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ABSTRACT 
Moment functions based on Tchebichef polynomials have 
been used recently in pattern recognition applications. 
Such functions have robust feature representation 
capabilities needed for a recognition task. This paper 
explores the possibility of using orthonormal versions of 
Tchebichef polynomials for image compression. The 
mathematical framework for the definition of Tchebichef 
transforms is given, along with the various analytical 
properties, recurrence relations and transform equations.  
Initial experiments with gray level images have yielded 
promising results, with the Tchebichef transform giving a 
higher PSNR value compared to the cosine transform for 
certain image reconstructions. 
 
KEY WORDS 
Discrete Orthogonal Polynomials, Tchebichef 
Polynomials, Image Reconstruction, Image Compression, 
Discrete Cosine Transform. 
 
 
1.  Introduction 

Moment functions based on discrete orthogonal 
polynomials have been recently used as shape descriptors 
in computer vision applications [1,2].  Orthogonal 
moments provide better feature representation capability 
and improved robustness with respect to image noise, 
over other types of moments [3-5]. Commonly used basis 
functions for these applications are the discrete 
Tchebichef (Chebyshev),  Hahn, and Krawtchouk 
polynomials. The Tchebichef polynomials have unit 
weight and algebraic recurrence relations involving real 
coefficients, which make them suitable for defining image 
transforms for compression and reconstruction.  

Discrete Cosine Transforms (DCT) are widely used in the 
area of signal processing, particularly for transform 
coding of image data.  The 8-point DCT is the basis of the 
JPEG standard, as well as several other standards such as 
MPEG-1 and MPEG-2.  The basis vectors of the DCT are 
derived from the class of discrete Chebyshev polynomials 
[6], which are defined as follows.  
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in (1),  the basis functions for the DCT are obtained as 
follows [6,7]: 
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The above discussion points to a close mathematical 
relationship between the coefficients of a Chebyshev 
transform and the Discrete Cosine Transform.  This 
motivates us to consider other types of discrete 
Chebyshev polynomials that are suitable for similar 
applications in signal and image processing. For example, 
the Tchebichef moments in [1]  are defined based on a set 
of  kernel functions which satisfy the following 
recurrence relations: 

T0(i) = 1 

T1(i) = 2i + 1− N 

(p+1)Tp+1(i)−(2p+1)(2i+1−N)Tp(i)+p(N2−p2)Tp−1(i)= 0, 
   p=1,2,…,N−1,  i=0,1,…,N−1.   (4) 

The orthonormal versions of the above set of polynomials 
are particularly useful for feature representation, image 



reconstruction, and recognition. This paper examines the 
transform properties of the above class of polynomials, 
and shows that they can be applied in image compression 
algorithms. Experimental results show a close similarity 
between the performance of the Discrete Cosine 
Transform and Tchebichef transform. For certain gray 
level images, the Tchebichef transform provides a better 
reconstruction error than the DCT. 

The paper is organized as follows:  The next section gives 
the mathematical framework for defining orthogonal 
Tchebichef transforms, and presents the corresponding 
basis images and transformation matrices.  Section III 
outlines the important transform properties that are useful 
in a compression algorithm.   Section IV presents the 
results of a several experiments carried out using gray-
level images.  
 
 
2.  Orthonormal Tchebichef Polynomials 
 
The orthonormal version of the one-dimensional 
Tchebichef functions in (4)  is given by the following 
recurrence relations in polynomials tp(x) of degree p 
defined on a discrete domain x = 0,1,… N−1: 
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The starting values for the above recurrence relation can 
be obtained from the following equations: 
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The functions {tp(x)} satisfy the following properties of  
orthogonality and completeness: 

)()()(

)()()(

1

0

1

0

yxytxt

qpxtxt

N

p
pp

N

x
qp

−=

−=

∑

∑
−

=

−

=

δ

δ
 (8) 

At this stage, it is worthwhile comparing the recurrence 
relations for Tchebichef polynomials as given in (5) with 
that of the Discrete Cosine Transform: 
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                 p = 3,…,N−1,   x = 0,1,…,N−1. (9) 

where the starting values (for p=1,2) of the DCT 
recurrence relation are given by (3). 

For more details on the definition of Tchebichef 
polynomials, see [8,9]. Some of the computational aspects 
related to the evaluation of Tchebichef polynomials of 
large degrees are discussed in [10]. In this paper, we 
propose a compression algorithm similar to a 8-point 
DCT, based on an image transform requiring only 
polynomials of degree 0 through 7:  
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The inverse transformation of Eq. (10) has the form 
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Eq.(11) can also be expressed using a series 
representation involving 82 matrices as follows [11]: 
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where each 8×8 matrix  Bpq  (called a basis image) is 
defined as 
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The complete set of 64 basis images for the discrete 
Tchebichef polynomials is given in Fig. 1. 
 
 
 
 
 
 



 
Figure 1.   8×8 basis images of orthonormal Tchebichef 

polynomials 

For comparison, the values of  DCT polynomials τp(i),  
and Tchebichef polynomials tp(i),  for p=0,…7,  i=0,…3 
are given in Table 1. 
  

