
An Intelligent SQL Tutor on the Web

ANTONIJA MITROVIC

Intelligent Computer Tutoring Group
Computer Science Department
University of Canterbury
Private Bag 4800
Christchurch, New Zealand
tanja@cosc.canterbury.ac.nz
http://www.cosc.canterbury.ac.nz/~tanja
Phone (64) 3 3642987 extn. 7771
Fax (64) 3 3642569

Abstract: The paper presentsSQLT-Web, a Web-enabled intelligent tutoring system for the SQL
database language.SQLT-Web is a Web-enabled version of an earlier, standalone ITS. In this paper we
describe how the components of the standalone system were reused to develop the Web-enabled system.
The system observes students’ actions and adapts to their knowledge and learning abilities. We describe
the system's architecture in comparison to the architectures of other existing Web-enabled tutors. All
tutoring functions are performed on the server side, and we explain howSQLT-Web deals with multiple
students. The system has been open to outside users since March 2000.SQLT-Web has been evaluated in
the context of genuine teaching activities. We present the results of three evaluation studies with the
University of Canterbury students taking database courses, which show thatSQLT-Web is an effective
system. The students have enjoyed the system’s adaptability and found it a valuable asset to their
learning.
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INTRODUCTION

Intelligent Tutoring Systems (ITS) offer the advantage of individualized instruction without the
expense of one-to-one human tutoring. Although numerous ITSs have been developed to date,
they are mostly used in research environments, and only a few have been used by large numbers
of students in real classrooms. The main cause of such limited use of existing systems is the
complexity of ITS development, and the difficulties with providing robust and flexible systems.
Despite the fact the area is not young, there are no well-established methodologies or
development tools. The time needed for the development of one hour of instruction in an ITS is
estimated to 100 hours of development time. Furthermore, the hardware platforms available in
most schools are not the ones developers prefer, and porting systems between platforms is in no
way a straightforward task. Fortunately, Web-enabled versions of ITSs have the potential to
reach a much wider audience as they face significantly fewer problems with hardware and
software requirements.



We have developedSQL-Tutor , a standalone system for teaching SQL (Structured Query
Language) (Mitrovic, 1998a). The system has been used by senior computer science students at
the University of Canterbury and has been found easy to use, effective and enjoyable (Mitrovic
& Ohlsson, 1999). The system has been developed in Allegro Common Lisp (Allegro, 1998)
and is available on MS Windows and Solaris. Besides local users, more than eighteen hundred
people worldwide have downloaded the Windows version of the system1 since May 1999.
However, we wanted to open the system to a wider audience, and avoid problems with porting
between various platforms. The goal of this paper is to presentSQLT-Web, a Web-enabled
version of SQL-Tutor that was developed by reusing the standalone version, and to show that
the developed system is effective. We discuss the advantages and disadvantages of commonly
used architectures for Web-based educational systems first, followed by a discussion of the
architecture we adopted forSQLT-Web. Then, we describe the features of the system that
support students’ learning and discuss how multiple students are handled simultaneously. We
present our experiences with the system in section 4, and further research directions in the final
section.

ARCHITECTURES OF WEB-ENABLED ADAPTIVE EDUCATIONAL SYSTEMS

Web-enabled educational systems offer several advantages in comparison to standalone
systems. They minimize the problems of distributing software to users and hardware/software
compatibility. New releases of systems are immediately available to everyone. More
importantly, students are not constrained to use specific machines in their schools, and can
access Web-enabled tutors from any location and at any time.

Several architectures for Web-enabled ITSs have emerged so far, all based on the client-
server architecture. If we consider the location at which the teaching functions are performed,
three types of architectures can be identified: centralized, replicated and distributed. In all
systems that will be used to illustrate the three architectures, the student needs a Web browser,
which is a common requirement today. Although one of the promises of Web is platform-
independence, the differences between various browsers are not negligible, and often require
substantial effort to ensure that a Web-enabled system can be used via any browser.

In this section we present only the general features of the three architectures. More detailed
surveys of various approaches and technologies used to build Web-enabled educational software
can be found in (Brusilovsky, 1999; Alpert et al., 1999; Eliot, 1997; Stern et al., 1997).

Centralized architecture

In thecentralized architecture, illustrated in Figure 1, the application server and the Web server
run on the server side, while the student interface is displayed in a Web browser on the client’s
machine. The application server performs all tutoring functions. The interface consists of a set
of HTML entry forms. Information entered by the student is sent to the Web server, which
passes the student’s requests and actions to the application server.

