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Formalizing Functional Flow Block Diagrams
Using Process Algebra and Metamodels

Allan I. Mclnnes, Member, IEEE, Brandon K. Eames, Member, IEEE, and Russell Grover

Abstract—Functional flow block diagrams (FFBDs) are a tra-
ditional tool of systems engineering and remain popular in some
systems engineering domains. However, their lack of formal defini-
tion makes FFBDs imprecise and impossible to rigorously analyze.
The inability to analyze FFBDs may allow specification errors to
remain undetected until well into the system design process or,
worse, until the system is operational. To help address these prob-
lems, we have developed a precise formal syntax and semantics for
FFBDs, based on the application of metamodels and the process
algebra Communicating Sequential Processes (CSP). FFBDs con-
structed within our formalized framework are precisely defined
and amenable to analyses of properties, such as safety, progress,
and conformance to required scenarios. We demonstrate some
of the analyses made possible by our formalization in a simple
case study of system specification and show how our formalization
can be used to detect and correct subtle system errors during the
specification phase.

Index Terms—Modeling, process algebra, systems engineering,
visual languages.

I. INTRODUCTION

UNCTIONAL flow block diagrams (FFBDs) or functional

flow diagrams are a popular notation used by systems
engineers to visually represent control flow and, in some cases,
data flow [1]-[5]. They have been used by a wide range of
organizations since their introduction in the 1950s and make an
appearance in most systems engineering textbooks. Although
other visual representations of system behavior have since
been developed, FFBDs continue to be a popular systems
engineering tool, particularly among U.S. Federal Government
agencies [5]-[8]. Indeed, their long and close association with
the practice of systems engineering resulted in the inclusion of
an FFBD variant in the recently released Object Management
Group SysML v1.1 standard [9].

Despite its longevity and popularity, the FFBD notation is not
without problems. Different authors use different conventions,
which are rarely explicitly presented, making the behavior
defined by an FFBD potentially ambiguous. Furthermore, since
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the meaning or semantics of FFBDs are typically only infor-
mally defined, the interpretation of a given FFBD is imprecise
at best. As a result, rigorous analysis of FFBDs is difficult.

Tools for creating executable specifications of system be-
havior based on FFBDs, such as RDD-100 [10] and CORE
[11], provide a significant improvement over manually drawn
FFBDs. The use of a tool to support design specification
ensures that all diagrams developed for the design share a
common syntax and semantics. The common semantics implies
that, when a collection of models is composed or executed, the
same translation and simulation algorithms will be applied to
all of the diagrams, providing a consistent set of results.

Unfortunately, the internal consistency provided by a given
tool does not imply an unambiguous interpretation of system
behavior, particularly when considering cross-tool compatibil-
ity. Harel and Rumpe [12] asserted that, without a well-defined
mapping to a semantic domain, the syntax of a language is
worthless, due to the possibility of ambiguous interpretation.
However, all too commonly, the semantics of a graphical lan-
guage is defined informally, embodied in a tool’s translators,
simulators, and interpreters. The meaning of the diagrams is
typically conveyed to users through informal documentation.
The lack of formality leads to subtle inconsistencies between
competing tools or, worse, between different diagrams rep-
resented in the same tool. For example, von der Beek [13]
documented the issue of a splintering of semantics for the
Statecharts visual language. In an effort to alleviate some of the
confusion surrounding the semantics of Statecharts, Harel and
Namaad [14] published an unambiguous execution semantics
for Statecharts.

Just as the definition of a clear execution semantics for
Statecharts has helped to make the language more precise and
consistent, a formalization of FFBD semantics, based on a well-
defined abstract syntax, can address difficulties with ambiguity,
analysis, and semantic comparisons of FFBDs by providing a
precise definition of the structure and meaning of diagrams ex-
pressed in FFBD notation. The contribution to the formalization
of FFBDs offered in this paper is twofold. First, we propose
a formal syntax for FFBDs, including an abstract syntax and
well-formedness rules, which are defined using the Generic
Modeling Environment (GME) [15], [16] metamodeling lan-
guage. The metamodel provides an unambiguous definition of
the elements from which an FFBD may be constructed and the
way in which those elements can be combined. It also forms the
basis of a graphical specification tool for constructing FFBDs
and automatically translating those FFBDs into one or more
semantic models. Second, we propose a formal semantics for
FFBDs, which is defined in terms of the process algebra CSP.
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To the best of our knowledge, this is the first formal semantics
that covers both the structure and behavior of FFBDs. It builds
upon existing research into process algebraic theories of con-
currency to provide a precise mathematical description of one
interpretation of FFBD semantics. The CSP-based semantics
that we propose provides a target semantic model for testing
the graphical specification tool and a baseline against which
to compare other interpretations of FFBD semantics. FFBDs
expressed in our semantic model are precise, unambiguous,
and amenable to exhaustive automated analysis through model
checking.

This paper begins by briefly reviewing the informal syntax
and semantics of FFBDs, the language definition techniques
provided by GME, and the basic theory of CSP. We then
introduce our FFBD syntax model, which incorporates both
an FFBD control-flow view and a simple view of data flow
between the functions defined by the FFBD. In Section IV,
we describe our interpretation of FFBDs in CSP and discuss
the rationale for our chosen mapping from FFBDs to CSP. In
Section V, we present a small case study involving the classic
“traffic light” problem, which we use to illustrate both the use
of our GME-based FFBD tool and the kinds of analysis that
are enabled by our mapping from FFBDs to a formal process
algebraic language. Finally, in Sections VI and VII, we discuss
related work and present our conclusions.

II. BACKGROUND

In this section, we present a brief overview of FFBD notation,
GME, and CSP.

A. FFBDs

FFBDs provide an intuitive graphical method of representing
the behavior of complex hierarchical systems. Various descrip-
tions have been given of FFBDs (e.g., [1], [2], and [17]);
lacking a definitive specification of FFBD syntax, we provide
a brief review of commonly used constructs.

An FFBD is composed of labeled function blocks, such as
those shown in Fig. 1, which may represent leaf-level functions
or nested FFBDs. Function blocks are connected by unidirec-
tional arrows that define the order of function execution. FFBDs
are conventionally drawn to flow left to right and top to bottom.
Most authors use some variation on this FFBD notation.

The notation in Fig. 1 provides several different control-flow
structures from which to construct a behavior specification.
The sequence structure simply captures the order in which two
functions execute. The choice structure allows the definition of
a choice between two different execution paths. Which path
is selected for execution depends on some logical condition,
which is not shown in the diagram. The “Go” path from the
choice block is executed if the condition is met; otherwise, the
“NoGo” path is executed. The parallel construct represents two
or more functions that can execute concurrently. The parallel
paths are enclosed in a pair of AND nodes, marking the begin-
ning and ending of parallel execution. When the system may
execute one of several possible paths, the alternative construct
is used. Each possible execution path is connected to a pair of
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Fig. 1. FFBD notation.
Fig. 2. Data flow diagram.

OR nodes, marking the beginning and ending of the alternate
path selection. The construct does not show the path selection
criteria but simply indicates that one of the represented paths
will be executed. The iteration structure models repeating be-
havior. It consists of a choice function that repeats a functional
path until a condition is met, after which execution follows the
path leading out of the iteration.

The basic FFBD control structures can be combined and
nested to produce a complete FFBD description of the system
control flow. In addition, FFBDs can be layered in a hierarchy
of diagrams that provide progressively more detailed descrip-
tions of individual system behaviors as the reader moves down
the hierarchy, making the system and each of the functions
easier to understand. Examples of hierarchical FFBD diagrams
are presented in Section V with the case study, e.g., Figs. 13
and 14.

