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Vibration of a Euler–Bernoulli uniform beam
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Abstract Publications on the vibration of a Euler–Bernoulli beam carrying thin discs at the ends are
available. In this paper the thin discs are replaced with rigid bodies, whose axial width is included in
the analysis. The centre of mass of the bodies is assumed to be on the beam axis but away from the
beam end. Among the boundary conditions considered are: the classical clamped, pinned, sliding of
free; the lateral translation and rotation of an unrestrained rigid body; the translation and/or rotation of
a restrained rigid body, and other special cases. The frequency equations and the first three frequency
parameters are tabulated for several sets of the system parameters and selected combinations of 10
boundary conditions.
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Introduction

The vibration of a cantilever carrying a thin disc is described in the textbook by
McCallion [1]. Gorman [2] considered a free–free beam carrying particles at the end
and a pinned–pinned beam with thin discs at the ends. Register [3] analysed a beam
carrying thin discs at the ends and elastically restrained against rotation and trans-
lation. Rama Bhat and Kulkarni [4] and Rama Bhat and Wagner [5] considered a
cantilever carrying a heavy body whose centre of mass is offset from the tip. 
Popplewell and Chang [6] applied the Rayleigh–Ritz method to a cantilever with a
heavy body at the tip.

In the present paper, the vibration of a uniform Euler–Bernoulli beam to which a
rigid body is attached at each end is analysed using elementary mathematics,
mechanics and simple theory of bending. The centre of mass of the rigid body is
assumed to be on the beam axis but away from the beam end. This is a valid model
in several engineering fields, yet publications are not available. A total of 10 bound-
ary conditions are considered here, which include the classical clamped, pinned,
sliding or free, the unrestrained lateral and rotational displacement of a rigid body,
the translation and/or rotation of a restrained rigid body, and a rigid body pinned at
an arbitrary point and special cases. The principal system parameters are mass,
moment of inertia and the centre-of-mass offset. The frequency equations are derived
for the combinations of boundary conditions and the first three frequency parame-
ters are tabulated for selected sets of system parameters. Examples are provided to
illustrate the calculation of the system parameters. The problems considered in this
paper cover a variety of types. The tabulated results may be used to judge frequen-
cies obtained by numerical methods.
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Theory

Fig. 1 shows a Euler–Bernoulli beam, AB, of flexural rigidity EI, mass per unit length
m and length L, with two rigid bodies (G1 and G2) attached at A and B. The origin,
O, of the coordinate system shown in Fig. 1(a) coincides with A when the beam is
in the undeflected position. The mass of the two rigid bodies are M1 and M2, and the
moments of inertia (about the axis through the centre of mass and normal to the x–y
plane) are J1 and J2, respectively. The centre of mass of G1 and G2, are assumed to
be on the x-axis. The centre-of-mass offsets, AG1 = eg,1 and BG2 = eg,2, are positive
in the positive x direction. Some examples of positive/negative combinations of
centre-of-mass offsets are shown in Fig. 1(a–d). The vibration analysis is based on
the Euler–Bernoulli theory of bending and the sign convention for a positive bending
moment and shearing force are shown in Fig. 3(a) (see below).

For free vibration at frequency w, if y(x) is the amplitude of beam displacement
at abscissa x, the bending moment, M(x), shearing force, Q(x), and the mode shape
differential equation are:

Fig. 1 The beam with the bodies attached: combinations positive or negative centre-of-
mass offsets (a–d) and the coordinate system.



(1)

Next, the dimensionless abscissa X, the mode shape Y(X), operators D and Dn, the
dimensionless bending moment M(X), the shearing force Q(X), frequency Ω, and
the frequency parameter a are defined as follows:

(2)

The expressions in equation 1 can be written in dimensionless form as follows:

(3)

The solution of the dimensionless mode shape differential equation is:

(4)

where C1 through to C4 are constants of integration.

The boundary conditions
The boundary conditions considered in this paper are combinations of those shown
in Fig. 2. The classical clamped, pinned, sliding and free boundary conditions are
shown in Fig. 2(a0, b0, c0 and d0, respectively). The boundary condition shown in
Fig. 2(b1) is as in (b0) but with a thin disc attached to the beam end; (b2) is as in (b1)
but with a rigid body; (b3) is as in (b2) but pinned at a location on the rigid body;
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(c1) is as in (c0) but with the rigid body attached; and (d1) is as in (d0) but with a
thin disc attached at the end. Finally, the unrestrained rigid body is shown in Fig.
2(d2). (These boundary conditions are referred to in Table 3.)

The mass parameter, dj, the moment of inertia parameter ∆j, the centre-of-mass
offset parameter eg,j and the pin position parameter ep,j ( j = 1, 2) are defined as
follows:

(5)

in which j = 1 refers to the end A and j = 2 to end B.

