
Production Number: B339

0

AppMonitor: A Tool for Recording User Actions
in Unmodified Windows Applications

Jason Alexander, Andy Cockburn and Richard Lobb
Department of Computer Science and Software Engineering
University of Canterbury
Private Bag 4800
Christchurch 8140
New Zealand

{jason, andy, richard.lobb}@cosc.canterbury.ac.nz

+64 3 364 2987 x7755

Publication Number

B339

Running Head:

AppMonitor: A User Action Logger for Microsoft Windows

Production Number: B339

1

AppMonitor: A Tool for Recording User Actions
in Unmodified Windows Applications

Jason Alexander, Andy Cockburn and Richard Lobb

Department of Computer Science and Software Engineering
University of Canterbury

Christchurch, New Zealand

{jason, andy, richard.lobb}@cosc.canterbury.ac.nz

Abstract

This paper describes AppMonitor, a Microsoft Windows based client-side logging tool that records user

actions in unmodified Windows applications. AppMonitor allows researchers to gain insights into many

facets of interface interaction such as command use frequency, behavioural patterns prior to or

following command use, and methods of navigating through systems and datasets. AppMonitor uses the

Windows SDK libraries to monitor both low level interactions such as “left mouse button pressed” and

“Ctrl-F pressed” as well as high level ‘logical’ actions such as menu selections and scrollbar

manipulations. The events recorded are configurable, allowing researchers to perform broad or targeted

studies. No user input is required to manage logging, allowing subjects to seamlessly conduct everyday

work while their actions are monitored. The system currently supports logging in Microsoft Word and

Adobe Reader, however it could be extended for use with any Microsoft Windows based application.

To support other researchers wishing to create multi-level event loggers we describe AppMonitor’s

underlying architecture and implementation, and provide a brief example of the data generated during

our four month trial with six users.

Keywords

Event logging, Client-side logging, Human-Computer Interaction

Introduction
Interface designers and Human-Computer Interaction (HCI) researchers need to understand how users

interact with systems in order to improve them. Several strategies are commonly used to gain such

Production Number: B339

2

insights, including controlled experiments run in research labs, field studies and contextual inquiry

(Holtzblatt and Jones 1993). Client-side logging of user actions is another technique, which has several

advantages over other methods: it is highly scalable as software is easily disseminated over the web; it

is low cost to the participants and experimenters because once installed the logs are generated and

stored automatically; it readily allows longitudinal analysis of weeks, months or years of use; it allows

fine-grain analysis of sub-second events and low-level actions. The two primary disadvantages of

client-side logging are, first, that it cannot record the user’s high level goals/context, and second, that

developing logging software can be prohibitively complex.

The difficulty in implementing logging software has discouraged and impaired its use. For example, in

analysing web navigation behaviour, participants have been asked to abandon their preferred

proprietary web-browsers in favour of customised logging versions of open source software (e.g.

Tauscher and Greenberg 1997) or to use ‘roll-your-own’ systems (e.g. Kellar, Hawkey et al. 2007).

Clearly it is preferable that logging analyses should measure interaction with the users’ preferred

software, rather than with a surrogate that supports a subset of the real system features, or which

presents the features in a different manner.

In this paper we describe AppMonitor, a tool that allows logging of user interaction with unmodified

applications running under Microsoft Windows. Once installed, AppMonitor requires no intervention

from the user. It silently records all user actions of interest (from low level mouse movements to the

selection of items in combo/dialog boxes), and periodically uploads them to a remote web-server.

AppMonitor’s logs provide a terse but semantically rich description of interaction. As well as capturing

a description of low level user events such as mouse-movement and button- or key-presses, it can also

record semantic aspects of interaction, discriminating between the different interface components used

and their modes. This capability distinguishes AppMonitor’s logs from the video logs generated by

screen recorders (such as TechSmith’s Camtasia), because video-logs require human interpretation to

determine the semantics connecting their key- and mouse-logs with the video.

To assist researchers in developing their own logging software we explain how we implemented

AppMonitor. The following section reviews related work on tools supporting event logging. We then

Production Number: B339

3

describe AppMonitor’s underlying architecture and implementation, followed by an example of the

output it generates. Finally, we provide some preliminary analyses of the total output from our six beta-

testers, who used AppMonitor to record their interactions with Microsoft Word and Adobe Reader for a

four month trial period.

Related Work
Direct human observation of interaction allows an immediate and contextually rich understanding of

how a user interacts with their system. The substantial disadvantage of direct human observation is the

high cost on the experimenter’s time, making it scale poorly, both to large sample sizes and to

longitudinal studies. Modern high functionality interfaces typically provide many alternative

approaches to completing the same task, and understanding how a population of users interacts with a

system demands a large sample. Similarly, when researchers wish to understand how system use

changes over time (days, months or even years of use), direct observation is impossible due to cost.

Logging software can overcome these issues by allowing large scale analysis on interactive system use

through statistical aggregation.

This section reviews approaches for automatically gathering data on user interaction. First, we describe

work on screen-capture systems, which record pictorial representations of interaction with the interface

in question. Second, we examine research on client-side logging tools, which have similar objectives to

AppMonitor.

Screen Recorder Systems

Screen recorders such as Techsmith’s Camtasia Studio (www.techsmith.com) allow researchers to

record the visual state of the user’s screen or window while they conduct their work. The recordings

are often enhanced with low-level logs of user events such as mouse movement and clicks, allowing

researchers to visually emphasise these activities when they replay the recording.

