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ABSTRACT 

Seismic behaviour of typical unreinforced masonry (URM) brick houses, that were common in 
early last century in New Zealand and still common in many developing countries, is 
experimentally investigated at University of Canterbury, New Zealand in this research. A one half-
scale model URM house is constructed and tested under earthquake ground motions on a shaking 
table. The model structure with aspect ratio of 1.5:1 in plan was initially tested in the longitudinal 
direction for several earthquakes with peak ground acceleration (PGA) up to 0.5g. Toppling of end 
gables (above the eaves line) and minor to moderate cracking around window and door piers was 
observed in this phase. The structure was then rotated 90º and tested in the transverse (short) 
direction for ground motions with PGA up to 0.8g. Partial out-of-plane failure of the face loaded 
walls in the second storey and global rocking of the model was observed in this phase. A finite 
element analysis and a mechanism analysis are conducted to assess the dynamic properties and 
lateral strength of the model house. Seismic fragility function of URM houses is developed based 
on the experimental results. Damping at different phases of the response is estimated using an 
amplitude dependent equivalent viscous damping model. Financial risk of similar URM houses is 
then estimated in term of expected annual loss (EAL) following a probabilistic financial risk 
assessment framework. Risks posed by different levels of damage and by earthquakes of different 
frequencies are then examined. 

 

KEYWORDS:  Unreinforced masonry (URM), seismic performance, fragility, expected annual 
loss (EAL), hazard survival probability. 

1. Introduction 

Dynamic tests of unreinforced masonry (URM) buildings and wall components have been 
conducted in different parts of the world in order to investigate rehabilitation requirements of such 
building. Tomazevic (1987) tested dynamically a one-seventh scaled four-storey unreinforced brick 
masonry model building. His model possessed a reinforced concrete rigid floor diaphragm and 
masonry piers from floor to ceiling height. Since all the damage was observed in the first storey, he 
recommended a storey mechanism model for the analysis of such buildings. He also tested three 1:4 
scale two-storey model houses constructed in brick laid in cement, lime and sand mortar with 
timber floors representing old historic houses (Tomazevic 1996). The models were constructed with 
and without roof ties to investigate and compare the effect of these ties on the seismic behaviour of 
such buildings. He concluded that the behaviour of URM houses depended on the rigidity of the 
floor diaphragm and the connection between the diaphragm and the walls. Qumaruddin and 
Chandra (1991) conducted shaking table tests of small scale URM building models. They reported 
that the walls supporting floor/roof suffer more damage if the shaking is normal to them unless the 
strength of in-plane walls is mobilised through diaphragm action.  
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Response of an instrumented two-story URM shear wall building with flexible diaphragms has been 
reported previously by Tena-Colunga and Abrams [1992]. This triggered a whole series of 
experimental investigation on URM houses with flexible floor diaphragms. Calvi and Pavese (1995) 
conducted full scale tests on a two-storey brick masonry physical model with flexible floor 
diaphragm to explore dynamic parameters and failure mechanisms in URM buildings. Costley and 
Abrams (1996) reported tests of two 3/8 scale models constructed in brick with cement, lime and 
sand mortar with flexible floor and roof to explore simplified methods for evaluation and 
rehabilitation of URM buildings. Benedetti and Pezzoli (1996) conducted a comprehensive study to 
investigate the behaviour of URM buildings before and after seismic intervention. They reported 
testing of 24 half-scale URM buildings models constructed of brick or stone in lean mortar and 
flexible floor and roof representing existing masonry buildings. Recently, Peralta et al (2002) 
investigated seismic performance of rehabilitated floor and roof diaphragms in pre-1950s 
unreinforced masonry buildings, and Yi et al (2006 a,b) conducted experimental and analytical 
investigations on the seismic behaviour of a two-storey URM building.  

In addition to the above mentioned dynamic testing of 3-dimensional models, dynamic tests have 
been conducted on URM components as well to investigate their seismic performance. Magenes 
and Calvi (1995) conducted dynamic tests on eight URM walls to scrutinize the influencing 
parameters such as mortar strength and aspect ratio on in-plane failure modes and compared the 
results with quasi static tests conducted on similar specimens. They found good correlation between 
dynamic and quasi-static test results in terms of failure mechanism and interaction of fundamental 
parameters. Doherty (2000) and Simsir et al (2002) have reported dynamic testing of scaled URM 
masonry walls conducted to investigate their out-of plane behaviour. They concluded that the out-
of-plane collapse of URM walls is primarily associated with excessive displacement rather than 
attainment of static out-of-plane strength of the walls.  

Increasing interest in the last few decades in masonry construction has resulted in research and 
prescription of seismic vulnerability assessment methodologies for URM buildings. For this 
purpose, visual assessment methods are prescribed by several sources such as: FEMA154 (1988), 
Sobaih (1999) and NSET (2000). Detailed assessment methods are given by Arya (1992), NZSEE 
(1995), NZSEE (2006), FEMA356 (2000) and Tomazevic (1999). Magenes (2000) has given a 
more comprehensive description of an assessment procedure of URM buildings based on the 
preceding works by Magenes and Calvi (1999). The study conducted by Moon et al (2006) has led 
to recommendations for seismic evaluation and retrofit of low-rise URM structures.  

For out-of-plane vulnerability assessment of URM walls, Priestley (1985) proposed a velocity-
based approach founded on equal-energy principle considering the energy balance of the 
responding walls and reserve capacity of rocking walls. However, in this method the energy 
demand is very sensitive to the selection of elastic natural frequency. Lately, displacement-based 
approach has been proposed by various researchers including Doherty (2000), Doherty et al (2002), 
Griffith et al (2003) and Griffith and Magenes (2003). They have proposed a tri-linear static force-
displacement relationship for seismic vulnerability assessment of out-of-plane walls. In particular, 
Griffith et al (2003) predicted collapse by using “appropriate” stiffness and elastic response spectra 
and, in contrast to Priestley (1985), argued that the initial stiffness (thereby the initial period) is not 
crucial in determining the occurrence of collapse. De Felice and Giannini (2000, 2001) studied out-
of-plane resistance of masonry walls based on simple collapse mechanisms and conducted 
numerical analysis taking into account the connection between the longitudinal and transverse 
walls. ATC40 (1996) proposed a new displacement based seismic evaluation methodology based on 
the Capacity Spectrum Method for reinforced concrete buildings. The method utilizes the 
acceleration-displacement response spectra (Mahanay et. al., 1993) as demand curve and pushover 
curve as the capacity curve. The method has been used by Costley and Abrams (1996) to predict in-
plane capacity of unreinforced brick masonry model buildings. 