The unrestrained rigid body
The unrestrained rigid body shown in Fig. 2(d2) is free to translate and rotate. The
free-body diagram of the body at A (d1 < 0, ∆1 < 0) is shown Fig. 3(a) (for positive
centre-of-mass offsets). Compatibility of moments and forces leads to the following
equations in dimensionless form:

(6)

Equation 4 must satisfy equation 6, which allows two of the constants in equation
4 to be eliminated and one gets the mode shape as:
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Fig. 2 The ‘degenerate’ and the ‘special’ boundary conditions.
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in which A and B are constants and the mode shape functions U(X) and V(X) are:

(8)

where the coefficients g1, g2, h1 and h2 are:

(8a)

An alternative form of the mode shape function is:

(9)

in which the coefficients g1, g2, h1 and h2 are:

(9a)
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Fig. 3 The sign conventions and the free-body diagrams of the rigid bodies.



The ‘degenerate’ and ‘special’ boundary conditions
The ‘degenerate’ boundary conditions occur when d1 and/or ∆1 = 0 or → ∞. ‘Special’
cases occur when restrictions are imposed on translation or rotation. The mode shape
equation (8 or 9) are not applicable to these boundary conditions. The mode shape
functions U(X) and V(X) for these cases are presented below, in relation to the bound-
ary conditions illustrated in Fig. 2.

Fig. 2(a0)
This is the classical ‘clamped’ boundary condition at A (d1 → ∞, ∆1 → ∞), for which
Y(0) = 0 and D[Y(0)] = 0. Hence the functions are:

(10)

Fig. 2(b0)
This is the classical ‘pinned’ boundary condition at A (d1 → ∞, ∆1 = 0, eg,1 = 0), for
which Y(0) = 0, and D2[Y(0)] = 0. Hence the functions are:

(11)

Fig. 2(c0)
This is the classical ‘sliding’ boundary condition at A (∆1 → ∞, d1 = 0), for which
D[Y(0)] = 0 and D3[Y(0)] = 0. The functions are:

(12)

Fig. 2(d0)
This is the classical ‘free’ boundary condition. Equation (8 or 9) is not valid if d1 =
0 and ∆1 = 0. Equation 4 must satisfy D2[Y(0)] = 0, D3[Y(0)] = 0. The functions U(X)
and V(X) are:

(13)

Fig. 2(b3)
The body at A is pinned at P1, where AP1 = ep,1 = ep,1L. The deflection at P1 is zero
and hence Y(0) + ep,1D[Y(0)] = 0. Compatibility of moments at P1 leads to D2[Y(0)]
+ ep,1D3[Y(0)] + [∆1 + d1 (eg,1 − ep,1)2]a4D[Y(0)] = 0, which must be satisfied by equa-
tion 4 and one gets:

(14)
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in which the coefficients g1, g2, h1 and h2 are:

(14a)

Fig. 2(b2)
In this boundary condition, a body is attached to the beam, which is pinned at A.
This is a special case of that shown in Fig. 2(b3) with ep,1 = ep,1L = 0. Equation 14
is applicable and the reduced form is:

(15)

Fig. 2(b1)
Here, a thin disc is attached to the beam, which is pinned at A. This is a special case
of that shown in Fig. 2(b2), and equation 15 is applicable, with eg,1 = 0.

Fig. 2(c1)
A body is attached at A that is constrained to slide transversely without rotation 
(∆1 → ∞, 0 ≤ d1 < ∞). One has D[Y(0)] = 0 and D3[Y(0)] − d1a 4Y(0) = 0, and the
functions are:

(16)

Fig. 2(d1)
A thin disc is attached at A and the translation and rotation of this disc are unre-
strained. This is a special case of that shown in Fig. 2(d2). Equation 8 or 9 applies,
with eg,1 = 0 subject to d1 ≠ 0.

The frequency equations
Consider the unrestrained body at B shown in Fig. 2(d2). The free-body diagram (for
positive centre-of-mass offset and positive resilient support location) is shown in
Fig. 3(b) and one has:
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(17)

in which the coefficients w2,1, w2,2, and w2,3 are:

(17a)

The mode shape equation 7 must satisfy equation 17. For a non-trivial solution, the
coefficient matrix must be singular. For the unrestrained body at B, the frequency
equation is:

(18)

in which U(1), V(1), D[U(1)], D[V(1)] etc. are obtained from the functions applic-
able to the boundary conditions at A.

For the degenerate and ‘special’ types of support (boundary condition) at B, the
frequency equations are as set out below.

