. A rapid succession of the clips’ visual changes at run

time creates animations. For example, a movie clip representing a customer in a bank

simulation may move across a stage, from a source (door) to a server (teller), while a

clip embedded inside it may play an animation (i.e., walking by moving arms and

feet).

Movie clips are suited for creating simulation objects (entities, servers,

components, etc.) in DES. In addition to adding specific features, their classes should

extend the MovieClip class to inherit its (1) properties (e.g., location, visibility, etc.),

(2) methods (e.g., moving, rotation, etc.), and (3) built-in events (e.g., click, rollover,

 81

drag and drop, etc.) to support interactive dialogues between users and the objects

during run time; e.g., to change their parameters, to drag and drop the objects or their

GUIs to other locations, etc. Furthermore, Flash allows tool developers to attach the

objects with symbols to portray their functionalities. The use of appropriate symbols

can help model builders to differentiate various objects and their tasks in a library.

Flash only considers components as reusable movie clips that simplify the

creation of a Flash movie. Thus, many of its stand alone components (e.g., Label,

TextArea, DataGrid, etc.) that do not offer cooperation with each other can be seen in

its Component Panel. Such components do not suit the real definition of component-

based development (CBD) that views components as customizable building blocks;

each of which needs to offer specific services and can be aggregated visually or

programmatically with each other to form an application. The aggregation could be

through a coupling mechanism that wires components together using interfaces; i.e.,

ports that allow communications among them to perform the application’s logic (see

Figure 4.5).

The component approach suits DES model constructions since entities flow

from component to component to receive different services. Analogue to these entity

flows, signals can be used as activation mechanisms for certain components to

support more complex DES; e.g., a transportation system. In this case, signals are

sent by relevant components to activate transporter or conveyer components.

We focused on the development of DES components and approaches for

wiring them together and manipulating their parameters during runtime. Combining

these approaches and the facilities that allow learners to view component states using

various data visualization tools may offer advantages especially in easing learning.

Details about this are discussed in Chapter 5.

4.5.3 Other Advantages of Flash and Its Drawbacks

Besides supporting architectures for component development, Flash offers other

advantages for building VIS models particularly and any types of simulations

generally over other multimedia-development applications. These include:

 82

 Flash makes it easy to animate smooth motion of simulation entities at a default

rate of 12 frames per second (fps). This is adequate for web-based animations, but

model users can easily change this to control the animation speed (i.e., up to 120

fps). Higher rates smooth visual changes but will increasingly tax the host CPU.

Slower rates reveal more detail, but may make animations less smooth. Note that

this specified fps value only acts as the maximum speed limit; i.e., the animation

should not play faster than the fps value. However, the minimum limit of its

execution is uncontrollable since it depends on CPU speed.

 Flash animates a sequence of images using key frames. Each key frame can

represent a critical point of animation; e.g., the change of shapes or visual

appearances.

 Flash offers a large stage for drawing and composing objects and playing

animations. Its run-time player offers the ability to pan, zoom out and zoom in to

look at interesting locations around the stage.

 Flash employs vector graphics that use line segments to form figures. Thus, these

figures can be scaled without loss in resolution and clarity. However, raster

graphics that represent images as an array of pixels are still supported.

 Flash produces executable files that can be played on both PCs and Mac

platforms. These files can be distributed via Internet without any modifications.

 Flash allows model builders to control the visual depth of an object. This eases

the arrangement of various simulation objects and their GUIs on a stage.

 Flash provides some supports for student assessments (Castillo et al., 2004).

Teachers can use these to create exercises that gauge students’ understanding of a

certain topic.

 ActionScript syntax is similar to Java; which again similar to the C family. For

those who are familiar with these languages, ActionScript can be learnt without

much effort.

Besides these advantages, Flash also has some drawbacks; i.e.:

 Flash is not supported on Apple mobile devices. This limits the delivery of Flash-

based contents to Apple tablets and the Iphone. However, there are now some

 83

applications (e.g., iSwifter) which claimed to run Flash contents directly on the

Ipad and Iphone.

 Flash applications require an updated plug-in to play. Downloading the plug-in

may consume time.

 Flash applications may be slow to download. This situation may frustrate users

with slow bandwidth or internet speed.

 Flash applications cannot be indexed by most search engines. This may limit its

visibility or rank in web browsers.

 Flash applications should be developed to serve a specific purpose of its site. The

use of Flash to only decorate a webpage will annoy users and cause them to leave

the site.

4.6 Flash Components for Queuing Systems

Based on the process-oriented modelling style (Castagna, 1997; Craig, 2007; Garrido,

1999, 2001), we have structured an overall class diagram for creating Flash-based

components that can be used to construct animated queuing models as in Figure 4.6.

This structure is the combination of the class diagrams discussed in Chapter 3 with

some additional classes.

We extend all these classes from the MovieClip class for two reasons. First,

extending the MovieClip class allows us to utilize its built-in events to provide drag

and drop and interaction environments during runtime. By default, Flash allows its

components to be dragged and dropped at authoring time. However, supporting this

capability during runtime needs us to implement the startDrag(this) and

stopDrag(this) events in relevant classes. Allowing learners to have their own model

GUIs through creating, customizing and positioning visualization components is

important for learning (Ebner & Taraghi, 2010). The same thing applies to providing

an interaction environment where the onRelease() event is used for accessing

component GUIs during runtime. Second, extending the MovieClip class allows us to

rightly control the depth of each component instance on the stage using the

createEmptyMovieClip(instanceName, depth) method. For example, entity instances

should have smaller depth values compared to other movie clips to guarantee that they

 84

are always on bottom of other component instances; e.g., visualization components.

This method can also be used to create a container; on which other movie clips (e.g.,

textboxes, buttons, labels, etc.) can reside. This ease the construction of component

GUIs since the depth of their child is now controlled by its parent and dragging the

parent movie clip to other locations will automatically retract its entire child.

MovieClip

_x:Number
_y:Number

onRelease():Void
startDrag(this)
stopDrag(this)
createEmptyMovieClip(instanceName, depth)

MediaControllerButton TexInput Label

Built-in Flash Components

Component

Server

Queue

Monitor

Agenda

Event

Timer

SimProcess

TimePlotEntry

Counter Histogram GraphBoxplot

Collector

Visualization Components

BaseModel_UI

strTitle:String
numXLocation:Number
numYLocation:Number

setLocation(x:number, y:Number)
setSize(width:Number, height:Number)
moveContainer (addX:Number, addY:Number)

Source

Sink Report

getReport ():Void
reset ():Void

DIstributionComponent

Exponential Normal Triangular

Distribution

DynamicObject

setPriorityt ():Void

Clock

BaseClock

drawHourTick ()
drawMinuteTick ()

Create

Figure 4.6 Class Diagram of Components for Simulation Input and Output

We designed and created three other components; i.e., the

DistributionComponent, the Source and the Sink components to ease DES model

constructions. The DistributionComponent is used to provide a combo box of a list of

distribution types. Its main purpose is to ease the selection process of random

samples in other components; e.g. the Source, the Queue, the Station and the Server.

The Source component is a component that receives parameters that control the

creation of entities; e.g., time for the first arrival, time between arrival, priority, entity

type, etc. These parameters are fed to the Create class through a composition

technique. In order to generate entities appropriately, the Create class has to compose

two classes; i.e., the SimProcess class to create entity instances and the

 85

DistributionComponent to control the creation of entities based on a specified

distribution type. Since code for creating entities has been embedded in the Source

component, model builders do not need to write any code to perform this task as in

any simulation languages. The Sink component is to destroy the SimProcess instances

that have been created so that computer memory allocated for these instances can be

freed and reclaimed by the Flash’s garbage collector.

All Flash components including our DES components are represented by

symbols in the Flash’s Component panel. By dragging these symbols onto the stage

and customizing the resulting simulation entities’ appearance and properties, teachers

can quickly assemble web-based VIS models. Graphical displays and interfaces

attached to these entities show and animate relevant information and allow learners to

interact with a simulation while it is running. Since Flash also provides good support

for multiple media (e.g., text, sound, video, and animated graphics), simulations can

be made to come “alive” and attract learners’ attention and interest.

Modifying simulation parameters requires only a click on a component

(without any need for stopping the simulation) and any impact on changes to model

behaviour can immediately be observed. A variety of statistics counters with suitable

functionality and representation are built into components, so that teachers need not

worry about this, which is often time consuming aspect of DES model design and

construction. These features are important for the computer based learning

environment (Min, 2003). Since the components have been developed in Flash, VIS

models can draw on its functionality to easily integrate with a learning management

system (LMS). Access from remote locations through internet browsers is a further

benefit that can be attributed to this architecture.

Table 4.7 shows three types of Flash DES components that have been

developed for supporting the construction of queuing networks. All three types of

queuing networks are supported: open queuing that studies a system in which

transactions are generated, flow through a model and disappear (e.g., in most service

systems), closed queuing that examines a system in which transactions are permanent

(e.g., in a computer system) and a mixture of open and closed queuing (e.g., in a

healthcare system). The functionality and features of these components that support

both teachers and learners are detailed in Table 4.8. Figure 4.7 meanwhile shows the

location of DES components in the Flash component panel.

 86

Table 4.7 DES Component Types

Component Type Description Example

Active
Components which involve

cooperation with entities

Source, Queue, Sink,

Monitor, Server

Passive

Components which do not

involve cooperation with

entities

Station

Visualization
Components which show

states of active components

Counter, Graph, Histogram,

Boxplot

Table 4.8 Flash Components for Building a DES Model and Their Functionalities

Component Functionality/Feature

Source

Animates the arrival of entities.

 Teachers can specify the time of the first entity's creation, priority

value and the default distribution of time between successive arrivals.

 Learners can click on the Source’s instances, pick a list of available

distributions and change the default parameter of entities' time

between arrivals. They can directly observe the effect of the changes

to the model’s behaviour. Each instance automatically collects and

displays the number of entities that have entered the model at the

current simulation time.

Queue

Graphically animates queues with priority rules such as FIFO (First In

First Out), LIFO (Last In First Out), lowest priority value, highest priority

value, or a random order. The removal of entities from a queue is

controlled by the priority rule at the time of removal. All Queue

instances automatically collect statistics, such as the number of entities

which have left a queue, maximum, minimum, sum, mean, variance and

standard deviation of times spent in the queue.

 Teachers can initialize a default priority rule and specify what

visualization instances will report queue statistics.

 Learners can change a queue rule anytime time they wish and observe

the effect of priority rules on a model’s behaviour through the

changes in queuing statistics.

Sink

Collects and graphically displays entities leaving a model.

 Teachers can attach visualization instances to display statistics about

time entities spent in a model.

 Learners can mouse over a Sink instance to obtain maximum,

minimum, sum, mean, variance and standard deviation statistics for

times entities spent in a model.

 87

Station
Represents points to which entities are transferred in a model; i.e., points

on the stage they can move to.

Distribution

Generates random samples from a list of specified distributions.

 Teachers can use this component to sample the duration of various

model-time consuming activities.

Monitor

Acts as a simulation engine and controls viewing ratio and simulation

length.

 Teachers can initialize viewing ratio and simulation length. They can

also link Clock and Timer instances to graphically represent

simulation current simulation time and its proportion to simulation

length respectively.

 Learners can click the Monitor’s instance to observe simulation

events that have been executed, a current event being executed, and

the list of events still to be executed in future. They can also stop and

resume animations and adjust animation speed by only clicking

appropriate sub-symbols.

Figure 4.7 Flash Component Panel

Simulating DES entities in the Flash environment requires model builders to

create an ActionScript class that extends our SimProcess class. The class describes

the entities’ lifecycles using if-else or switch-case statements. This task could not be

avoided since ActionScript does not support coroutines or threads. Adobe’s official

reasons for this are that threads will induce very different behaviour on different

 88

machines especially in performance intense platforms and race conditions in threading

will led to performance problems on the Flash player.

Flash imposes model builders to convert an image to a movie clip symbol

before it can be attached to an ActionScript class in order to animate these entities.

For example, to associate a movie clip with a Customer class that extends our

SimProcess class, the following actions must be stepped through:

1. Draw a picture on (or import a picture in any format onto) the Flash stage.

2. Convert the picture to a symbol and give it a name. This symbol will appear in

the Flash Library.

3. Select a movie clip symbol in the Flash Library.

4. Right-click on the symbol and choose “Linkage”.

5. In the resulting dialog, enter the symbol’s name (e.g., Customer) and its associated

class (i.e., the Customer class).

6. Select “Export for ActionScript” as “linkage type”.

Once the movie clip is in the Flash library, we can make the Customer objects’

visual appearance more attractive by providing keyframes named onMoving, inQueue

and inProcess to depict the Customer’s states. All code that animates these states

together with code to handle their movement from component to component and halt

at a queue or being processed by a server has been defined in the SimProcess class.

Note that these frames are defined on the Customer symbol’s timeline and not

globally on the stage. This gives us a local animation for Customers (i.e., their

change of appearance in different states) that is nested inside the main animation

(tween movements across the stage). To create this local animation, we must step

through the following actions:

1. Right-click the Customer movie clip symbol in the Flash Library and select Edit

from the resulting pop up menu.

2. Select frame 10 on the timeline.

3. Select Insert > Timeline > Keyframe.

4. In the Properties panel, change Frame Label to onMoving.

5. Draw a suitable picture of a customer’s movement on the current Flash stage.

 89

6. Repeat steps 3 to 5 for frame 20, 30 and 40, and make appropriate changes at each

step.

The entity movie objects can be clicked during execution time to display a

variety of relevant information; e.g., its number in a model, its creation time, the time

spent in queues or servers that it has visited.

The server objects can be animated in a similar way; i.e., by assigning

different symbols to keyframes Idle and Busy and attaching each symbol to our Server

class. Note that we leave this task in the hands of model builders instead of providing

a compiled Server clip in order to give them flexibility in animating server objects

using any images they wish. Actually, a set of Server components with different

symbols can be provided. The server’s capacity and service time can be changed

during a simulation run by clicking its symbol and then picking up one type of

distribution from a list of available distributions.



4.7 Flash Components for Visualizing Queuing Systems

Table 4.9 shows Flash components for visualizing model states and their

functionality. Figure 4.8 meanwhile shows some sample instances of visualization

components (e.g., histogram, graph, boxplot and timer) on the Flash stage during a

simulation run. Visualization components are connected to active components (i.e.,

Source, Queue, Sink and Server) through a composition technique (see Figure 4.6).

Embedding visualization components in an active component through a hard-

coded composition approach has two distinct drawbacks. First, this approach requires

us to explicitly declare the name of the visualization instance in the active

component’s class variables so that we can access its methods and properties and

update its states. This problem is getting worse if we want to embed many types of

visualization instances to provide a platform for learners to flexibly create various

visualization tools during runtime.

We can use an array to store each type of the visualization instances.

However, an array is not a suitable data type for storing such a variable size of

visualization instances since in certain languages this may cause space wasting (if we

 90

do not fully use the array’s size) and an insertion problem (if the array size has been

exceeded). We can alternatively store a list of array objects of type Collector (see

Figure 4.6) or general objects, but treating a base-class object as a derived-class object

is a bad programming practice and may cause errors; e.g., when we cast a base-class

as a derived-class and then refer to derived-class members that do not exist in that

object. Second, this approach tends to contribute to syntax errors since any

modification of the visualizations’ method or property names will impose the changes

of code in the active component’s class.

Table 4.9 Flash Components for Visualizing DES Models and Their Functionalities

Component Functionality/Feature

Graph

Dynamically animates patterns of changes in simulation outputs, such as

the current number of entities in a queue versus simulation time, or the

number of a server’s busy units versus simulation time.

 Teachers can specify width and height, a title, a colour for graph lines,

background and fill area for each Graph’s instance.

 Learners can clear the previous data, drag the Graph’s instances to any

location and resize them at any time they wish.

Histogram

Dynamically animates frequency information, such as the time spent by

entities in a queue, the operation time of a server, the time between

arrivals, the successive time between departures, etc.

 Teachers can specify width and height, a title, a colour for text,

background, bar fill area, maximum value, minimum value and the

number of intervals. They can also activate drop-shadows for each

instance of the Histogram component.

 Learners can change maximum value, minimum value and the number

of intervals at any time to see a new distribution of frequency

information, drag the Histogram’s instances to any location and resize

them at any time they wish.

Boxplot

Dynamically animates groups of numerical data through its five-number

summaries. It is a complementary tool for the Histogram component.

 Teachers can specify width and height, a title, a colour for graph lines,

background and fill area for each Boxplot’s instance.

 Learners can drag the Boxplot’s instances to any location and resize

them at any time they wish.

 91

Clock

Dynamically animates the current simulation time while a simulation is

running.

 Teachers can specify a title, fill colour, initial time value and

simulation time unit.

 Learners can drag the Clock’s instances to any location and resize them

at any time they wish.

Timer

Animates the proportion of the current simulation time to its total

duration.

 Teachers can specify title, fill colour and elapsed time fill colour.

 Learners can drag the Timer’s instances to any location and resize

them at any time they wish.

(a) Graph (b) Histogram

(c) Boxplot (d) Timer

Figure 4.8 Samples of DES Visualization Tools

4.8 Example

This section presents a simple example of how the DES libraries and components may

be used to model a queuing scenario. The example simulates a bank, where

customers arrive, walk to a counter, get served by a teller and finally exit from the

bank. The corresponding model uses a single Server object for the teller, a stream of

 92

SimProcess instances representing customers, and a number of active and

visualization components for structuring the model and visualizing its states. As

mentioned earlier, some active components embed Distribution objects for sampling

the duration of various model-time consuming activities.

To represent customers, we must first create a new ActionScript class and save

it under an appropriate name (in this case Customer.as) to the simulation tools folder.

Here we define a Customer class based on the SimProcess class, declare various class

variables and define its lifecycle method; see Listing 4.1.

1 // import packages

2 import Monitors.*;

3 import Resources.Server;

4

5 class Customer extends SimProcess {

6 // route times

7 public static var walkToCounterTime;

8 public static var walkToExitTime;

9 // active components

10 public static var myEntry;

11 public static var myBench;

12 public static var myExit;

13 public static var teller;

14

15 private function init ():Void {

16 addPhase("ARRIVAL, ARRIVE_COUNTER, SEIZE_TELLER, DELAY_TELLER,

17 RELEASE_TELLER, DISPOSE");

18 }

19

20 public function lifeCycle (phase) {

21

22 switch (phase) {

23 case "ARRIVAL":

24 delay(Customer.walkToCounterTime.sample());

25 moveTo(myBench);

26 break;

27 case "ARRIVE_COUNTER":

28 teller.request(this);

29 break;

30 case "SEIZE_TELLER":

31 delay(0);

32 moveTo(teller);

33 break;

34 case "DELAY_TELLER":

35 delay(teller.serviceTime.sample());

36 break;

37 case "RELEASE_TELLER":

38 teller.release();

39 delay(Customer.walkToExitTime.sample());

40 moveTo(myExit);

41 break;

42 case "DISPOSE":

43 myExit.remove(this);// remove this object

44 break;

45 } //end switch

46 }

47 } // end Customer class

Listing 4.1 The Customer Class

 93

In lines 7 and 8, we declare two class variables for representing customers’

route times; i.e., a walkToCounterTime distribution for sampling the time taken by

customers to walk from an entry to a counter, and a walkToExitTime distribution for

sampling walking time from the counter to exit. In line 13, we declare a teller

variable representing an object of the Server class. Note that visualization

components (e.g., Graph, Histogram, Boxplot, etc.) can be composed to the active

component instances using the Flash’s Properties panel. Line 10 to 13 stores

instances of Source, Queue and Sink component respectively.

The init method (line 15) initializes Customer objects. Here we must specify a

sequence of phases (i.e., a lifecycle) that all Customers instances step through. The

addPhase method in line 16 attends to this requirement. The lifecycle method’s

description begins with a description of what will happen when the control returns to

this object, based on the phase it is in (lines 23 to 44). Customer objects are generated

by a Source instance based on specified time between arrivals. Upon arrival; i.e., the

first phase of the lifecycle (line 23), a Customer object advances itself to the next

phase by calling delay. The Source instance (i.e., myEntry) instantiates a new

Customer object, whose associated movie clip is then used to animate it on the stage.

delay (line 24) schedules the current customer to continue to its next phase and inserts

a corresponding event notice at the appropriate point on the agenda. At the right

model time instant, the monitor will later remove this event notice from the head of

the agenda, retrieve the associated object and direct it to continue its execution from

the relevant point on its lifecycle. The monitor will terminate the simulation when the

end of the requested duration is reached or when no more events can be found on the

agenda.

In preparation for the model’s animated display, the location of the Source

instance is the initial location for arriving Customer objects and the moveTo method

(e.g., in line 25) moves a customer’s picture to a given location (e.g., that of a Server

object). While the previously described actions prescribe simulation activities, this

method serves animation. Note that moveTo uses a motion tween, whose duration is

controlled by the ratio of animation to simulation time, a value that can be

dynamically adjusted by the model users.

Server objects have two methods: request and release. request (line 28)

allocates any free unit to a requesting customer. If all available capacity has been

used, a Customer object has to wait in a queue. A call on release (line 47) reactivates

 94

a Customer object, returns however many capacity units it holds, and gives the next

waiting customer a chance to acquire those units. In the final phase of a Customer

object’s lifecycle, the remove method (line 43) destroys the Customer object, whose

storage will eventually be reclaimed by the Flash’s garbage collector.

Notice that we had to use a switch case statement to execute different sections

of code, based on the phase a currently executing instance of the Customer class was

in. Phase’s value was stored in a phase attribute and the addPhase method listed six

valid phases (i.e., ARRIVAL, ARRIVE_COUNTER, SEIZE_TELLER,

DELAY_TELLER, RELEASE_TELLER and DISPOSE). While this construction is

arguably a rather clumsy way to implement a process oriented modelling framework,

it was forced by ActionScript 2’s lack of support for either coroutine, threads or any

other control abstraction which would allow the persistence of state that could store

one of multiple entry points to a method.

In addition to Customer objects, which arrive, request services and leave, we

need to specify the environment these dynamic objects are to operate in; i.e., we need

to add relevant components to the Flash’ stage (see Figure 4.8), specify their names

and link the visualization components to the active components. We then initialize

the active components’ properties; e.g., simulation length, server capacity, time-

between arrival, etc.

To complete our model’s definition and use the Customer class, we must first

create a new Flash document. For this example, we need just two keyframes:

Parameter and Animation. The Parameter keyframe displays a form for choosing

statistical distributions for Customer objects’ route times. Distribution components

are dragged from the Components panel and dropped at appropriate places on the

Flash’s stage. They are then used to initialize the Customer’s walkToCounterTime

and walkToExitTime variables. This keyframe can be ignored if model developers

choose not to give model users flexibility in customizing their own Customer objects’

route times.

The Animation keyframe is used as a stage to assemble the visual

representation of the model’s animation. Here we use active components (i.e.,

Source, Server, Queue and Sink) and visualization components (i.e., Timer, Clock,

Graph and Histogram), whose properties (e.g., time between arrival, service capacity,

colour, width, etc.) can be changed through a Component Inspector. For each change

in properties, the component’s appearance on the stage will be automatically adjusted.

 95

Note that each component should be given a unique identifier that corresponds to the

names used by the Customer class (e.g., myEntry, myBench, etc.; see line 10 to 13) to

make sure that these variables are correctly assigned with their relevant component

instances. To animate the Customer and Server objects, the approach discussed in

Section 4.6 needs to be followed. A model layout as a base for model structures and

animation can either be drawn using Flash’s drawing tools, or we can import external

graphic files in JPEG or DXF formats.

Figure 4.9 shows an example of a VIS model built using our DES

components. It is indeed the model constructed using the previous code and

procedures, with an addition of one more Source and Server instances and another

class of entities. These entities need two servers, the second of which is the same one

that processes the Customer objects. As shown in this figure, learners can change the

distribution of time between arrivals, server capacities and service time and queue

priority rules (queuing disciplines) by clicking relevant component instances. Figure

4.10 meanwhile shows sample information that can be obtained from the underlying

VIS model. This includes statistics on queues and servers, as well as what previous

events have been executed, what current event is being executed and what further

events are still scheduled for execution.

Figure 4.9 Sample of Interactions between Learners and a Model

 96

Figure 4.10 Sample of Information Gained from a Model

4.9 Problems and Pitfalls

Flash controls movie contents over time using a timeline. Rapidly running the

timeline forms an illusion of animated images. All animated images in Flash are

organized using frames and layers. Frames control the sequence of various images in

definite length of time along the timeline. They can contain key frames; i.e., control

points that change images’ appearance along with their behaviour. Layers meanwhile

support the organization of these images so that their structures can be broken up to

smaller parts.

Key frames are analogue to simulation events in DES models. Thus,

simulation events could possibly be attached to key frames on Flash’ timeline. In this

fashion, an animation describing an entity’s visual transformations along its timeline

would be in charge of describing the dynamics of both model (i.e., changes in the

entity’s abstract states) and animation (i.e., changes in the entity’s appearance and

location). However, since the timeline typically belongs to a whole movie (i.e.,

model) rather than a single object (i.e., entity), programming DES models on this way

is unpractical. The use of timeline to stage model and animation methods (e.g., its

 97

movement, rotation, etc.) to control the object’s behaviour will make model code

unmanageable.

For this reason, a component-based approach can minimize the effort of

creating animated DES models. Although our Flash-based simulation and

visualization components strive to provide easily used drag-and-drop components and

visually supported environments for developing VIS interfaces, and although these

interfaces automatically collect and display statistical and other data and allow

learners to flexibly interact with an underlying VIS model, model builders need to

program Flash ActionScript classes to annotate lifecycles of dynamic objects (i.e., to

flow entities from component to component) and attach visualization tools. In spite of

the fact that classes for different types of processes often follow a common pattern,

this is still tedious and difficult for occasional teachers with little programming skills.

As mentioned earlier, this is due to the fact that ActionScript does not support suitable

semantic abstractions for providing a coroutine feature. While we believe that our

first iteration of a Flash-based “DES with animation” toolbox is a step in the right

direction, its use is still short of the level of ease that we hope to achieve.

Ideally there should be no need for Actionscript coding at all, so that models

and animations could both be constructed by dropping and linking components from

libraries while cloaking them in appropriate visual representations. Unfortunately

Actionscript currently offers no support for turning text into code (i.e., there is no

equivalent to an eval statement) and a small compiler would need to be written to

allow users the flexibility to alter dynamic components’ behaviour through visual

interfaces. In Chapter 5, we introduce one approach for building interactive visual

components that will cater the current need to annotate the lifecycles of dynamic

objects and easily connect the components.

The main tricky issue in integrating an animated simulator to a DES model is

to correctly trigger sorted events based on a viewing ratio specified by learners (i.e.,

to stop, continue or proportionally decrease or increase model time before attempting

to trigger next events in the Event List) since they are free to stop or change the ratio

at any time they wish. This includes precisely animating two consecutive events at

appropriate time and moving entities within specified time frames. In the Flash

environment, animating such entities’ active and passive states can be accomplished

using the setInterval and clearInterval functions.

 98

We use the Flash’s setInterval function that periodically calls a move method

to update an entity’s locations during its movement to a target location (see Equation

4.1 and Equation 4.2 in Section 4.4) and the clearInterval function to clear the

interval once the entity has reached its destination. Flash claims that this function is

accurate since it is not influenced by any frame rate values and can thus be used to

update object properties at a specified time interval. To check this, we conducted

some tests and found that it was only 2% to 6% different for one second interval in

various frame rates. Tests on other machines also confirmed the claims in spite of the

fact that the execution of frame rates depends on CPU speeds.

However, a pitfall occasionally arises when a viewing ratio for a certain model

(changed using a slider) reaches at a certain value. This is especially true when we

want to update an object’s locations in very small steps (that typically needs a very

small interval time; i.e., less than a second) so that it can move smoothly. For

example, let say the distance between two locations is 10 distance units and its route

time is 2 time units. If we assume that a viewing ratio is 1, the entity then needs to

reach its destination in 2 seconds. Since it only needs 2 movement steps (i.e., 5

distance units for each second), the animation looks jumpy. To make it look smoother,

we need a smaller time interval so that we can get smaller steps, but still within 2

seconds time frame. For example, if we use a 100 milliseconds time interval, we can

have 20 steps with each step causes 0.5 increment from its previous location. If users

increase a viewing ratio, the time interval must be decreased; e.g., for a viewing ratio

value of 2, the interval should be 50 milliseconds since model time must be

maintained but animation is now changed (so that the object can reach the target

location in a second animation time, refer to Equation 4.1). However, we notice that

entities do not exactly reach at their target locations within specified animation time,

making our animation engine looks like it is not working accurately.

We found that the setInterval function will only start executing a called

method after it has completely finished executing the previous called method. This

problem becomes worse when a called method has intensive code that needs an

amount of time to be processed (e.g., it contains repetition structures) or when the

animation is running in slow CPUs. As a result, the elapsed time of the handler

function gets added to the overall interval, making accumulated delays in executing

the method within the specified time frame. In our case, this delays the update of

objects’ locations and consequently delays the arrival of the object. To cater this

 99

problem, we checked the time elapse and adjusted the motion accordingly based on

that current time.

4.10 Extensibility

Figure 4.11 extends the overall class diagram in Figure 4.6 to support DES for logistic

and manufacturing systems. As discussed in Section 3.5, logistic systems require two

types of objects, i.e., Bin and Stock while manufacturing systems require two types of

objects, i.e., Transporter and Conveyer.

MovieClip

_x:Number
_y:Number

onRelease():Void
startDrag(this)
stopDrag(this)
createEmptyMovieClip(instanceName, depth)

MediaControllerButton TexInput Label

Built-in Flash Components

Component

Server

Queue

Monitor

Agenda

Event

Timer

SimProcess

TimePlotEntry

Counter Histogram GraphBoxplot

Collector

Visualization Components

BaseModel_UI

strTitle:String
numXLocation:Number
numYLocation:Number

setLocation(x:number, y:Number)
setSize(width:Number, height:Number)
moveContainer (addX:Number, addY:Number)

Source

Sink Report

getReport ():Void
reset ():Void

DIstributionComponent

Exponential Normal Triangular

Distribution

DynamicObject

setPriorityt ():Void

Clock

BaseClock

drawHourTick ()
drawMinuteTick ()

Create

Transporter Conveyer

Bin

Stock

Extended Component

Figure 4.11 Extended Components for Supporting Logistic and Manufacturing

 Systems

If we compare the patterns of synchronization in producer/consumer

relationships with capacity constrained resources, their operations are similar. A

 100

Server object stores a number of units to be allocated for competing processes (i.e.,

the SimProcess objects) and takes back the unit(s) once they have been released.

Thus, we need to declare a variable in a Server class for storing the current available

units and a Queue object for holding requested processes.

In a Bin object’s operations, a producer deposits items through a store

operation while a bin object supplies the stored items for requested consumers

through a deliver operation. If the stored items are not enough, consumers must be

queued and will be treated using a FIFO rule. Thus, a Bin class also needs to declare

a variable for storing the current available items and a Queue object for holding

blocked consumers.

Compared to Bin objects that can store unlimited items, Stock objects limit

their holding items. Thus, in addition to a variable that stores the current available

items and a queue object that holds blocked consumers as in the Bin object, a Stock

object needs another variable for storing its item capacity and queue object for storing

blocked producers. Producers will be blocked from storing their items if the capacity

limits has been exceeded. Thus, a Stock class is actually a derived-class of a Bin

class. Standard statistics for Bin and Stock objects involves only initial, current,

maximum and average number of units held by the Bin and Stock objects, besides the

standard statistics of a queue.