Present work seeks to estimate financial loss through investigation of the dynamic performance of 
URM houses.  In this context, a half scale brick masonry house with a flexible floor and roof was 
dynamically tested on shaking table. It investigates deficiencies in URM houses, and their effect on 
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the overall seismic performance. Furthermore, it focuses on the development of an analytical 
method to generate fragility functions to predict the extent of damage in such houses at various 
levels of ground shaking based on the experimental observations. Fragility curves thus drawn are 
used to estimate financial loss. The authors are aware of some studies investigating fragility of 
URM structures (Craig et al 2002, Park et al 2002, Towashiraporn et al 2002) but none have 
extended the fragility functions to seismic loss assessment. An earthquake–recurrence relationship 
is defined to transform earthquake intensity to annual frequency. A loss ratio, which is the ratio of 
the cost necessary to restore the full functionality of the structure to the replacement cost, is then 
assigned to each damage state observed experimentally. Expected annual loss (EAL) is calculated 
using the extension of the Pacific Earthquake Engineering Research (PEER) Centre’s triple integral 
formulation (Krawinkler and Miranda, 2004), which has been extended by Dhakal and Mander 
(2005) to a quadruple integral equation. Limitations of the study and sensitivity to various 
parameters are reported. Comments useful to owners and insurers of the buildings are made from an 
insurance point of view. 

2. Experimental Investigation 

A two-storey half-scale URM model house was constructed and tested under earthquake ground 
motions on a shaking table. The one-room per floor house was constructed with clay brick masonry 
laid with cement-lime-sand mortar. The model house had a conventional timber floor and timber 
frame roof clad with clay tiles. The layout of openings, door and windows were sized and located to 
be representative of a range of a typical construction practice. The chosen model represents a 
generic non-engineered masonry house. Two examples of prototype in Nepal and New Zealand are 
given in Bothara (2004). Due to the shaking table limitation a length scale of half (1:2) was adopted 
for this study. Thus, twin wythe walls were replicated in the model as a single wythe. The model 
was constructed with the same material as the idealised prototype. By adopting constant 
acceleration similitude, constant stress and strain similitude are also achieved. This led to the 
following scale factors: force scale, SF = ¼; frequency scale, Sf = 1.414; time and velocity scale St = 
Sv = 0.707; and mass density scale Sρ = 2. The model structure with aspect ratio of 1.5:1 in plan was 
initially tested in the longitudinal direction against several earthquakes with PGA up to 0.5g. The 
structure was then rotated 90º and tested in the transverse (short) direction against ground motions 
with PGA in excess of 0.5g. 

For the mass similitude, live loads were ignored. Additional masses of 120 kg, 1.97 tonne and 2.1 
tonne were required at the gable walls, floor and eaves level, respectively. Out of the 120kg of 
additional mass required, only 36 kg could be attached to each gable wall due to space constraint 
and the rest were added at the eaves level during the longitudinal testing. Additional masses of 2.05 
tonne and 2.09 tonne were added at the floor level and eaves level, respectively. When testing in the 
transverse direction, the gable walls were not loaded with additional loads and this load was added 
to the eaves level load. To load the front and back walls, additional masses were fixed to the floor 
joists and roof ties. To load the side walls for stress simulation, platforms were constructed, one end 
of which was rigidly tied to the transverse walls and other end rested on the sliding joints supported 
on floor joists or roof ties. 

2.1 Model Construction 

The foot print of the 3.2m high model was 2.88x1.92m as shown in Figure 1. In constructing the 
model house, recycled full size wire cut bricks typical of early 1930s known as the “seventy series” 
were used. Based on customary building practices in early last century a mortar mix of 1:1:6 
(cement: lime: sand) was adopted. Coarse river sand consisting up to 3mm particle size was used 
for the mortar with hydrated lime and ordinary Portland cement as binder. Rimu, a native New 
Zealand wood, was used for rafters and flooring material. For the rest of the woodwork, Pinus 
Radiata was used. A standard procedure was adopted in constructing the model house. During the 
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construction of the model house, comprehensive tests were conducted to track mechanical 
properties of the masonry. Average values of mechanical properties are presented in Table 1. 

Doors and windows were constructed of 30x50mm timber section with a bearing of 75mm on wall. 
The floor was constructed of 10mm thick and 85mm wide Rimu tongue and groove flooring nailed 
to 35x125mm timber joists. The joists were nailed to 35x50mm wooden wall plates laid on the front 
and back walls. The wall plates just rested on wall without any mechanical anchorage with the wall. 
The end joists were nailed to the side walls and structurally isolated from floor planks to isolate 
these side walls from the front and back walls. A tiled roof was laid on a 33-degree pitched timber 
frame, and the roof accommodated around 2 tonne of additional mass. Roof purlins were simply 
seated on the gable walls without any nailing. To observe the relative performance of different 
roofing practices, all roof tiles on one pitch and alternate roof tiles on the other pitch were tied 
down with binding wires to the purlins when tested in the longitudinal direction. However, when 
tested in the transverse direction, half of the tiles on one side were untied and rest were alternatively 
tied down; and on the other slope all the tiles were tied down. 

 

2.2 Experimental Procedure  

A total of 61 and 41 channels of instruments were employed to collect data during the dynamic 
excitations of the model in longitudinal and transverse directions, respectively. Accelerometers and 
linear potentiometers were the principal instruments used. The potentiometers were employed to 
measure crack openings at pre-determined locations, shear deformations of the piers, and sliding 
between floor/roof and the walls. In order to measure the relative displacement between floor/roof 
and face loaded walls, potentiometers were attached at the floor and roof levels along the central 
line of the side solid wall during longitudinal shakings and the front wall during transverse 
shakings. Moreover, the in-plane shear deformation of the piers was measured by attaching 
potentiometers diagonally across piers 1-4 in the front wall (see Figure 2) during longitudinal 
shakings and across piers 11-14 (see Figure 2) during transverse shakings. Similarly, one 
accelerometer was attached to the base slab to track input acceleration history, and accelerometers 
were attached to the middle of the four walls at the floor and roof levels to measure movement of 
the model (at different locations) in the direction of shaking. Data was collected via a purpose-built 
data acquisition system operating at 400Hz and 1000Hz during the longitudinal and transverse 
shakings, respectively. 

The testing program was basically divided into two parts: i) identification of dynamic 
characteristics; and ii) investigation of the behaviour of the model building in strong shaking. For 
identification of dynamic properties, white-noise shaking tests were conducted. To investigate 
building response to strong shaking, it was subjected to frequency-scaled earthquake ground 
motions. Sequence of the shaking table tests performed in the longitudinal and transverse directions 
is presented in Table 2 and Table 3, respectively. 

2.3 Experimental Results 

2.3.1 Longitudinal Direction Shaking 

Cracks developed during different stages of the longitudinal shaking are shown in Figure 2. Figure 
3 presents the photographs of the damage suffered by the model during this shaking. It should be 
noted that no instability of any part of the model was observed (excluding gable walls) during the 
longitudinal shaking tests. A vertical crack was observed in the mortar joint of the rowlock brick 
just above the front wall door after the Taft (0.2g) excitation as shown in Figure 2. During the Taft 
(0.3g) excitation, one of the gable walls cracked and started to rock at the eaves level, just below the 
additional load fixing level of the end wall. A residual displacement of 3 mm was observed at the 
top of the gable wall at the end of this excitation. 



5 

During the RA01168 (0.5g) excitation the other gable wall also cracked at its base (seen in Figure 2 
and Figure 3b) and started to rock. A few more cracks were observed just below the top of the gable 
walls and in the bottom and top of the front wall piers (shown in Figure 3c). A compression crack 
below Pier #4 at the wall corner and compression edge failure at the bottom of the rocking gable 
walls and its base were also observed during subsequent shakings. 

