
Empirical Methodologies in Software Engineering

Ray Dawson

Loughborough University

UK

R.J.Dawson@lboro.ac.uk

Pearl Brereton

Keele University

UK

o.p.brereton@keele.ac.uk

Phil Bones

University of Canterbury

New Zealand

P.Bones@elec.canterbury.ac.nz

Motoei Azuma

Waseda University

Japan

azuma@azuma.mgmt.waseda.ac.jp

Briony J Oates

University of Teeside

UK

B.J.Oates@tees.ac.uk

Mary Lou Jackson

Vancouver Island Health

Authority, Canada

mljackson@shaw.ca

Abstract

The collection and use of evidence in Software

Engineering practice and research are essential elements

in the development of the discipline. This paper discusses

the need for evidence-based software engineering, the

nature of evidence in its various forms and some of the

research methodologies used in other disciplines for the

collection of evidence, which are also relevant to software

engineering. Two frameworks or models are proposed

which illustrate the relationships between the

methodologies discussed. In particular, the paper

highlights the importance and roles of both positivist and

interpretivist methods of investigation.

1. Introduction

This paper examines the different approaches that can

be taken to the generation of empirical evidence to

support the theory and practice of software engineering.

First we explain why empirical evidence is needed. The

underlying philosophies of different empirical approaches

are then explained, the different methodologies are

compared and their advantages and difficulties are

identified. Two frameworks are devised to show how the

different methodologies relate. The paper concludes that

all the different methodologies have their place in

software engineering and each approach has value for the

software engineering practitioner.

2. Why Take an Empirical Approach?

Software engineering is essentially the realm of the

practitioner. The discipline aims to enable the successful

production of software, where the criteria for success can

include such quality characteristics as accuracy,

appropriateness, functionality, reliability, usability,

efficiency, maintainability and portability, as well as

timeliness, cost effectiveness, customer satisfaction or

even political expedience.

As software engineering is so dependent on the

practitioner it suffers from all the variation and

unpredictability associated with people, who have their

individual strengths and weaknesses, insights and blind

spots. Equally, as software products are produced in the

real world, every software project is influenced by the

environment in which it takes place. This variation in

circumstances means that guiding principles are hard to

establish and, consequently, the discipline of software

engineering is often referred to as an art or craft. This can

lead to individuals forming their own ideas for working

practice based on a mixture of their own experiences,

hearsay from others and general folklore and myths (e.g.

[1]).

The wide variety of software products adds to the

problem. Software engineering includes large scale,

mission-critical, real-time systems software, interactive

off-the-shelf software, Web-based e-commerce software,

and embedded software. Each category of software can

have different quality requirements, and therefore needs a

different approach.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Canterbury. Downloaded on December 7, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

If software engineering is to live up to the word

“engineering” in its title it needs to move towards being a

rigorous discipline. For this to be the case, observations of

working practices need to be collected, theories and

hypotheses have to be formed to explain the observations

and new ideas must be advanced. These theories,

hypotheses and ideas need to be tested to produce

evidence of their worth (or lack of worth).

Any observation, such as “project X took longer to

complete than project Y”, can be regarded as evidence,

but it is clear that it is not satisfactory without more detail,

and more detail normally requires the measurement and

capture of data. For example, it would clearly be

beneficial to have an indication of the size and complexity

of each project, the number of people working on it, their

roles and experience, and the detail of hardware and

software tools available. Many of these aspects have

measurable attributes which convey a much greater

understanding if they are known. For instance, the data

that Project X involved twenty five thousand lines of code

and fifty database tables whereas Project Y involved two

thousand lines of code and six database tables, conveys a

much greater understanding of the relative size and

complexity of the two projects than a statement that

Project X is “much bigger” than Project Y.

