
KERMIT: a Constraint-based Tutor for Database
Modeling

Pramuditha Suraweera, Antonija Mitrovic

Intelligent Computer Tutoring Group
Computer Science Department, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
pramu16@hotmail.com, tanja@cosc.canterbury.ac.nz

Abstract: KERMIT is an intelligent tutoring system that teaches
conceptual database design using the Entity-Relationship data model.
Database design is an open-ended task: although there is an outcome
defined in abstract terms, there is no procedure to use to find that outcome.
So far, constraint based modelling has been used in a tutor that teaches a
database language (SQL-Tutor) and a system that teaches punctuation and
capitalisation rules (CAPIT). Both systems have proved to be extremely
effective in evaluations performed in real classrooms. In this paper, we
present experiences in using CBM in an open-ended domain. We describe
system’s architecture and functionality. KERMIT has also been evaluated
in the context of genuine teaching activities. We present the results of an
evaluation study with students taking a database course, which show that
KERMIT is an effective system. The students enjoyed the system’s
adaptability and found it a valuable asset to their learning.

1. Introduction

In previous work, we have shown that Constraint-Based Modeling (CBM) [14] is
extremely effective. We have implemented SQL-Tutor [11], an Intelligent
Tutoring System (ITS) for the SQL database language, and CAPIT [10], a
punctuation and capitalization tutor. This paper presents our experiences in
implementing another constraint-based tutor, this time in the area of database
design. This domain is different from the ones we have previously worked in, as
it is an open-ended domain. Although the final database design is described in
abstract terms (i.e. the features of a good quality design are known generally),
there is no procedure to use to arrive at the final solution. We therefore wanted to
test CBM in such a domain.

The Entity-Relationship (ER) data model, proposed by Chen [3], is the most
widely used model for conceptual database design. Although the ER model is
relatively simple, students have many problems developing ER diagrams. The
text of the problem is often ambiguous and incomplete. ER modelling is not a
well-defined process. There is no single best solution for a problem, and often
there are several possible schemas for the same requirements. Although the
traditional method of learning ER modelling in a classroom environment may be
sufficient as an introduction to the concepts of database design, students cannot



gain expertise in the domain by attending lectures only. In tutorials, a single tutor
must cater for the needs of the entire group of students, and it is inevitable that
they obtain only limited personal assistance. Therefore, the existence of a
computerized tutor, which would support students in acquiring database design
skills, would be highly important.

We start by reviewing related work. Section 3 describes the overall
architecture of the system. Section 4 presents the evaluation study that showed
the effectiveness of the system. The conclusions are given in the last section.

2. Related Work

There have been only two attempts at developing ITSs for DB modelling. ERM-
VLE [9] is a text-based virtual learning environment for ER modelling, in which
students design databases by navigating the virtual world and manipulating
objects. The virtual world consists of different rooms, such as entity creation
rooms and relationship creation rooms. The authors claim that the organisation of
the environment reflects the task structure. The student issues commands such as
pick up, drop, name, evaluate, create and destroy to manipulate objects. The
effect of a command is determined by the location in which it was issued. For
example, a student creates an entity whilst in the entity creation room.

The interface of ERM-VLE contains the definition of the problem, and a
graphical representation of the solution, but the student does not directly interact
with the graphical representation. The student interacts with the virtual world
solely by issuing textual commands. The problem’s ideal solution is embedded in
the virtual world. The learner is only allowed to create objects that correspond to
the ones in the ideal solution. When the system was evaluated, the experienced
designers felt that the structure of the virtual world had restricted them [8]. On the
other hand, novices felt that they had increased their understanding of ER
modelling. However, these comments cannot be treated as a proof of the system’s
effectiveness since the system has not been evaluated properly.

ERM-VLE restricts the learner since he/she is forced to follow the identical
solution path to the ideal one. This method has a high tendency to encourage
shallow learning as users are prevented from making errors and they are not given
explanation about their mistakes. Moreover, a text-based virtual reality
environment is not a natural environment in which to construct ER models.
Students who learn to construct ER models using ERM-VLE would struggle to
become accustomed to modelling databases outside the virtual environment.

