
Kite Turning

Ross Hughan Dawson

A thesis submitted in partial ful�lment

of the requirements for the degree of

Master of Engineering

in

Mechanical Engineering

at the

University of Canterbury,

Christchurch, New Zealand.

2011





ABSTRACT iii

Abstract

This thesis investigates the mechanisms behind the control of a typical two line kite,

where the lines are attached to the kite side by side. This arrangement gives the kite

�yer the ability to apply a roll angle to the kite, which then results in a yawing motion.

The reason for this yaw rotation has not been adequately described previously.

The de�nitions of roll and yaw for a kite have been re-de�ned to match the real

world behaviour of the kite-bridle-line system. Speci�cally, these are de�ned as rotations

relative to the lines rather than the kite itself. This detail has been neglected in previous

research, and has a signi�cant e�ect on the turning behaviour of a kite.

A static model of a kite represented by �at disks was created. This model allows

the out of balance forces and moments to be found for a kite when it is held at any

position. When the kite is held with a roll angle applied, the disk angles of attack

become unequal. This causes a change in the magnitude, direction, and point of action

of the aerodynamic forces on each disk, which can lead to a yaw moment. While this

does not give a complete picture of how a kite turns, it does explain one of the two

mechanisms that cause a kite to begin to yaw when a roll angle is applied. The other

mechanism is due to the velocity of the roll rotation, and is out of the scope of this

thesis since a dynamic analysis would be required.

The static model showed that any variation to kite geometry or any parameter

that a�ects the equilibrium position of the kite will a�ect turning response. The most

important of these parameters for a simple kite represented by two disks is the dihedral

angle. A minimum negative dihedral angle (or anhedral) is required for a kite to turn in

the expected direction when a roll angle is applied. The value of the minimum anhedral

angle required for this behaviour varies with other parameters, but is generally between

8°and 20°.

Other parameters such as bridle geometry also a�ect the turning response of a kite,

primarily because they alter the equilibrium positions of the kite and line. Altering these

equilibrium positions has a strong e�ect on turning response, since it changes the initial

disk angles of attack. Additionally, if the kite and line are not aligned perpendicular

to each other (which is a rare condition for a kite) a roll angle further changes the disk

angles of attack, since the roll angle is applied about an axis relative to the line rather

than the kite.
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An investigation into the e�ect of varying wind velocity on turning response showed

that it has an important e�ect. Some kites will reverse their response to a given roll angle

at some wind velocities, which could make the kite very di�cult to control. Additionally,

some kites can alter their equilibrium positions sharply with wind velocity, again causing

varying turning behaviour as the wind conditions change.

Future work should examine the dynamic turning response of kites. A dynamic

simulation could be used to examine how the turning response of a kite is in�uenced

by the rate at which a control input is applied. Additionally, the behaviour of the kite

once the initial turning movement has begun could be assessed.
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Chapter 1

Introduction

1.1 Project Aims

The primary purpose of this thesis is to develop an explanation as to how a kite with

two lines turns. A two lined kite can be steered by pulling on one line to introduce

a roll angle to the kite. This results in the kite yawing, which subsequently results in

the kite moving o� in a new direction. A well designed controllable kite will always

yaw in one direction for a given roll direction � a pull on the left line (from the kite

�yer's perspective), resulting in a roll rotation, causes the kite to turn towards the left.

However, some kites will turn in the opposite direction, either consistently or only under

certain conditions. The mechanism that causes this turning behaviour is not clear, and

has not been adequately explained in previous studies.

To understand how a kite turns, a method of investigating the forces and moments

acting on the kite and line in a given situation is required. Furthermore, the causes for

variation of these forces and moments must be determined. Performing a complicated

numerical dynamic simulation of a kite may indicate how a particular kite will respond

to control inputs, but it would not facilitate an understanding of the fundamental mech-

anisms by which this response occurs. Rather, a static model of a kite was created, to

allow the initial response to any perturbation to equilibrium conditions to be investi-

gated. The calculations used for this static model can also be used as a starting point

for any possible future work on the stability and dynamic control of kites.

The secondary purpose of this thesis is to investigate how changes to kite and bridle

geometry a�ect the turning response of a kite. It is well known that many factors a�ect

how a kite �ies. For many �ight parameters, such as equilibrium points and maximum

altitudes, the e�ect of various kite setup parameters is well understood. However, how

kite turning performance is a�ected by di�erent kite and bridle geometry is not known,

other than empirical information obtained essentially through trial and error by kite

makers. It is hoped that the static model can be used to enable predictions to be made

about what parameters are important for a kite's turning ability.
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1.2 Background

1.2.1 History of Kite Research

The kite has been used in one form or another for around 2500 years. They were used

by the Chinese and Indonesians for a variety of purposes, including �shing, warfare,

religious rituals, and general amusement[1]. Research on how kites �y can be found

dating back to the early 1800's, perhaps most notably George Pocock's work on using

kites to lift or drag heavy objects. Pocock's accomplishments include lifting his children

to heights of up to 82 metres and building and testing a kite powered buggy capable of

speeds in excess of 30km/h[1, 2]. However, Pocock's work was all experimental.

The �rst rigorous treatment of the mechanics of kite �ight is found in C.F. Marvin's

1897 Monograph on The Mechanics and Equilibrium of Kites[3]. This work covers the

mechanics of kite �ight in some detail. Marvin's work examines the forces acting on

a kite, and how they interact with those acting on the line and tail. He examines

conditions necessary for equilibrium of the kite-line system, as well as the stability of

this equilibrium. Had two lined, steerable kites existed in his day, Marvin's work would

have perhaps covered the content of this thesis to some extent. Marvin's work succeeds

in breaking down the complexity of kite �ight so that it can be understood in simple

terms.

More recently, a similar approach was taken by K. Alexander and J. Stevenson

in their paper investigating kite equilibrium points[4]. This included simulation of

the kite-bridle-line system, rather than the simpli�ed kite-line system used by Marvin.

An important outcome of this work was the veri�cation of the existence of multiple

equilibrium positions for some kite-bridle-line systems, which had previously been shown

to exist for simple kite-line systems by R.A. Adomaitis[5]. This work also showed how

bridle geometry can be tuned to control a kite's equilibrium points in various wind

conditions. The work was subsequently used to develop various methods of testing the

performance of traction kites[6, 7, 8, 9].

G. Sánchez performed a dynamic analysis on a single-line kite-line system using a

Lagrangian formulation[10]. A similar method could be used in the future to model

a two-line kite-bridle-line system, using the work presented in this thesis as a starting

point. Much of the other recent research relating to kites has concentrated on very

speci�c aspects of kites and their �ight, often with a speci�c goal in mind. For example,

many articles can be found relating to the performance of kites used to lift meteorological

instruments[11]. These kites are uncontrolled, single lined kites designed for stability.

As such, research in this area has little relevance to kite turning.

The second area that has seen a large amount of research is that of traction kites,

used for recreational purposes and increasingly proposed as a method of power gen-

eration. Many papers have been published modelling such kites, particularly with a
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view to their use for power generation[12, 13, 14, 15, 16, 17]. While these are generally

controllable kites, none of the research found contains an explanation for the turning

mechanism being considered in this thesis. Rather, the kites modelled use direct ma-

nipulation of control surfaces or the entire kite surface to create asymmetries in the kite

geometry. This is commonly achieved using four lines to control a kite, and has also

been achieved by using motorised control surfaces and variable attachment points [12].

1.2.2 Development of Controllable Kites

Until comparatively recently, kites were only attached to the ground or kite �yer by

one line. These single line kites are largely uncontrollable. In the 1930's, H. DeHaven

patented kites that could be controlled from the ground by using two lines[18, 19]. The

use of a second line allowed the user to control either the orientation or the angle of

a rudder panel added to the kite. During the Second World War, dual line kites were

further developed by P. Garber for the United States Navy[20]. Garber's kites were

designed for use as anti-aircraft gunnery practice targets, and again utilised a movable

rudder to control the movement of the kite.

Kites that are controllable without a separate, movable control surface �rst ap-

peared in the early 1970's, having been developed by P. Powell in 1972 [1, 21]. Powell's

kites were steerable by using two lines attached at a distance from each side of the

centre of the kite, allowing the �yer to roll the kite by adjusting the relative lengths of

the two lines. This roll leads to the kite yawing in the same manner as that caused by

the rudder surface of Garber's kites, allowing the kite to be �own about the sky. The

vast majority of two-line kites in use today use this same control mechanism.

The mechanism behind the yawing movement caused by the control surfaces of

DeHaven's and Garber's kites is well understood � there is fundamentally very little

di�erence between the actions of control surfaces on a kite and an aeroplane. However,

the mechanism behind the operation of Powell's two line kites has not been rigorously

explained. Anyone familiar with two line kites knows that pulling one line, thereby

inducing a roll angle, causes a kite to yaw. The reason for this resulting yaw is not

immediately apparent, and is the focus of this thesis.

Various explanations as to what happens to cause a yaw moment when a kite is

rolled have been proposed � the most common explanation seems to be that the roll

velocity induced by pulling on one line causes a change in the apparent wind direction

of each side of the kite. This does without question occur, but a test �ight with a

common stunt kite will show that a slowly applied roll causes a yaw rotation just as

e�ectively (sometimes more so) than a quickly applied one. This suggests the change

in position of the kite is at least as important as the rate of change.

J. Stevenson postulated that the di�erence in line tensions created when rolling a

kite causes the yaw moment [9]. As a kite is rolled, the load on the two lines becomes
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unequal, and the location of the resultant force moves towards whichever side has the

higher load. However, for this to create a yaw moment, the yaw axis must be assumed

to be non-parallel to the lines � Stevenson assumed it was aligned perpendicular to the

kite itself. This implies that as the kite yaws, it can alter the relative lengths of the

lines without resistance, contradicting the assumption that the relative line lengths are

controlled.

1.2.3 Modelling Kites Using Disks

The inspiration for the current research arose from J. Stevenson's thesis Traction Kite

Testing and Aerodynamics[9]. This thesis primarily focused on devising a method of

reliably testing traction kites. In later sections, it proposed investigating the behaviour

of kites by using multiple circular plates to represent more complicated shapes. This

removes many of the complications of modelling kites, since a disk's aerodynamic prop-

erties only vary with one parameter � the angle the wind makes to the disk surface, or

angle of attack. Because of this property, a kite represented by a number of disks can

be analysed relatively easily at any orientation to the wind by calculating the forces

acting on each disk separately.

Stevenson performed a preliminary analysis using the disk method to investigate

how kites are steered, but this was not a primary focus of the thesis. As mentioned above

in section 1.2.2, it is thought that Stevenson's de�nition of the yaw axis is incorrect,

and that the mechanism by which he describes a kite turning does not actually lead to

a yaw moment.

Geraud LaFortune performed an analysis of kite turning using disk kites in his

undergraduate research project Fundamental Kite Motion [22]. LaFortune assumed

that the primary yaw moment causing a kite to turn is caused directly by the roll

rotation induced in the kite by pulling on one line. This assumption seems to match

observations of kite behaviour. However, as with Stevenson's work, LaFortune assumes

that the kite rolls and yaws about axes relative to itself, not the lines. This is thought

to be incorrect, as stated above.

1.2.4 Coordinate Systems for Kites

Because kites move in three dimensions in a complicated manner, the choice of coordi-

nate system(s) has a great impact on the di�culty of performing any level of analysis.

The choice of an appropriate coordinate system depends on what assumptions are made

and how many degrees of freedom the kite system is allowed. As such, there is no univer-

sally accepted convention for coordinate systems used on kites. For example, Stephen

Hobbs used a coordinate system �xed to the kite chord in his Two-dimensional simu-

lation of kite �ight [11], while Podgaets and Ockels have utilised both ground and kite
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�xed coordinate systems in their three-dimensional simulation of the laddermill system

[15].
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Chapter 2

De�ning the Position of a Kite

The seemingly simple kite is in fact a rather awkward object to de�ne in three dimen-

sions. Previous studies and simulations performed on kites have used many di�erent

coordinate systems to describe the position of the kite. None of the examples of kite

simulation found, or any other convention found, are suited to investigating the turning

behaviour of kites - mostly because simpli�cations have been made that limit the degrees

of freedom available. To investigate the turning behaviour of a traditionally controlled

kite (i.e. using multiple lines, rather than a single line with control surfaces added to

the kite), its position and orientation need to be de�ned without making simpli�cations

that limit movement.

2.1 Coordinate Systems

When describing a kite, it is useful to use three separate coordinate systems, as shown in

Figure 2.1. Firstly, a coordinate system with the Z-axis aligned with the wind direction

and the Y-axis normal to the ground (assumed level and �at) is used as the global

coordinate system. Secondly, a coordinate system aligned with the kite itself is used

when working with the aerodynamics of the kite. The origin of this coordinate system

is either set at the centre of mass of the kite (as shown in Figure 2.1) or at the point

where the bridle joins the line(s). A coordinate system based on the line is also used.

The use of this coordinate system simpli�es de�ning the rotational position of a kite

with more than one line, since the lines restrict rotational movement about one or more

axes that are not necessarily aligned with the kite based coordinate axes. This makes

the Tait�Bryan yaw, pitch, and roll convention used for aircraft inappropriate [23].
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Figure 2.1 Diagram showing the three coordinate systems used in modelling a kite in three dimen-

sions

2.2 Degrees of Freedom

2.2.1 General Case

The number of degrees of freedom of a kite depends on the number of lines used. In

any case, the kite is split into two subsystems: the line(s) and the kite itself. For the

purposes of the (static) calculations performed here, the lines are treated as one single

line, and the extra constraints that the use of two or four lines place on the kite are

simply added to the kite subsystem. This simpli�es the calculations, although if a

dynamic simulation were to be performed each line may need to be treated separately.

The kite subsystem includes the structure of the kite and the bridles, which are assumed

to be rigid with the exception of allowing the bridles to rotate about their attachment

to the kite. The kite subsystem connects to the line subsystem at the end of the bridles.

The line is restrained from positional displacement at the bottom end but is free to

rotate about any axis, giving three degrees of freedom. One of these degrees of freedom

is neglected, since the line rotating about its own y-axis has no e�ect on the system,

leaving two degrees of freedom. The kite is constrained by the line, and thus shares the

line's two degrees of freedom plus a number of extra degrees of freedom a�orded by the

kite's ability to rotate around the top of the line - the number of which depends on the

number of lines used.
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2.2.2 Single Line Kite

A kite with a single line has the most degrees of freedom, since the kite is unrestrained

from rotational movements about the top end of the line. Thus the single line kite has

5 degrees of freedom: The line can rotate with respect to the ground about two axes,

and the kite is free to pitch, roll and yaw about the bridle point.

2.2.3 Two Line Kite

With a two line kite, the roll angle of the kite is controlled by the relative lengths of

the two lines. The kite remains free to pitch and yaw about the bridle point, leaving

the system with four degrees of freedom.

2.2.4 Four Line Kite

A four line kite is constrained from both pitching and rolling about the bridle point,

leaving three degrees of freedom. This con�guration is generally only used on �exible

kites, as it allows the kite to be steered by twisting the kite, leading to a di�erent angle

of attack on each side. This allows for more predictable steering behaviour than the

banking method used for two lined kites. Using four lines does not change the turning

ability of a rigid kite, and thus will not be further discussed here.

2.3 Parameters Used to De�ne a Kite's Position

2.3.1 Parameters Used to Describe the Orientation of the Line

The line e�ectively has two degrees of freedom, as explained in section 2.2, thus two

parameters are required to �x its position. The line is described by an elevation angle,

Φ, and an azimuth angle, Θ, relative to the global coordinate system. The de�nitions

for elevation and azimuth have been chosen to be similar to conventions used when

de�ning the position of an object in the sky (such as stars and satellites), and do not

directly correspond to the angles between the global and line coordinate systems. This

will be dealt with later in section 2.4.1.
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Figure 2.2 Diagram showing the de�nition of elevation angle Φ and an azimuth angle Θ for a kite

2.3.2 Parameters Used to Describe the Orientation of the Kite

Three parameters are required to �x the orientation of the kite on the end of the line.

These will be referred to as pitch, roll and yaw, but their de�nition di�ers from the

standard Tait-Bryan convention, as does the order in which they are applied. Firstly,

a pitch angle is applied. This is de�ned as a rotation about the x-axis of the kite

based coordinate system, and is analogous to the overall angle of attack of the kite

with respect to the wind if no yaw or roll is applied. Next, a roll angle can be applied

by rotating the kite about z-axis of the line based coordinate system. The line based

coordinate system is used here to re�ect what happens when a kite �ier tugs one line

on a two-line kite � the kite does not roll about its own z-axis, as is the case when using

the Tait-Bryan convention, rather, it rolls about an axis perpendicular to the lines �

the line based z-axis. Finally, a yaw angle can be applied. Again, this is applied by

using the line based coordinate system, this time with a rotation about the y-axis, or

the axis of the lines themselves.
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Figure 2.3 Diagram showing the de�nition of pitch angle, θ, for a kite, de�ned as a rotation about

the kite X-Axis.

Figure 2.4 Diagram showing the de�nition of roll angle, ϕ, for a kite, de�ned as a rotation about

the line Z-Axis. The bridles have been shown to be rigidly attached to the kite for clarity, whereas

they can rotate about their attachment to the kite in reality, meaning that the kite does not rotate to

the side as shown.
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Figure 2.5 Diagram showing the de�nition of yaw angle, ψ, for a kite, de�ned as a rotation about

the line Y-Axis.

2.4 Rotation Matrices

Rotation matrices are used to apply rotations to the kite and to switch between di�erent

coordinate systems. In a three dimensional space, any rotation can be represented by

an orthogonal 3x3 matrix. This rotation matrix can be built from three basic rotation

matrices about the x-, y-, and z-axes [23], or can be found directly for a rotation about

an arbitrary axis. The three basic rotation matrices for a rotation ϑ are:

Rx (ϑ) =

 1 0 0

0 cosϑ − sinϑ

0 sinϑ cosϑ

 (2.1)

Ry (ϑ) =

 cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϑ

 (2.2)

Rz (ϑ) =

 cosϑ − sinϑ 0

sinϑ cosϑ 0

0 0 1

 (2.3)

When a rotation about some other axis is desired, Rodrigues rotation formula can

be used rather than breaking the rotation down into x, y, and z components � this will
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be useful in applying the roll and yaw angles to a kite[24]. Rodrigues rotation formula

states that for a rotation ϑ about an axis given by the unit vector u:

Ru (ϑ, ũ) = I + ũ sinϑ+ ũ2 (1− cosϑ) (2.4)

Where I is the 3x3 Identity matrix and ũ is the cross product matrix of u:

ũ =

 0 −uz uy

uz 0 −ux
−uy ux 0

 (2.5)

2.4.1 Rotation Matrix for the Line Coordinate System

The line coordinate system di�ers from the global coordinate system by a rotation

about the global y-axis (found from the azimuth angle, Θ) and a rotation about the

(now modi�ed) x-axis (found from the elevation angle, Φ). The angles of rotation are

not the same as the azimuth and elevation angles, as explained in section 2.3.1.