The most common mechanism for communication between the server and the interface is
CGI (Common Gateway Interface). For each particular URL the server is to respond to, there is

1 SQL-Tutor is available for downloading fromhttp://www.cosc.canterbury.ac.nz/~tanja/ictg.html

Fig. 1. Centralized architecture



an external CGI program, which processes the data and generates the results in the form of a
new HTML page. Examples of systems that follow this philosophy areWITS , a symbolic
equation-solving tutor (Okazaki, Watanabe & Kondo, 1996),PAT-Online, an algebra tutor
(Ritter, 1997), andID (Siekmann et al., 2000), a multimedia system for teaching mathematics.
The problem with using CGI is the necessity to run a separate CGI program in response to each
Web request. In order to maintain consistency between various requests in a single session, it is
necessary to be able to relate each incoming request to a particular student.

Another option is using programmable Web servers, which can be extended with the
application code. Common Lisp Hypermedia Server2 (CL-HTTP) (Mallery, 1994) is an example
of such programmable Web servers. CL-HTTP is a fully featured HTTP server developed in
Common Lisp, which supports application development by directly extending the server using
Common Lisp programming. CL-HTTP uses CGI and enables developers to define Lisp
functions to handle these incoming requests, and generate HTML pages as responses. To
generate responses, developers can use a special set of HTML-generating functions. This is the
architecture thatELM-ART , a Lisp tutor (Brusilovsky, Schwarz & Weber, 1996), andAST, a
statistics tutor (Specht, Weber, Heitmeyer, & Schoch, 1997) are based upon. The development
of SQLT-Web largely follows the approach used in these two systems, and is further discussed
in the next section.

Replicated architecture

In thereplicated architecture(Figure 2), the entire tutor resides in a Java client that needs to be
downloaded and is executed on the student’s machine. All tutoring functions are therefore
performed on the client’s machine, while the server is only used as a repository of software to
be downloaded. An example is ADIS (Warendorf & Tan, 1997), a Java-based Web-enabled ITS
for teaching data structures. ADIS is available as a Java applet that runs in a Web browser, or a
Java application, which includes its own graphical user interface.

The amount of effort involved in building a tutor with a replicated architecture is the same
as building a standalone system. These systems are very fast, as all processing is done on the
client’s machine. However, a significant limitation of this architecture is the fact that the student
model is stored on the machine where the tutor has been executed. Therefore, the student always
needs to use the system from the same machine if he/she wants to benefit from the summaries of
previous sessions stored in the student model, otherwise the knowledge about previous sessions
would be lost and the system would not be able to adapt to the student easily.

Distributed architecture

In thedistributed architecture(Figure 3) tutoring functionality is distributed between the client
and the server. The exact policy on distributing the functions may vary. Vassileva (1997)
describes theDCG authoring tool. The server contains teaching materials, concept structures,
which describe the pedagogical structure of various domains, and the planner. The student
requests a course by specifying a domain and a learning goal, and the planner develops a course
for the student based on his/her student model. The course is then downloaded to the client’s

2 CL-HTTP server is available fromhttp://www.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html

Fig. 2. Replicated architecture



site, together with the Executor, a Java application that controls the execution of the course. The
interface is delivered via HTML pages, with attached Java applets that carry out interaction with
the student and diagnosis of their answers. The same philosophy underlies a trauma care tutor
(Johnson, Shaw, & Ganeshan, 1998), where a copy of a pedagogical agent, namedADELE , is
run on each student’s computer, and performs all tutoring actions. The central server manages
course materials and performs administrative functions. In this kind of replicated architecture,
the amount of communication between the application server and the client is small. The client
needs be to downloaded at the beginning of the interaction, but after that all the processing is
done on the client. At the end of the session, the student model is posted to the application
server, where all the student models are kept between sessions.