Screen recorders are widely used for developing instructional material for training users. However,

similar system capabilities are required for interface evaluation software. Techsmith’s suite of

software, for example, includes a range of screen capture tools, as well as the ‘Morae’ application,

Production Number: B339

4

which explicitly supports usability testing.

Although excellent tools for supporting detailed analysis of a single user’s interaction with a system,

screen recorders have three main limitations. First, they are resource intensive, consuming a large

proportion of the processing power of current computers, and generating very large video data files.

Second, they do not gather data on logical user interface events. Instead, they record the screen state

and the location of mouse movements and mouse clicks. Researchers wishing to measure data

concerning the logic of interaction (for example, how often the zoom functions are used) will have to

replay the recorded video file to interpret the users’ actions. Third, the technique scales poorly. This is

a direct result of the high resource requirements (users are unlikely be willing to suffer a long term

negative effect in system performance) and the failure to capture interface semantics (it is impractical

for researchers to manually extract the semantics of interaction from many long term logs).

Client-side Logging Systems

Client-side logging systems overcome the three limitations of screen recorders. They are relatively

light on system resources because they need only capture events when they arise within the application

under study. Rather than generating large video files of interaction, the logs consist of abstract

descriptions (normally in raw-text) of the logic of the user’s action and the associated system state. As

a consequence, the approach scales extremely well, with few theoretical restrictions on global

dissemination over the internet to millions of users for long-term analysis. If the logs generated by

client-side logging systems are sufficiently rich, then videos of the user’s interaction with the system

can be recreated from these log files. The primary problem with client-side logging, however, is the

complexity of creating software that, essentially, ‘spies’ on the internal state of proprietary software

systems while they are running.

Several client-side event logging systems have been developed by researchers, but all have been simple

keyboard and mouse loggers. These include Datalogger (Westerman, Hambly et al. 1996) for Windows

3.1 and DOS, InputLogger (Trewin 1998) for the Apple Macintosh, and RUI (Kukreja, Stevenson &

Ritter 2006) for Windows and Mac OS X. All of these examples provide timing logs for key strokes,

Production Number: B339

5

mouse clicks and mouse moves, but none provide information regarding the semantics of the

application and the user’s action, such as the name of the button that was pressed, the state of the

scrollbar, the current interface view, and so on.

Two research projects with different goals have attempted to use client-side logging tools to study user

interaction with Microsoft Word (Linton, Joy et al. 2000; McGrenere 2002). McGrenere (2002)

describes MSTracker, an “internal tool used by the usability team at Microsoft” which is unavailable to

other researchers. Like AppMonitor, the MSTracker tool listens to the Microsoft Active Accessibility

events that are generated by most Windows applications. Linton, Joy et al. (2000) describe the

Organisation-Wide Learning (OWL) system. It is a macro based logger that records high level

commands issued to Microsoft Word running on Apple Mac computers through the menus and

toolbars. It cannot capture mouse or keyboard input or navigation actions such as scrolling.

Microsoft’s “Customer Experience Improvement Program”1 is based on client-side logging capabilities

built into their Office suite of programs. When users agree to participate, logs of their actions within

each application are uploaded to a Microsoft server. Although this data allows Microsoft to improve

their products, the data is unavailable to the user or researchers (as it is binary coded), and the events

logged are not configurable. Very little information regarding this system, what it logs and the results

of studies are available in the public domain.

Event logging facilities are also supported by macro recorders, which register a series of user actions

and assign them to simple interface controls such as button presses or key-commands. Commercial

examples include “Macro Magic” (www.iolo.com/mm), “Workspace Macro”

(www.tethyssolutions.com), “Smack” (www.cpringold.com), and “JitBit” (www.jitbit.com). Macro

recorders generally register only low level events such as the coordinates of button presses and key

sequences, making the data they generate largely insufficient for interpreting the semantics of interface

manipulation.

1 << footnote text listed at the end of the document >>

Production Number: B339

6

Description of AppMonitor
AppMonitor is a Microsoft Windows based program that records both high and low level events in

unmodified Windows applications. The system currently supports logging in Microsoft Word and

Adobe Reader, but little effort would be required to extend logging to other applications.

AppMonitor was designed to minimise the impact it has on users, both during installation and

subsequent use. We have found no instances where firewall, anti-virus or spyware software has had to

be modified to allow AppMonitor to function correctly. The logged applications do not have to be

modified in any way, and after installing AppMonitor, all aspects of its use are automated—users do

not have to manually start and stop recording, upload or copy log files. AppMonitor is launched at

system start-up and placed into the system tray. Logging begins automatically as the applications of

interest are opened and log files are uploaded by the system to a remote web-server at regular intervals.

The set of logged events within each application is fully configurable by the researchers. AppMonitor

can record key strokes, mouse events, logical events (such as menu selections), application level events

(such as window resizing), and document navigation events such as opening and closing documents,

and changes in zoom level or scrollbar position.

Feedback from potential beta testers revealed the importance of allowing users to interactively view the

data gathered. Users can view a real-time display of the recorded events, by double clicking on the

system-tray icon. Having added this feature, volunteers readily agreed that using AppMonitor raised

few (or no) privacy concerns (see the ‘Key Events’ section for a further discussion).

System Architecture
AppMonitor is written in C/C++ using Visual Studio, with one Dynamic Link Library (DLL) utilising

C# bindings. It was built for Microsoft Windows XP, Microsoft Word 2003 and Adobe Reader 72.

AppMonitor has three parts: First, there is the main application program AppMonitor.exe, which is

responsible for the majority of the system functionality. Second, there is the event-hooking DLL,

hooker.dll, which is loaded into the memory space of the monitored applications. Third, there is a small

2 << Footnote text listed at the end of the document >>

Production Number: B339

7

secondary DLL, MSWordStat.dll, that has the sole purpose of determining the length of a document

opened in Microsoft Word.