FFBDs are fundamentally a construct for representing con-
trol flow: they describe what functions occur, in what order
those functions can occur, and what alternative paths of ex-
ecution are available. By themselves, FFBDs do not capture
the flow of data between operations in the system. A complete
description of system behavior requires information about data
flow and control flow. Some authors directly annotate FFBDs
with arrows indicating the flow of data between function blocks,
forming enhanced FFBDs (EFFBDs) or behavior diagrams,
whereas others maintain information about data flow in separate
data-flow diagrams (DFDs) [3], [17]. DFDs depict the data flow
in a system as a directed graph of the connections between
data-transforming processes and data storage elements. Fig. 2
is a simple example of a DFD, in which InA, InB, and Out are
external interfaces; PO, P1, and P2 are processes; Store is a
store that holds persistent data; and the arrows show the flow
of data.
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B. GME

The GME [15], [16] is a metaprogrammable toolkit designed
to support the use and development of domain-specific visual
modeling languages. A domain-specific modeling language is
a graphical notation that leverages visual constructs from a
particular engineering discipline. The syntax rules of a domain-
specific language, including the set of available parts and part
types, the permissible relations between part types, and a set
of well-formedness rules captured as constraints, are encoded
in a configuration file called a paradigm, which can be loaded
into the GME. The GME will then support the syntax of the
specified language, enforcing the rules of that language and
informing the modeler on the occurrence of violations.

GME supports the creation of paradigms through the de-
finition of a metamodel, which is itself a graphical model
capturing the rules for creating diagrams specific to a particular
domain. The metamodel specifies the types of parts available
for composition, how those parts can be interconnected, and
what attributes can be associated with the parts. Metamodels
are created using the MetaGME paradigm, which provides a
variant of Unified Modeling Language (UML) class diagrams
as a means for modeling a modeling language and supports
the specification of well-formedness rules as constraints using
the Object Constraint Language [18]. A translator tool included
with GME converts the metamodel into a paradigm, which can
then be loaded into GME to support the creation of domain-
specific models.

While GME allows users to develop modeling languages
and domain-specific models, these models serve little purpose
beyond documentation without the ability to perform transla-
tions on the user-specified diagrams. A model interpreter is a
program that extends GME with the ability to perform domain-
specific translations or analyses on a model. Depending on
the domain, an interpreter can be created to generate code
implementations of a modeled system, translate a specification
into a data format acceptable by an analysis tool, or perform
introspective analysis on and modifications to the model itself.
GME supports a variety of programming language bindings
for interpreters, including Java, Python, and C++. The soft-
ware development kit for GME offers a high-level application
programming interface (API) for traversing and manipulating
models, hiding the low-level details of managing a graphical
user interface and the model database.

C. Communicating Sequential Processes (CSP)

CSP is a mathematical theory of concurrency and commu-
nication. In contrast to other well-known formalisms, such as
Z or B, CSP is specifically designed for modeling concurrent
systems. In CSP, the behavior of a system is represented as a
process that defines the observable sequences of interactions
between the system and its environment. Commercial tools,
such as FDR2 [19], allow process expressions to be automat-
ically checked for properties, such as deadlock freedom, and
compliance with system specifications also expressed in CSP.
Roscoe’s The Theory and Practice of Concurrency [20] is a
comprehensive introduction to modern CSP. For the purposes

of this paper, we need only be concerned with a subset of the
CSP operators, which we briefly review.

1) Process Expressions: Process expressions are built from
events, which are abstractions of real-world interactions be-
tween systems. The alphabet of a process P is the set of all
events in which P can engage. Events may be atomic names
or compound objects formed by combining names with a dot,
such as out.0. If ¢ is declared as a channel that communicates
objects of type T, channel c : T, then the set {|c|} is a set of
compound events {c.t|t € T}.

The simplest CSP process is STOP, which never engages in
any event. Successful termination is represented by the SKIP
process. More complex processes are defined by combining
processes and events using operators that express sequences
of events, alternative execution paths, sequential and parallel
execution, and communication between processes.

Simple sequences of events are defined using the event prefix
operator —. For example, the recursive processP =a — b —
P engages in the event a, then b, and then repeats. Process
definitions may be parameterized by events, channels, data
values, or function definitions, allowing reuse of the behavior
definition in different contexts. Thus, for example, the parame-
terized process expression P(x) = x — P may be used to create
the process Q = P(a), which will generate an infinite sequence
of a events.

Alternative execution paths can be defined using several
different operators. The choice process P[|Q may behave either
as P or as Q, whereas the more general indexed choice []1 :
I @ P(i) may behave as any one of the processes P(i), for
i € I. The nondeterministic choice P| ~ |qQ offers at least one
of the two processes P and Q as a possible behavior. For each of
the choice operators, only those execution paths that begin with
an event in which the environment is also prepared to engage
can proceed.

Processes may execute sequentially or in parallel. The se-
quential composition P;Q behaves as P until P terminates in
a SKIP, after which the composite process behaves as Q. The
interleaved parallel composition P|||Q independently executes
the processes P and Q at the same time. The interface parallel
composition P[|X|]Q executes P and Q in parallel but requires
the simultaneous participation of both processes to engage in
any event in the interface set X. Similarly, the alphabetized
parallel composition P[A||B]Q requires P and Q to synchronize
on any event in the set A N B, whereas the more general indexed
parallel composition [|1 : T @ [A(1)]P(1) constrains each P(i)
to only perform events in the corresponding interface set A(1)
and requires all processes that have events in common to
synchronize on those events.

Communication can take place between parallel processes
that synchronize on a common channel. The parallel com-
position P[|{|c|}|]Q requires P and Q to synchronize on all
events on the channel c, allowing values to flow between the
two processes. Communication events are expressed by the
notations c?x (input) and c!x (output). Thus, the process P =
c?x — clx — P first receives an input message from Q, storing
the received value into the variable x. The output event c!x then
transmits the previously received value back to Q, after which P
is again ready to receive a new input.
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2) Process Refinement and Equivalence: CSP theory allows
different process expressions to be compared by examining
the observed behavior of the processes within the context of
a denotational model. The denotational model defines the kind
of information included in an observation and therefore also
defines the kind of distinctions that can be drawn between
processes. The most commonly used denotational models are
given as follows:

1) traces model, in which the observed behavior is a set of
traces that record all possible sequences of interaction
between the process and its environment;

2) stable failures model, which, in addition to recording
traces, also records the events that a process can refuse
to perform at each step of its execution;

3) failures/divergences model, which extends the stable fail-
ures model by distinguishing between processes that have
stopped completely and those that have simply stopped
interacting with the environment.

Analysis can be carried out by examining refinement re-
lationships between processes within the context of a given
denotational model. The refinement relation, which is denoted
by [=, indicates that the behavior of one process is somehow
“contained” within the behavior of another process. For exam-
ple, refinement in the traces model is defined as [20]

(P1 [T =P2) < (traces(P2) C traces(P1)).

That is, process P2 is a trace refinement of process P1 if
and only if the traces of P2 are a subset of the traces of P1.
If P[T=Q and Q[T =P, then traces(P) = traces(Q), and
processes P and Q are said to be trace equivalent. Similar
refinement and equivalence relations exist for the stable fail-
ures and failures/divergence models. Checking of refinement
relations can be used to establish whether a process possesses
certain behavioral properties or to determine whether a process
model of a system implementation refines a model of the system
specification. The FDR2 refinement checker is a commer-
cially available tool for automatically checking such refinement
relations.

