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Abstract The influence of microfibril angle (MfA), density and chemical cell wall composition on shrink-
age varied for the longitudinal and tangential directions as well as between wood types, namely
compression wood (CW), mature wood (MW) and juvenile wood (JW). At the same MfA, CW
exhibited a lower tangential shrinkage than JW, indicating the influence of the chemical com-
position on wood shrinkage. The chemical composition measured via FTIR micro-spectroscopy
has been shown in conjunction with density to be an alternative to MfA data for shrinkage
predictions. This was particularly true for wood of young cambial age for which the MfA did
not correlate to shrinkage. The results indicate a possibility to reduce distortion of sawn timber
by segregation using infrared (IR) and X-ray in-line measurements.

Zusammenfassung Der Einfluss des Mikrofibrillenwinkels (MfA), der Rohdichte und der chemischen Zusammen-
setzung der Zellwand auf das Schwindverhalten variiert sowohl zwischen longitudinaler und
tangentialer Richtung als auch zwischen Druckholz (CW), juvenilem (JW) und adultem Holz
(MW). Die geringere Tangentialschwindung von CW im Vergleich zu JW bei gleichem MfA weist
auf den Einfluss der chemischen Zellwandzusammensetzung auf das Schwindverhalten hin. Es
konnte gezeigt werden, dass die chemische Zellwandzusammensetzung, gemessen mittels Mikro-
FTIR-Spektroskopie, eine Alternative zum MfA für die Vorhersage des Schwindmaßes darstellt.
Dies galt insbesondere für JW, für welches keine Korrelation zwischen Schwindmaß und MfA
gefunden wurde. Diese Ergebnisse zeigen eine Möglichkeit zur Reduzierung der Verformung von
Schnittholz durch Sortierung basierend auf Infrarot- und Röntgenmessungen.

Please note: Images appear in color online but will be printed in black and white
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Abstract The influence of microfibril angle (MfA), dens-
ity and chemical cell wall composition on shrinkage varied
for the longitudinal and tangential directions as well as be-
tween wood types, namely compression wood (CW), mature
wood (MW) and juvenile wood (JW). At the same MfA, CW
exhibited a lower tangential shrinkage than JW, indicating
the influence of the chemical composition on wood shrink-
age. The chemical composition measured via FTIR micro-
spectroscopy has been shown in conjunction with density to
be an alternative to MfA data for shrinkage predictions. This
was particularly true for wood ofyoung cambial age for which
the MfA did not correlate to shrinkage. The results indicate
a possibility to reduce distortion of sawn timber by segrega-
tion using infrared (IR) and X-ray in-line measurements.

Schwindverhalten von Holz: Einfluss von Anatomie,
Zellwandarchitektur, chemischer Zusammensetzung
und Alter des Kambiums

Zusammenfassung Der Einfluss des Mikrofibrillenwinkels
(MfA), der Rohdichte und der chemischen Zusammenset-
zung der Zellwand auf das Schwindverhalten variiert so-
wohl zwischen longitudinaler und tangentialer Richtung
als auch zwischen Druckholz (CW), juvenilem (JW) und
adultem Holz (MW). Die geringere Tangentialschwindung
von CW im Vergleich zu JW bei gleichem MfA weist

M. Leonardon · C. M. Altaner · L. Vihermaa · M. C. Jarvis
Chemistry Department, University of Glasgow,
University Avenue,
Glasgow G12 8QQ, UK

C. M. Altaner (�)
School of Biological Sciences, University of Auckland,
92019 Private Bag, New Zealand
e-mail: c.altaner@auckland.ac.nz

auf den Einfluss der chemischen Zellwandzusammenset-
zung auf das Schwindverhalten hin. Es konnte gezeigt wer-
den, dass die chemische Zellwandzusammensetzung, ge-
messen mittels Mikro-FTIR-Spektroskopie, eine Alternative
zum MfA für die Vorhersage des Schwindmaßes darstellt.
Dies galt insbesondere für JW, für welches keine Korre-
lation zwischen Schwindmaß und MfA gefunden wurde.
Diese Ergebnisse zeigen eine Möglichkeit zur Reduzierung
der Verformung von Schnittholz durch Sortierung basierend
auf Infrarot- und Röntgenmessungen.