Figure 1 shows the high-level architecture of the AppMonitor system, with the arrows representing

message passing between layers and applications. The main AppMonitor application runs on top of the

Windows XP platform and is responsible for the majority of the functionality in the system, including

displaying the real-time list of events, keeping track of open applications and documents, monitoring

their state and co-ordinating the accompanying DLLs.

<< Insert figure 1 about here >>

The hardware layer coordinates the transmission of input device signals (keyboard and mouse

interrupts) to the operating system (Windows XP), which normally directs these messages to the

appropriate application. However, AppMonitor places our event interception software (hooker.dll)

between the operating system and the monitored applications. Hooker.dll intercepts the mouse and

keyboard events, records them if necessary, and passes them, unmodified, to the application. This is the

method for obtaining low-level mouse events such as “left mouse button depressed” or “mouse moved”

and low level keyboard events such as “Ctrl-F pressed”. These events are subsequently communicated

to AppMonitor using a segment of memory that is shared between AppMonitor and the applications.

The main AppMonitor executable also communicates with the applications directly using the Active

Accessibility Interface. This communication allows AppMonitor to determine the interface semantics

of the associated low-level event (e.g. that a particular menu item is selected, or the distance that the

scrollbar is moved). AppMonitor also polls the monitored applications to determine whether the

scrollbars or zoom of each document has changed. Polling is necessary because these interface controls

change state not only through direct user manipulation, but also indirectly (and belatedly, because of

threading) due to activities such as window-resizing, changes of view, or keystrokes to add or delete

text. Finally, the MSWordStat DLL is used to determine the length of Microsoft Word documents as

they are opened.

The following sections further describe how AppMonitor works, giving details on how it uses the

Production Number: B339

8

windows hierarchy to determine interface semantics within applications and how both low and high

level events are monitored.

The Window Hierarchy

The window hierarchy describes the internal interface structure of all running desktop windows. Every

application has at least one top level window in the hierarchy, even when iconified. AppMonitor uses a

Windows Software Development Kit (SDK)3 function called EnumWindows to gain identifiers to all

of the top-level windows. Each window is tested with the function GetClassName to determine its

parent application. Microsoft Word windows are instances of the class OpusApp and Adobe Reader

windows are instances of the class AdobeAcrobat. In the current version of AppMonitor only

windows belonging to Microsoft Word or Adobe Reader are further scrutinised, but extension to other

applications should be relatively straightforward.

Two tools greatly assist programmers in comprehending the internal window structure of applications:

Spy++ and Accessibility Explorer. Most Microsoft Windows based GUIs have one high level window,

containing a series of ‘child’ windows (one for each toolbar, scrollbar etc) to create the interface seen

by the user. Spy++4 allows the developer to view the window handles, class names and descriptions of

all open windows and their children. It also displays system generated messages, such as mouse clicks,

movements and key presses. Several similar tools exist to aid Microsoft .NET programmers using

Windows Forms such as ManagedSpy5.

Accessibility Explorer6 allows programmers to view the Accessible Object Tree, which gives important

additional details of the constituent components of an application, beyond that available with Spy++.

3 << Footnote text listed at the end of the document >>

4 << Footnote text listed at the end of the document >>

5 << Footnote text listed at the end of the document >>

6 << Footnote text listed at the end of the document >>

Production Number: B339

9

For example, Spy++ describes a scrollbar as a single window, but Accessibility Explorer additionally

discriminates between the scroll thumb, scroll gutter and scroll-arrow components.

Low-level Event Logging

Microsoft Windows applications are event driven, meaning that active components await input to be

passed to them via a message queue7. AppMonitor intercepts low-level events using the Windows Hook

mechanism8, which allows a program to be notified whenever another application is about to receive a

message via its message queue. A ‘hook’ is installed by using the SetWindowsHookEx function,

passing it the address of a callback function (to be called when a message is received). The hook9

callback function is responsible for passing the message onto the intended application. AppMonitor

passes all messages on, unmodified, to the intended application to ensure the application’s behaviour

does not change.

AppMonitor’s hook procedures are stored in a DLL (hooker.dll), which is loaded into the address space

of the logged application (Word or Reader). Keyboard and mouse events are both recorded as

described further below.

Key Events

AppMonitor could record all key presses, including regular typing events and keyboard shortcut

commands. However, in our studies to date we have not recorded regular typing events in order to

reduce the participants’ natural concern about our ability to reconstruct their documents. Consequently,

we have only logged the following keyboard events: key combinations that include a modifier key

(either Ctrl or Alt), the arrow keys, the function keys, the navigation keys (page up, page down etc),

enter and tab.

7 << Footnote text listed at the end of the document >>

8 << Footnote text listed at the end of the document >>

9 << Footnote text listed at the end of the document >>

Production Number: B339

10

Key presses are recorded in the log files using their virtual key code (e.g. Figure 3, line 34). Key

combinations that include a modifier are logically ORed with the modifier’s key code, as described in

Table 1. Note that the ‘shift’ key by itself is not considered to be a modifier. However, it is useful to

record if the shift key is depressed when a modifier key is used. For example, [Ctrl]+[Left Arrow] will

advance the cursor one word at a time, while [Ctrl]+[Shift]+[Left Arrow] will advance the cursor one

word at a time while highlighting the text. A full list of key codes is available on Microsoft’s website10.