III. METAMODELING THE FFBD SYNTAX

In this section, we use a metamodel to define a formal syntax
for a visual modeling language that integrates FFBDs and
DFDs. Using the GME, a modeling tool has been developed
that offers the ability to quickly compose mixed FFBD/data-
flow models of a system, coupled with a model interpreter that
translates the models into CSP for evaluation and analysis. The
metamodel defines an abstract syntax for representing FFBDs.
GME supports metamodeling using a variant of UML class
diagrams and also facilitates the specification of a concrete syn-
tax for the language through the association of visualizations,
such as icons and arrows, with entities in the abstract syntax.
Since the metamodel only captures the abstract syntax, concrete
syntax, and well-formedness rules for the modeling language,
it does not tie the modeling language to a specific semantic
domain. In particular, the metamodel itself is not specific to
CSP but rather it offers a framework upon which a mapping to a
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Fig. 3. Metamodel of StateObjects.

semantic domain can be developed. Jointly with the metamodel,
we have developed such a mapping to a CSP-based semantic
specification of FFBDs. Due to the separation between the se-
mantic mapping realized through model interpreters and the ab-
stract syntax captured by the metamodel, the approach adopted
is amenable to the creation of alternate backend evaluation tools
based on other formalisms, e.g., Promela [21] or Petri nets [22].

The metamodel offers the ability to create two separate views
of a system: a control-flow view using FFBDs and a data-
flow view using DFDs. The choice of separate views was
based on the goals of scalable model development, separation
of concerns, and flexibility. An alternative approach is to use
a metamodel based on EFFBDs, which merge data-flow and
control-flow views in a single diagram. However, a merged
view can lead to an overwhelming number of modeling objects
at each level of the hierarchy.

The discussion of the metamodel focuses on the abstract syn-
tax of the modeling language, deferring most of the examples
of concrete syntax to the “traffic light controller” case study
presented in Section V.

A. Symbols and StateObjects

The foundation of the visual language is an abstraction called
Symbol. A Symbol can be used to model an event, a piece of
data, a control flag, a signal, or any other type of information
significant to the system behavior. Each Symbol is assigned
a name. Related Symbols are collected into a set, which is
referred to as a SymbolSet. Symbols form the basis of interaction
between the constructs of the visual language.

System behavior is often state dependent. System state may
be recorded by one component of the system and used by a
different component. A StateObject, which is modeled in Fig. 3,
represents a variable that can be assigned a value from a fixed
set, as defined by the contained SymbolSet. For example, in the
design of a traffic light controller, a StateObject could be used
to hold the current state of the traffic light, and its associated
SymbolSet would contain three Symbols modeling the three
possible light states: Red, Yellow, and Green. A StateObject
is accessed via a Port, through which a Symbol is written (an
InPort) or read (an QutPort).

B. Metamodel for FFBDs

The abstract syntax for an FFBD must account not only for
the function blocks but also for the other graphical elements
that form the basic FFBD constructs shown in Fig. 1. The
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Fig. 4. Metamodel of FFBD functions and block constructs.

metamodel for FFBDs is shown in Fig. 4. The basic building
block of an FFBD is the FFBDFunction. Functions can reside
at the leaf level in the hierarchy or can be defined in terms
of other FFBD constructs. FFBDs use sequencing to capture
the order in which operations occur. In Fig. 1, sequencing is
shown as a solid directional connection between functions. In
the metamodel in Fig. 4, the SeqObjConn class represents such
connections. The SequencableObject abstract class represents
an object that can be connected in a sequence. ChoiceFunctions
model Boolean conditions used in defining Choice and Iteration
constructs. The SeqConnObject class represents an object that
can be the source of a sequencing connection. Since functions
can be composed in sequence, FFBDFunction inherits from
the SeqConnObject class. Objects of type Point can also be
composed in sequences. Point objects are used to formulate
the FFBD constructs (Parallel, Alternation, Iteration, Choice)
shown in Fig. 1. The metamodel supports several types of Point
objects, each of which is employed in different contexts. And-
Points mark the start and end of an AND construct. Similarly,
OrPoints mark the start and end of an OR construct. Interface-
Points mark where behavior starts and ends within a function.
For the Iteration and Choice constructs, separate paths converge
at a Point object: a ChoicePoint represents the location where
paths corresponding to separate outcomes of a Choice construct
merge, whereas the IterationPoint represents the junction of the
entry and loop paths in the Iteration construct.

Fig. 5 shows a sample FFBD that conforms to the FFBD
metamodel. The large dots on the left and right represent
InterfacePoints. AndPoints are denoted by circles enclosing the
term AND. The two AndPoints enclose a Parallel construct,
indicating that the functions Fn1, Fn2, and Fn3 all execute
concurrently. The diamond represents a ChoiceFunction and
forms part of an Iteration construct.

Iteration and Choice both imply conditional evaluation. The
ChoiceFunction is used to model the evaluation of a Boolean
condition. Its metamodel is shown in Fig. 6. A ChoiceFunction
can be the source of two types of connections: GoConnec-

NoGo

Go
— ‘

@)

Fn2
Fn3
Fig. 5. Sample FFBD diagram, conforming to the metamodel in Fig. 4.
SequencableObject
<<FCO>>
GoConn dst]0.* dst]0.F NoGoConn
<<Connection>> <<Connection>>
src|0..* srcjQ..*
ChoiceFunction
<<Model>>
1,—, T ) StateObject
GoSet <<Model>>
<<Atom>>
0.*
0 GoSymbolConn
+ ffffffffff <<Connection>>
0.4 1 1
Symbol SymbolSet
<<FCO>> s5———@_<<Model>>

Fig. 6. Metamodel of ChoiceFunction.

tion and NoGoConnection. If the ChoiceFunction evaluates to
“true,” execution proceeds by following the GoConn connec-
tion; if not, the NoGoConn is traversed. For example, Fig. 5
shows an Iteration construct, embedded in which is a Parallel
construct. The ChoiceFunction diamond represents the Boolean
choice of whether to terminate the iteration. The NoGo path of
type NoGoConn leads from the ChoiceFunction to the Itera-
tionPoint just to the left of the initial AndPoint and models the
feedback path of the Iteration.

Internal to the ChoiceFunction are a GoSet object and a
StateObject, as defined in Fig. 6. Different Symbols from the
StateObject’s SymbolSet can be associated with the GoSet
through the GoSymbolConn. Evaluation of a ChoiceFunction
involves retrieval of the current Symbol stored in the Sta-
teObject, followed by determination of whether that Symbol is
connected to the GoSer object. If such a connection exists, the
ChoiceFunction evaluates to “true.”

C. Modeling Data Flow

The metamodel also provides for the specification of data-
flow relationships between functions. From a data-flow per-
spective, a function represents a stateless mapping of inputs
to outputs [17]. Fig. 7 shows the metamodel for specifying
data-flow behavior. A data value is represented as a Symbol. A
DataflowFunction contains Ports, each of which is associated
with a SymbolSet. The SymbolSet represents the set of values
that can be communicated via that Port. The input/output
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Fig. 7. Metamodel of the data-flow function.
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Fig. 8. DataflowFunction model of a function that maps occurrences of a
trigger Symbol to a green traffic light state.

mapping is specified by connecting Symbols in the InPort’s
SymbolSet to Symbols in the OutPort’s SymbolSet via the
SymMapConn. The MergeStrategy and SplitStrategy attributes
on the InPort and OutPort aid in the modeling of functions
containing more than one input or output Port.

A sample DataflowFunction model named ChangeLight
ToGreen is shown in Fig. 8. On receipt of a trigger signal,
the function outputs the Symbol Green. This function could
be used in a traffic light controller to describe changing light
state. The TriggerPort object on the left is of type InPort and
is associated with the SymbolSet TriggerSet. ColorPort, on
the right, is of type OutPort and is associated with the Sym-
bolSet Colors. The connection between the Symbols trigger
in TriggerSet and Green in Colors is of type SymMapConn
and dictates the mapping defined by the function: from Symbol
trigger to Symbol Green.