The SimProcess class in Figure 4.5 can be extended to create Transporter and

Conveyer objects. Their classes should extend the SimProcess class and have

lifecycles to sequence its operations. For example, transporters should support

request, load, transport, stop and free operations (refer to Table 3.2 in Chapter 3).

Other entities (e.g., parts or customers) that would like to use its facilities should

request the transporter by calling its request operation. If it is in an idle state and its

available capacity is enough, then it will proceed to other operations; i.e., it can move

from its default location, load the entities, transport the entities to a target location

based on its velocity, and stop and release the entities when arriving at its destination.

Otherwise, the requested entities need to be hold in a queue until both conditions are

true. For this, we need a queue that listens to the transporter’ states; e.g., by receiving

the transporter’s signal message. Ability to send and receive signals to or from other

types of objects (that notifies a certain event has happened in the object) is a better

communication approach among objects that enables us to provide a component that

handles these processes internally.

 101

However, using a composition technique to achieve such a communication

between classes (i.e., by storing other instances) without implementing a relevant

mechanism is not a suitable approach. For example, a tool designer needs to ask one

type of objects to regularly check if its interested objects change states; and this

process will incur execution penalty. As there are many other types of objects that are

interested to listen to a single source object, the programming process is getting

harder since the synchronization process is getting complex. In Chapter 5, we will

introduce such an interaction between DES components that allows us to flexibly

registered interested objects to an object, while maintaining a loose coupling between

these components.

 102

CHAPTER 5

COMPONENT-BASED MODELING FOR ANIMATED SIMULATION

5.1 Introduction

Ease of use and flexibility are essential criteria for DES tools. Unfortunately, both

often conflict with each other. General-purpose DES simulators such as PSim-J

(Garrido, 2001), SSJ (L’Ecuyer et al., 2002), J-Sim (Kacer, 2002), DESMO-J (Meyer

et al., 2005b) and others can be difficult to master, since they typically require

significant programming effort for model construction. Visual and interactive

commercial modelling tools; e.g., Arena (Kelton et al., 2004) and ProModel (Harrel

& Price, 2003) offer a user-friendly environment for construction and initialization of

simulation models. Unfortunately, they often lack flexibility since their architectures

are hidden and difficult to extend with additional simulation logic.

Although object oriented simulation libraries have long been used in providing

a flexible and powerful simulation environment, they do not usually promote ease of

use. Component-based simulation tools that provide links between simulation

libraries have been proposed to solve this problem and have been adopted by

commercial simulation tools and other complex software.

Our primary focus is to design and construct easy-to-use and extensible DES

simulation tools that foster learning through insight; i.e., models that improve

understanding through observation. Such models should incorporate interfaces to

visualize model structures, activities to request interactions and challenge learners’

understanding, interesting scenarios to attract learners’ activities and challenge their

imagination, animation to depict processes and dynamic behaviour, informative and

meaningful feedback to reflect learners’ actions and motivate them for further

experimentations and saving ability to record interesting scenarios. The runtime

interaction demands the implementation of concurrent animations to immediately

 103

display the effect of changes rather than post-processed animations or direct

simulation-animation (Hill, 1996).

Based on the benefits offered by component technologies and the importance

of animations and visualizations in learning, we have identified two design patterns

(i.e., generic solutions to systematically structure classes in object oriented

applications) that are useful for the construction of interactive DES components.

These patterns are the Delegation Event Model, which is used to link components

together, and the Model-View-Controller (MVC) pattern, which is used to support

GUIs and multiple visualizations of component states for providing a complete

picture of model performance over time.

In Chapter 4, we designed and constructed DES components using Flash

ActionScript (Moock, 2004). Besides its strengths as an animation tool (Mohler,

2006) and its support for component design (e.g., a default GUI, live preview,

symbolizing a class, packaging facilities, etc.) and cross-platform distribution (i.e.,

through the WWW) and integration (i.e., through LMSs), a sample of ActionScript

basic classes and interfaces (i.e., a group of related methods with empty bodies that

defines common functionalities across various classes) for implementing many useful

design patterns are also well documented (e.g., see Lott & Patterson, 2007; Sanders &

Cumaranatunge, 2007).

This chapter presents the concepts related to the design and development of

our interactive DES components for eliminating the need to write entities’ lifecycles

during design time and supporting the creation of various model visualizations during

runtime. We first review the principles of component-based simulation. We then

relate these principles with our model architecture to provide a graphical environment

for building, visualizing and experimenting with the models. The strengths and

weaknesses of some existing component-based simulators are also discussed. Based

on the architecture, we identified the combination of two design patterns that fit the

design of interactive DES components; i.e., the Delegation Event Model used to forge

links between DES active and passive components and the MVC (Model-View-

Controller) pattern used to loosely couple between components, their GUIs and their

visualizations to provide facilities for model customization. The explanation of how

both design patterns can be implemented in the Flash environment (including

interfaces and classes that are used to create our components and their connections) is

also presented. This chapter continues with the discussion of how to store a model’s

 104

states so that its visualizations and parameter settings can be saved for future use. To

show the benefits of the combination of both the design patterns in providing a truly

attractive and interactive environment, an example of a DES model is then presented.

We further our discussion on how to cater with the model complexity by partitioning

the model. This chapter ends with some discussions of problems and challenges that

we faced during the design and implementation of our DES components.

5.2 Component Based Simulation

When describing his DEVS (Discrete Event System Specification) formalism, Zeigler

(1984, 1990, 2000) proposed that a simulation model should be built in a hierarchical

and modular fashion; i.e., a model is a collection of interconnected components, each

of which deals with its own input, state transitions and output. These basic

components can be combined to form “higher level” components, which can then be

further connected and aggregated to construct a new sub-model. For building a

complex model, this process can be repeated recursively. Such component

architectures have since been used to develop many different types of simulators and

other complex software systems or applications (e.g., see Alejandra, Mario, &

Antonio, 2003; Atkinson, Bunse, Gross, & Peper, 2005). Some important concepts of

component software development including methods for designing and composing

them can be found in Jifeng, Li and Liu (2005).

Zeigler’s DEVS formalism has bred two types of component technologies;

those that focus on visual modelling such as the use of JavaBeans (Praehofer,

Sametinger, & Stritzinger, 2001) and those that focus on distributed simulation

environments such as CORBA (Yahiaoui, Hensen, & Soethout, 2004) and Microsoft’s

COM (Cho & Kim, 2002).

Visual modelling environments often organize components in a library (with

its own internal logic) and offer a GUI for easy access to their properties and methods.

Interfaces in which icons or blocks are attached to components and simulation

structures can be quickly constructed via “drag and drop” interactions are often

provided (Odhabi et al., 1998). Since the underlying library is typically based on an

OOP metaphor, components support encapsulation, inheritance, polymorphism and

exception handling. The advantages and disadvantages of such software architectures

 105

have been discussed in detail elsewhere (e.g., Oses, Pidd, & Brooks, 2004; Valentine,

Verbraeck, & Sol, 2003).

Each component is designed to guide messages’ flows and to control their

movements. Messages are generated by the first “upstream” components and then

transferred to other “downstream” (listener) components; e.g., through output ports.

Since downstream components are configured by upstream components (either at

design time or during runtime), the only task of the downstream components is to

react to messages they receive; e.g., by updating their own states, other components’

states and/or the messages’ states. To do this, they need no knowledge of where the

messages have come from.

5.3 The Environment of Animated Simulation Models

MODEL

Simulation aspect
(structure and logic)

Animation aspect
(appearance and display)

Programming language
for

describing appearance and its changes
in space and time

The MVC pattern

Component

Library

GUI

Component

Library

GUI

Component

Library

GUI

Component

Library

GUI

The Delegate Event Model

Programming language
for

describing logic

Figure 5.1 Simulation and Animation Aspects of a Model

Figure 5.1 shows the architecture of an animated simulation model. Note that we

propose a clear separation between a model’s simulation aspect (which describes

model structures and logic) and its animation aspect (which traces model dynamics by

showing the sequence of generated events and how its components’ appearance and

location will change over time). Although animation is optional (i.e., not all models

need to be animated), it is an essential feature for observing and understanding

 106

dynamic behaviour, verifying and validating models (Law & Kelton, 2000) and can

prove particularly useful to generate insights rather than simply predictions.

As discussed earlier, the logic for a simulation model can easily be structured

using a component approach. Recognizing the benefits offered by this approach,

many component-based simulators have been built and reported; e.g., XCELL+

(Conway & Maxwell, 1987), SIMFACTORY (Tumay, 1987), simjava (McNab &

Howell, 1996, 1998), JSIM (John A. Miller, Youngfu Ge, & Junxin Tao, 1998),

Simkit (Buss, 2000, 2002), COST (Chen & Szymanski, 2002), JDEVS (Filippi,

Delhom, & Bernardi, 2002), Viskit (Buss & Blais, 2007) and BPSim++ (Melão &

Pidd, 2007). A common thread of all these tools is that they use input and output

ports (either specifying through code or a GUI) to permit interactions between their

components.

In term of ease-of-use, Simkit and COST are not user-friendly, since they only

allow a model builder to construct models through an API. XCELL+ and

SIMFACTORY, on the other hand, provide easy-to-use GUIs with which simulation

models can be constructed by dragging and connecting components and initializing

their properties through graphical interactions. Since their internal architectures are

hidden from users, however, these tools’ extension capabilities are rather limited. To

solve this problem, BPSIM++ tries to combine techniques for offering both ease of

use and flexibility, but its resulting models are written in C++ and can therefore not be

accessed through a web browser. JDEVS, JSIM and Viskit are easy-to use and

extensible tools with support for web-based simulation since they were developed

using Java, but do not incorporate any animation and visualization facilities. The

animation of displaying message passing between components was emerged in

simjava but the visualization of model states was limited to text labels only which are

placed over the components. Many modern simulation software, e.g., Arena (Kelton

et al., 2004), Flexim (Nordgren, 2003), SIMUL8 (Concannon et al., 2006) and

ProModel (Harrell, Ghosh, & Bowden, 2004) meanwhile are excellent tools for

building sophisticated DES models and analyzing system performances through

animation and various visualization tools. However, their capabilities to support

learning through user-directed experimentations during run time are rather limited.

 107

5.4 The Delegation Event Model for Linking DES Components

The Delegation Event Model suggests a generic design for how to broadcast many

different events (about which information is stored in an event object) from an event

source to all registered event listener objects and invoke an appropriate method on

them. This pattern offers flexibility since (1) a single event source can broadcast any

number of events, (2) its listeners can register to receive any interesting events by just

implementing interfaces that define the events, and (3) each listener can respond to a

received event(s) in its own special way. To enable the event source class to

broadcast many different events, it just needs to provide separate registration methods

and listener lists for each class of event.

This style of event broadcasting is analogous to the flow of entities in DES

components, where a temporary entity (an event object) is passed from an upstream

component (an event source) to downstream components (the event listeners). Any

downstream component can then act as an event source to further downstream

components. Entities’ and visited components’ states will be updated during this

process, which will continue until a message’s path is completed and the message is

removed. Thus, entities should have properties to store their current source

component and target component; and optionally an array to store all their visited

components.

The Delegation Event Model plays two important roles in building DES

simulators. First, without implementing this pattern, model developers (e.g., teachers)

must create a class which defines an entity type’s lifecycle as discussed in Chapter 4.

Writing such lifecycle descriptions become more complicated if entities need to be

split (e.g., using conditional statements to represent probabilities and/or conditions)

when they reach at a certain phase of their lifecycles. Second, through sub-classing,

other tool designers can extend our existing architecture and create new high level

components to support additional requirements (e.g., other simulation metaphors and

styles). An example for these is a record component used to collect and report

various types of observational statistics. Implementation of this would be easy, since

a component can broadcast events to many interested listeners. Another example is a

renege component that listens to a queue, removes relevant entities from the queue if

their waiting time’s tolerance threshold has been exceeded and then transfers the

entities to certain locations.

 108

Based on this pattern for tracing events triggered by message flows, DES

components can be constructed to simulate and animate the transfer of many types of

entities from one component to another, using the upstream components’ output ports.

We have used class and interface structures suggested by Moock (2004) to build a

suitable implementation of DES components in Flash ActionScript, which is

illustrated in Figure 5.2. DES classes in Chapter 4 will again be used for our

discussion here. Note that these structures can easily be applied to implementations in

other programming languages.

EventListener

interface class

ComponentListener

handleMsg(SimProcess, Time)

EventObject

EventListenerList

getListener()
addObj()
removeObj()

SimProcess

delay(time,source)

implements

implements

stores

passed to

creates

ComponentSource

listeners:EventListenerList
addSimProcessListener(l)
removeSimProcessListener(l)
executeSimProcess(SimProcess)

SimProcessListener
handleMsg(SimProcess, Time)

Figure 5.2 The DES Delegation Event Model Structure

We use five basic classes and two interfaces to implement DES components

based on the Delegation Event Model; i.e., ComponentSource, EventListenerList,

EventObject, SimProcess, ComponentListener, EventListener and

SimProcessListener. The ComponentSource (an event source) represents classes that

schedule an instance of the SimProcesss class (a SimProcess object) and broadcast

this object to its registered listeners. Simulation specific ComponentSource classes

include Sources, Queues, Servers, Sinks, etc. A ComponentSource object should be

composed of EventListenerList objects; i.e., it should manage a list of the

ComponentSource’s event listeners. The ComponentSource class can be equipped

with a GUI to provide easy access points to its properties, including a point to specify

its listener objects.

The SimProcess (an event object) class encodes entities that can be placed on

an Agenda (a list to store the next scheduled event for a particular SimProcess object)

 109

and will be broadcasted to ComponentListener objects when its scheduled event time

is reached (i.e., when it should be activated by the simulation Monitor). The

SimProcess class is derived from the EventObject class; a base class that holds a

reference to the class that has scheduled it. In order to receive event notifications

from a ComponentSource object, the ComponentListener class must implement the

SimProcessListener interface; an interface that specifies a set of event methods.

The SimProcessListener interface implements the EventListener interface; a

marker (empty) interface that enables event listener classes to be notified by

ComponentSource objects. When an event occurs, the ComponentSource invokes a

handleMsg (SimProcess, Time) method for each ComponentListener object.

Based on these structures, we can now provide output ports that should be

easily accessed by model builders to link active components (refer to Table 4.7 in

Chapter 4). These output ports substitute the need for declaring a class of entities’

lifecycles since the sequence phases of the entities are now internally controlled by

components. Since entities’ lifecycles can now be created during runtime rather than

design time, we have constructed a Decide or Routing component that couples a

component with a set of its listeners to support decision forward flow based on certain

control strategies; e.g., their types, probabilities, a shorter queue and server status.

Figure 5.3 traces a simple flow of a SimProcess object in an M/M/1 queuing

scenario. An instance of the SimProcess class (which contains data about its birth

time, current phase, current location, etc.) is first created and scheduled in the Event

List by invoking a delay (time:Number, source:Component) method on a Source

component (which then becomes the highest upstream component). The time

argument is the time that the next event for this SimProcess object is scheduled to

occur and the source argument refers to the ComponentSource object that scheduled

it. When the scheduled time comes, the SimProcess object is removed from the Event

List by the Monitor. During the removal activity, the SimProcess object makes a call

back to the event source that scheduled it (in this case a Source object) and invokes an

executeMsg (SimProcess) method on the event source. This event source then

executes relevant code (e.g., an animation method to move the SimProcess object to

its downstream component or animate its physical appearance) and broadcasts the

SimProcess object to its all registered listeners by invoking handleMsg (SimProcess,

Time).

 110

Source

executeMsg(SimProcess){
...
...
...
}

Time

0

1

2

2

2

3

5

10

Time

Customer#1

Custome#r2

Customer#1

Customer#1

Customer#1

Event

Arrival

Arrival

Join Queue

Seize Server

Delay Server

Customer#2

Customer#3

Customer#1

Join Queue

Arrival

Release Server

10

10

15

Customer#2

Customer#2

Customer#1

Seize Server

Delay Server

Leave

The Monitor

outPort outPort outPort

Queue

executeMsg(SimProcess){
...
...
...
}

handleMsg(SimProcess, time)
...
...
...
}

Sink

executeMsg(SimProcess){
...
...
...
}

handleMsg(SimProcess, time)
...
...
...
}

callback

schedule

schedule

callback

Server

executeMsg(SimProcess){
...
...
...
}

handleMsg(SimProcess, time)
...
...
...
}

Figure 5.3 The flow of a SimProcess Object in DES Components

All registered listeners can respond to the SimProcess object in different ways,

but one of them should instruct the SimProcess object to proceed to its next phase;

i.e., by reinserting it into a suitable location in the Event List. When the next

scheduled time is reached, the SimProcess object has to call the event source that

scheduled it. The event source then executes executeMsg (SimProcess) and

broadcasts the SimProcess object to all of its downstream components. This

mechanism is repeated until the SimProcess object departs from the system; i.e., when

it arrives at a Sink; i.e., its lowest downstream component.

Implementing the Delegation Event Model in DES classes not only enables us

to link active components with each others, but it also allows us to control and

simulate entities’ delay time to their downstream components; i.e., to represent travel

time from location to location. The travel time should then again be made accessible

for modifications through the components’ GUIs during design time and runtime.

Permitting learners to change entities’ travel time at any time they wish will help them

to understand the effect of delay time to model performance.

 111

5.5 The MVC for Visualizing DES Component States

The MVC pattern prescribes how to structure classes that create and manage user

interfaces based on input-process-output cycles. In doing so, it implements the

Observer pattern; i.e., a pattern which notifies a group of interested objects (the

observers) whenever a single object (the subject) changes its state. The MVC patterns

main concern is to clearly structure an application’s code into three major

components: a model to store an application’s current states and logic, views that

reflect (e.g., visualize) changes of its states, and a controller that modifies the model

based on inputs made in a view. In order to receive notifications from the model, all

views must implement an interface that provides a suitable update method.

There are three reasons why the MVC pattern is so useful for building

attractive and interactive DES components. Firstly, component views can be added or

removed at design time or runtime without affecting any other components’ parts.

Learners can therefore freely customize model visualizations. Secondly, all views are

concurrently notified through an info object; i.e., an object that contains information

about its subject’s current states. This allows the synchronous display of all of a DES

component’s current states, either graphically (e.g., histograms, graphs, etc.) or in a

more abstract fashion (e.g., texts, tables, etc.). Thirdly, when designed properly,

many visualization tools (e.g., histograms, graphs, etc.) can be reused by different

types of DES components (e.g., sources, servers, etc.).

Figure 5.4 shows generic MVC implementation structures for a single DES

component. This involves seven basic classes and four interfaces that cooperate with

each other to provide a GUI and suitable visualizations. The ComponentModel (e.g.,

sources, queues, servers, sinks, etc.) class broadcasts its states to all registered

observers through its ComponentUpdate object (info object). This is an object that

stores its current states. Each ComponentModel class should have its own

ComponentUpdate class with a unique name (e.g., SourceUpdate, QueueUpdate,

ServerUpdate, SinkUpdate, etc.).

 112

Observer

AbstractController Observable

ComponentController ObservableSubject

ComponentUpdate

View1

View2

ComponentTools

View Controller

interface class

implementsimplementsimplements

View3

ComponentModel

subj:ObservableSubject

implementsimplements

AbstractView

ObserverObject

Figure 5.4 The DES MVC Structure

The ComponentModel class implements the Observable interface to provide

abstract methods for maintaining and notifying Observer objects. The

implementation for the Observable interface is provided by the ObservableSubject

class. An instance of the ObservableSubject class is used in the ComponentModel to

broadcast updates to its observers whenever its internal states have changed. By

implementing the Observable interface, the ComponentModel class can freely inherit

from any other class; i.e., it can be a subclass of other class.

To receive input from its views, each ComponentModel class must have its

own controller (e.g., SourceController, QueueController, ServerController,

SinkController, etc.). The model’s controller must extend the AbstractController

class; a class that provides basic services specified in the Controller interface. The

Controller interface in turn contains references to the model and its view. To receive

notifications about state changes in the ComponentModel, all interested views must

extend the AbstractView class; a generic implementation of the View and Observer

interfaces. The View interface contains abstract methods to set and retrieve the model

and controller objects observed by this view, while the Observer interface contains an

abstract update() method. It is up to a view’s update method to react to the

information object sent by a ComponentModel.

We can now make some modifications so that the visualization components

(e.g., Clocks, Histograms, Graphs, BoxPlots, Levels and Tables) to be derived-classes

(subclasses) of the AbstractView class; i.e., the class that extends the MovieClip class.

 113

Note that the ObserverObject class is to provide common methods for all

visualization components; e.g., to set location, size, title, etc. and to attach related

event handlers that allow dragging, pressing, etc. for the component. The benefit of

this is that many visualization components can now be registered or removed at any

time during design time or runtime to trace state notifications from its active or

passive components. Since these components must communicate with each other

(using the Event Delegation Model) and report its states to observers (using the MVC

pattern), their classes must implement both the ComponentListener for handling a

SimProcess object and Observable interfaces for notifying state changes to its

observers. Note that a visualization instance only receives the notification of its

active or passive component states from the time point it is created. This could offer

some benefits; e.g., learners can inspect in detail the performance of the model and

compare its performance from various simulation times. To receive the notification at

simulation time zero, learners must create all interested instances before running the

model.

Implementing both design patterns in a DES component permits a loose

coupling among DES components and its visualization components. Because of this

flexibility, we have created a utility component called visualization palette that floats

on the top of a model during runtime and holds various types of visualization tools to

allow learners to customize the model’s GUIs. Various model GUIs can be created

by instantiating a new visualization instance (i.e., clicking its symbol on the palette),

registering it to receive the notification from a relevant component’s state changes

(i.e., dragging a point on it and dropping the point onto the component) and dragging

it to any location on the stage. However, since these processes demand some efforts

from learners and not all visualization tools can be associated to a component (e.g., a

Clock component can only be used with the Monitor component), this approach is not

so effective for a learning environment.

To overcome this problem, we directly embedded a list of visualization tools

on the components’ GUIs. Learners only need to click a command button (each of

which associates to a new type of visualization tools) to instantiate a new

visualization tool. We believe this approach will help them to understand the

dynamic behaviour of a DES model.

 114

5.6 Connecting External Data

Allowing learners to save the current states of a model offers some benefits in

learning and teaching. These include permitting them to retain the model’s

visualization and parameter settings and mark time points of interesting scenarios.

Unfortunately, this feature is not offered by existing DES tools. As a result, learners

are always presented with a new fresh model each time it is loaded.

Saving a DES model requires us to store model relevant structures and states

to a file. Generally, there are three types of files for storing application data: text

files, databases (Rob & Semaan, 2000) and XML (Hunter et al., 2000). These files

will be accessed to reflect the current behaviour of an application and can be updated

to save the application’s latest information during running time.

Text files are supported by many applications, easy to create and use and

readable by humans. However, they cannot store complex data structures as in DES

models since information storing is restricted in a sequence of lines (i.e., a list of

name-value pairs). Databases ease an application to access data through the use of

query languages. They have been used for storing DES static structures as

implemented in Arena software. However, designing, creating and linking dynamic

tables that store DES temporary entities and data fields for updating (storing or

deleting) timely changed DES model components (especially visualization tools) is

unpractical.

XML provides a good data storage for DES models due to its ability to support

complex data structures for storing entities and components with their own properties.

Additionally, the current structures can easily be extended to support additional levels

of more complex DES data structures. However, the process of creating and updating

these structures can only be done in the server for a security reason. As a result, XML

is usually used for storing and accessing data than updating the data, unless the

updating process is done manually (Castillo et al., 2004).

To eliminate these constraints, Flash has introduced Local Shared Objects

(LSOs) that store an application’s relevant information (especially its parameter

settings) on users’ computers. Thus, each time they access the application through

their computer, they will get the updated version of the application. This makes the

application looks like it has been customized for each user.

 115

The main advantage of LSOs is that data can be stored in various data types

(e.g., number, array, boolean, date, XML objects, etc.), making the storing processes

of various objects are quite straight forward. However, little Flash interactive movies

have exploited its potential since it is usually used for storing basic data; e.g., user

names. For this reason, we used LSOs for storing our DES models’ states, animation

and visualization instances. The ideas behind this implementation can easily be

applied in XML with little effort.

Each DES component and entity should have its own LSO file (with a “.SOL”

extension) and be named based on its instance name on the Flash stage. The main

storage location for LSO files is operating system-dependent but it is typically located

under the Flash Player\#SharedObjects folder. All LSO files belonging to a DES

model are saved under a subfolder (under the main storage location) named based on

its DES model file name to avoid conflicts with other models’ LSO files. We thus

need to retrieve the DES file name using ActionScript code whenever the model is

reloaded. Since the LSO name exactly follows its object name, entities (i.e.,

SimProcess objects) and visualization instances that are created during runtime must

be coded so that each of these objects has their own unique names. However, Flash

will automatically assign a default unique name for an unspecified object name.

Thus, the issue of an object without a name will not arise.

We created a Utility component as a means to save component instances and

their states. It has a Save button for instructing all objects (in the form of MovieClips)

on the Flash stage to detect the existence of their associated LSO files. This can be of

two cases.

If their LSO files have not existed (i.e., the model has not been saved, or new

SimProcess or visualization instances have been created since the last save), we need

to command the objects to create their LSO files and store their relevant property

values. In case of active or passive components, we can directly transfer information

in their info objects to their LSO files.

If the LSO files exist (i.e., the model has been saved before), we only need to

update these LSO files with their latest property values. Note that the updating

processes will only take place at the points where learners opt to save or resave the

model, not during the whole process of model running. This is to ensure that

information in the LSO files is preserved until the next saving point so that learners

will only be presented with a model of the latest saving point. The Utility component

 116

has other buttons; the first one is to flush all LSO files for a model, i.e., to get a fresh

model with its default values and the second one is to show all the paths of entity

movement for clarifying the sequence of events in the model. The paths are presented

by arrows that link active or passive components based on their output port

parameters.

Supporting such a saving capability needs all components to have certain

features. First, each active and passive component needs to transfer the current list of

its observers (we have had an array for this since we implement the MVC pattern) into

its own LSO file and consequently instruct all these observers to create (or update)

and store relevant information in their LSO files every time the model is saved.

Second, a Source component needs to have an array for holding a current list of its

created SimProcess objects that are still available on the stage at certain points of

time. Note that we do not have this in our previous Source components. This array

needs to be updated each time a SimProcess object is created or destroyed (i.e., all

SimProcess objects will remain in the list until they are destroyed by a Sink

component).

If learners opt to save the DES model, the current list must be transferred into

its Source’s LSO file. Sequentially, each of the SimProcess objects is to create its

own LSO file (or update if its LSO file has existed) to store their current information;

e.g., their latest locations, birth times, left time to finish a certain activity, etc. The

Source component also needs a variable to store the latest number of generated

entities so that it can extent this number when the model is re-run. Third, all

scheduled events in the Monitor (i.e., events that have not been cancelled in the

Agenda) need to be transferred to respective SimProcess’s LSO files whenever

learners save the model. Thus, we have to make sure that the SimProcess’s LSO files

have already existed before transferring a list of their unexecuted events (with their

time of occurrence) to their LSO files.

Whenever a model is loaded or refreshed (after saving the model using the

save button in a Utility component) in a web-browser, a Source component will first

get its current list of SimProcess objects from its associated LSO file and then create

those entities. Each time a SimProcess object is created, all scheduled events stored

in its LSO file will be retrieved and inserted to the model’s Agenda. Consequently,

each active and passive component reads its LSO file to initialize its parameter

settings and creates visualization instances based on its list of observers. Each

 117

visualization instance will then be matched with its LSO file and fed with the data

stored in the file. Through these processes, learners will obtain the model with the

previous animation, visualization and component parameter settings.

A tricky issue arose when we wanted to resave a model; i.e., the model that

has previously been saved is loaded and re-run. During this point onward, some

objects (e.g., entities that have left the model or certain visualization instances that

have been removed by learners) have to be destroyed to save computer memory. If

we automatically destroy the LSO files along with their associated objects and

learners opt to discard any changes during this time interval, we will lose the LSO

files. As a result, if the model is re-loaded, some objects will be reinitialized with

their default values due to the missing of their LSO files. However, if we just destroy

the objects (i.e., we do not automatically destroy their LSO files) and learners opt to

resave the models, we will keep a number of worthless LSO files; i.e., a list of orphan

LSO files without their owners. This is particularly true for a model that contains

many active entities and/or has been extensively experimented with various

visualization tools.

To solve this problem, we programmed SimProcess objects so that they

destroy themselves when they exit a model but their associated LSO files are still

available until a certain point of time. For this, the SimProcess objects should

communicate with its creator; i.e. the Source instance that creates them. To do this,

the Source instance temporarily stores a list of destroyed objects. If learners want to

resave the model, this list will destroy all stored objects’ associated files, else nothing

will happen. The same thing applies to any removed visualization instances where

each active component needs a temporary array to store its removed observers, and

then removes the relevant visualization instance’ LSO file in case learners opt to save

the model.

We also need to maintain the smoothness of animation whenever a model that

has previously been saved is loaded to be run for the first time. At any saving point,

the model is bound to have some entities that have not completed movement to their

destinations. These entities can be at any path; each of which has used some amount

of its route time to reach its destination. Anytime we load and re-run the model, we

have to ensure that each entity continues its movement from the previous stopping

location to its destination using only the remaining time left.

 118

We handle these entities’ residual movements by delaying the execution of the

model’s Event List. Using this approach, the entity that has the smallest remaining

time can finish its movement based on its residual time. Other entities meanwhile use

this time to step toward their destinations before the Monitor executes the next

scheduled event and updates model time. Without delaying the execution of the

Monitor, the entity will jump directly to its destination while other entities remain

static in their previous locations until their scheduled times have been reached that

denote the times for them to jump to their destinations. Since we move SimProcess

objects based on movement steps (the partition of these steps depends on its time

delay and a viewing ratio; refer to Chapter 4), delaying the Monitor only needs us to

store the number of remaining steps left to reach the destination in the entity’s LSO

file.

5.7 Example

This section discusses the ease of use aspects of our components in building queuing

networks and how final queuing models allow learners to conduct various

experiments and visualize model behaviour through their GUIs. Figure 5.5 shows a

snapshot of the DES components and their locations within the Flash environment.

Figure 5.5 Flash Development Environment

Properties

layout

DES

Components

Stage for

composing

components

 119

All components reside in the Flash’s Components panel and can be

instantiated by dragging them onto the Flash’s Stage to construct any types of queuing

networks; i.e., open networks, closed networks or mixed networks (see Bose, 2002;

Gelenbe & Pujolle, 1998). The construction of these networks is accomplished by

utilizing Decide component instances that route entities to their downstream

components based on three options: probabilities, a shortest queue or entity types.

To demonstrate the ease of use of our DES components, we will develop a

sample of a queuing network as illustrated in Figure 5.6. This sample simulates two

types of entities arriving into a system. The first type joints a single queue and will

then be served if one of the two available servers is idle. Upon completion, these

entities need to go to another queue before leaving the system. The second type

chooses the shortest queue between the two available queues. After being served,

some percentage of the entities exits the system while others need to go to the servers

that process the first type of entities. They are then free to leave the system.