A further advantage accruing from the collection of

empirical data is that it can lend itself to statistical

analysis. When anecdotal evidence is relied upon, the

conclusion that projects with more lines of code take more

effort to complete could be thrown into doubt if a single

exception is found. The application of statistics could,

however, give an indication of the significance of the

results and show that there is an acceptable degree of

confidence in the conclusions drawn. Qualitative data

analysis, while lacking the intuitive appeal (to many

software engineers) of numerical precision, also plays a

role in identifying themes, attitudes and interpretations,

which help to describe and justify the practice of software

engineering.

3. What is Evidence?

There are many approaches to collecting data.

Anecdotes, case studies, action research, surveys and

controlled experiments can all yield empirical data, but of

what value is that data and could one approach be seen as

being superior to another? To answer these questions, it is

necessary to have an idea of what we are looking for, and,

indeed, how we will know when we have found it. For

empirical research, the outcome of a study depends very

much on whether the researcher is a positivist or an

interpretivist (sometimes called anti-positivist) in their

approach. The positivist looks for irrefutable facts and

fundamental laws that can be shown to be true regardless

of the researcher and the occasion. For example Sir Isaac

Newton’s laws of gravity have been shown to be true

many times by many researchers. The positivist

philosophy is the necessary and obvious approach in the

pure sciences where the pursuit of such fundamental laws

is the norm. In such areas of research it is the general

practice to formulate a hypothesis that is tested via

controlled experiments that isolate independent variables,

enabling a cause and effect to be established. Other

researchers then attempt to replicate the experiments, and

if the same causal relation is repeatedly established, the

hypothesis is accepted as proven and therefore ‘true’.

Kitchenham et al [2] have provided useful guidelines for

the conduct of such controlled experiments in software

engineering.

Software engineering is not a pure science, however. It

is certainly arguable whether a positivist approach can

ever be appropriate for a discipline so dependent on

people and the environment, where carefully controlled

and repeatable experiments, which change only one

variable at a time, are often difficult or impossible to

design and implement. For this reason many researchers

favour an interpretivist approach to software engineering

research. Interpretivists believe all research must be

interpreted within the context in which it takes place

where even the researcher must be considered part of the

context. This approach makes absolute truths difficult, if

not impossible, to find, as every context is likely to be

different. Interpretive studies do not therefore, prove or

disprove a hypothesis. Instead they try to understand

phenomena through the meanings and values that people

themselves assign to them, and produce a rich and

detailed description of the phenomenon under

investigation. This description can lead to new,

empirically grounded theories. Case studies, for example,

often fall into this category of research.

The problem with interpretivist research is that it is

difficult to prove anything – a problem, at least, for a

world where the scientific model of research, and hence

the expectation of proof, often dominates. For example, if

a new methodology is tried in a case study, the only thing

that can be shown for certain is that it can work. The

methodology can produce impressive results, enabling a

process to be completed in a very short time, for example,

but it is still not possible to say whether the results are

entirely due to the methodology used. It may be that, say,

the practitioners were particularly capable in the test

performed. This could be due to something as simple as

the higher motivation achieved by a pay rise!

Furthermore, it is not possible to prove that the tested

methodology would even work at all on a different

occasion. As Checkland, creator of Soft Systems

Methodology, writes:

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Canterbury. Downloaded on December 7, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

“… if a reader tells the author ‘I have used your

methodology and it works’, the author will have to

reply ‘How do you know that better results might

not have been obtained by an ad hoc approach?’ If

the assertion is: ‘The methodology does not work’,

the author can reply, ungraciously but with logic,

‘How do you know the poor results were not due

simply to your incompetence in using the

methodology?” [3]

Instead of proving a hypothesis by means of isolating

factors and establishing cause and effect, interpretive

research seeks to explore and explain how all the factors

in the object under study (a software development team,

an organisation etc.) are related and interdependent.

 So what constitutes evidence? How can empirical data

be used to support the teaching, learning and research of

software engineering principles and methodologies?

Positivism could provide the fundamental truths on which

to build a discipline but it is difficult, perhaps impossible,

to perform in a software engineering context.