Fig. 9 shows the rules for composing a system-level DFD
based on SharedState objects, DataflowFunctions, and Exter-
nalChannels. A root-level DataflowFunction defines the sys-
tem DFD. A SharedState object represents a reference to a
StateObject and models a data store or state-bearing data-flow
connector. An ExternalChannel models a data source or sink
that interfaces with the model’s environment, e.g., a sensor,
actuator, or other external device. An ExternalChannel contains
a single InPort or OutPort, depending on the sense of the
ExternalChannel. The ExtChanRef allows an ExternalChannel
to be used in multiple locations in the model, regardless of
hierarchical decomposition. All of the objects in a DFD can
be interconnected via their ports, using the PortToPortConn.
Fig. 10 shows a sample DFD composed of two functions
Timer and ChangeLightToGreen (see Fig. 8). The DFD indi-
cates that the system receives a clock signal from an external
source and forwards the signal to the Timer function. The
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Fig. 10. Sample DFD with two functions and two external channels.
SeqConnObject || DataflowFunction
<<FCO>> <<Model>>
DataflowFuncRef
<<Reference>>
Fig. 11. Metamodel illustrating the relationship between DFDs and FFBDs.

Timer function emits a trigger symbol, which is consumed
by ChangeLightToGreen. That function then emits a Color,
which is sent to the TrafficLight external channel.

D. Integrating Data Flow With FFBDs

The metamodel allows users to integrate the data-flow view
with the FFBD view using the constructs defined in Fig. 11.
DataflowFuncRef is defined as a reference to a DataflowFunc-
tion object and inherits from the SeqConnObject class defined
in Fig. 4. The inheritance relationship allows DataflowFuncRef
objects to be involved in sequences along with other FFBD
constructs. Thus, references to DataflowFunctions can act as
leaf-level functions in an FFBD. Semantically, the composi-
tion allows the control flow to constrain the execution of the
data-flow functions, permitting them to fire only when the
corresponding FFBD dictates. As an example of syntax, Fnl
defined in the Parallel construct in Fig. 5 could be specified
as a reference to the ChangeLightToGreen function, which is
defined in Fig. 8. Inside GME, the user can double click on a
leaf-level function (e.g., Fnl in Fig. 5) in the FFBD view to
navigate to the composed DFD (e.g., Fig. 10), which shows
the corresponding function in its data-flow context. Double
clicking on the data-flow function yields the internal data-flow
mapping specification (e.g., Fig. 8).
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E. Interpretation: From Models to CSP

The composition of visual models to represent a system may
have value in and of itself as an exercise in abstraction and
understanding, as well as for documentation purposes. How-
ever, visual modeling can also become the basis of an effective
analysis tool when the information captured in the diagrams
can be extracted and automatically mapped into some useful
format. We have developed a model interpreter that generates
a CSP representation of a modeled system that can be verified
using a model checking tool. The model interpreter was written
in C++ using the Universal Data Model [23] API and library.
The interpreter traverses a given model, following the structure
specified in the metamodel. It first maps the model into a
set of internal data structures modeling the FFBD/data-flow
constructs, decoupling the CSP generation from the metamodel.
The CSP generator is implemented as a traversal over these data
structures, utilizing the visitor pattern [24]. The output of the
interpreter is a text file containing the CSP equivalent of the
user-specified model, based on the CSP constructs described in
Section I'V.

IV. REPRESENTING FFBDS IN CSP

A number of different formalisms could be used to define
a formal semantic model for FFBDs, each providing access to
different kinds of analysis. We have elected to use CSP as our
initial target formalism for several reasons. First, CSP is an
established formalism for modeling concurrent systems [25].
It is capable of representing the concurrent behavior found in
most FFBDs and DFDs and supports analysis of the sequenc-
ing, safety, and progress properties that are fundamental to
determining the correctness of the behavior specified by an
FFBD. Second, CSP allows us to build process models that
have a hierarchical structure (see [19, Sec. 2.1]), paralleling
the FFBDs upon which the models are based. Third, a wide
array of tools are available for analyzing CSP process models,
including the mature and commercially available FDR2 refine-
ment checker [19], [26], which has been used on industrial
projects by companies such as DaimlerChrysler Aerospace
[27], QinetiQ [28], Praxis High-Integrity Systems [29], and
IBM [30]. Academic tools targeting CSP are also available,
such as the ProB model checker [31] and the PAT toolsuite
[32], both of which can perform model checking of CSP
processes for conformance to behavior specifications expressed
in linear temporal logic. Support for proof-based analysis of
CSP process models is available in Isabelle/HOL [33], which
embeds CSP semantics into a theorem prover. The combination
of concurrency, hierarchical modeling, and diverse tool support,
along with its breadth of exposure in academia and industry,
makes CSP a good starting point for experimenting with and
specifying FFBD semantic models.

Because there is no single definition of the precise meaning
of FFBD notations, we had to select an interpretation for each
FFBD construct to create a mapping from FFBD notation to
CSP. The resulting formal semantic model is intended to be
consistent with the informal descriptions of FFBD behavior
found in widely used references such as DSMC Systems En-

gineering Fundamentals [4], the NASA Systems Engineering
Handbook [5], and the FAA System Engineering Manual [6].
Other interpretations of FFBD semantics are of course possible,
resulting in FFBDs that define different behaviors than those
constructed using the model defined here. The potential for
differing interpretations of FFBD notations is one motivation
for having a formal definition of the semantics associated with
an FFBD. The formal semantic model defined in this paper
provides a reference point from which other semantic models
can be developed.

The basic building blocks of the FFBD semantic model are

categorized as follows:

1) function  blocks,
transformations;

2) data-flow connections, which model the flow of data
between functions;

3) constraint processes, which define the sequencing and
control flow of functions and are used to represent the
fundamental FFBD constructs shown in Fig. 1.

In the rest of this section, we use both informal descriptions

and CSP to describe each building block and then discuss how
they can be composed to form a system behavior model.

which  describe  input/output

A. Function Blocks

The metamodel described in the previous section syntacti-
cally represents data-flow functions as stateless mappings that
transform inputs to outputs. This representation of functions is
consistent with the way that functions are typically described in
systems engineering textbooks [1], [17]. However, most authors
fail to explicitly define the behavior of leaf-level function
blocks, leaving it ambiguous whether a block must complete
the transformation of an input into its corresponding output
before accepting the next input. Such ambiguities must be
resolved if the overall behavior of a system is to be simulated
or analyzed. In the formal semantic model, leaf-level function-
block behavior is made explicit by combining a definition of
behavior with a representation of the input/output mapping
associated with the function block.

Mathematically, a function input/output mapping can be
defined either extensionally, as sets of pairs of input and output
values, or intensionally, as a rule defining the relationship
between inputs and outputs. CSP supports a rich language
of functions and sets that is capable of expressing mappings
defined extensionally by explicit enumeration or intensionally
as algebraic or algorithmic rules, or predicates on sets of
input/output pairs. However, the visual language defined by
the metamodel presently only supports extensional definition
of mappings as enumerations of input/output pairs. Although
the restriction to extensional definitions limits the complexity
of the functions that can be defined, these limitations are not
inherent in the CSP semantic model. A future extension to the
metamodel and visual language could be constructed to allow
other forms of function definition.