The other tutor for database modelling is COLER [5,6], a web-based
collaborative learning environment for ER modelling. Students initially solve
problems individually and then join a group to develop a group solution. The
designers argue that this process helps to ensure that students participate in
discussions and that they have the necessary raw material for negotiating
differences with other members of the group. The student’s individual solution is
constructed in the private workspace, whereas the collaborative solution is
created in the shared workspace. Students are provided with a chat window
through which they can communicate with each other. The private workspace
also allows the student to experiment with different solutions. Once a group of
students agree to be involved in collaboratively solving a problem, the shared
workspace is activated. Only a single member can edit the shared workspace at



any time. After each change in the shared workspace, the students are required to
express their opinions by voting, with eitheragree, disagreeor not sure. The
personal coach resident in the interface gives advice in the chat area based on the
group dynamics: student participation and the group’s ER model construction.

COLER encourages and supervises collaboration, and we believe it has the
potential in helping students to acquire collaboration skills. However, it does not
evaluate the ER schemas produced, and cannot provide feedback regarding their
correctness. In this regard, even though the system is effective as a collaboration
tool, the system would not be an effective teaching system for a group of novices
with the same level of expertise. From the authors’ experience, it is very common
for a group of students to agree on the same flawed argument. Accordingly, it is
very likely that groups of students unsupervised by an expert may learn flawed
concepts of the domain. In order for COLER to be an effective teaching system,
an expert should be present during the collaboration stage.

3. KEEEERRRRMIT: A Knowledge-based ER Modelling Tutor

KERMIT [12] is a problem-solving environment, in which students construct ER
schemas that satisfy a given set of requirements. The system provides feedback
tailored towards each student’s knowledge. The system supports the ER model as
defined in [7]. The architecture of the system is given in Figure 1. The main
components of KERMIT are its user interface, pedagogical module and student
modeller, discussed in this section. KERMIT contains a number of predefined
database problems and ideal solutions, specified by a human expert. Each
problem describes the requirements of a database that the student is to design.
The problem text is represented internally with embedded tags that specify the
mapping to the objects in the ideal solution. The tags are not visible to the student
since they are extracted before the problem is displayed.

Users interact withKERMIT’s interface to construct ER schemas for the
problems presented to them by the system. The pedagogical module drives the
whole system by selecting the instructional messages and problems that best suit

the particular student. The
student modeller evaluates the
student’s solution. In contrast
to typical ITSs,KERMIT does
not have a problem solver, as
developing a problem solver
for ER modelling is extremely
difficult. One of the major
obstacles that would have to
be overcome is natural
language processing (NLP), as
the problems in the domain are
presented using natural
language text. NLP would
have to be used to extract the
requirements of the database

from the problem text. However, the NLP problem is far from being solved.
Other complexities arise from the nature of the task. There are assumptions that

Constraint
Based

Modeller

Interface

Student

Pedagogical
Module

Solutions

MS
Visio

Models

Problems

Constraints
Student

Fig. 1. Architecture ofKERMIT



need to be made during the composition of an ER schema. These assumptions are
outside the problem description and are dependent on the semantics of the
problem itself. Although this obstacle can be avoided by explicitly specifying
these assumptions within the problem description, ascertaining these assumptions
is an essential part of the process of constructing a solution and would over
simplify the problems.

Although there is no problem solver,KERMIT is able to diagnose students’
solutions by using its domain knowledge represented as a set of constraints. The
system contains an ideal solution for each of its problems, which is compared
against the student’s solution according to the system’s knowledge base. The
knowledge base consists of constraints used for testing the student’s solution for
syntax errors and comparing it against the system’s ideal solution.KERMIT’s
knowledge base enables the system to identify student solutions that are identical
to the system’s ideal solution. More importantly, this knowledge also enables the
system to identify alternative correct solutions, i.e. solutions that are correct but
not identical to the system’s solution.