Fig. 2(a0)
This is the classical ‘clamped’ boundary condition at B (d 2 → ∞, ∆2 → ∞). Equa-
tion 7 must satisfy Y(1) = 0, D[Y(1)] = 0. The frequency equation is:

(19)

Fig. 2(b0)
This is the classical ‘pinned’ boundary condition at B (d 2 → ∞, ∆2 = 0, eg,2 = 0).
Equation 7 must satisfy Y(1) = 0, D2[Y(1)] = 0. The frequency equation is:

(20)

Fig. 2(c0)
This is the classical ‘sliding’ boundary condition at B (∆2 → ∞, d 2 = 0). Equation 7
must satisfy Y(1) = 0, D3Y(1) = 0, and the frequency equation is:

(21)

Fig. 2(d0)
This is the classical ‘free’ boundary condition at B. One has D2Y(1) = 0, D3Y(1) = 0
and the frequency equation is:

(22)

Fig. 2(b3)
Here, the body at B is pinned at P2, where BP2 = ep,2 = ep,2L. Equation 7 must satisfy
Y(1) + ep,2D[Y(1)] = 0, D2[Y(1)] + ep,2 D3[Y(1)] − w2*D[Y(1)] = 0, where the coeffi-
cient w2* = [∆2 + d2(eg,2 − ep,2)2]a 4. The frequency equation is:
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(23)

Fig. 2(b2)
The body is attached at B and pinned at B. The frequency equation (23) is applica-
ble, with ep,2 = 0. The reduced form is:

(24)

Fig. 2(b1)
A thin disc is attached at B and pinned at B. The frequency equation (23) is applic-
able, with ep,2 = 0 and eg,2 = 0. The reduced form is:

(25)

Fig. 2(c1)
The body is attached at B but is constrained to slide transversely without rotation
(∆2 → ∞, 0 ≤ d2 < ∞). Equation 7 must satisfy D[Y(1)] = 0 and D3[Y(1)] + d2a 4Y(1)
= 0. The frequency equation is:

(26)

Fig. 2(d1)
A thin disc is attached at B but lateral translation and rotation are unrestrained. The
frequency equation (17) is applicable, with eg,2 = 0. The reduced form is:

(27)

The natural frequency calculations

The system parameters are: d1, ∆1, eg,1, ep,1, d2, ∆2, eg,2, ep,2. Depending on the bound-
ary conditions, some of the parameters will be zero or will not enter the frequency
equation. As there are eight parameters, it is not possible here to present all the results
in graphical or tabular form.

The end-bodies unrestrained
The boundary condition (at each end) is that shown in Fig. 2(d2) and is denoted by
(d2, d2). Note that ep,1 and ep,2 are not needed here. For the selected set of system
parameters d1, ∆1, eg,1, d2, ∆2, eg,2 (none of which is infinity), a trial frequency para-
meter a (of 0.1, say) was assumed. The coefficients g1, g2, h1, and h2 were calcu-
lated from equation 8a and inserted into equation 8 to obtain U(1), V(1) and hence
D[U(1)], D[V(1)] etc. by straightforward differentiation of U(X) and V(X). From
equation 17a, w2,1, w2,2, and w2,3 were calculated and one is now in a position to 

D D D

D D D

2
2

4 3
2

4

3
2

4 2
2

4

1 1 1 1

1 1 1 1 0

U U V V

U U V V

( )[ ] − ( )[ ]{ } ( )[ ] + ( ){ }
− ( )[ ] + ( ){ } ( )[ ] − ( )[ ]{ } =

∆

∆

a d a

d a a

D D D DU V V U U V1 1 1 1 1 1 03
2

4 3
2

4( )[ ] ( )[ ] + ( ){ } − ( )[ ] + ( ){ } ( )[ ] =d a d a

U V V U U V1 1 1 1 1 1 02
2

4 2
2

4( ) ( )[ ] − ( )[ ]{ } − ( )[ ] − ( )[ ]{ } ( ) =D D D D∆ ∆a a

U V V

U U U

g

g

1 1 1

1 1 1 0

2
2 2 2

2 4

2
2 2 2

2 4

( ) ( )[ ] − +[ ] ( )[ ]{ }
− ( )[ ] − +[ ] ( )[ ]{ } ( ) =

D D

D D

,

,

∆

∆

d e a

d e a

U U V V w V

U U w U V V

p p

p p

1 1 1 1 1

1 1 1 1 1 0

2
2

2
3

2

2
2

3
2 2

( ) + ( )[ ]{ } ( )[ ] + ( )[ ] − ( )[ ]{ }
− ( )[ ] + ( )[ ] − ( )[ ]{ } ( ) + ( )[ ]{ } =