Both intensional and extensional definitions of functions
define how inputs are mapped to outputs, but neither describes
the sequencing of successive inputs and outputs. To define
this sequencing, we associate a behavior with the input/output
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mapping by encapsulating the definition of the mapping inside
a CSP process description, effectively “lifting” the function into
the behavior domain. The “lifted function” is a parameterized
process that alternates between receiving inputs and producing
corresponding outputs, i.e.,

LiftF(in, out, rdy, fin, f) =
rdy — in?x — out!f(x) — fin —
LiftF(in, out, rdy, fin, f)

where the in parameter represents the input channel, and the
out parameter represents the output channel. The mapping
from inputs to outputs is represented by a function parameter £.
The event parameters rdy and £in are used in conjunction with
the constraint processes described in Section IV-C to model
control flow: other processes may synchronize on these events
to enable execution of the function block (rdy) or to determine
when execution of the function block has completed (fin).
The LiftF process thus defines the data-flow and control-
flow behavior of a leaf-level function block, corresponding to
a single leaf-level box in an FFBD (see Fig. 1). Because LiftF
is a CSP process, it can be combined in well-defined ways with
process expressions representing other aspects of an FFBD.

As an example of using the LiftF process, consider the
ChangeLightToGreen function block shown in Fig. 10. This
might be modeled by the process expression

ChangelLightToGreen =
LiftF (chglt.tri, chglt.col, chglLt.rdy,
chgLt.fin, {(trigger, green)})

where chglt.tri and chgLt.col represent the input and
output ports, and the function is a single two-tuple representing
the ChangeLightGreen function mapping shown in Fig. 8.
The process ChangeLightToGreen signals that it is ready
on chgLt.rdy, receives an input symbol on the chgLt.tri
channel, uses the mapping (trigger,green) to convert the
input to an output on chgLt.col, and finally signals completion
on chgLt.fin. It will then repeat this behavior.

The LiftF process models a function block that accepts a
single input and produces a single output. Multi-input—multi-
output functions can be modeled by composing a LiftF that
transforms NN-tuples with additional processes that combine
separate inputs into /N-tuples or break N-tuples into separate
outputs. We refer to these additional processes as merge and
split strategies. A merge strategy specifies whether inputs are
received in parallel or in sequence. A split strategy provides the
same kind of specification for outputs. For example, to model a
two-input function, such as the function PO in Fig. 2, we might
combine a sequential merge that collects a pair of inputs into a
two-tuple with a LiftF process that maps two-tuples to some
output. The merge strategy is defined as

SeqIn2(rdy, inl, in2, inlF) =
rdy — inl?x — in2?y — inlF!(x,y) —
SeqIn2(rdy, inl, in2, inLF).

The two-tuple generated by the merging of inputs from inl
and in2 is passed to the LiftF for transformation into an
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output. Note that the merge strategy is designed to synchronize
with the LiftF process on the rdy event, thereby ensuring that
the overall behavior of the composite SeqIn2/LiftF function
block adheres to the expected alternation of consuming inputs
and producing outputs.

B. Data-Flow Connections

The data-flow portion of the metamodel provides for two
different kinds of connections between functions: PortToPort-
Conns represent the direct transmission of Symbols between
functions, and StateObjects allow functions to be decoupled
from each other by providing a storage medium or buffer for
asynchronously transmitted Symbols.

Within the CSP semantic model, the direct connections
represented by PortToPortConns are modeled as a parallel
composition that synchronizes the output channel of one func-
tion block with the input channel of another function block.
For example, to model the connection between the data-flow
functions Timer and ChangeLightToGreen shown in Fig. 10,
we use the parallel composition

Timer [ [timer.tri « trig]]

[ {[trigl} ]

ChangeLightToGreen [ [chgLt.tri « trig]].

Here, we have used the renaming operator [[a < b]] to give
the linked input and output channels the common name trig
and then synchronized the two function-block processes on that
common channel.

The data-flow connections represented by StateObjects sup-
port asynchronous communications by holding a function out-
put value, allowing another function to later read the value
when it is ready to process an input. In CSP, mutable value
storage is usually modeled by a process that includes the current
value as one of the process parameters and that responds to
events that modify the stored value by recursively invoking the
process with the updated value. At present, our semantic model
includes only one kind of StateObject, i.e., the Var process,
which models a one-element data store that retains the most
recent value passed to it. The Var process is parameterized by
a state value val and three channels.

1) set, through which state value updates are received;

2) get, through which the current state value may be read;

3) trans, through which notification of changes (transi-

tions) in the state value is signaled to those processes that
synchronize on trans.

The definition of the Var process is

Var(set, get, trans,val) =
getlval — Var(set, get, trans,val)
[l
set?v —
ifv!=val
then translv — Var(set, get, trans,v)
else Var(set, get, trans, val).

Models of other kinds of state-bearing data-flow connections,
including key/value stores such as databases, and buffering
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schemes such as queues can be defined using an approach
similar to that used in defining the Var process. These can be
added to the semantic model as the metamodel is extended with
additional types of data-flow connections.

C. Functional-Flow Constraints

The fundamental purpose of FFBDs is to define the order in
which different system functions are executed and the decision
logic used to select an execution path when several possibilities
are available. Within the context of our CSP model of FFBDs,
the prescription of functional flow can be viewed as a set
of constraints on the sequencing of lifted-function processes
representing leaf-level function blocks. The sequencing con-
straints are imposed on the lifted functions by constructing a
constraint process, which defines the permissible function exe-
cution sequences in terms of lifted function rdy and fin events,
and using a CSP parallel operator to compose the constraint
process with the lifted functions to be constrained. Although
it is possible to directly construct a single constraint process
representing a given FFBD, such a construction is likely to be
difficult for any nontrivial diagram. Fortunately, the basic ele-
ments of FFBDs are readily described in terms of composable
CSP processes, making it possible to construct a constraint-
process representation of an FFBD in a compositional manner.

The fundamental primitive from which FFBDs are con-
structed is the leaf-level function block, which denotes a single
execution cycle of the function represented by the block. The
FFBDblock constraint process is parameterized by the rdy and
fin channels of the lifted function that represents the function
block being constrained, i.e.,

FFBDblock(rdy,fin) = rdy — fin — SKIP.

Each of the FFBD compositional elements provides a way
to compose primitive function blocks or blocks that represent
lower level FFBDs to form a more complex functional flow.
To allow for this hierarchical nesting of FFBD elements within
our CSP model, the CSP representation of each compositional
element combines two or more FFBD processes to produce a
new FFBD process, where an FFBD process is defined as being
either a leaf-level FFBDblock process or a composite process
formed using an FFBDseq, FFBDand, FFBDor, FFBDchoice,
FFBDmulti, or FFBDiteration compositional element.

We now define process models for each of the compositional
elements.

Sequencing in the FFBD represents temporal ordering of
function blocks, which we model in CSP as a sequential com-
position of the FFBD1 and FFBD2 processes, i.e.,

FFBDseq(FFBD1, FFBD2) = FFBD1; FFBD2.

The FFBD AND element defines concurrent behavior. We
model the AND element as an interleaving. The FFBD process,
which is drawn from FFBDset, is executed in parallel with the
other members of FFBDset, i.e.,

FFBDand(FFBDset) = | | | FFBD : FFBDset @ FFBD.

The FFBD OR element indicates that each of the branches
emanating from the “OR” bubble is a valid alternative behavior.
The method of selecting an alternative is left unspecified by
most authors. In the absence of specific information about
how to choose a particular branch, we treat resolution of the
choice as nondeterministic. We therefore model the OR element
as a generalized nondeterministic choice over a set FFBDset.
One FFBD process drawn from FFBDset is nondeterministically
selected for execution, i.e.,

FFBDor (FFBDset) = | ~ | FFBD : FFBDset @ FFBD.

The FFBD choice element provides the ability to specify a
deterministic choice of alternative behaviors. The usual binary
choice specifies which of two branches may be taken, based
on the outcome of some test. Following the assumptions of the
FFBD metamodel, the test is performed on the value currently
held in a data store. If the value held in the store is a member of
a subset of values defined as the GoSet, then the Go branch is
taken. If not, then the alternative branch, i.e., the NoGo path, is
taken. We model the FFBD choice element as a process that
reads a state value and, based on the value read, selects for
execution either the Go or NoGo branch

FFBDchoice(test, GoSet, Go, NoGo) =

test?x — if x € GoSet then Go else NoGo.