<< Insert Table 1 about here >>

Mouse Events

The mouse hooking mechanism allows us to discriminate between all low-level mouse actions:

movement, button depressions and releases, double clicks, scroll-wheel use, and so on. For each mouse

event AppMonitor records the interface object beneath the cursor. For mouse movement events we

additionally record the cursor’s screen co-ordinate.

Specialised mouse events can also be recorded. For example, we are particularly interested in scrolling

and zooming actions, so we explicitly encode Ctrl-Scrollwheel events, which Word and Reader both

use for advanced zooming capabilities.

High-level Event Logging—WinEvents

High-level event logging involves recording ‘WinEvents’ that are generated by an application when its

logical state changes. This allows AppMonitor to record some of the semantics of interaction that

cannot be inferred from low level logs, such as “scrolling starting” or “menu item selected”. This is

made possible by exploiting the WinEvent Hook functionality, which is part of the Active Accessibility

Application Programming Interface (API).

10 << Footnote text listed at the end of the document >>

Production Number: B339

11

Active Accessibility11 is an API within the Windows SDK that was designed to ease the construction of

interfaces for physically handicapped people. For example, a programmer might use the Active

Accessibility API to write a tool that allows a quadriplegic person to activate a menu using voice

commands.

To hook WinEvents, a program calls the SetWinEventHook API function, passing the location of

an associated callback function to be run when the event occurs. Like the mouse and keyboard hooks,

the WinEvent hook procedure must also be placed inside a DLL, in our case hooker.dll.

Polling

Much of the interface state information such as the scrollbar position and current document zoom can

only be determined by directly querying specific window objects inside an application. AppMonitor

employs a polling mechanism to continually query each document in each application for any changes

in state. Polling is necessary because certain interface components, such as scrollbars, can be updated

without direct user intervention; for example, as a side-effect of changing the zoom-state. In our studies

we used a polling interval of 200ms, which is a trade-off between increased CPU demands at short

intervals and failure to register pertinent events with long ones.

Events Unexposed by Previous Techniques

In our experience, almost all of the events that may be of interest to researchers are exposed by the

low-level, high-level or polling data capture techniques. Sometimes, however, a researcher will be

interested in system information that is not available through these channels. In such situations, a

programmer may be able to find other means of determining the required information.

In deploying AppMonitor to help us understand how users navigate through their documents, we

wanted to know each document’s length, in pages. Adobe Reader exposed this information directly, but

Microsoft Word did not. We therefore wrote a special dynamically linked library (MSWordStat.dll)

using the Microsoft Office Interoperability API.

11 << Footnote text listed at the end of the document >>

Production Number: B339

12

AppMonitor Portability and Extendability

We built AppMonitor to observe interaction with Microsoft Word 2003 and Adobe Reader 7 when

running under Microsoft Windows XP. This section provides guidance for researchers who wish to

update or extend AppMonitor to newer software versions and to new applications.

AppMonitor is portable to any Microsoft Windows operating system that implements the technologies

described in the System Architecture section. It can also be extended to monitor any Microsoft

Windows application that implements the Microsoft Active Accessibility Interface. Doing so requires

an understanding of, and ability to modify, the following aspects of AppMonitor’s operation.

AppMonitor recognises when applications of interest are opened by regularly traversing the window

hierarchy, comparing the root application class names with those that are to be logged. Once an

application of interest is ‘discovered’ the window handle is used in the construction of an internal

model for that application. To extend AppMonitor to a new application, researchers would need to

determine the internal application class name and add custom code for model instantiation.

Microsoft Word and Adobe Reader required a finer-grained model—one at document level rather than

application level. This therefore also required AppMonitor to continually inspect the application’s

internal window hierarchy to determine whether new documents had been opened. Monitoring a new

application will require the researcher to determine the granularity of model required, implement the

model (see below), and write the application specific code to allow these models to be instantiated at

the correct time.

The internal models maintain window handle references and state information about the application or

document under scrutiny. The model must maintain a reference to the root window handle of the

application to ensure it is only recognised as a new instance once. The model should also maintain state

information and function implementations for any application specific monitoring that is to occur.

Generally these functions will be called as part of the polling process, inspecting the internal state of

the application, possibly through external DLLs.

Production Number: B339

13

Each application may also need custom keyboard or mouse ‘hooks’ to be written inside hooker.dll if

additional computation or extended logging capabilities are required. For example, when the

mousewheel is moved, our mouse callbacks determine whether the ‘Ctrl’ key is simultaneously

pressed, and if so, record ‘CtrlScrollWheel’ (instead of simply ‘ScrollWheel’), as this is an important

method of zoom control in document navigation systems.

The AppMonitor system uses the Active Accessibility Interface to record interaction with menus,

buttons, dialog boxes etc. These should not need to be modified to record actions in other applications.

Event Configuration, Log Files, and Example
AppMonitor provides researchers with a configuration GUI for tailoring the set of events to be logged

when the software is distributed to participants (as show in Figure 2). To ensure a consistent set of data

is collected, the configuration interface is disabled during longitudinal studies.

<< Insert Figure 2 about here >>

All events from a particular user are stored in a single log file on the local machine. This file is

automatically uploaded to a remote web server whenever it reaches a threshold size or after a week has

passed since the last upload. A CGI script on the server receives the log file and then instructs the host

machine to truncate the file it holds. This method of file transfer occurs over the HTTP port 80 (as used

for internet browsing) and so prevents the need for system administrators to allow traffic on other ports

before AppMonitor can correctly function.Figure 3 shows a sample log file produced by AppMonitor

when Microsoft Word is being used. Note that we have added line numbers for clarity of explanation.