1 Introduction

Even the strongest piece of timber is not saleable as con-
struction material if it is distorted and therefore dimensional
stability is of huge economic value for the forest industry
(Johansson et al. 1994, Eastin et al. 2001). Spring and bow
are forms of timber distortion which cannot be predicted
from macroscopic wood characteristics like ring curvature
or spiral grain (e.g., Simpson and Gerhardt 1984, Skaar
1988, Johansson 2002). They are the result of heteroge-
neous shrinkage within a piece of timber (Simpson and
Gerhardt 1984), which can vary considerably in a random
way within a batten (Kliger et al. 2003, Johansson 2003).
Models based on high-resolution longitudinal shrinkage
data do give good predictions of spring and bow (Simpson
and Gerhardt 1984, Ormarsson 1999, Stanish 2000, Kliger
et al. 2003, Johansson 2003, Johansson et al. 2003). In order
to make use of these models to improve timber quality by
segregation, non-destructive techniques for measurement of
longitudinal shrinkage are required. Currently, such tech-
niques do not exist.

Dimensional changes of wood caused by water adsorp-
tion are anisotropic and in the first instance dependent
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on the anatomical direction in the wood (as summarised
by Skaar 1988). While the longitudinal shrinkage (LS) of
sound timber is generally small (< 1%), the radial and tan-
gential shrinkage (TS) is of considerable magnitude vary-
ing between 2–5% and 6–8% for conifers, respectively (as
summarised by Suchsland 2004). However, wood shrink-
age also depends on microstructural and molecular fea-
tures of the cell wall. These include the microfibril angle
(MfA) (Koehler 1931, Barber and Meylan 1964), the angle
at which the cellulose fibrils wind in the tracheid cell walls,
as well as the physical properties of the surrounding ma-
trix. Theoretical models describing the influence of the MfA
on the TS and LS have been developed based on a hy-
groscopic isotropic matrix consisting of hemicelluloses and
lignin which is reinforced with rigid cellulose fibrils (Barber
and Meylan 1964, Barrett et al. 1972, Cave 1972, Kopo-
nen et al. 1989, Yamamoto 1999). These theoretical models,
refined over the years (e.g. incorporating more cell wall
layers and MfA distributions) predict principally similar in-
fluences of MfA on shrinkage behaviour. The models are
generally in accordance with the rather scarce experimen-
tal data and illustrate the complex relationship between MfA
and shrinkage (Yamamoto et al. 2001). TS is high at low
MfA and steeply decreases with MfA above 30◦. LS is
fairly constant for MfA below 30◦, showing a slight de-
crease (or even longitudinal expansion for MfA around 25◦),
and then increases rapidly. TS and LS are of same magni-
tude at MfA = 45◦, beyond which TS and LS exchange their
behaviour.

The model developed by Yamamoto et al. (2001) also
demonstrates the crucial influence of the matrix properties.
Varying the swelling potential of the matrix has a major in-
fluence on the TS at low MfA, while the same is true for LS
at high MfA. The implication is that the correlation between
shrinkage and MfA is strong only over a narrow MfA range
(30–40◦) (Floyd 2005).

The mechanical properties of the matrix are sensitive
to changes in the moisture content. Moreover, each ma-
trix polymer (i.e., lignin and the various hemicelluloses)
responds differently to moisture changes (Cousins 1976,
1978, Akerholm and Salmén 2004, Olsson and Salmén
2004). This causes in conjunction with the variable chem-
ical composition of individual wood types (e.g., galactan
in compression wood (Timell 1986), high xylan content in
juvenile wood (Bertaud and Holmbom 2004)) a swelling be-
haviour that is not entirely dependent on the MfA (Barber
and Meylan 1964). Wooten et al. (1967) following com-
ments by Kelsey (1963) reported that the LS of compres-
sion wood (CW) is almost an order of magnitude bigger
than for JW with comparable MfA. They attributed this to
a thicker S1 layer, which after re-evaluating the published
microscopy images is in fact the S2(L) layer (as summarised
by Timell 1986). The S2 layer in severe CW tracheids

separates in an outer S2(L) and an inner S2 layer. TEM
photographs taken after the selective removal of polysac-
charides or lignin, respectively, demonstrate that the outer
S2(L) layer is highly lignified and almost devoid of cellu-
lose fibrils (Casperson 1962, Côté et al. 1968). Recently,
the β-1-4-galactan present in CW has been localised in the
outer cell wall layers by immunolabelling (Altaner et al.
2007). Combining those observations, a cell wall layer con-
sisting predominantly of lignin and β-1-4-galactan can be
postulated in CW. This emphasises the influence of physical
matrix properties on shrinkage.