As can be seen in Figure 2, a vertical flexural crack developed between the 1st and 2nd storey 
windows in one side during the EL40NSC excitation. As shown in Figures 3d and 3e, the cracks 
developed just below and above the pier in earlier shaking articulated into stair-stepped crack 
pattern. A horizontal crack was also observed just above the floor wall plate in the front wall. From 
the maximum displacements measured during different shakings, the weighted displacements are 
calculated at the seismic centre of mass of the model, which are listed in Table 4 for both 
longitudinal and transverse shaking directions. 

2.3.2 Transverse Direction Shaking 

Figure 4 presents the cracks developed, and Figure 5 presents the photographs of damage suffered 
by the model during different excitations in the transverse direction. It should be noted that no 
instability of any part of the model (front and back walls suffered partial instability) was observed 
during the transverse shaking tests. As can be observed in Figure 4, most of the cracks concentrated 
in the out-of-plane wall of the second-storey whereas the side window wall (in-plane) suffered 
extensive damage in both the first and second storeys. Cracking was also observed in the solid side 
wall. Most of cracks developed during earlier excitations in the longitudinal direction widened and 
extended during the stronger excitations of this phase of testing. 

Small vertical cracks were observed above the second storey windows of the front wall after the 
Taft (0.2g) excitation. During the Taft (0.3g) excitation, a few new cracks opened at the bottom of 
the side walls. During the EL40NSC excitation, extensive cracks developed in the out-of-plane 
walls as seen in Figure 4. Vertical cracks developed along the line of jambs of the second storey 
openings in the front wall, practically isolating the wall from the in-plane walls. Similar vertical or 
stair-step cracks developed above the long window of the back wall (see Figure 5d). Once the 
severe cracking of the model started, dislocation of lintel timber pieces and permanent distortion of 
the opening frames were also observed. 

During the RA01168 (0.7g) excitation, cracks that had previously developed widened, and some 
new cracks developed. A stair-step crack was observed just above the first storey window and in the 
pier of the second storey wall (see Figure 5a) in the front wall. The front wall rocked about a 
horizontal crack along the mortar bed joint observed at the floor level during this shaking. During 
the SYLM949 excitation, extensive cracks developed in both the in-plane and out-of-plane walls. 
As can be seen in Figures 4 and 5b, more stair-step cracks were observed in the spandrel beam of 
the front wall and along the mortar joint bed in the back wall. Also can be clearly seen in Figure 4 is 
a full length horizontal crack developed along the bottom of the gable wall of the side window wall. 
Similar crack was also observed at the floor level of the side window wall. The vertical cracks in 
spandrel beam and below first storey window of the side window wall effectively divided the wall 
in two significant tall piers. During the Nahanni excitation, the cracks further widened, however, no 
new cracks were observed. 

No significant relative displacement between the floor and the supporting walls was observed. This 
contradicts the observed behaviour in past earthquakes where relative movement between floor 
structure and walls was reported (Bruneau 1994, NSET 1999). The first reason could be the model 
was quite stable until the end of the testing without much distress in the first storey. The other 
reason could be: there was around 2 tonne of mass on the floor structure that mobilised friction 
between the floor wall plate and the supporting walls, which would not exist in this magnitude in 
real structure. 
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It is noteworthy that few of the roof tiles which were not tied down with the roof structure, scattered 
badly and few of them slid off the roof slope during the RA01168 (0.5g) excitation. As shown in 
Figure 5f, these tiles slid off catastrophically during the RA01168 (0.7g) excitation and other big 
excitations. It is interesting to note the tile sliding started from the roof edge. However, no tiles tied 
down with the timber frame moved much and slid off the roof. Note that the model survived higher 
acceleration than expected for real URM masonry buildings in the field mainly because no local 
failure started that would lead to instability, and the building behaved like a box.  This can be 
attributed to good connection between the orthogonal walls at the junctions, good connection 
between floor/roof and walls, diaphragm effect, better construction/material quality and good 
foundation which are usually not available in most real buildings. 

2.3.3 Frequency domain observations 

Dynamic properties of the model were computed from the response acceleration time histories 
collected during the shaking table test. To avoid the effect of input amplitude, transfer functions for 
individual channels were calculated by normalising Fast Fourier Transfer (FFT) of each response 
channel by FFT of the input motion (in this case input acceleration at the base slab level). Intrinsic 
damping was calculated from Transfer function plots applying half-power bandwidth method 
(Chopra, 1995). The mode shapes were calculated by taking ratio of peaks in the transfer function 
for different degrees of freedom at any particular natural frequency. Because the constant of 
proportionality is the same for all degrees of freedom for any particular mode, the ratio of peaks in 
the transfer functions for the different degrees of freedom at that natural frequency are equal to the 
ratio of the mode shapes for that mode (Bracci et. al., 1992). The dynamic stiffness of the model 

was estimated using the relation K=4π2Mf2 where only the first mode was considered. In this 
relation ‘M’ is the seismic mass of the building and ‘f’ is the measured frequency. 

2.3.4 Inferred hysteretic damping 

Total equivalent viscous damping in a dynamic inelastic system is a sum of hysteretic damping, 
radiation damping associated with the rocking and intrinsic damping due to internal interactions 
within the system. From the displacement versus acceleration hysteretic loops, the hysteretic 

damping can be estimated using 
so

D
eq

E

E

π
ς
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1
=  (Chopra, 1995), in which ED = total area enclosed by 

the hysteretic loop and Eso = strain energy imposed on the system. 

From the displacement-acceleration plots of different sets of channels, hysteretic loops for the same 
time intervals were developed. For these loops, hysteretic damping was estimated and then 
weighted for their tributary mass. Similarly, the corresponding displacement of the seismic mass 
centre was estimated for these loops. The equivalent hysteretic damping after each series of shaking 
(i.e. calculated corresponding to the recorded hysteresis loops) is listed in Table 4. 

3. Analytical Study 

An analytical investigation of the model was conducted through finite element simulation and 
simple rational calculations. The calculations based on a plastic mechanism analysis were 
performed to estimate the strength of the model. The dynamic structural characteristics of the 
models were assessed through finite element simulation and a static condensation technique. Note 
that although it was intended to construct a flexible diaphragm, the resulting floor was rigid because 
of the tongue & groove flooring, high strength/stiffness of the diaphragm, scale effect, connection 
between wall and floor etc. Hence, a rigid diaphragm system was assumed whenever needed in 
analytical modelling. 
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3.1 Finite Element Analysis 

A linear elastic finite element model using four node shell elements for walls was developed in 
SAP2000 (CSI 2002). Masonry was assumed to be isotropic (Dhanasekar et al 1982). The floor 
joists of the model were comprised of beam elements which were pinned at the ends. The floor 
boards were modelled as discrete plane elements isolated from the walls. Roof rafters and ties were 
discretised as beam elements and ties were pinned at the ends. The dynamic modulus of elasticity 
was assumed as 390MPa based on the average measured crushing strength of masonry (Mengi & 
McNiven, 1986) rather than the measured static modulus of 6100MPa. It is because dynamic 
modulus of elasticity is much lower than the static one (Mengi & McNiven, 1986). This point is 
also proved by measured frequencies. If the static modulus of elasticity had been used to calculate 
the frequency in the longitudinal direction, the predicted frequency of the model would have been 
in the range of 40Hz, far more than the measured values. 