The log file demonstrates many of the capabilities of AppMonitor, as described below.

<< Insert Figure 3 about here >>

Every line in the log file begins with a date and timestamp (down to millisecond accuracy12), followed

by an event code, one or more identifying window handles and possibly further information about the

event. There are two types of event codes:

12 << Footnote text listed at the end of the document >>

Production Number: B339

14

Operating System event codes. These are identified by being fully capitalised in the log file and are

generated by the Windows SDK (for example,Figure 3, line 4, “WM_LBUTTONDOWN”). These

events originate from both the high and low level data collection techniques.

AppMonitor Pseudo-event codes. These are the mixed case event codes and are generated by

AppMonitor (for example, Figure 3, line 1, “NewDocument”). These events originate from all other

data collection techniques, for example, polling.

The window handles (hexadecimal numbers) uniquely identify the document and application that has

generated the event. These allow AppMonitor to distinguish between documents that are open

concurrently in both the same application and in a different application.

Line 1 shows that AppMonitor has detected a document being opened in Microsoft Word. The code

‘VE(0,255,0,62,0)’ describes the ‘Vertical East’ scrollbar. The numerical values in the brackets

describe the current state of the scrollbar, using the convention: (minimum trough value, maximum

trough value, scrollbar static position, document thumb size, scrollbar dynamic position). The static

scroll position is not updated when the user drags the scroll thumb; however the dynamic position is

updated (allowing us to determine the position of the scroll thumb even if scrolling is under way). In

this case we can see that the scroll trough extends from 0 (the top) to 255 (the bottom) with the static

position of the thumb controller currently 0. The thumb size is 62/255ths of the gutter length. Finally, it

has a dynamic scroll position of 0.

The second line describes the state of the document at the time of opening. The document

“AppMonitor.doc” has been opened in Microsoft Word’s Print Layout view, with an initial zoom of

150%. Line 3 shows that the document is five pages long.

Lines 4–10 show the user scrolling from the top of the document to a position 5% of the way through

the document (line 8). The fact that the button comes up on the ‘grip’ (line 9) having used the ‘Line

down’ control (line 10) shows that the scrollbar’s down arrow was used. Lines 12–16 record mouse

scroll wheel actions. Each of the “ScrollbarsChanged” events record the position of the scrollbar at a

particular point in time, allowing post processing to determine the speed and direction(s) of the scroll

Production Number: B339

15

action.

Lines 17–20 show the user posting the ‘View’ menu and then selecting the ‘Thumbnails’ menu item

(lines 21–22). Lines 25–27 show scrollbar updates caused by displaying the thumbnail panel. This

feedback can be discriminated from end-user scrolling because it is not accompanied by a scroll action.

Lines 28–33 show the user changing the zoom level from 150% to 100% using the Zoom combo-box

(line 28). On lines 34–47 the user carries out a copy/scroll/paste action using Control-C (hex-code

0x143, constituting the virtual key code for the ‘c’ character (0x43) logically ‘ORed’ with a mask

represented in the Ctrl modifier (0x100)) on lines 34–35, the scroll thumb (lines 36–43) and Control-V

(lines 46–47).

Finally the user closes the application using the close button at the top right corner of the window (lines

48–50).

<< Insert figure 4 about here >>

To ease data analysis, AppMonitor’s log files follow a BNF syntax definition, as described in Figure 4.

In this definition, non-terminals are enclosed in angle brackets, and terminals are in italics. Note, a

“HookerEventCode” is any of the “operating system event codes” described earlier in this section.

Preliminary Results
Before beginning a comprehensive field study, six beta testers used our software for a period of four

months. Our original objective was to characterise how people navigate within documents using tools

like the scrollbar (thumb, gutter, arrows), rate-based scrolling, the scroll-wheel, zooming, split

windows, thumbnails, ‘Find’, and so on. We quickly realised, however, that with little additional work

AppMonitor could be enhanced to support much broader characterisation of interaction, and so we

generalised its capabilities.

AppMonitor’s logs are detailed, and they will contain a superset of the information required for any

individual research question. They are a rich resource for answering specific and detailed research

questions about interaction. We have used computer programs written as Python scripts to extract

Production Number: B339

16

pertinent events and statistically aggregate their occurrences for each user and across users.

<< Insert Table 2 about here >>

This section provides examples of data gathered during beta testing. Some results for Microsoft Word

are summarised in Table 2. Our primary objective here is to exemplify the use of AppMonitor’s data,

rather than to present a detailed analysis of any particular aspect of interaction with Microsoft Word.

Number of documents. Our six testers interacted with between 26 and 223 Word documents (mean

92, sd 75; Table 2, line 1), and between 39 and 177 PDF documents in Adobe Reader (mean 119, sd

52; line 2).

Keyboard commands. We logged 45532 occurrences of 127 different keyboard commands (which we

interpret as any keyboard action that does not enter/delete text, including cursor arrow keys and page-

up/down, etc.). There were few keyboard command events in Adobe Reader (except for page-

up/down). Keyboard command use in Word is summarised on lines 3 and 4 of Table 2. Participant 5

had the largest keyboard ‘vocabulary’, using 74 different keyboard commands. Only eight keyboard

commands were used by all participants: Enter, Tab, the left, right and down arrows, Ctrl-C, Ctrl-V and

Ctrl-Z.

Interface buttons. The Close, Maximize/Restore and Minimize window buttons accounted for 486, 66,

and 259 events respectively. Seventy two different toolbar buttons were used, producing 1718 button

selections. The set of buttons used across participants was dissimilar, except for the Zooming controls

in Reader, which were heavily used by all but two participants. Button use in Word is summarised on

lines 5-6 of Table 2.