To change a vector de�ned in the global coordinate system to the line-based coordi-

nate system, the vector needs to be rotated by the reverse of the azimuth and elevation

angles. These rotations can both be performed using basic rotation matrices:

Razimuth =

 cos (π-Θ) 0 sin (π-Θ)

0 1 0

− sin (π-Θ) 0 cos (π-Θ)

 (2.6)

Relevation =

 1 0 0

0 cos
(
π
2 − Φ

)
− sin

(
π
2 − Φ

)
0 sin

(
π
2 − Φ

)
cos
(
π
2 − Φ

)
 (2.7)

Note that the angles used in the rotation matrices are modi�ed due to the azimuth

and elevation angles being de�ned by the angles made between the global axes and

the line itself (rather than the line coordinate system), as described in section 2.3.1.

The rotation matrix to change from the global coordinate system to the line coordinate

system can be found by multiplying the azimuth and elevation matrices together in the

correct order:

Rline = Relevation ×Razimuth (2.8)

Since the line rotation matrix is essentially 'un-doing' the rotations by which the line

coordinate system di�ers from the global coordinate system, the order of rotations is

the reverse of the order described in section 2.3.1.
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2.4.2 Rotation Matrix for the Kite Coordinate System

To change a vector de�ned in the global coordinate system into the kite coordinate

system, three rotations are required: pitch, roll and yaw, as de�ned in section 2.3.2. As

with the matrices de�ning the rotations of the line coordinate system, the negative of

the angles are used to represent 'un-doing' the kite rotations, resulting in a matrix to

transform a vector given in global coordinates to its equivalent in kite coordinates. The

rotation matrix for the pitch rotation can be found using the basic rotation matrix for

rotations about the x-axis:

RPitch =

 1 0 0

0 cos (−θ) − sin (−θ)
0 sin (−θ) cos (−θ)

 (2.9)

Since roll and yaw angles are not de�ned using the kite coordinate axes, Rodrigues

rotation formula is used to �nd their rotation matrices. The kite rolls about an axis

perpendicular to the line, equivalent to the z-axis of the line coordinate system. Since

this rotation is applied after the pitch angle, the axis needs to be found in the pitched

kite coordinate system � de�ned relative to the global coordinate system by RPitch.

The roll axis in pitched kite coordinates is found by taking a vector in the z-direction

in line coordinates, converting it into global coordinates, and then applying the pitch

rotation:

uroll = RPitch ×R−1line ×

 0

0

1

 (2.10)

The rotation matrix for the roll rotation can then be found using the cross product

matrix of uroll and the roll angle ϕ:

Rroll = I + ũroll sin (−ϕ) + ũ2roll (1− cos (−ϕ)) (2.11)

The yaw angle is applied about an axis parallel to the line, or the y-axis of the line

coordinate system. This rotation is applied after the pitch and roll rotations, and the

axis of rotation is found in a similar manner as for the roll axis:

uyaw = Rroll ×RPitch ×R−1line ×

 0

1

0

 (2.12)

Rodrigues rotation formula is then used to �nd the rotation matrix for the yaw rotation:

Ryaw = I + ũyaw sin (−ψ) + ũ2yaw (1− cos (−ψ)) (2.13)
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The rotation matrix to transform a vector de�ned in the global coordinate system

to its equivalent in the kite coordinate system is found by multiplying the pitch, roll

and yaw matrices together in the correct order.

Rkite = Ryaw ×Rroll ×Rpitch (2.14)

As with the line rotation matrix, the order of rotation is the reverse of the order ex-

plained in section 2.3.2, since the rotations are being 'un-done' to change a vector

expressed in global coordinates to one expressed in kite coordinates.
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Chapter 3

Modelling a Kite in Three Dimensions

To determine how a kite responds to a control input in the form of an induced roll angle,

it is necessary to model the system in three-dimensions. In this thesis, only the initial

response to a control input is being investigated, therefore a static model is su�cient.

The static model will determine the out of balance forces and moments acting on a kite

when it is in a given position.

3.1 Representation of a Kite Using Disks

In order to �nd the forces and moments acting on a kite and how they are a�ected

by changes in geometry, a simple 3D model is required. While Computational Fluid

Dynamics (CFD) simulations could be performed on exact models of actual kites, the

time required to run multiple simulations for the many parameters a�ecting a kite's

�ight would be excessive. In addition, a CFD simulation would e�ectively skip from

question to answer, without providing the desired insight into the mechanisms behind

the kite's behaviour. Instead, the forces and moments will be determined by breaking

the kite up into sections and determining lift and drag forces and centre of pressure

locations for each separately.

The aerodynamic forces acting on a general �at plate depend on its orientation to

the wind in two dimensions � the angle of attack, and the orientation about an axis

perpendicular to the surface. A rectangular plate may have a straight edge or a vertex

pointing into the wind, or any angle in between. To avoid this, a disk is used. A disk's

aerodynamic properties only vary with angle of attack, since rotating a circle about its

own centre has no e�ect.

Using lift, drag and centre of pressure coe�cients obtained through experiment at

various angles of attack, the aerodynamic force acting on each disk of a kite made up

of multiple disks can be found, and the resulting forces and moments acting on the kite

structure determined [9]. This method allows the out of balance moments caused when

a kite is held at a given orientation to the wind to be investigated with a minimum of

computational e�ort. However, this method does have a number of limitations. Firstly,
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the complexity of the kite shape is limited by the fact that one disk cannot lie behind

another � a disk in the wake of another disk will exhibit quite di�erent aerodynamic

properties. A similar problem limits how close a disk can be positioned to the side of

another disk, since their tip vortices may interfere with each other, leading to a change

in the forces acting on the disks. Working within these limitations, a representation of

a kite made up of disks can be used to investigate the e�ects that parameters like bridle

lengths, dihedral angles, and basic shape have on the initial turning response of a kite.

3.1.1 Aerodynamic Properties of Disks

As mentioned in the previous section, the aerodynamic properties of a disk can be

assumed to vary only with the disk's angle of attack with respect to the �ow. While

the properties do change with �ow velocity, this need only be taken into account if

the velocity is varying by orders of magnitude, or where a transition from laminar to

turbulent �ow regimes may occur. Since kites �y in a limited range of wind speeds, the

e�ect of �ow velocity on aerodynamic properties can be neglected. Using the standard

lift and drag equations, the aerodynamic forces acting on a disk in a �ow stream can

be found:

L =
ρ ·A · Cl (α) · V 2

2
(3.1)

D =
ρ ·A · Cd (α) · V 2

2
(3.2)

Where L and D are the lift and drag forces, ρ is the density of the �uid, A is the

reference area of the disk (in this case the plan-form area), Cl (α) and Cd (α) are the

lift and drag coe�cients at the angle of attack α, and V is the �ow stream velocity. The

lift and drag forces act at the centre of pressure, which lies on the chord line between

the front edge and centre of the disk. The exact location of the centre of pressure is

variable, again primarily as a function of the disk angle of attack α.

Lift and drag coe�cients and centre of pressure locations for a 240mm diameter

disk were previously found at various angles of attack by Justin Stevenson [9] using the

Closed Circuit Wind Tunnel in the University of Canterbury Industrial Aerodynamics

Laboratory. Further force coe�cient and centre of pressure data was obtained using a

disk with 120mm diameter in the Closed Circuit Wind Tunnel using a three-axis force

balance. This data is comparable to that obtained for 240mm disks, as shown in Figures

3.1 and 3.2, indicating that the lift and drag coe�cients are not sensitive to disk size

over this range. These results were also compared to data published by the Engineering

Sciences Data Unit [25], and were found to be very similar.
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Figure 3.1 Chart showing the variation of lift and drag coe�cients with angle of attack for two

di�erent sized disks, as measured in the closed-circuit wind tunnel

Figure 3.2 Chart showing the variation of centre of pressure location with angle of attack for two

di�erent sized disks, as measured in the closed-circuit wind tunnel

Using cubic spline interpolation, the results obtained by Stevenson can be smoothed

to facilitate their use in modelling kite �ight. This interpolation is performed using

MATLAB's 'spline' function. The results of the interpolation are shown below in �gures

3.3 and 3.4
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Figure 3.3 Chart showing interpolated values for lift and drag coe�cients

Figure 3.4 Chart showing interpolated values for centre of pressure location

3.1.2 Disk-Based Coordinate System

To calculate the forces acting on a kite made up of disks, it is useful to introduce a new

coordinate system for each disk. These are aligned such that the disk surface lies on

the x-z plane, with the origin set at the disk centre, as shown in �gure 3.5. Each disk's

coordinate system is de�ned initially relative to the kite coordinate system, thus the

disk x-z plane is parallel to the kite x-z plane. From this position, up to two rotations

are applied. The �rst of these is a rotation about the z-axis, leading to a dihedral angle.

Following this rotation, a rotation about the disk's new x-axis can be applied � this will
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be referred to as a twist angle.

Figure 3.5 Diagram showing the disk-based coordinate systems for a two-disk kite with a dihedral

angle γ

Figure 3.6 Diagram showing the disk-based coordinate systems for a two-disk kite with a twist angle

τ
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To change a vector given in the kite coordinate system to the disk coordinate system,

the vector must be rotated through the reverse of the dihedral and twist angles:

RDihedral(i) =

 cos
((
−1i

)
γ
)
− sin

((
−1i

)
γ
)

0

sin
((
−1i

)
γ
)

cos
((
−1i

)
γ
)

0

0 0 1

 (3.3)

RTwist(i) =

 1 0 0

0 cos (−τi) − sin (−τi)
0 sin (−τi) cos (−τi)

 (3.4)

Where γ is the dihedral angle and τ is the twist angle. These follow the standard

right-hand rotation convention, such that a disk on the positive x-side of a dihedral

kite has a positive dihedral angle, whereas the same disk on an anhedral kite has a

negative dihedral value. The disks on the negative x side of the kite use equal but

opposite dihedral angles to their positive side counterparts, since the kite is assumed to

be symmetrical. The rotation matrix for transforming a vector from global coordinates

to disk coordinates is found by multiplying the dihedral and twist rotation matrices

with the kite rotation matrix in the correct order:

RDisk(i) = RTwist(i) ·RDihedral(i) ·RKite (3.5)

3.2 Calculating the Yaw Moment Acting on a Disk Kite

When a kite �yer pulls on one line of a two line kite, a bank angle is induced in the

kite as described in section 2.3.2. In a well designed two line kite, this results in an

imbalance in the forces acting on the kite, causing it to yaw (or turn) in the intended

direction and subsequently change position in the sky � this much is well known to any

kite �yer. However, the direction and magnitude of this resulting yawing movement is

presently only found by trial and error. In this section, the method used for calculating

the forces and moments acting on a kite is outlined, and the yaw moment is subsequently

identi�ed.

3.2.1 Angle of Attack

To calculate the aerodynamic properties of each disk, their angles of attack must be

found. This is found by calculating the angle between the global z-axis (i.e. the wind

direction) and the x-z plane of the disk coordinate system (i.e. the disk surface). The

angle ϑ between a vector W and a plane can be found by using a normal vector, N , to

describe the plane:

ϑ = arcsin

(
W •N
|W | · |N |

)
(3.6)
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Using unit vectors in disk coordinates for both W and N to �nd the angle of attack, α,

this reduces to:

αi = arcsin

WD
i •

 0

1

0


 (3.7)

Where WD
i is a vector parallel with the wind in disk coordinates:

WD
i = RDisk(i) ·

 0

0

1

 (3.8)

The vector has been chosen to point into the wind (rather than with) it to result in a

positive angle of attack.

3.2.2 Lift Force

To �nd the lift force vector acting on each disk in kite coordinates, the magnitude and

direction must be found separately. The magnitude of the lift force for each disk is

found using the standard formula for lift:

|L| = ρ ·A · Cl (α) · V 2

2
(3.9)

Where Cl (α) is the lift coe�cient for the disk at the current angle of attack α (found

in equation 3.7).

The lift force acts along a vector given by the projection of a vector normal to the

disk surface, S, onto the global x-y plane. The projection of a vector S onto a plane

de�ned by its normal vector N is given by:

S ‖ N = S − (S •N) ·N (3.10)

In this case, the normal vector to the global x-y plane (i.e. the z-axis) needs to be

converted into the disk-based coordinate system:

ND = RDisk ·

 0

0

1

 (3.11)

Where RDisk is the rotation matrix found in section 3.1.2. A unit vector de�ning the
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direction of the lift force can now be found:

−→
LD =

 0

1

0

−

 0

1

0

 •ND

 ·ND (3.12)

Which allows the lift force vector to be found in disk-based coordinates:

LD = |L| ·
−→
L∣∣∣−→L ∣∣∣ (3.13)

And in kite-based coordinates:

LK = RKite ·R−1Disk · L
D (3.14)

3.2.3 Drag Force

As with calculating the lift force vector, the drag force vector for each disk is found by

calculating the magnitude and direction separately. The magnitude is found using the

standard drag force equation:

|D| = ρ ·A · Cd (α) · V 2

2
(3.15)

Where Cd (α) is the drag coe�cient for the disk at the current angle of attack α (found in

equation 3.7). Calculating the direction of the drag force vector is more straightforward

than the lift force direction, as it simply acts along the global z-axis. Therefore, a unit

vector in the direction of the drag force can be found in kite coordinates:

−−→
DK = RKite ·

 0

0

−1

 (3.16)

And the drag force vector is:

DK
i = |D|i ·

−−→
DK (3.17)

3.2.4 Total Forces Acting on the Kite Structure

The sum of the lift and drag forces for each disk and the gravity force is resisted by

the lines in the line Y-direction and causes the kite-bridle-line system to accelerate in

other directions. The direction of this resulting force is important as it determines the

equilibrium elevation angle for the kite line. Expressed using the kite-based coordinate
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system, this force is:

FKT =
n∑
i=1

LKi +
n∑
i=1

DK
i + FKGravity (3.18)

Where the gravity force is de�ned as:

FKGravity = RKite ·

 0

−mg
0

 (3.19)

The sum of the aerodynamic and gravity forces is equal to the sum of the tension forces

in the two kite lines for a kite at equilibrium. The proportion of this force that each

line takes can be found using the z-component of the moments found in section 3.2.5,

although this is not of interest when investigating the initial turning response of a kite.

3.2.5 3D Moments about the Bridle Point for a Simpli�ed Two-Disk

Kite

The sum of the moments about the centre of the bridle points, BP (shown in �gure

3.7), is required to �nd the equilibrium pitch angle for a kite, in addition to calculating

the response to a control input. Initially, a kite consisting of two disks with bridles

attached to the disks will be used as a simple example. The out of balance moment in

kite coordinates about BP , MK , is:

MK =
n∑
i=1

(
rKBP−CPi × LKi

)
+

n∑
i=1

(
rKBP−CPi ×DK

i

)
+ rKBP−CM × FKGravity (3.20)

Figure 3.7 Diagram of a two-disk kite showing the location of the centre of the kite, CK, centre of

bridle points BP , and bridle geometry
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Where the vectors rKBP−CPi and rKBP−CM are vectors between the bridle point (BP )

and the centres of pressure for each disk (CPi) and the centre of mass of the kite (CM),

respectively. For this simpli�ed two-disk kite, it is assumed that the centre of mass is

located at the centre of the two disks, CK, therefore:

rKBP−CM = rKBP−CK (3.21)

For a kite with no roll or yaw applied, the position vector for the centre of the kite

relative to the bridle point, rKBP−CK , can be found from the bridle lengths and the disk

diameter. With some manipulation, the location of the bridle point with respect to the

disk centre, as shown in Figure 3.7, can be shown to be:

dy = −

√√√√l2f −

(
l2f − l2r + l2a

2 · la

)2

(3.22)

dz =
la
2
−
l2f − l2r + l2a

2 · la

If the kite has no roll or yaw angle, the x-component of the position vector for the centre

of mass is zero, therefore the position vector rKBP−CK is:

rKBP−CK =

 0

−dy
−dz

 (3.23)

However, if the kite has a nonzero roll and/or yaw angle, the bridles rotate about their

attachment to the disk to align with the lines, as shown in Figure 3.8. The angle through

which the bridles rotate is not necessarily equal to the roll angle, since they can only

rotate about their attachment point, which may not be parallel to the roll axis. The

bridles initially lie on a plane parallel to the kite y-z plane, thus the angle β through

which the bridles rotate is equal to the angle between this plane and the kite lines:

β = − arcsin


 1

0

0

 •
RKite ·R−1line ·

 0

1

0



 (3.24)
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Figure 3.8 Diagram of a two-disk kite showing how the bridles can rotate when a roll and/or yaw

angle is applied

The bridles rotate about an axis parallel to the kite z-axis, therefore a basic rotation

matrix can be used to �nd the new position vector for the centre of mass, rKBP−CK :

rKBP−CK =

 cosβ − sinβ 0

sinβ cosβ 0

0 0 1

 ·
 0

−dy
−dz

 (3.25)

To �nd the position vector for the centre of pressure of each disk, the position vector

for the kite centre rKBP−CK can be used as a starting point. The position vectors for

the centres of pressure are given by:

rKBP−CPi = rKBP−CK + rKCK−CDi + rKCDi−CPi (3.26)

where rKCK−CDi is the position vector for the centre of disk i relative to the kite centre,

and rKCDi−CPi is the position vector for the centre of pressure of disk i relative to the

disk centre, both in kite coordinates. The vector rKCK−CDi is already de�ned � for the

two-disk kite represented here, it is simply a vector along the kite x-axis with a length

of half the span the between disk centres:

rKCK−CDi =

 −1i+1 · 12 · s
0

0

 (3.27)

However, the vector rKCDi−CPi varies as the position of the kite varies. The scalar

length of rKCDi−CPi is found from the aerodynamic properties of a disk determined by

experiment, and varies with the disk angle of attack. The line on which the centre of

pressure lies (the chord line) is found by taking a projection of a vector parallel to the

wind onto the disk, as shown in �gure 3.9. The vector rKCDi−CPi is found by multiplying
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the scalar length CoP (α) and the normalised vector along the chord line
−−−−→
Chord:

Figure 3.9 Diagram showing the location of the centre of pressure for disk two of a two-disk kite

rKCDi−CPi =
|CPi− CDi| ·

−−−−→
Chordi∣∣∣−−−−→Chordi

∣∣∣ (3.28)

Where the scalar |CPi− CDi| is found using the coe�cient for the centre of pressure

location at the disk angle of attack and the disk diameter:

|CPi− CDi| = Øi
2
− COPi(α) ·Øi (3.29)

And the unit vector
−−−−→
Chordi is found using the projection formula:

−−−−→
Chordi = WK −

(
WK •NK

i

)
·NK

i (3.30)

Where N is a vector normal to the disk surface and W is a vector parallel to the wind.

These are found by applying the appropriate transformation matrices to unit vectors in

the disk and global coordinate systems, respectively:

NK
i = RKite ·R−1diski ·

 0

1

0

 (3.31)

WK = RKite ·

 0

0

1

 (3.32)

The total moment about the centre of the bridle points in kite coordinates can now be

found using equation 3.34. Since the kite is only free to yaw about the line y-axis, this
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moment is transformed in to line coordinates to give a more useful result:

ML = RLine ·R−1Kite ·M
K (3.33)

3.2.6 3D Moments about the Bridle Point for an n-Disk Kite

Most kites have shapes too complicated to be represented by only two disks. Further

disks can be added to model kites with shapes more akin real ones with little modi�ca-

tion to the method outlined in section 3.2.5. The angles of attack for each disk, along

with the corresponding lift and drag forces, are calculated exactly as in sections 3.2.1

to 3.2.4. However, some additional calculations must be added to the subsequent steps

to include the extra disks.