Static analysis of the model suggested flexural cracking to be the dominant mode of damage. In 
longitudinal shakings, analysis showed that the cracks would develop at the top and bottom of the 
front wall piers. In transverse shakings, flexural cracks were expected to develop in the front wall 
above the second storey windows corners. With increasing levels of lateral load, the bottom of the 
in-plane walls showed development of tensile cracks. Estimated base shear capacity at which the 
cracks would develop during longitudinal and transverse shakings and the corresponding 
deflections are shown in Table 5. 

Table 6 presents the frequencies computed from dynamic analysis using the linear finite element 
model. Out-of-plane behaviour of the walls normal to the shaking was observed as the most 
dominant mode of vibration. For comparison, the frequency and mode shapes of the model were 
also estimated assuming a 2-degree of freedom system using a static condensation technique 
assuming undamped vibration (Chopra, 1995). For calculation of frequency, mass is assumed 
lumped at floor and roof level only. In full-scale URM houses, these types of floors hardly 
contribute 10-20% of the building mass and such houses are better represented by distributed mass 
system. However, in the tested model, additional mass required for stress simulation was fixed to 
the floor and roof which was around 50% of the model mass, thereby justifying the lumped mass 
assumption. The finite element analysis in SAP2000 also lumps the mass at certain level even if the 
system is distributed one. The comparison of dynamic properties from the finite element analysis 
and from the static condensation technique is shown in Table 6. 

3.2 Mechanism Analysis 

Base shear capacity is the capacity of the building at which the building gets to the onset of plastic 
behaviour. Thus the base shear capacity/coefficient of the model is calculated in this study from 
mechanism analysis as prescribed by NZSEE guidelines. Force based approach (Paulay and 
Priestley, 1992) is used to determine the in-plane strength of the model. Overturning moments were 
considered for strength estimation of the wall piers. For the estimation of base shear coefficients at 
cracking, a storey failure mechanism of the model structure (pier action of the wall) was assumed. 
To assess the strength of the model, plastic analysis was conducted. The front wall (with door and 
window openings) was found to be dominated by rocking whereas the back wall to be shear 
dominated in longitudinal shaking.  

For the front wall, it was predicted that cracking would initiate at a base shear of 24kN and a 
rocking mechanism would develop at 32kN. The model was expected to develop a mechanism at a 
base shear coefficient of 0.7 (54kN). The side walls were predicted to develop tensile crack at their 
bases in transverse shaking at a base shear coefficient of 0.36 (28kN). After that, it was obvious that 
these walls would globally rock about their base. The model was expected to rock at a global base 
shear coefficient of 0.55 (42kN).  
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3.3 Comparison of Experimental and Analytical Results 

As predicted analytically, the front wall ground floor piers rocked when the model was shaken in 
the longitudinal direction. However, the rocking surfaces manifested in stair-step cracking as well 
in few piers rather than just at the bottom or top. As predicted, the back wall turned out to be much 
stronger than the front wall and did not suffer any damage in general. The experimental pier 
cracking strength in longitudinal shaking was 23% higher than the analytical prediction. However, 
at the first cracking, 0.69mm displacement was observed as compared to 0.18mm at eaves level 
calculated analytically using static modulus of elasticity. This shows that the model was much 
softer than estimated using the static modulus of elasticity. 

In the transverse direction, the predicted cracking strength was found to be 17% higher than the 
experimentally observed strength. However, once the model started global rocking, the predicted 
base shear coefficient was found closer to the observed one. Some cracks observed during the 
experiments were found in reasonably good agreement with the predictions of static analysis. 
Differences between the experimental and analytical predictions of elastic frequency and deflection 
were considerable if estimated using the static elastic of modulus. For example, the experimental 
fundamental frequency in the longitudinal direction observed before cracking was 13.7Hz as against 
33.1Hz and 38Hz estimated respectively from SAP2000 and static condensation using the static 
modulus of elasticity. On the other hand, using the value of dynamic modulus of elasticity estimated 
using the crushing strength of masonry (Mengi & McNiven, 1986) predicted a reasonable 
frequency, but not the deflections. Other sources of error in the estimation of frequency and 
displacements could be the uncertainty associated with the load transfer mechanism, flange effect 
and in the assumed material properties. 

4. Development of response and fragility functions 

In order to conduct seismic risk analysis, probabilistic relationships between the seismic intensity of 
the earthquakes and the maximum response (called the response function) and between the 
maximum response and a damage measure (called a fragility function) need to be established. If the 
earthquake intensity is expressed in terms of the PGA (which is not uncommon in seismic risk 
assessment methodologies), the results of the different series of the shaking table tests will give a 
series of PGA vs. maximum response points. As the number of data points is limited by the number 
of tests and the maximum response during the later tests will be influenced by the prior shakings, an 
alternate method to predict the PGA vs. the maximum response is implemented here. As derived by 
Pekcan et al (1999), the relationship between the earthquake intensity (PGA) and the maximum 
displacement of a structure can be expressed as higher of: 

ςπ B
g

C
PGA

ototypec Pr
2

∆
= , ζBCPGA C4.0=     (1) 

where cC  = base shear capacity as determined from the finite element analysis (0.7 for longitudinal 

direction and 0.55 for transverse direction); ototypePr∆  = maximum displacement of the seismic mass 

center of the prototype and ςB  is a damping related reduction factor. According to Martinez (2002), 

this factor is given by: 
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where effς  = effective viscous damping estimated from displacement-damping relationship as 

follows (Pekcan et al 1999): 
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where η = efficiency factor taken here as 0.5, y∆ = displacement at the first crack (from the test 

results, it is 0.7 mm and 1.05 mm for the longitudinal and transverse directions, respectively) and 

max∆ = maximum displacement at the seismic mass centre. The effective viscous damping predicted 

by Equation (3) includes the inherent damping in the system (assumed as 5%) and the hysteretic 

damping estimated as 2η/π(1-∆y/∆max). For verification, the equivalent hysteretic damping in the 
longitudinal and transverse directions predicted by this expression is plotted in Figure 6 together 
with the hysteretic damping estimated from the experimental results. It can be seen in the figure that 
Equation (3) reasonably captures the variation of damping with the displacement amplitude. Now 
using this damping and the base shear coefficient determined earlier, a deterministic median 
response function can be established using Equation (1). The incorporation of uncertainties in the 
response function is described later. 

To generate fragility functions, numbers from one to five that refer to increasing level of damage 
are used, as defined in Table 7. Note that this is a common form of damage classification format as 
adopted by HAZUS (1999). Based on post-earthquake utility and life-safety considerations, the drift 
ratios observed during the tests at the onset of different level of damage are summarised in Table 8. 
Note that the damage states vs. drift relationships are assumed to be deterministic in this study and 
due to lack of data, uncertainties in these fragility relationships (which are inevitable) are not 
considered. Next, combining the response and fragility functions, the median PGA corresponding to 
the boundaries of different damage states can be calculated using Equations (1)-(3), which are also 
presented in Table 8. 