Another common architecture for distributed tutors involves the application server
consisting of a student modeler, which creates and maintains student models for all users, a
domain module, capable of solving and/or selecting problems, and a pedagogical module. The
user interface is usually Java-based and may perform some teaching functions. Additional
functionality in the interface includes immediate feedback for each problem-solving step, and
interactive graphics and simulations. Communication between the interface and the application
server does not necessarily involve the Web server; it is possible to establish a direct TCP
connection between the applet and the application server in order to speed up the system.
AlgeBrain (Alpert, Singley, & Fairweather, 1999, 2000) supports students while learning to
solve algebraic equations. A downloadable Java applet provides an engaging user interface
involving an agent that reacts to a student’s action, and provides immediate feedback on each
student’s step.Medtec is a Web-based anatomy tutor (Eliot, 1997), the application server of
which is developed in the CL-HTTP server. Java applets are used to provide interactive
graphics.Belvedere(Suthers & Jones, 1997) is a system for learning scientific inquiry skills.
Java is used to deliver the user interface, while the application server is written in a variety of
tools. German Tutor (Heift & Nicholson, 2000) is an adaptive multimedia system, where the
user interface is implemented as a Java applet.Virtual Campus PROLOG Tutor (Peylo,
Thelen, Rollingen & Gust, 2000) is an ITS that provides a problem-solving environment for
students. The user interface is implemented as a Java client. The system does limited student
diagnosis, but also offers a possibility of human interference.

Discussion

As previously discussed, replicated Web-enabled systems are fast, as all the processing is done
on the client site, but are limited by the fact the student model is stored on the local machine.
One interesting solution to this problem may be found in (Vassileva, 1997) andADELE , where
copies of student models are also kept on the server between sessions for persistent storage.
Although this solution removes the requirement that a student always has to use the tutor from
the same machine, there is still a problem if a network error occurs before the student completes
a session, as the most recent information about student’s performance will then be lost.

A significant advantage of the centralized and distributed architectures is the fact that all
student models are kept in one place (on the server) and the student can use the system from any
machine. Additional knowledge structures, needed by the expert or pedagogical module, may be
shared. A problem with these two architectures may be the reduced speed, caused by

Fig. 3. Distributed architecture



communications between the client and the server. The centralized architecture is appropriate in
situations when the level of interaction is low and when there is no direct manipulation of
objects on the screen requiring immediate response from the system. In domains that require
highly interactive interfaces, replicated and distributed architectures would be more appropriate.
The situation might be better for a system with distributed architecture, as some of the tutoring
actions are performed on the client side and hence the number of communications is reduced.
However, communicating between the interface and the server in a distributed architecture may
require special techniques, which introduces additional complexity to system development.

THE DEVELOPMENT OF SQLT-WEB

The starting point for the development ofSQLT-Web wasSQL-Tutor , a standalone system for
teaching SQL. The functionality ofSQLT-Web is identical to that of the stand-alone version. In
this section we firstly describe the standalone version and then explain the process of converting
it into a Web-enabled tutor. Then we describe the various components of the system, starting
with the interface and the knowledge base. Brusilovsky (1999) identifies three core ITS
technologies: curriculum sequencing, intelligent analysis of student’s solutions and interactive
problem solving support. Here we discuss the first two of these. The third technology,
interactive problem solving support, provides the student with help on each step while solving a
problem, and is not supported inSQLT-Web.

The standalone version

Figure 4 illustrates the architecture ofSQL-Tutor . For a detailed discussion of the system, see
(Mitrovic, 1998a; Mitrovic & Ohlsson, 1999); here we present only some of its features.SQL-
Tutor consists of an interface, a pedagogical module, which determines the timing and content
of pedagogical actions, and a student modeller (CBM), which analyzes student answers. The
system contains definitions of several databases, implemented on a DBMS, and a set of
problems and the ideal solutions to them.SQL-Tutor contains no domain module. In order to
check the correctness of the student’s solution,SQL-Tutor compares it to the correct solution
(specified by a teacher), using domain knowledge represented in the form of constraints. It uses
Constraint-Based Modeling (Ohlsson, 1994; Mitrovic, 1998b) to model knowledge of its
students. The constraint base is described later in a separate section.

At the beginning of a session,SQL-Tutor selects a problem for the student to work on.
When the student enters a solution, the pedagogical module sends it to the student modeller,
which analyzes the solution, identifies mistakes (if there are any) and updates the student model
appropriately. On the basis of the student model, the pedagogical module generates an

Fig. 4: Architecture of SQL-Tutor



appropriate pedagogical action (i.e. feedback). When the current problem is solved, or the
student requires a new problem to work on, the pedagogical module selects an appropriate
problem on the basis of the student model.