e e

e e

, ,

, ,

D D D D

D D D D*

*

202 S. Naguleswaran

International Journal of Mechanical Engineering Education 34/3



Vibration of a beam carrying rigid bodies 203

International Journal of Mechanical Engineering Education 34/3

calculate the left-hand side of equation 18 to yield a ‘remainder’. The trial value of
the frequency parameter was changed in steps of 0.1 and calculations were repeated
until a sign change in the ‘remainder’ occurred. This indicates a ‘range’ within which
a root is present. The ‘search’ was made in this ‘range’ with a step change of 0.01
in the trial frequency, thus narrowing the ‘range’ within which a root was present.
An iteration procedure based on linear interpolation was invoked to obtain the root
to a pre-assigned accuracy. The ‘search’ was continued from this root to obtain the
second root and so on.

The first three non-zero frequency parameters are tabulated in Table 1 for various
combinations of d1 = 0.1 or 5.0, ∆1 = 0.2 or 1.0, eg,1 = −0.8 or 0.0 or 0.4, eg,2 = −0.3
or 0.0 or 0.3. For convenience the right-hand body was chosen so that d2 = d1 + 0.1,
∆2 = ∆1 + 0.2. An increase in the mass and/or moment of intertia of the rigid bodies
results in a decrease in the frequency – the effect of a change in ∆ being greater than
that of d. The effect of a change in eg,1 or eg,2 on the frequency is smaller. For thin
discs at the ends, eg,1 = eg,2 = 0.

The rigid bodies pinned
This is the boundary condition (b3, b3). The pin location parameters ep,1, ep,2 are
needed here. For example calculations, the parameters chosen were d1 = 0.5, ∆1 =
0.1, d2 = 1.0, ∆2 = 0.2 and combinations were used of eg,1 = −0.1 or 0.1, ep,1 = −0.3
or 0.3, eg,2 = −0.3, 0.0 or 0.3, ep,2 = −0.4, 0.0 or 0.4. The functions U(X) and V(X)
were obtained from equation 14 and the frequency equation is 23. The first three
frequency parameters are tabulated in Table 2.

The ‘degenerate’ cases
The relevant system parameters were chosen from the set d1 = 0.1, ∆1 = 0.2, εg,1 =
−0.1, εp,1 = −0.3, d2 = 0.2, ∆2 = 0.3, eg,2 = 0.3, εp,2 = 0.2. For example, if the end body
at A is supported as in Fig. 2(c1), ∆1, εg,1 and εp,1 will not enter the calculations; or
if the end body B is supported as in Fig. 2(b3), d2, ∆2, eg,2 and ep,2 will enter the 
calculations.

TABLE 1 The first three frequency parameters for a beam carrying unrestrained rigid
bodies at its ends

eg,2 = −0.3 eg,2 = 0.0 eg,2 = 0.3

(d1, ∆1) eg,1 a1 a2 a3 a1 a2 a3 a1 a2 a3

(0.1, 0.2) −0.8 1.5484 3.0192 5.8155 1.5552 3.0502 5.8252 1.5490 3.0875 5.8507
0.0 1.6307 2.9460 5.7347 1.6372 2.9775 5.7448 1.6324 3.0149 5.7706
0.4 1.6372 2.8948 5.7172 1.6413 2.9277 5.7274 1.6349 2.9662 5.7535

(5.0, 1.0) −0.8 1.0435 2.1104 4.9684 1.0851 2.1636 4.9737 1.0930 2.2547 5.0041
0.0 1.1291 1.6862 4.8164 1.1580 1.7757 4.8228 1.1487 1.9123 4.8553
0.4 1.1562 1.5055 4.8133 1.1271 1.6450 4.8197 1.0941 1.8131 4.8526

System parameters: d1, ∆1, eg,1 and eg,2 (in table) and d2 = d1 + 0.1, ∆2 = ∆1 + 0.2.
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Consider, for example, the boundary conditions (c1, b2), that is, the left-hand end-
body system (A) is sliding and the right-hand end-body system is pinned at B. For
a trial frequency parameter, U(1), V(1), D[U(1)], D[V(1)] etc. were calculated from
equation 16 and inserted into the left-hand side of equation 24 with ep,2 = 0 to obtain
the ‘remainder’ of the frequency equation and the procedure described earlier was
used to determine the roots. The first three frequency parameters were calculated for
100 combinations of boundary conditions a0 − d2. Combinations of the classical
‘clamped’, ‘pinned’, ‘sliding’ or ‘free’ supports, for example (a0, d0), were deleted
and the rest are tabulated in Table 3.

Conjoint systems
If one denotes the frequency parameter a[(i, j), (d1, ∆1, eg,1, ep,1), (d2, ∆2, eg,2, ep,2)]
in which i or j ≡ a0 through to d2 denotes the boundary condition at A and B, respec-
tively, then:

(28)

The frequency parameters of the corresponding conjoint systems are presented in
Table 4.