In dynamic analysis, the resulting variability in the response function results entirely from the 
randomness of the input motion; i.e. if two different records are scaled to the same PGA, the 
maximum response would still be different. As the computational modeling is conducted using 
crisp input data, the epistemic uncertainty is not accounted for. However, the structural resistance 
both in terms of strength and displacement capacity is also inherently variable. To encompass the 
randomness of seismic demand along with the inherent randomness of the structural capacity and 
the uncertainty due to inexactness of the computational modeling, an integrated approach as 
suggested by Kennedy et al. (1980) is used in this study. If the randomness and uncertainties are 
assumed to be distributed normally or log-normally (which is a common assumption in probabilistic 
seismic risk assessment), the composite value of the lognormal coefficient of variation (i.e. 
dispersion factor) can be expressed as: 

222
/ UDCDC ββββ ++=      (4) 

in which =Cβ coefficient of variation for the capacity which arises as a result of the randomness of 

the material properties that affect strength; assumed to be =Cβ 0.2 in this study; and 

=Dβ coefficient of variation for the seismic demand which arises from record-to-record randomness 

in the earthquake ground motion suite and found to be =Dβ 0.52 in this study; and =Uβ lognormal 

dispersion parameter for modelling uncertainty found to be approximately 2.0=Uβ  based on results 

given in Table 4. Using the aforementioned values of βC, βD and βU, Equation (4) gives βC/D = 0.6. 

As indicated earlier, the PGAs shown in Table 8 are the median (50th percentile) values. Using these 
median values and the lognormal coefficient of variation = 0.6 (as calculated above), the probability 
of the damage during an earthquake (of given PGA) being within a given state can be shown 
graphically through vulnerability curves as in Figure 7. Two vertical lines are drawn at 0.4g and 
0.72g to represent respectively the design basis earthquake (DBE) and the maximum considered 
earthquake (MCE) at Wellington, following the seismic hazard reported in the New Zealand 
loading standard (NZS1170.5 2004). The intersection of these vertical lines with these damage 
probability curves gives the probability of different damage states for the corresponding seismic 
hazard. Figure 7 shows that some 30% of the URM houses will suffer irreparable damage (DS4) or 
collapse (DS5) in a DBE, while up to 70% may suffer damage that would be either slight or 
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repairable (DS1-DS3). However if an MCE was to strike, then some 65% of such houses might 
suffer irreparable damage or collapse with remaining 35% suffering minor or repairable damage.  

5. Financial Seismic Risk Assessment Framework 

Communicating seismic risk to decision makers is an important aspect of performance based 
earthquake engineering (PBEE). One such communication tool is Expected Annual Loss (EAL) 
which can be expressed in a dollar value. EAL incorporates the entire range of seismic scenarios, 
return rate, and expected damage into a median dollar loss. Though there are many methods of 
quantifying financial risk, EAL is especially useful to decision makers for cost-benefit analysis of 
design alternatives for new structures or seismic retrofit alternatives for existing structures. 
Moreover, EAL can easily be accounted for by including into operating budgets.  

In addition to the response and fragility functions, an EAL assessment process also requires a 
seismic hazard occurrence relationship (correlating earthquake intensity with its annual frequency 
of occurrence) and a loss model (correlating damage with probable loss). When these four 
relationships are combined using a quadruple integral shown below, seismic risk can be quantified 
in terms of EAL (Dhakal and Mander 2005).  

∫ ∫ ∫ ∫=
1

0

1

0

1

0

1

0

[IM]df.IM]dP[EDP.EDP]dP[DM.DM]dP[L.LEAL aRR
  (5) 

In Equation (5), IM = intensity measure; fa[IM] = annual frequency of an earthquake of a given 
intensity IM; EDP = engineering demand parameter; DM = damage measure; LR = loss ratio (i.e. 
decision variable); P[A|B] = shortened form of P[A ≥ a | B=b]; and dP[A|B] = derivative of the 
conditional probability P[A|B] with respect to A. In this study, rather than using Equation (5) 
analytically, the integrations are conducted numerically. In fact, the integration of the response 
function (i.e. IM/EDP relationship; i.e. P[EDP|IM]) and the fragility function (i.e. EDP/DM 
relationship; i.e. P[DM|EDP]) has implicitly been performed deterministically (for median values) 
in Table 8 and using the combined uncertainty predicted by Equation (4), probabilistic vulnerability 
curves (i.e. IM vs. DM curves; i.e. P[DM|IM]) have been generated in Figure 7. A hazard 
recurrence relationship (between fa and IM; i.e. fa[IM]) and a loss model (between DM and LR; i.e. 
P[LR|DM]) need to be established to complete the remainder of the EAL assessment process, which 
is explained below. 

6. Assessment of Hazard Survival Probability 

6.1 Earthquake Recurrence Relationship 

Based on historical earthquake data, relationship between the peak ground acceleration (PGA) of 
earthquakes (denoted as ag) with their annual frequency of occurrence (fa) has been established as: 

( )qa

DBE

g

g
f

a
a

475
=       (6) 

where ag
DBE is the PGA of the DBE (10% probability of occurrence in 50 years) and q is an 

empirical constant found to be equal to 0.33 for seismic hazard in New Zealand (NZS1170.5 2004). 

6.2 Hazard Survival Curves 

Vulnerability curves of Figure 7 can now be re-plotted by changing the horizontal axis from IM to 
fa using the earthquake recurrence relationship established earlier. Such curves are called hazard-
survival curves and they show the annual probability of the (seismic hazard induced) damage 
exceeding different limit states. Figure 8 shows the hazard survival curves for a typical URM house, 
which also give the probability of damage in such URM masonry houses falling within a limit state 
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when an earthquake of a given annual frequency strikes. Two vertical lines representing the annual 
probabilities of DBE (fa ~ 0.002) and MCE (fa ~ 0.0004) are also shown in the plots for reference. 
The intersections of any vertical line through a value of fa with the hazard survival curves give the 
probability of these damage states not being exceeded in earthquakes of that annual probability of 
occurrence. Thus obtained damage state survival probabilities in earthquakes of different 
frequencies are shown in Table 9 for a typical URM house of the tested type. Similarly, Table 10 
shows the probabilities of being in a given damage state (confidence interval) for a typical URM 
house. For example, the second row in Table 9 means that if an earthquake of annual frequency of 
0.01 (i.e. return period of 100 years) strikes, the probability of DS1 not being exceeded in an URM 
house of the tested category is 74%; and the corresponding probabilities for damage state DS2, DS3 
and DS4 are 84%, 92% and 96% respectively. Similarly, the second row of Table 10 indicates that 
in a 100 year return period earthquake, there is a 74% chance that the damage state of URM houses 
will be DS1, 10% chance that the damage will be in the range of DS2, 8% chance that the damage 
will be in DS3, 4% chance the damage will be in DS4 and 4% chance of DS5. 

7. Financial Implication of Earthquakes 

7.1 Loss Model 

To quantify financial loss, a loss model must be established to relate damage measure (DM) to a 
dollar value. In this study, the financial implication of each damage state is represented by a loss 
ratio (LR), which is the ratio of the cost necessary to restore the structure to full working order to 
the replacement cost. Deciding the cost implication of each damage state is a subjective process and 
the accuracy of the decided value will depend largely on the amount of time devoted to researching 
repair costs and their variation by extent of damage, location of building, etc. 