The architecture of SQLT-Web

Starting from the standalone system, we have developed a list of requirements for a Web-
enabled tutor. Firstly, we wanted to reuse as much of the existing system as possible. Another
requirement was to maintain a centralized repository of student models and support multiple
simultaneous students, thus giving students freedom to access the system at any time and from
any place. Since the amount of information that needs to be processed is small (only the
student’s solution and selections are of interest), we decided to use the centralized architecture,
which fulfils all these requirements. An integrated Web development environment embodied by
CL-HTTP was selected for implementing the system. We preferred this option to using CGI
directly because CL-HTTP supports application development by extending the server using
Common Lisp programming. Since the originalSQL-Tutor was also implemented in Common
Lisp, CL-HTTP appears to be an optimal platform. CL-HTTP is based on multi-threaded
programming, and creates a separate thread to respond to each client. As several students who
use the system concurrently share some components of SQLT-Web, it is necessary to introduce
a locking mechanism to ensure non-interference between various sessions. The system also
needs to maintain multiple student models and to associate every request to the student model of
the corresponding student. We discuss how SQLT-Web supports multiple students in a later
section.

Figure 5 presents the architecture ofSQLT-Web, which is the extension of the architecture
of the standalone system. We have re-implemented the interface, introduced a session manager
and extended the domain knowledge structures. At the beginning of interaction, a student is
required to enter his/her name, which is necessary in order to establish a session. The session

Fig. 5. The architecture of SQLT-Web



manager records all student actions and the corresponding feedback in a log. It also requires the
student modeller to retrieve the model for the student, if there is one, or to create a new model
for a student who interacts with the system for the first time. Each student is also assigned a
level. At the beginning of the first session with the system, the student selects the appropriate
initial level her/himself, from three possibilities: “novice”, “intermediate”, or “experienced”.
This level is later updated in accordance with observations of the student’s behavior: it is
incremented if he/she solves two or more problems consecutively at or above his/her current
level, within three attempts each. Both problem and student levels are used for problem
selection, as described in the section on curriculum sequencing.

Each action a student performs in the interface is first sent to the session manager, as it has
to link it to the appropriate session. Then, the action is sent to the pedagogical module, which
decides how to respond to it. If the submitted action is a solution to the current problem, the
pedagogical module sends it to the student modeller, which diagnoses the solution, updates the
student model, and sends the result of the diagnosis back to the pedagogical module. The
pedagogical module then generates feedback. If the student has requested a new problem, the
pedagogical module consults the student model in order to identify the knowledge elements the
student has problems with, and selects one of the predefined problems that feature identified
misconceptions. Students may also ask for additional explanations, which are dealt with by the
pedagogical module.

Interface

The interface ofSQLT-Web, illustrated in Figure 6, has been designed to be robust, flexible,
and easy to use and understand. It reduces the memory load by displaying the database schema
and the text of a problem, by providing the basic structure of the query, and also by providing
explanations of the elements of SQL. The main page is divided into four areas. The upper part
displays the text of the problem being solved and students can remind themselves easily of the
elements requested in queries. The middle left part contains the clauses of the SQL SELECT

Fig. 6. Interface of the Web-enabled version of SQL-Tutor



statement, thus visualizing the goal structure. Students need not remember the exact keywords
used and the relative order of clauses. The middle right part is where the feedback from the
system is presented. The lowest part displays the schema of the currently chosen database.
Schema visualization is very important; all database users are painfully aware of the constant
need to remember table and attribute names and the corresponding semantics as well. Students
can get the descriptions of databases, tables or attributes, as well as the descriptions of SQL
constructs. The motivation here is to remove from the student some of the cognitive load
required for checking the low-level syntax, and to enable the student to focus on higher-level,
query definition problems.

When a solution is submitted, the pedagogical module generates feedback on it, offers the
possibilities of working on the same problem (if there were mistakes in the student’s solution),
logging off, or going on to the next problem, which may be selected by the student or the
system. The student is also able to view the history of the session, ask for a query to be run on
the database and specify the kind of feedback required.