Limiting cases
If d is increased indefinitely and ∆ is kept small, a pseudo-pinned condition is
approached asymptotically. A near-sliding condition is approached if ∆ is increased
indefinitely and d is kept small. If d and ∆ are increased indefinitely, a pseudo-
clamped condition is approached. In Table 4 the first three frequency parameters of
(d2, d2) systems are tabulated for three combinations of eg,1 and eg,2 and selected com-
binations of d1 = 1, 10, 102, 103, 104, ∆1 = 1, 102, 103. For convenience, d1 = d2 and
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TABLE 2 The first three frequency parameters for a beam with pinned rigid bodies at its ends

eg,2 = −0.3 eg,2 = 0.0 eg,2 = 0.3

eg,1 ep,1, ep,2 a1 a2 a3 a1 a2 a3 a1 a2 a3

−0.1 (−0.3, −0.4) 1.47386 2.5730 5.1106 1.30403 2.5718 5.0988 1.11783 2.5711 5.0903
(−0.3, 0.0) 1.59533 2.6983 5.1044 1.70818 2.7580 5.1153 1.59533 2.6983 5.1044
(−0.3, 0.4) 1.39562 2.7671 5.1649 1.52698 2.8973 5.2334 1.60990 3.0334 5.3219

0.1 (0.3, −0.4) 1.26950 1.9107 4.7721 1.14345 1.8767 4.7601 0.99186 1.8545 4.7515
(0.3, 0.0) 1.81808 1.9221 4.7745 1.82568 2.0925 4.7896 1.81808 1.9221 4.7745
(0.3, 0.4) 1.71845 1.9926 4.8461 1.76603 2.2118 4.9291 1.77866 2.4123 5.0338

System parameters: eg,1 ep,1, d2, ∆2, eg,2, ep,2 (in table) and d1 = 0.5, ∆1 = 0.1, d2 = 1.0, ∆2 = 0.2.
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TABLE 3 The first three non-zero frequency parameters for ‘degenerate’ cases

BC a1 a2 a3 BC a1 a2 a3

(a0, b1) 1.89568 4.76187 7.86012 (d0, b1) 1.22555 2.59555 5.51804
(a0, b2) 1.86912 4.76005 7.85972 (d0, b2) 1.21368 2.58370 5.51689
(a0, b3) 2.10774 4.84091 7.89750 (d0, b3) 1.12535 2.76233 5.58246
(a0, c1) 2.13339 5.17434 8.21537 (d0, c1) 2.91963 5.92693 8.98279
(a0, d1) 1.24777 2.29964 5.19317 (d0, d1) 1.30736 3.00884 5.93978
(a0, d2) 1.19272 2.36083 5.23072 (d0, d2) 1.26423 3.06090 5.97410

(b0, b1) 1.75017 3.98227 7.07807 (c1, a0) 2.23492 5.29438 8.35270
(b0, b2) 1.72642 3.97909 7.07753 (c1, b0) 1.50065 4.52977 7.58563
(b0, b3) 1.83923 4.08803 7.12191 (c1, b1) 1.20618 2.49072 5.31641
(b0, c1) 1.44363 4.41515 7.45046 (c1, b2) 1.19529 2.47779 5.31515
(b0, d1) 1.84907 4.44420 7.45723 (c1, b3) 1.10208 2.66062 5.38252
(b0, d2) 1.87873 4.48660 7.48602 (c1, c0) 3.01154 6.05485 9.12124

(b1, a0) 2.08949 4.77801 7.86359 (c1, c1) 2.79818 5.71658 8.69513
(b1, b0) 1.92148 4.01044 7.08285 (c1, d0) 2.29117 5.28872 8.35307
(b1, b1) 1.64768 2.23821 4.80797 (c1, d1) 1.30259 2.89330 5.73041
(b1, b2) 1.63212 2.22783 4.80625 (c1, d2) 1.25825 2.94502 5.76468
(b1, b3) 1.63882 2.39541 4.88370 (d0, b1) 2.24177 4.72669 7.86167
(b1, c0) 1.30353 2.69435 5.52829 (d0, b2) 2.22592 4.72483 7.86127
(b1, c1) 1.25190 2.52689 5.20963 (d0, b3) 2.35734 4.81044 7.89896
(b1, d0) 2.36678 4.74325 7.86514 (d0, c1) 2.23704 5.16435 8.21598
(b1, d1) 1.64975 2.60072 5.22774 (d0, d1) 2.42940 5.18308 8.22112
(b1, d2) 1.64353 2.64397 5.26436 (d0, d2) 2.46991 5.22150 8.24777