Traditionally shrinkage has been correlated with density
(e.g. Suchsland 2004). This correlation is not particularly
strong and represents a general trend for sound wood of
different species. Watanabe and Norimoto (1996) proposed
a hyperbolic relationship between LS and specific MOE
(MOE/density). However, the form factors of the curve were
different for normal wood (NW) and CW. A robust regres-
sion for predicting LS by MfA was reported for example
in loblolly pine (Pinus taeda) if cambial age was included
(Lu et al. 1994). Johansson et al. (2003) developed a model
for the prediction of LS from colour and ‘tracheid effect’
measurements. The model uses six variables obtained from
on-line measurements and was able to predict 81% of the
variation in longitudinal shrinkage in Norway spruce (Picea
abies).

Recently, Floyd (2005) proposed an alternative model to
predict LS of wood. It is based on the assumption that the
longitudinal shrinkage can be expressed as a ratio of a driv-
ing force (hemicelluloses) and a resisting force (microfibril
network):

Predicted LS = Density/MOE× (α×Glucose content

+β ×Galactose content)+ c

where α and β are constants expressing the relative impor-
tance of the resisting and driving forces. It is likely that these
constants are species dependent. For loblolly pine (Pinus
taeda) the influence of the driving force was more than five
times that of the resisting force. The model could explain
92% of the variation in LS.

Shrinkage predictions have to be based on non-destructive
on-line measurements if they are to be used for improve-
ment of the quality of timber by segregation. Present meas-
urement techniques for MfA, local MOE, or galactose and
glucose contents do not fulfil these requirements. High reso-
lution density scanners are already used in the forest indus-
try to predict timber quality in terms of strength and stiffness
but not with respect to distortion. Infrared spectroscopy (IR)
yields information on the chemical composition and is used
in the high frequency range (NIR) in industrial process for
quality control (So et al. 2004, Tsuchikawa 2007). How-
ever, NIR has shown weak correlations, in particular for
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galactose, when used to predict the chemical composition
of wood (Jones et al. 2006). Calibration of IR spectroscopy
to physical wood properties like density, MfA or MOE has
also been reported (e.g. Thygesen 1994, Hoffmeyer and
Pedersen 1995, Schimleck et al. 2002, Nuopponen et al.
2006). NIR has been used for shrinkage predictions. For
5-year old Eucalyptus urophylla × E. grandis hybrids TS
could be modelled with 82% accuracy by NIR (Bailleres
et al. 2002). The weak correlations with radial shrinkage
(RS) (0.45) and LS (0.35) precluded similar predictions of
shrinkage in these directions. 63% of the variation in vol-
umetric shrinkage of mahogany (Swietenia macrophylla)
could be predicted by NIR (Taylor et al. 2008). This weak
correlation, compared to density and extractives content
(R2 = 0.81 and 0.67, respectively), was probably caused by
their counteracting effects on shrinkage.

The authors have recently reported the possibility of
measuring CW severity by mid-range IR scanning mi-
croscopy (Altaner et al. 2009), utilising the unique chemical
composition of CW. Purpose of this study was to investigate
if the FTIR CW-indicator can be used to improve shrinkage
predictions.