The assumed values and the likely range of loss ratios for different damage states are shown in 
Table 11. As no damage or repair is expected in the elastic state DS1, no financial loss is incurred 
and the loss ratio for DS1 is therefore zero. Loss ratio for DS2 is likely to fall between 0.05 and 
0.15 to account for minor repairs due to slight but tolerable damage, and LR = 0.1 is assumed for 
DS2. The loss ratio for DS3 may vary from 0.2 to 0.4 for repairing the incurred moderate damage to 
restore functionality, and a representative value of 0.3 is adopted in the present analysis. 
“Irreparable damage” under DS4 demands complete replacement as repair may be uneconomic; 
hence the loss ratio of 1 is used here. Similarly for DS5, which is complete failure/collapse the 
value of loss ratio is 1. It has been shown (Dhakal and Mander, 2005) that the financial risk is 
sensitive to the values of loss ratios, especially LR for DS2 and DS3. Hence, good judgement should 
be applied in deciding these values. Also, the LR values for DS1 (no damage), DS4 (irreparable 
damage) and DS5 (collapse) are certain and obvious, there is likely to be uncertainties in the LR 
values for DS2 (slight damage) and DS3 (moderate damage). This study has not attempted to 
quantify these uncertainties, which are hence not taken into account here. 

7.2 Probable Loss in an Earthquake 

Using the assigned loss ratios, the contribution of different damage states to the financial loss can 
be estimated. Table 12 lists the probable financial loss (as fraction of the total replacement cost) due 
to different damage states when earthquakes with annual frequencies of 0.1, 0.01, 0.001, 0.0001, 
and 0.00001 strike. The values in Table 12 are the products of the probability of being in a given 
damage state in earthquakes of different annual frequencies (obtained from corresponding Table 10) 
and the consequence; i.e. the loss ratio for the corresponding damage state (obtained from Table 
11). Graphical version of Table 12 is shown in Figure 9, which exhibits the contributions of 
different damage states and the total probable loss in the form of bar charts. 

As expected, DS1 does not incur any financial loss as it does not need any repair. Similarly, the 
financial loss incurred by earthquakes of 0.1 or higher annual frequency is also negligible as such 
frequent events do not incur any damage requiring repair or replacement (DS2 or higher damage 
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category). As confidence intervals of higher damage states are multiplied by larger values of LR, the 
higher damage-states contribute more to the probable loss although the likelihood of the 
earthquake-induced damage falling into these severer categories is not high. 

The total financial loss due to earthquakes of a given probability shown in the last column of Table 
12 is the sum of the contributions of the five damage states. The loss hazard curve shown in Figure 
10 plots the probable losses of a typical URM house against their annual frequency of exceedance. 
These curves also give information on what would be the financial loss if an earthquake of a given 
annual frequency strikes once. As expected, the larger and rarer the event the greater the financial 
loss. Conversely for frequent but low intensity events, the single-event loss is small.  

Two vertical lines corresponding to DBE and MCE are also shown in the figures. It is evident from 
Figure 10 that URM houses are likely to lose about 37% and 70% of its value due to damage 
incurred by a DBE and an MCE, respectively. A loss of 11% is possible even by the earthquakes of 
0.01 annual frequency (i.e. return period of 100 years). Similarly, 50% loss is probable in an 
earthquake of 1000 years return period. 

7.3 Calculation of Expected Annual Loss (EAL) 

The total expected annual loss can be calculated using Equation (5) by integrating the loss ratio (LR) 
over all possible annual frequencies of the seismic hazard; i.e. between 0 and 1. This general 
equation in continuous form can be expressed as: 
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In discrete form, the expected annual loss (EAL) can be calculated as: 
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in which fa[LR=lr] is the annual frequency of the loss ratio being equal to a given value lr which can 
be obtained from the loss hazard curve (Figure 10). Table 13 shows the annual loss of URM houses. 
First, the probable loss due to earthquakes of annual probability within a range is calculated which 
is the area subtended by the loss hazard curve (Figure 10) between two points on the x-axis. Then 
the losses contributed by the earthquakes with different ranges of probability are added together to 
obtain the total expected annual loss (EAL). It can be noted that the annual probability is plotted in 
logarithmic scale in Figure 10, and the absolute value of the interval between any two points on the 
x-axis decreases by an order of ten towards the left. Accordingly, the absolute value of the area 
covered is also decreasing rapidly in that direction (i.e. direction of decreasing probability) in spite 
of a higher value of the loss ratio. 

As can be observed from Table 13, the EAL of typical URM houses is $8772 for a $1 million house 
(i.e. 0.88%). Note that this model overestimates the EAL by over-emphasising the contribution of 
frequent events which are not likely to cause any significant damage requiring repair. The error can 
be compensated by truncating the data below a certain threshold. This threshold is found by 
locating the IM at which there will be no damage, say with 90% confidence. As shown in Figures 7 
and 8, earthquakes with PGA ≈ 0.16 (annual probability of 0.032 and return period of 
approximately 31 years) will have 90% probability of remaining in DS1; i.e. not inducing any 
damage to URM houses. Hence, the contribution to EAL of earthquakes below this threshold can be 
excluded for objectivity. In this example, EAL is found to be about 45% lower after truncating the 
contribution of earthquakes below this threshold. 

8. Discussion: Implications to Owners and Insurers 

The outcome of this analysis can provide useful information for deciding insurance strategies, but 
the applicability of any quantitative outcome from this study is limited to the category of URM 
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houses which are covered by the model used in this study. Any major alterations in the properties of 
the houses may lead to qualitatively similar but quantitatively different results. Although the tested 
model was designed to represent URM houses in NZ (Bothara 2004), the population of masonry 
houses in a country is difficult to be represented by a single type. In New Zealand, masonry houses 
are not built anymore and there are few existing old masonry houses, and they somewhat resemble 
with the tested house. On the other hand, masonry houses in Nepal (and India) vary widely. 
Obviously, the outcome of the study is not quantitatively extendable to URM houses of 
significantly different features. Nevertheless, the financial risk assessment procedure followed here 
is applicable to all structural types and by inputting appropriate fragility and response functions, the 
expected annual loss for any other type of URM houses can be derived. 

Vertical ordinate of the loss hazard curve (Figure 10) gives the probable loss (due to structural 
damage) of a house due to an earthquake of a given annual frequency of occurrence. Hence, these 
curves also represent the financial risk (excluding content loss) to the owners of such houses. 
Evidently, smaller and more frequent events will cause only a small loss to owners of such URM 
houses. Consequently, owners may be prepared to bear the risk of these frequent earthquakes by 
themselves. When moderate earthquakes (with a return period of 100 years) strike, the probable loss 
is only about 11% of the building value. On the other hand, a rarer and stronger earthquake may 
often incur a loss of 50% or more, thereby rendering the repair uneconomical and necessitating 
replacement. House owners would obviously be more inclined to pass the risk affiliated to such 
disastrous consequences to insurers. 