(b2, a0) 2.08701 4.77776 7.86354 (d1, a0) 1.36686 2.43137 5.31760
(b2, b0) 1.91931 4.01002 7.08278 (d1, b0) 1.98292 4.56536 7.59411
(b2, b1) 1.64706 2.23638 4.80773 (d1, b1) 1.68390 2.60791 5.33908
(b2, b2) 1.63155 2.22595 4.80602 (d1, b2) 1.67434 2.59800 5.33786
(b2, b3) 1.63786 2.39395 4.88348 (d1, b3) 1.66001 2.76127 5.40399
(b2, c0) 1.30263 2.69296 5.52814 (d1, c0) 1.43787 3.12087 6.07072
(b2, c1) 1.25118 2.52530 5.20946 (d1, c1) 1.42654 2.92083 5.73462
(b2, d0) 2.36508 4.74300 7.86509 (d1, d0) 2.53420 5.31167 8.35955
(b2, d1) 1.64903 2.59935 5.22757 (d1, d1) 1.68591 2.99639 5.74822
(b2, d2) 1.64271 2.64267 5.26419 (d1, d2) 1.67441 3.04338 5.78210

(b3, a0) 2.35646 4.95836 7.95961 (d2, a0) 1.35325 2.44616 5.32641
(b3, b0) 1.98902 4.23635 7.19324 (d2, b0) 1.98964 4.57549 7.60045
(b3, b1) 1.56057 2.50654 4.98393 (d2, b1) 1.67890 2.62003 5.34775
(b3, b2) 1.54404 2.49765 4.98247 (d2, b2) 1.66906 2.61027 5.34653
(b3, b3) 1.54473 2.64895 5.05283 (d2, b3) 1.65534 2.77253 5.41241
(b3, c0) 1.11520 2.96721 5.68171 (d2, c0) 1.42710 3.13392 6.07856
(b3, c1) 1.06157 2.79464 5.36849 (d2, c1) 1.41519 2.93378 5.74260
(b3, d0) 2.51944 4.93401 7.96091 (d2, d0) 2.54455 5.32059 8.36534
(b3, d1) 1.56101 2.86121 5.38448 (d2, d1) 1.68062 3.00844 5.75613
(b3, d2) 1.55171 2.90285 5.41903 (d2, d2) 1.66921 3.05526 5.78994

BC = boundary conditions as set out in Fig. 2, at points A and B, respectively (see Fig. 1).
System parameters: d1 = 0.1, ∆1 = 0.2, eg,1 = −0.1, ep,1 = −0.3, d2 = 0.2, ∆2 = 0.3, eg,2 = 0.3, ep,2 = 0.2.
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∆1 = ∆2 was chosen. Pseudo-sliding–sliding boundary conditions are approached
when d1 = d2 = 1, ∆1 = ∆2 = 103. The fundamental frequency is small and close to
rigid-body translation. Computation of the fundamental frequency failed in double
precession and is shown by uuu in Table 4. Pseudo-clamped–clamped boundary con-
ditions are approached when d1 = d2 = 103, ∆1 = ∆2 = 103. Here, the near-free body
translation frequency is very small but the near-free body rotation is not very small.
The combination d1 = d2 = 104, ∆1 = ∆2 = 103 is closer to a clamped–clamped con-
dition and here the fundamental and second frequencies are very small but the third
is very nearly equal to that of the classical clamped–clamped beam.

In Table 5, the first three frequency parameters of (b3, b3) systems are tabulated
for combinations of ep,1 = −0.1, 0.0 or 0.1 and ep,2 = −0.3, 0.0 or 0.3, eg,1 = −0.1 and
eg,2 = 0.2 and selected combinations of d1 = d2 = 0 or 102 and ∆1 = ∆2 = 0, 10−1, 1 or
10. The first three rows (d1 = d2 = ∆1 = ∆2 = 0), represent a uniform beam pinned at
massless beam-like extensions and here the combination ep,1 = 0.0, ep,2 = 0.0 is the
classical pinned–pinned beam. For large values of d and/or ∆, the system in the third
mode asymptotically approaches the clamped–clamped condition.