Knowledge base

The knowledge about the domain thatSQLT-Web contains is represented as a set of
constraints. Constraint-Based Modeling (CBM) is a student modeling approach proposed by
Ohlsson (1994), as a way of overcoming the intractable nature of student modeling. CBM arises
from Ohlsson’s theory of learning from errors (1996), which proposes that we often make
mistakes when performing a task, even when we have been taught the correct way to do it.
According to this theory, we make mistakes because the declarative knowledge we have learned
has not been internalized in our procedural knowledge, and so the number of decisions we must
make while performing the procedure is sufficiently large that we make mistakes. By practicing
the task, however, and catching ourselves (or being caught by a mentor) making mistakes, we
modify our procedure to incorporate the appropriate rule that we have violated. Over time, we
internalize all of the declarative knowledge about the task, and so the number of mistakes we
make is reduced. Ohlsson describes the process of learning from errors as consisting of two
phases:error recognitionanderror correction. A student needs declarative knowledge in order
to detect an error. Only then can the error be corrected so that the solution used is applicable
only in situations in which it is appropriate.

CBM starts from the observation that all correct solutions to a problem are similar in that
they do not violate any of the basic principles of the domain. CBM is not interested in the exact
sequence of states in the problem space the student has traversed, but in what state they are
currently in. As long as the student never reaches a state that is known to be wrong, they are free
to perform whatever actions they please. Constraints define equivalence classes of problem
states. An equivalence class triggers the same instructional action; hence all states in an
equivalence class are pedagogically equivalent. It is therefore possible to attach feedback
messages directly to constraints. A violated constraint signals an error, which translates to
incomplete/incorrect knowledge. The domain model is therefore a collection of state
descriptions of the form:

“If <relevance condition> is true, then <satisfaction condition> had better
also be true, otherwise something has gone wrong.”

In other words, if the student solution falls into the state defined by the relevance condition, it
must also be in the state defined by the satisfaction condition in order to be correct.

SQLT-Web currently contains more than 500 constraints, and this number is likely to
increase as new problems requiring new situations are added to the system. All constraints are
problem-independent; they describe the basic principles of the domain, and do not involve any
elements of problems directly. The constraints are modular, and are not related to each other. In
order to identify constraints, we studied material presented in textbooks, such as (Elmasri &
Navathe, 1999), and also used our own experience in teaching SQL. The constraints specify the
syntax and semantics of SQL. Figure 7 illustrates three constrains, which are related to



specifying the join condition in FROM. More examples can be found in (Mitrovic 1998b;
Mitrovic & Ohlsson, 1999; Mitrovic et al., 2001).

The first part of each constraint is a unique number, followed by the hint message that will
be displayed if the constraint is violated. The first constraint (110) checks the syntax. It is
relevant when the JOIN keyword is used in FROM, and it is satisfied if the ON keyword is also
used in the same clause. In other words, to specify a join condition in FROM, the student has to
use both keywords.

Constraint 358 also deals with the join condition specified in FROM, but its relevance
condition is more specific. In cases when the student has used both the JOIN and the ON
keyword in FROM, the satisfaction condition checks whether the keywords and other elements
(variables that stand for table and attribute names) have been specified in the right order.

Constraint 358 checks only the syntax of the FROM clause, while constraint 11 also checks
the semantics. Its relevance condition specifies that the constraint is important for those
solutions containing ON, JOIN and the corresponding variables in FROM, where two variables
correspond to tables in the currently selected database, and one of the remaining two variables is

(p 110

"You need the ON keyword in FROM!"

(member "JOIN" (from-clause ss) :test 'equal);Relevance condition
;ss is the student’s solution
(member "ON" (from-clause ss) :test 'equal);Satisfaction condition

"FROM")

(p 358

"Check the syntax for the JOIN and ON keywords in FROM!"

; Relevance condition
(and (member "JOIN" (from-clause ss) :test 'equalp)

(member "ON" (from-clause ss) :test 'equalp))

; Satisfaction condition
(match '(?*d1 ?t1 ??s1 "JOIN" ?t2 ??s2 "ON" ?a1 "=" ?a2 ?*d2)

(from-clause ss) bindings)

"FROM")

(p 11

"If the JOIN keyword is used in the FROM clause, the same clause should contain a join condition
specified on a pair of attributes from corresponding tables being joined."

; Relevance condition
(and (match '(?*d1 ?t1 ??s1 "JOIN" ?t2 ??s2 "ON" ?a1 "=" ?a2 ?*d2) (from-clause ss) bindings)
; FROM contains variable t1, JOIN followed by variable t2, the ON keyword and a comparison

(valid-table (find-schema (current-database *student*)) ?t1)
; t1 is a table from the current database

(valid-table (find-schema (current-database *student*)) ?t2)
; t2 is a table from the current database

(attribute-of (find-table ?t1 (current-database *student*)) ?a1))
; a1 is an attribute of table t1

; Satisfaction condition
(and (attribute-of (find-table ?t2 (current-database *student*)) ?a2)
; a1 is an attribute of table t2

(equalp (find-type ?a1) (find-type ?a2)))
; a1 and a2 must be attributes of the same type

"FROM")

Fig. 7. Three constraints



an attribute of the first table. The satisfaction condition asserts that in such cases, the solution is
correct if the other attribute specified in the FROM clause is the attribute of the second table,
and the two attributes are of the same type. Figure 6 illustrates a situation when this constraint is
violated.

