

Binary Vision Algorithms in JavaTM

R. Mukundan

Faculty of Information Technology,
Multimedia University, 75450 Melaka, Malaysia.

mukund@unitele.edu.my

Abstract

The capabilities of Java as a highly portable, multi-threaded general purpose programming language
can be effectively utilized to provide an efficient framework for learning, coding, visualizing and
demonstrating the fundamental concepts behind binary vision algorithms. Methods whose
implementations are described in this paper include connected component labeling, boundary following
algorithm, image feature extraction, and image thinning algorithm. The concept of a pseudo-screen in
introduced to generate the display of a scaled pixel grid for a highly magnified view of the pixel level
operations and the intermediate stages in recursive computing. The graphics and the user interface
classes of Java together with the thread class are used to create methods necessary for interactive input
and update of images and also for rendering the output on any Java enabled browser.

Keywords: Binary vision, Java programming, web based courseware, image processing.

1 Introduction

Binary vision algorithms form one of the core classes containing important procedures in computer
vision. This paper discusses the implementation of these algorithms in Java programming language. The
motivation for this work is the increasing use of the Internet in the learning environment as well as the
capabilities of Java as a highly portable general purpose programming language with built-in classes for
graphics and user interface functions [1]. The internal working of binary vision algorithms such as the
recursive computation of pixel values can be clearly visualized on a graphics display running on a Java
thread [2]. The user interface classes can additionally provide the mechanism for interactive menu
selection, data input, image input and image update, on a separate thread.

Since Java applets run inside a web browser, it is the most suited language in a distance learning
environment where students access notes and embedded applications through the Internet. The similarity
of the lexical structure of Java to C, and the ease with which the Java development environment can be
created, are factors that are helpful in teaching courses and developing successful projects involving
graphics and image processing algorithms.

The vision algorithms discussed in this paper are recursive connected component labeling, boundary
following, and image thinning. The concept of a pseudo screen is introduced below, which is designed
to cater to most of the common pixel level operations, and to provide a generalized framework where the
process details can be very conveniently visualized. A schematic diagram showing the major
components and the flow of control and data between the components in the above framework consisting
of the vision algorithm, the pseudo screen, user interfaces, graphics functions and threads is given in Fig.
1. This paper also presents the program code in Java, for the pseudo-screen class (which contains the
primary display related functions) and the vision algorithms mentioned above.

 145

VISION
ALGORITHMS

PSEUDO
SCREEN

USER

USER
INTERFACE

GRAPHICS
CONTEXT

THREAD
CONTROL

java.awt.Graphics

 DISPLAY

Fig. 1. Block schematic of the Java based framework for implementing vision algorithms.

2 Pseudo screen

The pseudo screen is nothing but a graphics display of the pixel array, where every pixel in the image
has a much larger representation in terms of a square or a circular region. Viewed as a data structure, the
pseudo screen has a frame buffer and a set of associated operations to be carried out at the pixel level
such as setting a pixel, retrieving a pixel value, and clearing a pixel. A schematic of the functions of the
pseudo screen class is given in Fig. 2.

PSEUDO SCREEN

Image
Buffer
B[][]

clearPixel

setPixel
Pixel coordinates

Pixel value

Pixel dimensions

APPLICATION

getPixel

Constructor

JAVA GRAPHICS CLASS

Fig. 2. Block schematic of the pseudo screen class and its components.

 146

These basic functions are important in any vision algorithm for the manipulation of images, and
particularly useful when similar functions do not exist in the Java graphics class. The Java code for the
class is in Fig. 3.

import java.awt.*;
public class PseudoScreen {
 private Graphics g;
 private int[][] B;
 int wid,hgt;

 PseudoScreen(int w, int h){ //class constructor
 B=new int[w][h]; //set up frame buffer
 wid=w; hgt=h; //pixel dimensions
 }
 public void Screen(Graphics g, boolean first){
 this.g=g; //get graphics context
 if(first) grid(); //draw pixel grid
 }
 private void grid(){ //draw pixel array
 g.setColor(Color.white);
 g.fillRect(0,0,wid*10,hgt*10);
 g.setColor(Color.red);
 for(int x=0; x<wid*10; x+=10)
 for(int y=0; y<hgt*10; y+=10)
 g.drawRect(x,y,10,10);
 }
 public void setPixel(int i, int j, int k){
 Color[] cls={Color.white, Color.blue, Color.green,
 Color.cyan, Color.red, Color.magenta,
 Color.yellow, Color.orange, Color.pink,
 Color.lightGray};
 if((i<0)||(i>wid-1)||(j<0)||(j>hgt-1)) return;
 if((k<0)||(k>9)) return;
 B[i][j]=k;
 g.setColor(cls[k]);
 g.fillRect(10*i,10*j,10,10); //set a pixel
 }
 public int getPixel(int i, int j){
 if((i<0)||(i>wid-1)||(j<0)||(j>hgt-1)) return -1;
 return B[i][j]; //return a pixel value
 }
 public void clearPixel(int i, int j){
 if((i<0)||(i>wid-1)||(j<0)||(j>hgt-1)) return;
 B[i][j]=0; //clear a pixel
 g.setColor(Color.white); g.fillRect(10*i,10*j,10,10);
 g.setColor(Color.red); g.drawRect(10*i,10*j,10,10);
 }
}

Fig. 3. Java code for the pseudo screen class.