TABLE 4 The first three frequency parameters for a beam carrying heavy 
unrestrained end-bodies

eg,1 = −0.1, eg,2 = −0.1 eg,1 = −0.1, eg,2 = 0.0 eg,1 = −0.1, eg,2 = 0.1

d1, ∆1 a1 a2 a3 a1 a2 a3 a1 a2 a3

1, 1 1.1833 2.2363 5.0656 1.1832 2.2551 5.0703 1.1814 2.2763 5.0774
1, 102 0.3760 2.0975 5.0489 0.3760 2.0978 5.0490 0.3760 2.0980 5.0491
1, 103 uuu 2.0961 5.0488 uuu 2.0962 5.0488 uuu 2.0962 5.0488

10, 1 1.1746 1.7081 4.7917 1.1798 1.7571 4.7981 1.1785 1.8120 4.8082
10, 102 0.3760 1.2453 4.7699 0.3760 1.2467 4.7700 0.3760 1.2483 4.7701
10, 103 uuu 1.2380 4.7697 uuu 1.2382 4.7698 uuu 1.2383 4.7698

102, 1 1.1696 1.5962 4.7569 1.1787 1.6555 4.7635 1.1781 1.7218 4.7740
102, 102 0.3752 0.7413 4.7343 0.3758 0.7477 4.7344 0.3760 0.7554 4.7345
102, 103 uuu 0.7040 4.7341 uuu 0.7048 4.7341 uuu 0.7057 4.7342

103, 1 1.1689 1.5834 4.7533 1.1786 1.6440 4.7599 1.1780 1.7117 4.7705
103, 102 0.3726 0.5432 4.7307 0.3753 0.5586 4.7307 0.3760 0.5764 4.7309
103, 103 uuu 0.4170 4.7305 uuu 0.4207 4.7305 uuu 0.4250 4.7305

104, 1 1.1688 1.5821 4.7529 1.1786 1.6428 4.7596 1.1780 1.7107 4.7701
104, 102 0.3710 0.5065 4.7303 0.3750 0.5247 4.7304 0.3760 0.5459 4.7305
104, 103 uuu uuu 4.7301 uuu uuu 4.7301 uuu 0.3242 4.7301

uuu, computations unsuccessful.
System parameters: eg,1 and eg,2 (in table) and d1 = d2 and ∆1 = ∆2.
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Example symmetrical systems

Consider a beam carrying identical rigid bodies at its ends. The beam AB is tubular,
of length L, outside diameter d0 = 0.04m, inside diameter di = 0.03m, E = 205 ×
109 N/m2 and r = 7851.0kg/m3. The flexural rigidity is EI = Ep(d4

0 − di
4)/64 =

17610.1Nm2, the mass per unit length of the beam is m = rp(d2
0 − di

2)/4 = 4.316313
kg/m. The cylindrical steel end-bodies (assumed rigid compared with the beam) are
of diameter D = 0.3m and axial width w = 0.10m. The mass is M1 = M2 = M =
rwpD2/4 = 55.495449kg. The position of the centre of mass from the beam end is
eg,1 = eg,2 = w/2 = 0.05m. The moment of inertia of the end-body about an axis
through the centre of mass and normal to the pane of vibration is J1 = J2 = J =
M(D2/16 + w2/12) = 0.358408kgm2. The mass parameter is d1 = d2 = d = M/mL =
12.857143/L, the moment of inertia parameter is ∆1 = ∆2 = ∆ = J/mL3 = 0.0830357/L3

and the centre-of-mass offset parameter is eg,1 = eg,1 = eg = w/2L. From equation 2,
a natural frequency is w = a2[EI/m]1/2/L2 rad/s.

The beam carrying a rigid body at each end shown in Fig. 4(a) has boundary con-
ditions (d2, d2). For a beam of length L = 2m, the system parameters are d = 6.42857,
∆ = 0.01037946 and e = 0.025. The first three frequency parameters (calculated from
equation 18 with U(1) and V(1) obtained from equation 8) are a1 = 2.79758, a2 =
4.62953 and a3 = 6.19687 and the corresponding natural frequencies are w1 =
124.977 rad/s, w2 = 342.247 rad/s and w3 = 613.211 rad/s. Because of symmetry, the
mode shapes will be similar to those of a free–free uniform beam. There will be two
nodes at the first non-zero frequency mode, three nodes at the second mode, and so
on. For odd modes, the slope at the mid-point of the beam is zero; and for even
modes, the mid-point is a node. The system shown in Fig. 4(b) is ‘half ’ that shown
in Fig. 4(a). Here the length of beam is L = 1m and the system parameters are d =
12.85714, ∆ = 0.083033571 and e = 0.050. The boundary conditions are (c0, d2). The
first three frequency parameters (calculated from equation 18 with U(1) and V(1)

TABLE 5 The first three frequency parameters for a beam with pinned heavy rigid bodies
at its ends

(d2, ∆2) ep,2 = −0.3 ep,2 = 0.0 ep,2 = 0.3

(d1, ∆1) ep,1 a1 a2 a3 a1 a2 a3 a1 a2 a3

(0, 0) −0.1 3.3291 3.6209 6.8010 2.8628 5.7606 8.7083 2.3089 4.8610 7.6157
0.0 3.3247 4.0201 7.4324 †3.1416 6.2832 9.4248 2.4984 5.2759 8.2385
0.1 3.3159 4.4972 8.1495 3.4761 6.8862 10.0000 2.7225 5.7596 8.9404