KERMIT’s knowledge base consists of 92 constraints. Each constraint consists
of a relevance condition, a satisfaction condition and feedback messages. The
feedback messages are used to compose hints that are presented to students when
the constraint is violated. The constraints can be roughly divided into syntactic
and semantic ones. The syntactic constraints describe the syntactically valid ER
schemas and are used to identify syntax errors in students’ solutions. These
constraints only deal with the student’s solution. They vary from simple
constraints such as “an entity name should be in upper case”, to more complex
constraints such as “the participation of a weak entity in the identifying
relationship should be total”.

Semantic constraints compare the student’s solution to the ideal one. These
constraints are usually more complex than syntactic constraints. For example.
constraint 67 deals with composite multivalued attributes. Since such attributes
can also be modelled as weak entities, the constraint has to compare a composite
multivalued attribute in the ideal solution to a similar one or a weak entity in the
student’s solution. This constraint illustrates the ability of the system to deal with
alternative correct student solutions that are different from the ideal solution
specified by a human expert.KERMIT knows about equivalent ways of solving
problems, and it is this feature of the knowledge base that givesKERMIT
considerable flexibility.

KERMIT maintains two kinds of student models: short-term and long-term
ones. Short-term models are generated by matching student solutions to
constraints and the ideal solutions. The student modeller iterates through each
constraint, checking whether the current problem state satisfies its relevance
condition. If that is the case, the satisfaction component of the constraint is also
verified against the current problem state. Violating the satisfaction condition of a
relevant constraint signals an error. The pedagogical module uses the short-term
student model to generate feedback to the student. On the other hand, the long-
term student model is implemented as an overlay model. It keeps a record of each
constraint’s history: how often the constraint was relevant, and how often it was
satisfied or violated. The pedagogical module uses these data to select new
problems.



3.1. Interface

Students interact withKERMIT via its user interface (Figure 2) to view problems,
construct ER diagrams, and view feedback. The top window displays the text of
the current problem. The middle window is the ER modelling workspace where
students create ER diagrams. The workspace was developed by integrating
Microsoft Visio[15] with KERMIT. Feedback is presented in the textual form in
the lowest window, and also verbally, through the animated pedagogical agent.

KERMIT’s interface reduces the burden on the student’s memory by showing
the text of the problem, and also by showing the available constructs. The student
can easily remind her/himself of the elements of the problem and the concepts of
the ER model. Furthermore, this interface reinforces ER modelling by requiring
the student to highlight the appropriate part of the problem text whenever a new
construct is added to the ER diagram. The highlighted words are coloured
depending on the type of object. When the student highlights a phrase as an entity
name, the highlighted text turns bold and blue. Similarly the highlighted text turns
green for relationships and pink for attributes. The feature is advantageous from a
pedagogical point of view, as the student must follow the problem text closely.
Many of the errors in students’ solutions occur because they have not
comprehensively read and understood the problem. These mistakes would be
minimised in KERMIT, as students are required to focus their attention on the
problem text every time they add a new object.

Besides being useful from the pedagogical point of view, highlighting is also

Fig. 2. User interface ofKERMIT



useful from the point of view of the student modeller for evaluating solutions.
There is no standard that is enforced in naming entities, relationships or attributes,
and the student has the freedom to use any synonym or similar word/phrase as the
name of a particular object. Since the names of the objects in the student solution
(SS) may not match the names of construct in the ideal solution (IS), the task of
finding a correspondence between the constructs of the SS and IS is difficult. This
problem is avoided inKERMIT by forcing the student to highlight the word or
phrase that is modelled by each object in the ER diagram.

3.2. Pedagogical Module

The pedagogical module is the driving engine of the whole system. Its main tasks
are to generate appropriate feedback messages for the student and to select new
practice problems.KERMIT individualises both these actions to each student
based on their student model.

There are are six levels of feedback, according to the amount of detail:correct,
error flag, hint, detailed hint, all errors andsolution. The first level of feedback
(correct) simply indicates whether the submitted solution is correct or not. The
error flag indicates the type of construct (e.g. entity, relationship, etc.) that
contains the error.Hint and detailed hintoffer a feedback message generated
from the first violated constraint.Hint is a general message such as “There are
attributes that do not belong to any entity or relationship”. On the other hand,
detailed hintprovides a more specific message such as “The ‘Address’ attribute
does not belong to any entity or relationship”, where the details of the erroneous
object are given. A list of hints on all violated constraints is displayed at theall
errors level. The ER schema of the complete solution is displayed at the final
level (solutionlevel).