3 Vision algorithms

In this section, we discuss four important binary vision algorithms viz., the connected component
labeling algorithm, the image feature extraction algorithm, the boundary following algorithm and the
thinning algorithm. In all these algorithms we use 8-connectedness for foreground pixels and 4-
connectedness for the background pixels. The connected component labeling algorithm uses the well
known recursive procedure to assign a label (or a color value) to all 8-connected foreground pixels of a
component [3]. The Java code for the procedure is given in Fig. 4.

 147

 void setLabels(){
 int m=2; //scr is a pseudo screen object
 for(int y=0; y<scr.hgt; y++)
 for(int x=0; x<scr.wid; x++)
 if(scr.getPixel(x,y)==1) compLabel(x,y,m++);
 }
 void compLabel(int i, int j,int m){
 if(scr.getPixel(i,j)==1){
 scr.setPixel(i,j,m); //assign label
 slow(); //thread delay
 compLabel(i-1,j-1,m); compLabel(i-1,j,m);
 compLabel(i-1,j+1,m); compLabel(i,j-1,m);
 compLabel(i,j+1,m); compLabel(i+1,j-1,m);
 compLabel(i+1,j,m); compLabel(i+1,j+1,m);
 }
 }

Fig. 4. Java method for connected component labeling.

The component labeling algorithm given above can be further modified to output additional information
such as the total number of components in a binary image and the number of pixels in each component
(component area) . The image feature extraction algorithm can then determine the shape features of each
component using geometric moments [3]. A block diagram showing the implementation aspects of this
procedure is in Fig. 5.

Image buffer
B[][]

Shape features
Moment

calculation Component area
array

Number of
connected components Component

Labeling

Fig. 5. Procedure for image feature extraction.

 void getBound(int i, int j){ //initial boundary pixel
 int p, inew, jnew, k=0, i0=i, j0=j;
 int[] ioff={-1,-1,0,1,1,1,0,-1}; //nbd offsets
 int[] joff={0,-1,-1,-1,0,1,1,1};
 int[] nbd={6,0,0,2,2,4,4,6}; //nbd index mapping
 do{ //repeat along boundary
 for(int n=0; n<8; n++){ //search in nbd
 p=k+n;
 if(p>7) p-=8;
 inew=i+ioff[p]; jnew=j+joff[p];
 if(scr.getPixel(inew,jnew)!=0){
 k=p-1;
 if(k<0) k=7;
 k=nbd[k];
 i=inew; j=jnew;
 scr.setPixel(i,j,2); slow(); break;
 }
 }
 }while((i!=i0)||(j!=j0));
 }

 148

Fig. 6. Java code for boundary following algorithm.

The boundary following algorithm given by the Java code in Fig. 6, tracks the boundary starting from an
edge pixel of a connected component, following it in the clockwise direction until the boundary closure
condition is satisfied by arriving back at the starting point. A sample input image and the corresponding
output of the boundary following algorithm are shown in Fig. 7.

Fig. 7. An input image and the corresponding output of the boundary following algorithm.

The thinning algorithm is used for skeletonization of binary images with applications in the areas of
shape representation and matching. The two pass thinning process uses successive deletion of boundary
pixels until a single 8-connected one pixel wide component is obtained, which simultaneously maintains
endline locations and approximates the medial lines of the original image. To save space, only the
primary method containing the crux of the algorithm is given in Fig. 8. The method uses two additional
functions “nbors” which returns the total number of 1-pixels in an 8-connected neighborhood of the
current pixel, and “cindex” which returns the crossing index of the current pixel [4].

 void makeThin(){
 int nb;
 boolean flag;
 do{
 flag=false;
 for(int y=0; y<scr.hgt; y++) //Pass-1
 for(int x=0; x<scr.wid; x++)
 if(scr.getPixel(x,y)==1){
 nb=nbors(x,y); //neighboring pixels
 if((nb>2)&&(nb<7))
 if(cindex(x,y)==1) //crossing index

 scr.setPixel(x,y,2); //Mark boundary
 }

 for(int y=0; y<scr.hgt; y++) //Pass-2
 for(int x=0; x<scr.wid; x++)
 if(scr.getPixel(x,y)==2){
 scr.clearPixel(x,y); flag=true; slow(); //Delete
 }

 }while(flag);
 }

Fig. 8. Java code for thinning algorithm.

 149

A sample input image and the corresponding output of the thinning algorithm are given in Fig. 9.

Fig. 9. An input image and the corresponding output of the thinnning algorithm.

4 Conclusions

Java provides a good medium for the implementation of vision algorithms, with its supporting classes for
graphics, user interfaces, and threads. Being the language for the Internet, it is even more suitable for
developing web based courseware. The work presented in this paper details some of the important binary
vision algorithms in the framework of Java classes, and is intended to stimulate further research towards
the development of a comprehensive set of class libraries for more advanced algorithms in image
processing and computer vision.

5 Acknowledgments

The author is grateful to Prof. Lee Poh Aun (Dean of the Faculty of Information Technology,
Multimedia University) for his encouragement and suggestions.

References

[1] P. Chan and R. Lee: The Java Class Libraries. Addison-Wesley, Massachusetts (1998).

[2] S. Oaks and H. Wong: Java Threads. O’Reilly (1997).

[3] R. Jain, R. Kasturi and B. Schunck: Machine Vision. McGraw-Hill (1995).

[4] J.R. Parker: Practical Computer Vision Using C. John Wiley & Sons (1994).

 150