The last clause of each constraint identifies which part of the solution the constraint is
dealing with (the FROM clause in these three constraints). As can be seen, the relevance and
satisfaction conditions are LISP clauses. They may contain any LISP predicate, but the most
frequent predicate ismatch, which performs pattern matching.

The three illustrated constraints may be relevant at the same time, if the student has
specified the join condition in FROM using the correct syntax (as in Figure 6). However, if
there are syntax errors, only some of them would be relevant. For example, if the FROM clause
of the student solution isFROM MOVIE JOIN DIRECTOR,the first two constraints will be
relevant, while constraint 11 will not be relevant. Constraint 110 will be satisfied, while
constraint 358 will be violated, thus generating a hint for the student.

As mentioned earlier, the system is not capable of solving the problems on its own, as there

(p 207
"You need to specify the join condition in FROM!"

; Relevance condition
(and (null (slot-value is 'where))
; The WHERE clause of the ideal solution (is) is empty.

(member "JOIN" (from-clause is) :test 'equalp)
; The ideal solution has a join condition in FROM.

(> (length (find-names ss 'from-clause)) 1)
; There is more than one table in the FROM clause in the student’s solution.

(null (slot-value ss 'where)))
; The WHERE clause in the student’s solution is empty.

; Satisfaction condition
(member "JOIN" (from-clause ss) :test 'equalp)
; The student should specify the JOIN condition in FROM.

"FROM")

(p 387

"Check the attributes you are using in FROM to join the tables!"

; Relevance condition
(and (match '(?*d1 ?t1 ??s1 "JOIN" ?t2 ??s2 "ON" ?a1 "=" ?a2 ?*d2) (from-clause ss) bindings)

(valid-table (find-schema (current-database *student*)) ?t1)
(valid-table (find-schema (current-database *student*)) ?t2)
(attribute-of (find-table ?t1 (current-database *student*)) ?a2)

; There is a valid join condition in the student’s FROM clause
(not (member "JOIN" (from-clause is) :test 'equalp))

; The ideal solution does not contain a join condition in FROM.
(member ?t1 (from-clause is) :test 'equalp)
(member ?t2 (from-clause is) :test 'equalp)

; The same two tables that the student used appear in the ideal solution.
(bind-all ?n1 (names (where is)) bindings)
(attribute-of (find-table ?t1 (current-database *student*)) ?n1)
(match '(?*d3 (?is ?n2 attribute-p) "=" ?n1 ?*d4) (where is) bindings)
(attribute-of (find-table ?t2 (current-database *student*)) ?n2))

; There is a join condition in the WHERE clause in ideal solution

; Satisfaction condition
(and (same-attributes ?a1 ?n2) (same-attributes ?a2 ?n1))

"FROM")

Fig. 8. Two constraints that match the student’s and ideal solutions



is no problem solver. Instead, there is an ideal solution for each problem. The system analyses
the student’s solution by matching it to constraints and ideal solutions.SQLT-Web has
constraints that make sure that the student’s solution contains all the necessary elements of the
solution. Figure 8 shows two constraints of this type.

Constraint 207 is relevant when the join condition is specified in FROM in the ideal
solution, and the student has used more than one table in FROM, and has not specified the join
condition in WHERE. In such a case, the student solution will be correct if there is a join
condition in FROM. Notice that this constraint only requires the JOIN keyword to appear in
FROM, and does not care about its syntax. Constraints 110, 358 and 11 will make sure that the
syntax is correct.

