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Introduction Both parallel MRI (pMRI, [1]) and compressed sensing (CS, [2]) allow image reconstruction from an under-sampled 
data set. The former exploits data redundancy in a sparse transform domain representation whereas the latter exploits the redundancy 
in multiple receiver data sets. Some success has already been reported in combining the two methods directly [3]. We report a new 
approach in which conventional pMRI and CS are cascaded to better exploit the individual strengths of the two methods. 
Theory The key difference between conventional pMRI (SENSE-like) reconstruction and that of CS recovery is that the former solely 
relies on the 2nd norm measurement of data consistency, whereas the latter further incorporates a 1st norm term to encourage the 
sparseness in the recovered data set, given that the underlying signal has a sparse nature. Thus 
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where y, x and M are respectively the partial data measurement, the underlying signal, and the pMRI encoding matrix; Φ is a 
transform used to enhance data sparsity. Equ. (1) represents the SENSE-like pMRI reconstruction while Equ. (2) represents the direct 
application of CS recovery with pMRI as in [3]. Successful CS recovery requires a non-uniform sampling pattern that produces a non-
coherent aliasing pattern as described in [2]; on the other hand, a SENSE-like uniform sampling pattern is desirable for pMRI to 
improve the effectiveness of coil sensitivity encoding [1]. Hence employment of either type of sampling pattern reduces the overall 
effectiveness of Equ. (2). 
To overcome the above constraint, we propose a two-step cascaded reconstruction. It is known that a SENSE-like pMRI 
reconstruction gives a 2nd norm optimal image estimation, but is impaired with reconstruction noise. On the other hand, CS recovery 
is noise stable, and use of a total variation (TV) constraint further suppress the intrinsic noise [2]; its drawback is the loss of image 
details (inaccurate image estimation). Hence the pros and cons of the two types of reconstruction complement each other. In our 
approach a SENSE reconstruction is first performed, and this is then incorporated as a prior estimation in the 2nd phase CS recovery 
with a TV constraint. Incorporation of the prior estimation in CS recovery can be achieved by performing a data sorting of the 
underlying image based on the prior estimation [4]. As has also been illustrated in [5], data sorting can be seen as a rearrangement of 
the elements in the underlying signal x and hence the corresponding columns in M. Thus we have: 
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where subscript ‘S’ denotes the sorting order that is obtained by sorting the SENSE reconstruction. Note that the TV constraint is 
applied to the ‘unsorted’ image. In Eqn. (3), coupled with the data consistency term, the CS operator preserves the image details from 
the SENSE reconstruction whereas the TV constraint suppresses the noise. For brevity, we refer to our method as SENSECS.  
Method A 2D T2-weighted axial brain slice was obtained (256×256) using a 1.5T GE scanner equipped with an 8-channel head coil. 
Reconstructions using the muti-coil data sets were made using SENSE, CS and SENSECS at an acceleration factor of 6. A variable 
density sampling pattern was used in CS, whereas the SENSE-type uniform sampling pattern was used in SENSECS. CS 
reconstructions were performed based on a modification of the sparse MRI tool box by Lustig M., using a Daubechies wavelet 
transform. To further illustrate that the 2nd phase CS recovery in the new SENSECS is distinct from a filtering process, a wavelet 
shrinkage denoising [6] was performed on the SENSE reconstruction as a comparison.  
Results and discussion Reconstructions of an axial brain slice using the different methods are shown in Fig 1. It is seen that at an 
acceleration factor of 6, SENSE reconstruction is severely corrupted by reconstruction noise, whereas the CS reconstruction shows 
blurring artifacts. The new SENSECS reconstruction preserves the image details while achieving a low noise profile. In comparison, 
wavelet denoising of the SENSE reconstruction is not successful due to the structured reconstruction noise. 
Conclusion We have introduced a new method named SENSECS that achieves both good image fidelity and low noise level by 
exploiting the strengths of both SENSE reconstruction and CS reconstruction. It allows improved image reconstruction compared with 
either SENSE or CS reconstruction alone. Furthermore, no special sampling pattern design is required.   

 
    

Figure 1: Reconstructions of 
an axial brain slice using 
different methods at an 
acceleration factor of 6. In 
(b)-(e), the boxed region in 
the reference image (a) are 
enlarged and compared. It is 
seen that the new SENSECS 
method gives the best 
reconstruction. (a) full data acquisition (b) SENSE (c) CS (d) SENSECS (e) denoised SENSE 
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