Interpretivism is a possible approach but may not be able

to provide the generality needed for a widely practised

discipline. To overcome this dilemma it would be

instructive to examine what other disciplines can teach the

software engineering community in this respect.

4. The Approach of Other Disciplines

The medical world has a long standing track record of

research in which the highest standards are essential as the

potential for tragic disasters is so great. A new drug

undergoes extensive laboratory experiments, but still

cannot be released until it has had extensive trials with

hundreds or thousands of volunteers under strict double

blind test conditions. These rigorous experiments and

trials are in the positivist vein, aiming to determine the

underlying truth of what is or is not safe and effective, and

should, in theory, be reproducible. The high numbers of

volunteers involved in the trials allow statistical analysis

to be performed regarding the effectiveness of a treatment,

overcoming the variation found between individuals.

However, while this level of rigour is commendable it is

not always possible and, as a result, there is also a wealth

of other reported cases that involve small samples or even

individuals. An example, illustrating this type of research

in medicine, is given by the early heart transplant

operations. These operations were extensively reported

and studied and became an important source of

knowledge, yet were clearly subject to the individual

patients, the medical team performing the operation and

the conditions in which the operations took place. The

knowledge gained therefore comes from an interpretivist

perspective in these cases, with the rich and detailed

understanding of each operation (i.e. case study) gradually

accumulating into a body of knowledge about how, and in

what circumstances, such operations might succeed or fail.

The legal world has a long established tradition of

basing decisions on case law, (i.e. decisions are based on

the outcomes of previous “case studies”). This is

particularly important in the UK where case precedents

have enabled the law to operate without the need for a

written constitution. This use of case law shows the value

of interpretivist research but also illustrates some of the

limitations. In law, if it can be shown that conditions are

substantially different, a different decision can be made.

The case precedents then become more refined for the

future, indicating one possible outcome for the original

conditions but with exceptions for the conditions

corresponding to the later precedent. This again shows

how case studies can be built up over time, enabling us to

refine and improve the knowledge they provide.

In crime detection evidence is pieced together to reach

an overall conclusion that would not be possible from

each individual bit of evidence. A detective needs to show

that an accused person had to be in the right place at the

right time, to have the right opportunity, the tools and the

right motivation to undertake the crime. Often, the

evidence when viewed one bit at a time can be described

as “circumstantial”, but viewed together the evidence can

be overwhelming. For the software engineering

community this suggests that while individual pieces of

evidence regarding, say, the effectiveness of a

methodology may not be conclusive, it is important to

acknowledge and record the evidence as it could become

part of a much bigger picture later.

Closer to the area of software engineering are the

worlds of industrial engineering, knowledge management

and information systems. Industrial engineering, like

software engineering, aims to produce high quality

products at the lowest possible cost. Traditionally the

target products of industrial engineering have been

hardware while software engineering handles software.

However, recently many target products of industrial

engineering include the software of embedded computers.

Examples are cars, driving navigators, cell phones, DVD

players etc. Like medicine, industrial engineering uses a

combination of positivist approaches such as controlled

experiments and statistical analysis, plus observations on

real-life projects and case studies.

In knowledge management the advantages of “story

telling”, have long been accepted. This indicates that the

anecdote, a form of interpretivist research that is even less

formal than the case study, has value. In knowledge

management it is important to capture and then make

available all knowledge whether based on a rigorous study

or simple anecdote.

Information systems’ defining feature, or raison d’être,

is the study of the development, use and effects of

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Canterbury. Downloaded on December 7, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

information systems, usually computer-based, in

organisations, groups and society, that is, in their social

context. Unlike software engineering, the majority of

information systems research is empirical [4]. It initially

concentrated on positivist research, but the limitations of

such methods for investigating human activities have long

been recognised in the information systems discipline [5],

and the use of interpretive methods has gradually

increased [6,7,8]. Information systems research therefore

has a long tradition of both positivist and interpretivist

research.