As stated in section 3.2.5, the moments about the centre of the bridle points (BP

in �gure 3.7) of a disk kite can be found using:

MK =
n∑
i=1

(
rKBP−CPi × LKi

)
+

n∑
i=1

(
rKBP−CPi ×DK

i

)
+ rKBP−CM × FKGravity (3.34)

The procedure for calculating the position vectors used in this equation is complicated

by the fact that the centre of mass CM is longer at the centre of a line between two disk

centres, as was assumed in section 3.2.5. For an n-disk kite, the centre of mass is de�ned

by a position vector rKCK−CM in kite coordinates relative to the centre of the kite, CK.

Additionally, the bridle attachment points are no longer assumed to be attached to the

centre lines of two disks. Instead, their position is independently de�ned by a line of

Figure 3.10 Diagram showing geometry of a disk kite and position vectors used to de�ne locations
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length la, parallel to the kite z-axis. The z- and y-locations for the centre of this line

are de�ned by the point CB, which is de�ned by the position vector rKCK−CB. Before

�nding position vectors between the centre of the bridle points, BP , and the centre of

mass and disk centres, the position vector between BP and the centre of the kite, CK,

must be found:

rKBP−CK = rKBP−CB − rKCK−CB (3.35)

The vector rKCK−CB is part of the de�nition of the kite geometry, and the vector rKBP−CB
can be found using the bridle geometry in a manner similar to that used in equation

3.36:

rKBP−CB =

 cosβ − sinβ 0

sinβ cosβ 0

0 0 1

 ·
 0

−dy
−dz

 (3.36)

Where the angle β is given by equation 3.24, and the distances dy and dz are given by

equation 3.22. The position vector rKBP−CM used to calculate the moment arising from

the mass of the kite can now be found:

rKBP−CM = rKBP−CK + rKCK−CM (3.37)

The position vectors for the disk centres of pressure can also be found:

rKBP−CPi = rKBP−CK + rKCK−CDi + rKCDi−CPi (3.38)

Where rKCDi−CPi is de�ned in equations 3.28 to 3.32. The moments about the centre

of the bridle points can now be found as in equation 3.34, and transformed into line

coordinates as in equation 3.33.

3.3 Use of MATLAB to Investigate Turning Behaviour

To investigate the e�ect of changing kite geometry on kite turning, the calculations

outlined in section 4.2 have been implemented in MATLAB code. Using MATLAB,

variables can be altered and their e�ect on the forces and moments acting on the kite

can be graphed. In addition, equilibrium line and kite angles can be found for a given

con�guration.

3.3.1 Structure of Code to Find Kite Forces and Moments

The main code for calculating the forces and moments acting on a disk kite, as described

in section 4.2, is implemented in a �le called ndisk.m (see Appendix B). This �le requires

12 input variables, which are listed in table 3.1, and calls on �ve sub-functions, which

are listed in table 3.2. Schematics of the function and the sub-functions it calls are

given in �gures 3.11 and 3.12.
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Table 3.1 Required input parameters for ndisk.m

Input Description Symbol

pitch Kite pitch angle θ

roll Kite roll angle ϕ

yaw Kite yaw angle ψ

dihedral n
2 × 1 array containing dihedral angles of disks on positive

x-side of kite

γ

twist n
2 × 1 array containing twist angles of disks on positive

x-side of kite

τ

elevation Elevation angle of line Φ

lbf Length of front bridle lines lf

lbr Length of rear bridle lines lr

DD n
2 × 1 array containing diameters of disks on positive x-side

of kite

∅

P n
2 × 3 array containing locations of disk centres on positive

x-side of kite

rKCK−CDi

PB 2× 3 array containing locations of bridle line attachment

points

rKCK−CB, la

wind Wind velocity V

m Kite mass m

n Number of disks −

Table 3.2 functions called by ndisk.m

Function Description

transformMTX.m Finds matrices to change between global, line, kite and disk

coordinate systems

aeroprops.m Finds Cl, Cd, and centre of pressure for a disk given it's

angle of attack

coplocation.m Finds the location of the centre of pressure for a disk in

kite coordinates

liftvector.m Finds a unit vector in the direction of the lift force for a

disk in kite

coordinates

�ndbpoint.m Finds the location of the centre of bridle points in kite

coordinates
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Figure 3.11 Schematic of ndisk.m
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Figure 3.12 Schematic of sub-functions called by ndisk.m

3.3.2 Static Equilibrium

To �nd the equilibrium position of a kite, two angles must be found: the equilibrium

line elevation angle and the equilibrium kite pitch angle[4]. The equilibrium pitch angle

is found using the built in MATLAB function 'fzero', which �nds a root of a given single

variable function near a given guess value. This function is used to �nd a value of kite

pitch that leads to a zero being returned for the x-component (pitch) of the moments

about the bridle points, as calculated by the 'ndisk.m' function. Once the equilibrium

kite pitch is known, the equilibrium line angle can be calculated by a summation of the

forces acting on the kite � the line is in equilibrium when it is aligned with the vector

sum of all the forces acting on the kite.

Some kite con�gurations may have more than one equilibrium pitch angle. When

comparing di�erent kite con�gurations, it is important that equivalent equilibrium

points are used, otherwise any comparisons made will be invalid. For example, �g-
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ure 3.13 shows the pitch moment of one particular kite as the pitch angle is varied. The

moment crosses zero at three di�erent pitch angles. The aerodynamic properties of the

disks, and the relationship between the kite and line, will di�er between these points,

leading to di�erent turning behaviour.

Additionally, some equilibrium pitch angles may not be statically stable. For ex-

ample, �gure 3.13 shows an example of a kite con�guration that has three equilibrium

pitch angles for the wind speed used. However, the second of these equilibrium points,

at about -32º pitch, is not statically stable, as any perturbation to the pitch angle will

cause a destabilising pitching moment. A perturbation from the �rst and third pitch

angles will lead to a restorative moment � these are the stable equilibrium points. A

schematic of code to �nd the �rst (closest to zero pitch) stable equilibrium point is

shown in �gure 3.14.

Figure 3.13 Chart of pitching moment about the bridle points vs. kite pitch angle, showing an

example of a kite/wind combination with three equilibrium pitch angles
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Figure 3.14 Schematic of code used to �nd the �rst stable equilibrium pitch angle and corresponding

equilibrium line angle for a kite
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Chapter 4

Veri�cation of Mathematical Model

In order to validate the calculations outlined in the previous chapter, both wind tunnel

testing and Computational Fluid Dynamics (CFD) analysis were used. Although CFD

simulation was not initially thought necessary, the results of wind tunnel testing were

unsatisfactory. The initial tests of a rigid kite using the open-circuit wind tunnel to

�nd the yaw moment resulting from a bank angle seem to match results obtained from

calculation. However, obtaining precise readings using the apparatus proved problem-

atic, and the scatter of the results obtained was such that the accuracy of the calculated

predictions could not be veri�ed.

More precise measurements were obtained using disks held by an electronic force

balance in the closed-circuit wind tunnel. However, the accuracy of these results is

questionable, particularly for the case of measurements made for an anhedral kite. Re-

sults for the cases of dihedral to slightly anhedral kites matched those obtained by both

calculation and the previous test rig, while those for a strongly anhedral kite deviated

markedly. The reason for this deviation was not clear, but was likely caused by the

test rig's support members interacting with the �ow behind the disks. To supplement

the results obtained from wind tunnel testing, CFD simulations were performed using

ANSYS CFX. The results of these simulations closely matched the predictions made by

calculation.

4.1 Open-Circuit Wind Tunnel Testing

A rigid model of a kite was constructed of steel to measure the yaw moment resulting

from a roll angle applied to a two-disk kite. This was tested in the open-circuit wind

tunnel with varying dihedral angles. Five identical test runs were performed to minimise

experimental error.

4.1.1 Apparatus

A structure was designed to simulate a rigid two-disk kite with all degrees of freedom

�xed except for yaw angle. The structure, shown in �gure 4.1, held two 240mm diameter
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disks at a centre width of 500mm, and allowed line elevation, kite pitch, dihedral, and

roll angles to be adjusted. The steel bar acting as the kite line was mounted on rolling

bearings to allow the yaw moment to be measured using a spring balance attached to

a lever arm. Since any yaw rotation would a�ect the measured yaw moment, care was

taken to ensure the structure maintained alignment to the original settings. This was

achieved by using a laser level to point at the rear of the test rig.

Figure 4.1 Diagram showing the test rig used for measuring yaw moment in the open circuit wind

tunnel

Obtaining precise measurements with the test rig proved problematic, as the mea-

sured yaw moment was very sensitive to small variations in yaw angle and minor dis-

turbances in the �ow stream. Flex in the test rig also posed a problem, since some

geometry parameters varied as the �ow velocity increased, and �ow disturbances also

caused these parameters to oscillate. The values of the parameters most a�ected by

�ow velocity were indirectly measured by taking photographs of the rig at various angles

while in the �ow stream. Table 4.1 shows the geometry parameters as they were set,

and as measured from photographs.
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Table 4.1 Geometry parameters used for testing in the Open Circuit Wind Tunnel. Values as set

and as measured at full �ow velocity are shown.

Parameter Set (Zero Flow) Measured (8m/s Flow)

Disk diameter 240mm 240mm

Span between disk centres 500mm 500mm

Front bridle length 325mm 325mm

Rear bridle length 266mm 263mm ±4mm
Line elevation angle 81º 80º ±1º
Kite pitch angle 18º 20º ±2º
Kite roll angle 20º 20º ±1º
Kite yaw angle 0º 0º ±1º

Kite dihedral angle -40º�40º -40º�40º

4.1.2 Results

A comparison of the measured yaw moments with calculated yaw moments is shown

in �gure 4.2. The mean of the �ve sets of measured yaw moments was taken, and the

standard error of the mean (SEM) was calculated to quantify the uncertainty caused by

measurement error and �uctuations in the �ow stream. Error bars shown in �gure 4.2

represent 95% con�dence intervals. Since considerable uncertainty existed in some of the

test rig parameters, the method described in the previous chapter was used to calculate

yaw moments for the range of measured values shown in table 4.1. The maximum and

minimum yaw moment magnitudes resulting from calculations with combinations of

these parameters were found, and these are shown dotted in �gure 4.2. These lines

give bounds within which the theoretical model indicates the experimental results are

expected to lie.



40 CHAPTER 4 VERIFICATION OF MATHEMATICAL MODEL

Figure 4.2 Chart showing a comparison of data obtained from the open circuit wind tunnel tests

and calculation

The comparison shown in �gure 4.2 highlights the margin of error present. While

the experimental results do overlap the region of expected yaw moments, the magni-

tude of the uncertainty is very large. A signi�cant variation in behaviour between the

measured and calculated results could be masked by this uncertainty. Additionally, the

measured yaw moments are all near the bottom of the expected region in �gure 4.2. For

these two reasons, this testing seemed inadequate to verify the calculated yaw moments.

The problems encountered with the use of the test rig described in section 4.1.1 arose

due to the sensitivity of the measured yaw moment to variations in geometry. Small

variations in disk angles of attack, dihedral angles, line elevation angle, and kite yaw

angle caused signi�cant variations in the yaw moment. Variations in these parameters

arose both due to the �exibility of the test rig, and the di�culty of accurately setting

the disk pitch and dihedral angles. Increasing the rigidity of the rig by using larger

sections for the connecting members or adding mechanisms to accurately set angles

would have introduced additional errors, as the �ow immediately downstream of the

disks would have been further disturbed. For this reason, this rig was abandoned in

favour of a modi�ed rig designed to interface with an electronic three-axis balance in

the closed-circuit wind tunnel.
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4.2 Closed-Circuit Wind Tunnel Testing

To obtain more precise measurements of yaw moment, the rig used in the previous

section was modi�ed to be attached to a three-axis balance in the closed circuit wind

tunnel. The balance allows forces in two axes and a moment about one axis to be

measured. It was hoped that this would remove the �uctuating �ow conditions and

yaw angles responsible for the scatter present in the results from the open circuit wind

tunnel. However, results were still not completely consistent with predictions, with an

unknown source still leading to discrepancies between calculated and measured yaw

moments for anhedral kites.

4.2.1 Apparatus

In this instance the bar acting as the kite line was �xed rigidly to the three axis balance

such that the moment measured would be equivalent to the yaw moment. The balance

was �xed at an angle to the wind tunnel wall to simulate the line elevation angle, as

shown in �gure 4.3. The supporting members were rearranged to project the disks well

forward of the bar acting as the kite line. This was done to minimise the disturbance

to the �ow over the disks. Moving the disks forward in such a manner results in a

representation of a kite that could not �y, since the entire kite surface is upwind of the

line. However, for the purposes of checking calculations this does not pose a problem.

Figure 4.3 Image showing the test rig used in the closed-circuit wind tunnel set up with with a

positive dihedral angle, looking down wind
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Tests were performed with a variety of di�erent pitch, roll, and dihedral angles, and

with two di�erent disk sizes. For each disk size, two di�erent �ow stream velocities were

tested. These were 12m/s and 13.9m/s for the 120mm disks, and 8.9m/s and 12m/s for

the 240mm disks. These velocities were chosen to minimise vibrations in the test rig.

The values of other parameters used are shown in tables 4.2 and 4.3, both as set and

as measured under maximum �ow velocity.

Table 4.2 Geometry parameters used for testing in the closed-circuit wind tunnel with 120mm disks.

Values as set and as measured at full �ow velocity are shown.

Parameter Set (Zero Flow) Measured (13.9m/s Flow)

Disk diameter 120mm 120mm

Span between disk centres 500mm 500mm

Front bridle length 565mm 565mm

Rear bridle length 452mm 452mm±1mm
Line elevation angle 85.2º 85º ±0.5º
Kite pitch angle 24.8º 25º ±0.5º
Kite roll angle 45º 45º ±0.5º
Kite yaw angle 0º 0º ±0.5º

Kite dihedral angle -30º�30º -30º�30º

Table 4.3 Geometry parameters used for testing in the closed-circuit wind tunnel with 240mm disks.

Values as set and as measured at full �ow velocity are shown.

Parameter Set (Zero Flow) Measured (12m/s Flow)

Disk diameter 240mm 240mm

Span between disk centres 500mm 500mm

Front bridle length 657mm 657mm

Rear bridle length 422mm 422mm±1mm
Line elevation angle 85.2º 85º ±0.5º
Kite pitch angle 34.8º 35º ±0.5º
Kite roll angle 45º 45º ±0.5º
Kite yaw angle 0º 0º ±0.5º

Kite dihedral angle -30º�30º -30º�30º

4.2.2 Results

Data obtained from the three axis balance showed signi�cantly better precision than

that obtained with the spring balance in the open circuit wind tunnel. Repeated runs
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with the same parameters showed a variation in measured yaw moment of less than

±2%. However, �gures 4.4 and 4.5 show that the measured results di�er somewhat

from the calculated yaw moments. Both show a signi�cant deviation for anhedral kites,

while the measurements performed using large disks show a deviation for dihedral kites

as well. The calculated yaw moments are shown as shaded regions, representing the

range of expected yaw moments resulting from uncertainties in the parameters used for

measurement, as shown in tables 4.2 and 4.3.

Figure 4.4 Chart showing a comparison of data obtained from tests in the closed-circuit wind tunnel

and calculation for a disk with diameter=120mm
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Figure 4.5 Chart showing a comparison of data obtained from tests in the closed-circuit wind tunnel

and calculation for a disk with diameter=240mm

Various other combinations of geometry parameters were tried (see appendix C)

with similar results � yaw moments showed a larger variation with dihedral angle than

predicted, especially for anhedral kites. It is likely that this discrepancy is caused by

the test rig support members disturbing the �ow behind the disks to a varying degree as

the disks are rotated to simulate di�erent dihedral angles. This is di�cult to verify, but

is supported by the apparent variation of the error magnitude with disk size. Results

from smaller disks (�gure 4.4) di�er from those predicted by a greater amount than

results from larger disks (�gure 4.5), presumably due to the same support structure

causing a more signi�cant disturbance with the smaller disks due to its relative size.

While there are still discrepancies between measured and predicted yaw moments,

the general similarity of the curves indicates that the calculations are likely correct. The

yaw moment resulting from a roll angle is very sensitive to variations in most parameters,

and any calculation error would likely result in a completely di�erent response. Further

improvements to the test rig were unlikely to signi�cantly reduce the problem of support

member interference, since making the members more slender or further away from the

disks would increase oscillations in the structure. Instead, the results above will be

compared to a CFD simulation of disks in the same arrangement in the next section.
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4.3 CFD Simulation

While both tests in the open and closed circuit wind tunnels indicate that calculated

yaw moments largely match those found for a real kite, discrepancies in the data mean

that the result is not conclusive. To further supplement this experimental data, some

basic CFD simulations were performed for a small number of di�erent dihedral kites.

ANSYS Workbench and CFX were used for geometry meshing and analysis. Geometry

and wind parameters used were chosen to match the 12m/s wind speed case shown in

�gure 4.4. The yaw moment found from these simulations matched those predicted by

calculation with an o�set error of around seven percent. The shape of the curves was

a better match than with the experimental results. The 7% o�set was thought to be

caused by simpli�cations used in the CFD simulation.

Table 4.4 Geometry parameters used for CFD simulation

Parameter Value

Disk diameter 120mm

Span between disk centres 500mm

Front bridle length 565mm

Rear bridle length 452mm

Line elevation angle 85.2º

Kite pitch angle 25.8º

Kite roll angle 45º

Kite yaw angle 0º

Kite dihedral angle -30º�30º

Wind speed 12m/s

4.3.1 Geometry & Meshing

The geometry modelled for the CFD simulations was two �at disks, arranged to match

the con�guration used for 120mm disks in section 4.2. Simulations were performed both

with and without the presence of supporting members behind the disk, to investigate

the assumption that these members were the cause of the discrepancy between the

results obtained in section 4.2 and those calculated as described in Chapter 4. The

domain volume was chosen to match the closed circuit wind tunnel to provide a direct

comparison of results, as shown in �gure 4.6.
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Figure 4.6 Image showing an example of the geometry and mesh used for simulation. This example

includes the support members behind the disks, while other simulations were performed without these.

Meshing was performed using Meshing 12.1, incorporated within the ANSYS Work-

bench software suite. This generates an unstructured mesh. In�ation layers were used

on both the wind tunnel walls and the disk surfaces to better model the boundary layers.

Advanced mesh settings were mostly left as default, with some important exceptions.

Because the geometry contains a large volume of �uid with a small area of interest (i.e.

the disks), it was important to ensure �ne enough detail around the kite to provide

an accurate estimate of yaw moment, while minimising the total number of meshing

elements used. To ensure accurate modelling of the �ow at the edge of the disks, a rule

was set to ensure that the two millimetre thickness of the disks was always at least three

cells across. This prevented the edge of the disk being represented as a sharp point,

rather than the square edge that was used in wind tunnel testing.

Further alterations to the default meshing parameters were found to be unnecessary.