Source

Source
Decide

(Shortest Queue)

Server

Decide
(Entity Type)

Sink

Queue

Decide
(Probabilities)

Figure 5.6 A Queuing Network System

These queuing network structures can easily be transferred to a computer

simulation model using our components. Based on these structures, teachers need two

instances of the Source component, four instances of the Queue component, five

instances of the Resource component, three instances of the Decide components, one

instance of the Sink component and one instance of the Monitor component. Note

that a Monitor instance is needed by all simulation models. Its functionality is to

coordinate the sequence of entities in a model so that entities can be invoked and

transferred between components at appropriate times and in the right orders.

 120

All of these component instances need to be dragged and dropped onto Flash’s

Stage. Once they are on the Stage, teachers can arrange the component instances’

locations accordingly, give them a name and access their properties through the

Properties layout panel (see Figure 5.7). The process of dragging, dropping, naming

an instance, initializing its parameter values and specifying its targeted components is

repeated until the simulation model structure has been constructed.

All components must have unique names to correctly link them with each

other; i.e., these names are specified in their upstream components’ output port

properties so that these upstream components can route entities to their downstream

components. This approach avoids us from writing case statements to represent the

entities’ lifecycles as in our example in Chapter 4. All components have their default

property values that specify their behaviour during runtime and can be changed by

clicking the appropriate row in the Properties layout panel. For example, a Server

instance has properties as listed in Table 5.1. Once the simulation structure has been

built, other visualization tools can then dragged, dropped at appropriate locations and

connected to the DES components to provide a default GUI for the model.

Figure 5.7 A Server’s Properties and Default Values

Table 5.1 Server Properties and Description

Properties Description

capacity Number of resources that can be seized by entities in a queue

delayToNextStation Time taken (based on a distribution type; e.g., Constant,

Exponential, etc.) for entities to reach the next component

graphInstance Name of a graph instance to display capacity used vs.

simulation time

histogramInstance Name of a histogram instance to display service times

monitorName Name of a monitor instance that sequences state transitions of

all types of entities in a model

outPort Name of the next component to transfer entities

serviceTime Type of distribution specifying processing time

 121

Figure 5.8 shows a sample of the final model constructed in this manner with

its own customized visualizations. The model allows learners to stop, increase and

decrease the animation speed for their best visualization effect (Figure 5.9a), conduct

various experiments through an interactive GUI and observe the impact of changes to

model behaviour through a range of engaging visualizations. Conducting experiments

are easy since they can change any component’s parameters at any time they wish

(i.e., by clicking the component and typing appropriate values into text boxes and/or

choosing one of several options in combo boxes) and directly visualize the

component’s internal states by clicking available command buttons. For example,

learners can change priority rules (queuing disciplines) for queues (Figure 5.9b), alter

the distribution of time between arrivals for the two types of entities, modify

capacities and service times for servers (Figure 5.9c) and interact with data

visualizations; e.g., changing minimum and maximum values, and the number of

intervals of histograms (Figure 5.9d). The ability to change histogram parameters

enables learners to view the distribution of data in a variety of formats. Labels of

important components’ current parameter values are also displayed during runtime for

model clarification.

Figure 5.8 A Final Model

 122

(a) Monitor (b) Queue

(c) Server (d) Histogram

Figure 5.9 Interactions with Component Instances

All data visualization (that reports the model’s performance during the

simulation run) selected by learners can be located at any location on the model stage

or closed when unneeded. This approach enables learners to customize the model’s

visualizations based on their interest to ease their learning.

5.8 Towards Hierarchical Simulation Model Design

Systems are usually large and complex. However, their complexity can be well

structured if we partition them to many sub-systems; each of which focuses on its own

function. The use of a hierarchical model to break up a system to smaller functions

not only help learners to understand the model, but it also allows learners to control

the display of model information based on their ability to digest the information.

Hierarchical simulation models offer some advantages for the learning and

teaching environment. First, teachers can structure a large and complex simulation

model to different layers of abstraction; i.e., by building and representing the model

 123

from a basic, general model to more detail sub-models (its child models). Thus, a

complex model can now be constructed and managed easily. Second, learners can

have a better view of a model since its complexity (i.e., simulation components, their

interconnections, animation and data visualization) is now well controlled to limit its

crowdedness on a limited computer screen space. Thus, learners can control their

learning by concentrating on a certain sub-model at a time in which they are

interested. For example, if they have understood a basic model, they can now

transverse to the model’s children that hide more details of their structures and

functions. Additionally, understanding the model can be boosted if at each layer,

learners are allowed to conduct various model experiments and customize the layer’s

visualization. Third, using layer by layer model design can ease the development of

various simulation models. The main reason for this is that each component,

visualization tool and sub-model can be reused to construct a new type of simulation

model. This will expedite the creation of simulation based learning materials.

However, designing the architecture that supports the development of

hierarchical simulation models and implementing them on computer will post some

challenges. These include:

1) How to connect and synchronize a model with its children in a hierarchical

fashion since parent models are dependent on their child model(s). This requires

us to design a mechanism not only to synchronize the flow of entities in a relevant

layer but also to properly transfer these entities to its child model and back to the

layer whenever the entities exit the last components of the child model.

2) How to hide and display animation and visualization of sub-models at an

appropriate time so that the model abstraction can be controlled properly.

3) How to store model states, animation, learners’ experiment parameters and their

customized visualization for each model layer so that when they revisit the layer,

they will get back the settings they have had before.

Figure 5.10 shows an example of a hierarchical construction of a DES model.

The model is partitioned to four layers (Layer 1 to Layer 4). The execution of a

particular layer depends on other layers. The top layer (i.e., Layer 1) represents the

overall function of the model while the lower layers give more information about their

 124

upper layers’ functions. Each layer except the lowest layer has a sub-model symbol

that hides its structures (components and their connections) that perform its function.

Clicking this sub-model symbol will take learners to a lower layer (i.e., the layer’s

structures) while hiding the layer (e.g., through a button or a menu) will bring learners

back to its upper layer. At any layer, there could be a sub-model that generates and

handles their own type of entities, but these entities will not be transferred to any

other layers. The flow of these entities must also be synchronized with the whole

model time.

Sink

Server

Queue

Queue

Decide Queue

Source

Decide

Queue Server

Layer 1

Layer 2

Layer 3

Layer 4

Local Monitor

Local Monitor

Local Monitor Local Montior

contains

contains

contains

S11

S21 S22

S31

contains

sub-model

Figure 5.10 Hierarchical Construction of a DES Model

 125

Each layer has its own window for locating its component structures and

supporting its animation and visualization development. Entities that flow on this

window must be well synchronized with its lower layers; i.e., entities should appear at

a sub-model symbol at the right time once they exit their lower layer based on their

time delays.

5.9 Designing Mechanisms for Hierarchical DES Models

We have designed two mechanisms for coordinating event executions in hierarchical

DES models. The main trick for these is sorting events in all hierarchies and

executing them accordingly. First of all, we need to introduce these objects:

1. (*, t) Messages

(*, t) messages are additional messages to entity messages (i.e., dynamic entities

flowing in DES models). They are also inherited from the entity class; e.g., the

SimProcess class. The main differences are:

 entities flow from component to component while (*, t) messages flow from

layer to layer to coordinate event executions in the layers,

 flowing entities from component to component typically consumes some

delays while flowing (*, t) messages does not incur delay,

 entities contain personal information (e.g., birth time, delay time, etc.) while

(*, t) messages only contain the lowest simulation time of the source layers

and the t value is not used to update simulation time, and

 entities are created by a Source component (i.e., a type of component that

creates entity instances) while (*, t) messages are created by a Submodel

object.

The insertion of (*, t) messages to an Agenda makes it looks clumsy.

However, their existence is important to tally all event executions.

 126

2. Submodel Objects

A Submodel object encloses another layer. Entities arriving at a Submodel object

could be in one of two cases: (1) the entities are from the same layer’s previous

component, or (2) the entities are from a lower layer’s last component; see Figure

5.11. To differentiate these entities, the entity class needs to have a property; e.g.,

named fromLayer that takes a value of current (the first case) or child (the second

case).

Submodel
input port output port

entity

(*, t)

component

received from the child 's
last component

component

transfer to the child's
first component

entity

(*, t)

child port

Figure 5.11 Submodel Architecture and Transferring Mechanisms

For the first case, the entities continue their flows to a lower layer’s first

component through a child port; i.e., a port specifying the child model’s first

component. For the second case, the entities flow to the same layer’s next

component through an output port; i.e., a port storing its downstream component.

3. Local monitor

Each layer has its own local monitor that executes the layer’s activities stored in

its Agenda in the right order.

5.9.1 Monitor Delegation Mechanism

When a model is loaded, each Submodel inserts a (*, t) message to its local monitor.

This is to find the layer that has the lowest simulation time; e.g., in case of a

Submodel object contains its own types of entities, or a Submodel object is the first

component that locates a Source component under it. The model execution starts with

the top layer’s monitor removes the (*, t) message and transfer it to its lower layer’s

first component which then inserts the message to its local monitor. This process

 127

continues until the imminent entity is found in a relevant layer. The entity will then

be executed so that it can flow to the same layer or to another layer. Their flows to

another layer must be accompanied by a (*, t) message.

The imminent item after this first iteration can be of two types: (*, t) object or

entity object. If it is a (*, t) object, the execution of the current local monitor is

passed to either its lower or upper layer’ monitor depending on the source of the (*, t)

message. Otherwise, it is flowed to the next destination; i.e., a component or a

Submodel object. For a Submodel object, the entity with a (*, t) message is

transferred to a lower layer that will then be inserted into an appropriate location in

the layer’s local monitor by its child’s first component. This monitor then executes

and removes the imminent item from its Agenda.

Transferring the model execution to other layer’s local monitor implies that

the layer contains lower next schedule time compared to the previous layer. The

execution of this current layer’s local monitor continues until another (*, t) message is

found in its Agenda. These processes are illustrated in Figure 5.12. Figure 5.13 and

Figure 5.14 meanwhile show some code under the handleMsg(SimProcess, time) and

executeMsg(SimProcess) methods for the Submodel class and the simulation

component class.

Basically, the Monitor Delegation Mechanism coordinates the execution of

events in a hierarchical DES model through these mechanisms:

1. Instruct Submodel objects to insert (*, t) to each local monitor. Execute the top

layer’s monitor, followed by other layers.

2. Determine the imminent item type and the component that executes it.

3. (a) Flow the item to its next component in the same layer if the item is the type of

entity and the component that executes it is a simulation component, or

(b) Transfer the item and a (*, t) message if the item is the type of entity and the

component that executes it is a Submodel object; see Layer 1 in Figure 5.12.

Insert them at appropriate locations in the layer’s local monitor. This process

should be done by the child’s first component upon receiving the messages.

Transfer the model execution to the layer’s monitor.

4. Retrieve and remove the next imminent item from the current layer’s local

monitor. If the item is the type of (*, t) message, transfer the monitor execution to

 128

the layer where the (*, t) is from and then repeat this step 4. Else, repeat the step

2.

Submodel

Submodel
Output port

Output port

Root Monitor

Local Monitor

Local Monitor

Child port

 (1) entity

(2) (*, t)

Layer 1

Layer 2
entity

 (1) entity

(2) (*, t)

entity

Layer 3

Input port

component component

componentcomponent

component component

(*, t)

(*, t)

Time

20

40

Process

Customer#1

Custome#r2

Event

Next Comp

Next Comp

50

60

65

Time

65

70

Process

Customer#1

Customer#2

Event

Next Comp

Next Comp

Time

0

1

Process

Customer#1

Customer#2

Event

Arrival

Arrival

5

10

20

74

Input port

Child port

Customer#1

Customer#2

(*, t)

Enter submodel

Enter submodel

Execute

Customer#1

Customer#2

(*, t)

Enter Submodel

Enter Submodel

Execute

(*, t) Execute

Figure 5.12 Monitor Delegation Mechanism

 129

private function handleMsg (entityInstance:SimProcess, time:Number) {

 /* schedule the entity to its Agenda */

entityInstance.delay(this, time)

}

private function executeMsg (entityInstance:SimProcess) {

 /* if the entity is from the current layer* /

if (entityInstance.fromLayer() = = “current”) {

 /* send the entity to its lower layer */

child.handleMsg(entityInstance, 0)

/*create a new instance of externalMsg*/

extMsg = externalMsg.createNew();

child.handleMsg(extMsg, 0)

 /* if the entity is received from a lower layer */

} else {

/* send the entity with some delay to the next component in the current

layer */

 outport.handleMsg(entityInstance, delay);

 }

}

Figure 5.13 Submodel Class Definition

private function handleMsg (entityInstance:SimProcess, time:Number) {

 /* schedule the entity to its Agenda */

entityInstance.delay(this, time)

}

private function executeMsg (entityInstance:SimProcess) {

 if (entityInstance typeOf ExternalMsg) {

 /*transfer the monitor execution to the Source of the extMsg monitor*/

 entityInstance.getSource().handleMsg(entityInstance, 0);

 } else {

 /* transfer the message with some delay to the next component */

outport.handleMsg(entityInstance, delay);

 }

}

Figure 5.14 Simulation Class Definition

 130

5.9.2 Monitor Communication Mechanism

The Monitor Communication Mechanism differs from the Monitor Delegation

Mechanism in two ways. First, (*, t) messages are sent by a monitor, not by a

Submodel. However, a Submodel object and the last simulation component in a layer

still transfer entities (i.e., SimProcess objects) to its lower and upper layer

respectively. Second, for each iteration, monitors located above the source of a (*, t)

message must all be executed sequentially rather than transferring monitor execution

to a relevant layer. Such monitor communications through broadcasting (*, t)

messages demand the monitor to implement the Delegate Event Model.

The purpose of broadcasting (*, t) messages down to a certain layer where the

(*, t) comes from is to find the model’s lowest simulation time in all visited layers’

Agendas. For this, two types of iterations are needed. The first iteration broadcasts a

(*, t) message from the top layer until the lowest layer to consider the cases of Source

components are located in the lowest layer or certain layers have their own types of

entities. The second iteration onward only involves broadcasting a (*, t) message

until a relevant layer since any lowest next scheduled time below this layer definitely

has a bigger value. This can be achieved by detecting the origin of a (*, tn) message.

The (*, tn) message is actually a (*, t) message containing the latest value of

the lowest next scheduled time. This value is collected during its traversal to the top

layer. By broadcasting the (*, tn) message up from layer to layer, a parent layer

acknowledges its child layer’s lowest next scheduled time. For example, Layer 1

stores the lowest next scheduled time for Layer 2; Layer 2 stores the lowest schedule

time for the Layer 3 and so on. Thus, the execution of the child layer is controlled by

its parent monitor. The details of the Monitor Communication Mechanism are as

follows:

1. Insert a default (*, t) message in the root Agenda whenever the model is first run.

2. Broadcast the (*, t) message from monitor to monitor in a sequence order (Layer

1, Layer 2, Layer 3, …) until it reaches the lowest monitor.

3. Execute the local monitor to coordinate events in the layer each time the layer

receives the (*, t) message. For example, execute the local monitor in the Layer 2,

followed by the Layer 3 and so on. Consequently, send the (*, t) message to

lower monitors.

 131

4. Once the (*, t) message reaches the lowest layer’s local monitor, retrieve the

imminent item in its Agenda. Take its lowest scheduled time. Update the (*, t)

message with a (*, tn), where tn is the lowest next scheduled time for the layer.

Broadcast the (*, tn) to its parent monitor; i.e., the local monitor in its upper layer.

Note that the (*, tn) message is supposed to traverse up to the top layer.

5. Once the (*, tn) reaches its upper layer’s local monitor, insert the message at an

appropriate location in its Agenda based on the tn value. Retrieve the imminent

item from the Agenda. Broadcast a new (*, tn) message (could be the previous (*,

tn) message if it is the imminent item) to its upper local monitor. Repeat these

processes until the (*, tn) reaches the top layer. This will guarantee that each layer

stores its child’s lowest next scheduled time.

6. Once the (*, tn) reaches and has been inserted to the top layer’s Agenda (i.e., root

Agenda), execute the root monitor. If the imminent item in its Agenda is the type

of (*, tn), send another (*, t) message down to the layer where the (*, tn) message

is from. During this traversal, execute all visited layers’ Agendas to remove the

(*, tn) messages. Note that only the layer that has generated the (*, tn) message

will create a new event (i.e., flowing a relevant entity); other layers only remove

the message from their Agendas. Broadcast another (*, tn) message. Repeat step

5.

7. Stop the processes if the length of simulation time has been reached.

Figure 5.15 traces a sample of Agendas based on the Monitor Communication

Mechanism. The figure is split up to (a), (b) and (c); each one shows the Agendas at

simulation time 0, 10 and 14 respectively.

 132

Time

0

2

Process

Customer#1

Customer#1

Event

Arrival

JoinQueue1

(*, t)

(*, t)

(*, t)

3 Customer#2 Arrival

(*, 0)

(*, 0)

(*, 0)

Time

0

Process

(*, t=0)

Event

Layer 4

Time

0

Process

(*, t=0)

Event

Layer 3

(a)

(*, t)

(*, t)

(*, t)

(*, 14)

(*, 14)

(b)

(*, t)

(*, t) (*, 16)

(*, 16)

(c)

(*, 16)

Time

16

19

Time

0

0

Process

(*, t)

(*, t=0)

Event

Execute

Layer 2

Time

10

14

Process

(*, t=10)

(*, t=14)

Event

Layer 2

Layer 2

21

26

27

Time

10

14

Process

(*, t=0)

(*, t=14)

Event

Layer 3

Layer 3

18

20

23

Time

10

14

Process

(*, t=0)

Event

Layer 4

16

22

29

(*, t=16) Layer 4

Time

14

16

Process

(*, t=14)

(*, t=16)

Event

Layer 2

Layer 2

21

26

27

Time

14

16

Process

(*, t=14)

(*, t=16)

Event

Layer 3

Layer 3

18

20

23

Time

10

16

19

24

30

Process

Customer#20

Event

JoinTellerQueue

Customer#20 SeizedTeller

24

30

Process Event

Time

14

16

Process

Customer#12

Event

DelayATM

22

29

31 Customer#12 ReleaseATM

Figure 5.15 Agenda States

At simulation time 0 (i.e., at initial run time), broadcasting a (*, t) message

down to the lowest layer (i.e., Layer 4) is compulsory to find the lowest next

scheduled time for the model. This example locates a Source component in the Layer

4. However, if it were located in other layers, broadcasting the (*, t) message down to

the lowest layer would ensure the lowest next scheduled time is collected among the

Agendas.

When the (*, t) message reaches the lowest layer, the (*, t) is converted to a (*,

t=0); we assume that 0 is the first event; i.e., the creation of first entity. The (*, t=0)

is then transferred up to the top layer since it is the lowest next scheduled time in the

whole hierarchy. After this first iteration, each time a (*, t) goes down toward its

origin layer, all the visited layers’ monitors need to execute their Agendas by

removing their imminent item; i.e., the (*, t=value) message. For example, executing

the monitors in Layer 2 and Layer 3 at simulation time 0 removes the (*, t=0) from

their Agendas. Only Layer 4 that contains a default entity (which is inserted by the

Source component) removes the (*, t=0) and schedules a new event for the entity.

At simulation time 10, a (*, t) message is broadcasted to Layer 4 from which

the (*, t=10) has come. During this (*, t) broadcasting, all visited Agendas’ imminent

 133

items are removed (denoted by italic words). However, only Layer 4 schedules a new

event for its imminent entity (denoted the bold words). Its new lowest scheduled

time, i.e., (*, t=16) is then transferred to Layer 3 and inserted to the layer’s Agenda

(denoted by underlined words). This value is then compared with its lowest next

scheduled time; i.e., t=14. Since t=14 is smaller than t=16, the (*, t=14) is

transferred up to Layer 2. The processes of broadcasting a (*, tn) message, inserting it

to an Agenda, comparing the value with the lowest value of the Agenda and re-

broadcasting the smallest value are repeated until the top layer in order to ensure that

all parent layers know their child layers’ next scheduled time.

At simulation time 14, traversing down until Layer 4 is not needed since its

lowest next scheduled time is bigger than the lowest next scheduled time in Layer 3.

Layer 3 then transfers a (*, t=16) message to Layer 2 since t=16 is smaller than t=22.

Layer 2 transfers a (*, t=16) message to Layer 1 after comparing the value of t=16

with t=18. However, at simulation time 16, a (*, t) will again need to traverse down

to the Layer 4. These processes will continue until the length of simulation time has

been reached.

5.10 Problems and Challenges

The ability to create many visualization instances during runtime can slow model

execution and could create awkward model visualization. Model execution is

dependent on the number of visualization instances on the stages and more

visualization instances will definitely demand more time to render the data on the

instances. Awkward model visualization happens when we do not control the depth

of the objects on the stage properly. For example, DES components or entity

instances that have higher depth than a visualization instance will disturb learners’

view of data rendered on the visualization instance whenever it is dragging over them.

Thus, we need to specify a range of depth numbers that a certain object type can take

whenever it is created.

In order to properly stack objects on the stage, we first gave a lower range of

depth numbers for active and passive components, followed by a Monitor, a Utility,

entities and then visualization components. This ensures that all visualization

components are always on the top of the stage wherever they are dragged. Entities

 134

should have higher depth compared to simulation components for a reason that they

should move over the model structures fabricated by the simulation components.

Based on the Delegation Event Model, we can actually permit learners to

modify or expand model structures during runtime. This is possible since a

simulation component’ output port only needs to be fed with the name of its listener

in order to transfer entities to the listener. For this, we need to provide a palette that

hosts various simulation components (as in our first approach of providing

visualization components) where a relevant component can be instantiated with a

default ID name by clicking its associated symbol, dragged onto a certain location and

linked to its upstream component; e.g., through dragging a point from the instance to

the upstream component.

Permitting model configuration during runtime can create interesting activities

that engage learners with the model. Observing and analyzing the effect of change of

model structures to model behaviour will help learners to understand the model better.

However, allowing learners to drag simulation components during runtime will pose a

problem; i.e., the animation of entity movement between a component and a dragged

component could not be simulated properly. This is true when entities are moving

toward the component and at the same time the target component is dragged to other

places. As a result, the entities will not properly reach their destination since the

distance calculated when they started moving has already changed.

We sometimes need auxiliary messages (in addition to entity messages) for

accomplishing relevant tasks in DES; e.g., in activating transporter or handling

reneging and jockeying activities in a queue. Handling reneging and jockeying needs

a queue to acknowledge a component that handles these activities, i.e., by sending

messages that contain entity names whenever the entities enter the queue. The

component needs two main properties: (1) tolerance time that employs a list of

distributions for representing the time limit that the entity is willing to wait in the

queue, and (2) destination port for specifying the destination that the entity will go

after being retrieved from the queue. A message received from the queue will be

delayed based on its tolerance time. When the message has consumed the time, it will

search its associated entity in the queue. If its associated entity is still available, the

entity will retrieved from the queue and moved to the destination specified in the

destination port. The message will then be destroyed. If its associated entity is

missing (i.e., its associated entity has been removed from the queue), the message will

 135

just be destroyed. We have to insert these auxiliary entities into the model’s Agenda

to tally their execution with the model time. However their existence in the Agenda

could make the Agenda looks clumsy.

We could use Flash’s keyframes to form layers in a hierarchical DES model.

Each keyframe handles a sub-model’s structures and provides a platform for learners

to conduct experiments and customize its visualization. However, Flash treats each

keyframe as a totally new program. It only provides a basic transition between

keyframes; i.e., moving an execution point from keyframe to keyframe without a

support for either accessing objects in or transferring objects to other keyframes. In

case of the development of hierarchical DES model, this hinders us from passing

entities or other types of messages to other keyframes. Such an approach is totally

difference with Microsoft Visual Basic (Wright, 1998) since this language allows the

use of FormName.ObjectName.Property to access objects that reside in other forms

and objects can be passed from form to form freely.

The only way to implement the discussed mechanisms is the use of only one

keyframe, but with a number of main movie clips. Each movie clip represents a layer

and can contain many other movie clips; i.e., simulation components, visualization

components, etc. Since all movie clips now reside in the same keyframe, the

simulation components can easily be accessed from other movie clips and the

lifecycles of entities and (*, t) messages can be maintained. To prevent the

clumsiness of many main movie clips on a stage, learners should be allowed to hide or

display the main movie clips.

 136

CHAPTER 6

EVALUATION AND ANALYSIS

6.1 Introduction

Learners should acquire knowledge and experiences during their learning.

Knowledge can be delivered using various media (e.g., communications, texts, etc.) in

classrooms or through online environments. However, experiences can only be

gained when learners are exposed to real applications of the knowledge; e.g., through

the use of models that implicitly embed the knowledge.

Interactive models can offer learners valuable experiences in two ways:

providing information explicitly or implicitly during model exploration and

challenging learners’ judgment during model interaction. For example, the

explanation of how various variables affect DES systems can offer basic knowledge

to learners. However, allowing them to explore and interact with relevant models of

the systems will really fill in and clarify their mental models. Thus, the use of various

teaching modalities to meet various types of learners’ needs is important in learning

and teaching settings (Fenrich, 2006; Smith & Renzulli, 1984).

Learning and understanding DES concepts is a challenging task. This is

especially true when the availability of teachers in assisting learning is rather limited;

e.g., in online environments. There are a lot of static materials that completely

explain DES concepts. Although their use in the learning environment has been

claimed to have at least equal learning outcomes as interactive materials (e.g.,

Hegarty, Kriz, & Cate, 2003; Mayer, Hegarty, Mayer, & Campbell, 2005; N. H.

Narayanan & Hegarty, 2002; Tversky & Morrison, 2002), they typically fail to attract

and engage learners, especially visual learners who learn by seeing and visualizing,

and kinaesthetic learners who learn by doing relevant activities. There are also a lot

of attractive DES models. However, they were developed for specific real systems

that typically focus on system performance analysis. Since their focuses are more on

 137

final outputs rather than getting insight into model behaviour, interactions with the

models are considered as irrelevant aspects.

We believe that queuing models created using our components are attractive,

interactive, informative and useful to be used in the learning and teaching

environment. The main premise for this claim is that we have designed DES

components that are capable of providing models that fulfil characteristics of

educational models as suggested in literature (e.g., Bransford, 2000; Lunce, 2004,

2006; Mildrad, 2002). These include activities through variable manipulations,

informative and meaningful feedback through various visualization tools, attractive

animation of various objects that depicts model behaviour and flexibility in

replicating of real systems. However, this assumption needs to be assessed through

experiments; i.e., by obtaining feedback from a sample of learners about knowledge

and insight they gain while experiencing samples of our models. Analyzing the

feedback will truly indicate if our tool can construct queuing models that have a

positive effect on learning.

We conducted two types of experiments. The first experiment evaluated

learners’ perceptions about the attractiveness and interactivity of samples of our DES

models. For this, we designed our own questionnaire based on model characteristics

argued important in literature. The second experiment evaluated model designers’

perceptions about the usefulness, ease of use and enjoyment of the tool and their

willingness to use the tool in the future. To measure these factors, we used the

Technology Acceptance Model (TAM) and other extension models found in

literature. We also assessed the participants’ workload while experiencing our tool

using NASA Task Load Index (TLX).

6.2 Evaluating Models’ Attractiveness and Interactivity

6.2.1. Assessment and Evaluation Methods

We developed our own questionnaire to evaluate the attractiveness and interactivity of

models constructed using our component-based tool. The questionnaire was divided

into four main sections: general information, general questions, model ratings and

additional questions.

 138

The general information section contained two questions: how much computer

experience our participants had and how much they used computers as a learning tool.

The general questions also consisted of two questions. The first question was based

on a five-point Likert-type scale that requested the participant to circle one of

available options (i.e., 1 = strongly disagree; 2 = disagree; 3 = neither disagree nor

agree; 4 = agree; 5 = strongly agree) that they had good knowledge on simulation.

The second question requested them to specify how long they had spent exploring the

given models. Thus, during our briefing each participant was reminded to record how

long they used the models.

The model ratings are shown in Table 6.1. Items in this section were all based

on a five-point Likert-type scale. However, they were invited to write any comment

on each of these items. All items were always asked from the positive aspects (i.e.,

we did not mix positive and negative aspects of items). This makes it easier for them

to understand the items and avoids them making any inadvertent mistakes when

circling the options from strongly disagree to strongly agree.

The development of the items were based on educational model characteristics

that were argued to be important in literature (e.g., Beux & Fieschi, 2007; Gredler,

2003; Jeffries, 2005; Jong, 1991; Joolingen & Jong, 1991a; Swaak & Jong, 2001a).

We embedded all these characteristics in our components to produce such types of

models. Samples of resulting models were then tested to obtain learners’ levels of

satisfaction for each criterion so that we can judge the attractiveness, interactivity and

usefulness of the models. Note that we did not include item number 12 in Table 6.1

since it contained a list of sub-items that requested the participants to rate if each

visualization tool (e.g., graphs, histograms and boxplots) and each facility provided

by the models (e.g., ability to pause, resume and adjust animation speed, table of

events, etc.) helped them to understand the models better. The item and its sub-items

were displayed in Table 6.5.

The additional question section also consisted of two items. The first item

asked the participant if they had ever used other animated queuing models. The

second item invited the participants to provide additional suggestions on how to make

learning through simulation easier.

 139

Table 6.1 Items in Model Rating

1. I am clear about the objectives of the model.

2. The model is useful for information visualization and observing animated objects

and events.

3. The model is interactive, inviting input and providing appropriate feedback.

4. The model contains high quality animation which makes learning enjoyable and

interesting.

5. The animation helps me to understand scenarios in the model.

6. The various performance visualizations (graphs and other data displays) are

meaningful.

7. The model provides a graphical user interface (GUI) which is easy to interact

with.

8. I like the design of the GUI.

9. It is good that the visualizations (e.g., graphs, histograms, etc.) are only displayed

when requested.

10. The interaction with the model by changing the model’s parameters during

model execution (e.g., arrival rate, queue rule, server unit) is important in order

to understand model behaviour.

11. The change of the representation of animated objects based on their current states

is important for me.

13. The model is considerably out of bugs. Please specify if you found any bugs

while running the model.

14. Overall, the attractiveness and interactivity of the model is good. Any

suggestions to improve the attractiveness and interactivity of the model?

15. I would like to use this kind of model for understanding queuing scenarios.

6.2.2. Experiment Participants

Our objective is to obtain as much as possible of learners’ honest feedback about their

experiences while using the given models. Thus, we only distributed the models to

volunteer participants. Additionally, we did not impose them any time limit and time

specification to use the models (i.e., they could explore the models how long the

wished at their leisure time). These approaches allowed them to interact with the

models and observed the impacts of any changes they had made in a convenient way

without any constraints (e.g., unfocused mind, bad mood, etc.). However, since

simulations are under constructivist learning, their feedback about the usefulness,

attractiveness and interactivity of the models could be influenced by certain factors.

These include their types of learners whether they are visual learners, auditory

learners, kinaesthetic learners or read-write learners (Aragon, Johnson, & Shaik,

2002; Haapala, 2006), their prior knowledge on a relevant domain (Dochy et al.,

 140

1999; Hailikari et al., 2008; Johnson, Aragon, Shaik, & Palma-Rivas, 2000), etc.