When the student gets a new problem, the feedback level is set tocorrect. The
level of feedback is incremented with each submission until it reaches the
detailed hintlevel. The system also gives the student the freedom to manually
select the level of feedback, thus providing a better feeling of control.

When selecting a new problem, the student model is examined to find the
constraints that have been violated most often. We have chosen this simple
problem selection strategy in order to ensure that students get the most practice
on the constructs with which they experience difficulties.

4. Evaluation

We performed an evaluation ofKERMIT at the University of Canterbury,
Christchurch in August 2001. This section presents the procedure and the results.

4.1. Procedure

The study involved sixty-two volunteers from students enrolled in the
Introduction to Databases course. The students had learnt ER modelling concepts
during two weeks of lectures and had some practice during two weeks of tutorials
prior to the study. This study involved a comparison of a group of students
learning ER modelling by using the fully functionalKERMIT against a control
group who used a cut-down version of the system, referred to asER-Tutor. The
interfaces of both systems were similar, butER-Tutor did not provide any
feedback except for the complete solution. That way, both groups of students



worked in the lab, but theER-Tutor group had the feedback that is comparable to
a classroom condition. The participants were randomly allocated to the control or
the experimental group. Initially each student sat a pre-test and then interacted
with the system in a single, two-hour session. The participants worked
individually, solving problems at their own pace. There were 6 problems in total,
presented to the two groups in the same order. All the important events such as
logging in, submitting a solution and requesting help were recorded in a log
specific to each student. Finally, the participants were given a post-test and a
questionnaire.

A pre- and post-test were used to evaluate the students’ knowledge before and
after the session. To minimise any prior learning effects, we designed two tests
(A and B) of approximately the same complexity. They contained two questions:
a multiple choice question to choose the ER schema that correctly depicted the
given scenario and a question that involved designing a small ER schema. In
order to reduce any bias, the first half of each group was given test A as the pre-
test and the remainder were given B as the pre-test. The students who had test A
as their pre-test were given test B as their post-test and vice versa.

The questionnaire contained a total of fourteen questions. Initially students
were questioned on previous experience in ER modelling and in using CASE
tools. Most questions asked the participants to rank their perception on various
issues on a Likert scale with five responses ranging fromvery good(5) to very
poor (1), and included the amount they learnt about ER modelling by interacting
with the system and the enjoyment experienced. The students were also allowed
to give free-form responses.

4.2. Objective Analysis

Table 1 presents a few statistics about the study. The experimental group students
spent more time interacting with the system than the control group. Although the
difference is not significant, it is encouraging to note that students were more
willing to interactKERMIT. The average times for completing a problem for both
groups were very similar. These findings suggest that even though the students
usingKERMIT were forced to indicate the semantic meaning of each construct by
highlighting a word in the problem text, their performance was not degraded.

Table 1.Mean system interaction details

KEEEERRRRMIT ER-Tutor

Mean s. d. mean s. d.

Time spent on problem solving (min.) 66:39 21:22 57:58 34:38

Time spent per completed problem (min.) 23:36 6:55 23:46 21:40

No. of attempted problems 4.36 1.45 4.10 2.55

No. of completed problems 1.75 1.14 1.97 1.20

We also analysed the logs to see how students acquired constraints, using the
same approach as in [13]. We identified each problem-state in which a constraint
was relevant. Each constraint relevance occasion was rank ordered from 1 up. For
each occasion, we recorded whether a relevant constraint was satisfied or
violated. We calculated, for each participant, the probability of violating each
individual constraint on the first occasion of application, the second occasion and



so on. The
probabilities were
averaged across all
the constraints in
order to obtain an
estimation of the
probability of
violating a given
constraint C on a
given occasion.
The probabilities
were then averaged
across all
participants and
plotted as a
function of the
number of

occasions when C was relevant, as shown in Figure 3. To reduce individual bias,
only the occasions in which at least two thirds of the total population of
participants had a relevant constraint were used. The data points show a regular
decrease. The power curve displays a close fit with an R2 fit of 0.88. The
probability of 0.23 for violating a constraint at its first occasion of application has
decreased to 0.12 at its sixteenth occasion of application displaying a 53%
decrease in the probability. The results of the mastery of constraints further
strengthen the claim that the students learn ER modelling by interacting with
KERMIT.