The mesh resulting from the above settings gave a mesh of acceptable quality, with

Jacobian ratios ranging between 1 and 1.86 � a maximum Jacobian of less than 40 is

generally regarded as acceptable [26]. Aspect ratios were also well within acceptable

limits, with a maximum of 26.5. A low aspect ratio is desirable, but values of up to

around 1000 can provide reasonable results [26].

4.3.2 Simulation Setup

Simulation setup was performed using ANSYS CFX-Pre. One normal-speed inlet and

one average static pressure outlet were used. All other boundaries were de�ned as
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smooth, no slip walls. Default solver parameters were used. Mesh adaption was utilised

to re�ne the mesh in areas with large velocity gradients � this was important since the

initial mesh created did not have any controls added to ensure a �ne mesh downstream

of the kite structure. Up to �ve re�nement steps were allowed with a node factor of

two.

4.3.3 Validation

4.3.3.1 Grid Independence

For a CFD simulation to give reliable results, the geometry must be divided into a suf-

�ciently �ne mesh. More complicated �ow patterns require a �ner mesh to accurately

calculate �ow conditions. To determine whether a mesh is adequate to give reliable mea-

surements of some parameter, multiple simulations can be performed with increasing

mesh resolution. The variation of the parameter of interest is monitored, and the mesh

can be considered adequate when additional mesh resolution leads to an insigni�cant

change in the parameter value.

In the case of this simulation, the yaw moment acting on the two disks was the

parameter of interest. Starting with a coarse mesh of around 700,000 elements, mesh

resolution was increased (or element size decreased) and automatic re�nement levels

added until the yaw moment varied less than 5%. For the case of the simulation with-

out disk support members, this occurred for an initial mesh with around 1.4 million

elements, with three re�nement levels increasing the number of elements to around 3

million.

The simulation performed on geometry with disk support members did not reach

grid Independence with initial mesh sizes of around 2.4 million elements and �ve re�ne-

ment levels, leading to a �nal mesh size of over 5 million elements. At this stage the

resources required to run the simulation were becoming excessive. Because the support

members were of small diameter but had a long length, they introduced a large area

of �ow with small scale variations, causing this area to be preferentially treated by

the re�nement algorithm over the wake of the disks. As such, a large number of new

elements were introduced to the mesh, with little improvement in the reliability of the

yaw moments obtained from the results. While this problem could have been remedied

by manually adding �ne areas of mesh in the expected vicinity of the disk wakes, this

was not thought necessary, as explained in section 4.3.4.

4.3.3.2 Turbulence Models

Another variable that can a�ect the reliability of results obtained from CFD is the tur-

bulence model used. For a relatively simple �ow stream such as the one being modelled,

the k-ε or Shear Stress Transport models are usually adequate [26, 27]. To determine if
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the turbulence model used had a signi�cant e�ect on the resulting yaw moment, iden-

tical simulations were performed with both of the aforementioned turbulence models.

The yaw moments found were within 1% of each other, indicating that both models

worked equally well for this case. The simpler, widely used k-ε model was used for the

remainder of the simulations performed.

4.3.4 Results

Using ANSYS CFD-Post, a coordinate frame was added to simulate the line coordinate

system. The resultant yaw moment created from the aerodynamic forces on the disk

faces could then be measured and compared with the results obtained from the closed-

circuit wind tunnel and calculated directly. The results from CFD simulations of the

disks with no support members showed a similar variation of yaw moment with dihedral

angle to that obtained by calculation, as shown in �gure 4.7. The magnitude of all the

yaw moments found from the CFD simulations were slightly (7%) smaller than that

calculated. Some di�erence was expected since the CFD simulation used perfect disks,

whereas the lift and drag coe�cients used for calculation were measured using a disk

with protrusions to attach it to the wind tunnel. Additionally, the CFD simulation

assumed the disk surfaces were perfectly smooth.

Figure 4.7 Chart showing a comparison of yaw moments found using CFD simulation of two disks

with no supporting members and those calculated

The results from the CFD simulations performed with connecting members included

did not closely match either calculated yaw moments or those obtained through exper-

iment, as shown in �gure 4.8. This may be due to a number of reasons. Firstly, only
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representations of the members directly downstream of the disks were modelled � these

were considered to be the members most likely to in�uence the �ow. The other members

not modelled may have had a more signi�cant e�ect on the �ow than was assumed, or

the detail of the members (pivoting clamps etc. were not modelled) may have caused

signi�cant �ow disruptions. Additionally, grid independence was not achieved to such a

convincing degree as it was with the simulation with no support members (see section

4.3.3.1).

Figure 4.8 Chart showing a comparison of yaw moments found using CFD simulation of two disks

with supporting members and those calculated and measured in the closed-circuit wind tunnel

The primary purpose of performing this CFD simulation was to add credibility to

the indications from sections 5.1 and 5.2 that the yaw moment calculations were correct.

The comparison shown in �gure 4.7 largely achieves this, since it shows a very close

similarity of curve shape between yaw moments found through CFD simulation and the

calculation method outlined in Chapter 3, which in turn shows the same curve shape

found from testing in the open circuit wind tunnel (see �gure 4.2). This supports the

notion in section 4.2.2 that the discrepancies found during testing in the closed circuit

wind tunnel at large anhedral angles (see �gures 4.4 and 4.5) are artefacts of the testing

process.

The secondary purpose of performing the CFD simulation, to identify and quantify

the source of error encountered in section 5.2, has not been completely ful�lled. This

would likely require a more in-depth CFD simulation, with more detailed geometry and

a �ner mesh. This was not performed, since it was deemed to be less important than

the main focus of this chapter � verifying the method of calculating yaw moments.
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Chapter 5

Turning Response of a Kite Represented by Two Disks

While a two disk kite does not accurately represent any kite con�guration in use, it

does allow the e�ect of basic kite geometry parameters such as dihedral angle and bridle

lengths to be investigated independently of other factors. For many of the parameters

investigated in this section, calculating a dimensionless turning response was not prac-

tical. The e�ect one parameter has on turning response is often dependent on many

other parameters, some of whose values are interdependent with others. Additionally, a

dimensionless analysis would render the results less accessible. Due to the large number

of parameters involved, a dimensionless analysis of turning response would become very

abstract, and the actual behaviour of a kite would not be immediately apparent.

Determining how di�erent parameters a�ect the turning response of a kite is com-

plicated by the fact that most a�ect the kite's behaviour in two ways. Firstly, most

parameters have a direct a�ect on the turning response of a kite that is held at a given

pitch and line elevation angle, varying the parameter will vary the kite's turning re-

sponse. Secondly, varying each parameter also a�ects the equilibrium pitch and line

elevation angles, which in turn further varies the turning response.

Figure 5.1 shows how varying the dihedral angle changes the turning response of

the kite, with both �xed and varying pitch and elevation angles. Ideally, the e�ect

of varying each parameter on the turning response of a kite would be investigated

in isolation from any other change. However, for most parameters this is not possible.

Restricting the change in equilibrium position caused by modifying a parameter induces

a pitching moment on the kite, which a�ects the yaw moment about the line axis when

the kite is rolled. This introduces an arti�cial change in turning response that would

not occur in a real kite. Similarly, there are no parameters which can be modi�ed to

adjust the equilibrium position without a�ecting the turning response.
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Figure 5.1 Chart showing the e�ect of dihedral angle on the yaw moment resulting from a roll angle,

with and without the e�ect of changing equilibrium angles. For the case of �xed equilibrium angles,

the pitch and line elevation angles are held at the equilibrium point for dihedral=0°.

The most meaningful method of calculating the change in turning response due to

the variation of some parameter is to adjust the kite pitch and line elevation angles

to maintain equilibrium. This represents the e�ect the adjustment would have on

a real kite. When varying most parameters, the changes in equilibrium angles are

small, and their e�ects on the turning response of a much smaller magnitude than the

direct e�ects. Other parameters have little direct e�ect on turning response, but a

large e�ect on equilibrium angles � for example the bridle lengths and kite mass. In

cases where varying a parameter results in both signi�cant direct changes to turning

response and equilibrium angles, it is necessary to investigate both the equilibrium and

non equilibrium cases.

5.1 Turning Response for a Simpli�ed Zero Mass Kite

Initially, the special case of a kite with zero-mass where the bridle geometry is tuned

such that the kite can �y with its y-axis aligned with the kite lines is considered. This

is a special case since it leads to the roll axis, or line z-axis, aligning with the kite z-axis.

This alignment means that when a roll angle is applied, the kite only rotates about its

own z-axis, rather than about both its z- and y-axes. To achieve this condition, the kite

parameters listed in table 5.1 are used throughout this section unless otherwise stated.

This kite is in equilibrium with the kite z-axis aligned with the line z-axis only at the



5.1 TURNING RESPONSE FOR A SIMPLIFIED ZERO MASS KITE 53

Table 5.1 Table of kite parameters used for the baseline kite in this section

Parameter Standard Value

Disk diameter 240mm

Kite span (between Disk centres) 500mm

Front bridle length 200mm

Rear bridle length 250.9mm

Kite pitch angle -14.7º

Line elevation angle 75.3º

Dihedral/anhedral angle 20º

Roll angle 0º or 5º

Wind velocity 10m/s

values stated � where one or more parameters are varied, the rear bridle length and kite

pitch and line elevation angles are modi�ed to maintain equilibrium.

Many kite variables cannot be varied for the simpli�ed kite used in this section

because they are controlled by the simplifying assumption. These variables are rear

bridle length, kite pitch, line elevation � these are all �ne tuned to allow the kite to �y

perpendicular to the line � and the mass has been assumed to be zero. The e�ects of

these parameters must be investigated using a more general de�nition of a kite in later

sections. The remaining parameters that can be varied in this simpli�ed case will be

investigated in the following subsections.

5.1.1 Turning Response with Varying Dihedral Angle

For a two-disk kite, the dihedral angle is the main variable that can be used to modify

turning behaviour. While other variables, in particular bridle geometry, can be used

to modify the turning response, they modify the equilibrium pitch and line elevation

angles to a large extent. As such, bridle geometry would usually be tuned to give a

good lift/drag ratio, rather than good turning response.

Since varying the dihedral angle also varies the equilibrium values for the kite pitch

and line elevation angles, the pitch and elevation angles used on the base kite described

above cannot be used for a kite with a dihedral angle of other than -20º or 20º. If new

pitch and elevation equilibrium angles are found without any other modi�cation, the

kite and line will no longer be perpendicular. To enable equilibrium angles to be found

that put the kite and line perpendicular to each other, the length of the rear bridle

lines can be adjusted. This results in the kite �ying with equal disk angles of attack for

each dihedral angle with the kite perpendicular to the line. The variation of the Yaw

moment with dihedral angle resulting from a roll angle of 5° for this kite is shown in

Figure 5.2.
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Figure 5.2 Chart showing the variation of yaw moment with dihedral angle for a zero-mass kite

�ying with kite perpendicular to lines

To explain the shape of the lines shown in �gure 5.2, it is useful to consider the

forces acting on the kite in line coordinates. For the kite system to be in equilibrium,

the resultant force vector obtained by summing the aerodynamic forces acting on the

disks (and generally the gravity force, which is zero in this case) must be co-linear to

the kite line(s). This implies that when the zero-mass kite is �ying at equilibrium, with

no roll or yaw angles, the line and centre of pressure are aligned, as shown in �gure 5.3.

Because of this alignment of the position and direction of the aerodynamic force with

the line and its corresponding coordinate system, there are no out of balance moments

arising from the con�guration.

Figure 5.3 Two-dimensional diagram of a zero mass kite in an equilibrium condition with the kite

perpendicular to the line
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When a roll angle is applied to a kite with an anhedral or dihedral angle, the

angles of attack for the two disks vary such that they are no longer equal, as shown in

�gure 5.4. This causes the direction, magnitude and point of action for their respective

aerodynamic forces to change. The exact nature of these changes depends on the

angles involved, but for the range of angles of attack where Cl, Cd and COP locations

vary reasonably linearly some generalisations can be made. Firstly, when the angle of

attack of a disk is increased, the magnitude of both the lift and drag forces increases.

Secondly, the lift and drag forces vary at di�erent rates (i.e. the lift to drag ratio

changes), changing the angle of the resultant total aerodynamic force. Additionally,

the location of the centre of pressure moves back towards the centre of the disk. These

changes will now be examined in detail.

Figure 5.4 Diagram showing how a roll angle a�ects the angles of attack for each disk of a two-disk

kite

For the special case being considered, the disk angles of attack resulting from a

�ve degree roll angle are shown in �gure 5.5. The chart shows that the disk on the

positive x-side of the kite (referred to as disk number one) has an angle of attack equal

to the kite pitch when the kite has a dihedral angle equal to the negative of the induced

roll angle. This is as expected, since the kite has been rolled about an axis parallel to

the kite z-axis. The chart also shows that rolling a kite with no dihedral angle does

not result in di�erent angles of attack for the two disks � both angles of attack have

decreased.
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Figure 5.5 Chart showing the variation of disk angles of attack with dihedral angle for a two disk

kite with an initial angle of attack of 13.3º and a roll angle of 5º

The variation of disk angles of attack with roll angle and dihedral angle for the kite

in question is shown in �gure 5.6. It shows that for a given dihedral angle, increasing

the roll angle of a kite increases the di�erence in disk angles of attack roughly linearly.

The chart also con�rms that rolling this simpli�ed kite with no dihedral angle does not

result in a di�erence in disk angles of attack � both disk angles of attack decrease by

the same amount as the roll angle is increased.

Figure 5.6 Chart showing the variation of disk angles of attack with varying roll and dihedral angles

for a two disk kite with an initial angle of attack of 13.3º
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The changing angles of attack cause the magnitude, direction, and point of action of

the aerodynamic forces to change. Figure 5.7 shows that over the small range of angles

of attack caused by a 5 º roll angle (between about ten and �fteen degrees for this kite),

the force coe�cient (combination of lift and drag coe�cients) and centre of pressure

location vary approximately linearly. The force angle, de�ned as the angle between the

chord line and the aerodynamic force, �rst crosses 90º at the angle of attack of the

disks before the kite is rolled, at 13.3º � this is the condition necessary for the kite to

�y perpendicular to the line, as was required for this simpli�ed case. Over the range of

angles of attack of ten to �fteen degrees experienced by this kite when rolled up to ten

degrees, the resultant force angle increases with angle of attack (or angles forward with

respect to the disk). As such, when a roll angle is applied, the force angle of one disk

increases while the force angle of the other disk decreases due to their corresponding

changes in angle of attack.

Figure 5.7 Chart showing the variation of disk aerodynamic properties with angle of attack

To determine the e�ect that the changing aerodynamic forces have on the out of

balance moments acting on the kite structure, a kite with a positive dihedral angle will

be considered. If a positive roll angle is applied, the angle of attack of disk one (positive

x-side of the kite) decreases, while the angle of attack of disk two increases (the reverse

of this applies for a kite with a negative dihedral angle). In isolation, the change in the

magnitudes of the aerodynamic forces this leads to does not a�ect the yaw moment.

However, the change in the angles and points of action for the forces leads to an out of

balance moment about the yaw axis.

The yaw moment can be split into two components. The �rst of these arises from

a force in the X-direction acting at a distance in the Z-direction from the yaw axis (in

line coordinates). The second arises from a force in the Z direction acting at a distance
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in the X-direction from the yaw axis. The force and distance components for a kite

with a positive dihedral and roll angle are shown in �gure 5.8, and the yaw moment

components resulting from these are shown in �gure 5.9.

Figure 5.8 Diagram showing components of the disk aerodynamic forces a�ecting yaw moment, and

their locations, viewed from below the kite looking up the lines

Figure 5.9 Chart showing the components of the yaw moment acting on a zero mass kite arising

from forces in the x- and z-directions in line coordinates with varying dihedral angle

The yaw moment caused by the force in the line x-direction is always in the negative

(anti-clockwise, when looking in the Y-direction as in �gure 5.8) direction for a positive

roll angle, and the magnitude of the moment increases with increasing dihedral or
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anhedral angle. This is caused by the centres of pressure moving with the changing disk

angles of attack � for a positive roll applied to a dihedral kite, the centre of pressure

of the disk on the positive X-side of the kite moves forward, while that of the disk on

the negative X-side of the kite moves rearwards. This, combined with the forces in the

X-direction resulting from the dihedral angle causes a yaw moment.

The yaw moment caused by the force in the Z-direction increases with increasing

dihedral angle, and passes through zero when there is no dihedral angle. While the

lengths of the moment arms for the forces in the Z-direction do change as the centres

of pressure move, the e�ect of this is very small compared to that of the changing Z-

components of the resultant aerodynamic forces. For this special case of a zero mass

kite, at equilibrium with the kite surface perpendicular to the line, when the kite has

no roll angle the line (or kite, since the coordinate systems are aligned in this case)

Z-component of the aerodynamic forces is zero, as was shown in �gure 5.3. However,

�gure 5.10 shows that the angle between the resultant aerodynamic force and the disk

chord line changes with angle of attack � the angle is 90 degrees at six di�erent angles

of attack. For this case, the equilibrium point being considered is where the disk angle

of attack is about 13.3 degrees. When the angle of attack for each disk is varied by

applying a roll angle to the kite, the Z-component of the aerodynamic force (in the line

coordinate system) becomes non-zero.

Figure 5.10 Chart showing the variation of the angle between the aerodynamic force and the disk

chord line with angle of attack, scaled to highlight the variation at angles of attack greater than 10º

For a positive roll angle applied to a kite with a positive dihedral angle, the angle

of attack for the disk on the positive X-side of the kite decreases, while the angle of

attack for the other disk increases. Figure 5.10 shows that these changes in angles of

attack lead to the resultant aerodynamic force for the positive X disk angling backwards,
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and that of the negative X- disk angling forwards. The resulting negative and positive

Z-force components on the positive X and negative X disks, respectively, result in a

positive yaw moment. The reverse is true for the same kite with a negative roll angle,

or an anhedral kite with a positive roll angle.

5.1.2 E�ect of Bridle Length on Turning Response on a Zero Mass

Kite

In setting parameters to allow a kite to �y at equilibrium with the kite and line z-axes

aligned, the rear bridle line length is adjusted relative to the front bridle line length.

If the front bridle length is varied, a new rear bridle line length can be calculated to

maintain the kite and line alignment condition � the bridle point must retain the same

location in the kite X-direction, but can be moved in the kite y-direction, as shown in

�gure 5.11. Changing the length of the bridles in such a manner does not change the

angle of attack of a kite with no mass, nor does it change the roll axis. As such, it has

no e�ect on the turning response.

Figure 5.11 Diagram showing adjustments possible to bridle geometry while maintaining kite/line

perpendicularity

5.1.3 E�ect of Wind Velocity on Turning Response

For a zero mass kite, wind velocity does not vary the equilibrium kite pitch or line

equilibrium angles, since disk aerodynamic properties are assumed to be independent

of �ow velocity. However, the magnitudes of the aerodynamic forces are a�ected. This

causes a change in the yaw moment caused by a bank angle. Figure 5.12 shows that

the yaw moment caused by a roll angle increases in magnitude with wind velocity.
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Figure 5.12 Chart showing the variation of yaw moment resulting from a 5º roll with wind velocity

for an anhedral and dihedral kite

While the aerodynamic forces increase in magnitude with the square of the wind

velocity equally for both anhedral and dihedral cases, the yaw moment does not. This

is because the X-force component of the yaw moment always acts in the same direction,

as shown in section 5.13. As such, it adds to the yaw moment of a kite with a negative

dihedral angle (anhedral kite) and subtracts from that of a kite with a positive dihedral

angle. These components all increase in magnitude with increasing wind velocity, but

remain in proportion to each other, as shown in �gure 5.13.