2 Materials and methods

55 specimens were prepared from a 36 year old Sitka
spruce (Picea sitchensis (Bong.) Carrière) tree grown at
Kershope, Northumbria, UK and selected for the pres-

Fig. 1 MfA, FTIR CW-indicator
and shrinkage in a P. sitchensis
radius. The photograph shows the
cross section in transmitted light
for CW identification. The
samples regarded as CW are
marked. JW samples are from
55 mm onward
Abb. 1 MfA, FTIR CW-Indikator
und Schwindmaß einem Radius
von P. sitchensis. Das Foto zeigt
den Querschnitt im Durchlicht zur
Identifikation von Druckholz
(CW). Die als Druckholz
identifizierte Proben sind mit
einem schwarzen Balken
markiert. Proben jenseits von
55 mm wurden als juveniles Holz
(JW) klassifiziert

ence of severe compression wood as well as normal ju-
venile and mature wood (McLean 2007). From a radial
strip samples for FTIR CW-indicator, X-ray density and
transmitted light measurements were prepared according to
Altaner et al. (2009). From the remainder small samples
(∼ 1.5 mm (R) ×∼21 mm (L) ×∼15 mm (T)) for shrink-
age measurements were split. Dimensional change between
fully saturated (submerging for 2 d in deionised water in-
cluding 5 vacuum cycles) and oven dry (3 d at 105 ◦C)
conditions were measured with a micrometer (±1 µm pre-
cision). The MfA was determined by analysing the 002
χ-profile of the X-ray diffraction patterns according to Cave
(1966) (‘2T-method’).

3 Results and discussion

3.1 Radial profile

Figure 1 illustrates the variation of longitudinal (LS) and
tangential (TS) shrinkage in a radial strip of Sitka spruce
containing severe CW. The biggest variation coincided with
the occurrence of CW as identified in transmitted light or by
IR spectroscopy. Noticeable differences in shrinkage could
be recognized between MW and JW. Those agree with the
differences in MfA as could be expected from the rein-
forced matrix theory discussed above (Barber and Meylan
1964, Cave 1972, Barrett et al. 1972, Koponen et al. 1989,
Yamamoto 1999). This difference in shrinkage between

1 3
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MW and JW was not mirrored by the FTIR CW-indicator,
which gave similar values for both wood types. Density
(data not shown) was higher for MW than JW samples. This
offered the possibility to predict shrinkage from a combina-
tion of FTIR CW-indicator and density values, two meas-
urements potentially available for sawn timber. In order to
be of value for wood quality assessment in the timber in-
dustry measurements have to be done on-line and reliably
cope with JW, the major wood type produced in fast growing
plantation forestry.

3.2 Shrinkage

As expected, MW differed statistically from CW and JW at
alpha ≤ 0.05 in its tangential as well as longitudinal shrink-
age behaviour (Table 1). JW and CW, both characterised by
a high MfA, did not differ significantly in LS, but did so
in TS. Figure 2 visualises the different relationship between
LS and TS shrinkage for the wood types investigated. CW,
JW and MW samples were found in well separated clusters.
Particularly the different shrinkage behaviour in the longi-
tudinal and tangential directions for CW demonstrates that
shrinkage is influenced not only by one wood characteristic,
i.e., MfA, but also by the morphology or chemical compo-
sition. Secondly it shows that the influence of those wood
features is different for the longitudinal and tangential di-
rections. This is consistent with theoretical considerations
on the influence of morphological (Cave 1972) and physical
cell wall properties on shrinkage (Yamamoto et al. 2001).
It is not only the composition of the cell wall matrix that
varies in wood (among others β-1-4 galactan is present in

Fig. 2 Relationship between
longitudinal and tangential
shrinkage in Sitka spruce
Abb. 2 Zusammenhang zwischen
Längsschwindmaß und
Tangentialschwindmaß in
Sitkafichte

Table 1 Longitudinal shrinkage (LS), tangential shrinkage (TS), mi-
crofibril angle (MfA), FTIR CW-indicator (FTIR) and density of
mature wood (MW), compression wood (CW) and juvenile wood
(JW) in Sitka spruce; Average values with standard deviation in paren-
theses
Tabelle 1 Längsschwindmaß (LS), Tangentialschwindmaß (TS), Mi-
krofibrillenwinkel (MfA), FTIR CW-Indikator (FTIR) und Rohdichte
von adultem Holz (MW), Druckholz (CW) und juvenilem Holz (JW)
in Sitkafichte. Mittelwerte mit Standardabweichung in Klammern