Note that the risk (defined as the product of probability and consequence in general terms) 
encompasses all possible hazards. In other words, the integration of the loss hazard curve (Figure 
10) represents total risk due to structural damage of a URM house. As EAL is the area subtended by 
the loss hazard curve, it therefore represents an insurer’s risk and is directly related to an annual 
insurance premium for a building if the consequences of all levels of seismic hazards are to be 
covered. The contribution of earthquakes of different frequency ranges to the total EAL is also 
graphically illustrated in Figure 11. Looking at the trend in Table 13 and Figure 11, it is apparent 
that the more frequent and smaller events that contribute more to the total financial risk, and the 
large earthquakes lead to much smaller risks due mainly to their very small annual frequency of 
occurrence (long return period). For example, among the total EAL of the URM house ($8772 per 
$1 million replacement value) investigated in this study, 60% corresponds to the risk posed by 
frequent but modest size earthquakes with an annual frequency in the range between 0.01 and 0.1 
(i.e. return periods between 10 and 100 years). 

Although the risk posed by large and rare events is small, the loss to owners would be untenable if 
these large events occur. That is why most insurance policies are targeted to cover the rarer and 
bigger hazards. In contrast, the smaller and more frequent events will cause a small loss to the 
individual owners but a significant collective risk to the insurers. If these frequent hazards are 
excluded from the insurance policy, the EAL and consequently the annual insurance premium will 
reduce significantly. From an insurance point-of-view, the risk of these smaller and more frequent 
events should ideally be carried by the owner. This can be achieved by setting an appropriate 
deductible to the insurance policy, which is a minimum loss which has to be borne by the owner in 
every event. For example, if the overhead costs of the insurer is overlooked and the premiums are 
assumed to reflect directly the risks, an insurance policy with a $1,000 deductible on a URM house 
worth $1 million implicitly means (see Figure 10) that the owner is completely bearing the 
consequence of earthquakes of up to approximately 100 years return period.  

9. Conclusions and Recommendations 

Seismic performance of a typical 2-storey URM house subjected to various ground motions in 
longitudinal as well as transverse directions has been experimentally investigated in this study. 
Damage was limited to toppling of gable walls and some cracking around window and door piers 
during the longitudinal shakings. During the shakings in transverse direction, the second-story face-



14 

loaded walls rocked and tended to fail in the out-of-plane direction. The acquired experimental data 
were processed to generate fragility functions of such URM houses. A finite element analysis has 
also been performed to assess the strength and dynamic structural characteristics of the 
experimental model. An amplitude dependent equivalent viscous damping model, which has been 
verified by the experimental results, was used to estimate the relationship between the earthquake 
intensity and the maximum response of the model. Thus developed response and fragility functions 
were combined with a code-specified hazard recurrence model and a loss model to calculate the 
expected annual loss (EAL) of typical URM houses by using a generalised probabilistic financial 
risk assessment methodology. 

Based on the experimental investigations and the financial risk analysis conducted in this study, the 
following conclusions can be drawn: 

1. Gable walls and roofing clay tiles, if present, are the most vulnerable part of an URM house. 
These could be life threatening even if the house, as a whole, survives an intense shaking. Toppling 
gable walls and sliding off the roofing tiles could be inhibited by securing them back to the roof 
structure. 

2. Out-of plane failure of the walls is the major cause behind high damage to URM houses in 
shaking. It can be significantly suppressed by increasing the bond strength between orthogonal 
walls, providing rigid diaphragm and reducing their horizontal and vertical span. 

3. Rocking is the most preferred mode of failure in walls of URM houses because it leads to a stable 
non-linear response. 

4. In-plane damage is mostly concentrated in zones of high shear stress, notably the bottom storey. 
Out-of plane damage occurs mostly in zones of high response acceleration and starts from the top 
storey. 

5. If a DBE strikes in Wellington, some 30% of the URM houses might suffer irreparable damage 
or collapse. However, for an MCE event, some 65% of the URM houses might suffer irreparable 
damage or may collapse probably leading to loss of life. It is also found that the URM houses are 
likely to incur about 37% and 70% loss in a DBE (10% in 50 years event) and an MCE (2% in 50 
years event), respectively. The EAL of a typical URM house in Wellington is found to be in the 
order of $8772 per $1million asset value (i.e. 0.88%). Note that these predictions are made by using 
earthquakes recorded in firm soil in California and are hence valid only if these records are 
representative of earthquake risk and hazard of Wellington. 

6. Although the consequence of very large earthquakes might be disastrous, they pose relatively 
small financial risk due to their very low probability of occurrence. On the other hand, smaller 
earthquakes may only cause repairable minor-moderate damage to structures, but these earthquakes 
pose a big risk as they are likely to strike more often. Calculations showed that earthquakes with a 
return period between 10 and 100 years would contribute approximately 60% to the annual 
financial risk in case of URM houses.  

7. A low-premium insurance policy with an appropriate deductible amount can be set, so that the 
risk posed by frequent and moderate earthquakes (which has minor consequence) is born by the 
owners, and disastrous consequence of rare but large earthquakes (which pose relatively smaller 
risk) is covered by the insurer. 

While this study has given interesting and useful qualitative information on the seismic 
performance and financial implications of URM houses, the dollar values obtained are only 
representative and are not precise because of the assumptions and approximations that have been 
made in the process. Although variations in the capacity and demand and the modelling uncertainty 
have been quantitatively incorporated in the form of corresponding lognormal coefficients of 
variation, uncertainties in the assumed loss model have not been accounted for. The values assigned 
in this study to loss ratios and drift ratios for different damage states are also somewhat subjective. 
EAL is sensitive to the loss ratio corresponding to different damage states; especially those for DS2 
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and DS3. Hence, future studies should try to establish more robust damage model and loss model 
and investigate their uncertainties so that they could be accounted for in estimating the financial 
risk. 
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Table 1 Material properties 
 

Material Test type Test result CoV Remarks 

Compressive 26.6 MPa 17%  Brick 

Initial rate of absorption (IRA) 63.6 gram 7.4%  

Mortar Cubes Compressive 7.6 MPa 10.6%  

Compressive 16.2 MPa 19.7% At strain 0.0035 

Young’s Modulus, E 6100 MPa 45.2% At strain 0.0016 

τo =0.93 MPa 38.6%  Shear Strength 

φ = 44.4º  13.4%  

Flexural Bond 0.42 MPa 35%  

Masonry Prism 

Split Bond 0.41 MPa 38%  

 
 
 

Table 2 Longitudinal shaking test sequence 
 

S. No. Acceleration Record PGA (g) Code Purpose 

1 White noise 0.02g Wn (0.02) Study of dynamic characteristics 

2 White noise 0.05g Wn (0.05) Study of dynamic characteristics 

3 Taft2721 0.2g Taft (0.2) Moderate level earthquake 

4 Taft2721 0.3g Taft (0.3) Moderate level earthquake 

5 Umbria March 
(RA01168 551) 

0.5g Ra01168 551 
(0.5g) 

Severe earthquake 

6 El-Centro 0.348g EL40NSC Moderate to severe earthquake 

 
 
 