Figure 5.13 Chart showing the components of yaw moment caused by x- and z-components of disk

aerodynamic forces for an anhedral and dihedral kite
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5.1.4 E�ect of Kite Width on Turning Response

Varying the width of a kite, de�ned as the distance between the centres of the two disks,

has no e�ect on the equilibrium kite pitch or line elevation angles, nor does it vary the

changes in disk angles of attack caused by a roll angle. However, modifying the kite

width does change the position vectors for the Z-force components of the aerodynamic

forces acting on the disks. Since the X-component of the force position vectors is in-

creased with increasing width, the yaw moment caused by a roll angle increases linearly

with kite width. The rate of increase in yaw moment with kite width is the same for

a dihedral and anhedral kite. However, the magnitudes are di�erent due to the yaw

moment caused by the X-component of the aerodynamic force, which is una�ected by

kite width.

Figure 5.14 Chart showing the variation of yaw moment resulting from a 5º roll with the width

between disk centres for an anhedral and dihedral kite
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5.2 Turning Response of a General Two-Disk Kite

The previous section utilised a simpli�ed kite model to demonstrate the e�ects (or lack

thereof) of some kite parameters on kite turning response. Other parameters cannot

be modi�ed within the restrictions of the simpli�ed kite, and will be investigated in

this section. The e�ect of the variation of bridle geometry and wind velocity will also

be revisited. The investigation of the e�ects of varying bridle geometry in the previous

section was restricted to the variation of the bridle point location in the kite y-direction

only, while the wind velocity has a signi�cantly di�erent e�ect on turning response of

a kite with mass. Table 5.2 shows the parameter values used for kite models in this

section unless otherwise stated.

Table 5.2 Table of kite parameters used for the baseline kite in this section

Parameter Standard Value

Disk diameter 240mm

Kite span (between disk centres) 500mm

Front bridle length 200mm

Rear bridle length 250mm

Kite pitch angle Equilibrium

Line elevation angle Equilibrium

Dihedral angle 20º

Roll angle 0º or 5º

Wind velocity 10m/s

Kite mass 0 or 0.1kg

5.2.1 Turning Response with Varying Bridle Geometry

The e�ect of varying both front and rear bridle line lengths simultaneously so as to

maintain the position of the bridle point in the kite y-direction has already been covered,

and was found to have no e�ect on the turning response. This section examines the

e�ect of varying the rear bridle line length while holding the front line length constant,

as shown in �gure 5.15. The kite investigated in the previous section had its bridle line

lengths tuned to allow it to �y at equilibrium with the kite and line coordinate systems

aligned. At equilibrium, the aerodynamic force of a zero-mass kite must align with the

bridle point and line, as shown in section 5.15. This leads to the line and kite no longer

being perpendicular to each other in cases where the force angle is not 90 degrees. In

this case, the kite no longer rolls about its own Z-axis � rather, it rolls around the line

Z-axis, as explained in section 2.3.2. The yaw axis is also modi�ed, since it is aligned

with the line Y-axis.
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Figure 5.15 Diagram showing the equilibrium condition for a general zero-mass kite

Changing the length of the rear bridle line a�ects the �ight of a kite in two ways.

Firstly, it alters the equilibrium pitch angle of the kite, since the line on which the

aerodynamic force acts on must pass through the bridle point (for a zero mass kite).

This change in pitch angle also causes a change in equilibrium line elevation angle since

it results in a change in the aerodynamic force � the line assumes the same orientation

as the total force acting on the kite at equilibrium. The variation of both equilibrium

kite pitch and line elevation with rear bridle length is shown in �gure 5.16.

Figure 5.16 Charts showing the variation of equilibrium kite pitch and line elevation angles with

rear bridle line length for a zero-mass kite

The e�ect that the changes in kite pitch and line elevation angles caused by varying

bridle geometry have on turning performance cannot be investigated independently. If
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either parameter is held constant, yaw moments are created that would never occur in

a real kite, making the results meaningless. As such, an exact analysis of the factors

causing the yaw moment as was performed in the previous sections is impractical.

However, the causes of changes to the yaw moment and their relative signi�cance can

be determined.

Figure 5.17 shows that as the rear bridle length is modi�ed, the yaw moment

resulting from a roll angle changes in a more complicated manner than the cases dealt

with previously. There are two points on the chart where the variation of the yaw

moment changes abruptly. These points correspond to values of rear bridle length where

the equilibrium kite pitch and line elevation angles change rapidly, as shown in �gure

5.16. The rapid variation of equilibrium behaviour at these points means that such a

kite would be very unstable in �ight � small variations in the angle of the apparent

wind would cause large �uctuations in kite position and turning behaviour.

Figure 5.17 Chart showing the variation of yaw moment resulting from a 5º roll with varying rear

bridle line length

When the yaw moment is split into components caused by X- and Z-force compo-

nents, the reason for the erratic changes in turning behaviour becomes clear. The yaw

moment resulting from the X-force is always negative for a positive roll, as explained

in section 5.1.1. However, the component resulting from the Z-force varies signi�cantly

to both sides of zero, and often has a magnitude much greater than the X-force com-

ponent. This variation is due to the change in the force angle � the angle the resultant

aerodynamic force makes with the disk surface � as the disk angle of attack changes, as

explained in section 5.1.1 and Figure 5.8.
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Figure 5.18 Chart showing the variation of the X- and Z-force components of the yaw moment

resulting from a 5º roll with varying rear bridle length

The force angle only changes very slightly with the small changes in disk angle of

attack caused by rolling the kite. However, the lever arm length for the Z-Force is much

larger than that for the X-force, resulting in a signi�cant yaw moment. Because such

small changes in force angle have such a great e�ect on yaw moment, turning response is

very sensitive to variations in disk geometry (�atness, thickness etc.). Figure 5.10 shows

that with angles of attack greater than around 15º, the force angle varies a few degrees

above and below 90º in a seemingly erratic manner. Subtle di�erences in disks will

cause the exact variation in this region to di�er, thereby causing signi�cantly di�erent

turning behaviour.

Since stability of equilibrium and turning behaviour is important when designing a

kite, bridle lengths need to be chosen to give equilibrium positions where the turning

behaviour is not sensitive to slight changes in parameters that occur in normal �ight.

In the case of the kite examined here, the turning behaviour and equilibrium angles are

well behaved with the bridle lines tuned to give the highest elevation angle (or maximum

lift to drag ratio). This elevation angle is about 76º for this kite, as indicated in �gure

5.16. This is in part due to the fact that the kite and line are close to perpendicular

at this point, as well as the variation of the force angle being more consistent at disk

angles of attack below around 15º (see �gure 5.10).



5.2 TURNING RESPONSE OF A GENERAL TWO-DISK KITE 67

5.2.2 Turning Response with Varying Mass and Wind Velocity

To this point, all kites used for analysis have been assumed mass-less. As such, the

aerodynamic forces acting on the disks have been taken to be the only forces acting

on the kite system. Adding mass to the kite alters the equilibrium kite pitch and line

elevation angles. Since kites are usually quite lightweight, the magnitude of this change

is small, but is nonetheless signi�cant especially for heavier kites or where the wind

velocity is low. For a kite with mass, it is useful to investigate the e�ect of varying

wind speed and kite mass together using a dimensionless analysis, since an increase in

mass or a decrease in wind velocity are equivalent.

Figure 5.19 shows the aerodynamic and gravity forces acting on a kite. For a two-

disk kite, the centre of mass is aligned with the mid-point of the chord, while the centre

of pressure is always forward of this point � it approaches the mid-point of the chord

as the angle of attack approaches 90º. To maintain equilibrium, the aerodynamic force

must act behind the bridle point to o�set the moment created by the gravity force.

For this to happen, the magnitude of the kite pitch increases, resulting in the centre of

pressure moving rearwards and the magnitude of the aerodynamic force increasing.

Figure 5.19 Diagram showing forces acting on a kite with mass

The line elevation angle is also changed, since it is aligned with the resultant of the

aerodynamic and gravity forces. The magnitude of the change in line elevation angle

is larger than the change in kite pitch, as shown in �gure 5.20. Small changes in kite

pitch o�set the moment created by the gravity force, since the change causes both an
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increase in magnitude and location of the aerodynamic force. However, the change in

the direction of the resultant force directly alters the line elevation angle.

Figure 5.20 Chart showing the variation of kite pitch and line elevation equilibrium angles with kite

mass and wind velocity

The changes in equilibrium kite pitch and line elevation angles cause a change

in turning behaviour, as shown in Figure 5.21. As was the case with varying bridle

geometry, the e�ects on the turning response due to kite pitch and line elevation angles

cannot be investigated separately, since holding either constant would induce additional

yaw moments.

Figure 5.21 Chart showing the variation of the yaw moment resulting from a 5º roll applied to a

kite with varying kite mass
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Figure 5.22 shows the dimensionless turning response for a dihedral kite from �g-

ure 5.21 split into components arising from X- and Z-forces. As with varying bridle

geometry, the X- force component of the yaw is small and always negative, while the

Z-force component varies signi�cantly to both sides of zero. As described in the previ-

ous section, this is caused by the variation of the angle the aerodynamic forces make to

the disks, which vary with angle of attack.

Figure 5.22 Chart showing the variation of the yaw moment resulting from a 5º roll split into X-

and Z-force components with varying kite mass

As with the bridle lengths, mass is not a parameter that would normally be used

to vary turning response. Rather, a kite is usually constructed to be as light as possible

to enable it to perform in light winds. Additionally, it does not directly a�ect turning

response, only indirectly through changing the kite pitch and line elevation equilibrium

angles. However, the change in turning response due to wind velocity is an important

factor to consider when designing a kite. Figure 5.22 shows that a kite constructed with

the geometry used in this section can turn in di�erent directions for a given roll angle,

depending on the wind speed. Consequently, this may not be a suitable kite for general

use, depending on the exact kite area and mass and the expected range of wind speeds.

5.2.3 Turning Response with Varying Dihedral Angle for a Kite with

Mass

As was shown in the previous section, the addition of mass to a kite has a signi�cant

e�ect on turning response. This is primarily due to the gravity force acting at a di�erent

position to the resultant aerodynamic force. This means that the line is no longer

aligned with the aerodynamic force in the Z-direction when at equilibrium, as shown in
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�gure 5.19. Additionally, the mass changes the angle between the line and kite, further

altering turning response.

As was discussed in section 5.1.1, when a kite with a dihedral angle is rolled, the

location of the centre of pressure for each disk moves in opposite directions. For the

mass-less kite, these locations were initially aligned with the line in the Z-direction, and

the roll resulted in a negative Z-location for one disk and a positive Z-location for the

other, as was shown in �gure 5.8. Coupled with the X-component of the aerodynamic

forces, this resulted in a yaw moment of varying magnitude but constant direction for

a roll angle applied to a kite with any dihedral angle � speci�cally, a negative yaw

moment for a positive roll angle and vice-versa (This is only the component of yaw

moment caused by forces in the X-direction)..

A kite with mass has a negative z-location for both aerodynamic forces at equi-

librium. As with the mass-less kite, one of these locations will move forward, and the

other will move backwards when a roll angle is applied. However, for some kite con�g-

urations, both disks may still have negative Z-locations. In this case, the direction of

the resulting component of yaw moment is determined by the relative magnitudes of

the Z-locations and the X-components of the aerodynamic forces, and may be negative

or positive for a given roll angle.

Figure 5.23 shows the components of the yaw moment resulting from a 5º roll

applied to the kite described in table 5.2 with varying dihedral angle. As described

above, the X-force component of the yaw moment is no longer always in the negative

direction for the positive roll angle applied, as was the case for simpli�ed kites with no

mass. For dihedral angles between -20º and 20º, the change in the magnitudes of the

X-Forces outweighs the change in the Z-locations of the aerodynamic forces, leading to

a positive yaw moment. For dihedral angles outside this range, the di�erence in the

location of the aerodynamic forces again becomes more signi�cant.
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Figure 5.23 Chart showing the variation of yaw moment components caused by X- and Z- forces

with dihedral angle for a kite with mass

Figure 5.24 shows the total yaw moment resulting from the components shown in

�gure 5.23. The addition of mass to the kite results in the yaw moment crossing zero at

a negative dihedral angle, rather than at zero dihedral as was the case with a mass-less

kite. This shows that a real kite requires a certain anhedral angle (in this case, at least

6º anhedral) for a roll angle to result in a yaw moment in the correct direction � i.e. a

negative yaw moment for a positive roll angle.

Figure 5.24 Chart showing the variation of yaw moment with dihedral angle for a kite with mass
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5.2.4 E�ect of Other Parameters on Turning Response

Parameters such as disk diameter and kite width also a�ect the turning response of a

disk kite. However, the ways in which these a�ect the yaw moment resulting from a

roll angle are simple and predictable. Increasing the size of the disk simply causes in

increase in the magnitude of the aerodynamic forces in proportion to the increase in

surface area. The yaw moment caused by a given roll angle increases correspondingly.

Increasing the width of the kite (the distance between the centres of the two disks)

increases the lever arm of the Z-force component of the yaw moment. This leads to the

yaw moment varying more as other parameters are varied, since the previous sections

showed that the Z-force component of the yaw moment is more variable than the X-force

component.

5.3 Turning Mechanisms Not Considered Here

While the static model used here provides insight into the mechanisms that can lead

to a yaw movement of a kite when a roll angle is initially applied, there are other

e�ects that can occur and these require a dynamic model to simulate. The �rst of

these is particularly important for kites whose dihedral angles are such that little or

no yaw moment is directly caused by a roll angle. When such a kite is rolled, it will

not immediately yaw, as has been shown. However, the imbalance in the aerodynamic

forces in the X-direction will cause the kite to move sideways. This, in turn, e�ectively

modi�es the direction of the apparent wind as seen by the kite, and leads to unequal

angles of attack between the two disks. As has been shown, this will lead to a yaw

moment.

The second scenario where a static model is inadequate to explain yaw moments

occurs if a roll angle is applied quickly. In this case, the apparent wind direction

experienced by each disk becomes unequal, again leading to a yaw moment. The exact

behaviour this causes cannot be determined by a static model. An indication of the

relative magnitude of the yaw moments caused by a rapidly applied roll rotation was

found by direct manipulation of the apparent wind vectors for each disk. The magnitude

of the yaw moment due to the rotation rate was found to be comparable to that caused

by the �nal roll angle. However, factors such as added mass and the �nite time period

required for a change in apparent wind to a�ect aerodynamic forces mean that this

indication is of little practical use.

Another factor not considered in this static analysis is what happens as the kite

proceeds to yaw under the in�uence of the yaw moment. Clearly, as this happens the

apparent wind direction for each disk changes, further a�ecting the yaw moment acting

on the kite. As with the e�ect of roll rotation rate, this is left for a future dynamic

analysis of the kite system.
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Chapter 6

Summary and Conclusions

6.1 Rotations Axes for a Two-Line Kite

Investigating how a two-line kite turns necessitated �rst de�ning how exactly a kite

can rotate in the sky, as it was realised that previous studies had made simpli�cations

that would modify turning behaviour. De�nitions of pitch, roll, and yaw angles were

proposed that di�er from those of the convention used for aircraft. This new de�nition

changes the de�nition of roll and yaw axes to re�ect how a kite is controlled and how

it is free to move.

The pitch axis for a kite is de�ned by the imaginary line running between the two

points where the lines attach to the bridles. This is the axis about which the kite-bridle

system can pivot in order to reach an equilibrium angle of attack. The kite-bridle

system acts as an inverted pendulum about this axis.

The new roll axis is de�ned as a line running through the centre of the bridle points

aligned perpendicular to two imaginary lines: One running between the two bridle

points (where the kite lines attach to the bridles), and the other running between the

midpoint of the line between the bridle points and the midpoint of an imaginary line

between the two kite line ends (where the kite lines are held at the ground). This

is simply the result of the fact that this is the only axis about which the lines can

in�uence the orientation of the kite, assuming that their length is much greater than

their distance apart from each other at either end. This assumption is valid for any

standard two-line kite arrangement �ying at a good altitude.

The new yaw axis is de�ned by the line running between the middle of the bridle

points and the middle of the points where the kite lines are attached at the ground, as

was used in de�ning the roll axis. The kite is free to rotate about this axis due to any

imbalance of forces and moments.
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6.2 Static Model of a Kite

The static model of a kite outlined in this thesis provides a starting point for an analysis

of kite turning. Flat disks were used to represent a kite to enable aerodynamic forces to

be calculated. While the examples given use two disks to represent a kite's structure,

the method can easily be scaled to any number of disks, provided that they are far

enough apart to prevent a disk interfering with the �ow over a neighbouring disk. The

shape of the kites that can be represented by disks is also somewhat limited by the

restriction that disks cannot be placed in front of or behind each other.

By de�ning rotation matrices that convert vectors between coordinate systems rel-

ative to the ground/wind, lines, kite, and individual disks, the forces acting on each

disk can be calculated with relative ease. Using the rotation matrices, these forces can

be transformed into any coordinate system that is convenient, allowing the out of bal-

ance forces and moments to be found relative to the pitch, roll, and yaw axes that were

de�ned for a two-line kite. This process allows a force and moment balance to be found

for a kite in any given position in the sky.

While the above procedure used to model a static kite can be represented quite

simply, it is nonetheless quite a tedious procedure to calculate out numerically. A series

of programs were written for MATLAB to automate the process. This also allowed equi-

librium conditions for a kite con�guration to be found by trial and error based methods.

This is important, since a static analysis of a kite not initially at an equilibrium condi-

tion (i.e. before any perturbation is applied) does not provide useful information about

turning response � The line elevation and kite pitch angles have a signi�cant in�uence

on how a kite turns.

6.3 Result of Applying a Roll Angle to a Disk Kite

6.3.1 Kite Flying Perpendicular to Lines

When a roll angle is applied to a kite by manipulating the lines, the disk angles of attack

can change so that they are no longer equal. The exact direction and magnitude of this

change depends on the dihedral angle of the kite and the angle between the kite and

lines. If the kite happens to be able to �y at equilibrium perpendicular to the line, the

dihedral angle and the kite pitch angle are the primary parameters in�uencing turning

response.

A kite �ying perpendicular to the lines with no dihedral angle will not yaw in

response to a static roll angle. A kite with a dihedral angle may turn in either direction

for a given roll angle, depending on the initial disk angles of attack, which are set by

the kite pitch angle. For low angles of attack, below about 15º for a disk, the angle

between a plate and the aerodynamic force acting on it, measured from the rear of the
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plate, increases with increasing angle of attack. This angle increases to a maximum of

around 91º for a disk, then decreases again down to about 89º as the angle of attack is

increased to about 25º. This angle crosses the 90º mark three more times as the angle

of attack is further increased, before settling on 90º when the plate is perpendicular to

the �ow stream (see �gure 5.10).