Zipf’s law of item frequency. Regression analysis showed that all users strongly adhered to a Zipfian

distribution of button use (line 7 of Table 2). Zipf’s law (1949) states that the frequency of any word in

human natural language is roughly inversely proportional to its rank in a frequency table, and previous

research has demonstrated that Zipf’s law also holds for command and menu item frequency

(Greenberg and Witten 1993; Findlater and McGrenere 2004).

Production Number: B339

17

Scrolling actions. Lines 8 and 9 of Table 2 describe the two most commonly used scrolling techniques

as a percentage of the total distance scrolled in all documents (note these do not sum to 100%, as minor

techniques are not shown). The mouse scroll wheel and the scroll thumb account for between 68% and

95% of the total distance scrolled by all of our beta testers.

Our aim, as HCI researchers is to improve the interfaces that we use everyday. The results described

here can provide insight into how AppMonitor’s logs allow statistical characterisation of interface use.

For example, the frequency of use of menu items and buttons raises questions about item placement

and shortcut facilities, and the scrolling analysis allows us to model and characterise user’s document

navigation and imply whether particular navigation tools are under- or over-utilised.

Conclusion
Automated logging of user events is an important facility for HCI research, enabling detailed

longitudinal usage analysis that would be prohibitively expensive to conduct through other methods.

The complexity of software development has been a substantial barrier to the widespread use of client-

side logs, but although still complex, various APIs and tools have eased development. This paper

presented a high-level overview of the techniques used to develop and test AppMonitor, an event

logging system. We intend to stimulate others to develop and deploy logging systems, and to help them

in doing so. AppMonitor’s software is available by contacting the authors. We have now widely

deployed AppMonitor, and our future work will focus on characterising how users navigate within

documents.

Acknowledgements
Many thanks to the anonymous reviewers for their informative comments, and to the study participants.

This research was partially funded by New Zealand's Royal Society Marsden grant, number

07-UOC-013.

Production Number: B339

18

Figure Captions

Figure 1: AppMonitor architecture

Figure 2: AppMonitor configuration dialog

Figure 3: Sample AppMonitor log

Figure 4: BNF definition of log structure

Table 1: Keyboard modifier masks

Table 2: Sample results from beta testers

Production Number: B339

19

Figure 1: AppMonitor architecture

Production Number: B339

20

Figure 2: AppMonitor configuration dialog

Production Number: B339

21

Modifier Logical Mask

Ctrl 0x100

Alt 0x200

Shift 0x400

Table 1: Keyboard modifier masks

Production Number: B339

22

1 17/08/2006 14:21:42.265: NewDocument 0x30029c (0x2f0274) [MicrosoftWord] VE(0,255,0,62,0) HS(0,1355,0,1355,0)
2 17/08/2006 14:21:43.437: DocumentProperties 0x30029c (0x2f0274) "AppMonitor.doc - Microsoft Word" PrintLayoutView 150.00%
3 17/08/2006 14:21:50.657: PageStatusChanged 0x30029c (0x2f0274) 1 of 5
4 17/08/2006 14:22:23.805: WM_LBUTTONDOWN 0x30029c VSCROLLBAR[0]
5 17/08/2006 14:22:23.805: EVENT_SYSTEM_SCROLLINGSTART 0x30029c
6 17/08/2006 14:22:24.366: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,2,15,0)
7 17/08/2006 14:22:24.766: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,6,15,0)
8 17/08/2006 14:22:25.167: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,11,15,0)
9 17/08/2006 14:22:25.247: WM_LBUTTONUP 0x30029c grip
10 17/08/2006 14:22:25.247: EVENT_OBJECT_STATECHANGE 0x30029c Line_down
11 17/08/2006 14:22:25.247: EVENT_SYSTEM_SCROLLINGEND 0x30029c
12 17/08/2006 14:22:25.367: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,11,15,11)
13 17/08/2006 14:22:32.367: WM_MOUSEWHEEL 0x30029c Scrollwheel
14 17/08/2006 14:22:32.377: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,13,15,13)
15 17/08/2006 14:22:32.708: WM_MOUSEWHEEL 0x30029c Scrollwheel
16 17/08/2006 14:22:33.178: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,16,15,16)
17 17/08/2006 14:22:41.140: WM_LBUTTONDOWN 0x30029c View/menu_item
18 17/08/2006 14:22:41.140: EVENT_SYSTEM_MENUSTART 0x30029c AppMonitor.doc_-_Microsoft_Word/Menu_Bar
19 17/08/2006 14:22:41.150: EVENT_SYSTEM_MENUPOPUPSTART 0x30029c View
20 17/08/2006 14:22:41.240: WM_LBUTTONUP 0x30029c View/menu_item
21 17/08/2006 14:22:44.835: WM_LBUTTONDOWN 0x30029c Thumbnails/menu_item
22 17/08/2006 14:22:44.975: WM_LBUTTONUP 0x30029c Thumbnails/menu_item
23 17/08/2006 14:22:44.975: EVENT_SYSTEM_MENUPOPUPEND 0x30029c View
24 17/08/2006 14:22:44.995: EVENT_SYSTEM_MENUEND 0x30029c AppMonitor.doc_-_Microsoft_Word/Menu_Bar
25 17/08/2006 14:22:45.116: ScrollbarsChanged 0x30029c (0x2f0274) HS(0,1284,114,634, 114)
26 17/08/2006 14:22:45.196: ScrollbarSetChanged 0x30029c (0x2f0274) VE(0,255,16,15,16) HS(0,1284,114,634,114) (0,255,0,224,0)
27 17/08/2006 14:22:45.396: ScrollbarsChanged 0x30029c (0x2f0274) VC(0,255,0,224,0)
28 17/08/2006 14:23:09.100: WM_LBUTTONDOWN 0x30029c Zoom:/combo_box[150%]
29 17/08/2006 14:23:09.100: EVENT_SYSTEM_MENUSTART 0x30029c AppMonitor.doc_-_Microsoft_Word/Menu_Bar
30 17/08/2006 14:23:10.632: WM_LBUTTONUP 0x30029c 100%/list_item
31 17/08/2006 14:23:10.652: EVENT_SYSTEM_MENUEND 0x30029c AppMonitor.doc_-_Microsoft_Word/Menu_Bar
32 17/08/2006 14:23:10.833: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,0,22,0) HS(0,856,68,634,68)
33 17/08/2006 14:23:10.833: ZoomChanged 0x30029c (0x2f0274) 100.00%
34 17/08/2006 14:23:38.422: WM_KEYDOWN 0x30029c 0x143
35 17/08/2006 14:23:38.593: WM_KEYUP 0x30029c 0x143
36 17/08/2006 14:23:42.779: WM_LBUTTONDOWN 0x30029c VSCROLLBAR[0]
37 17/08/2006 14:23:42.789: EVENT_SYSTEM_SCROLLINGSTART 0x30029c
38 17/08/2006 14:23:43.279: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,2,22,2)
39 17/08/2006 14:23:43.680: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,73,22,73)
40 17/08/2006 14:23:44.080: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,146,22,146)
41 17/08/2006 14:23:44.281: ScrollbarsChanged 0x30029c (0x2f0274) VE(0,255,157,22,157)
42 17/08/2006 14:23:44.491: WM_LBUTTONUP 0x30029c VSCROLLBAR[61]
43 17/08/2006 14:23:44.501: EVENT_SYSTEM_SCROLLINGEND 0x30029c
44 17/08/2006 14:23:46.945: WM_LBUTTONDOWN 0x30029c Microsoft_Word_Document/ client
45 17/08/2006 14:23:47.075: WM_LBUTTONUP 0x30029c Microsoft_Word_Document/client
46 17/08/2006 14:23:49.909: WM_KEYDOWN 0x30029c 0x156
47 17/08/2006 14:23:50.079: WM_KEYUP 0x30029c 0x156
48 17/08/2006 14:24:06:864: WM_LBUTTONDOWN 0x30029c Close/push_button
49 17/08/2006 14:24:07.805: WM_LBUTTONUP 0x30029c Close/push_button
50 17/08/2006 14:24:07.915: ScrollbarSetChanged 0x30029c (0x2f0274)