(102, 10) −0.1 0.4504 0.8540 4.7321 0.6291 0.9013 4.7327 0.6582 1.0308 4.7370
0.0 0.4526 0.7766 4.7309 0.6311 0.8368 4.7316 0.6422 0.9945 4.7358
0.1 0.4534 0.6758 4.7303 0.6116 0.7715 4.7309 0.5993 0.9640 4.7351

†Classical pinned–pinned beam.
System parameters: eg,1 = −0.1 and eg,2 = 0.2, ep,1 and ep,2 (in table) and d1 = d2 and ∆1 = ∆2.
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obtained from equation 12) are a1 = 1.39879, a2 = 3.09844 and a3 = 5.62826 and
the corresponding natural frequencies are w1 = 124.977 rad/s, w2 = 613.211 rad/s and
w3 = 2023.359 rad/s. Note that the odd mode frequencies of the system shown in
Fig. 4(a) coincide with the frequencies of system shown in Fig. 4(b). The boundary
conditions of the system shown in Fig. 4(c) are (b0, d2). The system parameters are
the same as those of Fig. 4(b). The first three frequency parameters are a1 = 2.31477,
a2 = 4.21379 and a3 = 7.14158 and the corresponding natural frequencies are w1 =
342.247 rad/s, w2 = 1134.149 rad/s and w3 = 3257.711 rad/s. Note that the even mode
frequencies of the system shown in Fig. 4(a) coincide with the frequencies of system
shown in Fig. 4(c).

The system shown in Fig. 4(d) is pinned at A and at B; that is, the boundary con-
ditions are (b2, b2). The system parameters are the same as those in Fig. 4(a). The
first three frequency parameters (calculated from equation 24 with U(1) and V(1)
obtained from equation 15) are a1 = 2.78492, a2 = 4.33466 and a3 = 5.76100 and
the corresponding natural frequencies are w1 = 123.848 rad/s, w2 = 300.037 rad/s and
w3 = 529.981 rad/s. Because of symmetry, the frequency modes will be similar to
those of a pinned–pinned uniform beam. The first mode shape will not have a node,
the second mode will have one and so on. For odd modes, the slope at the mid-point
of the beam is zero; for even modes, the mid-point is a node. The system shown in
Fig. 4(e) and 4(f) are ‘half’ that in Fig. 4(d). The boundary conditions of the system
in Fig. 4(e) is (c0, b2) and the first three frequency parameters are a1 = 1.39246, a2

= 2.88050 and a3 = 5.55122 and the corresponding natural frequencies are w1 =
123.848 rad/s, w2 = 529.981 rad/s and w3 = 1968.346 rad/s. The odd mode frequen-
cies of the system shown in Fig. 4(d) coincide with the frequencies of system shown
in Fig. 4(e). The boundary conditions of the system in Fig. 4(f) is (b0, b2) and the
first three frequency parameters are a1 = 2.16733, a2 = 4.07300 and a3 = 7.09351
and the corresponding natural frequencies are w1 = 300.037 rad/s, w2 = 1059.629
rad/s and w3 = 3214.006 rad/s. The even mode frequencies of they system shown in
Fig. 4(d) coincide with the frequencies of system shown in Fig. 4(f).

Concluding remarks

The vibration of a Euler–Bernoulli uniform beam carrying a rigid body at each end
was considered in this paper. Combinations of boundary conditions were consid-
ered: classical clamped, pinned, sliding or free, the translation and rotation of an
unrestrained end-body, the translation and/or rotation of a restrained end-body and
special boundary conditions. The frequency equations were expressed as a second-
order determinant equated to zero. Schemes were presented to obtain the elements
of the determinant and to calculate the natural frequency parameters. The first three
frequency parameters of a beam with a body attached at its ends and ‘free’ to trans-
late and rotate were tabulated. The next case considered was where the end-body is
pinned. Special and degenerate combinations of boundary conditions were classi-
fied into 100 types. The first three frequency parameters were tabulated for selected
sets of system parameters. Combinations of classical ‘clamped’, ‘pinned’, ‘sliding’
or ‘free’ boundary conditions were not included.



The trend in frequency changes when one or more system parameters are
increased indefinitely, as demonstrated in the tables, and this was explained from
physical considerations. Computations in double precision were not successful for
combinations of system parameters for which the natural frequency parameter is
small. Computations would be successful with higher-precision arithmetic. The
results presented (for several conceivable systems) may be used to judge frequen-
cies obtained by numerical methods.
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