Discrete Cosine Transform 
0.35355  0.35355  0.35355  0.35355 
0.49039  0.41573  0.27779  0.09755 
0.46194  0.19134 -0.19134 -0.46194 
0.41573 -0.09755 -0.49039 -0.27779 
0.35355 -0.35355 -0.35355  0.35355 
0.27779 -0.49039  0.09755  0.41573 
0.19134 -0.46194  0.46194 -0.19134 
0.09755 -0.27779  0.41573 -0.49039 

Discrete Tchebichef Transform 
  0.35355  0.35355  0.35355  0.35355 
 -0.54006 -0.38576 -0.23146 -0.07715 
  0.54006  0.07715 -0.23146 -0.38576 
 -0.43082  0.30773  0.43082  0.18464 
  0.28204 -0.52378 -0.12087  0.36262 
 -0.14979  0.49215 -0.36377 -0.32097 
  0.06155 -0.30773  0.55391 -0.30773 
 -0.01707  0.11949 -0.35846  0.59744 

Table 1.  Values of DCT and Tchebichef polynomials for 
N =8. 

3.  Transform Properties 
 
The Tchebichef polynomials in (5) satisfy the symmetry 
property given by the equation 
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The above property is also evident from the values given 
in Table 1. In addition, tp(x) also satisfies a recurrence 
relation in the variable x: 
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The above recurrence formulae are useful especially when 
Tchebichef polynomials of large degree are required to be 
evaluated [10].  The basis set of the DCT provides a good 
approximation to the eigen vectors of the symmetric 
Toeplitz matrices defined as [6,7]: 
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The orthonormal Tchebicef polynomials also satisfy the 
above property, and the plots of the Tchebichef 
polynomials values (solid lines) and the eigenvectors of Ψ  
for N=8 and ρ=0.95 (dotted lines),  are given in Fig. 2 
 
 

 
Figure 2.  Comparison of orthonormal Tchebichef 

polynomial values and the eigenvectors of the Toeplitz 
matrix. 

 



4.  Experimental Results 
 
This section provides a comparative analysis of the 
performance of the DCT and the DTT, using a set of 
standard gray-level images. The images are first 
partitioned into non-overlapping blocks of 8x8 pixels. 
Using the 8x8 transformation matrix ‘A’ of the 
polynomial values, each image block is transformed into a 
block of coefficients (Fig. 3).  A traversal through the 64 
coefficients in a zig-zag pattern (used in JPEG 
compression) is performed to progressively reconstruct 
the image from 1 to 64 coefficients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  8x8 block of coefficients with the zig-zag 
pattern. 

We use the peak signal-to-noise ratio (PSNR) as the 
normalized error measure to define the quality of the 
reconstructed image.  The PSNR value is given by 

PSNR  = 
MSE

2

10
255log10 ,          (19) 

where MSE denotes the mean square error of the 
reconstructed image with respect to the original image. 

Fig. 4 shows a set of images used in our study. The 
polynomial values are computed using the recurrence 
relations given in equations (15)-(17).  The images are 
selected in such a way that they have significantly 
different values of Spatial Frequency Measures (SFM) 
and Spectral Activity Measure (SAM) as these are image 
quality measures commonly used for testing the 
performance of compression algorithms [12]. 

 
Figure. 4.  Set of images used in the experimental 

evaluation of the Tchebichef transform 
 
The SFM and SAM values computed for the above set of 
images are given in Table 2. 
 

Image N SFM SAM 
Lenna 256 20.0813 481.1971 
Stripes 256 15.9978 33095.8027 

Fingerprint 256 23.3546 6766.2199 
Boat 512 17.8687 1131.4111 

Baboon 512 36.5393 99.3261 
Ruler 512 116.8405 384.6774 

Table 2.  SFM and SAM values of images in Fig. 4. 

 

The PSNR values computed from the reconstructions of 
the above set of images for both the DCT and the DTT are 
plotted in Figs. 5,6. 

 



 

 

 

Figure 5.  Comparison of reconstruction errors for Lenna, 
Stripes, and Boat images. 

 

 

 

 

Figure 6.  Comparison of reconstruction errors for 
Fingerprint, Baboon, and Ruler images 

It is not difficult to notice that the discrete Tchebichef 
transform gives a better reconstruction (higher PSNR 
value) for images ‘Ruler’, ‘Stripes’, and ‘Fingerprint’.  
The ‘Stripes’ image has high predictability and large 
intensity gradients. Regions of large gradients are also 
present in the ‘Ruler’ image. The ‘Fingerprint’ image on 



the other hand contains regions of high frequency.  The 
images ‘Lenna’, ‘Boat’, and ‘Baboon’ have low 
predictability compared to other images.  In general the 
discrete Tchebichef transform gives a better performance 
for images with sharp boundaries, and high predictability. 

5. Conclusion 

This paper has introduced the Discrete Tchebichef 
Transform (DTT) as a possible alternative to DCT for 
applications in image compression and reconstruction. 
The Tchebichef transform has properties that are very 
similar to that of the DCT. This can be clearly seen in the 
basis images and the transform matrices. The paper has 
presented the fundamental properties and the 
mathematical framework of the Tchebichef transform. 

The Tchebichef transform involves only algebraic 
expressions and can be computed easily using a set of 
recurrence relations. Experimental results have shown 
that the DTT can provided distinctively better 
reconstruction compared to DCT for images that have 
large intensity gradients, such as paintings and line 
drawings. DTT could also be used for compression by 
following the transformation process by quantization and 
Huffman coding. This procedure would be exactly similar 
to the DCT based compression and reconstruction. 
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