4.3. Questionnaire Analysis

Table 2 displays a summary of the responses. The students in both groups
required approximately the same time to learn the interface. SinceKERMIT’s
interface is more complicated, we expected that students who usedKERMIT
would require longer to learn its interface. The difference in mean responses on
the amount learnt is not significant. Both groups rated their enjoyment of the
system on a similar scale. The control group students rated the interface easier to
use in comparison to the students who usedKERMIT. The difference is
statistically significant (t = 1.78, p < 0.01). This result was expected since
KERMIT’s interface is more complex thanER-Tutor’s.

The difference for the ratings of the usefulness of feedback is statistically
significant (t = 3.45, p < 0.01). These results are analogous with our expectations
due to the difference in the information content presented as feedback from each
system. Students who usedKERMIT also had a better perception of the system as
a whole. This was shown in their responses to whether they would recommend
the system to others, where approximately 84% of the experimental group
students indicated that they would, while the percentage of the control group
students who had the same opinion was lower, approximately 68%.

y = 0.2538x-0.2799

R2 = 0.8847

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Occasion number

P
ro

ba
bi

lit
y

Fig. 3. Probability of violating a constraint as a function of the
occasion when that constraint was relevant



4.4. Pre- and Post-test performance

Table 2 also contains the results the students achieved in the pre- and post-tests.
The difference in pre-test scores is insignificant, confirming that the two groups
are comparable. The experimental group scored significantly higher on the post-
test (t = 4.91, p < 0.01). Conversely, the difference in pre- and post-test of the
group who usedER-Tutor is statistically insignificant. The difference in gain
scores of the two groups is statistically significant (t = 3.07, p < 0.01). We can
conclude from these results that students who usedKERMIT learnt more than
students who used the control system.

The effect size and power for the experiment were also calculated. Effect size
is a standard method of comparing the results of one pedagogical experiment to
another. The common method to calculate the effect size in the ITS community is
to subtract the control group’s mean gains score from the experimental group’s
mean gain score and divide by the standard deviation of the gain scores of the
control group [2]. This gives the effect size of 0.63 for our experiment, which is
comparable with the effect size of 0.63 in [1] and 0.66 in [11], where the session
lengths were also 2 hours.

Another way to calculate the effect size is theω2 value [4]. For our
experiment,ω2 is 0.12, which is a relatively large effect size. We also calculated
the power, measured as the fraction of experiments that would produce significant
results for the same design, the same number of participants and the same effect
size. Chin [4] recommends that researchers should strive for a power of 0.8. The
power of this experiment was calculated as 0.75 at significance 0.05, which is an
excellent result.

5. Conclusions

This paper presentedKERMIT, an ITS for ER modelling. KERMIT’s
effectiveness in teaching ER modelling was shown in a classroom experiment.
The participants who used the full version ofKERMIT showed significantly better
results in both the subjective and objective analysis in comparison to the students
who practiced ER modelling with a conventional drawing tool.

The student modelling technique used inKERMIT (CBM) has previously been
used to represent domain and student knowledge in SQL-Tutor [11,13] and in
CAPIT [10]. In both cases, the analysis of students’ behaviour while interacting

Table 2.Means for the user questionnaire, pre- and post-test
KERMIT ER-Tutor

mean s. d. mean s. d.