All MW CW JW

Number of
samples 53 16 19 18
LS (%) 1.46 (0.37) 1.16 (0.15) 1.50 (0.51) 1.46 (0.23)
TS (%) 8.37 (2.33) 10.76 (1.34) 5.94 (1.60) 8.37 (0.65)
MfA (◦) 14.2 (6.74) 7.9 (0.64) 22.1 (4.91) 14.2 (3.03)
FTIR (AU) 0.67 (0.25) 0.74 (0.05) 1.11 (0.23) 0.67 (0.08)
Density (g cm−3) 0.45 (0.12) 0.59 (0.06) 0.54 (0.13) 0.45 (0.11)

CW (Timell 1986) and JW is enriched in xylan (Bertaud
and Holmbom 2004)) but also the cell morphology (i.e., cell
shape, cell wall thickness, rays etc.) differs. Therefore, the
relationship between LS and TS can be expected to vary be-
tween wood types.

Three wood features have been correlated to shrinkage
of different Sitka spruce wood types. The MfA is a meas-
ure of the cell wall anisotropy, recognised as an important
factor influencing wood shrinkage (Koehler 1931). Density
represents a morphological characteristic that has been as-
sociated with volumetric and cross-sectional shrinkage (e.g.
Panshin and de Zeeuw 1980). The FTIR CW-indicator pro-
vides a measure for the chemical composition of the wood,
which has also been predicted to influence its shrinkage

1 3
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Feature All MW CW JW MW + CWCW + JW MW + JW
samples

Longitudinal

MfA 0.28∗∗∗ 0.06ns 0.45∗∗∗ 0.01ns 0.39∗∗∗ 0.16∗∗ 0.20∗∗
FTIR 0.24∗∗∗ 0.00ns 0.56∗∗∗ 0.00ns 0.55∗∗∗ 0.20∗∗∗ 0.10∗
Density 0.05ns 0.02ns 0.46∗∗∗ 0.02ns 0.20∗∗ 0.19∗∗ 0.17∗∗
MfA + FTIR 0.31∗∗∗ 0.06ns 0.60∗∗∗ 0.02ns 0.55∗∗∗ 0.20∗ 0.21∗
MfA + Density 0.33∗∗∗ 0.06ns 0.61∗∗∗ 0.04ns 0.25∗∗∗ 0.25∗ 0.24∗
FTIR + Density 0.24∗∗∗ 0.02ns 0.63∗∗∗ 0.02ns 0.64∗∗∗ 0.25∗∗ 0.20∗
All features 0.33∗∗∗ 0.06ns 0.66∗∗∗ 0.04ns 0.65∗∗∗ 0.26∗ 0.24∗

Tangential

MfA 0.77∗∗∗ 0.44∗∗ 0.65∗∗∗ 0.01ns 0.85∗∗∗ 0.67∗∗∗ 0.43∗∗∗
FTIR 0.54∗∗∗ 0.00ns 0.61∗∗∗ 0.37∗∗ 0.71∗∗∗ 0.79∗∗∗ 0.06ns

Density 0.00ns 0.74∗∗∗ 0.25∗ 0.05ns 0.01ns 0.26∗∗∗ 0.35∗∗∗
MfA + FTIR 0.79∗∗∗ 0.45∗∗ 0.73∗∗∗ 0.38∗ 0.86∗∗∗ 0.82∗∗∗ 0.45∗∗∗
MfA + Density 0.77∗∗∗ 0.74∗∗∗ 0.67∗∗∗ 0.06ns 0.86∗∗∗ 0.70∗∗∗ 0.49∗∗∗
FTIR + Density 0.65∗∗∗ 0.75∗∗∗ 0.61∗∗∗ 0.38∗ 0.80∗∗∗ 0.79∗∗∗ 0.35∗∗∗
All features 0.80∗∗∗ 0.75∗∗∗ 0.73∗∗∗ 0.40∗ 0.88∗∗∗ 0.52∗∗∗ 0.52∗∗∗
ns not significant at alpha ≤ 0.05
∗ Significant at alpha = 0.05
∗∗ Significant at alpha = 0.01
∗∗∗ Significant at alpha = 0.001