Above all, the feedback analyses could give us hints on the participants’ acceptance of

the models.

We conducted this experiment in a two-week time interval. Participants were

approached in the laboratories of the Computer Science and Software Engineering

Department, and the laboratories of the Mathematics and Statistics Department (both

at the University of Canterbury) for their willingness to participate in the experiment.

They were offered an incentive; i.e., two bars of chocolate. A total of 28 participants

volunteered to experience our sample models. They were from various year students

and programmes; e.g., Computer Sciences, Engineering, Mathematics, Commerce,

etc. Six of them were female and the rest were male. We purposely distributed our

models to various students so that we had flexibility in analyzing the feedback from

various learners about the models’ attractiveness and interactivity, irrespective of their

knowledge on simulation. This enabled us to analyze the feedback in various angles;

e.g., analyzing the data based on overall participants, gender and/or their knowledge

levels of simulation.

All of the participants were provided with two models. The first model

(Figure 6.1) simulated a simple queuing network. It populated two types of

simulation entities using two Source components. The first type only required a

single server to be processed. The second type needed two servers, the second of

which was the same one that processed the first type of entities. The second model

(Figure 6.2) just added complexities into the first model. The first type selected an

idle server from two parallel servers. After going through one of the parallel servers,

they needed to visit another server before leaving the model. The second type

selected a server with a shorter queue. After going through this process, only 30% of

them directly leave the system. Another 70% went through the servers that processed

the first type of entities. However, they did not need to go through another server as

for the first type of entities; instead they directly left the model. See Appendix C.

The purposes of the experiment and the description with a snapshot of each

model were provided on an information sheet and attached to the questionnaire.

Additionally, we demonstrated the models to each participant and explained what they

were requested to do during and after the experiment (e.g., clicking components,

changing their variables, instantiating visualization tools, changing animation speed,

etc.) so that they had some strategies in their exploration. This was important since

 141

the models were open-ended simulation models that needed the participants to at least

be equipped with basic mental models before they were left free to explore the models

themselves. They were also briefly introduced to all items in the questionnaire in

order to make sure that they understood the items and answered them appropriately.

Any relevant questions regarding the models and the questionnaire were then

welcomed and answered.

Figure 6.1 Simple Queuing Networks

Figure 6.2 More Complicated Queuing Networks

 142

The participants were encouraged to experience with both of the models.

They were then left to use the models as long as they wished either in the laboratories

or at their homes. By leaving the models to be experienced at their leisure they had

and no time limits imposed, we hoped that we would get as honest feedback as

possible.

6.2.3. Data Analysis and Results

6.2.3.1 General Information

When we asked the participants to specify how much computer experience including

programming they had, only five participants (18%) considered that they did not have

much experience in that. When we looked at the data, four of them were first year

students of the programmes of Engineering (two students), Commerce (one student)

and Geophysics (one student). The other one was a third year student of the

Geography programme. They were probably familiar with computers but likely

confused when seeing the phrase “including programming”. Two students (7%)

skipped this question; i.e., they did not write anything in the provided space.

However, we believed that both of them had quite experience in programming since

they were a fifth year Engineering programme student and a third year Mathematics

and Physics programme student. Three participants (11%) considered that they only

had average experience in computing in spite of the fact that they were third year

students of Engineering (two students) and Computer Science programmes. Other

participants (64%) stated they had excellent experience in computer.

For the second question, four participants (14%) stated that they did not use the

computer much as a learning tool. Two of them were the same participants that

claimed they did not have much experience in computer. One participant (4%)

skipped this question and he was the same participant that skipped the first question.

Two participants (7%) claimed they used computer moderately as a learning tool.

Other participants (75%) considered that they used a computer as a learning tool a lot

based on the key answers they gave; e.g., very often, a lot, everyday, most of the time,

etc.

 143

6.2.3.2 General Questions

Simulation is a learning environment where its contents are not explicitly exposed to

learners. Its usefulness in providing the opportunity to learn in a more realistic

context heavily depends on students’ prior knowledge. There are two types of

knowledge that learners should have: specific conceptual knowledge; i.e., the domain-

specific knowledge about concepts and facts that a model represents, and general

knowledge; i.e., quantitative and qualitative aspects to read information and draw

conclusions from the model’s outputs. The importance of both types of knowledge in

structuring and accommodating learning through models has been argued in much

literature (e.g., Dochy et al., 1999; Hailikari et al., 2008).

Operating a simulation model without the knowledge may create three distinct

problems. First, learners tend to conduct inefficient experiments, thus any

interactions with the model seems not to be important. Second, learners may have

trouble in interpreting information, thus animations and data visualizations seem to

give insignificant impacts and eventually demotivate them to learn. Third, learners

may not be able to regulate their learning processes, thus the model seems not to be

useful. Therefore, collecting participants’ prior knowledge to properly judge their

feedback about the usefulness of our models and their relevant features in ensuring

the participants’ learning is important.

Based on the participants’ responses, only six participants (21%) were

confident (agreed/strongly agreed) that they had good knowledge on simulation. Nine

participants (32%) considered that they did not have good knowledge on simulation

based on their choices of strongly disagree/disagree options. The other thirteen

participants (46%) stated that they were undecided about their knowledge on

simulation. Figure 6.3 shows the frequencies of the participants’ scores for the first

general question.

Table 6.2 shows the summary reports of estimated time spent on the models

by all participants grouped by their knowledge levels on simulation. The average

time spent by all of the participants was 17.61 minutes. The minimum and the

maximum time spent were 3 minutes and 60 minutes respectively. Both the minimum

and the maximum values were from the participants that were undecided about their

knowledge on simulation.

 144

Knowledge on simulation

1

8

13

5

1

0

2

4

6

8

10

12

14

Rating

F
re

q
u

e
n

c
y

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6.3 Participants’ Feedback on Simulation Knowledge

Table 6.2 Time Spent (in minutes) for Each Level of Knowledge on Simulation

Score N Minimum Maximum Mean Std. Deviation

1 1 10 10 10 -

2 8 5 30 13.75 7.44

3 13 3 60 19.08 19.26

4 5 10 30 23 9.75

5 1 10 10 10 -

It is interesting to observe that the participants who agreed that they had good

knowledge on simulation were in fact the group that used the models for the longest

time in average (i.e., 23 minutes), followed by the group of participants that neither

disagreed nor agreed that they had good knowledge on simulation (i.e., 19.08

minutes). This perhaps signals that the use of simulation models in learning settings

is effective for learners for whom their knowledge levels on simulation are between

moderate and good. One possible reason for this is that learners in this group more

often have hypotheses in mind to be tested during their exploration. These induce

them to engage with the models through conducting and understanding the models’

relevant outputs.

If we look at Table 6.2, the use of simulation models could probably fail to

engage the extreme point participants; i.e., the participants that had little knowledge

on the concepts that the models represented and the participants that had already had

 145

concrete mental models about the concepts. One reason for the former is that this

type of learners probably did not have ideas of what the models try to represent.

Thus, they had no strategies in designing experiments and understanding the models’

outputs. The reason for the latter is that this type of learners probably felt bored with

the models because their outputs could well be predicted for each experiment.

6.2.3.3 Model Rating

Some researchers (e.g., Jong & Joolingen, 1998, 2008; Land, 2000; Landriscina,

2009; Lunce, 2006; J. Quinn & Alessi, 1994) claim that learners that have relevant

mental models or been equipped with some basic knowledge can effectively

experience and evaluate open-ended simulation models. Based on this argument, we

separated our analyses based on the participants’ knowledge on simulation. Table 6.3

reports the experienced participants’ (i.e., who had good simulation knowledge)

feedback about the models. Table 6.4 and Table 6.5 meanwhile report the

inexperienced participants’ feedback about the models; i.e., who were undecided and

who did not consider that they have good simulation knowledge respectively. By

separating the results, we can effectively evaluate and judge the usefulness of our

models in offering the opportunity to learn DES concepts and the significance of their

features in ensuring the participants’ learning.

Question 1 asked the participants if they were clear about the objectives of the

models; i.e., what situations the models represented and what they were expected to

gain while exploring the models. Interestingly, all the six experienced participants

were clear about the objectives of the models. This indicated that they had a clear

picture about the principles of the models. Of the nine participants who claimed that

they did not have knowledge on simulation, only one participant (11%) was unclear

about the objectives of the models. There were two participants (22%) undecided

while the remaining six participants (67%) stated that they understood the model

objectives. Of the group that were undecided about their knowledge on simulation,

six participants (46%) confirmed that they were clear about the objectives of the

models. Only two participants disagreed with this statement. In general, most of the

inexperienced participants (55%) understood the purposes of the models. We

believed that our approach of providing a description sheet of the models,

 146

demonstrating the models and handling a question and answer session with the

participants before they started their explorations gave some mental images for most

of the participants in these two groups.

Table 6.3 Good Simulation Knowledge Participants’ Feedback about the Models

Item SD D NDA A SA Mode Mean
Std.

Deviation

Clear

objectives

0 0 0 4 2 4 4.33 0.21

(0%) (0%) (0%) (67%) (33%)

Model useful
0 0 0 3 3 4, 5 4.50 0.22

(0%) (0%) (0%) (50%) (50%)

Model

interactive

0 0 1 2 3 5 4.33 0.33

(0%) (0%) (17%) (33%) (50%)

Quality

animation

0 0 1 4 1 4 4.00 0.26

(0%) (0%) (17%) (67%) (17%)

Animation

helpful

0 0 0 3 3 4 4.50 0.22

(0%) (0%) (0%) (50%) (50%)

Visualization

meaningful

0 0 0 4 2 4 4.33 0.21

(0%) (0%) (0%) (67%) (33%)

GUI

interactive

0 0 1 4 1 4 4.00 0.26

(0%) (0%) (17%) (67%) (17%)

GUI

acceptable

0 0 1 5 0 4 3.83 0.17

(0%) (0%) (17%) (83%) (0%)

Pop-up

visualization

0 0 1 2 3 5 4.33 0.33

(0%) (0%) (17%) (33%) (50%)

Interaction

helpful

0 0 1 3 2 4 4.17 0.31

(0%) (0%) (17%) (50%) (33%)

Animation

important

0 1 0 3 2 4 4.00 0.45

(0%) (17%) (0%) (50%) (33%)

Model out of

bugs

0 0 3 2 1 3 3.67 0.33

(0%) (0%) (50%) (33%) (17%)

Model good
0 0 1 2 3 5 4.33 0.33

(0%) (0%) (17%) (33%) (50%)

Model

preference

0 0 1 2 3 5 4.33 0.33

(0%) (0%) (17%) (33%) (50%)

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

Table 6.4 No Simulation Knowledge Participants’ Feedback about the Models

Item SD D NDA A SA Mode Mean
Std.

Deviation

Clear

objectives

0 1 2 6 0 4 3.56 0.24

(0%) (11%) (22%) (67%) (0%)

Model useful
0 1 0 7 1 4 3.89 0.26

(0%) (11%) (0%) (78%) (11%)

Model

interactive

0 1 1 6 1 4 3.77 0.28

(0%) (11%) (11%) (67%) (11%)

Quality

animation

0 0 3 4 2 4 3.89 0.26

(0%) (0%) (33%) (44%) (22%)

Animation

helpful

0 0 3 5 1 4 3.78 0.22

(0%) (0%) (33%) (56%) (11%)

Visualization

meaningful

0 2 1 6 0 4 3.44 0.29

(0%) (22%) (11%) (67%) (0%)

GUI

interactive

0 1 4 3 1 3 3.44 0.29

(0%) (11%) (44%) (33%) (11%)

 147

GUI

acceptable

0 0 5 3 1 3 3.56 0.24

(0%) (0%) (56%) (33%) (11%)

Pop-up

visualization

0 1 2 5 1 4 3.67 0.29

(0%) (11%) (22%) (56%) (11%)

Interaction

helpful

0 0 1 6 2 4 4.11 0.20

(0%) (0%) (11%) (67%) (22%)

Animation

important

0 2 2 5 0 4 3.33 0.29

(0%) (22%) (22%) (56%) (0%)

Model out of

bugs

0 0 5 1 3 3 3.78 0.32

(0%) (0%) (56%) (11%) (33%)

Model good
0 0 2 6 1 4 3.89 0.20

(0%) (0.00%) (22%) (67%) (11%)

Model

preference

0 1 2 3 3 4 3.89 0.35

(0%) (11%) (22%) (33%) (33%)

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

Table 6.5 Undecided Simulation Knowledge Participants’ Feedback about the

 Models

Item SD D NDA A SA Mode Mean
Std.

Deviation

Clear

objectives

0 2 5 2 4 3 3.62 0.31

(0%) (15%) (38%) (15%) (31%)

Model useful
0 0 2 10 1 4 3.92 0.14

(0%) (0%) (15%) (77%) (8%)

Model

interactive

0 1 4 5 3 4 3.76 0.26

(0%) (8%) (31%) (38%) (23%)

Quality

animation

0 4 4 4 1 2, 3, 4 3.15 0.27

(0%) (31%) (31%) (31%) (8%)

Animation

helpful

0 0 2 7 4 4 4.15 0.19

(0%) (0%) (15%) (54%) (31%)

Visualization

meaningful

0 1 5 5 2 3, 4 3.62 0.24

(0%) (8%) (38%) (38%) (15%)

GUI

interactive

0 3 5 3 2 3 3.31 0.29

(0%) (23%) (38%) (23%) (15%)

GUI

acceptable

1 2 4 5 1 4 3.23 0.30

(8%) (15%) (31%) (38%) (8%)

Pop-up

visualization

0 0 1 6 6 4, 5 4.38 0.18

(0%) (0%) (8%) (46%) (46%)

Interaction

helpful

0 0 3 6 4 4 4.08 0.21

(0%) (0%) (23%) (46%) (31%)

Animation

important

0 2 3 7 1 4 3.54 0.24

(0%) (15%) (23%) (54%) (8%)

Model out of

bugs

0 1 4 5 3 4 3.77 0.26

(0%) (8%) (31%) (38%) (23%)

Model good
0 2 3 6 2 4 3.62 0.27

(0%) (15%) (23%) (46%) (15%)

Model

preference

0 1 2 9 1 4 3.77 0.20

(0%) (8%) (15%) (69%) (8%)

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

Much literature (e.g., Falvo, 2008; Hegarty, 2004; Hegarty et al., 2003; Lowe,

2004) stresses the usefulness of embedding animations and data visualizations in

educational models. Animations motivate learners to learn and help them get insight

 148

into complicated phenomena and understand the relationships between various model

variables. The effect of these variables to model behaviour is then made visible

through various data visualizations. However, the usefulness of animations and data

visualizations is much influenced by whether or not a learner has been equipped with

basic domain specific knowledge for understanding model outputs, generic

knowledge of quantitative and qualitative methods for interpreting the outputs and

skills for performing further experiments.

Question 2 tested if our models were useful for information visualizations and

observing animated objects and events in order to understand the models’ states and

behaviour. All of the six experienced participants believed that the models were

useful for these. This reflected that our DES components could build models with

good animations and data visualizations. Data also revealed that eight of the

participants (89%) who did not have good knowledge on simulation and eleven of the

participants (85%) who were undecided about their simulation knowledge considered

that our models provided useful animations and information visualizations. Of these

inexperienced participants, only one participant disagreed with the statement. The

high percentage of agree/strongly agree opted by the participants in this group showed

that information visualizations and animations of objects and events in our models

helped them understand DES concepts better.

Interaction plays an important role in any learning processes (Arbaugh &

Benbunan-Fich, 2007; Su et al., 2005; Woo & Reeves, 2007). In the traditional

classroom environment, interactions between learners and their teachers can stimulate

their knowledge acquisition and clarify their judgment. In case of virtual classrooms

and online learning environments that use models as mediums of instructions, model

interactivity can replace the teachers’ role. Although this feature does not guarantee

learning through models (Davies, 2002; Pilkington & Parker-Jones, 1996), its

significance in motivating and engaging learning has been corroborated in many

studies (e.g., Beux & Fieschi, 2007; Bransford, 2000; Mildrad, 2002; Schank,

Berman, & Macpherson, 1999). Question 3 tested if our models were interactive,

inviting input and providing appropriate feedback.

Based on the data, five experienced participants (83%) agreed/strongly agreed

that our models were interactive and provided appropriate feedback. The other one

participant circled an undecided option. This indicated that DES models built using

our components provided an interactive platform for stimulating active explorations

 149

and showing cause and effect of the participants’ relevant actions. Of the

inexperienced participants, only two participants (9%) disagreed with the statement;

one was from the participants that disagreed that she had good knowledge on

simulation while the other one was the participant that was undecided about his

knowledge on simulation. A majority of participants that did not have knowledge on

simulation (i.e., 78%) and were undecided about their knowledge on simulation (i.e.,

62%) agreed that the models were interactive. Once again, the feedback reflected that

our models were interactive and informative to be used as DES learning tools even

though they were used by the participants that did not have adequate prior knowledge

on DES.

Flash has been claimed to produce high quality animated applications (Castillo

et al., 2004; Mohler, 2006; Shupe & Hoekman, 2006). This was a reason why we

used Flash to build DES models and animate their behaviour. Question 4 tried to

obtain feedback from the participants about the animation quality of our models. Five

experienced participants (83%) considered that the models contained high quality

animations. Of the inexperienced participants, only four participants (18%) disagreed

with the statement and they were the participants that were undecided about their

simulation knowledge.

Table 6.6 shows in details the feedback of the participants that claimed they

often used computer as a learning tool (21 participants) about the animation quality of

our models. Eleven participants (52%) from this group considered that the models

contained high quality animations. Only three participants (14%) disagreed with the

statement. The majority of agreed/strongly agreed participants indicated that our

components produced high quality animated models that could effectively represent

the DES concepts which were difficult to be explained in static materials. The

animations offered exciting learning materials that motivated their learning and

attracted them to engage with the models.

Table 6.6 Feedback on the Quality of Animation from the Participants Who

 Always Used Computer as a Learning Tool

Scale Frequency Percent
Valid

Percent

Cumulative

Percent

2 3 14.3 14.3 14.3

3 7 33.3 33.3 47.6

4 8 38.1 38.1 85.7

5 3 14.3 14.3 100.0

Total 21 100.0 100.0

 150

Model presentation is important to attract and engage learners (Djajadiningrat,

Matthews, & Stienstra, 2007; Parrish, 2009). The use of meaningful animations for

showing model behaviour can offer many benefits. These include facilitating

learners’ understanding about dynamic processes in a model, making the learning

experience enjoyable and enriching. Some studies have also shown that learning

through meaningful animations typically motivates learners to learn and induce them

to retain information longer (Teoh & Neo, 2007; Vogel-Walcutt, Gebrim, &

Nicholson, 2010). Question 5 tested if our embedded animations helped them to

understand scenarios in the models. Interestingly, all the experienced participants

agreed/strongly agreed with this statement. The feedback reflected that our approach

of demonstrating the behavior of the models through meaningful animations (e.g.,

showing a sequence of events, animating the movement of entities and their current

states, changing the pictures of a server based on its status, etc.) was very useful for

understanding the models. Data also revealed that six of the participants (67%) who

did not have knowledge on simulation and eleven of the participants (85%) who were

undecided about their knowledge on simulation agreed/strongly agreed with the

statement. This suggested that we successfully integrated animations in our DES

models and the animations helped this inexperienced group understand scenarios in

the models.

When asked if various performance visualizations were meaningful for

learning (Question 6), all the experienced participants gave positive feedback on the

item. This showed that graphs and other data displays used to report the detailed

performance of the models over simulation time were meaningful and should be used

to complement animations. This is expected since this group of learners knows the

importance of the visualization tools in measuring the performance of the models.

However, three of the inexperienced participants (14%) disagreed and six of them

(27%) were undecided about the meaningful of the various performance visualization

tools. This probably signaled that the visualization tools may not so useful unless

learners would like to understand in details the current performances of the models.

GUIs play important roles in data-driven simulations; i.e., to capture learners’

inputs and send them to particular model processes. We partitioned the processes to

relevant components, each of which has its own GUI that can be accessed by clicking

on it. The GUIs have two functions: (1) displaying all editable variables and their

current values, and (2) instantiating data visualization tools that graphically chart the

 151

component behavior in real time. We expected this approach enabled learners to

easily interact with the models (Question 7). Data analysis showed that five of the

experienced participants (83%) agreed/strongly agreed with us. Of the inexperienced

participants, only four (18%) disagreed that the GUIs provided by our tools were easy

to interact with. The results might indicate that the use of a mouse clicking approach

to access components offered an easy platform for learners to explore and experiment

with the models. However, a better approach to access the GUIs should be

investigated since about half of the inexperienced participants were still undecided if

the GUIs were easy to access.

When asked if they liked the design of the GUIs (Question 8), five of the

experienced participants (83%) agreed with the statement. This might reflect that our

approach of providing simple interfaces using text boxes, command buttons, combo

boxes, etc. and presenting simulation results in various windows that can be dragged

to any locations was effective. However, three inexperienced participants (14%) did

not like the design of the GUIs. One of them was the same participant that disagreed

the GUIs were easy to interact with. The other two participants were from the

participants that could not decide if the GUIs were easy to interact with. Interestingly,

there were no participants that agreed/strongly agreed that the GUIs were easy to

interact with did not like the design of the GUIs.

There has been a substantial amount of evidence that proves the use of

multiple representations through different choices of data presentations and different

forms of feedback can significantly enhance learning in complex domains (e.g., see

Ainsworth, 1999; Ainsworth, Bibby, & Wood, 2002; Bodemer & Faust, 2006;

Goldman, 2003; Kozma, 2003; Schnotz & Bannert, 2003; Seufert, 2003).

Unfortunately, this desirable feature has not been integrated in DES models. Our

DES models allow visualization customizations; i.e., learners can dynamically create

a number of visualization instances from many available types of visualization tools

(e.g., graphs, tables, clocks, etc.) during a simulation run. Thus, our models can be

represented by many interfaces, with each interface containing many representations

that show various angles of model information and variable relationships. For

examples, texts are used to represent certain contexts, graphs (or other visualization

tools) or tables of numeric values are used to represent quantitative aspects of the

models and animations are used to represent qualitative information of their inner

processes. Data analysis of Question 9 showed that five experienced participants

 152

(83%) considered that the approach of displaying visualizations only when requested

was a good approach. Of the inexperienced participants, only one participant

disagreed with this approach. A majority of them showed their strong support for the

approach. The feedback reflected that our approach of allowing learners to customize

their own visualizations was deemed as a good idea since they could control the

display of model information based on their ability to understand the models’

behaviour.

As mentioned earlier, interactions during model execution are important to

understand model behaviour. However, most DES models provide no support for

model variable alterations during runtime. This is totally different with our DES

models that allow learners to interact with DES variables (e.g., by changing arrival

rates, queue rules, server units, etc.) on the fly and observe the effect of those

variables to model behaviour. Question 10 tests if this approach is important in

learning. Five experienced participants (83%) stated that this feature helped their

learning. Of the inexperienced participants, there was no one who was negative about

the importance of this approach (although there were four participants (18%) could

not decide). This proved that providing an interaction platform for learners to clarify

their ideas was a desirable feature for learning through models.

The change of animated object representations explicitly shows the change of

model states. We suspected that these tiny changes may not help learners to

understand model behaviour so much. However, analyses of Question 11 showed that

four experienced participants (67%) agreed/strongly agreed that such changes were

important for them to understand model behaviour. Of the inexperienced participants,

there were thirteen participants (59%) agreed/strongly agreed while only four

participants (18%) disagreed with the statement. This indicated that animations of

objects based on their states might assist learning and offered the advantage of

delivering better representations of relevant concepts. Thus, animations should be

used to explicitly explain dynamic and complicated processes such as DES and

system dynamic.

While visualization tools are important to graphically chart the pattern of

numerical data, other relevant tools can also offer benefits in easing learning. For

example, we provided a slider to allow learners to control animation speed based on

their abilities in extracting information from the models (i.e., time scale of events), a

table of events to show a list of types of the previous, current and next events with

 153

their occurrence time in relation to model variables, tables of statistical information to

report the current statistics of each component, a description table of each entity to

display a list of its performed activities in the models, and a facility button to hide and

display paths of entity movement. This feature enables them to clearly view the

lifecycles of various entities especially for more complex structure models.

The usefulness of these tools in helping learners to understand queuing models

was investigated in Question 12. The question was divided into sub-questions, each

of which requested the participants to rank the tool’s usefulness in model exploration.

The sub-questions and their associated tools are shown in Table 6.7. Table 6.8, Table

6.9 and Table 6.10 meanwhile show the descriptive analysis of the participants’

feedback about the tools based on their knowledge on simulation.

Table 6.7 Sub-questions of “These tools help to understand the model better (Please

 write if you have any comments)”

Sub-question Tool

12.1 Graphs

12.2 Histograms

12.3 BoxPlots

12.4 Ability to pause, resume and adjust animation speed

12.5 Table of events (previous, current and future)

12.6
Table of component’s statistical information (e.g., queue, server,

etc.)

12.7
Entities’ information window showing activities they have

performed in the model

12.8 Ability to hide and show the path of entities

Table 6.8 Good Simulation Knowledge Participants’ Feedback about the Model

 Tools

Tool SD D NDA A SA Mode Mean
Std.

Deviation

Graphs
0 0 0 4 2 4 4.33 0.21

(0%) (0%) (0%) (67%) (33%)

Histograms
0 0 1 3 2 4 4.16 0.31

(0%) (0%) (17%) (50%) (33%)

Boxplots
0 0 1 4 1 4 4.00 0.26

(0%) (0%) (17%) (67%) (17%)

Animation

control

0 0 1 1 4 5 4.50 0.34

(0%) (0%) (17%) (17%) (67%)

Event table
0 1 1 4 0 4 3.50 0.34

(0%) (17%) (17%) (67%) (0%)

Statistical

tables

0 0 1 2 3 5 4.33 0.33

(0%) (0%) (17%) (33%) (50%)

Information

windows

0 0 2 3 1 4 3.83 0.31

(0%) (0%) (33%) (50%) (17%)

Path

visibility

0 0 4 1 1 3 3.50 0.34

(0%) (0%) (67%) (17%) (17%)

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

 154

Table 6.9 No Simulation Knowledge Participants’ Feedback about the Model Tools

Tool SD D NDA A SA Mode Mean
Std.

Deviation

Graphs
1 0 1 6 1 4 3.66 0.37

(11%) (0%) (11%) (67%) (11%)

Histograms
1 0 4 3 1 3 3.33 0.37

(11%) (0%) (44%) (33%) (11%)

Boxplots
1 1 4 2 1 3 3.11 0.39

(11%) (11%) (44%) (22%) (11%)

Animation

control

0 0 0 4 5 5 4.56 0.18

(0%) (0%) (0%) (44%) (56%)

Event table
1 2 1 3 2 4 3.33 0.47

(11%) (22%) (11%) (33%) (22%)

Statistical

tables

0 0 3 4 2 4 3.89 0.26

(0%) (0%) (33%) (44%) (22%)

Information

windows

0 1 5 2 1 3 3.33 0.29

(0%) (11%) (56%) (22%) (11%)

Path

visibility

0 4 2 1 2 2 3.11 0.42

(0%) (44%) (22%) (11%) (22%)

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

Table 6.10 Undecided Simulation Knowledge Participants’ Feedback about the

 Model Tools

Tool SD D NDA A SA Mode Mean

Std.

Deviat

ion

Graphs
0 2 2 9 0 4 4.57 0.97

(0%) (15%) (15%) (69%) (0%)

Histograms
0 1 5 6 1 4 3.54 0.22

(0%) (8%) (38%) (46%) (8%)

Boxplots
0 3 4 6 0 4 3.23 0.23

(0%) (23%) (31%) (46%) (0%)

Animation

control

1 0 1 7 4 4 4.00 0.30

(8%) (0%) (8%) (54%) (31%)

Event table
0 4 2 5 2 4 3.38 0.31

(0%) (31%) (15%) (38%) (0%)

Statistical

tables

0 1 3 6 3 4 3.84 0.25

(0%) (8%) (23%) (46%) (23%)

Information

windows

1 1 2 8 1 4 3.54 0.30

(8%) (8%) (15%) (62%) (8%)

Path

visibility

1 2 1 5 4 4 3.69 0.36

(8%) (15%) (8%) (38%) (31%)

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

Based on Table 6.8, graphs were rated as the most important visualization tool

by the experienced participants (i.e., all of them agreed/strongly agreed that graphs

helped them understand the models better), followed by an animation control (five

participants with four of them strongly agreed), statistical tables (five participants

with three of them strongly agreed), histograms (five participants with two of them

strongly agreed), boxplots (five participants with one of them strongly agreed), event

tables (four participants) and lastly the path visibility facility (two participants). This

reflected that graphs plotting relevant variables (e.g., number of entities in a queue,

 155

number of units of a resource used, etc.) over simulation time and an animation

control slider providing a feature for pausing, resuming and adjusting animation speed

based on the participants’ abilities to retrieve information from simulation were the

two most desirable visualization tools to get insight to the models’ behaviour. The

two visualization tools that received minimum scores were the path visibility facility

and event tables. The probable reason why the facility to hide and display received

the lowest score was because the models’ structures were not so complicated. This

tool would be useful if the models’ structures were complicated; i.e., they contained

many types of entities, each of which has its own paths. The participants that

disagreed with the usefulness of the table of events in helping them understand the

models claimed that the table was not very human readable. The table was actually

used by the models to update their behaviour and it could be used by interested

participants to trace how the models’ behaviour and their animations have been and

will be simulated over time.

For the inexperienced participants, the animation slider was rated as the most

important tool (i.e., twenty participants with nine of them strongly agreed), followed

by graphs (sixteen participants), statistical tables (fifteen participants), path visibility

(twelve participants with five of them strongly agreed), event tables (twelve

participants with four of them strongly agreed), information windows (twelve

participants with two of them strongly agreed), histograms (eleven participants) and

boxplots (nine participants). One inexperienced participant that felt the entity’s

information window was not an essential feature complained that the windows were

hard to locate while in use. This is probably true since the images of the entities in

our models are quite small.

When asked if the models were free of bugs (Question 13), fifteen of the

participants (three experienced participants and twelve inexperienced participants)

agreed/strongly agreed with the statement. Twelve of the participants (three

experienced participants and nine inexperienced participants) could not decide while

one participant disagreed. Five participants reported two bugs during their

exploration. However, two of them still agreed that the models were considerably

free of bugs, while the other three participants opted to choose neither disagree nor

agree options. These two bugs were: (1) arrows depicting paths of entity movement

disappeared after certain simulation time, and (2) certain components sometimes

could not be clicked to access their GUIs. One participant complained that the

 156

description texts of some components in the second model were located under other

components and this hindered him to properly read the texts. Overall, only one

participant disagreed that the models were free of bugs. This reflected that our

approach of structuring all classes for the DES components prior to writing their code

led to relatively few syntax and logical errors.

We scrutinized our code to find the reasons for these bugs. The first bug

happened because we did not properly control the depths of arrow clips connecting

the components. After a particular number of depths, the arrows would disappear

whenever their depths were replaced by the depths of newly generated entities. We

corrected this bug. We however could not find the reasons for the second bug. For

the complaint that there were some texts under certain components, we actually

overlooked the arrangement of the components in the second model. When

simulation structures are getting complex, all simulation components have to be

compacted in a limited stage to give learners enough spaces to customize the models’

visualization during run time. As a result, texts for some components may be located

under some other components.