Time to learn interface (min.) 11.50 11.68 11.94 14.81
Amount learnt 3.19 0.65 3.06 0.89
Enjoyment 3.45 0.93 3.42 1.06
Ease of using interface 3.19 0.91 3.65 1.08
Usefulness of feedback 3.42 1.09 2.45 1.12
Pre-test 16.16 1.82 16.58 2.86
Post-test 17.77 1.45 16.48 3.08
Gain score 1.65 1.72 -0.10 2.76



with these systems proved the sound psychological foundations of CBM and the
appropriateness of constraints as the basic units of knowledge. The research
presented in this paper demonstrated that CBM can also be used to effectively
represent knowledge in domains with open-ended tasks such as database
modelling. This result further strengthens the credibility of CBM.

There are a number of future avenues that can be explored to further improve
KERMIT. The current system only presents general hint messages on the errors in
the student’s solution. The feedback of the system could be enhanced to provide
support for deep learning. We have recently started a new project, which will
enhanceKERMIT to support self-explanation.

Acknowledgements
The work presented here was supported by the University of Canterbury research grant
U6430. We thank Ken Koedinger for advising on the evaluation study.

References

1. Albacete, P.L., VanLehn, K. The Conceptual Helper: an Intelligent Tutoring System
for Teaching Fundamenatal Physics Concepts. In: Gauthier, G., Frasson, C. and
VanLehn, K. (eds.). Proc. ITS’2000, Springer-Verlag Berlin (2000) 564-573

2. Bloom, B. S. The 2-sigma problem: The search for methods of group instruction as
effective as one-to-one tutoring. Educational Researcher, 13 (1984) 4-16

3. Chen, P. P. The Entity Relationship Model - Toward a Unified View of Data. ACM
Transactions Database Systems, 1 (1976) 9-36

4. Chin, D. N. Empirical Evaluation of User Models and User-adapted Systems. User
Modeling and User Adapted Interaction, 11, (2001) 181-194

5. Constantino-Gonzalez, M., Suthers, D. A Coached Collaborative Learning
Environment for Entity-Relationship Modeling. In: Gauthier, G., Frasson, C. and
VanLehn, K. (eds.). Proc. ITS’2000, Montreal (2000) 324-333

6. Constantino-Gonzalez, M., Suthers, D., Icaza., J. Designing and Evaluating a
Collaboration Coach: Knowledge and Reasoning. In: Moore, J. D., Redfield, C. L. and
Johnson, W. L. (eds.). Proc. AIED 01, San Antonio, Texas, IOS Press (2001) 176-187

7. Elmasri, R., Navathe, S. B. Fundamentals of Database Systems. Addison Wesley
(1994)

8. Hall, L., Gordon, A. Synergy on the Net: Integrating the Web and Intelligent Learning
Environments. Proc. of WWW-based Tutoring Workshop at ITS’2000 (2000) 25-29

9. Hall, L., Gordon, A. (1998) A Virtual Learning Environment for Entity Relationship
Modelling. SIGCSE bulletin, 30 (1998) 345-353.

10. Mayo, M., Mitrovic, A. Optimising ITS Behaviour with Bayesian Networks and
Decision Theory. Int. Journal on Artificial Intelligence in Education, 12 (2001) 124-
153.

11. Mitrovic, A., Martin, B., Mayo, M. Using Evaluation to Shape ITS Design: Results
and Experiences with SQL-Tutor. UMUAI, 12 (2002) (in press)

12. Mitrovic, A., Mayo, M., Suraweera, P., Martin, B. Constraint-based Tutors: a Success
Story. In: Monostori, L., Vancza, J. and Ali, M. (eds.). Proc. IEA/AIE-2001, Budapest,
Springer-Verlag Berlin (2001) 931-940

13. Mitrovic, A., Ohlsson, S. Evaluation of a Constraint-based Tutor for a Database
Language. Int. Journal on Artificial Intelligence in Education, 10 (1999) 238-256

14. Ohlsson, S. Constraint-based Student Modelling. In: Greer, J.E., McCalla, G (eds)
Proc. of Student Modelling: the Key to Individualized Knowledge-based Instruction,
Springer-Verlag Berlin (1994) 167-189

15. Visio, http://www.microsoft.com/office/visio/