Figure 3: Sample AppMonitor log

Production Number: B339

23

<LogfileLine> ::= <DateAndTime> : <Event>
<Event> ::= <InternalEvent> | <HookerEvent>
<DateAndTime> ::= <Date><Time>
<Date> ::= <Day>/<Month>/<Year>
<Day> ::= <Integer>
<Month> ::= <Integer>
<Year> ::= <Integer>
<Time> ::= <Hours> : <Minutes> : <Seconds>
<Hours> ::= <Integer>
<Minutes> ::= <Integer>
<Seconds> ::= <Integer>.<Integer> // seconds.milliseconds
<InternalEvent> ::= <AppMonitorEvent> | < DocumentState > | <Debug> | <LogSent> | <DocumentProperties>
<AppMonitorEvent> ::= AppMonitorStarted | AppMonitorExit | EventOptionsChanged
<DocumentState> ::= <NewDoc> | <DeadDoc> | <ScrollbarSetChange> | <ScrollbarChange> | <PageStatusChange> | <ZoomChange>
<Debug> ::= Debug <String>
<LogSent> ::= ResumeAfterSendingFile <Filename>
<DocumentProperties> ::= DocumentProperties <WindowHandle> (<WindowHandle>) <String> <ViewType> <Zoom>
<NewDoc> ::= NewDocument <WindowHandle> (<WindowHandle>) <ApplicationName> <ScrollbarStatusList>
<DeadDoc> ::= DeadDocument <WindowHandle> (<WindowHandle>)
<ScrollbarSetChange> ::= ScrollbarSetChanged <WindowHandle> (<WindowHandle>) <ScrollbarStatusList>
<ScrollbarChange> ::= ScrollBarsChanged <WindowHandle> (<WindowHandle>) <ScrollbarStatusList>
<PageStatusChange> ::= PageStatusChanged <WindowHandle> (<WindowHandle>) <Integer> of <Integer>
<ZoomChange> ::= ZoomChanged <WindowHandle> (<WindowHandle>) <Zoom>
<ApplicationName> ::= [MicrosoftWord] | [AdobeReader]
<ScrollbarStatusList> ::= <ScrollbarStatus> | <ScrollbarStatus> <ScrollbarStatusList>
<ScrollbarStatus> ::= <ScrollbarID> <ScrollbarState>
<ScrollbarID> ::= VE | VC | VU | VL | VX | HS | HC | X | VT | HT | VB | HB | VR | HR
<ScrollbarState> ::= (<ScrollbarMin>,<ScrollbarMax>,<ScrollbarStatic>,<Thumbsize>,<ScrollbarDynamic>)
<ViewType> ::= UnknownView | NormalView | PrintLayoutView | OutlineView | ReadingLayoutView | WebLayoutView | SinglePageView | ContinuousView |