It is common in SQL to have two or more correct solutions for a problem, especially if the
problem is complex.SQLT-Web contains only one correct solution to the problem. However,
the system is capable of recognizing alternative correct solutions, as there are constraints that
check for equivalent constructs in the student’s and ideal solutions. Constraint 387 illustrates
such capabilities of the system. A join condition may be specified in the FROM clause (using
the JOIN and ON keywords), or in the WHERE clause, by specifying and equality comparison
on the joining attributes. Constraint 387 is relevant if the student has a syntactically valid join
condition in the FROM clause, and the ideal solution does not have the join condition in FROM.
However, the ideal solution has a join condition specified in the WHERE clause, using two
attributes that come from the same tables that the student has used. The constraint will be
satisfied if the student uses the same attributes that are used as joining attributes in the ideal
solution.

Intelligent analysis of student’s solutions

SQLT-Web analyses the student’s solution once when it is submitted, by matching it to the
constraints and the ideal solution. A very important feature of CBM is its computational
simplicity. CBM does not involve complex reasoning, as required by other student modeling
approaches. Instead, CBM reduces student modeling to pattern matching. Although pattern
matching is simple, it can potentially be time-consuming, especially in situations when the
number of patterns is large. However, patterns can be represented in compiled forms, such as
RETE networks (Forgy, 1982), which are very fast.

In order to speed up the matching process, all constraints inSQLT-Web are compiled into
two networks resembling RETE networks. One network contains the relevance conditions of all
constraints, while the other one contains the satisfaction conditions. The main idea is the same
as in RETE: reuse as much of the previous work as possible. Each network contains three types
of nodes: input, test and output nodes. Input nodes are entry points for the network. Each input
node contains a test that appears as the initial test in the relevance condition of a constraint. If
there are several constraints with the same initial test, they will share the same input node. The
difference between the networks used inSQLT-Web and RETE networks is that a test node has
just one input, so the structures are trees, not unrestricted networks. Each test node contains a
test to be applied on the student’s and possibly ideal solution. If several constraints share the
same test, but the subsequent tests are different, the test node will be connected to as many other
test nodes as there are different subsequent tests. A constraint that hasm tests in its relevance
condition will result in a path of lengthm+1 in the relevance network, consisting of an input
node,m-1 test nodes and an output node. The input node and the initial test nodes may be
shared with other constraints. The last node in the path is the output node, and it contains only
the constraint number.

When the student submits a solution to be checked, it is propagated through the relevance
network first. Each input or test node is evaluated by applying the test it contains on the
student’s solution. If a test is satisfied, the list of bindings will be propagated together with the
student’s solution to test nodes connected to the current one. If the test is violated, then the
particular path within the network will be abandoned, and the connecting nodes will not be
activated. The propagation process continues until the output nodes are reached. In the case of
the relevance network, the output nodes correspond to constraints that are relevant to the



student’s solution. If an output node has been reached in the satisfaction network, the
corresponding constraint is satisfied.

The analysis of a student’s solution is done in two steps inSQLT-Web. In the first step, all
relevance patterns are matched against the problem state. In the second step, the student’s
solution is propagated through the satisfaction network, but only for those constraints that were
found relevant in the first step. The number of relevant constraints per problem ranges from 78
for the simplest problems, to more than two hundred for complex ones.

Ohlsson (1994) views the student model as consisting of the relevant and violated solution.
This is actually the short-term model of the student, which reflects student’s performance on the
current task. However, for an ITS to function properly, it is also necessary to represent student’s
long-term model. A student model inSQLT-Web contains information about general student
characteristics (name, level of expertise, history etc) and the model of the student’s knowledge.
The latter is represented as an overlay upon the constraint base. For each constraint,SQLT-
Web stores the history of its usage, and the percentage of correct use. The constraint history
simply specifies for each occasion of application whether the student has used the constraint
correctly or incorrectly. The percentage of correct use is calculated on the basis ofn most recent
attempts, thus giving more weight to the recent past and allowing for learning/forgetting. We
have also experimented with a probabilistic user model, a discussion of which is outside of the
scope of this paper. The interested reader is referred to (Mitrovic et al., 2001) for a discussion of
the use of Bayesian networks inSQLT-Web.

Curriculum sequencing

Curriculum sequencing is a set of planning techniques used in educational systems to provide
the student with the most appropriate sequence of elementary knowledge units to learn or
problems to solve. Brusilovsky (1999) identifies two kinds of curriculum sequencing in ITSs
and other educational systems: active and passive.Active sequencingis characterized by the
existence of a learning goal, expressed in terms of one or more domain concepts to be learned.
Passive sequencingdoes not require a learning goal, but simply reacts to the current student’s
action by offering suitable learning material or a next problem to work on.