When asked to rate the overall attractiveness and interactivity of the models

(Question 14), five experienced participants (83%) chose agree/strongly agree

options. Of the inexperienced participants, fifteen of them (68%) agreed with the

statement. This showed that a good balance between quantitative analyses through

data visualizations and qualitative aspects through animations, clear presentation and

attractive interfaces could improve learners’ understanding on DES concepts. There

were two participants who disagreed that our models were attractive and interactive,

and they were actually the same participants that disagreed that the models contained

high quality animations.

Question 15 asked if the participants would like to use these types of models

for understanding queuing networks. Five experienced participants and sixteen

inexperienced participants (six participants were from the participants that did not

consider to have good knowledge on simulation and ten participants were from the

participants that were undecided about their knowledge on simulation) would like to

do so. A majority of the participants that agreed with the attractiveness and

interactivity of the models reflected that our models could be used as self-study or

supplementary materials to learn DES concepts. However, there were two

inexperienced participants who disagreed that they would use the models. One of

 157

them was the same participant that felt the overall attractiveness and interactivity of

the models was not good. This might signal that without basic knowledge, attractive

and interactive models would not help and improve students’ learning through

models.

For the first additional question that asked the participants if they had ever

used any other animated simulation models for queuing scenarios, only one

participant claimed that she used to use animated simulation models. She stated that

the other models that she had used had better graphics but with no exploration

capabilities. Five participants (two experienced participants and three inexperienced

participants) explicitly noted that our models helped them to understand DES

concepts. One participant said that it was so interesting to see the mechanism of

queuing networks that were difficult to illustrate using traditional paper-based or

static materials.

We invited the participants to suggest how to make simulation learning easier.

Some participants responded to this request. Their suggestions included (1) showing

the functionality of each component used in the models (e.g., in the form of tool tip

texts, pop-up windows, etc.) whenever learners selected the component, (2) providing

editable models so that their structures can be changed or modified (e.g., learners can

arrange the flow of entities during runtime), (3) providing tutorials or helping menus

to assist them whenever they were stuck in their learning processes, (4) providing 3D

versions of the models to make them more attractive, and (5) displaying overall

results whenever simulation had finished. Some participants noted that our approach

of allowing them to create multiple visualizations themselves (i.e., controlling the

amount of visualization tools to be displayed and dragging them to wherever locations

on the model stage) was really a good approach in helping them to understand model

behaviour.

The first suggestion is easy to implement. In fact, we used this approach for

showing an entity’s activities. Since we implemented a click event in a component’s

code to access its GUI, a mouse-over event (that activates a new movie clip and holds

a description of its functionality) and a mouse-out event (that removes the movie clip

whenever a mouse pointer is not on the component region) can be used. The second

suggestion can also be accomplished since we implemented the Delegate Event Model

pattern that uses ports to link components. For this, we need to reveal all

components’ names and provide fields in their GUIs to accept their downstream

 158

component names during runtime. However, this will make the models look clumsy

with component names and prone to logical errors if the output ports are not specified

correctly by learners.

We agree that providing a textual tutorial, integrating other multimedia

resources or supplying a list of instructions (i.e.; some suggested hands-on

experiments) is important to assist learning through models. Examples of hands-on

experiments include investigation experiments that request learners to investigate the

effects of various variables to model behaviour and optimization experiments that

request learners to identify and vary simulation variable values so that specified

model constraints are not broken.

The suggestion of using 3D models to make learning through simulation

models easier is not always true. Such models could attract and engage learners since

they are close to their actual systems. However, their use in education has been

claimed to only benefit some learners while other learners may suffer additional

cognitive workloads (Huk, 2006; Korakakis, Pavlatou, Palyvos, & Spyrellis, 2009).

To be effective, a simulation model should offer an interactive platform for

hypotheses testing (i.e., an experimentation platform for clarifying learners’ ideas)

instead of graphic sophistication that is fun to look (Prensky, 2001).

We have to stress the danger of misinterpretation of DES results by learners

manipulating model parameters interactively during simulation run. The animations

and visualizations of our models only reflect the impacts of the parameter settings to

their current behaviour. They are not supposed to be used as an analysis tool for

measuring model performances which strictly requires unchanged parameter values

until the end of simulation. The statistical analyses in our models is to help learners

understand how a relevant parameter (e.g., time between arrival, route time, queue

rule, process time, etc.) affects the models’ current states and performance. Some of

the analyses can be viewed through animations and visualizations. For example,

learners can observe the animations of the current number of entities in a queue and

visualize the current utilization of a server. Other analyses are to give the detail of the

models’ current performance measures over simulation time, and these are typically

reported using tables; e.g., throughput, waiting time in a queue (average, minimum

and maximum), length in a queue (average, minimum and maximum), time spent in

the system (average, minimum and maximum), resource utilization, etc.

 159

6.3 Evaluating the Tool’s Ease of Use, Usefulness and Enjoyment

6.3.1 Assessment and Evaluation Methods

Human behaviour has long been claimed as an important element that determines the

acceptance of a technological innovation (Greenbaum & Kyng, 1991; Isomaki,

Pekkola, & Bannon, 2011). In order to empirically assess model builders’ perception

towards our component-based tool, we have conducted an experiment by adapting the

Technology Acceptance Model (TAM) developed by Davis (1989). Results of this

can signal the acceptance of our tool and can be used to improve it in the future.

TAM consists of a list of items (variables) discriminated under two cognitive

responses (factors); i.e., perceived usefulness and perceived ease of use. Perceived

usefulness relates to significant functions that the innovation provides while perceived

ease of use generally relates to interfaces and attractiveness of the innovation. These

responses were originally proposed by the Theory of Reasoned Action (Ajzen &

Fishbein, 1980; Fishbein & Ajzen, 1975) and significantly determine users’

acceptance (i.e., their attitudes and behaviour) of an innovation.

Variables for each factor in TAM were derived from previous empirical

studies on the self-efficiency theory (Banduras, 1977), the cost-benefit paradigm

(Payne, 1982) and the adoption of innovations (Tornatzky & Klein, 1982). Each

factor initially consisted of 14 candidate variables. However, after being tested for

reliability and content validity, the variables were then cut out to only six variables

(see Table 6.11) that are adequate for testing perceived usefulness and perceived ease

of use of an innovation.

TAM has been tested as a valid and reliable model for measuring users’

acceptance of an innovation (e.g., by Adams, Nelson, & Todd, 1992; Davis &

Venkatesh, 1996; Mathieson, 1991). The significance of each factor and its variables

in determining the acceptance of an innovation have been corroborated by other

researches (e.g., Legris, Ingham, & Collerette, 2003; Saadé & Bahli, 2005; Teo, Lim,

& Lai, 1999; Venkatesh & Morris, 2000). At the same time, TAM has also widely

been adapted without modification or with minor extensions (i.e., by adding other

factors that affect users’ point of views, e.g., perceived enjoyment, work contexts, etc.

or that directly affect users’ perceived usefulness, e.g., social influence and cognitive

instrumental processes) by many researchers to assess users’ acceptance about various

 160

technological innovations. These include tools or software (Babar, Winkler, & Biffi,

2007; Chau, 1996; Davis & Venkatesh, 1996; Laitenberger & Dreyer, 1998) and

applications (Henderson & Divett, 2003; Jahangir & Begum, 2008; Pikkarainen,

Pikkarainen, Karjaluoto, & Pahnila, 2004; Saadé & Bahli, 2005; Teo et al., 1999).

Table 6.11 TAM Factors and Their Variables

Factor Variable

Usefulness

1. Work more quickly

2. Job performance

3. Increase productivity

4. Effectiveness

5. Makes Job Easier

6. Useful

Ease of use

1. Easy to learn

2. Controllable

3. Clear and understandable

4. Flexible

5. Easy to become skillful

6. Easy to use

6.3.2 Experiment Participants

Our participants were volunteer students at Universiti Utara Malaysia, Malaysia

(http://www.uum.edu.my) who enrolled for the Computer Modelling in Business

course. This course focuses on the concepts and analyses of DES and uses Arena

(Kelton et al., 2004; Kelton et al., 2010) as the implementation software. It is a

compulsory course for the students of the Bachelor of Decision Science programme

and can be taken in the second or third year of the programme. However, other

programme students can enrol it as an elective course.

Arena is DES software that uses the SIMAN language (C. Dennis Pegden,

Shannon, & Sadowski, 1995) as its simulation engine. DES models are created using

modules and connectors to represent their processes and logic. Animation that shows

the models’ behaviour can be provided using its animation tools. Simulation outputs

will automatically be displayed when simulation ends. Figure 6.4 shows a screenshot

of Arena.

 161

Figure 6.4 Arena Screenshot

We intentionally chose these students since they had been equipped with

knowledge on DES concepts and had experiences in using Arena for DES model

development. This choice was made since participants with tacit knowledge and

experiences of particular contexts can effectively evaluate a tool since they exactly

know what they and other users want (Davis & Venkatesh, 1996; Whitworth, Banuls,

Sylla, & Mahinda, 2008). The effect of experiences and job relevance on users’

perceived usefulness and perceived ease of use, and eventually on their acceptance of

a tool has well been documented (e.g., in Venkatesh & Davis, 2000; Whitworth et al.,

2008).

40 students participated in this experiment. Besides their knowledge on DES,

the participants also had knowledge on programming, particularly on Visual Basic

(Harvey M. Deitel, 2006; Zak, 2009) that they learned in the first year of their

programmes. We collected their own assessments of their knowledge on DES and

programming so that we could properly assess their perceptions of our tool.

 162

6.3.3 Running the Experiment

We first provided a training session for the participants. They were first briefed about

Adobe Flash software. The explanation included the reasons we have used Flash as

an implementation environment, its GUI environment (e.g., the locations and the

functionalities of tool, component, properties and library panels, etc.) and how to

create Flash and ActionScript files. The participants were then introduced to our DES

components and their functionalities in DES models. All relevant ActionScript files

(although most of the files were already converted to relevant components) were also

presented. All these files and components had been fixed from bugs reported in the

first experiment.

We then assisted the participants in constructing a simple DES model (i.e., an

M/M/1 model). The significant step was the creation of a SimProcess class file and its

attachment to an animation object to represent entity arrival. When they were familiar

with the model construction processes, they were asked to either add complexity to

the model or create a new model of their own. During model building, we were

available to answer their questions and were ready to guide them whenever they were

stuck. After experiencing with various components for an hour, they were asked to

fill out the questionnaire.

As stated earlier, users’ experiences can influence their perceived usefulness,

perceived ease of use and perceived enjoyment of a tool and eventually affect their

acceptance of the tool. Thus, our questionnaire first collected their perceived

knowledge on DES concepts, experiences in programming and familiarity with Adobe

Flash and its environment.

Items for measuring the perceived usefulness and the perceived ease of use of

our tool are shown in Table 6.12. Note that we modified the work and job keywords

in the original items in Davis (1989) and replaced them with construct words (see the

complete questionnaire in Appendix D). We also included one more factor, perceived

enjoyment, which has been claimed (e.g., by Pikkarainen et al., 2004; Saadé & Bahli,

2005; Teo et al., 1999) to influence users’ acceptance of a tool (denoted as Perceived

Enjoyment in the questionnaire). All items under these three factors used a five-point

Likert-scale that asked the participants to indicate their disagreement or agreement

about the items from (1) strongly disagree to (5) strongly agree.

 163

Table 6.12 Items of Perceived Ease of Use, Perceived Usefulness, Perceived

Enjoyment and Self-predicted Future Usage of the Component-based Tool

Perceived Usefulness (PU)

PU1: The component-based tool enables me to construct DES models that help

learn and understand DES concepts more quickly.

PU2: The component-based tool improves my construction performance on DES

models.

PU3: The component-based tool increases my productivity of constructing DES

models.

PU4: The component-based tool enhances my effectiveness of constructing DES

models.

PU5: The component-based tool makes the construction of DES models easier.

PU6: Overall, the component based tool is useful for constructing DES models.

Perceived Ease of Use (PEU)

PEU1: Learning to use the component-based tool is easy for me.

PEU2: I find the processes of using the component-based tool were controllable

(clear, understandable and straight forward).

PEU3: My interaction with the component-based tool is clear and understandable.

PEU4: I find the component-based tool to be flexible to interact with.

PEU5: It is easy to become skillful at using the component-based tool.

PEU6: Overall, the component-based tool is easy to use.

Perceived Enjoyment (PE):

PE1: I have fun interacting with the component-based tool.

PE2: I enjoy using the component-based tool.

Self-Predicted Future Usage (SP):

SP1: I intend to use the component-based tool to construct DES models in the

future

SP2: I intend to show others this component-based tool.

Based on the participants’ responses, we performed two tests. First, we

assessed the reliability of the items in the questionnaire. Second, we evaluated model

builders’ perceptions on our component-based tool. High responses for the three

factors would imply that the tool was useful, easy to use and enjoy to be used.

 164

6.3.4 Data Analysis and Results

6.3.4.1 General Information

Table 6.13 shows the number and the percentage of the participants grouped by their

gender. 10.00% of the participants were male while 90.00% were female. Data also

revealed that most of the participants were between 20 to 24 years old.

Table 6.13 The Participants’ Gender

Gender N Percentage

Male 4 10.00%

Female 36 90.00%

As mentioned earlier, relevant knowledge and experiences could influence the

participants’ cognitive responses (i.e., their perceived usefulness, perceived ease of

use, perceived enjoyment, etc.) about the tool (Davis & Venkatesh, 1996; Stoel &

Lee, 2003; Taylor & Todd, 1995). Table 6.14 reports how the participants rated their

knowledge on DES, their experiences in programming and their familiarity with

Adobe Flash and its environment.

Table 6.14 The Participants’ Knowledge and Experiences

Experience
Strongly

Disagree
Disagree Neutral Agree

Strongly

Agree
Mode Mean

Std.

Deviation

DES
1 8 23 8 0 3 2.95 0.714

(2.50%) (20.00%) (57.50%) (20.00%) (0.00%)

Programming
3 10 15 12 0 3 2.90 0.928

(7.50%) (25.00%) (37.50%) (30.00%) (0.00%)

Adobe Flash
2 11 17 10 0 3 2.88 0.853

(5.00%) (27.50%) (42.50%) (25.00%) (0.00%)

The data revealed that only 22.50% of the participants perceived that that they

did not have good knowledge on DES. We can also see that 32.50% of the

participants disagreed/strongly disagreed that they had good programming

experiences and were familiar with Adobe Flash and its environment, respectively.

Of the 40 participants, only 25.00% of them perceived that they were familiar with

 165

Adobe Flash. However, most of them stated that they used Adobe Flash to only

create a simple animation with little or no ActionScript programming.

6.3.4.2 Questionnaire Reliability and Validity

Based on the participants’ feedback, we first measured the reliability of the items in

the questionnaire. For this, we conducted a Cronbach’s alpha test. Table 6.15 reports

the Cronbach’s alpha values for perceived usefulness, perceived ease of use and

perceived enjoyment factors. All factors showed values higher than 0.8 (the overall

reliability was 0.927). Thus, perceived usefulness, perceived ease of use and

perceived enjoyment scales showed high levels of reliability (George & Mallery,

2009). This indicates that the questionnaire is a reliable measurement instrument.

Table 6.15 Cronbach’s Alpha Values

Factor Cronbach’s Alpa Value

Perceived Usefulness 0.933

Perceived Ease of use 0.890

Perceived Enjoyment 0.823

We also checked the factorial validity of the questionnaire; i.e., whether

perceived usefulness, perceived ease of use and perceived enjoyment form distinct

constructs. For this, we performed factor analysis with varimax rotation that checks

which items tend to cluster together. Table 6.16 shows the factor analysis results.

Each value in the Table 6.16 shows the correlation of the variable with the

three factors respectively. This value is called a variable’s loading factor. It can

range between -1 (a perfect negative association with the factor) and 1 (a perfect

positive association with the factor). A value that closes to 0 indicates that there is no

relationship between the variable and the factor. A loading factor of at least 0.7

shows a strong correlation of a variable with a considered factor (J. O. Kim &

Mueller, 1978). However, a lower value of 0.5 is sometimes considered important for

the factor (Coakes, 2007).

 166

Table 6.16 Factor Analysis of Perceived Usefulness, Perceived Ease of Use and

 Perceived Enjoyment

Variable
Factor

Usefulness Ease of use Enjoyment

Work more quickly (PU1) .714 .206 .359

Job performance (PU2) .772 .390 .174

Increase productivity (PU3) .873 .235 .058

Effectiveness (PU4) .896 .154 .136

Makes Job Easier (PU5) .826 .351 .046

Useful (PU6) .820 .089 .203

Easy to learn (PEU1) .236 .761 .130

Controllable (PEU2) .226 .777 .312

Clear and understandable (PEU3) .372 .827 .166

Flexible (PEU4) .261 .649 .492

Easy to become skilful (PEU5) .119 .777 .141

Easy to use (PEU6) .241 .368 .649

Fun (PE1) .115 .271 .864

Enjoy (PE2) .142 .090 .872

We can see that all variables except two variables loaded greater than 0.7 on

one of the factors. The first variable, i.e., Flexible (PEU4) only had a value of 0.649

on the perceived ease of use factor. However, since this variable had a value greater

than 0.5 and loaded higher on the perceived ease of use factor than the other two

factors, we could attribute this variable to the perceived ease of use factor. The

second variable, i.e., easy to use (PEU6) loaded higher on the perceived enjoyment

factor (loading factor = 0.649). Data showed that the easy to use variable had strength

correlation with the perceived enjoyment factor.

6.3.4.3 Usefulness, Ease of Use and Enjoyment of the Tool

Table 6.17 shows the descriptive statistics for all items in the questionnaire. As we

can see, in general, most participants were positive about the tool. Few of the

participants (less than 7.50%) disagreed/strongly disagreed with the items related to

perceived usefulness, perceived ease of use and perceived enjoyment of the tool (see

the last column in Table 6.14).

 167

Table 6.17 Descriptive Statistics of the Items

Variable Mean Std. Dev. Mode
N of Strongly

Disagree/Disagree

Work more quickly (PU1) 4.03 0.768 4 (23) 2 (5.00%)

Job performance (PU2) 3.98 0.733 4 (22) 1 (2.50%)

Increase productivity (PU3) 4.00 0.716 4 (20) 0 (0.00%)

Effectiveness (PU4) 3.88 0.822 4 (16) 1 (2.50%)

Makes Job Easier (PU5) 3.93 0.730 4 (22) 1 (2.50%)

Useful (PU6) 4.15 0.700 4 (20) 0 (0.00%)

Perceived Usefulness 23.95 3.876 24 -

Easy to learn (PEU1) 3.65 0.834 4 (19) 3 (7.50%)

Controllable (PEU2) 3.68 0.797 4 (17) 2 (5.00%)

Clear and understandable (PEU3) 3.75 0.840 4 (19) 3 (7.50%)

Flexible (PEU4) 3.83 0.781 4 (18) 1 (2.50%)

Easy to become skillful (PEU5) 3.85 0.700 4 (23) 1 (2.50%)

Easy to use (PEU6) 3.75 0.809 4 (21) 3 (7.50%)

Perceived Ease of Use 22.50 3.830 22 -

Fun (PE1) 3.93 0.572 4 (27) 0 (0.00%)

Enjoy (PE2) 4.08 0.526 4 (29) 0 (0.00%)

Perceived Enjoyment 8.00 1.013 8.00 -

Figure 6.5 reports the results of the tool’s perceived usefulness in graphical

formats. It shows the summative results (Figure 6.5(a)) and the detail results of each

item (Figure 6.5(b)) under this factor. The rating of summative results ranged

between 15 and 30 with the mean of 23.95. Considering the maximum rating was 30,

we could conclude that most of the participants considered the tool were useful for

constructing educational DES models. All variables received good scores (mean

above 3.88) with the useful variable (PU6) received the highest score with the mean

of 4.15.

(a) (b)

Figure 6.5 Perceived Usefulness Results

 168

The sum of items under the perceived ease of use factor ranged between 14

and 30, with the mean value of 22.50. This mean value showed the participants

perceived the tool was easy to use. A close examination of different items revealed

that all items received positive feedback from most of the participants. The easy to

become skilful variable (PEU5) was rated with the highest value (with the mean of

3.85). This probably indicates that the drag and drop fashion eases model

constructions and demands little guidance. Most of the participants also perceived

our tool was flexible (mean: 3.83) and easy to become skilful (mean: 3.85). The two

items that received low ratings from the participants were easy to learn (PEU1) and

controllable (PEU2) with the mean values of 3.65 and 3.68 respectively.

The sum of items under the perceived of enjoyment factor ranged between 6

and 10 with the mean value of 8. This indicated that most of the participants enjoyed

using the tool. They also stated that they had fun (mean: 3.93) and enjoyed using the

tool and its resulting models (mean: 4.08).

6.3.4.4 Self-predicted Future Usage

The participants were requested to predict their future usage of the tool; i.e., whether

they will use the tool if it is available in the future. Such self predictions are among

the most accurate predictors available for measuring an individual’s future behaviour

of an innovation (Sheppard, Hartwick, & Warshaw, 1998; Warshaw & Davis, 1985).

Table 6.18 reports the participants’ self-predicted future usage of the tool. As we can

see, both variables received good feedback from them.

Table 6.18 Descriptive Statistics of Self-Predicted Future Usage

Variable Mean
Std.

Dev.
Mode

N of participants

strongly disagreed/

disagreed

Intend to use (SP1) 4.08 0.730 4 (22) 1 (2.00%)

Intend to show to others (SP2) 4.05 0.714 4 (20) 0 (0.00%)

Self-predicted Future Usage 8.125 1.381 8 -

 169

According to the Theory of Reasoned Action (Ajzen & Fishbein, 1980;

Fishbein & Ajzen, 1975), user’s perceived usefulness and perceived ease of use are

significantly correlated to the acceptance of an innovation. The acceptance has also

been proved by other studies (e.g., Pikkarainen et al., 2004; Saadé & Bahli, 2005; Teo

et al., 1999) to be influenced by their perceived enjoyment.

To investigate the degree (strength) of relationships between each of these

three factors and the participants’ acceptance of our tool, we ran a Pearson

correlation analysis. For this, we correlated the three summative results of the

perceived usefulness, perceived ease of use and perceived enjoyment to the

summative results of the participants’ predicted future usage. Table 6.19 reports the

results of the analysis.

Table 6.19 Correlations between Perceived Usefulness, Perceived Ease of Use and

 Perceived Enjoyment to Self-Predicted Future Usage

Usefulness

Ease of

Use
Enjoyment

Future

Usage

Usefulness
Pearson Correlation 1 .594

**
 .366

*
 .428

**

Sig. (2-tailed) .000 .020 .006

Ease of Use
Pearson Correlation .594

**
 1 .562

**
 .298

Sig. (2-tailed) .000 .000 .062

Enjoyment
Pearson Correlation .366

*
 .562

**
 1 .605

**

Sig. (2-tailed) .020 .000 .000

Future Usage
Pearson Correlation .428

**
 .298 .605

**
 1

Sig. (2-tailed) .006 .062 .000

** Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

The results showed that each perceived usefulness and perceived enjoyment

was positively correlated with self-predicted future usage. This indicated that both of

the factors were important determinants influencing the participants’ future usage of

the tool. The correlation coefficient between perceived enjoyment and self-predicted

future usage was much higher than the correlation coefficient between perceived

usefulness and self-predicted future usage; i.e., 0.605 (p < 0.005) compared to 0.428

(p < 0.010). However, we are not confident that there was a correlation between

perceived ease of use and self predicted future usage since the p-value was greater

than 0.05. This hints that the participants opted to use the tool primarily because of its

usefulness and perceived enjoyment compared to its ease of use. We can also see that

 170

there was a correlation between usefulness and ease of use (r = 0.594, p < 0.005),

usefulness and enjoyment (r = 0.366, p < 0.010) and ease of use and enjoyment (r =

0.562, p < 0.005).

To reveal predictive power between self-predicted usage of the tool and the

three individual factors, regression analyses were conducted. Table 6.20 shows the

regression analysis results. The results clearly showed that perceived usefulness and

perceived enjoyment had positive effects on self-predicted future usage.

Table 6.20 Regression Analyses of the Effect of Perceived Usefulness and Perceived

 Ease of Use on Self-Predicted Future Usage

Model Summary

Model R R Square

Adjusted

R Square

Std. Error of

the Estimate

1 .671(a) .451 .405 1.06543

Predictors: (Constant), EaseOfUse, Enjoy, Usefulness

Coefficients

Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig. B Std. Error Beta

1 (Constant) .429 1.486 .289 .775

Usefulness .127 .055 .356 2.317 .026

Enjoyment .849 .204 .623 4.165 .000

Ease of Use -.095 .062 -.264 -1.523 .136

 Dependent Variable: Future Usage

The R
2
 of the regression was 0.451. However, the R

2
 value is generally of

secondary importance unless the regression model will be used to make accurate

predictions. To tell how confidence we are that each of the independent variables

(i.e., perceived usefulness, perceived ease of use and perceived enjoyment) has some

correlation with the dependant variable (i.e., future usage), we should observe the p-

values of each variable.

The p-values for perceived usefulness (p = 0.026) and perceived enjoyment (p

= 0.000) were smaller than 0.05. This indicated that both of the factors were useful

predicators for self predicted future usage. The analysis also revealed that perceived

enjoyment was the most influential factor to self-predicted usage (t = 4.165, p < 0.05).

Note that the t-value suggests the relative importance of each variable in the model

 171

and t-value between -2 and 2 reflects a useful predicator. Our finding of perceived

enjoyment has significant effect on an innovation is tally with some researchers’

finding (e.g., by Pikkarainen et al., 2004; Saadé & Bahli, 2005; Teo et al., 1999).

However, this finding is in contrast with that of other researchers (e.g., Igbaria, Livari,

& Maragahh, 1995) that claimed perceived enjoyment was not related to the

acceptance of an innovation.

Perceived usefulness was also found to be the influential factor to self-

predicted usage (t = 2.317, p < 0.005). This finding is in line with other TAM studies

(e.g., Davis, 1989; Davis, Bagozzi, & Warshaw, 1989; Igbaria, Zinatelli, Cragg, &

Cavaye, 1997; Keil, Beranek, & Konsynski, 1995) that found perceived usefulness

had more impact on technology acceptance than perceived ease of use since perceived

ease of use impinges on acceptance through perceived of usefulness. However, some

researchers claim the opposite (Chau, 1996; Venkatesh & Morris, 2000). We can see

that the ease of use factor had small relation with the self predicted future usage as

indicated by its non-significant t-value (p > 0.05).

6.3.4.5 Participants’ Cognitive Workloads

It is important to measure the participants’ cognitive workloads while using our tool.

There are two approaches for measuring this: Short Subjective Instrument (SSI) (Paas,

Tuovinen, Tabbers, & Gerven, 2003) and the NASA TLX mental workload

instrument (Hart, Stavenland, Hancock, & Meshkati, 1988).

The SSI assesses a participant’s overall cognitive workload using a single

question that requests him/her to rate a given task from extremely easy (1) to

extremely difficult (7). We chose the NASA TLX since it can assess the level of the

participant’s various cognitive loads, based on the combination of his/her extraneous

load (i.e., his/her memory load while using a material but this can be controlled by the

material’s designer; e.g., through the use of graphics or relevant presentation formats)

and intrinsic load (i.e., the level of perceived difficulty of a material and this can be

influenced by his/her knowledge and experience). Both types of workloads are

measured using the NASA TLX instruments based on six factors:

 172

 Mental demand; i.e., if the task affects the participant’s attention

 Physical demand; i.e., if the task affects the participant’s health

 Temporal demand; i.e., if the task consumes a lot of time that the participant

cannot afford

 Performance; i.e., if the task is heavy or light in terms of workload

 Frustration; i.e., if the task makes the participant unhappy

 Effort; i.e., if the participant has spent a lot of effort on the task

In our case, the physical demand factor reflects the participants’ physical

tension and stress while and after developing DES models using our tool. We have

explained this term to them during the experiment. The more they use keyboards and

mice, the more physical activities they have to perform and these may cause pain in

the back, neck, shoulder and muscle, strain on the eyes and strain on fingers, etc. We

would like them to rate how the activities affected their health.

Originally, the NASA TLX calculates the participants’ overall cognitive

workloads based on their responses to pair-wise comparisons among the six factors

and their ratings on each of these factors. However, the factor rating is the most

important element in calculating the overall workload score; and removing the pair-

wise comparisons may increase the experimental validity and reduce the experimental

error (Bustamante, 2008). Since our purpose was to generally assess our participants’

cognitive workloads while using our tool, we only requested them to rate the six

factors based on a 7-point scale (1 = low, 7 = high). Table 6.21 shows their feedback

for each of the factors. The overall cognitive workload for all of the participants were

close to average with mean = 3.642 and standard deviation = 1.104. This value

indicated that the participant’s mental requirement for building DES sample models

using our tool was not so simple since they had to do some hands-on tasks (e.g.,

creating class files, attaching the files to their relevant objects, dragging, dropping and

connecting the components, etc.) and was not so complex since they had been

equipped with knowledge on and experiences in the domain.

 173

Table 6.21 Participants’ Feedback about the TLX Subscales

Factor 1 2 3 4 5 6 7 Mode Mean SD

Mental demand
2 8 7 4 11 7 1 5 3.98 1.641

(5.00%) (20.00%) (7.50%) (10.00%) (27.50%) (17.50%) (2.50%)

Physical

demand

2 7 11 9 8 3 0 3 3.58 1.338

(5.00%) (17.50%) (27.50%) (22.50%) (20.00%) (7.50%) (0.00%)

Temporal

demand

0 7 6 16 6 4 1 4 3.93 1.289

(0.00%) (17.50%) (15.00%) (40.00%) (15.00%) (10.00%) (2.50%)

Performance
2 10 13 9 5 1 0 3 3.20 1.181

(5.00%) (25.00%) (32.50%) (22.50%) (12.50%) (2.50%) (0.00%)

Frustration
2 9 4 7 13 5 0 5 3.88 1.522

(5.00%) (22.50%) (10.00%) (17.50%) (32.50) (12.50%) (0.00%)

Effort
1 8 18 5 7 1 0 3 3.30 1.137

(2.50%) (20.00%) (45.00%) (12.50%) (17.50%) (2.50%) (0.00%)

There were two main complaints noted by the participants about the tool.

First, some of the participants complained that the approach of linking components

based on their specified names during design time tended to create logical errors.

Many of them experienced this. These hard-to-trace errors happened when specified

downstream component names were misspelled in their upstream component’s

outport property. As a result, entity flows to the upstream components would be

broken. They suggested that the components should easily be connected during

design time; e.g., using arrows. Secondly, the requirement processes of creating an

entity class file and attaching it to an animation object really burdened them and

should be simplified. We explained that we could actually create a library that

consists of various considered entities. However, permitting model builders to define

and create their own entities would give flexibility for them in animating the entities.