These different disciplines therefore teach the software

engineering community that both positivist and

interpretivist research have a role to play, and that

evidence can be gradually accumulated over a period of

time from multiple studies.

The disciplines of software testing and quality

assurance give us a further perspective. Testing (and QA)

is performed at several levels within a software

development project. Four such levels are shown in Fig. 1

in the form of a “V” model.

The life cycle of a software-based system, in its

simplest form, tends to follow the V down the left arm and

up the right. However, the depth of the V also gives an

indication of the ‘reality gap’ between the testing

environment and the target operating environment. At the

bottom of the V the unit test involves testing the code

outside its planned operational software environment.

Without the rest of the code the unit can still undergo

some tests but it is impossible to judge how the rest of the

code may affect it. Uncovering errors at this level is

relatively inexpensive. Travelling up the right arm of the

V moves closer to the real operating environment.

Integration testing includes more, but not all, of the

software. System testing involves all the software, but in

an artificial environment where the testers are not the end

users. It is only when the software is put to actual

customer use that the full operating conditions are

experienced and it is only at this level of reality that

certain errors (the requirements errors) tend to be found.

The cost of uncovering these errors tends to be very high.

The relevance of the software testing perspective to

empirical research is in the trade-off between realism and

rigour. If such a “V” model were applied to empirical

research, the lowest level would correspond to a rigorous

experiment from the positivist camp, necessarily

performed in a tightly controlled environment, but a long

way from representing the real world of software

development. At the other extreme (corresponding to high

on the “V” model) would lie the truly interpretivist case

study, instructional and firmly planted in the real world,

but lacking rigour in the scientific sense.

In the next section we extend the idea of providing a

model to explain the distinctions between different

empirical methods and attempt to incorporate lessons

from other disciplines.

5. A Framework for Empirical

Methodologies in Software Engineering

In order to appreciate the contributions of the different

approaches to empirical research in software engineering

it is helpful to create a framework to show how the

approaches relate to each other.

Fig. 2 shows a pyramid giving the positivist –

interpretivist spectrum with positivist methodologies at

the top and interpretivist methodologies at the base.

Why a pyramid? The framework is depicted as a

pyramid for two reasons. Firstly, the pinnacle of the

pyramid represents a goal to which many researchers may

aspire: to discover fundamental, irrefutable truths which

other researchers can reproduce and confirm or refute.

The base of the pyramid on the other hand is placed firmly

on the ground representing the practical constraints within

which software engineering research must operate.

Secondly, the nature of the research and constraints means

that the positivist research at the top of the pyramid is

rarely achieved, whereas the interpretivist research,

especially anecdotes, is far more common, so the area at

each level represents the relative quantity of research

undertaken. The intention is not to imply that the research

Requirements -- Customer use

 System design -- System test

 Detailed design -------------------------- Integration test

 Code ------------ Unit test

Figure 1. The “V” model for software testing

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Canterbury. Downloaded on December 7, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

at the top is in any way superior to that below; all software

engineering research has its value.

We can briefly summarise the different research

methods in our pyramid. Experiments, as discussed

earlier, concentrate on standardising all variables except

one, and observe what happens when that single variable

is changed, so that cause and effect can be established

(see, for example, [2]). For example, in a medical

experiment, one group may receive a new drug, and

another identical group is given a placebo. Significant

variations in outcomes for the two groups should be

attributable to the drug. Because of the difficulties of

controlling all variables in software engineering or

establishing an identical control group, experiments and

the confirmation or refutation of hypotheses are hard to

achieve, but desirable, so experiments are placed at the

top of the pyramid. “Experiments with students” are

positioned below them. Tests on students have a number

of advantages. There are often large numbers of students

available, allowing many tests to be undertaken in

parallel, and this can allow alternative methods to be tried

and compared. The students themselves are of a known

ability (e.g. as measured by their recent grades), a narrow

range of experience, and all should have similar

motivations (the desire to do well in their course of study).