If the initial angle of attack is such that an increase in angle of attack causes an

increase in the angle between the force and plate surface, an anhedral (i.e. negative

dihedral angle) disk kite will yaw in a counter-clockwise direction, as viewed from the

ground, when a positive roll angle (i.e. a roll resulting from a kite �yer pulling on the

line in their left hand) is applied. A disk kite with a positive dihedral angle will yaw

in the opposite direction for the same roll angle. However, the same kites will respond

in the opposite manner if the initial angle of attack is such that an increase in angle of

attack causes a decrease in the angle between the aerodynamic force and disk surface.

The change in the angle of the aerodynamic force is not the only cause for a kite

to yaw when a roll angle has been applied. When the angle of attack of a disk changes,

the centre of pressure, the point at which the aerodynamic force can be assumed to

act, moves. This movement is always to the rearward of the disk as angle of attack is

increased. When a roll angle is applied to a kite with a nonzero dihedral angle, the disk

on one side of the centre line experience in increase in angle of attack, while the disk on

the other side experiences a decrease � which disk is which depends on whether the kite is

anhedral or dihedral, and what direction the roll angle is. The corresponding changes in

centres of pressure, combined with the sideways components of the aerodynamic forces

caused by the presence of a dihedral angle, cause a yaw moment. This moment is always

in the negative direction for a positive roll, and vice-versa, since while changing from

an anhedral to dihedral kite changes the directions of the centre of pressure movements

resulting from a roll angle, the directions of the sideways aerodynamic force components

are also reversed.

6.3.2 General Kite

Under most circumstances, a kite will not �y aligned perpendicular to the lines. In

this case, the roll rotation also in�uences the angles of attack for each disk di�erently

irrespective of dihedral angle, since the roll axis is aligned with the lines rather than

the kite. The angle between the kite and line depends on kite and bridle geometry, kite

mass and wind speed � almost every variable. The angle may be less than or greater

than 90º (measured between the line and the kite surface forward of the line), although

only by small amounts in the latter case.

In addition to the aerodynamic forces discussed already, a kite also has a force due to

gravity acting on it. This force causes the kite to require a larger pitch angle to maintain

equilibrium, and decreases the lift to drag ratio resulting in a lower line elevation. As



76 CHAPTER 6 SUMMARY AND CONCLUSIONS

has been discussed, these angles have a signi�cant in�uence on the turning behaviour of

the kite. For a given kite, the relative magnitude of the gravity force compared to the

aerodynamic force dictates how signi�cant the change in pitch angle and line elevation

caused by this gravity force is.

6.4 Observations on Designing a Kite for Proper Turning Response

Although the kites investigated in this thesis are very simple representations of basic,

rigid kites, some observations have been made that could be useful in designing real

kites. These observations could also provide a starting point for further analysis using

the method outlined in this thesis with more than two disks.

Firstly, it is clear that for a kite with only two �at surfaces, the dihedral angle is

the most important parameter for designing for turning performance. Dihedral angle

has the largest e�ect on turning response, as it is the primary factor determining the

changes in angles of attack of the two sides of the kite when a roll angle is applied.

It is also one of the few parameters that have little detrimental e�ect on other �ight

parameters. The analysis presented here shows that some anhedral angle is required for

a kite to turn in the expected direction when a roll angle is applied. The exact amount

of anhedral angle varies with other factors, but is generally between 8º and 20º (an

anhedral angle is a negative dihedral angle).

Secondly, wind velocity can have a signi�cant e�ect on both the direction and mag-

nitude of the yaw moment resulting from a roll angle. Consequently, a poorly designed

kite may turn in opposite directions under di�erent wind conditions for the same roll

angle. This would pose a signi�cant problem if these changes in behaviour occurred at

wind speeds that could be encountered by the kite. This means that the dihedral angle

(and to a lesser extent bridle geometry) must be tuned for turning performance over a

range of expected wind velocities.

Finally, the large dependence of turning response on kite pitch and line elevation

angles means that a kite must maintain a relatively consistent equilibrium position

under changing wind conditions. Otherwise, a small change in wind velocity could

cause a large change in turning behaviour. Additionally, some kites may have multiple

equilibrium positions at a given wind speed. This is not desirable, since the kite may

respond di�erently to control inputs for each of these positions.
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Chapter 7

Future Work

The calculations outlined in Chapters 2 and 3 can easily be used to model more com-

plicated kites by introducing additional disks. The main complication arising from this

is the large number of interacting geometry parameters that such a kite has, since each

pair of disks has dihedral and twist angles that can be varied independently, as well as

their relative position in the kite structure. This will make presenting the results in

a meaningful way challenging. One possible method of producing meaningful results

would be to concentrate on con�gurations similar to existing kites and make incremental

changes to their geometry.

For a complete understanding of the behaviour of two-lined kites, a dynamic sim-

ulation may be required to show what happens when a yaw rotation occurs under the

in�uence of the yaw moment, and the e�ects of di�erent rates of application for control

inputs, as well as investigating the dynamic stability of the system. Such a simulation

could be performed for disk kites using the work in this thesis, which only �nds the yaw

moment, as a starting point.

Performing a dynamic simulation of a disk kite would incur a number of added

complexities over the static simulation presented in this thesis. Firstly, the line and

kite coordinate systems can no longer be assumed to be at rest with respect to the

global coordinate system. The motion of these coordinate systems would need to be

taken into account when calculating the apparent wind vector, which is used to �nd the

disk angles of attack and aerodynamic force magnitudes.

Secondly, the aerodynamic properties of the disks cannot be assumed to act the

same as they do for a static analysis. Since kites are very light, the mass of air that

must be accelerated around an object as it moves (known as added mass) must be

included in any calculations. Additionally, the aerodynamic forces likely cannot be

assumed to change at the same instant as a change in the apparent wind, which may

be important when modelling the e�ect of a quickly applied roll angle.

It will be apparent that gaining a full understanding of how kites turn is a signi�cant

task, and this thesis is a �rst step towards this goal.
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Appendix A

Example Calculation of Yaw Moment

A.1 Example Case

This section has been added to aid those not familiar with vector and matrix notation.

The calculations presented in Chapters 2 and 3 will be brie�y run through for the kite

described below.

Table A.1 Parameters used for example calculation

Parameter Symbol Value

Disk diameter ∅ 0.24m

Wind velocity V 10m/s

Line azimuth angle Θ 180º or πradians

Line elevation angle Φ 75º or 1.31 radians

Kite pitch angle θ 15º or 0.262 radians

Kite roll angle ϕ 10º or 0.175 radians

Kite yaw angle ψ 2º or 0.035 radians

Kite dihedral angle γ -25º or -0.436 radians

Kite mass m 0.1kg

Distance between bridle attachment points la 0.24m

Front bridle length lf 0.2m

Rear bridle length lr 0.23m

Kite span s 0.5m

A.2 Rotation Matrices

A.2.1 Rotation Matrix for the Line Coordinate System

The rotation matrices for the line elevation and azimuth angles are given by equations

2.6 and 2.7:
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Razimuth =

 cos (π-Θ) 0 sin (π-Θ)

0 1 0

− sin (π-Θ) 0 cos (π-Θ)



Relevation =

 1 0 0

0 cos
(
π
2 − Φ

)
− sin

(
π
2 − Φ

)
0 sin

(
π
2 − Φ

)
cos
(
π
2 − Φ

)


The rotation matrices can then be calculated using the angles in radians given in table

A.1:

Razimuth =

 cos (0) 0 sin (0)

0 1 0

− sin (0) 0 cos (0)



=

 1 0 0

0 1 0

0 0 1



Relevation =

 1 0 0

0 cos (0.261) − sin (0.261)

0 sin (0.261) cos (0.261)



=

 1 0 0

0 0.966 −0.258

0 0.258 0.966


Note that the rotation matrix for the azimuth angle is the 3x3 identity matrix, since

no rotation is required due to the azimuth angle being 180º.

The rotation matrix to change a vector de�ned in the global (wind-ground based)

coordinate system into its equivalent in the line coordinate system can now be found:

Rline =Relevation ×Razimuth

=

 1 0 0

0 0.966 −0.258

0 0.258 0.966

×
 1 0 0

0 1 0

0 0 1



=

 1 0 0

0 0.966 −0.258

0 0.258 0.966





A.2 ROTATION MATRICES 85

A.2.2 Rotation Matrix for the Kite Coordinate System

The rotation matrix for the pitch rotation is given by equation 2.9:

RPitch =

 1 0 0

0 cos (−θ) − sin (−θ)
0 sin (−θ) cos (−θ)


Using the value for pitch given in table A.1 in radians:

RPitch =

 1 0 0

0 cos (−0.262) − sin (−0.262)

0 sin (−0.262) cos (−0.262)



=

 1 0 0

0 0.966 0.259

0 −0.259 0.966


Equation 2.10 �nds a vector de�ning the roll axis, which is the line Z-axis expressed

in kite coordinates. At this stage only a pitch angle has been applied, so the kite rotation

matrix is simply the pitch rotation matrix RPitch. Since line and kite coordinates are

de�ned relative to the global coordinate system, the line Z-axis must �rst be transformed

into its equivalent in global coordinates by applying the inverse of the line rotation

matrix, then transformed into kite coordinates:

uroll =RPitch ·R−1line ·

 0

0

1



=

 1 0 0

0 0.966 0.259

0 −0.259 0.966

 ·
 1 0 0

0 0.966 −0.258

0 0.258 0.966


−1

·

 0

0

1



=

 1 0 0

0 0.966 0.259

0 −0.259 0.966

 ·
 1 0 0

0 0.966 0.258

0 −0.258 0.966

 ·
 0

0

1



=

 1 0 0

0 0.966 0.259

0 −0.259 0.966

 ·
 0

0.258

0.966



=

 0

0.5

0.867


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Using this rotation axis, equation 2.11 uses Rodrigue's rotation formula to �nd the

roll rotation matrix:

Rroll =I + ũroll sin (−ϕ) + ũ2roll (1− cos (−ϕ))

Which �rst requires the cross product matrix of uroll, ũrollto be found:

ũroll =

 0 −uz uy

uz 0 −ux
−uy ux 0



=

 0 −0.867 0.5

0.867 0 0

−0.5 0 0


So the rotation matrix is:

Rroll =I + ũroll sin (−ϕ) + ũ2roll (1− cos (−ϕ))

=

 1 0 0

0 1 0

0 0 1

+

 0 −0.867 0.5

0.867 0 0

−0.5 0 0

 · sin (−0.175) + . . .

 0 −0.867 0.5

0.867 0 0

−0.5 0 0


2

· (1− cos (−0.175))

=

 1 0 0

0 1 0

0 0 1

+

 0 0.151 −0.087

−0.151 0 0

0.087 0 0

+

 −1 0 0

0 −0.752 0.434

0 0.434 −0.25

 · 0.0153

=

 1 0 0

0 1 0

0 0 1

+

 0 0.151 −0.087

−0.151 0 0

0.087 0 0

+

 −0.0153 0 0

0 −0.0115 0.0066

0 0.0066 −0.0038



=

 0.985 0.151 −0.087

−0.151 0.989 0.007

0.087 0.007 0.996



As with the roll rotation, the yaw rotation requires a rotation axis to be found

and Rodrigue's rotation formula to be used to �nd the rotation matrix. Equation 2.12

�nds a vector representing the yaw axis, which is de�ned as the line Y-axis expressed

in kite coordinates. This is found by �rst �nding the line Y-axis in global coordinates

by applying the inverse of the line rotation matrix, then applying the roll and pitch
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rotations found above:

uyaw =Rroll ·RPitch ·R−1line ·

 0

1

0



=

 0.985 0.151 −0.087

−0.151 0.989 0.007

0.087 0.007 0.996

 ·
 1 0 0

0 0.966 0.259

0 −0.259 0.966

 · . . .
 1 0 0

0 0.966 −0.258

0 0.258 0.966


−1

·

 0

1

0



=

 0.985 0.151 −0.087

−0.151 0.989 0.007

0.087 0.007 0.996

 ·
 1 0 0

0 0.966 0.259

0 −0.259 0.966

 · . . .
 1 0 0

0 0.966 0.258

0 −0.258 0.966

 ·
 0

1

0



=

 0.985 0.151 −0.087

−0.151 0.989 0.007

0.087 0.007 0.996

 ·
 1 0 0

0 0.966 0.259

0 −0.259 0.966

 ·
 0

0.966

−0.258



=

 0.985 0.151 −0.087

−0.151 0.989 0.007

0.087 0.007 0.996

 ·
 0

0.867

−0.5



=

 0.174

0.854

−0.495


The cross product matrix of this vector must be found for use in Rodrigue's rotation

formula:

ũyaw =

 0 −uz uy

uz 0 −ux
−uy ux 0



=

 0 0.495 0.854

−0.495 0 −0.174

−0.854 0.174 0


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The rotation matrix for the yaw rotation can now be determined:

Ryaw =I + ũyaw sin (−ψ) + ũ2yaw (1− cos (−ψ))

=

 1 0 0

0 1 0

0 0 1

+

 0 0.495 0.854

−0.495 0 −0.174

−0.854 0.174 0

 · sin (−0.035) + . . .

 0 0.495 0.854

−0.495 0 −0.174

−0.854 0.174 0


2

· (1− cos (−0.035))

=

 1 0 0

0 1 0

0 0 1

+

 0 −0.017 −0.03

0.017 0 0.006

0.03 −0.006 0

+ . . .

 −0.974 0.149 −0.086

0.149 −0.275 −0.423

−0.086 −0.423 −0.76

 · 6× 10−4

=

 0.999 −0.017 −0.03

0.017 1 0.006

0.03 −0.06 1


Now that all three of the rotations used to de�ne the position of the kite have been

found, the rotation matrix to change a vector given in the global coordinate system into

its equivalent in the kite coordinate system can be found:

Rkite =Ryaw ·Rroll ·Rpitch

=

 0.999 −0.017 −0.03

0.017 1 0.006

0.03 −0.06 1

 ·
 0.985 0.151 −0.087

−0.151 0.989 0.007

0.087 0.007 0.996

 ·
 1 0 0

0 0.966 0.259

0 −0.259 0.966



=

 0.999 −0.017 −0.03

0.017 1 0.006

0.03 −0.06 1

 ·
 0.985 0.168 −0.045

−0.151 0.954 0.263

0.087 −0.251 0.964



=

 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961



A.2.3 Rotation Matrix for the Disk Coordinate system

For this example case, no twist angle will be applied, therefore the disk coordinate

system di�ers from the kite coordinate system by one rotation representing the dihedral

angle, given by equation 3.3:
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RDihedral(i) =

 cos
(
−1i · γ

)
− sin

(
−1i · γ

)
0

sin
(
−1i · γ

)
cos
(
−1i · γ

)
0

0 0 1


The rotation matrix for the disk on the positive X-side of the coordinate system, disk

one, is:

RDihedral(1) =

 cos
(
−0.436 ·

(
−11

))
− sin

(
−0.436 ·

(
−11

))
0

sin
(
−0.436 ·

(
−11

))
cos
(
−0.436 ·

(
−11

))
0

0 0 1



=

 cos (0.436) − sin (0.436) 0

sin (0.436) cos (0.436) 0

0 0 1



=

 0.906 −0.422 0

0.422 0.906 0

0 0 1


And the rotation matrix for the disk on the negative X-side of the kite coordinate

system, disk two, is:

RDihedral(2) =

 cos
(
−0.436 ·

(
−12

))
− sin

(
−0.436 ·

(
−12

))
0

sin
(
−0.436 ·

(
−12

))
cos
(
−0.436 ·

(
−12

))
0

0 0 1



=

 cos (−0.436) − sin (−0.436) 0

sin (−0.436) cos (−0.436) 0

0 0 1



=

 0.906 0.422 0

−0.422 0.906 0

0 0 1


The rotation matrices to change a vector de�ned in the global coordinate system to its

equivalents in the disk coordinate systems are given by equation 3.5:

RDisk(i) = RTwist(i) ·RDihedral(i) ·RKite
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Since there are no twist angles for this kite, the disk rotation matrices are:

RDisk(1) =RDihedral(1) ·RKite

=

 0.906 −0.422 0

0.422 0.906 0

0 0 1

 ·
 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961



=

 0.948 −0.259 −0.184

0.295 0.932 0.210

0.117 −0.252 0.961


RDisk(2) =RDihedral(2) ·RKite

=

 0.906 0.422 0

−0.422 0.906 0

0 0 1

 ·
 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961



=

 0.835 0.547 0.042

−0.536 0.798 0.276

0.117 −0.252 0.961



A.3 Calculating Forces and Moments

A.3.1 Angle of Attack

Equation 3.7 gives the formula to calculate the angle of attack for each disk:

αi = arcsin

Wi •

 0

1

0




Where:

Wi = RDisk(i) ·

 0

0

1


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For disk one, the wind vector in disk coordinates, W1, is:

W1 =RDisk(1) ·

 0

0

1



=

 0.948 −0.259 −0.184

0.295 0.932 0.210

0.117 −0.252 0.961

 ·
 0

0

1



=

 −0.184

0.210

0.961


And the angle of attack, α1, is:

α1 = arcsin

W1 •

 0

1

0




= arcsin


 −0.184

0.210

0.961

 •
 0

1

0




= arcsin (0.210)

=0.212 radians

=12.15º

Similarly for disk two:

W2 =RDisk(2) ·

 0

0

1



=

 0.835 0.547 0.042

−0.536 0.798 0.276

0.117 −0.252 0.961

 ·
 0

0

1



=

 0.042

0.276

0.961


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α2 = arcsin

W2 •

 0

1

0




= arcsin


 0.042

0.276

0.961

 •
 0

1

0




= arcsin (0.276)

=0.279 radians

=15.99º

A.3.2 Aerodynamic Properties of disks

Using the interpolated data shown in �gures 3.3 and 3.4, the aerodynamic properties

of the disks at the above angles of attack are found to be:

Cl1 =0.505

Cd1 =0.115

COP1 =0.292

Cl2 =0.681

Cd2 =0.185

COP2 =0.316

A.3.3 Lift Force

The magnitude of the lift force acting on each disk is given by equation 3.9:

|L| = ρ ·A · Cl (α) · V 2

2

For disk one, the lift force magnitude is:

|L|1 =
ρ ·
(
π·∅2
4

)
· Cl1 · V 2

2

=
1.2 ·

(
π·0.242

4

)
· 0.505 · 102

2

=1.371N
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And for disk two:

|L|2 =
ρ ·
(
π·∅2
4

)
· Cl2 · V 2

2

=
1.2 ·

(
π·0.242

4

)
· 0.505 · 102

2

=1.849N

Equation 3.11 �nds a vector in the Z-direction of the global coordinate system in

disk coordinates, which is required before the direction of the lift force can be found:

ND = RDisk ·

 0

0

1


For disk one:

ND
1 =RDisk(1) ·

 0

0

1



=

 0.948 −0.259 −0.184

0.295 0.932 0.210

0.117 −0.252 0.961

 ·
 0

0

1



=

 −0.184

0.210

0.961


And for disk two:

ND
2 =RDisk(2) ·

 0

0

1



=

 0.835 0.547 0.042

−0.536 0.798 0.276

0.117 −0.252 0.961

 ·
 0

0

1



=

 0.042

0.276

0.961


The direction that the lift force acts in can now be found in disk coordinates, as given
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in equation 3.12:

−→
LD =

 0

1

0

−

 0

1

0

 •ND

 ·ND

For disk one:

−→
LD1 =

 0

1

0

−

 0

1

0

 •ND
1

 ·ND
1

=

 0

1

0

−

 0

1

0

 •
 −0.184

0.210

0.961


 ·

 −0.184

0.210

0.961



=

 0

1

0

− 0.21 ·

 −0.184

0.210

0.961



=

 0

1

0

−
 −0.039

0.044

0.202



=

 0.039

0.956

−0.202


And for disk two:

−→
LD2 =

 0

1

0

−

 0

1

0

 •ND
2

 ·ND
2

=

 0

1

0

− 0.276 ·

 0.042

0.276

0.961



=

 −0.012

0.924

−0.265


To �nd the vector describing the lift forces acting on each disk, equation 3.13 multiplies

the normalised lift force direction vector (the vectors found above no longer have a

length of 1 since they have been projected onto a plane) by the lift force magnitude:

LD = |L| ·
−→
L∣∣∣−→L ∣∣∣
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For disk one:

LD1 = |L|1 ·
−→
L1∣∣∣−→L1

∣∣∣

=1.371 ·

 0.039

0.956

−0.202


√

0.0392 + 0.9562 + 0.2022

=

 0.055

1.340

−0.283

N
And for disk two:

LD2 = |L|2 ·
−→
L2∣∣∣−→L2

∣∣∣

=1.849 ·

 −0.012

0.924

−0.265


√

0.0122 + 0.9242 + 0.2652

=

 −0.023

1.777

−0.510

N
The lift force vectors will be more useful in later calculations if expressed in kite coor-

dinates, as shown in equation 3.14:

LK =RKite ·R−1Disk · L
D

For disk one:

LK1 =RKite ·R−1Disk(1) · L
D
1

=

 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961

 ·
 0.948 −0.259 −0.184

0.295 0.932 0.210

0.117 −0.252 0.961


−1

·

 0.055

1.340

−0.283



=

 0.616

1.193

−0.283

N
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And for disk two:

LK2 =RKite ·R−1Disk(2) · L
D
2

=

 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961

 ·
 0.835 0.547 0.042

−0.536 0.798 0.276

0.117 −0.252 0.961


−1

·

 −0.023

1.777

−0.510



=

 −0.773

1.601

−0.510

N

A.3.4 Drag Force

The magnitude of the drag force acting on a disk is given by equation 3.15:

|D| = ρ ·A · Cd (α) · V 2

2

The drag force acting on disk one of this kite is:

|D|1 =
ρ ·
(
π·∅2
4

)
· Cd1 · V 2

2

=
1.2 ·

(
π·0.242

4

)
· 0.115 · 102

2

=0.312N

And for disk two:

|D|2 =
ρ ·
(
π·∅2
4

)
· Cd2 · V 2

2

=
1.2 ·

(
π·0.242

4

)
· 0.185 · 102

2

=0.502N
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The drag force acts in the same direction as the wind (the global Z-axis). Equitation

3.16 gives this in kite coordinates:

−−→
DK =RKite ·

 0

0

−1



=

 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961

 ·
 0

0

−1



=

 0.078

−0.268

−0.961


The drag force vectors for each disk can now be found using equation 3.17:

DK
i = |D|i ·

−−→
DK

For disk one:

DK
1 = |D|1 ·

−−→
DK

=0.312 ·

 0.078

−0.268

−0.961



=

 0.024

−0.084

−0.300

N
And for disk two:

DK
2 = |D|2 ·

−−→
DK

=0.502 ·

 0.078

−0.268

−0.961



=

 0.039

−0.135

−0.482

N
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A.3.5 Combined Forces Acting on the Kite Structure

In addition to the aerodynamic forces, the force due to gravity acting on the kite must

be taken into account. This is given by equation 3.19:

FKGravity =RKite ·

 0

−mg
0



=

 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961

 ·
 0

−0.1 · 9.81

0



=

 −0.156

−0.937

0.247

N
The combined force is either resisted by the lines and/or causes the kite to accelerate,

depending on its direction. This force is given by equation 3.18:

FKT =
n∑
i=1

LKi +
n∑
i=1

DK
i + FKGravity

=LK1 + LK2 +DK
1 +DK

2 + FKGravity

=

 0.616

1.193

−0.283

+

 −0.773

1.601

−0.510

+

 0.024

−0.084

−0.300

+

 0.039

−0.135

−0.482

+

 −0.156

−0.937

0.247



=

 −0.250

1.638

−1.328

N
To determine whether this kite is in positional equilibrium (the moments found next are

needed to determine whether it is in angular equilibrium) this force can be converted
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into line coordinates:

FLT =RLine ·R−1Kite · F
K
T

=

 1 0 0

0 0.966 −0.258

0 0.258 0.966

 ·
 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961


−1

·

 −0.250

1.638

−1.328



=

 1 0 0

0 0.966 −0.258

0 0.258 0.966

 ·
 0.984 −0.133 0.117

0.159 0.954 −0.253

−0.078 0.266 0.960

 ·
 −0.250

1.638

−1.328



=

 0.984 −0.133 0.117

0.174 0.853 −0.492

−0.035 0.503 0.862

 ·
 −0.250

1.638

−1.328



=

 −0.619

2.007

−0.312

N
The line can only resist forces aligned with its Y-axis, so this kite is not in positional

equilibrium.

A.3.6 Moments about the Bridle Point

To �nd the moments acting about the central bridle point, position vectors between

this point and each force are required. This �rst requires that the bridle point location

with respect to the kite centre is found from the bridle geometry. Equation 3.22 �nds

the Y- and Z-coordinates of the bridle point with respect to the centre of the kite in

kite coordinates:

dy =−

√√√√l2f −

(
l2f − l2r + l2a

2 · la

)2

=−

√
0.22 −

(
0.22 − 0.232 + 0.242

2 · 0.24

)2

=− 0.177m

dz =
la
2
−
l2f − l2r + l2a

2 · la

=
0.24

2
− 0.22 − 0.232 + 0.242

2 · 0.24

=0.027m
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Next, the angle through which the bridles rotate due to the kite roll angle must be

found, as given by equation 3.24:

β =− arcsin


 1

0

0

 •
RKite ·R−1line ·

 0

1

0





=− arcsin


 1

0

0

 •

 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961

 ·
 1 0 0

0 0.966 −0.258

0 0.258 0.966


−1

·

 0

1

0





=− arcsin


 1

0

0

 •

 0.984 0.174 −0.034

−0.133 0.854 0.505

0.117 −0.492 0.864

 ·
 0

1

0





=− arcsin


 1

0

0

 •
 0.174

0.854

−0.492




=− arcsin (0.174)

=− 0.175rad

=− 10º

In this case, the angle is identical to the roll angle due to rounding. However, in some

cases, the angle may di�er from the roll angle su�ciently to make substituting in the

roll angle incorrect.

The position vector between the bridle point and kite centre can now be found by

rotating the Y- and Z-bridle coordinates (reversed, since they express the distance from

the kite centre to the bridle point, rather than from the bridle point to the kite centre)

by this angle:

rKBP−CK =

 cosβ − sinβ 0

sinβ cosβ 0

0 0 1

 ·
 0

−dy
−dz



=

− 0.985 0.174 0

0.174 0.985 0

0 0 1

 ·
 0

0.177

−0.027



=

 0.031

0.174

−0.027

m
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For a two disk kite, the centre of mass is assumed to be at the kite centre:

rBP−CM = rBP−CK

To calculate the moments caused by the lift and drag forces, a vector describing the

positions of the centres of pressure relative to the bridle point is required. This can be

split into three components which are added together: the position vector of the centre

of the kite (found above), the position vector for the disk centre relative to the centre

of the kite, and the position vector of the centre of pressure relative to the disk centre.

The position vectors for the disk centres relative to the kite centre are described by

equation 3.27:

rKCK−CDi =

 −1i+1 · s/2
0

0



rKCK−CD1 =

 0.25

0

0

m

rKCK−CD2 =

 −0.25

0

0

m
The position vectors for the centres of pressure relative to the disk centres are found by

calculating the magnitude and direction separately. Equation 3.29 gives the magnitudes:

|CPi− CDi| =Øi
2
− COPi(α) ·Øi

|CP1− CD1| =Ø

2
− COP1 ·Ø

=
0.24

2
− 0.292 · 0.24

=49.9mm

|CP2− CD2| =Ø

2
− COP2 ·Ø

=
0.24

2
− 0.316 · 0.24

=44.2mm

To �nd the direction of the line on which the centre of pressure lies in kite coordinates,

vectors normal to the disk surfaces and parallel to the wind are required. Disk normal
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vectors are given by equation 3.31:

NK
i = RKite ·R−1diski ·

 0

1

0


So the normal vector for disk one is:

NK
1 =RKite ·R−1disk1 ·

 0

1

0



=

 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961

 ·
 0.948 −0.259 −0.184

0.295 0.932 0.210

0.117 −0.252 0.961


−1

·

 0

1

0



=

 0.906 0.422 0

−0.422 0.906 0

0 0 1

 ·
 0

1

0



=

 0.422

0.906

0


And the vector for disk two is:

NK
2 =RKite ·R−1disk2 ·

 0

1

0



=

 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961

 ·
 0.835 0.547 0.042

−0.536 0.798 0.276

0.117 −0.252 0.961


−1

·

 0

1

0



=

 0.906 0.422 0

−0.422 0.906 0

0 0 1

 ·
 0

1

0



=

 −0.422

0.906

0


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Equation 3.32 gives the wind vector in kite coordinates:

WK =RKite ·

 0

0

1



=

 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961

 ·
 0

0

1



=

 −0.078

0.268

0.961


And equation 3.30 �nds a vector in the direction of the disk chord:

−−−−→
Chordi = WK −

(
WK •NK

i

)
·NK

i

Which for disk one is:

−−−−→
Chord1 =WK −

(
WK •NK

1

)
·NK

1

=

 −0.078

0.268

0.961

−

 −0.078

0.268

0.961

 •
 0.422

0.906

0


 ·

 0.422

0.906

0



=

 −0.078

0.268

0.961

− 0.210 ·

 0.422

0.906

0



=

 −0.167

0.078

0.961


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And for disk two:

−−−−→
Chord2 =WK −

(
WK •NK

2

)
·NK

2

=

 −0.078

0.268

0.961

−

 −0.078

0.268

0.961

 •
 −0.422

0.906

0


 ·

 −0.422

0.906

0



=

 −0.078

0.268

0.961

− 0.276 ·

 −0.422

0.906

0



=

 0.039

0.018

0.961



The position vectors for the centres of pressure relative to the disk centres can now

be found using equation 3.28:

rKCDi−CPi =
|CPi− CDi| ·

−−−−→
Chordi∣∣∣−−−−→Chordi

∣∣∣
For disk one:

rKCD1−CP1 =
|CP1− CD1| ·

−−−−−→
Chord1∣∣∣−−−−−→Chord1

∣∣∣

=

49.9× 10−3 ·

 −0.167

0.078

0.961


√

0.1672 + 0.0782 + 0.9612

=

 −8.5× 10−3

4.0× 10−3

49.0× 10−3

m
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And for disk two:

rKCD2−CP2 =
|CP2− CD2| ·

−−−−−→
Chord2∣∣∣−−−−−→Chord2

∣∣∣

=

44.2× 10−3 ·

 0.039

0.018

0.961


√

0.0392 + 0.0182 + 0.9612

=

 1.8× 10−3

0.8× 10−3

44.2× 10−3

m

The position vector for the centres of pressure relative to the central bridle point

can now be found using equation 3.26:

rKBP−CPi = rKBP−CK + rKCK−CDi + rKCDi−CPi

For disk one:

rKBP−CP1 =rKBP−CK + rKCK−CD1 + rKCD1−CP1

=

 0.031

0.174

−0.027

+

 0.25

0

0

+

 −8.5× 10−3

4.0× 10−3

49.0× 10−3



=

 0.273

0.178

0.022

m
For disk two:

rKBP−CP2 =rKBP−CK + rKCK−CD2 + rKCD2−CP2

=

 0.031

0.174

−0.027

+

 −0.25

0

0

+

 1.8× 10−3

0.8× 10−3

44.2× 10−3



=

 −0.217

0.175

0.017

m

The moments about the bridle point caused by the aerodynamic and gravity forces
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can now be found using equation 3.20:

MK =

n∑
i=1

(
rKBP−CPi × LKi

)
+

n∑
i=1

(
rKBP−CPi ×DK

i

)
+ rKBP−CM × FKGravity

=rKBP−CP1 × LK1 + rKBP−CP2 × LK2 + rKBP−CP1 ×DK
1 + rKBP−CP2 ×DK

2 . . .

+ rKBP−CM × FKGravity
=rKBP−CP1 ×

(
LK1 +DK

1

)
+ rKBP−CP2 ×

(
LK2 +DK

2

)
+ rKBP−CM × FKGravity

=

 0.273

0.178

0.022

×

 0.616

1.193

−0.283

+

 0.024

−0.084

−0.300


+

 −0.217

0.175

0.017

× . . .

 −0.773

1.601

−0.510

+

 0.039

−0.135

−0.482


+

 0.031

0.174

−0.027

×
 −0.156

−0.937

0.247



=

 −0.128

0.173

0.189

+

 −0.199

−0.228

−0.190

+

 −0.068

−0.003

−0.056



=

 −0.395

−0.058

−0.057

Nm
This moment is more usefully expressed in line coordinates:

ML =RLine ·R−1Kite ·M
K

=

 1 0 0

0 0.966 −0.258

0 0.258 0.966

 ·
 0.984 0.159 −0.078

−0.133 0.955 0.268

0.117 −0.252 0.961


−1

·

 −0.395

−0.058

−0.057



=

 −0.388

−0.090

−0.065

Nm
This kite is not in rotational equilibrium about any axis. The negative X-moment

indicates it will try to pitch back, increasing its angle of attack. The negative Y-moment

indicates that it will try to yaw in an anti-clockwise direction from the �yer's point of

view � the direction expected from the positive roll angle applied. The negative Z-

moment is held by the lines, and indicates that the kite tries to return to a zero-roll

con�guration if the force in the two lines is equal.
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Appendix B

MATLAB Code for Two-Disk Kite

Code to Find Forces and Moments Acting on a Two-Disk Kite

twodisk.m

1 function[Ml,Ft]=twodisk(pitch, roll, yaw, dihedral, elevation,lbr,lbf,...

2 DD,W,m,windV,DegUnits)

3

4 %Calculates the resultant forces and moments acting on a two disk kite.

5 %Forces (Ft) are given in the kite−based coordinate system, while the

6 %moments (Ml) is given in the line−based coordinate system.

7

8 %Input parameters:

9

10 %pitch Pitch of the kite. .

11

12 %roll Roll angle. Defined as rotation about line z−axis.
13

14 %yaw Yaw angle. Defined as rotaion about line y−axis.
15

16 %dihedral Dihedral angle. −ve values for anhedral.

17

18 %elevation Line elevation angle −− measured as the acute angel the

19 % line makes to the ground plane.

20

21 %lbr Length of rear bridle line in m.

22

23 %lbf Length of front bridle line in m.

24

25 %DD Diameter of the kite disks in m.

26

27 %W Width of the kite, measured as the distance between disk

28 % centres.

29

30 %m Mass of the kite in kg

31
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32 %windV Wind velocity in m/s

33

34 %DegUnits Specifies the units (degrees or radians) in which the

35 % input angles are given. Use 'd' for degrees, 'r' for

36 % radians.

37

38 if DegUnits=='d'

39 pitch=pitch*2*pi/360;

40 roll=roll*2*pi/360; %Change the input angles to radians

41 dihedral=dihedral*2*pi/360; %if they have been given in degrees.

42 elevation=elevation*2*pi/360;

43 yaw=yaw*2*pi/360;

44 end

45

46

47 %% ==================Set Kite Parameters=================================

48

49 n=2; % Number of disks.

50

51 P(:,1)=[W/2;0;0]; % Position of disk 1 in meters from

52 P(:,2)=[−W/2;0;0]; % reference point (COM).

53

54 Area=pi*DD^2/4; % Area of each disk surface in m^2.

55

56

57 %% ==================Set Environment Parameters==========================

58

59 rho=1.2; % Air density.

60

61 g=9.81; % Acceleration due to gravity.

62

63

64 %% ==================Find Transformation Matrices========================

65

66 [Ak,Ad1,Ad2,Al]=transformMTX(pitch,elevation,roll,dihedral,yaw);

67 % Transform matrices to change from

68 % global coords to kite, disk and line

69 % coords.

70

71 %% ==================Find Aerodynamic Forces on Disks====================

72

73

74 Wind_Disk1=Ad1*[0;0;1]; % Unit vector in direction of

75 Wind_Disk2=Ad2*[0;0;1]; % wind in disk coordinates.

76

77

78 AOA(1)=−asin(dot(Wind_Disk1,[0;1;0])/(norm(Wind_Disk1)));
79 AOA(2)=−asin(dot(Wind_Disk2,[0;1;0])/(norm(Wind_Disk2)));
80 % Angle of attack for each disk
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81

82

83 for i=1:n % Loop for number of disks.

84

85 [cl(i) cd(i) cop(i)]=aeroProps(AOA(i)); % Find lift,drag and center

86 % of pressure coefficients.

87

88

89 cop(i)=DD/2−cop(i)*DD; % Find distance from center of disk

90 % to center of pressure.

91

92 L(i)=Area*cl(i)*rho*(windV^2)/2; % Find Magnitude of lift force.

93

94 D(i)=Area*cd(i)*rho*(windV^2)/2; % Find Magnitude of drag force.

95

96 if (cl(i)<0 || cd(i)<0 ) % Check for negative coefficients.

97 [cl(i) cd(i) cop(i)]=aeroProps(−AOA(i));
98 cop(i)=DD/2−cop(i)*DD;
99 L(i)=Area*−cl(i)*rho*(windV^2)/2;

100 D(i)=Area*−cd(i)*rho*(windV^2)/2;
101 end

102

103 if i==1

104 Adisk=Ad1; % Set the appropriate disk transfomation

105 elseif i==2 % matrix.

106 Adisk=Ad2;

107 end

108

109 copl(:,i)=coplocation(cop(i),Adisk,Ak); % Location of COP relative

110 % to disk center in kite

111 % coordinates.

112

113 lift(:,i)=L(i)*liftvector(Adisk, Ak); % Find the lift force vector.

114

115 Drag(:,i)=(Ak)*(D(i)*[0;0;−1]); % Find the drag force vector.

116

117 F(:,i)=lift(:,i)+Drag(:,i); % Find the total aerodynamic

118 % force acting on the current

119 % disk.

120 end

121

122

123 %% =================Find total forces and moments acting on kite=========

124

125 Ft=F(:,1)+F(:,2)+(Ak)*[0;−m*g;0]; % Find total force vector

126

127 [bpoint]=findbpoint(DD, lbf, lbr, DD,roll); % Find the distance between

128 % the kite center of mass and

129 % the center of bridle
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130 % points in kite coords.

131

132 for j=1:n

133

134 r(:,j)=copl(:,j)−bpoint+P(:,j); % Find the position vector for the

135 % aerodynamic force acting on each

136 end % disk.

137

138

139 Mgravity=cross(−bpoint, Ak*[0;−m*g;0]); % Find the moment about the

140 % bridle point due to gravity.