To allow the specification of deterministic choices over more
than two behaviors, the semantic model includes a multiway
choice element.! Multiway choice operates on a similar prin-
ciple to binary choice, selecting a branch for execution based
on the value of a data store. The choices are specified as a set
Branches of two-tuples, where the first element of each two-
tuple is a set of values that should result in the selection of
a branch, and the second element is the corresponding FFBD
process. Multiway choice is defined as a generalized external
choice over the possible branches

FFBDmulti(test, Branches) =
[] (GoSet,Go) : Branches @ test?x : GoSet — Go.

The FFBD iteration element provides looping behavior that
terminates when a test is passed. We model iteration as a
recursive invocation of FFBDseq and FFBDchoice processes
in which one of the branches of the FFBDchoice is successful
termination of the iteration process

FFBDiteration(test, StopSet, FFBD) =
let
Loop =
FFBDseq (FFBD,
FFBDchoice(test, StopSet, SKIP, Loop))

within Loop.

'Multiway choice is not one of the usual basic FFBD constructs and is
not presently included in the FFBD abstract syntax. It is included here for
completeness.
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The aforementioned Loop process uses a composition of
FFBD processes to define an internal sequential behavior. More
generally, the constraint process corresponding to an arbitrary
FFBD may be created by composing the FFBD processes previ-
ously defined. For example, a simple FFBD that is graphically
identical to that given in Fig. 5 and that repeatedly executes
functions F1, F2 and F3 in parallel until state X contains a
number between 3 and 5 can be represented by the process

SimpleFFBD =
FFBDiteration (X, {3,4,5},
FFBDand ({FFBDblock(F1.rdy, F1.fin),
FFBDblock(F2.rdy, F2.fin),
FFBDblock(F3.rdy, F3.fin)})).

D. Composite System Behavior

In terms of the CSP processes previously defined, the data-
flow view of the metamodel can be thought of as a compo-
sition of lifted functions and assignable states. Similarly, the
FFBD view can be seen as a composition of lifted functions
and an FFBD process that constrains the sequencing of those
functions. Using parallel composition, the FFBD and data-flow
views can be brought together to form a composite picture of
the overall behavior the system, i.e.,

SystemBehavior =
((LF1 [| Cont |]...[| ConN|] LFN)
[| IF£d |]
(Storel ||]|...||]|StoreN))
[| IF££ |]
FFBD

where LF1...LFN are lifted functions, Con1 ... ConN represent
PortToPortConns between functions, Storel...StoreN are
data stores (state-bearing data-flow connections), FFBD is an
FFBD process constraining the functions LiftF1...LiftFN,
IFfd is the set defining the interface between the data stores and
the lifted functions, and IF£f is the set defining the interface
between the FFBD and the lifted functions. Note that the data
stores are all independent of each other and execute concur-
rently, whereas the lifted functions may interact with each other
either directly via synchronization or indirectly via the data
stores. In practice, wiring all of the processes together into a
full system model often requires some use of techniques such as
channel renaming, to ensure that processes communicating with
shared resources do not interfere with each other. However, the
essential structure of a system behavior process description is
that of the parallel composition previously shown.

V. CASE STUDY

In this section, we present a brief case study developed to
highlight the features and capabilities of the modeling tool and
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Fig. 12. Traffic light problem.

CSP-based semantics. The case study examines a previously
published problem from systems engineering literature: the
traffic light problem [34]. While the problem does not rise
to the level of a real-world systems engineering problem, it
offers sufficient complexity to demonstrate the capabilities of
the approach.

A. Modeling the System

The traffic light problem involves specifying a control system
for a set of traffic lights located at the intersection of a busy
highway and an infrequently used farm road (Fig. 12). Sensors
are placed on the farm road to detect the presence of vehicles
attempting to cross the highway. The control system must
manage the traffic lights such that vehicles on the highway are
allowed through the intersection without interruption, except on
the occasion when a farm vehicle wishes to cross the highway.
The problem statement specifies that the system should have the
following behavior.

1) When a vehicle is detected on the farm road, the highway
light should turn yellow. Then, after a short time interval
(STI), the highway light should turn red, and the farm-
road light should turn green.

2) The farm-road light should remain green until the vehicle
clears a sensor or a long time interval (LTI) passes,
whichever comes first. Then, the farm-road light should
turn yellow and hold that state for an STI, after which
the farm-road light should turn red and the highway light
should return to green.

3) Once the farm-road light is red, it cannot turn green again
until at least one LTI has passed.

Several solutions to the traffic light problem have been
offered and analyzed, using various tools and analysis ap-
proaches. We have adapted the FFBD models from the Solu-
tion via Functional Decomposition section of Bahill’s “Design
Methods Comparison” (DMC) project [34].

The overall behavior of the traffic light system is defined by
the top-level FFBD shown in Fig. 13. The system first executes
two initialization functions: 1) INIT, which sets the highway
light to green and 2) ResetLTI, which resets the LTI counter.
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Fig. 13.  Top-level FFBD for the traffic light problem.
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Fig. 15. HWtoRed FFBD definition.

The system then enters a loop in which it waits until a change in
the light color is required and then cycles the traffic light colors.
As shown in Fig. 13, a cycle is triggered when both a vehicle is
detected by the farm-road sensor and at least one LTI has passed
since the farm-road light was last green.

The traffic light system is modeled hierarchically. The two
WaitX function blocks model functions that wait for an event
from the corresponding sensor or timer, and then report a sam-
pled value. Their definitions are omitted due to space consid-
erations. The core traffic light behavior, which is defined in the
CycleLight function block (Fig. 14), involves three sequential
steps. The HWtoRed block, as shown in Fig. 15, changes the
highway light to yellow, waits for an STI, then changes the
highway light to red and the farm-road light to green, and
starts the LTI timer. The FRtoRed block specifies a similar
behavior but switches the farm-road light to red. Between the
two light-change steps, the WaitForSensorOrTimer function
prevents the farm-road light from changing back to red until
either the vehicle sensor indicates the farm-road vehicle has
cleared the intersection or the LTI timer has expired, whichever
occurs first. As shown in Fig. 16, the wait behavior involves
waiting simultaneously for both the road sensor and the LTI
timer, followed by a check of the values acquired to see if the
conditions for terminating the wait loop have been satisfied.?

2This specification differs slightly from the FFBD presented in the DMC
paper. The DMC FFBD uses an OR block to combine two wait functions,
implicitly executing both and terminating the OR when one of the functions
terminates. Such an interpretation of OR composition is not consistent with that
used by other authors nor with our semantic model (which selects one branch
for execution). Consequently, we used a different model for the wait termination
conditions.

Go
NoGo

@ ReadLTltimer @

ReadRoadSensor

CheckRoadSensorLTltimer

Fig. 16. WaitForSensorOrTimer FFBD definition.

Each block in Fig. 16 represents a leaf-level block in the
FFBD hierarchy. In the preceding discussion of functional flow,
it is assumed that such leaf-level functions have the ability to
exchange data. For example, the CheckRoadSensorLTItimer
function examines values that ReadRoadSensor acquires from
the road sensor. The FFBD control-flow view of the system
does not depict these data dependence relationships. Interfunc-
tion relationships are instead captured in the data-flow view of
the system, as shown in Fig. 17.