The analyses of various feedback in the first experiment confirmed that our

component-based tools produced attractive, interactive and informative DES models

which were suitable for learning and teaching purposes. Its attractiveness in terms of

animations (e.g., high quality animated objects and events, different images of objects

based on their states, etc.) makes learning enjoyable and fun. Its interactiveness in

relation to permitting learners to manipulate the models’ parameters through easy-to-

access GUIs, controlling the speed of simulation and customizing the models’

visualizations by adding, removing and relocating relevant data visualizations (e.g.,

graphs, tables, etc.) to any locations during runtime helps learners to understand the

model’s behaviour. Its informative feature that provides feedback on the impact of

 174

parameter changing through various meaningful animations and animated data

visualizations aids learners to clarify their ideas and understand various scenarios in

the models. The analyses of various feedback in the second experiment reflected that

our DES components were useful, easy to use and enjoy to be used to build these

kinds of models. However, there is still a room for their future improvements. These

include investigating how to easily link the components instead of typing the names

of their downstream components in a layout property and providing various libraries

of entities and resources for model developers to easily animate the objects without

the need to create their appropriate classes.

 175

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

7.1 Introduction

This chapter consists of three sections: Conclusions, Limitations of the Research and

Recommendations for Future Research. The Conclusions section summarizes and

discusses the findings of this research. The Limitations of the Research section lists

and discusses some weaknesses of this research. The Recommendations for Future

Research section proposes some ideas for future research.

7.2 Conclusion

Many studies have expressed strong support for the use of games and simulations as

educational tools. Their support is mainly based on the hypothesis that learners

implicitly acquire target knowledge during their engagement and interactions with the

models. Although such interactions can create different motivation levels of learning

(e.g., learners with good mental models of a domain may lose interest since its

model’s outputs can well be predicted, while other learners with less detailed models

may lose motivation since the outputs induces no significance cognitive responses),

many educators believe that the right design of a model can facilitate learning.

Examining the benefits of using various types of simulation models and dealing with

their potential constraints in the learning and teaching environment were one of the

research contributions.

The main contribution of this research is the proposal of how to construct DES

tools for building attractive, interactive and informative DES models to be used as

learning and teaching materials. Before this work, DES was typically used as an

analysis tool for system performance prediction and its outputs were only usable for

 176

system modellers. Thus, in order to offer the benefits of DES to the education

community especially in helping learners understand the effect of capacity constraints

on the performance of a system, we proposed a component-based tool approach. This

approach allows DES tool developers to directly embed the three model features

suggested in literature review (i.e., hypothesis test platforms, concurrent responsive

animations and customized visualizations) that help to get insight into DES behaviour

during their learning through models.

The use of attractive and interactive models of soft skill simulations or

procedural simulations to support basic concepts of relevant theories is common in

educational settings. In fact, these types of models can easily be constructed even

without using a commercial tool, since the rules regulating their logic are fully

structured. However, educational models of open-ended simulations (i.e., DES that

analyses a system’s performances or continuous simulations that deal with complex

natural processes) that allow learners to get insight into most of real world systems are

uncommon. One reason for this is that their operations involve a lot of computation

that hinders model builders from constructing their own models without the help of

the right tool.

Current DES tools have some distinct weaknesses. Most of the free research

tools are not easy to use since model construction requires a lot of programming and

their resulting models offer no animation and visualized structures. Better research

tools, although supporting model construction through a drag and drop fashion to a

certain extent, do not typically integrate good animation and visualization capabilities.

Commercial tools provide high quality animation and visualization. However, the

tools restrict further extension. Their resulting models must also be played using the

software’s player and this hinders the models from being accessed through internet or

integrated with LMSs. Additionally, no single tool generates models with runtime

interactions and visualization customization capabilities; i.e., two important

characteristics that facilitate learning according to many educational studies.

This thesis focuses on designing and developing a DES tool to help model

builders to construct educational DES models. These models facilitate learners to get

insight into DES concepts through model interactions, customized state visualization,

entities’ and resources’ animation and animation speed manipulation during runtime.

Model interactions help learners to perform what-if experiments without the need to

modify models’ source code. Customized state visualizations ease them to control the

 177

amount of information displayed on computer screen at a time; i.e., each learner can

construct his/her own model GUIs by adding or removing particular state

visualization during runtime. Additionally, the GUIs and any interesting scenario

(i.e., its current models’ states, animation and visualization) can be saved at any time

to be loaded in the future. Speed manipulation gives flexibility to learners to look

closer at aspects that catch their attention and skip over aspects that are of no current

interest. Furthermore, arrows that depict paths of entity movements for viewing

various entities’ lifecycles that would be helpful for more complex models are also

supported. These features are important in the learning environment, but often

neglected in the current DES tools, since their main focus is on system performance

analyses.

To systematically design such a tool, we first architected a framework that

consists of classes with their own functionalities. We have shown that this framework

was flexible enough to support the construction of various queuing models and their

specific logics, and extensible to cater various types of DES models. Model

construction tasks have now been relieved from the many of the routine tasks

associated with DES models using an object-oriented style that supports the concepts

of inheritance, encapsulation and polymorphism. However, the model building is

only through Application Programming Interface (API); i.e., an amount of

programming that uses to show relationships between objects of the classes is still

needed to represent their logics.

To support the tool’s ease of use feature through a component drag and drop

fashion and to ensure that its resulting models are informative, useful and enjoyable to

be used in the learning and teaching environment, we proposed the combination of

two design patterns; i.e., the Delegation Event Model (DEM) which is used to link the

models’ components together, and the Model-View-Controller (MVC) pattern which is

used to support their GUIs and customisable visualizations during runtime.

Implementing the DEM pattern in the DES components allows us to flexibly specify

various entities’ lifecycles during design time without the need to write conditional

statements, while implementing the MVC pattern allows us to freely link various

visualization tools with the components without the need to refer them in the

components’ code. Thus, various visualization facilities that render generated data

during simulation can be automated or integrated with ease. We later showed how a

component’s states and its relevant animation and visualization can be saved for

 178

future use. How these two design patterns support the development of a hierarchical

simulation model (i.e., how to connect and synchronize the model with its children so

that entities can be transferred between layers in the right orders) has also been

architected and discussed in detail.

We used Adobe Flash as the tool’s implementation language for two reasons.

First, it expedites the development processes of the components; e.g., through its

layout properties, facilities to attach objects with their classes and animate them based

on their states, stage for composing the components, etc. Second, it automatically

generates web-based and LMS-compatible models. With the right design and

environment, we believe that our tool eases the construction of useful DES models.

As mentioned earlier, we designed and constructed DES tools to effectively

support three groups of users; i.e., developers, teachers and learners. We did not

investigate how easily developers could expend the tools to support other DES

applications; e.g., manufacturing, logistic, etc. However, we believed the tools could

easily be extended since their development are based on UML (Unified Modelling

Language) class diagrams (that clearly shows its relevant classes, methods attributes

and the relationships among the classes) and two well-known designed patterns, i.e.,

the Delegation Event Model and the Model-View-Controller which are common

approaches to all software developers. We however investigated the feedback from

teachers about the tools’ usefulness and the ease of use and learners about the tools’

attractiveness and interactivity through experiments.

Perceived usefulness, perceived ease of use and perceived enjoyment have

been claimed as crucial factors that determine the acceptance of a tool. To assess if

our component-based tool and its resulting models support these three factors, we

conducted two experiments. The first experiment basically evaluated if the tool’s

resulting models were attractive, interactive, informative and useful enough to be used

for learning and understanding DES concepts. The results of the experiment showed

that a majority of the 28 participants gave positive feedback for all items in our

questionnaire. The items were constructed based on essential model features claimed

by previous studies. The second experiment assessed usefulness, ease of use and

enjoyment of the tool from model builders’ perspectives; i.e., their experiences while

using the tool to construct DES models. Items for measuring these factors were

designed based on the Technology Acceptance Model (TAM) and other previous

relevant studies. Participants were from those that had knowledge on DES and

 179

programming. Analyses of their feedback showed that a majority of the 40

participants found that the tool was useful, easy to use and enjoyable. They were also

very positive about the regular use of the tool for constructing DES models in the

future.

The feedback analyses of the second experiment also revealed that perceived

enjoyment and perceived usefulness were important determinants for the tool

acceptance. However, perceived enjoyment was discovered to be a critical factor for

its acceptance. Perceived ease of use meanwhile was found to have a relatively weak

relationship with the participants’ acceptance. We also assessed the level of the

participants’ perceived cognitive workloads while experiencing the tool using the

NASA Task Load IndeX (TLX) instrument. The results showed that the overall

workload for all participants based on a 7-point scale (1 = low, 7 = high) was 3.642

(standard deviation = 1.104); i.e., their mental requirements while using the tool were

not too simple and not too complex.

7.3 Limitations of the Research

We only focused on the design and development of DES components for building

DES educational models. Each component symbolises the location where relevant

events and their occurrence time may take place while their linkages provide

visualization structures of various entity flows. This logic can suit many types of

real-life systems; e.g., service, transportation and manufacturing systems.

In case of a continuous system where its states change continuously, the ideas

of components that simplify its model building and allow exploring its behaviour

through various GUIs and visualizations are still relevant. However, representing its

operational logic may only need three types of components; i.e., level or stock that

stores variables of continuous processes that are always changing, rate or flow that

defines the rates of change of the variables over time and these rates may depend on

other continuous processes, and setup (a continuous simulation engine) that

configures all continuous simulation calculation (e.g., size of increment time steps,

the numerical method to be used, etc.). The linkage between level and rate

components is much simpler since it only involves the assignments of variables with

their relevant differential equations that represent the rates of change of the variables.

 180

However, specifying the equations is only possible through an API. This requires

model builders to have some basic programming knowledge besides their mental

model of a system being constructed.

Our tool’s resulting models do not offer model construction capabilities at run

time. Right now, learners can only experiment with the models and customize their

visualizations. Allowing them to alter the existing model structures or create a new

model during runtime may offer some educational benefits especially in facilitating

their understanding of various DES aspects from model building to model analyses.

This can be achieved through providing a palette that floats around the models during

runtime and contains various model construction components, entity and resource

objects.

We used the Flash environment and its ActionScript as an implementation

language for constructing DES components. The use of other languages although

possible may introduce additional burdens since they may not provide facilities for

simplifying component development (e.g., facilities for attaching an object to a class,

embedding default GUIs to the components, etc.) and animation capabilities.

However, the design and development techniques that have been discussed in this

thesis can be implemented and extended in any other object oriented programming

languages.

Other limitations of the research relate to the experiment limitations. Firstly,

both of the experiments used small sample sizes of participants. The number of

participants in the first experiment was only 28 while the number of participants in the

second experiments was 40. Such small sample sizes definitely had an effect on the

ability to generalize the findings. As a result, we could not give conclusive evidence

about learners’ perceptions on attractiveness and interactivity of our tool’s sample

models and model builders’ perceptions on the usefulness, ease of use and enjoyment

of the tool for constructing DES models. However, we believe that these sample sizes

were sufficient enough for obtaining and reporting users’ feedback about the tool. In

order to have greater confidence that the experiment results are representative, we

should have a large number of voluntary participants. Secondly, both experiments

also suffered from other possible factors; i.e., social influence processes that directly

affected the participants’ acceptance of the tool and cognitive instrumental processes

that influenced perceived usefulness and perceived ease of use of the tool (see

Venkatesh & Davis, 2000).

 181

7.4 Recommendations for Future Research

Continuous systems can be found anywhere in our life; e.g., plant and animal growth,

human population, weather changes, etc. However, relevant models that ease learning

of their behaviour are uncommon. Current tools not only require an amount of

programming code to represent the systems’ dynamic processes, but their resulting

models do not also allow adjustment of different aspects of their parameters and

customization of their visualizations during runtime. In this case, component-based

tools may ease the construction of attractive and interactive continuous simulation

models. However, how to properly structure such components to continuously track

system responses over time according to a set of differential equations and how to

support the resulting models’ GUIs so that their parameters and relevant equations can

be changed on the fly are worth to be investigated. Hopefully, there will be research

that will investigate this matter.

Many studies claim that interactions during classroom enhance learning.

However, few researchers focus on studying learners’ interactions while using an

open-ended simulation model for making judgement about their learning.

Investigating various factors (e.g., how long they have used the model, how many

times they have clicked relevant objects, what model parameters they have changed,

what additional evaluation need to embedded in the model, how to judge their

understanding, etc.) may signal their learning are worth exploring. This is possible

since all relevant data about their interactions while using the model can be captured

and analysed (either using LMS facilities or by the model itself). The next step is just

to develop mechanisms that relate all the data to induce relevant conclusions about the

effective use of the model.

Guiding exploration on open-ended models through a list of structured

activities may help learning and decrease their sense of being lost during exploration.

For this, the models must have quality and aesthetics values to support various

exploration capabilities. Finding a way of how to judge or measure the quality of a

model based on educational perspectives and how to better structure more flexible

objects that enable learners to deeply drill down their hierarchies (i.e., their internal

structures, operations and possibly into their source code) step by step via modal

windows is another possibility of a future research. This feature will not only enable

learners to visualize and analyse the model (e.g., through its multiple views of

 182

structures, states, abstraction levels, composition, etc.), but also help them to easily

understand how important processes and properties of a real system are presented in a

computer environment.

Our future work includes upgrading our components to support the proposed

hierarchical models discussed in Chapter 5. If they function as outlined, this will be a

great enhancement to our component-based simulation tool since the tool now

supports both of the construction of attractive and interactive a single layer and multi

layer DES models.

 183

REFERENCES

Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches. AI Communications,

7(1), 39-59.

Adams, D.A., Nelson, R.R., & Todd, P.A. (1992). Perceived Usefulness, Ease of Use,

and Usage of Information Technology: A Replication. MIS Quarterly, 16(2),

227-247.

Ainsworth, S. (1999). The Functions of Multiple Representations. Computers &

Education, 33, 131-152.

Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the Effects of Different

Multiple Representational Systems in Learning Primary Mathematics. Journal

of the Learning Sciences, 11(1), 25 - 61.

Ajzen, I., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social

Behavior. Englewood Cliffs, NJ: Prentice Hall.

Ala-Mutka, K., Gaspar, P., Kismihok, G., Suurna, M., & Vehovar, V. (2010). Status

and Developments of eLearning in the EU10 Member States: The Cases of

Estonia, Hungary and Slovenia. European Journal of Education, 45(3), 494-

513. doi: 10.1111/j.1465-3435.2010.01442.x

Alam, G.M., Oloruntegbe, O.K., Oluwatelure, A.T., Alake, M., & Ayeni, A.E. (2010).

Is 3D just an Addition of 1 to 2 or Is It More Enhancing Than 2D

Visualizations. Scientific Research and Essays, 5(12), 1536–1539.

Aldrich, C. (2002). A Field Guide to Educational Simulations. Retrieved Oct 18,

2007, from http://www.simulearn.net/pdf/astd.pdf

Aldrich, C. (2004). Simulations and the Future of Learning: An Innovative (and

Perhaps Revolutionary) Approach to e-Learning. San Francisco, California:

Pfeiffer.

Aldrich, C. (2005). Learning by Doing: A Comprehensive Guide to Simulations,

Computer Games, and Pedagogy in e-Learning and Other Educational

Experiences. San Francisco, California: Pfeiffer.

Alejandra, C., Mario, P., & Antonio, V. (2003). Component-Based Software Quality:

Methods and Techniques. Berlin: Springer.

Alonso, F., Lopez, G., Manrique, D., & Vies, J.M. (2005). An Instructional Model for

Web-based e-learning Education with a Blended Learning Process Approach.

British Journal of Educational Technology, 36(2), 217-235.

Anderson, J.R., Corbett, A.T., Koedinger, K.R., & Pelletier, R. (1995). Cognitive

Tutors: Lessons Learned. The Journal of the Learning Sciences, 4(2), 167-207.

Anderson, L.W., & Krathwohl, D.R. (2000). A Taxonomy for Learning, Teaching,

and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives.

Boston: Allyn & Bacon.

Aragon, S.R., Johnson, S.D., & Shaik, N. (2002). The Influence of Learning Style

Preferences on Student Success in Online Versus Face-to-face Environments.

American Journal of Distance Education, 16(4), 227-245.

Arbaugh, J.B., & Benbunan-Fich, R. (2007). The Importance of Participant

Interaction in Online Environments. Decision Support Systems, 43(3), 853-

865. doi: http://dx.doi.org/10.1016/j.dss.2006.12.013

Arnold, K., Gosling, J., & Holmes, D. (2006). The Java Programming Language (4th

ed.). Upper Saddle River: Addison-Wesley.

http://www.simulearn.net/pdf/astd.pdf
http://dx.doi.org/10.1016/j.dss.2006.12.013

 184

Atkinson, C., Bunse, C., Gross, H.-G., & Peper, C. (2005). Component-Based

Software Development for Embedded Systems: An Overview of Current

Research Trends. Berlin: Springer-Verlag.

Au, G., & Paul, R.J. (1996). Visual Interactive Modelling: A Pictorial Simulation

Specification System. European Journal of Operational Research, 91(1), 14-

26.

Aubidy, K.M.A. (2007). Teaching Computer Organization and Architecture Using

Simulation and FGPA Applications. Journal of Computer Science, 3(8), 624-

632.

Babar, M.A., Winkler, D., & Biffi, S. (2007). Evaluating the Usefulness and Ease of

Use of a Groupware Tool for the Software Architecture Evaluation Process.

First International Symposium on Empirical Software Engineering and

Measurement 2007 (ESEM 2007), 430-439.

Banduras, A. (1977). Self-efficacy: Toward a Unifying Theory of Behavioral Change.

Psychological Review, 84(2), 191-215.

Banks, J. (1998). Handbook of Simulation: Principles, Methodology, Advances,

Applications, and Practice. New York: John Wiley & Sons.

Bapat, V., & Sturrock, D.T. (2003). The Arena Product Family: Enterprise Modeling

Solutions. Proceedings of the 2003 Winter Simulation Conference, 210-217.

Barnes, C.D., & Laughery, J.K.R. (1997). Advanced Uses for Micro Saint Simulation

Software. Proceedings of the 1997 Winter Simulation Conference, 680-686.

Bedor, H.S., Mohamed, H.K., & Shedeed, R.A. (2004). A General Architecture of

Student Model to Assess the Learning Performance in Intelligent Tutoring

Systems. Proceedings of International Conference on Electrical, Electronic

and Computer Engineering 2004, 173- 178.

Belfore, A.L., Mielke, R.R., & Kunam, K.C. (2003). A Framework for Creating

VRML Visualizations from Discrete Event Simulations. Proceedings of the

International Symposium on Collaborative Technologies and Systems, 93-98.

Bell, P.C. (1989). Stochastic Visual Interactive Simulation Models. Journal of the

Operational Research Society, 40, 615–624.

Benjamin, D.M., Mazziotti, B.W., & Armstrong, F.B. (1994). Issues and Requirement

for Building a Generic Animation. Proceedings of the 1994 Winter Simulation

Conference, 1304-1310.

Beux, P.L., & Fieschi, M. (2007). Virtual Biomedical Universities and e-learning.

International Journal of Medical Informatics, 76(5-6), 331-335.

Birtwistle, G.M. (1979). DEMOS: A Discrete Event Modelling on Simulation.

London: McMillan.

Birtwistle, G.M. (1980). Simula Begin (2 ed.). Lund, Sweden: Studentlitteratur.

Bodemer, D., & Faust, U. (2006). External and Mental Referencing of Multiple

Representations. Computers in Human Behavior, 22(1), 27-42.

Bose, S.K. (2002). An Introduction to Queueing Systems. New York: Kluwer

Academic/Plenum Publisher.

Boyar, J. (1989). Inferring Sequences Produced by Pseudo-random Number

Generators. Journal of the ACM (JACM), 36(1), 129 - 141

Bransford, J.D. (2000). How People Learn: Brain, Mind, Experience and School.

Washington, D.C: National Academy Press.

Brouwer, N., Muller, G., & Rietdijk, H. (2007). Educational Designing with

MicroWorlds. Journal of Technology and Teacher Education, 15(4), 439-462.

 185

Browne, T., Jenkins, M., & Walker, R. (2006). A Longitudinal Perspective Regarding

the Use of VLEs by Higher Education Institutions in the United Kingdom.

Interactive Learning Environments, 14(2), 177-192.

Bryant, R.M. (1981). A Tutorial on Simulation Programming with SIMPAS.

Proceedings of the 1981 Winter Simulation, 363-377.

Bunt, A., Conati, C., Huggett, M., & Muldner, K. (2001). On Improving the

Effectiveness of Open Learning Environments through Tailored Support for

Exploration. Proceedings of the 10th International Conference on Artificial

Intelligence in Education (AI-ED 2001), 365-376.

Bunt, A., Conati, C., & Muldner, K. (2004). Scaffolding Self-explanation to Improve

Learning in Exploratory Learning Environments. Intelligent Tutoring Systems,

3220, 656-667.

Buss, A. (2000). Component-Based Simulation Modelling. Proceedings of the 2000

Winter Simulation Conference, 964-971.

Buss, A. (2002). Component Based Simulation Modeling with SIMKIT. Proceedings

of the 2002 Winter Simulation Conference, 243-249.

Buss, A., & Blais, C. (2007). Composability and Component-Based Discrete Event

Simulation. Proceedings of the 2007 Winter Simulation Conference, 694-702.

Bustamante, E.A., & Spain, R. D. . (2008). Measurement Invariance of the NASA

TLX. Human Factors and Ergonomics 52, 1522-1526.

Castagna, G. (1997). Object Oriented Programming: A Unified Foundation. Boston:

Birkhauser.

Castillo, S., Hancock, S., & Hess, G. (2004). Using Flash MX to Create e-Learning

(1
st
 ed.). Vancouver: Rapid Intake Press.

Chang, K.-E., Chen, Y.-L., Lin, H.-Y., & Sung, Y.-T. (2008). Effects of Learning

Support in Simulation-based Physics Learning. Computers & Education,

51(4), 1486-1498.

Charles, C.M. (2008). Today's Best Classroom Management Strategies: Paths to

Positive Discipline. Boston: Pearson/Allyn Bacon.

Chau, P.Y.K. (1996). An Empirical Investigation on Factors Affecting the Acceptance

of CASE by Systems Developers. Information and Management, 30, 269-280.

Chen, G., & Szymanski, B.K. (2002). COST: A Component-Oriented Discrete Event

Simulator. Proceedings of the 2002 Winter Simulation Conference, 776-782.

Cho, Y.I., & Kim, T.G. (2002). DEVS Framework for Component-based

Modeling/Simulation of Discrete Event Systems. Proceedings of the 2002

Summer Computer Simulation Conference.

Chwif, L., & Barretto, M.R.P. (2003). Simulation Models as an Aid for the Teaching

and Learning Process in Operations Management. Proceedings of the 2003

Winter Simulation Conference, 1994-2000.

Clark, R.C., Nguyen, F., & Swelle, J. (2006). Efficiency in Learning: Evidence-based

Guidelines to Manage Cognitive Load. San Francisco: Jossey-Bass.

Clark, R.E., Yates, K., Early, S., & Moulton, K. (2010). An Analysis of the Failure of

Electronic Media and Discovery-Based Learning. In K. H. Silber & W. R.

Foshay (Eds.), Handbook of Improving Performance in the Workplace:

Volumes 1 (pp. 263-297). San Francisco: Pfeiffer.

Coakes, S.J. (2007). SPSS Version 12.0 for WIndows: Analysis without Anguish.

Singapore: John Wiley & Sons Australia.

Concannon, K., Elder, M., Hindle, K., Tremble, J., & Tse, S. (2006). Simulation

Modeling with SIMUL8. Mississauga, Ontario: Visual Thinking International.

 186

Conway, R., & Maxwell, W. (1987). Modeling Asynchronous Materials Handling

Systems in XCELL+. Paper presented at the Proceedings of the 19th

Conference on Winter Simulation.

Craig, I.D. (2007). The Interpretation of Object Oriented Programming Languages.

London: Springer.

Crain, R.C., & Henriksen, J.O. (1999). Simulation Using GPSS/H. Proceedings of the

1999 Winter Simulation Conference, 182-187.

Cronbach, L. (1951). Coefficient Alpha and the Internal Structure of Tests.

Psychometrika, 16(3), 297-334. doi: 10.1007/bf02310555

Davies, C., H., J. (2002). Student Engagement with Simulations. Computers and

Education, 39 (3), 271-282.

Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User

Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.

Davis, F.D., Bagozzi, R.P., & Warshaw, P.R. (1989). User Acceptance of Computer

Technology: A Comparison of Two Theoretical Models. Management

Science, 35(8), 982-1003. doi: 10.1287/mnsc.35.8.982

Davis, F.D., & Venkatesh, V. (1996). A Critical Assessment of Potential

Measurement Biases in the Technology Acceptance Model: Three

Experiments. International Journal of Human-Computer Studies, 45(1), 19-

45.

Deitel, H.M. (2006). Visual Basic 2005: How to Program. Upper Saddle River:

Pearson Prentice Hall.

Deitel, H.M., Deitel, P.J., & Goldberg, A.B. (2004). Internet & World Wide Web:

How to Program (3rd ed.). New Jersey: Pearson Education International.

Djajadiningrat, T., Matthews, B., & Stienstra, M. (2007). Easy Doesn't Do It: Skill

and Expression in Tangible Aesthetics. Personal Ubiquitous Computing,

11(8), 657-676. doi: 10.1007/s00779-006-0137-9

Dochy, F., Segers, M., & Buehl, M.M. (1999). The Relation between Assessment

Practices and Outcomes of Studies: The Case of Research on Prior

Knowledge. Review of Educational Research, 69(2), 145-186.

Donatis, A.D. (2006). Advanced ActionScript Components: Mastering the Flash

Component Architecture. Berkeley: APress.

Donikian, S., & Cozot, R. (1995). General Animation and Simulation Platform.

Computer Animation and Simulation '95, 197-209. .

Dublin, L. (2004). The Nine Myths of e-learning Implementation: Ensuring the Real

Return on Your e-learning Investment. Industrial and Commercial Training,

36(7), 291-294.

Duinkerken, M.B., Ottjes, J.A., & Lodewijks, G. (2002). The Application of

Distributed Simulation in Tomas: Redesigning a Complex Transportation

Model. Proceedings of the 2002 Winter Simulation Conference, 1207-1213.

Ebner, M., & Taraghi, B. (2010). Personal Learning Environment for Higher

Education – A First Prototype. World Conference on Educational Multimedia,

Hypermedia and Telecommunications 2010, 1158-1166.

Eck, R.V., & Dempsey, J. (2002). The Effect of Competition and Contextualized

Advisement on the Transfer of Mathematics Skills in a Computer-Based

Instructional Simulation Game. Educational Technology Research and

Development, 50(3), 23-41.

Eden, A.H. (2002). A Theory of Object-Oriented Design. Information Systems

Frontiers, 4(4), 379-391.

 187

Eppler, M.J., & Burkhard, R.A. (2007). Visual Representations in Knowledge

Management: Framework and Cases. Journal of Knowledge Management, 11,

112-122.

Falvo, D.A. (2008). Animations and Simulations for Teaching and Learning

Molecular Chemistry. International Journal of Technology in Teaching and

Learning, 4(1), 68–77.

Falvo, D.A., & Johnson, B.F. (2007). The Use of Learning Management Systems in

the United States. TechTrends, 51(2), 40-45. doi: 10.1007/s11528-007-0025-9

Fenrich, P. (2006). Getting Practical with Learning Styles in Live and Computer-

based Training Settings. The Journal of Issues in Informing Science and

Information Technology, 3, 233-242.

Filippi, J.B., Delhom, M., & Bernardi, F. (2002). The JDEVS Modelling and

Simulation Environment. Proceedings of the 1st Biennial Meeting of the

iEMSs, 283-288.

Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An

Introduction to Theory and Research Massachusetts: Addison-Wesley.

Fishwick, P.A. (1992). SimPack: Getting Started with Simulation Programming in C

and C++. Proceedings of the 1992 Winter Simulation Conference, 154-162.

Fitzpatrick, S. (2003). A Review of Web-based Learning and Teaching. Retrieved

Nov 20, 2008, from

http://www.le.ac.uk/cc/rjm1/etutor/elearning/reviewofwebbasedtl.html

Fletcher, J.D., & Tobias, S. (2005). The Multimedia Principle. In R. E. Mayer (Ed.),

Cambridge Handbook of Multimedia Learning (pp. 17-133). New York:

Cambridge University Press.

Flynt, J.P., & Vinson, B. (2005). Simulation and Event Modeling for Game

Developers. Boston, MA: Thomson Course Technology.

Gaffney, C., Dagger, D., & Wade, V. (2008). A Survey of Soft Skill Simulation

Authoring Tools. Proceedings of the nineteenth ACM Conference on

Hypertext and Hypermedia, 181-185.

Ganapathy, S., Narayanan, S., & Srinivasan, K. (2003). Simulation Based Decision

Support for Supply Chain Logisitics. Proceedings of the 2003 Winter

Simulation Conference, 1013-1020.

Garrido, J.M. (1999). Practical Process Simulation Using Object-Oriented Technique

and C++. Boston: Artech House.

Garrido, J.M. (2001). Object-Oriented Discrete-event Simulation: A Practical

Introduction. New York: Kluwer Academic/Plenum Publishers.

Garrot, T., Psillaki, M., & Rochhia, S. (2008). Describing E-learning Development in

European Higher Education Institutions Using a Balanced Scorecard. The

Economics of E-learning, 5(1), 57-71.

Gelenbe, E., & Pujolle, G. (1998). Introduction to Queing Network. New York:

Wiley.

George, D., & Mallery, P. (2009). SPSS for Windows Step by Step: A Simple Guide

and Reference 18.0 Update. Boston: Pearson Allyn and Bacon.

Getting Started with SIMPROCESS. (2006). Retrieved September 6, 2008, from

http://www.renque.com/downloads/RenqueManual.pdf

Geuder, D.F. (1995). Object Oriented Modeling with Simple++. Proceedings of the

1995 Winter Simulation Conference, 534-540.

Gibson, D., Aldrich, C., & Prensky, M. (2007). Games and Simulations in Online

Learning: Research and Development Frameworks. Hershey, PA: Information

Science Publishing.

http://www.le.ac.uk/cc/rjm1/etutor/elearning/reviewofwebbasedtl.html
http://www.renque.com/downloads/RenqueManual.pdf

 188

Gilman, A. (1985). Interactive Control of the Model: A Natural Companion to

Animated Simulation Graphics. Proceedings of the 1985 Winter Simulation

Conference, 196-198.

Goble, J. (1991). Introduction to SIMFACTORY II.5. Proceedings of the 1991 Winter

Simulation Conference, 77-80.

Goble, J. (1997). MODSIM III - A Tutorial. Proceedings of the 1997 Winter

Simulation Conference, 601-605.

Gokhale, A.A. (1996). Effectiveness of Computer Simulation for Enhancing Higher

Order Thinking. Journal of Industrial Teacher Education, 33(4), 36-46.

Goldman, S.R. (2003). Learning in Complex Domains: When and Why Do Multiple

Representations Help? Learning and Instruction, 13(2), 239-244.

Gonzalez-Barbone, V., & Anido-Rifon, L. (2010). From SCORM to Common

Cartridge: A step forward. Computers & Education, 54(1), 88-102.

Gredler, M.E. (2003). Games and Simulations and Their Relationships to Learning. In

D. Jonassen (Ed.), Handbook of Research for Educational Communications

and Technology (2nd ed., pp. 571-581). Mahwah, NJ: Lawrence Erlbaum

Associates.

Greenbaum, J., & Kyng, M. (1991). Design at Work: Cooperative Design of

Computer Systems. New Jersey: Lawrence Erlbaum Associates.