ContinuousFacingView | FacingView
<Zoom> ::= <PercentToken>
< HookerEvent > ::= < HookerEventCode> [<WindowHandle> [<EventInformation>]]
< HookerEventCode > ::= EVENT_SYSTEM_SOUND | EVENT_SYSTEM_ALERT | ... | EVENT_OBJECT_ACCELERATORCHANGE
<WindowHandle> ::= <HexadecimalInteger>
<ScrollbarMin> ::= <Integer>
<ScrollbarMax> ::= <Integer>
<ScrollbarStatic> ::= <Integer>
<Thumbsize> ::= <Integer>
<ScrollbarDynamic> ::= <Integer>
<EventInformation> ::= <Name> | <Name> / <Name>
<Name> ::= any token
<Filename> ::= string token // A token delimited by double-quotes
<String> ::= string token // A token delimited by double-quotes
<HexadecimalInteger>::= a token that represents a hexadecimal number, e.g. 0x125a4fc
<Integer> ::= a token made up of digits only
<PercentToken> ::= a token in which the last character is ‘%’ and all other characters are digits

Figure 4: BNF definition of log structure

Production Number: B339

24

 Beta Tester

 1 2 3 4 5 6

Document counts

1. Word 62 55 26 139 223 49

2. Reader 177 123 85 122 39 169

Microsoft Word

3. KB vocabulary 60 27 24 63 74 32

4. KB command use count 14849 491 2041 8004 9086 11061

5. GUI button vocabulary 38 12 11 26 30 22

6. GUI button use count 472 54 88 451 398 255

7. Menu Selection, Zipf’s Law R2 0.93 0.96 0.93 0.98 0.99 0.97

8. Mouse wheel, % distance 71 12 47 50 58 41

9. Scroll thumb, % distance 7 79 35 23 10 54

Table 2: Sample results from beta testers

Production Number: B339

25

Footnotes
1. http://www.microsoft.com/products/ceip/en-en/default.mspx

2. AppMonitor has also been successfully tested on Microsoft Windows Vista. See the

“AppMonitor Portability and Extendability” section for a discussion on modifications required

to log different versions of Microsoft Word, and Adobe Reader.

3. http://msdn.microsoft.com/library/en-

us/winui/winui/windowsuserinterface/windowing/windows.asp

4. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vcug98/html/_asug_home_page.3a_.spy.2b2b.asp

5. http://msdn.microsoft.com/msdnmag/issues/06/04/managedspy/

6. http://www.microsoft.com/downloads/details.aspx?familyid=3755582a-a707-460a-bf21-

1373316e13f0&displaylang=en

7. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/aboutmessages

andmessagequeues.asp

8. http://msdn.microsoft.com/library/en-

us/winui/winui/windowsuserinterface/windowing/hooks.asp

9. http://msdn2.microsoft.com/en-us/library/ms997537.aspx

10. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/winui/WinUI/WindowsUserInterface/UserInput/VirtualKeyCodes.asp

11. http://msdn2.microsoft.com/en-us/library/ms697707.aspx

12. AppMonitor timestamps all registered events. However, the operating system may introduce a

slight delay between an event occurring and AppMonitor receiving notification (for example,

Production Number: B339

26

under high-load conditions). Hence, millisecond timestamp accuracy cannot be guaranteed.

Production Number: B339

27

References

Findlater, L. and McGrenere, J. (2004). A Comparison of Static, Adaptive, and Adaptable Menus.

SIGCHI conference on Human factors in Computing Systems, Vienna, Austria, ACM Press

89–96.

Greenberg, S. and Witten, I. H. (1993). "Supporting Command Reuse: Mechanisms for Reuse."

International Journal Man-Machine Studies 39(3): 391–425.

Holtzblatt, K. and Jones, S. (1993). Contextual Inquiry: A Participatory Technique for System Design.

Participatory Design: Principles and Practice. D. Schuler and A. Namioka. Hillsdale, N.J,

Lawerence Earlbaum: 180–193.

Kellar, M., Hawkey, K., Inkpen, K. M. and Watters, C. (2007). "Challenges of Capturing Natural Web-

based User Behaviours." International Journal Human-Computer Interaction, In Press.

Kukreja, U., Stevenson, W. E. and Ritter, F. E. (2006). "RUI—Recording User Input from Interfaces

under Windows and Mac OS X." Behavior Research Methods 38(4): 656–659.

Linton, F., Joy, D., Schaefer, H.-P. and Charron, A. (2000). "OWL: A Recommender System for

Organization-Wide Learning." Educational Technology & Society 3(1): 62–76.

McGrenere, J. (2002). The Design and Evaluation of Multiple Interfaces: A Solution for Complex

Software. Computer Science. Toronto, University of Toronto. Doctor of Philosophy.

Tauscher, L. and Greenberg, S. (1997). "How People Revisit Web Pages: Empirical Findings and

Implications." International Journal of Human-Computer Studies 47(1): 97–138.

Trewin, S. (1998). "InputLogger: General-Purpose Logging of Keyboard and Mouse Events on an

Apple Macintosh." Behavior Research Methods, Instruments and Computers 30(2): 327–331.

Westerman, S. J., Hambly, S., Alder, C., Wyatt-Millington, C. W., Shryane, N. M., Crawshaw, C. M.

and Hockey, G. R. J. (1996). "Investigating the Human-Computer Interface using the

Datalogger." Behavior Research Methods, Instruments and Computers 28(4): 603–606.

Zipf, G. (1949). Human Behavior and the Principle of Least Effort: An Introduction to Human

Ecology. Reading, Mass., Addison-Wesley.