Within the DFD, functions are represented by boxes labeled
F(x), and data stores are represented by pairs of horizontal
lines. The large arrows to the far right and left of the diagram
represent channels to external entities. The input PowerOn
models a flag indicating system startup, whereas RoadSensor
represents inputs from the vehicle sensors on the farm-road,
and the timerLTTI and timerSTI inputs provide timer status
in the form of a simple expired/not-expired flag. The trigger
input channel provides a signal that models the activation of
functions that produce outputs that do not depend on any
input data flow. On the output side, HWlight and FRlight
represent channels through which commands are issued to the
traffic light hardware, whereas toSTItimer and toLTItimer
are the channels through which timer reset signals are
issued.

The DFD shows several different functions responsible for
commanding changes to each of the two traffic lights; however,
the functional flow defined in the FFBD ensures that only one
of these functions per traffic light is active at any time. Each
function maps the inputs it receives from external inputs or
from internal data stores onto a traffic light color command.
For example, the CmdHWtoRed function maps the current status
of the STI timer, which is used to define the interval over which
lights are to be yellow, onto a light color that is either yellow or
red. The input/output mapping used to define the CmdHWtoRed
function is depicted in Fig. 18. The function is defined as a
mapping from TimerSignals Symbols, which represent the
currents timer status, to LightColor Symbols, which represent
traffic light color commands. The diagram specifies that, if the
TimerSignal received via the STIStatus port indicates that
the timer has not expired (tNotUp), then yellow is output
through the HWLightColor port. Similarly, if the timer has
expired (tUp), then a red color command is output. All leaf-
level functions in the FFBD view of the system are defined in
the data-flow view in a similar fashion.

The system model defined by the FFBD and data-flow views
was automatically translated into CSP using the model inter-
preter. The resulting CSP model is approximately 300 lines
of generated code and is thus too large to present here. A
sample of the generated CSP, showing just the top-level process
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Fig. 18. Specification of a function mapping timer signals to light colors.

definitions and eliding details of the renaming used to wire
together the DFD, appears as follows:

trafficlight_dfd =
(((]|(Alpha, Proc): trafficLight_dfd_set @
[Alpha] Proc) [[(renaming)]])
[| IFfd |] dfd_StateObjects)

trafficLight FFBD =
FFBDseq (blk_PwrFunction,
FFBDseq (blk_ResetLTI,
FFBDiteration (
sense_LightStatus_FFBD, {err},
FFBDseq (FFBDand ({blk_WaitForLTITimer,
blk_WaitForCar}),

blk_ExecutelLightCycle) ) ))

trafficLight = (trafficLight_dfd
[| IFff |] trafficLight_FFBD).

The preceding discussion has shown how the traffic light
problem may be modeled using FFBDs and DFDs created with

CmdHWToGreen

>0 F(x) O

CmdFRToGreen

a tool implementing the formal syntax proposed in this paper.
A CSP system model that conforms to the formal semantics
described in Section IV and corresponds to the traffic light
FFBDs and DFDs was generated using a model interpreter.
In the next section, we examine the use of model checking to
analyze the properties of the system model.

B. Analyzing the System

We performed several different analyses on the generated
CSP of the traffic light model using the FDR2 refinement
checker, which is a mature commercial tool for CSP analysis.
Analyses performed using FDR2 are specified by defining
assertions about the behavior that a model should exhibit,
which are typically expressed as a refinement of a more abstract
process. If an assertion is found to be false, FDR2 generates a
counterexample that shows the sequence of events which led to
an incorrect behavior.

While FDR2 does not limit the number of assertion checks
that can be performed on a model, we performed only four
illustrative checks on the traffic light model, which are given
as follows:

1) check for consistency between the functional flow and
data-flow views of the system;

2) check that the modeled design will never enter a state in
which both lights are green at the same time;

3) check that, given certain assumptions about the envi-
ronment with which the design interacts, the lights will
actually switch;

4) check that the modeled design is consistent with the
original problem statement.
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We now describe each check in more detail, and give the
corresponding CSP used to specify each assertion.

The consistency check between functional flow and data flow
is intended to ensure that there are no incompatibilities between
the sequencing of different functions and the interactions be-
tween those functions. The check is expressed as an assertion
that the traffic light model does not deadlock (i.e., never reaches
a state in which no progress is possible), written as

assert trafficLight : [deadlock free [FD]].

The deadlock check revealed an incompatibility between the
functional-flow and data-flow views in an early iteration of
the model; the data-flow view specified that the CmdHWtoRed
function should send an output to the CmdFRtoGreen function,
but the functional flow was such that CmdFRtoGreen could
not accept an input until CmdHWtoRed had completed, which
could not happen until CmdHWtoRed had completed its output
to CmdFRtoGreen. The counterexample information provided
by FDR2 allowed the source of the incompatibility to be rapidly
diagnosed and the model to be revised accordingly.

The second check, which is a safety check, is expressed as
an assertion that the traffic light model is a trace refinement
of the process Safety, which starts with the highway light
green as specified in the problem statement and excludes traces
containing the obviously unsafe situation in which both traffic
lights are green simultaneously, i.e.,

Safety =
let
LightGY(light) =
(light?c : {green,yellow} —
LightGY(light))
[] (1ight.red — LightsNotGreen)
LightsNotGreen =
[]1ight : {HWlight, FRlight} @
light?c — if ¢ == green
then LightGY(1light)

else LightsNotGreen
within LightGY(HWlight)

assert Safety [T =
trafficLight \ diff(Events,
{|HWlight,FRlight|})

where \ denotes “hiding” of all events in the set following the
hiding operator, diff represents a set difference, and Events is
the set of all events. The model passes this check, indicating that
traces(System) C traces(Safety) and that the modeled
design does not enter a state in which both lights are green in
any possible execution sequence.

Safety verification alone does not guarantee that the system
will actually function as desired since one possible way to
avoid producing unsafe traces is to avoid switching the lights.

Therefore, our third check is that the system does not remain
stuck in a single light state but instead always makes some
kind of progress. The specification that the lights will always
be switched is formulated in assumption-commitment style
[35]. The commitment is that some light-color transition must
always occur, whereas the assumptions involve the behavior of
the environment in which the traffic light system will operate.
The commitment is expressed as a recursive nondeterministic
choice over light-transition events, i.e.,

DF(A) = |~ |a: A @a — DF(A)
Commitment = DF ({ |[HWlight,FR1light|}).

The use of the nondeterministic choice operator means that
a process failures-divergence refining the commitment process
may only be capable of performing a subset of the light-
switching events in any given state but can never reach a state
in which no further light-switching events will occur.

The assumptions are expressed as processes that encode the
assumed behavior of the environment of the traffic light system,
i.e., the LTI and STI timers, and the vehicles on the farm road.
For example, the system clearly cannot meet the commitment
if there are never any cars on the farm road and thus never a
reason to switch the lights. The process

CarModel(v, Init) = Cars(v, Init, Init)
Cars(v,Init,N) =
ifN>0
then ( (v.car — v.noCar — CarModel(v,Init))
| ~| (v.noCar — Cars(v,Init, N—1)))

else v.car — CarModel(v, Init)

encodes the assumption that there are at least some cars on
the farm road by specifying that there can be no more than
N consecutive negative reads from the car sensor. Similar
processes encode assumptions about the consecutive number of
times that the timer can signal that it has not yet expired and the
response of the timers to reset signals.
The assumption/commitment assertion used to confirm light
activity is
assert Commitment [FD=
(trafficLight
[| { |RoadSensor, timerLTI, toLTItimer,
timerSTI, toSTItimer| }|]
(CarModel(RoadSensor, 200)
||| Timer(timerLTI, toLTItimer, 50)
||| Timer(timerSTI, toSTItimer, 10) ) )
\ diff (Events, { [HWlight,FRlight|}).