Table 2 Linear correlation
factors (R2) between shrinkage
and wood properties (and linear
combinations thereof) for
different Sitka spruce wood types
Tabelle 2 Lineare
Korrelationsfaktoren (R2)
zwischen Schwindmaß und
Holzeigenschaften (sowie deren
linearen Kombinationen) für
unterschiedliche Holztypen

behaviour (Yamamoto et al. 2001). The linear correlation
coefficients between these wood features and shrinkage for
several wood types including their significance are listed in
Table 2. The results differed between LS and TS, with a ten-
dency for stronger correlations for the latter, as could be ex-
pected from theoretical considerations (Barber and Meylan
1964). While genuine differences in the shrinkage behaviour
between LS and TS in relation to wood features exist, the
higher accuracy of the TS measurements due to their higher
values should not be neglected especially for MW.

When all samples, i.e., wood types, were considered, the
MfA (0.28 (LS) and 0.77 (TS)) showed a slightly stronger
correlation than the FTIR CW-indicator (0.24 (LS) and
0.54 (TS)) to shrinkage. Wood density, the parameter of
wood quality historically used, did not correlate to dimen-
sional changes. The commonly reported correlation between
density and volumetric shrinkage (as summarised by Skaar
1988) is an interspecies observation and based on small
clear samples corresponding to MW in this study. For MW,
density was strongly (R2 = 0.74) correlated to TS (Table 2).

The influence of the individual cell wall features on
shrinkage varied between the wood types. For CW all three
wood features had an influence on shrinkage LS and TS.
For MW and JW, correlations were found only for TS. In
the case of MW, density and to a lesser degree MfA was
connected to TS but in CW, the FTIR CW-indicator corre-
lated to TS. The varying influence of the individual wood
features on shrinkage implies that it is unlikely that shrink-
age in practice can be accurately predicted from one wood
feature alone. However, in this dataset, a linear combination
of MfA, density and FTIR CW-indicator improved the accu-

racy of wood shrinkage prediction only slightly, to 0.33 and
0.80 for LS and TS, respectively (Table 2) for all samples.
Non-linear models, as suggested by theoretical considera-
tions, might improve the accuracy. With the inclusion of
density, MOE, glucose as well as galactose content, a corre-
lation of up to 0.92 could be achieved for Pinus taeda (Floyd
2005).

3.3 Predicting shrinkage

If all samples were considered TS could be modelled with
similar accuracy by a linear combination of density and
FTIR CW-indicator (R2 = 0.65) as with the MfA (R2 =
0.77) alone (Table 2). For LS the FTIR CW-indicator (R2 =
0.24) explained a proportion of the variation in shrinkage
similar to MfA (R2 = 0.28). In this case a linear combina-
tion of density and the FTIR CW-indicator did not improve
the model for LS. The model which avoids MfA for TS
prediction is displayed in Fig. 3. The correlation is likely
to be improved if experimental difficulties could be over-
come. Changes in moisture content during sample prepar-
ation and measurements resulted in alignment inaccuracies
of the radial profiles due to the variable tangential swelling
(Fig. 1). As Bailleres et al. (2002) point out further ad-
vances in small size shrinkage measurement could improve
results.

If timber quality in terms of dimension stability is to be
improved by segregation, it is necessary to predict wood
shrinkage from data accessible on-line in the timber pro-
duction process. Despite the strong correlation of the MfA
to wood shrinkage it is not suitable for shrinkage predic-
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Fig. 3 Predicted TS from FTIR
CW-indicator and density
Abb. 3 Aus FTIR CW-Indikator
und Rohdichte berechnetes
Tangentialschwindmaß