The academic environment can lend itself to the control of

experiments, keeping requirements, team membership,

hardware and software support constant, for example, as it

is not subject to the commercial pressures experienced in

industry. However, the same environment that enables

controlled experiments to be undertaken in academia, also

contributes to the limitations to this type of research. The

fact that conditions can be kept constant immediately

makes it less real than would be experienced in the very

dynamic, changing environment of a typical software

company with, probably, a mixture of experience and

motivations. Nevertheless, research with students is still

important as it provides knowledge which, when taken

with other sources, can build an overall picture in which

software practitioners can have confidence. The relatively

high position on the pyramid indicates both the positivist

nature of the experimental design and the relative paucity

of such studies reported in the literature.

Surveys are a systematic gathering of information from

a large sample, looking for general trends or patterns [9].

They involve wide and inclusive coverage, usually at a

specific point in time. The data is analysed using statistics.

Careful selection of the sample to be surveyed allows

conclusions to be drawn about a wider population than the

sample, but the results usually have a confidence level of

less than 100%, so they are placed lower than

experiments.

Case studies are a rich account of a particular

experience, event or situation, often taking a longitudinal

view [10,11]. The findings are often dependent on the

particular context of study, and may not be transferable to

any other setting. They are more common than

experiments in software engineering practice, if not in the

literature, but unlikely to produce irrefutable truths, so

they are lower in our pyramid. Multiple case studies,

while still context-dependent, can identify recurring

themes, which may eventually become software

engineering ‘laws’, so are higher than single case studies.

Action research involves practitioners researching into

their own practice in an iterative cycle of planning, acting

and reflecting, with the twin aims of contributing both to

the practical concerns of people in an immediate

problematic situation and to the goals of science [12,13].

Ethnographic research comes from anthropology where a

researcher would spend a significant amount of time in the

field. Ethnographers immerse themselves in the lives of

the people they are interested in and seek to place the

phenomena studied in their social and cultural context

[14,15]. Like single case studies, findings from action

research and ethnography are dependent on their context

and may not be transferable to other settings. They are

therefore placed lower in our pyramid.

Finally anecdotes, storytelling and diaries capture the

data and interpretations we all can and do discover.

Anecdotes are often told when software engineers meet,

they are easy to produce, but their insights may be unique

to individuals. They are therefore on the ground level of

our pyramid.

------ Positivist
 ----- Controlled Experiments
 ----- Experiments with students
 ----- Surveys, multiple case studies
 ----- Case studies, action research,ethnography
 ----- Anecdotes, story telling, diaries
------ Interpretivist

Figure 2. The pyramid of empirical research types

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Canterbury. Downloaded on December 7, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

The placing of the different types of research within the

pyramid is, to some extent, subjective, and in reality it

may be better to represent each with a range of levels. A

case study, for example, may be examining results from

the customer base of a particular company. This customer

base could be huge, representing a high proportion of the

potential population, in which case the findings may be

considered to be further up the pyramid than a company

with a small, specialised customer base. Similarly, the

placing of surveys and multiple case studies will depend

on the numbers involved.

An alternative framework is to place the research types

on a scale of reality or relevance to the real world as is

given in Fig. 3.

The placing of each research type here is even more

subjective than the placing within the positivist-

interpretivist pyramid. For example, the controlled

experiment within the workplace is put low down on the

reality scale as the controlled environment is bound to

affect its relevance. However, the degree to which this is

so will vary from one experiment to another. The

positioning of surveys is because of the inevitable biases

that occur in the questions or the sample population, but

again this is bound to vary. Nevertheless, the scale is

useful to highlight the fact that different research types

can vary not only in their rigour but also in their relevance

and that the most rigorously determined research results

may not be useful simply because the rigorous conditions

imposed can themselves reduce the relevance to the

software engineering practitioner.

7. Conclusion

In this paper we have examined the different

approaches that can be taken to gain empirical evidence to

support the theory and practice of software engineering.