Haapala, A. (2006). Promoting Different Kinds of Learners towards Active Learning

in the Web-Based Environment. Informatics in Education, 2(2), 207-218.

Hailikari, T., Katajavuori, N., & Lindblom-Ylanne, S. (2008). The Relevance of Prior

Knowledge in Learning and Instructional Design. American Journal of

Pharmaceutical Education, 72(5).

Halpin, B. (1999). Simulation in Sociology. American Behaviroral Scientist, 42(10),

1488-1508.

Hamlin, J.S., Tarbell, J., & Williams, B. (2003). The Hidden Power of Flash

Components. San Francisco: Sybex.

Hannon, B., Ruth, M., & Meadows, D.H. (2001). Dynamic Modeling (2nd ed.). New

York: Springer.

Harrel, C.R., & Price, R.N. (2003). Simulation Modeling Using ProModel

Technology. Proceedings of the 2003 Winter Simulation Conference, 175-181.

Harrell, C., Ghosh, B.K., & Bowden, R.O. (2004). Simulation Using ProModel (2nd

ed.). New York: McGraw Hill.

Hart, S.G., Stavenland, L.E., Hancock, P.A., & Meshkati, N. (1988). Development of

NASA-TLX (Task Load Index): Results of Empirical and Theoretical

Research. In P. A. Hancock & N. Meshkati (Eds.), Human Mental Workload

(pp. 139-183). Armsterdan: Elsevier Science Publisher.

Healy, K.J., & Kilgore, R.A. (1998). Introduction to SILK and Java-based Simulation.

Proceedings of the 30th Conference on Winter Simulation, 327-334.

Hegarty, M. (2004). Dynamic Visualizations and Learning: Getting to the Difficult

Questions. Learning and Instruction, 14, 343–351

Hegarty, M., Kriz, S., & Cate, C. (2003). The Roles of Mental Animations and

External Animations in Understanding Mechanical Systems. Cognition and

Instruction, 21(4), 325-360.

Heinich, R., Molenda, M., Russell, J.D., & Smaldino, S.E. (1999). Instructional

Media and Technologies for Learning (6 ed.). Upper Saddle River, N.J:

Merrill.

 189

Henderson, R., & Divett, M.J. (2003). Perceived Usefulness, Ease of Use and

Electronic Supermarket Use. International Journal of Human-Computer

Studies, 59(3), 383-395.

Henriksen, J.O. (1997). An Introduction to SLX. Proceedings of the 1997 Winter

Simulation Conference, 559-566.

Henriksen, J.O. (2000). Adding Animation to a Simulation Using PROOF.

Proceedings of the 2000 Winter Simulation Conference, 191-196.

Herrington, J., & Oliver, R. (1995). Critical Characteristics of Situated Learning:

Implications for the Instructional Design of Multimedia. Proceedings of

ASCILITE'95.

Herrington, J., & Oliver, R. (1997). Multimedia, Magic and the Way Students

Respond to a Situated Learning Environment. Australian Journal of

Educational Technology, 13(2), 127-143.

Hill, D.R.C. (1996). Object-Oriented Analysis and Simulation. Harlow, New York:

Addison-Wesley.

Holzinger, A., & Ebner, M. (2003). Interaction and Usability of Simulations &

Animations: A Case Study of the Flash Technology. Proceedings of

International Conference on Human-Computer Interactions 2003

(INTERACT’03), 777-780.

Hoppensteadt, F.C., & Peskin, C.S. (2002). Modelling and Simulation in Medicine

and Life Science. New York: Springer.

Huk, T. (2006). Who Benefits from Learning with 3D Models? The Case of Spatial

Ability. Journal of Computer Assisted Learning, 22(6), 392-404. doi:

10.1111/j.1365-2729.2006.00180.x

Hull, T.E., & Dobell, A.R. (1962). Random Number Generators. SIAM Review, 4(3),

230-254.

Hunter, D., Cagle, K., Gibbons, D., Ozu, N., Pinnock, J., & Spencer, P. (2000).

Beginning XML. Birmingham: Wrox.

Iazeolla, G., & Ambrogio, A.D. (1998). Distributed Systems for Web-based

Simulation. Advances in Computer and Information Science'98, 1-8.

Idrus, H., Dahan, H.M., & Abdullah, N. (2009). Challenges in the Integration of Soft

Skills in Teaching Technical Courses: Lecturers’ Perspectives. Asian Journal

of University Education, 5(2), 67-81.

Igbaria, M., Livari, J., & Maragahh, H. (1995). Why Do Individuals Use Computer

Technology?: A Finnish Case Study. Information & Management, 29(5), 227-

238. doi: 10.1016/0378-7206(95)00031-0

Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. (1997). Personal Computing

Acceptance Factors in Small Firms: A Structural Equation Model. MIS

Quarterly(279-302).

Illeris, K. (2000). The Three Dimensional of Learning: Contemporary Learning

Theory in the Tension Field between the Cognitive, the Emotional and the

Social. Frederiksberg: Roskilde University Press.

Isomaki, H., Pekkola, S., & Bannon, L.J. (2011). “20 Years a-Growing”: Revisiting

From Human Factors to Human Actors Reframing Humans in Information

Systems Development (Vol. 201, pp. 181-188). London: Springer

Jacobs, P.H.M., Lang, A.N., & Verbraeck, A. (2002). D-SOL; A Distributed Java

Based Discrete Event Simulation Architecture. Proceedings of the 2002

Winter Simulation Conference, 793-800.

Jahangir, N., & Begum, N. (2008). The Role of Perceived Usefulness, Perceived Ease

of Use, Security and Privacy, and Customer Attitude to Engender Customer

 190

Adaptation in the Context of Electronic Banking. African Journal of Business

Management, 2 (1), 32-40.

Jeffries, P.R. (2005). A Framework for Designing, Implementing, and Evaluating:

Simulations Used as Teaching Strategies in Nursing. Nursing Education

Perspectives, 26(2), 96-103.

Jifeng, H., Li, X., & Liu, Z. (2005). Component-Based Software Engineering - the

Need to Link Methods and their Theories. Lecture Notes in Computer Science,

3722, 70-95.

Johnson, S.D., Aragon, S.R., Shaik, N., & Palma-Rivas, N. (2000). Comparative

Analysis of Learner Satisfaction and Learning Outcomes in Online and Face-

to-face Learning Environments. Journal of Interactive Learning Research,

11(1), 29-49.

Jonassen, D.H., & Land, S.M. (2000). Theoritical Foundations of Learning

Environment. New Jersey: Lawrence Erlbaum Associates.

Jong, T.D. (1991). Learning and Instruction with Computer Simulations. Education &

Computing, 6(3-4), 217-229

Jong, T.D., & Joolingen, W.R.V. (1998). Scientific Discovery Learning with

Computer Simulations of Conceptual Domains. Review of Educational

Research, 68(2), 179-201.

Jong, T.D., & Joolingen, W.R.V. (2008). Model-Facilitated Learning. In J. M.

Spector, M. D. Merrill, J. v. Merrienboer & M. P. Driscoll (Eds.), Handbook

of Research on Educational Communications and Technology (pp. 457-468).

New York: Taylor & Francis Group.

Jong, T.D., Martin, E., Zamarro, J.M., Esquembre, F., Swaak, J., & Joolingen,

W.R.V. (1999). The Integration of Computer Simulation and Learning

Support: An Example from the Physics Domain of Collisions. Journal of

Research in Science Teaching, 36(5), 597-615.

Joolingen, W.R.V., & Jong, T.D. (1991a). Characteristics of Simulations for

Instructional Settings. Education & Computing, 6(3-4), 241-262.

Joolingen, W.R.V., & Jong, T.D. (1991b). Supporting Hypothesis Generation by

Learners Exploring an Interactive Computer Simulation. Instructional Science,

20(5), 389-404.

Kacer, J. (2002). Discrete Event Simulations with J-Sim. Proceedings of the

Inaugural Conference on the Principles and Practice of Programming, 13-18.

Kalra, D., & Barr, A.H. (1992). Modeling with Time and Events in Computer

Simulations. Eurographics’92, 45-58.

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The Expertise Reversal

Effect. Educational Psychologist 38(1), 23-31.

Kamat, V.R., & Martinez, J.C. (2001). Enabling Smooth and Scaleable Dynamic 3D

Visualization of Discrete-Event Construction Simulations. Proceedings of the

2001 Winter Simulation Conference, 1528-1533.

Kamat, V.R., & Martinez, J.C. (2007). Variable-Speed Resource Motion in

Animations of Discrete-Event Process Models. Electronic Journal of

Information Technology in Construction (ITcon), 12, 293-303.

Kauchak, D.P., & Eggen, P.D. (2007). Learning and Teaching: Research Based

Methods. Boston: Pearson Allyn & Bacon.

Kaye, J., & Castillo, D. (2003). Flash MX for Interactive Simulation. New York:

Thompson Delmar Learning.

 191

Kazymyr, V., & Demshevska, N. (2001). Application of Java-technologies for

Simulation in the Web. Proceedings of the 2001 International Conference on

Information Systems Technology and Its Applications, 173-184.

Keen, R.E., & Spain, J.D. (1992). Computer Simulation in Biology. New York:

Wiley-Liss.

Keil, M., Beranek, P.M., & Konsynski, B.R. (1995). Usefulness and Ease of Use:

Field Study Evidence Regarding Task Considerations. Decision Support

Systems 13, 75-91.

Kelton, W.D., Sadowski, R.P., & Sturrock, D.T. (2004). Simulation with Arena (3
rd

ed.). New York: Mc-Graw Hill.

Kelton, W.D., Sadowski, R.P., & Swets, N.B. (2010). Simulation with Arena (5th ed.).

Singapore: Mc Graw Hill.

Kennepohl, D. (2001). Using Computer Simulations to Supplement Teaching

Laboratories in Chemistry for Distance Delivery. Journal of Distance

Education, 16(2), 58-65.

Khalid, R., Kreutzer, W., & Bell, T. (2009). Combining Simulation and Animation of

Queueing Scenarios in a Flash-based Discrete Event Simulator. Lecture Notes

in Business Information Processing, 20, 240-251.

Kilgore, R.A. (2000). Silk, Java and Object-Oriented Simulation. Proceedings of the

2000 Winter Simulation Conference, 246-252.

Kim, J.O., & Mueller, C.W. (1978). Introduction to Factor Analysis: What It Is and

How To Do it. Newbury Park: Sage Publications.

Kim, K. (2006). The Future of Online Teaching and Learning in Higher Education:

The Survey Says. EDUCAUSE Quarterly, 29(4), 22-30.

Kirschner, P.A., Sweller, J., & Clark, R.E. (2006). Why Minimal Guidance During

Instruction Does Not Work: An Analysis of the Failure of Constructivist,

Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching.

Educational Psychologist, 41(2), 75-86.

Klein, U., Straßburger, S., & Beikirch, J. (1998). Distributed Simulation with

JavaGPSS Based on the High Level Architecture. Proceedings of the 1998

SCS International Conference on Web-Based Modeling and Simulation, 85-90.

Klobas, J., & McGill, T. (2010). The Role of Involvement in Learning Management

System Success. Journal of Computing in Higher Education, 22(2), 114-134.

doi: 10.1007/s12528-010-9032-5

Knowles, M.S. (1984). Andragogy in Action. San Francisco: Jossey-Bass.

Knuth, D.E. (1981). The Art of Computer Programming, Volume 2: Seminumerical

Algorithms (2nd ed.). Reading: Addison-Wesley.

Kolb, D.A. (1984). Experiental Learning: Experience as the Source of Learning and

Development. Englewood Cliffs: NJ: Prentice-Hall.

Korakakis, G., Pavlatou, E.A., Palyvos, J.A., & Spyrellis, N. (2009). 3D Visualization

Types in Multimedia Applications for Science Learning: A Case Study for 8th

Grade Students in Greece. Computers & Education, 52(2), 390-401.

Kozma, R. (2003). The Material Features of Multiple Representations and Their

Cognitive and Social Affordances for Science Understanding. Learning and

Instruction, 13(2), 205-226.

Krahl, D. (2003). Extend: An Interactive Simulation Tool. Proceedings of the 2003

Winter Simulation Conference, 188-196.

Krahl, D. (2007). ExtendSim7. Proceedings of the 2007 Winter Simulation

Conference, 226-232.

 192

Krathwohl, D.R., Bloom, B.S., & Masia, B.B. (1996). Taxonomy of Educational

Objectives, Handbook 1: Affective Domain (2nd ed.). New York: Longman.

Kreiman, J., & Mullarney, A. (1987). SIMSCRIPT II.5 Programming Language (4
th

ed.). Los Angeles, CA: CACI.

Kreutzer, W. (1986). System Simulation: Programming Styles and Languages.

Boston: Addison-Wesley Publisher Limited.

Kreutzer, W., Hopkins, J., & Mierlo, M.C. (1997). SimJAVA: A Framework for

Modelling Queing Networks in Java. Paper presented at the Proceedings of the

1997 Winter Simulation Conference, Atlanta, GA.

Kreutzer, W., Hopkins, J., & Mierlo, M.V. (1997). SimJAVA - A Framework for

Modeling Queueing Networks in Java. Proceedings of the 29th Conference on

Winter Simulation, 483-488. doi: http://doi.acm.org/10.1145/268437.268548

Kühl, T., Scheiter, K., Gerjets, P., & Gemballa, S. (2011). Can Differences in

Learning Strategies Explain the Benefits of Learning from Static and Dynamic

Visualizations?. Computers & Education, 56(1), 176-187.

Kuljis, J., & Paul, R.J. (2000). A Review of Web Based Simulation: Whither We

Wander?. Proceedings of the 2000 Conference on Winter Simulation, 1872-

1881.

L’Ecuyer, P., Meliani, L., & Vaucher, J. (2002). SSJ: A Framework for Stochastic

Simulation in Java. Proceedings of the 2002 Winter Simulation Conference,

234-242.

Laitenberger, O., & Dreyer, H.M. (1998). Evaluating the Usefulness and the Ease of

Use of a Web-based Inspection Data Collection Tool. Proceedings of Fifth

International on Software Metrics Symposium, 1998 (Metrics 1998), 122-132.

Lambert, K.A., & Osborne, M. (2004). Java: A Framework for Program Design and

Data Structures. Belmont, CA: Thomson-Brooks/Cole.

Land, S. (2000). Cognitive Requirements for Learning with Open-ended Learning

Environments. Educational Technology Research and Development, 48(3),

61-78.

Landriscina, F. (2009). Simulation and Learning: The Role of Mental Models.

Journal of e-Learning and Knowledge Society, 5(2), 23-32.

Lau, Y.-T. (2000). The Art of Objects: Object-Oriented Design and Architecture.

Upper Saddle River: Addison-Wesley Professional

Law, A.M. (2007). Simulation Modeling and Analysis (4 ed.). Boston: McGraw-Hill.

Law, A.M., & Kelton, W.D. (2000). Simulation Modeling and Analysis. New York:

McGraw-Hill.

LeBaron, T., & Jacobson, C. (2007). The Simulation Power of AutoMOD.

Proceedings of the 2007 Winter Simulation Conference, 210-218.

Ledin, J. (2001). Simulation Engineering: Build Better Embedded Systems Faster.

Lawrence, KS: CMP Books.

Lee, J. (1999). Effectiveness of Computer-Based Instructional Simulation: A Meta

Analysis. International Journal of Instructional Media, 26(1), 71-85.

Legris, P., Ingham, J., & Collerette, P. (2003). Why Do People Use Information

Technology? A Critical Review of the Technology Acceptance Model.

Information & Management, 40(3), 191-204.

Leutner, D. (1993). Guided Discovery Learning with Computer-based Simulation

Games: Effects of Adaptive and Non-adaptive Instructional Support. Learning

and Instruction, 3(2), 113-132.

http://doi.acm.org/10.1145/268437.268548

 193

Liao, T.T., & Miller, D.C. (1996). Computer Games: Increase Learning in an

Interactive Multidisplinary Environment. Journal of Educational Technology

Systems, 24(2), 195-205.

Little, M.C., & McCue, D.L. (1993). Construction and Use of a Simulation Package

in C++: University of Newcastle Upon Tyne.

Livesey, P.J. (1986). Learning and Emotion: A Biological Synthesis. Hillsdale, N.J.:

Lawrence Erlbaum Associates.

Lomow, G., & Baezner, D. (1989). A Tutorial Introduction to Object-Oriented

Simulation and SIM++. Proceedings of the 1989 Winter Simulation

Conference, 140-146.

Lopez, L.A. (2006). New Perspective on Macromedia Flash 8: Comprehensive.

Boston: Thompson Course Technology.

Lott, J., & Patterson, D. (2007). Advanced ActionScript 3 with Design Patterns.

Berkeley, CA: Peachpit Press.

Lowe, R. (2004). Interrogation of a Dynamic Visualization During Learning.

Learning and Instruction, 14(3), 257-274.

Lunce, L.M. (2004). Computer Simulations in Distance Education. International

Journal of Instructional Technology and Distance Learning, 1(10), 29-40.

Lunce, L.M. (2006). Simulations: Bringing the Benefits of Situated Learning to the

Traditional Classroom. Journal of Applied Educational Technology, 3(1), 37-

45.

m-Plant: Empower for Manufacturing Process Management. (2003). from

http://www.sim-serv.com/pdf/tools/tool_14.pdf

Macal, C.M. (2001). Simulation and Visualization. SIMULATION, 77(49), 90-92.

Maldonado, H., Lee, J.-E.R., Brave, S., Nass, C., Nakajima, H., Yamada, R. (2005).

We Learn Better Together: Enhancing eLearning with Emotional Characters.

Proceedings of the 2005 Conference on Computer Support for Collaborative

Learning 2005: The Next 10 Years, 408-417.

Markowitz, H., Hausner, B., & Karr, H.W. (1963). SIMSCRIPT: A Simulation

Programming Language. Englewood Cliffs, NJ: Prentice-Hall.

Martinez, M. (2000). International Learning in an International World. ACM Journal

of Computer Documentation, 24(1), 3-20. doi:

http://doi.acm.org/10.1145/330409.330411

Mascarenhas, E., Rego, V., & Sang, J. (1995). DISplay: A System for Visual-

Interaction in Distributed Simulations. Proceedings of the 1995 Winter

Simulation Conference, 698-705.

Mathieson, K. (1991). Predicting User Intentions: Comparing the Technology

Acceptance Model with the Theory of Planned Behavior. Information Systems

Research, 2(3), 173-191.

Matloff, N. (2008). Introduction to Discrete-Event Simulation and the SimPy

Language. Retrieved September 2008, 2008, from

http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf

Matwiczak, K.M. (1990). Interactive Simulation: Let the User Beware. Proceedings

of the 1990 Winter Simulation Conference, 453-456.

Mayer, R.E. (2003). Elements of a Science of E-learning. Journal of Educational

Computing Research 29(3), 297 - 313

Mayer, R.E., Hegarty, M., Mayer, S., & Campbell, J. (2005). When Static Media

Promote Active Learning: Annotated Illustrations Versus Narrated Animations

in Multimedia Instruction. Journal of Experimental Psychology: Applied,

11(4), 256–265.

http://www.sim-serv.com/pdf/tools/tool_14.pdf
http://doi.acm.org/10.1145/330409.330411
http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf

 194

Mayer, R.E., & Moreno, R. (2003). Nine Ways to Reduce Cognitive Load in

Multimedia Learning. Educational Psychologist, 38(1), 43-52.

McKenna, P., & Laycock, B. (2004). Constructivist or Instructivists Pedagogical

Concepts Practically Applied to a Computer Learning Environment. ACM

SIGCSE Bulletin, 36(3), 166-170.

McNab, R., & Howell, F.W. (1996). Using Java for Discrete Event Simulation.

Proceeding of Twelfth UK Computer and Telecommunications Performance

Engineering Workshop (UKPEW), 219-228.

McNab, R., & Howell, F.W. (1998). simjava: A Discrete Event Simulation Package

for Java with Applications in Computer Systems Modelling. Proceeding of the

First International Conference on Web-based Modelling and Simulation.

Melão, N., & Pidd, M. (2007). Using Component Technology to Develop a

Simulation Library for Business Process Modelling. European Journal of

Operational Research, 172(1), 163-178.

Meyer, R., Page, B., Kreutzer, W., Knaak, N., & Lechler, T. (2005a). DESMO-J - A

Framework for Discrete Event Modelling & Simulation. In B. Page & W.

Kreutzer (Eds.), The Java Simulation Handbook - Simulating Discrete Event

Systems with UML and Java (pp. 263-335). Aachen: Shaker Verlag.

Meyer, R., Page, B., Kreutzer, W., Knaak, N., & Lechler, T. (2005b). DESMO-J - A

Framework for Discrete Event Modelling & Simulation. In B. Page & W.

Kreutzer (Eds.), Simulating Discrete Event Systems with UML and Java.

Aachen: Shaker Verlag.

Michael, K.Y. (2000). A Comparison of Students' Product Creativity Using a

Computer Simulation Activity Versus a Hands-on Activity in Technology

Education. Virginia Polytechnic Institute and State University.

Michelson, J.D., & Manning, L. (2008). Competency Assessment in Simulation-based

Procedural Education. The American Journal of Surgery, 196(4), 609-615.

Mildrad, M. (2002). Using Construction Kits, Modeling Tools and System Dynamics

Simulations to Support Collaborative Discovery Learning. Educational

Technology & Society, 5(4), 76-87.

Miller, J.A., Ge, Y., & Tao, J. (1998). Component-Based Simulation Environment:

JSIM as a Case Study Using Java Beans. Proceedings of the 1998 Winter

Simulation Conference, 373-381.

Miller, J.A., Ge, Y., & Tao, J. (1998). Component-based Simulation Environments:

JSIM as a Case Study Using Java Beans. Paper presented at the Proceedings

of the 30th conference on Winter simulation, Washington, D.C., United States.

Milrad, M. (2002). Using Construction Kits, Modeling Tools and System Dynamics

Simulations to Support Collaborative Discovery Learning. Educational

Technology & Society, 5(4), 76-87.

Min, R. (2003). Simulation and Discovery Learning in an Age of Zapping and

Searching: Learning Models. Turkish Online Journal of Distance Education,

4(2).

Mohler, J.L. (2006). Flash 8: Graphics, Animation and Interactivity. New York:

Thomson/Delmar Learning.

Moock, C. (2002). ActionScript for Flash MX: The Definitive Guide, Second Edition

(2 ed.). Sebastopol: O'Reilly Media.

Moock, C. (2004). Essential ActionScript 2.0. Farnham: O'Reilley.

Moreno, R. (2006). Does the Modality Principle Hold for Different Media? A Test of

the Method-Affects-Learning Hypothesis. Journal of Computer Assisted

Learning, 22(3), 149-158. doi: 10.1111/j.1365-2729.2006.00170.x

 195

Moreno, R., & Mayer, R. (2007). Interactive Multimodal Learning Environments.

Educational Psychology Review, 19(3), 309-326. doi: 10.1007/s10648-007-

9047-2

Moretti, S. (2002). Computer Simulation in Sociology: What Contributions?. Social

Science Computer Review, 20(1), 43-57.

Narayanan, N.H., & Hegarty, M. (2002). Multimedia Design for Communication of

Dynamic Information. International Journal of Human Computer Studies,

57(4), 279-315. doi: http://dx.doi.org/10.1006/ijhc.2002.1019

Narayanan, S., Cowgill, J., Malu, P., Nandha, H., Patel, C., Schneider, N. (1997).

Web-based Distributed Interactive Simulation Using Java. Proceedings of the

1997 IEEE International Conference on Systems, Manufacturing and

Cybernetics, 3, 2690-2695.

Neumann, G., Page, B., Kreutzer, W., Kiesel, G., & Meyer, R. (2005). Simulation and

E-Learning. In B. Page & W. Kreutzer (Eds.), Simulating Discrete Event

Systems with UML and Java (pp. 401-433). Aachen: Shaker Verlag.

Nigel, N. (2008). Curriculum and the Teacher: 35 years of the Cambridge Journal of

Education. London: Routledge.

Njoo, M., & Jong, T.D. (1993). Exploratory Learning with a Computer Simulation for

Control Theory: Learning Processes and Instructional Support. Journal of

Research in Science Teaching, 30(8), 821-844.

Noguez, J., & Sucar, L. (2005). A Semi-open Learning Environment for Virtual

Laboratories MICAI 2005: Advances in Artificial Intelligence (pp. 1185-1194).

Nordgren, W.B. (2003). Flexsim Simulation Environment. Proceedings of the 2003

Winter Simulation Conference, 197-200.

O’Reilly, J. (2002). Introduction to AweSim. Proceedings of the 2002 Winter

Simulation Conference, 221-224.

Odhabi, H.I., Paul, R.J., & Macredie, R.D. (1998). Developing a Graphical User

Interface for Discrete Event Simulation. Proceedings of the 1998 Winter

Simulation Conference, 429-436.

Oloruntegbe, K.O., & Alam, G.M. (2010). Evaluation of 3d Environments and Virtual

Realities in Science Teaching and Learning: The Need to Go Beyond

Perception Referents. Scientific Research and Essays, 5(9), 948-954.

Oses, N., Pidd, M., & Brooks, R.J. (2004). Critical Issues in the Development of

Component-based Discrete Simulation. Simulation Modelling Practice and

Theory, 12(7-8), 495-514.

Paas, F., Tuovinen, J., Tabbers, H., & Gerven, P.V. (2003). Cognitive Load

Measurement as a Means to Advance Cognitive Load Theory. Educational

Psychologist, 38(1), 63-71.

Page, B., & Kreutzer, W. (2005). The Java Simulation Handbook: Simulating

Discrete Event Systems with UML and Java. Aachen: Shaker Verlag.

Page, E.H., Moose, R.L.J., & P.Griffin, S. (1997). Web-Based Simulation in Simjava

Using Remote Method Invocation. Proceedings of the 1997 Winter Simulation

Conference, 468-473.

Parrish, P. (2009). Aesthetic Principles for Instructional Design. Educational

Technology Research and Development, 57(4), 511-528. doi: 10.1007/s11423-

007-9060-7

Payne, J.W. (1982). Contingent Decision Behavior. Psychological Bulletin, 92(2),

382-402.

Pedgen, C.D. (2007). Simio: A New Simulation System Based on Intelligent Objects.

Proceedings of the 2007 Winter Simulation Conference, 2293-2300.

http://dx.doi.org/10.1006/ijhc.2002.1019

 196

Pegden, C.D. (1989). Introduction to SIMAN. Sewickley, PA: Systems Modelling

Cooperation.

Pegden, C.D., Alan, A., & Pritsker, B. (1978). SLAM Tutorial. Proceedings of the

1982 Winter Simulation Conference, 661-668

Pegden, C.D., Shannon, R.E., & Sadowski, R.P. (1995). Introduction to Simulation

Using Siman (2
nd

 ed.). New York: McGraw-Hill.

Peters, K., & Yard, T. (2004). Extending Macromedia Flash MX 2004: Complete

Guide and Reference to JavaScript Flash. Birmingham: Friends of ED.

Piaget, J. (1977). The Development of Thought: Equilibration of Cognitive Structures.

Oxford: B. Blackwell.

Pidd, M. (2004). Computer Simulation in Management Sciences (5th ed.). Hoboken,

NJ: Wiley.

Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer

Acceptance of Online Banking: An Extension of the Technology Acceptance

Model. Internet Research, 14(3), 224-235.

Pilkington, R., & Parker-Jones, C. (1996). Interacting with Computer-based

Simulation: The Role of Dialogue. Computers and Education, 27(1), 1-14.

Porter, T.S., Riley, T.M., & Ruffer, R.L. (2004). A Review of the Use of Simulations

in Teaching Economics. Social Science Computer Review, 22(4), 426-443.

Praehofer, H., Sametinger, J., & Stritzinger, A. (2001). Concepts and Architecture of

a Simulation Framework Based on the JavaBeans Component Model. Future

Generation Computer Systems, 17(5), 539-559.

Prensky, M. (2001). Digital Game-Based Learning. New York: McGraw-Hill.

Pritsker, A.A.B., & O'Reilly, J.J. (1999). Simulation with Visual SLAM and AweSim.

New York: John Wiley & Sons.

Pritsker, A.A.B., Sigal, C.E., & Hammesfahr, R.D.J. (1994). SLAM II: Network

Models for Decision Support. New York: Scientific Press.

Quinn, C.N. (2005). Engaging Learning: Designing e-Learning Simulation Games.

San Francisco: Pfeiffer.

Quinn, J., & Alessi, S. (1994). The Effects of Simulation Complexity and Hypothesis-

generation Strategy on Learning. Journal of Research on Computing in

Education 27(1), 75-91.

Radcliff, J.B. (2005). Why Soft Skill Simulation.

www.competenet.com/downloads/SimulationWP-F1.pdf

Reid, D.J., Zhang, J., & Chen, Q. (2003). Supporting Scientific Discovery Learning in

a Simulation Environment. Journal of Computer Assisted Learning, 19, 9-20.

Rekapalli, P.V., & Martinez, J.C. (2007). A Message-Based Architecture to Enable

Runtime User Interaction on Concurrent Simulation-Animations of

Construction Operations. Proceedings of the 2007 Winter Simulation

Conference, 2028-2031

Renque Discrete Event Simulation: User’s Guide. (2008). Retrieved September, 6,

2008, from http://www.renque.com/downloads/RenqueManual.pdf

Renshaw, C.E., & Taylor, H.A. (2000). The Educational Effective of Computer-based

Instruction. Computer & Geocities, 26, 677-682.

Repenning, A., Ioannidou, A., Payton, M., Ye, W., & Roschelle, J. (2001). Using

Components for Rapid Distributed Software Development. Journal of

Software, 18(2), 38-45.

Rice, S.V., Marjanski, A., M., M.H., & Bailey, S.M. (2004). Object Oriented

SIMSCRIPT. Proceedings of the 37
th

 Annual Simulation Symposium, 178-187.

http://www.competenet.com/downloads/SimulationWP-F1.pdf
http://www.renque.com/downloads/RenqueManual.pdf

 197

Rice, S.V., Marjanski, A., Markowitz, H.M., & Bailey, S.M. (2005). The SIMSCRIPT

III Programming Language for Modular Object-Oriented Simulation.

Proceedings of 2005 Winter Simulation Conference, 621-630.

Rieber, L.P. (1992). Computer-based Microworlds: A bridge between Constructivism

and Direct Instruction. Educational Technology Research and Development,

40(1), 93-106.

Rieber, L.P. (1995). Using Computer-based Microworlds with Children with

Pervasive Developmental Disorders: An Informal Case Study. Journal of

Educational Multimedia and Hypermedia, 4(1), 75-94.

Rieber, L.P. (1996). Seriously Considering Play: Designing Interactive Learning

Environments Based on the Blending of Microworlds, Simulations, and

Games. Educational Technology Research & Development, 44(2), 43-58.

Rieber, L.P. (2002). Supporting Discovery-based Learning with Simulations. The

International Workshop on Dynamic Visualizations and Learning, Knowledge

Media Research Center.

Rieber, L.P., Tzeng, S.-C., & Tribble, K. (2004). Discovery learning, representation,

and explanation within a computer-based simulation: finding the right mix.

Learning and Instruction, 14(3), 307-323.

River, R.H., & Vockell, E. (1987). Computer Simulations to Stimulate Scientific

Problem Solving. Journal of Research in Science Teaching, 24, 403-415.