tion because of the difficulty of measurement. Shrinkage
prediction based on X-ray density and/or chemical compo-
sition measured by infrared spectroscopy could provide an
alternative. Compared to the on-line set up reported by Jo-
hansson et al. (2003) based on six variables (i.e., colour
and ‘tracheid effect’) which is able to predict LS in Nor-
way spruce with 81% accuracy, LS predictions based on
density and FTIR CW-indicator were weak. However colour
measurements are most likely to be less effective in species
with a coloured heart wood like Sitka spruce. Floyd’s (2005)
model which explains 92% of shrinkage in loblolly pine is
based on density, MOE as well as glucose and galactose
contents. The MOE is tightly related to MfA, which gives
the model an advantage to the ones based on on-line meas-
urements. Incorporating MfA into the model for TS and LS
prediction in Sitka spruce increases the accuracy to 80% and
33%, respectively (Table 2). Bailleres et al. (2002) used NIR
for the prediction of shrinkage in young eucalyptus. Cor-
relation was strong for TS (R2 = 0.82) while prediction of
LS was inaccurate (R2 = 0.35). The difference between TS
and LS predictability is consistent with the data reported
here on Sitka spruce. However, their samples did not con-
tain MW. When the MW samples were excluded from the
Sitka spruce dataset reported here the correlation between
the FTIR CW-indicator and TS increased to an almost iden-
tical value of R2 = 0.79. Our findings suggest that the cor-
relations could be improved by incorporating X-ray based
density measurements. Considering the work of Taylor et al.
(2008) this is especially the case for wood species with a low
extractive content. They could predict volumetric shrinkage
of mahogany by NIR with only 63% accuracy due to the
counteracting effects on shrinkage of density and extractives
content.

3.4 Cambial age and shrinkage

The fact that shrinkage of individual wood types is influ-
enced to different degrees by the wood features described
above is of importance when dealing with young trees. Short
rotation plantation forestry of fast growing tree species, like
Eucalyptus spp., radiata or loblolly pines and Sitka spruce,
has gained importance in timber production. Wood of such
origin can consist exclusively of JW. JW has a tendency
to low stiffness and high distortion, wood properties gen-
erally less desired by the timber industry. Thus not only is
shrinkage prediction of increased importance to improve the
quality of such timber but also it is necessary to deal with
the special physical characteristics of JW described above.
Much knowledge on timber quality is related to wood from
old growth forests and therefore relates to MW. Because
such knowledge is of limited value to the increasingly im-
portant short rotation forestry, timber quality assessments
on young trees has been subject of more recent studies
(e.g. Koshy and Lester 1994, Bailleres et al. 2002, Chauhan
and Walker 2006). The determination of wood properties in
young trees is also an important issue when considering the
improvement of wood quality through breeding. The ear-
lier wood quality can be determined in a tree seedling, the
shorter breeding cycle can be.

The correlation of MfA and density to TS found for MW
breaks down when JW is considered (Table 2). A similar
observation was made for stiffness and density correlations
in young Pinus radiata (Chauhan and Walker 2006). It is
particularly of interest that the MfA, showing the strongest
correlation to shrinkage when all samples are considered,
did not correlate at all to LS or TS for JW. In this re-
spect the fact that the FTIR CW-indicator was the only
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wood feature which correlated to TS in JW is of interest
(Table 2). Table 2 also lists the correlation factors for com-
binations of the classified wood types, representing wood
of ‘old’ (MW + CW), ‘young’ (JW + CW) and ‘defect-free’
(MW + JW) trees. When the samples representing a young
tree were considered the FTIR CW-indicator accounted for
79% of the variation in TS and was also found to be sig-
nificant for LS with alpha ≤ 0.001. Considering samples
resembling wood from ‘old’ trees the modelling of shrink-
age by the FTIR CW-indicator was improved if density was
considered as additional parameter and in the case of LS was
then superior to models involving MfA. Shrinkage in ‘defect
free’ wood was the most difficult to model and none of the
wood features showed strong correlations within this sub-
sample. However, this is of minor relevance since shrinkage
in such samples is low and less problematic to the timber
industry in terms of timber distortion.

Conclusion

Longitudinal and tangential shrinkage of CW, MW and JW
of Sitka spruce is governed to different degrees by MfA
and chemical composition. The lower tangential shrinkage
of CW compared to JW at similar MfA indicated the influ-
ence of the chemical composition on wood shrinkage. FTIR
micro-spectroscopy, a fast measurement of the chemical
composition, has been shown to be an alternative to MfA
data for shrinkage predictions when corrected for density.
This was particularly true for wood of young cambial age
for which the MfA did not correlate to shrinkage. Accord-
ingly, infrared and X-ray in-line measurements in saw mills
could have the potential to reduce distortion of sawn timber
by segregation.
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