141

142 MomentK=cross(r(:,1),F(:,1))+cross(r(:,2),F(:,2))+Mgravity;

143 % Find the total moment about

144 % the bridle point.

145

146

147 Ml=Al*inv(Ak)*MomentK; % Transform moments into line coords.

Code to Find Transform Matrices for line, kite, and disk coordinate

systems

transformMTX.m

1 function[Ak,Ad1,Ad2,Al]=transformMTX(pitch,elevation,roll,dihedral, yaw)

2

3 % Calculates the transformation matrices to change from global to kite,

4 % disk and line coordinates.

5

6 Al=[1 0 0;

7 0 cos(pi/2−elevation) −sin(pi/2−elevation);
8 0 sin(pi/2−elevation) cos(pi/2−elevation)] ;

9 % Transform matrix to change

10 % from global to line coords.

11

12 Ap=[1 0 0;

13 0 cos(−pitch) −sin(−pitch); % Rotation matrix for pitch

14 0 sin(−pitch) cos(−pitch)]; % rotation.

15

16 axisb=Ap*inv(Al)*[0;0;1]; % Axis for Roll rotation

17

18 wb=[0 −axisb(3) axisb(2); % Cross−product matrix for

19 axisb(3) 0 −axisb(1); % roll rotation axis.

20 −axisb(2) axisb(1) 0];

21

22
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23

24 Ab=eye(3)+wb*sin(−roll)+wb^2*(1−cos(−roll));
25 % Rotation matrix for

26 % roll rotation found using

27 % Rodrigues rotation formula.

28

29 axisy=Ap*Ab*inv(Al)*[0;1;0]; % Axis for yaw rotation.

30

31 wy=[0 −axisy(3) axisy(2); % Cross−product matrix for

32 axisy(3) 0 −axisy(1); % yaw rotation axis.

33 −axisy(2) axisy(1) 0];

34

35 Ay=eye(3)+wy*sin(−yaw)+wy^2*(1−cos(−yaw));
36 % Rotation matrix for

37 % yaw rotation found using

38 % Rodrigues rotation formula.

39

40 AD=[cos(−dihedral) −sin(−dihedral) 0;

41 sin(−dihedral) cos(−dihedral) 0; % Rotation matrix for

42 0 0 1]; % dihedral rotation.

43

44

45 Ak=Ay*Ab*Ap; % Matrix to transform from global

46 % to kite coordinates.

47

48 Ad1=(AD)*Ak; % Matrices to transform from global

49 Ad2=(AD)\Ak; % to disk coordinates

Code to Find Aerodynamic Properties of a Disk

aeroprops.m

1 function[cl cd cop]=aeroProps(AOAd)

2

3 % finds Cl, Cd and COP (Measured from front of disk, as a proportion of

4 % chord length) given the angle of atack in radians using data obtained

5 % from wind tunnel testing.

6

7

8 %% ============Results from wind tunnel tests============================

9

10 Ang=[0 5 10 15 20 25 30 35 40 45 50 55 60 90];

11

12 Cd_exp=[0.0468 0.0487 0.09 0.1624 0.3057 0.5101 0.7102 0.9069 0.9886...

13 0.8488 0.8813 0.9314 0.9878 1];

14
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15 Cl_exp=[0 0.1762 0.4044 0.6359 0.8581 1.0462 1.1818 1.2653 1.1603...

16 0.9203 0.7406 0.638 0.5595 0];

17

18 Ang=Ang*2*pi/360;

19

20

21 cl=spline(Ang,Cl_exp,AOAd) ; % Find lift coefficient, drag

22 cd=spline(Ang,Cd_exp, AOAd) ; % coefficient, and location of

23 % centre of pressure by

24 % interpolation.

25

26 cop=0.0744*AOAd^3−0.3131*AOAd^2+0.4973*AOAd+0.2;
27 % Find center of pressure loication

28 % as proportion of chord length

29 % from leading edge.

Code to Find Centre of Bridle Points

�ndbpoint.m

1 function[bpoint]=findbpoint(chordL, Lbf, Lbr, DD,roll)

2

3 %calculates position of bridle point relative to COM in a kite based

4 %coordinate system with origin at COM and x axis aligned with chord

5

6

7 % Need angle between line Y−axis and Kite Y axis

8

9 kiteY=[1 0 0;0 cos(pi/2−elevation) −sin(pi/2−elevation);0 sin(pi/2−...
10 elevation)cos(pi/2−elevation)]/(Ak)*[0 1 0]';

11 angle=acos(dot(kiteY,[0 1 0]'));

12

13

14 % Find lower bridle point relative to kite center in kite

15 % coordinates before roll

16

17 BPK=[0; −((Lbf^2−((Lbf^2−Lbr^2+chordL^2)/(2*chordL))^2)^0.5) ;

18 DD/2−(((Lbf^2)−(Lbr^2)+(chordL^2))/(2*chordL))];
19

20 % Rotate this around the kite Z axis

21

22 bpoint=[cos(−angle) −sin(−angle) 0;

23 sin(−angle) cos(−angle) 0;

24 0 0 1] * BPK;
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Code to Find Unit Vector in Lift Force Direction

liftvector.m

1 function[Lk]=liftvector(Adisk, Akite)

2 % Finds a unit vector in the direction of the lift force for a disk in

3 % kite coordinates given transformation matrices for the disk and kite.

4

5 N=Akite*[0; 0; 1]; % A vector normal to the global

6 % x−y plane in kite coordinates

7

8 V=Akite*inv(Adisk)*[0; 1; 0]; % A vector normal to the disk

9 % x−z plane in kite coordinates

10

11 Lk = V − (dot(V,N))*N; % The projection of the vector V

12 % onto the plane described by it's

13 % normal vector N.

14

15 Lk=Lk/norm(Lk); % Normalise the projected vector to

16 % give a unit vector in the

17 % direction of the lift force.

Code to Find Location of centre of Pressure

coplocation.m

1 function [CoPV]=coplocation(cop,Adisk,Akite)

2

3 % Finds a vector defining the location of the center of pressure

4

5 N=Akite*inv(Adisk)*[0 ;1 ;0]; % A vector normal to the disk surface

6 % in kite coordinates.

7

8 V=Akite*[0 ;0; 1]; % A vector parallel to the wind in

9 % kite coordinates.

10

11 chord = V − (dot(V,N))*N; % The projection of V onto the disk

12 % surface, giving a chord line.

13

14 CoPV=cop*(chord/norm(chord)); % The location of the CoP relative

15 % to the disk center in kite coordinates
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Appendix C

Results from Wind Tunnel Testing

Open-Circuit Wind Tunnel Results

Yaw moments were measured with a spring balance attached to the end of a 100mm

lever arm. To aid stability, weights were used to create a constant 'base load' force

opposing the spring balance. The means of the �ve sets of results were taken, and the

standard error of the means was found. This was used to calculate the 95% con�dence

interval for the data. Parameters used for these sets of data are shown in table C.1.

Table C.1 Parameters used for testing in the open-circuit wind tunnel.

Parameter Value

Disk diameter 240mm

Width between disk centres 500mm

Front bridle length 325mm

Rear bridle length 266mm

Line elevation angle 81º

Kite pitch angle 18º

Kite roll angle 20º

Kite yaw angle 0º

Kite dihedral angle Varied
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Table C.2 Results from open-circuit wind tunnel test run#1

Dihedral Angle (º) Base (g) Measured (g) Total (g) Moment (Nm)

-40 100 64 -36 -0.035

-30 100 40 -60 -0.059

-20 100 24 -76 -0.075

-10 100 10 -90 -0.088

0 100 16 -84 -0.082

10 100 13 -87 -0.085

20 100 5 -95 -0.093

30 100 23 -77 -0.076

40 100 47 -53 -0.052

Table C.3 Results from open-circuit wind tunnel test run#2

Dihedral Angle (º) Base (g) Measured (g) Total (g) Moment (Nm)

-30 110 72 -38 -0.037

-25 140 85 -55 -0.054

-20 140 80 -60 -0.059

-15 140 74 -66 -0.065

-10 160 96 -64 -0.063

-5 160 81 -79 -0.077

0 160 79 -81 -0.079

5 160 70 -90 -0.088

10 160 75 -85 -0.083

15 160 72 -88 -0.086

20 160 76 -84 -0.082

25 160 65 -75 -0.074

30 160 93 -67 -0.066
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Table C.4 Results from open-circuit wind tunnel test run#3

Dihedral Angle (º) Base (g) Measured (g) Total (g) Moment (Nm)

-40 300 270 -30 -0.029

-30 300 250 -50 -0.049

-20 300 230 -70 -0.069

-10 300 210 -90 -0.088

0 300 205 -95 -0.093

10 300 210 -90 -0.088

20 300 215 -85 -0.083

30 300 220 -80 -0.078

40 300 250 -50 -0.049

Table C.5 Results from open-circuit wind tunnel test run#4

Dihedral Angle (º) Base (g) Measured (g) Total (g) Moment (Nm)

-40 120 92 -28 -0.027

-30 120 64 -56 -0.055

-20 120 55 -65 -0.064

-10 120 41 -79 -0.077

0 120 33 -87 -0.085

10 120 29 -91 -0.089

20 120 38 -82 -0.080

30 120 45 -75 -0.074

40 120 70 -50 -0.049

Table C.6 Results from open-circuit wind tunnel test run #5

Dihedral Angle (º) Base (g) Measured (g) Total (g) Moment (Nm)

-40 120 86 -34 -0.033

-30 120 75 -45 -0.044

-20 120 58 -62 -0.061

-10 120 52 -68 -0.067

0 120 25 -95 -0.093

10 120 37 -83 -0.081

20 120 44 -76 -0.075

30 120 50 -70 -0.069

40 120 80 -40 -0.039
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Table C.7 Combined results from open-circuit wind tunnel tests

Dihedral Angle (º) Mean Moment (Nm) S.E.M. (Nm) 95% C.I. (±Nm)

-40 -0.0314 0.001791 0.00349

-30 -0.0489 0.00383 0.00747

-20 -0.0653 0.00284 0.00553

-10 -0.0767 0.00530 0.0103

0 -0.0867 0.00280 0.00546

10 -0.0855 0.00147 0.00286

20 -0.0828 0.00302 0.00588

30 -0.0724 0.00231 0.00450

40 -0.0473 0.00279 0.00543

Closed-Circuit Wind Tunnel Results

The following data was obtained using a three axis balance, using the geometry pa-

rameters given in tables 4.2 and 4.3. The measurements were repeated three times to

minimise error. The data has been corrected for balance zero errors and the moment

caused by the support structure alone in the �ow stream. 95% con�dence intervals are

given, although these should be treated with caution since there are only three samples.

The largest value for the con�dence interval for each test is likely to apply to all data

points.

Table C.8 Parameters used for testing in the closed-circuit wind tunnel

Parameter Value

Disk diameter Varied

Width between disk centres 500mm

Front bridle length Varied

Rear bridle length Varied

Line elevation angle 85.2º

Kite pitch angle Varied

Kite roll angle Varied

Kite yaw angle 0º

Kite dihedral angle Varied
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Table C.9 Closed circuit wind tunnel test 1: 120mm disks, 565mm front bridle, 452mm rear bridle,

12m/s �ow, 24.8º pitch, 45º roll, varying dihedral.

Dihedral

Angle (º)

M1 (Nm) M2 (Nm) M3 (Nm) Avg.

Moment

(Nm)

95% C.I.

(±Nm)

-30 -0.3327 -0.3312 -0.3289 -0.3309 0.0022

-20 -0.5066 -0.5076 -0.5030 -0.5057 0.0027

-10 -0.6190 -0.6166 -0.6138 -0.6165 0.0029

0 -0.6776 -0.6783 -0.6795 -0.6785 0.0011

10 -0.6689 -0.6699 -0.6670 -0.6686 0.0017

20 -0.6009 -0.6013 -0.5990 -0.6004 0.0014

30 -0.4940 -0.4925 -0.4946 -0.4937 0.0012

Table C.10 Closed circuit wind tunnel test 2: 120mm disks, 565mm front bridle, 452mm rear bridle,

13.9m/s �ow, 24.8º pitch, 45º roll, varying dihedral.

Dihedral

Angle (º)

M1 (Nm) M2 (Nm) M3 (Nm) Avg.

Moment

(Nm)

95% C.I.

(±Nm)

-30 -0.4310 -0.4351 -0.4341 -0.4334 0.0024

-20 -0.6705 -0.6625 -0.6667 -0.6665 0.0045

-10 -0.8240 -0.8205 -0.8224 -0.8223 0.0020

0 -0.9088 -0.9057 -0.9119 -0.9088 0.0035

10 -0.8924 -0.8928 -0.8946 -0.8933 0.0013

20 -0.7957 -0.8010 -0.7930 -0.7966 0.0046

30 -0.6651 -0.6640 -0.6624 -0.6638 0.0015

Table C.11 Closed circuit wind tunnel test 3: 240mm disks, 657mm front bridle, 422mm rear bridle,

9m/s �ow, 34.8º pitch, 45º roll, varying dihedral.

Dihedral

Angle (º)

M1 (Nm) M2 (Nm) M3 (Nm) Avg.

Moment

(Nm)

95% C.I.

(±Nm)

-30 -1.336 -1.339 -1.331 -1.335 0.005

-20 -1.865 -1.892 -1.900 -1.886 0.020

-10 -2.241 -2.234 -2.293 -2.256 0.036

0 -2.332 -2.298 -2.320 -2.317 0.020

10 -2.252 -2.241 -2.201 -2.231 0.030

20 -1.974 -1.981 -1.974 -1.977 0.004

30 -1.531 -1.531 -1.532 -1.531 0.001
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Table C.12 Closed circuit wind tunnel test 4: 240mm disks, 657mm front bridle, 422mm rear bridle,

12m/s �ow, 34.8º pitch, 45º roll, varying dihedral.

Dihedral

Angle (º)

M1 (Nm) M2 (Nm) M3 (Nm) Avg.

Moment

(Nm)

95% C.I.

(±Nm)

-30 -2.401 -2.396 -2.401 -2.399 0.003

-20 -3.488 -3.469 -3.455 -3.471 0.019

-10 -4.174 -4.174 -4.208 -4.185 0.022

0 -4.300 -4.298 -4.298 -4.299 0.002

10 -4.106 -4.102 -4.021 -4.076 0.054

20 -3.583 -3.577 -3.590 -3.583 0.007

30 -2.791 -2.782 -2.781 -2.785 0.006

Table C.13 Closed circuit wind tunnel test 5: 240mm disks, 657mm front bridle, 422mm rear bridle,

9m/s �ow, 34.8º pitch, -30º dihedral, varying roll.

Roll

Angle (º)

M1 (Nm) M2 (Nm) M3 (Nm) Avg.

Moment

(Nm)

95% C.I.

(±Nm)

5 -0.4652 -0.4492 -0.4396 -0.4513 0.0146

15 -0.6535 -0.6478 -0.6245 -0.6419 0.0173

25 -0.6679 -0.6561 -0.667 -0.6637 0.0074

35 -0.9846 -0.9884 -0.9976 -0.9902 0.0075

45 -1.287 -1.242 -1.238 -1.255 0.031

55 -1.512 -1.502 -1.497 -1.504 0.008

65 -1.656 -1.665 -1.663 -1.661 0.005

Table C.14 Closed circuit wind tunnel test 6: 240mm disks, 657mm front bridle, 422mm rear bridle,

12m/s �ow, 34.8º pitch, -30º dihedral, varying roll.

Roll

Angle (º)

M1 (Nm) M2 (Nm) M3 (Nm) Avg.

Moment

(Nm)

95% C.I.

(±Nm)

5 -0.8118 -0.8149 -0.8187 -0.8151 0.0039

15 -1.171 -1.119 -1.180 -1.157 0.037

25 -1.209 -1.202 -1.213 -1.208 0.006

35 -1.810 -1.801 -1.814 -1.811 0.003

45 -2.299 -2.287 -2.289 -2.292 0.007

55 -2.743 -2.742 -2.767 -2.751 0.016

65 -3.074 -3.070 -3.062 -3.069 0.007
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Table C.15 Closed circuit wind tunnel test 7: 240mm disks, 657mm front bridle, 422mm rear bridle,

9m/s �ow, 34.8º pitch, 0º dihedral, varying roll.

Roll

Angle (º)

M1 (Nm) M2 (Nm) M3 (Nm) Avg.

Moment

(Nm)

95% C.I.

(±Nm)

15 -0.808 -0.817 -0.803 -0.809 0.008

25 -1.275 -1.285 -1.336 -1.299 0.037

35 -1.903 -1.911 -1.999 -1.938 0.060

45 -2.332 -2.298 -2.320 -2.317 0.020

55 -2.662 -2.653 -2.650 -2.655 0.007

65 -2.859 -2.851 -2.865 -2.859 0.008

75 -3.013 -2.982 -2.950 -2.982 0.035

Table C.16 Closed circuit wind tunnel test 8: 240mm disks, 657mm front bridle, 422mm rear bridle,

12m/s �ow, 34.8º pitch, 0º dihedral, varying roll.

Roll

Angle (º)

M1 (Nm) M2 (Nm) M3 (Nm) Avg.

Moment

(Nm)

95% C.I.

(±Nm)

15 -1.379 -1.372 -1.390 -1.380 0.010

25 -2.205 -2.222 -2.189 -2.206 0.019

35 -3.329 -3.335 -3.443 -3.369 0.072

45 -4.300 -4.298 -4.298 -4.299 0.002

55 -4.903 -4.922 -4.913 -4.913 0.010

65 -5.248 -5.242 -5.217 -5.235 0.019

75 -5.473 -5.444 -5.405 -5.440 0.038

Table C.17 Closed circuit wind tunnel test 9: 240mm disks, 657mm front bridle, 422mm rear bridle,

9m/s �ow, 34.8º pitch, 30º dihedral, varying roll.

Roll

Angle (º)

M1 (Nm) M2 (Nm) M3 (Nm) Avg.

Moment

(Nm)

95% C.I.

(±Nm)

5 -0.115 -0.115 -0.115 -0.115 0.000

15 -0.611 -0.588 -0.589 -0.596 0.014

25 -0.930 -0.931 -0.945 -0.935 0.009

35 -1.277 -1.259 -1.256 -1.264 0.013

45 -1.531 -1.531 -1.532 -1.531 0.001

55 -1.739 -1.738 -1.739 -1.739 0.001

65 -1.872 -1.872 -1.877 -1.873 0.003
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Table C.18 Closed circuit wind tunnel test 10: 240mm disks, 657mm front bridle, 422mm rear bridle,

12m/s �ow, 34.8º pitch, 30º dihedral, varying roll.

Roll

Angle (º)

M1 (Nm) M2 (Nm) M3 (Nm) Avg.

Moment

(Nm)

95% C.I.

(±Nm)

5 -0.224 -0.216 -0.215 -0.218 0.006

15 -1.070 -1.069 -1.068 -1.069 0.002

25 -1.712 -1.721 -1.717 -1.716 0.005

35 -2.324 -2.340 -2.321 -2.328 0.012

45 -2.791 -2.782 -2.781 -2.785 0.006

55 -3.178 -3.175 -3.168 -3.173 0.006

65 -3.446 -3.444 -3.444 -3.445 0.001