Rob, P., & Semaan, E. (2000). Databases: Design, Development and Deployment.

Singapore: McGraw-Hill Higher Education.

Robinson, S.L. (1994). An Introduction to Visual Interactive Simulation in Business.

International Journal of Information Management, 14(1), 13-23.

Robinson, W.R. (2000). A View of the Science Education Research Literature:

Scientific Discovery Learning with Computer Simulations. Journal of

Chemical Education, 77(1), 17. doi: 10.1021/ed077p17

Rohrer, M.W. (2000). Seeing is Believing: The Importance of Visualization in

Manufacturing Simulation. Proceedings of the 2000 Winter Simulation

Conference, 1211-1216.

Romiszowski, A. (2004). How’s the E-learning Baby? Factors Leading to Success or

Failure of an Educational Technology Innovation. Educational Technology,

44(1), 5-27.

Rooks, M. (1991). A Unified Framework for Visual Interactive Simulation.

Proceedings of the 1991 Winter Simulation Conference, 1146-1155.

Roschelle, J., DiGiano, C., Koutlis, M., Repenning, A., Phillips, J., Jackiw, N. (1999).

Developing Educational Software Components. Journal of Computer, 32(9),

50 - 58

Rose, L.L. (1981). Hierarchical Modelling in GASP. Proceedings of the 14
th

 Annual

Symposium on Simulation, 199-213.

Rossetti, M.D., Aylor, B., Jacoby, R., Prorock, A., & White, A. (2000). SIMFONE:

An Object-Oriented Simulation Framework. Proceedings of the 2000 Winter

Simulation Conference, 1855-1864.

Rosson, M.B., & Seals, C.D. (2001). Teachers as Simulation Programmers:

Minimalist Learning and Reuse. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 237-244.

Saadé, R., & Bahli, B. (2005). The Impact of Cognitive Absorption on Perceived

Usefulness and Perceived Ease of Use in On-line Learning: An Extension of

the Technology Acceptance Model. Information & Management, 42(2), 317-

327.

 198

Sahin, S. (2006). Computer Simulations in Science Education: Implications for

Distance Education. Turkish Online Journal of Distance Education, 7(4), 132-

146.

Sanders, W.B. (2004). Macromedia Flash MX Professional 2004: Kick Start.

Indianapolis: Sams.

Sanders, W.B., & Cumaranatunge, C. (2007). ActionScript 3.0 Design Patterns.

Sebastapol, CA: O’Reilly.

Sargent, R.G. (2004). Some Recent Advances in the Process Worldview. Proceedings

of the 2004 Winter Simulation Conference, 294-299.

Schank, R.C., Berman, T.R., & Macpherson, K.A. (1999). Learning by Doing. In C.

M. Reigeluth (Ed.), Instructional-Design Theories and Models: A New

Paradigm of Instructional Theory, Vol. 2 (Instructional Design Theories &

Models). Mahwah, NJ: Lawrence Erlbaum Associates.

Schnotz, W., & Bannert, M. (2003). Construction and Interference in Learning from

Multiple Representation. Learning and Instruction, 13 (2), 141-156.

Schwartz, D.L., Bransford, J.D., & Sears, D. (2005). Efficiency and Innovation in

Transfer. In R. E. Haskell (Ed.), Transfer of Learning from a Modern

Multidisciplinary Perspective (pp. 1-51). CT: Information Age Publishing.

Schwetman, H. (1988). Using CSIM to Model Complex Systems. Proceedings of the

1988 Winter Simulation Conference, 246-253.

Schwetman, H. (2001). CSIM19: A Powerful Tool for Building System Models.

Proceedings of the 2001 Winter Simulation Conference, 250-255.

Seila, A.F. (1986). Discrete Event Simulation in PASCAL with SIMTOOLS. Paper

presented at the Proceedings of the 18th Conference on Winter Simulation,

Washington, DC.

Seufert, T. (2003). Supporting Coherence Formation in Learning from Multiple

Representations. Learning and Instruction, 13 (2), 227-237.

Shannon, R.E. (1998). Introduction to the Art and Science of Simulation. Proceedings

of the 30th Conference on Winter Simulation, 7-14.

Sheppard, B.H., Hartwick, J., & Warshaw, P.R. (1998). The Theory of Reasoned

Action: A Meta Analysis of Past Research with Recommendations for

Modifications and Future Research. Journal of Consumer Research, 15(3),

325-343.

Shi, J.J., & Zhang, H. (1999). Iconic Animation of Construction Simulation.

Proceedings of the 1999 Winter Simulation Conference, 992-997.

Shupe, R., & Hoekman, R. (2006). Flash 8: Projects for Learning Animation and

Interactivity. Sebastopol: O'Reilley Media Inc.

Siemens, G. (2005). Connectivism: A Learning Theory for the Digital Age.

International Journal of Instructional Technology and Distance Learning,

2(1), 3-10.

Sikora, A., & Niewiadomska-Szynkiewicz, E. (2007). A Federated Approach to

Parallel and Distributed Simulation of Complex Systems. International

Journal of Applied Mathematics and Computer Sciences, 17(1), 99–106.

Smialek, M. (2002). Developing e-Learning Simulations with Tools You Already

Know. Retrieved May 12, 2008, from

http://www.elearningguild.com/pdf/2/120302DEV-P.pdf

Smith, L.H., & Renzulli, J.S. (1984). Learning Style Preferences: A Practical

Approach for Classroom Teachers. Theory into Practice, 23(1), 44-50.

Stahl, I. (2003). How Should We Teach Simulation. Proceedings of the 2000 Winter

Simulation Conference, 1602-1612.

http://www.elearningguild.com/pdf/2/120302DEV-P.pdf

 199

Stenalt, M.H., & Godsk, M. (2006). The Pleasure of E-Learning - Towards Aesthetic

E-Learning Platforms. Proceedings of the 12
th

 International Conference of

European University Information Systems, 210-212.

Sterman, J.D. (2001). System Dynamics Modeling: Tools for Learning in a Complex

World. California Management Review, 43(1), 8-25.

Stoel, L., & Lee, K.H. (2003). Modeling the Effect of Experience on Student

Acceptance of Web-based Courseware. Internet Research, 13 (5), 364 - 374.

Strassburger, S., Schulze, T., Lemessi, M., & Rehn, G.D. (2005). Temporally Parallel

Coupling of Discrete Simulation Systems with Virtual Reality Systems.

Proceedings of the 2005 Winter Simulation Conference, 1949-1957.

Su, B., Bonk, C.J., Magjuka, R.J., Liu, X., & Lee, S.-h. (2005). The Importance of

Interaction in Web-Based Education: A Program-level Case Study of Online

MBA Courses. Journal of Interactive Online Learning, 4(1), 1-18.

Swaak, J., & Jong, T.D. (2001a). Discovery Simulations and the Assessment of

Intuitive Knowledge. Journal of Computer Assisted Learning, 17(3), 284-294.

Swaak, J., & Jong, T.D. (2001b). Learner vs. System Control in Using Online Support

for Simulation-based Discovery Learning. Learning Environments Research,

4(3), 217-241.

Syrjakow, M., Berdux, J., & Szczerbicka, H. (2000). Interactive Web-based

Animations for Teaching and Learning. Proceedings of the 2000 Winter

Simulation Conference, 1651-1659.

Tan, J., & Biswas, G. (2007). Simulation-Based Game Learning Environments:

Building and Sustaining a Fish Tank. The First IEEE International Workshop

on Digital Game and Intelligent Toy Enhanced Learning, 73-80.

Taylor, S., & Todd, P.A. (1995). Understanding Information Technology Usage: A

Test of Competing Models. Information Systems Research, 6(2), 144-176. doi:

10.1287/isre.6.2.144

Teo, T.S.H., Lim, V.K.G., & Lai, R.Y.C. (1999). Intrinsic and extrinsic motivation in

Internet usage. Omega, 27(1), 25-37.

Teoh, B.S.-P., & Neo, T.-K. (2007). Using Computer-generated Animation as

Additional Visual Elaboration in Undergraduate Courses. The Turkish Online

Journal of Educational Technology, 6(4), 28-37.

Thomas, R.C., & Milligan, C.D. (2004). Putting Teachers in the Loop: Tools for

Creating and Customizing Simulations. Journal of Interactive Media in

Education(15).

Thompson, W.B. (1996). Introduction to the WITNESS Visual Interactive Simulator

and OLEII Automation. . Proceedings of the 1996 Winter Simulation

Conference, 547-550.

Tornatzky, L.G., & Klein, K.J. (1982). Innovation Characteristics and Innovation

Adoption-Implementation: A Meta-Analysis of Findings. IEEE Transactions

on Engineering Management, 29(1), 28-45.

Towne, D.M. (2007). Enhancing Human Performance via Simulation-based Training

and Aiding: A Guide to Design and Development. Rotterdam: Sense

Publishers.

Tumay, K. (1987). Factory Simulation with Animation: The No Programming

Approach. Proceedings of the 1987 Winter Simulation Conference, 258-260.

Tversky, B., & Morrison, J. (2002). Animation: Can It facilitate?. International

Journal of Human-Computer Studies, 57, 247-262.

 200

Tyan, H.Y. (2002). Design, Realization and Evaluation of a Component-Based

Compositional Software Architecture for Network Simulation. (PhD Thesis),

The Ohio State University.

Valentine, E.C., Verbraeck, A., & Sol, H.G. (2003). Advantages and Disadvantages of

Building Blocks in Simulation Studies: A Laboratory Experiment with

Simulation Expert. Proceedings of the 15th European Simulation Symposium,

141-148.

Veeke, H.P.M., & Ottjes, J.A. (1999). Tomas: Tool for Object-Oriented Modelling

and Simulation. Proceedings of the Business and Industry Simulation

Symposium, 76-81.

Veermans, K., Jong, T.D., & Joolingen, W.R.V. (2000). Promoting Self-Directed

Learning in Simulation-Based Discovery Learning Environments Through

Intelligent Support. Interactive Learning Environments, 8(3), 229-255.

Venkatesh, V., & Davis, F.D. (2000). A Theoretical Extension of the Technology

Acceptance Model: Four Longitudinal Field Studies. Management Science,

46(2), 186-204.

Venkatesh, V., & Morris, M. (2000). Why Don't Men Ever Stop to Ask for

Directions? Gender, Social Influence, and Their Role in Technology

Acceptance and Usage Behavior. MIS Quarterly, 24(1), 115-139.

Vogel-Walcutt, J.J., Gebrim, J.B., & Nicholson, D. (2010). Animated versus Static

Images of Team Processes to Affect Knowledge Acquisition and Learning

Efficiency. Journal of Online Learning and Teaching, 6(1), 163-173.

Vossen, G., & Westerkamp, P. (2006). Towards the Next Generation of E-Learning

Standards: SCORM for Service-Oriented Environments. Proceedings of Sixth

International Conference on Advanced Learning Technologies, 1031-1035.

Vries, J.D. (2004). Character-Based Simulations: What Works.

http://www.openu.ac.il/research_center/download/CHARAC1.pdf

Wagner, E.D. (2006). Delivering on the Promise of eLearning.

http://www.adobe.com/education/pdf/elearning/Promise_of_eLearning_wp_fi

nal.pdf

Wahlstedt, A., Pekkola, S., & Niemelä, M. (2008). From e-learning Space to e-

learning Place. British Journal of Educational Technology, 39, 1020-1030.

doi: 10.1111/j.1467-8535.2008.00821_1.x

Wainer, G.A., & Mosterman, P.J. (2010). Discrete-Event Modeling and Simulation:

Theory and Applications. Boca Raton: CRC Press.

Warshaw, P.R., & Davis, F.D. (1985). Disentangling Behavioral Intention and

Behavioral Expectation. Journal of Experimental Social Psychology, 21(3),

213-228.

Wenzel, S., & Jessen, U. (2001). The Integration of 3-D Visualization into the

Simulation-based Planning Process of Logistics Systems. SIMULATION,

77(3-4), 114 -127.

White, B., Shimoda, T., & Frederiksen, J. (1999). Enabling Students to Construct

Theories of Collaborative Inquiry and Reflective Learning: Computer Support

for Metacognitive Development. International Journal of AI in Education, 10,

151-182.

Whiteside, J.A. (2002). Beyond Interactivity: Immersive Web-Based Learning

Experiences. Retrieved May 12, 2007, from

www.elearningguild.com/pdf/2/120302DEV-P.pdf

http://www.openu.ac.il/research_center/download/CHARAC1.pdf
http://www.adobe.com/education/pdf/elearning/Promise_of_eLearning_wp_final.pdf
http://www.adobe.com/education/pdf/elearning/Promise_of_eLearning_wp_final.pdf
http://www.elearningguild.com/pdf/2/120302DEV-P.pdf

 201

Whitworth, B., Banuls, V., Sylla, C., & Mahinda, E. (2008). Expanding the Criteria

for Evaluating Socio-Technical Software. IEEE Transactions on Systems,

Manufacturing and Cybernetics, 38(4), 777-790.

Wilson, B.G., Jonassen, D.H., & Cole, P. (1993). The ASTD Handbook of

Instructional Technology. In G. M. Piskurich (Ed.), Cognitive Approaches to

Instructional Design (pp. 21.21-21.22). New York: McGraw-Hill.

Wittrock, M.C. (1989). Generative Processes of Comprehension. Educational

Psychologist, 24(4), 345.

Woo, Y., & Reeves, T. (2007). Meaningful Interaction in Web-based Learning: A

Social Constructivist Interpretation. Internet and Higher Education, 10(1), 15-

25.

Wright, P. (1998). Beginning Visual Basic 6 Objects. Indianapolis: Wrox Press.

Wurdinger, S.D., & Carlson, J. (2010). Teaching for Experiential Learning: Five

Approaches that Work. Lanham: Rowman & Littlefield Education.

Yahiaoui, A., Hensen, J.L.M., & Soethout, L.L. (2004). Developing CORBA-based

Distributed Control and Building Performance Environments by Run-time

Coupling. Proceedings of the 10th International Conference on Computing in

Civil and Building Engineering, 86-94.

Yi, M.R., & Cho, T.H. (2001). Hierarchical Simulation Model with Animation for

Large Network Security. Lecture Notes in Computer Science, 2229, 456-460.

Yi, M.R., & Cho, T.H. (2003). Hierarchical Simulation Model with Animation.

Engineering with Computers, 19(2), 203-212.

Yin, C., Ogata, H., & Yano, Y. (2007). Participatory Simulation Framework to

Support Learning Computer Science. International Journal of Mobile

Learning and Organisation 1(3), 288 - 304.

Zak, D. (2009). Clearly Visual Basic programming with Microsoft Visual Basic 2008.

Boston: Course Technology.

Zeigler, B.P. (1984). Multifaceted Modeling and Discrete Event Simulation. London:

Academic Press.

Zeigler, B.P. (1990). Object Oriented Simulation with Modular, Hierarchical Models.

New York: Academic Press.

Zeigler, B.P. (2000). Theory of Modeling and Simulation (2nd ed.). San Diego:

Academic Press.

Zhang, J., Chen, Q., Sun, Y., & Reid, D.J. (2004). Triple Scheme of Learning Support

Design for Scientific Discovery Learning Based on Computer Simulation:

Experimental Research. Journal of Computer Assisted Learning, 20, 269-282.

Zhong, Y., & Shirinzadeh, B. (2004). Analysis, Conversion and Visualization of

Discrete Simulation Results. Proceedings of the Eighth International

Conference on Information Visualisation, 118-123.

APPENDIX A

CONSENT FORM

Ruzelan Khalid

Room 344

Department of Computer Science and Software Engineering

University of Canterbury

Private Bag 4800

Christchurch 8140

27 November 2008

CONSENT FORM

Component Based Tools for Educational Simulations

I have read and understood the description of the above-named project. On this basis I

agree to participate as a subject in the project, and I consent to publication of the

results of the project with the understanding that anonymity will be preserved.

I understand also that I may at any time withdraw from the project, including

withdrawal of any information I have provided, until my questionnaire has been

added to the others collected.

I note that the project has been reviewed and approved by the University of

Canterbury Human Ethics Committee.

NAME (please print): …………………………………………………………….

Signature:

Date:

Gender: Male/Female

Programme:

Semester/Year:

APPENDIX B

QUESTIONAIRE INFORMATION SHEET

QUESTIONNAIRE

Component Based Tools for Educational Simulations

Please read the following note before completing the questionnaire.

NOTE: You are invited to participate in the research project Component Based Tools

for Educational Simulations by completing the following questionnaire. The aim of

the project is to design and develop tools for constructing visual interactive

simulation (VIS) models that help teachers to build simulation models for educational

purpose.

The project is being carried out as a requirement for a Ph.D. in Computer Science

and Software Engineering by Ruzelan Khalid under the supervision of Associate Prof.

Dr. Wolfgang Kreutzer and Associate Prof. Dr. Tim Bell, who can be contacted 03

364 2987 ext 7769/7727. They will be pleased to discuss any concerns you may have

about participation in the project.

The questionnaire is anonymous, and you will not be identified as a participant

without your consent.

You may withdraw your participation, including withdrawal of any information you

have provided, until your questionnaire has been added to the others collected.

Because it is anonymous, it cannot be retrieved after that.

By completing the questionnaire it will be understood that you have consented to

participate in the project, and that you consent to publication of the results of the

project with the understanding that anonymity will be preserved.

APPENDIX C

LEARNER QUESTIONAIRE

COMPONENT BASED TOOLS FOR EDUCATIONAL SIMULATIONS

Model_1 and Model_2 show simple examples of visual interactive simulation (VIS)

models built using Flash Discrete Event Simulation (DES) components developed by

the researchers. You are invited to give feedback about the interactivity and

attractiveness of the models. In order to run the models, your computer must have the

Flash player. Alternatively, you can run the models using the FlashPlayer.exe

(Windows) or FlashPlayer.app (Macintosh) located on the \FlashPlayer\Players

subdirectory of the supplemented CD. The descriptions of the Model_1 and Model_2

are as follows:

Model_1

Two types of simulation entities populate this model. The first type (generated by the

SourceA) only requires a single resource to be processed, while the second (generated

by the SourceB) needs two resources, the second of which is the same one that

processes the first type of entity. You can change the distribution of time between

arrivals for the two types of entities, capacities and service times for servers, priority

rules (queuing disciplines) for queues and other parameters during the simulation run,

and observe the impact of the changes to the model behavior. You can also view

many forms of visualization which depict the model’s performance as shown in

Figure 1.

Figure 1: Sample interaction and visualization provided by the model

Model_2

Model_2 adds some complexities to Model_1. The first type selects an idle server

from two parallel servers, while the second selects a server with a shorter queue. 70%

of the second type of entities will need to go through servers which process the first

type of entities, while another 30% will leave the system. After going through one of

the parallel servers, the first type of entities will need to be processed by one more

resource while the second type of entities will directly leave the system.

COMPONENT BASED TOOLS FOR EDUCATIONAL SIMULATIONS

LEARNERS’ EVALUATION FORM

Note: This experiment is to obtain feedback from learners about the interactivity and

attractiveness of visual interactive simulation models built using Flash components

developed by the researcher. The objective of these components is to help teachers to

build simulation models for educational purpose.

GENERAL INFORMATION

1. How much computer experience do you have (including programming)?

2. How much do you use computers as a tool for learning?

GENERAL QUESTIONS

1. I have good knowledge in simulation.

2. How long did you spend using the model?

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

MODEL RATING

Rate these items with a score

1. Strongly disagree

2. Disagree

3. Neither agree nor disagree

4. Agree

5. Strongly agree

1. I am clear about the objectives of the model.

2. The model is useful for information visualization and observing animated objects

and events.

3. The model is interactive, inviting input and providing appropriate feedback.

4. The model contains high quality animation which makes learning enjoyable and

interesting.

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

5. The animation helps me to understand scenarios in the model.

6. The various performance visualizations (graphs and other data displays) are

meaningful.

7. The model provides a graphical user interface (GUI) which is easy to interact

with.

8. I like the design of the GUI.

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

9. It is good that the visualizations (e.g. graphs, histograms, etc.) are only displayed

when requested.

10. The interaction with the model by changing the model’s parameters during model

execution (e.g. arrival rate, queue rule, server unit) is important in order to

understand model behaviour. (Any other parameters that you like to change?)

11. The change of the representation of animated objects based on their current states

is important for me.

12. These tools help to understand the model better (Please write if you have any

comments):

12.1 Graphs

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

12.2 Histograms

12.3 BoxPlots

12.4 Ability to pause, resume and adjust animation speed.

12.5 Table of events (previous, current and future).

12.6 Table of components’ statistical information (e.g. queue, server, etc.)

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

12.7 Entities’ information window showing activities they have performed in

the model.

12.8 Ability to hide and show the path of entities.

13. The model is considerably out of bugs. Please specify if you found any bugs

while running the model.

14. Overall, the attractiveness and interactivity of the model is good. Any suggestions

to improve the attractiveness and interactivity of the model?

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

15. I would like to use this kind of model for understanding queuing scenarios.

ADDITIONAL QUESTIONS

Have you ever used other animated simulation models for queuing scenarios?

(If yes, please specify, and comment on how it compares to this model)

Do you have any suggestions for making learning simulation much easier?

Thank you very much!

Strongly

agree

Strongly

disagree

1 2 3 4 5

| | | | |

APPENDIX D

MODEL BUILDER QUESTIONAIRE

1. Gender

a. Male b. Female

2. Age: __________

RESEARCH QUESTIONS

Please indicate your agreement or disagreement by circling the appropriate score for

each of these following statements.

Statement Short form Score

Strongly Disagree SD 1

Disagree D 2

Neutral N 3

Agree A 4

Strongly Agree SA 5

SECTION B – EXPERIENCE

Item Argument SD D N A SA

1 I have considerably good knowledge on DES

concepts.

1 2 3 4 5

2 I have considerably good experiences in

programming.

1 2 3 4 5

3 I am familiar with Adobe Flash and its

environment.

1 2 3 4 5

SECTION C – PERCEIVED USEFULNESS AND PERCEIVED EASE OF USE

C1. Perceived Usefulness

Item Statement SD D N A SA

1 The component-based tool enables me to

construct DES models that help learn and

understand DES concepts more quickly.

1 2 3 4 5

2 The component-based tool improves my

construction performance on DES models.

1 2 3 4 5

3 The component-based tool increases my

productivity of constructing DES models.

1 2 3 4 5

4 The component-based tool enhances my 1 2 3 4 5

effectiveness of constructing DES models.

5 The component-based tool makes the

construction of DES models easier.

1 2 3 4 5

6 Overall, the component based tool is useful for

constructing DES models.

1 2 3 4 5

C2. Perceived Ease of Use

Item Statement SD D N A SA

1 Learning to use the component-based tool is

easy for me.

1 2 3 4 5

2 I find that the processes of using the component-

based tool were controllable (clear,

understandable and straight forward).

1 2 3 4 5

3 My interaction with the component-based tool

would be clear and understandable

1 2 3 4 5

4 I find the component-based tool to be flexible to

interact with.

1 2 3 4 5

5 It is easy to become skillful at using the

component-based tool.

1 2 3 4 5

6 Overall, the component-based tool is easy to

use.

1 2 3 4 5

C3. Perceived Enjoyment

Item Statement SD D N A SA

1 I have fun building DES models using the

component-based tool

1 2 3 4 5

2 I enjoy using the component-based tool and the

resulting model.

1 2 3 4 5

C4. Self-Predicted Future Usage

Item Statement SD D N A SA

1 I intend to use the component-based tool in the

future

1 2 3 4 5

2 I intend to show others this component-based

tool.

1 2 3 4 5

SECTION D – TASK WORKLOAD

Please indicate your workload while using the component-based tool by circling the

appropriate score for each of these following statements.

1. Mental demand: How mentally demanding (e.g., thinking, deciding, etc.) was the

task?

1 2 3 4 5 6 7

Low High

2. Physical demand: How physically demanding was the task?

1 2 3 4 5 6 7

Low High

3. Temporal demand: How hurried or rushed was the pace of the task?

1 2 3 4 5 6 7

Low High

4. Performance: How successful were you in accomplishing what you were asked

to do?

1 2 3 4 5 6 7

Good Poor

5. Effort: How hard did you have to work to accomplish your level of performance?

1 2 3 4 5 6 7

Low High

6. Frustration: How insecure, discourage, irritated, stressed and annoyed were you?

1 2 3 4 5 6 7

Low High

Thank you!

APPENDIX E

USER MANUAL

COMPONENTS’ PROPERTIES AND DESCRIPTIONS

Source: Animates the arrival of entities

Properties Description

backGroundColor Color for this component instance on the Flash stage

className Associated class name that represents its entity type

delayToNextStation Time taken (based on a distribution type; e.g., Constant, Exponential, etc.)

for entities to reach its next component

firstArrival Time for the first entity to arrive into a model

identifierName Identifier for an entity type (under Linkage properties when associating an

ActionScript class with a symbol)

monitorInstanceName Name of a monitor instance that sequences state transitions of all types of

entities in a model

outPort Name of the next component that entities will visit

priority Priority of this type of entities in a queue to be serviced

textColor Color of a title for this component instance

timeBetweenArrival Time between created entities

title Title for this component to be displayed on the Flash stage

Monitor Component: Acts as a simulation engine and controls a simulation’s length

and its viewing ratio

Properties Description

clockInstance Name of this clock instance

simulateFor Amount of simulation time used to evaluate a model

timerInstance Name of its relevant timer instance

Queue Component: Animates queue discipline

Properties Description

associatedServer Name of a server instance to serve this queue

graphInstance Name of a graph instance to display the number of entities vs. simulation

time

histogramInstance Name of a histogram instance to display time spent in queue for entities

queueType Logical ordering of entities in this queue; e.g., FIFO (First in first out), LIFO

(Last in first out), LOWEST PRIORITY, HIGHEST PRIORITY and

RANDOM

title Title for this component to be displayed on the Flash stage

Server Component: Processes entities in a model

Properties Description

capacity Number of resources that can be seized by entities in a queue

delayToNextStation Time taken (based on a distribution type; e.g., Constant, Exponential, etc.)

for entities to reach its next component

graphInstance Name of a graph instance to display capacity used vs. simulation time

histogramInstance Name of a histogram instance to display service times

monitorName Name of a monitor instance that sequences state transitions of all types of

entities in a model

outPort Name of the next component that entities will visit

serviceTime Type of distribution that specifies its processing time

Decide: Transfer entities in a model based on rules

Properties Description

backGroundColor Color for this component instance on the Flash stage

chance Probabilities to go to the next components

delayToNextStation Time taken (based on a distribution type; e.g., Constant, Exponential, etc.)

for entities to reach the next components

entityType Name of entity type if decision processes are based on entity types

outPort Name of the next component that entities will visit

textColor Color of a title for this component instance

title Title for this component to be displayed on the Flash stage

type Decision-making processes in a model. These include options to make

decisions based on one or more probabilities (e.g., 65% true; 35% false),

shortest Queue and entity types

Station: Points to which entities are transferred in a model

Properties Description

backGroundColor Color for this component instance on the Flash stage

delayToNextStation Time taken (based on a distribution type; e.g., Constant, Exponential, etc.)

for entities to reach the next components

outPort Name of the next component that entities will visit

textColor Color of a title for this component instance

title Title for this component to be displayed on the Flash stage

Sink: Collects entities leaving a model

Properties Description

backGroundColor Color for this component instance on the Flash stage

textColor Color of a title for this component instance

title Title to be displayed for this component on the Flash stage

HOW TO CREATE A DISCRETE EVENT SIMULATION MODEL

Constructing Model Structures

Macromedia Flash software is compulsory to use our tool. Once it has been installed,

all our DES components must be copied to a relevant folder in order to access them

through the software’s component panel. For the Windows operating system, they

should be copied to

C:\Documents and Settings\user\Local Settings\Application Data\Macromedia\Flash

MX 2004\en\Configuration\Components\Discrete Event Simulation Component

Panel Stack

Properties Inspector

Tool

panels

Timeline Stage

Note that the Discrete Event Simulation Component is our created folder. The folder

can freely be changed to any names and the name will appear in the Flash’s

component panel.

Follow these steps to create a model’s structures:

1) Open Macromedia Flash software.

2) Click File > New > Flash Document to begin a new Flash project as shown in

Figure 1. Once it is clicked, various major sections for the Flash’s development

environment will be displayed; see Figure 2.

Figure 1 A New Flash Project

Figure 2 The Flash’s Development Environment

3) Go to the Components panel (under the Panel Stack). Click on the Discrete Event

Simulation Components to display all available components under this category as

shown in Figure 3.

Figure 3 Discrete Event Simulation Components

4) Drag any components onto the Flash Stage to instantiate the component. Once

they are on the stage, give them an appropriate name through the Properties panel

(see Figure 4). Change any default values of the instance by clicking a relevant

row in the Properties layout panel.

Figure 4 Dragging and Dropping a Component onto the Stage

5) Repeat the processes of dragging an instance, dropping them, renaming its name

and changing its parameter values until a simulation model has been constructed.

DES Components

Stage for composing

components

Properties

layout

6) Connect all components on the Stage to each other by specifying their

downstream components through their outPort (output port) properties. Figure 5

shows a sample of a model constructed through this manner.

Figure 5 A DES Model’s Structures

7) To represent a type of entities, a new ActionScript class needs to be created and

saved using an appropriate name (e.g., Customer.as) to the DESTool folder. Note

that the DESTool folder is a folder that stores all our DES libraries. The code for

the class file is as follows:

import Monitors.SimProcess;

class CustomerA extends SimProcess {

 public function lifeCycle () {

 transferToNextPhase();

 }

} // end of Customer class

8) To animate customer objects, we must attach the file to a visual image. The

image must first be converted to a movie clip symbol (see Figure 6) and then

associated with the Customer class (see Figure 7). In brief, the following actions

must be stepped through:

a) Select a movie clip symbol in the Flash Library.

b) Right-click on the symbol and choose “Linkage”.

c) In the resulting dialog, enter the symbol’s name (for example Customer)

and its associated class (e.g., Customer.as).

d) Select “Export for ActionScript” as linkage type.

Figure 6 Converting an Image to a Movie Clip Symbol

Figure 7 Associating a Movie Clip Symbol with Its Relevant Class

9) Once the movie clip is in the Flash Library panel, we can define the customer

objects’ visual appearance based on keyframes named onMoving, inQueue and

inProcess. These frames are defined on the Customer symbol’s timeline and not

globally on the stage to give us a local animation for the customers; i.e., their

change of appearance in different states that is nested inside the main animation.

To create this local animation, we must step through the following actions:

a) Right-click the Customer movie clip symbol in the Flash Library panel and

select Edit from the resulting pop up menu.

b) Select frame 10 on the timeline.

c) Select Insert > Timeline > Keyframe.

d) In the Properties panel, change Frame Label to onMoving.

e) Draw a suitable picture of the customer’s movement on the current Flash

stage.

f) Repeat steps 3 to 5 for frame 20, 30 and 40, and make appropriate changes at

each step.

10) Animate server objects in a similar way, i.e., by assigning different

representations to keyframes Idle and Busy.

11) Once we have finished structuring the model and setting its parameters, specify

the simulation length using its server component instance and run the model.

12) During running time, if we notice any broken flows of entities at any

component, check the component’ outPort and make sure that we have correctly

specified its next target component’s name since the entities will exactly flow

from component to component.