Checking this assertion against an early iteration of the
model uncovered a decision-logic error that had slipped through
previous manual reviews of the design and could, under a rare
combination of conditions, result in the system getting stuck
in an infinite loop that left the farm-road light green. Again,
the counterexample trace provided by FDR2 enabled quick
diagnosis and resolution of the problem.
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The final analysis to confirm that the modeled design is
consistent with the problem statement is formulated as a check
for scenario feasibility. The process

NominalScenario =
(timerLTI.tUp — RoadSensor.car —

HWlight.yellow — timerSTI.tUp —
HWlight.red — FRlight.green —

( (RoadSensor.noCar —

timerLTI.tNotUp — SKIP)
[] (RoadSensor.car —
timerLTI.tUp — SKIP))

FRlight.yellow — timerSTI.tUp —
FRlight.red — HWlight.green —
timerLTI.tUp — SKIP)

expresses in CSP the system behavior informally described in
the problem statement. Verification that the traffic light system
model is capable of successfully completing this scenario is
checked by asserting that a success event signaling comple-
tion of the nominal scenario must occur, i.e.,

assert (success — STOP) [FD=
(trafficLight
[|{|RoadSensor, timerLTI,
timerSTI,HWlight, FRlight|}|]
NominalScenario success — STOP)
\ diff (Events, {success}).

Running this analysis on an early iteration of the model
revealed a minor inconsistency with the original problem state-
ment, in which the system described by the FFBD incorrectly
used the STI timer, instead of the LTI timer, during one of the
waiting periods. Once the error was corrected, a repetition of
the analysis confirmed that the FFBD produces the behavior
described by the problem statement.

Checking all four assertions took approximately 45 s on a
2.4-GHz laptop. The most complex of the assertions, i.e., the
assumption/commitment specification, involved checking over
1500000 possible system states, which is a feat obviously
beyond the capabilities of manual review techniques. As this
case study demonstrates, even fairly simple system designs can
contain errors that escape manual review.

VI. RELATED WORK

Modeling and formal analysis have been utilized in a variety
of contexts (e.g., [36]-[40]). In this section, we briefly review
related work on FFBD syntax and semantics, formalization of
graphical notations with CSP, and definition of domain-specific
modeling languages with GME.

A. FFBD Syntax and Semantics

Both CORE [11] and RDD-100 [10] provide executable
FFBD variants that can be used to specify and understand

47

system behavior. RDD-100 allows users to define the dura-
tion of each function execution and to derive overall system
execution durations. CORE also adds facilities for specifying
the probability of selecting different branches of an FFBD
and for estimating resource usage during function execution.
However, unlike the work presented in this paper, the underly-
ing execution semantics of the FFBDs does not appear to be
publicly available, and execution of FFBD models in both tools
appears to be restricted to simulating individual traces, rather
than performing the kind of comprehensive analyses possible
with exhaustive state-space exploration.

B. Formalizing Graphical Notations Using CSP

A number of researchers have investigated the use of CSP
to formalize various graphical notations. For example, Ng
and Butler [41], Fischer er al. [42], and Benghazi et al. [43]
used CSP to provide a formal semantics for several kinds of
UML diagrams. Allen [44] developed the Wright architec-
ture description language as a CSP-based formalization of the
informal component-connectivity diagrams typically used to
describe software architectures and applied FDR2 to evaluate
the interface compatibility of connected components. Wong and
Gibbons explored the use of CSP to formalize and analyze
work-flow patterns [45] and the Business Process Modeling
Notation [46], both of which bear some similarities to FFBDs.
Roscoe and Wu [47] developed a detailed CSP semantics for
the Statecharts language, permitting Statecharts to be analyzed
using FDR2.

C. Domain-Specific Modeling Languages

Several projects that make use of GME to create domain-
specific modeling languages have been undertaken. Bapty et al.
[48] developed a GME-based design tool for supporting the de-
velopment of adaptive computing systems, where applications
are captured as a coarse-grained DFD. The Milan project [49],
[50] provides a modeling tool for electronic system design that
integrates simulations at multiple levels of granularity. Gray
et al. [51] developed a suite of tools based on GME to support
model transformation between modeling languages using an
embedded constraint language. Karsai et al. [52] provided a dis-
cussion of model-integrated computing and discussed projects
that have been completed using GME.

VII. CONCLUSION

FFBDs are an informal graphical notation for modeling sys-
tem behavior and a popular tool for system functional analysis
and decomposition [5]. Although FFBDs have proven to be a
useful tool for system design, their informality makes them
difficult to rigorously analyze. By instead using a formalized
FFBD notation to define system models, systems engineers can
obtain rapid feedback during the model development process
and quickly uncover subtle conceptual and design errors. To
that end, we have developed a graphical specification tool that
permits the capture of precise descriptions of system behavior
using FFBDs and DFDs. The abstract syntax of the modeling
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language has been formalized as a metamodel, capturing the
well-formedness rules of the language. We have implemented
a C++-based model interpreter program to automatically trans-
late system specifications captured using our tool into a target
semantic model that precisely defines the behavior described by
the graphical model.

Our current target semantic model is a CSP-based formal
semantics for FFBDs that was developed to enable experimen-
tation with analyses of FFBDs. The CSP realization of FFBDs
and DFDs provides a precise and unambiguous definition of the
behavior implied by a diagrammatic specification and allows
the user to employ existing theory and tools to exhaustively
verify a system specification. The CSP semantic model permits
analyses of potential deadlock scenarios and verification of
safety and progress properties.

As a case study in FFBD formalization, we have used our tool
to model the traffic light problem. The resulting model provides
precise specification of the functional flow and data flow of the
traffic light system in a hierarchical set of mutually consistent
diagrams. We have applied the FDR2 refinement checker to the
CSP generated by our tool and uncovered several subtle errors
in early revisions of the FFBD that had escaped manual reviews
of the diagrams.

Both the metamodel frontend and the CSP backend are
highly extensible. The GME-based metamodel can be extended
to support other notations beyond FFBDs, whereas the model
interpreter can be retargeted to CSP semantic models that cap-
ture different interpretations of FFBD behavior. Alternatively,
a semantic model based on some other formalism could be in-
corporated into the tool to provide access to analyses not avail-
able with CSP. Doing so would require developing a semantic
model for FFBDs in terms of the target formalism, just as we
constructed our current CSP semantic model. Existing work
on translating CSP to other formalisms (e.g., [53]) may make
this process somewhat easier, although directly developing a
definition of FFBD semantics in the target formalism could
result in a less complex semantic model than that generated
by translation from CSP. For those formalisms that support
specification of priorities, probabilities, temporal constraints,
or other properties not captured in standard FFBD notation, it
would also be necessary to extend the metamodel with notations
suitable for specifying such properties.

The primary contribution of this work is the definition of
a formal semantic model for FFBDs. In its current form, the
tool requires a certain amount of expertise in CSP to formulate
appropriate checks against the FFBD models. It also offers
little support for modifying a system model based on feedback
obtained through model checking. Users are responsible for
interpreting the counterexamples supplied by the model checker
in order to pinpoint those constructs in the system model that
are responsible for invalid behaviors. In the future, we plan
to extend the graphical tool to support the specification of
assertions and constraints, which can be checked in the verifi-
cation process, as well as to support the graphical presentation
of counterexamples. We also plan to examine the integration
of this tool into a broader tool flow to support end-to-end
system level specification of spacecraft systems. That effort
will build upon previous work on verifying spacecraft designs

against FFBD specifications via CSP refinement checks [54]
and using CSP-based formalizations of graphical notations to
combine FFBDs with other kinds of notation in well-defined
ways [55]. Further interesting research directions involve the
coupling of formal methods at the system level, with system
synthesis and generative tools to compose provably correct
system implementations.
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