We conclude that all the different research methodologies

have their place in software engineering, and each

approach has value for the software engineering

practitioner. Similar views about the need for multiple

approaches and the accumulation of evidence over time

are apparent in other disciplines. Our two frameworks

show how the different approaches relate to each other

and to the real world.

The recognition of two different paradigms of research

– positivism and interpretivism – is also important to

empirical research in software engineering. Again we

argue that both types of research are important if software

engineering research is to be both rigorous and relevant.

7. Acknowledgements

This paper has been written as a result of the

deliberations at the STEP Workshop on “Where is the

Evidence? The Role of Empirical Practices in Software

Engineering” held in Amsterdam in September 2003. The

authors, who all attended the workshop, would like to

acknowledge and thank the other participants for their

contributions to the ideas discussed in this paper.

8. References

[1] R. Hirschheim and M. Newman, “Symbolism and

information systems development: Myth, metaphor and magic”,

Information Systems Research, 2(1), 1991, pp. 29-62.

[2] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones,

D.C. Hoaglin, K. El Emam and J. Rosenberg, “Preliminary

guidelines for empirical research in software engineering”,

I.E.E.E. Trans. Software Eng., 28(8), 2002, pp. 721-734.

[3] P. Checkland and J. Scholes, Soft Systems Methodology in

Action, Wiley, Chichester, 1990, p299.

[4] J. Mingers, “The paucity of multimethod research: A review

of the information systems literature”, Information Systems

Journal, 13(3), 2003, pp. 233-249.

[5] E. Mumford, R. Hirschheim, G. Fitzgerald and T. Wood-

Harper, Research Methods in Information Systems: Proceedings

of the IFIP WG 8.2 Colloquium, Manchester Business School,

1-3 September, 1984, North-Holland, Amsterdam, 1985.

[6] D. Avison, “The ‘discipline’ of information systems:

Teaching, research and practice”, In J. Mingers & F. A. Stowell

(Eds.), Information Systems: An Emerging Discipline?,

McGraw-Hill, London, 1997, pp. 113-135.

[7] W.J. Orlikowski and J.J. Baroudi, “Studying information

technology in organizations: Research approaches and

----- Real
 ----- Multiple case studies
 ----- Case studies, action research, ethnography,
 anecdotes, story telling, diaries
 ----- Surveys
 ----- Controlled experiments in the workplace
 ----- Experiments with students
----- Artificial

Figure 3. The relevance of research types to the real world

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Canterbury. Downloaded on December 7, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

assumptions”, Information Systems Research, 2(1), 1991, pp. 1-

28.

[8] G. Walsham, “The emergence of interpretivism in IS

research. Information Systems Research, 64), 1995, pp. 376-

394.

[9] S.L. Pfleeger and B.A. Kitchenham “Principles of Survey

Research, Part 1: Turning Lemons into Lemonade”, Software

Engineering Notes, 26(6), 2001, pp16-18

[10] R.K. Yin, Applications of Case Study Research, Sage,

Thousand Oaks CA, 2nd edition, 2003a.

[11] R.K. Yin, Case Study Research. Design and Methods.

Sage, Thousand Oaks CA, 3rd edition, 2003b.

[12] R.L. Baskerville and A.T. Wood-Harper, “A Critical

Perspective on Action Research as a Method for Information

Systems Research,” Journal of Information Technology (11),

1996, pp. 235-246.

[13] P. Checkland, “From framework through experience to

learning: the essential nature of action research”" in Information

Systems Research: Contemporary Approaches and Emergent

Traditions, H-E. Nissen, H.K. Klein, R.A. Hirschheim (eds.),

North-Holland, Amsterdam, 1991, pp. 397-403.

[14] S.L. Star, Cultures of Computing. Blackwell, Oxford, 1995.

[15] J. Van Maanen, Tales of the Field: On Writing

Ethnography, University of Chicago Press, Chicago, 1988.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Canterbury. Downloaded on December 7, 2009 at 15:55 from IEEE Xplore. Restrictions apply.