Table 3 Transverse shaking test sequence 
 

S. No. Acceleration Record PGA (g) Code Purpose 

1 White noise 0.05g Wn (0.05) Study of dynamic characteristics 

2 Taft2721 0.2g Taft (0.2) Moderate level earthquake 

3 White noise 0.05g Wn (0.05) Study of dynamic characteristics 

4 Taft2721 0.3g Taft (0.3) Moderate level earthquake 

5 White noise 0.05g Wn (0.05) Study of dynamic characteristics 

6 White noise 0.05g Wn (0.05) Study of dynamic characteristics 

7 El-Centro 0.348g EL40NSC Moderate level earthquake 

8 White noise 0.05g Wn (0.05) Study of dynamic characteristics 

9 Umbria March 
(RA01168 551) 

0.5g Ra01168 551 
(0.5g) 

Severe earthquake 

10 Umbria March 
(RA01168 551) 

0.7g Ra01168 551 
(0.7g) 

Severe earthquake 

11 White noise 0.05g Wn (0.05) Study of dynamic characteristics 

12 North Ridge 0.8g Sylm949 Strong earthquake 

13 Nahanni 0.8g Nahanni Strong earthquake 

14 White noise 0.05g Wn (0.05) Study of dynamic characteristics 
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Table 4 Maximum displacements at the seismic mass centre and measured hysteretic damping 
 

Shaking 
Direction 

Excitation 
Maximum 

displacement 
Measured hysteretic 

damping (%) 

Taft (0.2) 0.98 9.1 

Taft (0.3) 0.82 7.3 

Ra01168 551(0.5g) 3.9 31.5 
Longitudinal 

EL40NSC 2.36 18.5 

Taft (0.2) 2.58 15.9 

Taft (0.3) 3.74 22.6 

EL40NSC 4.65 21.5 

Ra01168 551(0.5g) 6.85 39.4 

Ra01168 551(0.7g) 10.07 41.9 

Sylm949 11.1 52.3 

Transverse 

Nahanni 15.33 30.3 

 
 

Table 5 Estimated lateral load coefficient for initiation of cracking and corresponding deflections 
 

Deflections 

In-plane 
wall-1 

In plane wall-
2 

Out-of-plane-
1 

Displacement 
of seismic 

mass 

Loading 
direction 

Base shear 
coefficient 

at crack 
initiation 

1
st
 

Floor 
Eaves 
level 

1
st
 

Floor 
Eaves 
level 

1
st
 

Floor 
Eaves 
level 

1
st
 

Floor 
Eaves 
level 

Remarks 

Longitudinal 0.36 0.89 1.3 1.03 1.63 0.92 1.49 0.94 1.47 Controlled by in-
plane cracking 

Transverse 0.30 0.77 1.6 0.65 1.45 0.8 1.99 0.79 1.85 Controlled by out-
of-plane cracking 

 
 

Table 6 Dynamic characteristics of model 
 

Frequencies (Hz) Mode shapes Shaking 
Direction 

Method of 
Analysis Analytical Experimental Analytical Experimental 

Static 
Condensation 









28

10
 







 −

0.172.0

77.00.1
 









81.0

1
 

Longitudinal 

FEM-SAP2000 (8.7) 

(11.7) 

  

Static 
Condensation 









7.21

3.9
 







 −

0.155.0

72.00.1
 









49.0

1
 

Transverse 

FEM-SAP2000 (7.5) 

(9.8) 

  

 
 

Table 7 HAZUS classification of damage states following an earthquake (HAZUS, 1999) 

Damage State Damage Descriptor Post-earthquake Utility of Structure 

1 None (pre-yield) Normal 

2 Minor / Slight Slight Damage 

3 Moderate Repairable Damage 

4 Major / Extensive Irreparable Damage 

5 Complete Collapse 
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Table 8 Damage state classification 

 

Damage 
State 

Drift 
Limits (%) 

∆experimental 

(mm) 
ζeffective (%) Bζ ∆prototype 

(mm) 

Expected 
PGA 

Post earthquake utility 

1       No Damage 

 0.1 2 20.1 1.58 4 0.35  

2       Slight Damage 

 0.5 10 33.5 1.96 20 0.43  

3       Repairable Damage 

 0.9 18 35.0 2.0 36 0.56  

4       Irreparable Damage 

 1.3 26 35.5 2.01 52 0.68  

5       Complete Collapse 

 
 

Table 9 Probability of not exceeding different damage states (P[DS ≤ DSi]) of an URM house 
 

fa i=1 i=2 i=3 i=4 i=5 

0.1 0.97 1 1 1 1 

0.01 0.74 0.84 0.92 0.96 1 

0.001 0.26 0.39 0.56 0.69 1 

0.0001 0.03 0.06 0.12 0.22 1 

0.00001 0 0 0.02 0.02 1 

0.000001 0 0 0 0 1 

 
 
Table 10 Probability of being in a given damage state; i.e. confidence interval (P[DS = DSi]) of an 
URM house 
 

fa i=1 i=2 i=3 i=4 i=5 

0.1 0.97 0.03 0 0 0 

0.01 0.74 0.1 0.08 0.04 0.04 

0.001 0.26 0.13 0.17 0.13 0.31 

0.0001 0.03 0.03 0.06 0.1 0.78 

0.00001 0 0 0.02 0 0.98 

0.000001 0 0 0 0 1 

 
 

Table 11 Loss ratios for different damage states 

 

 DS1 DS2 DS3 DS4 DS5 

Likely Range 0 0.05-0.15 0.2-0.4 1.0-1.2 1 

Assumed LR value 0 0.1 0.3 1 1 
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Table 12 Probable loss contributed by different damage states 

 

fa LR[DS1] LR[DS2] LR[DS3] LR[DS4] LR[DS5] Total LR 

0.1 0 0.003 0 0 0 0.003 

0.01 0 0.01 0.024 0.04 0.04 0.114 

0.001 0 0.013 0.051 0.13 0.31 0.504 

0.0001 0 0.003 0.018 0.1 0.78 0.901 

0.00001 0 0 0.006 0 0.98 0.986 

0.000001 0 0 0 0 1 1 

 
 

 

Table 13 Annual financial risk for typical URM houses 

 

 EAL (per $1 million) 

 LR ∆EAL 

0.1 0.003  

  5265 

0.01 0.0114  

  2781 

0.001 0.504  

  632 

0.0001 0.901  

  85 

0.00001 0.986  

  9 

0.000001 1  

Total EAL per 
$1million 

 8772 
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Figure 1 Plan and elevation of the model 

 

 

Figure 2 Crack propagation pattern and their locations (longitudinal direction) 
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Figure 3 Visually observed damage during excitation (longitudinal direction) 

 

Figure 4 Crack propagation pattern and their locations (Transverse direction) 
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Figure 5 Visually observed damage during excitation (Transverse direction) 
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a) Longitudinal shaking 
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b) Transverse shaking 

 

Figure 6 Theoretical prediction and experimental verification of displacement versus equivalent 

viscous damping representative of hysteretic response (a) longitudinal direction; (b) transverse 

direction 
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Figure 7 Vulnerability curves related to the 

HAZUS damage states. 
Figure 8 Hazard survival curves related to the 

HAZUS damage states. 
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Figure 9 Deaggregation of loss contributed by 
different damage states. 

Figure 10 Loss hazard curve 
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Figure 11 Annual financial risk due to earthquakes of different frequency ranges 

 

 

 

 

 

 

 