Only passive sequencing is implemented inSQLT-Web. The system contains a set of
constraints that specify the basic principles of SQL. There is no curriculum structure of the
domain. For each database, there is a list of problems ordered in accordance with their
complexity. The student may go over these problems in turn or may ask the system to select the
appropriate problem. In the latter case, the system selects the best problem for a student on the
basis of student model, according to the following procedure. When the student requests a new
problem, the system calculates the percentage of correct use for each constraint, and then
identifies thefocus constraint. This is a constraint with the lowest percentage of correct use. The
system then identifies a problem that is relevant to the focus constraint from the pool of
unsolved problems whose level is within +1 or –1 of the student’s current level. We have also
experimented with the probabilistic student model, using Bayesian networks to predict the
performance of a student on a problem. This prediction was used as a criterion to select a
problem. For details of this experiment, please see (Mitrovic et al., 2001).

Supporting multiple students

SQLT-Web maintains information about a student in his/her student model, which summarizes
student’s knowledge and the history of the current and previous sessions. Initially,SQLT-Web
acquires information about a student through a login screen. Individual student models are
stored permanently on the server, and retrieved for each student’s session. Students who are
inactive for a long period of time are automatically logged off (after 120 minutes) and their
models are moved back to long-term storage.

A Web-based tutor with a central repository of student models must respond to requests of
individual students. The system must be able to associate each request to the appropriate student
model. Some Web-enabled systems use cookies or IP numbers to identify the student who made



a request. Those two approaches were not suitable in our case. It was not possible to use the IP
number, as several students might be using the same machine. We did not want to use cookies
for identification purposes because various browsers deal with them in different ways.
Furthermore, cookies reside on a single/specific machine and would introduce the same
limitations as the replicated architecture, preventing the student from using the system from
different machines. Instead, we identify students by their login name, which is embedded in a
hidden tag of HTML forms and sent back to the server. If a student accesses a page by
following a link instead of accessing it through a form, then user name is appended to the end of
the URL.

It is also necessary to store student-specific data separately from data about other students.
All processing is carried out within a single address space, and therefore there must be a
uniform mechanism for identifying students and associating requests to corresponding student
models. In order to achieve this, we use a hash table that maps the string representing a student
name to their student object, which contains all details pertaining to the students, such as a
timestamp for automated logout, the history of the current session, the cache of the previous
incorrect attempt, the feedback buffer, currently selected database and problem, etc.

As explained earlier, the student modeler uses the relevance and satisfaction networks to
diagnose a student’s solution. There may be many students submitting their solutions to the
system concurrently, and therefore these knowledge structures must be locked while processing
a single student’s solution. Whenever a student submits a solution, the system needs to check
whether these networks are available (i.e., to make sure that the processing of a previous
solution has been completed and the locks on the networks have been released) before the
current solution can be processed. The propagation of a student’s solution through these
networks is extremely fast, and we have not experienced any delays in the evaluations
performed due to the locking mechanisms. As discussed in the following section, the maximum
number of students participating in the studies was 70, so the effect of having a much larger
number of concurrent students needs to be investigated.

EVALUATION

The stand-alone version of the system was evaluated in 1998 (Mitrovic & Ohlsson 1999),
showing that the system had a significant effect on students’ knowledge after a single, 2-hour
long session. Since then, there have been three evaluation studies performed onSQLT-Web, in
May 1999, October 1999 and late 2000, referred hereon as studies 1, 2 and 3 respectively.
General information about the studies is given in Table 1. All studies were carried out at the
University of Canterbury, using Computer Science students enrolled in database courses.

In the first two studies, the students usedSQLT-Web in a single, two-hour session, during
their normal lab time. Prior to using the system, the students had all attended six lectures about
SQL, and completed at least eight hours of hands-on experience of query definition. All
students' actions were recorded, and the students filled out a questionnaire at the end of the
session. There were several observers present at each evaluation, who reported that the students
were quite interested in interacting with the system and exploring its various functions.

Study 1 involved all senior-year students enrolled in a database course (33 students). The
goal of this study was to evaluate the effectiveness of various types of feedback provided by the
system. Students were randomly allocated to one of two versions of the system: the first gave
restricted feedback, while the second generated all levels of feedback. In this paper, we report

Study Timing Students Length Purpose of study
1 May 1999 33 2 hours Feedback evaluation
2 October 1999 34 2 hours Pedag. agent; Probabilistic student model
3 Sep-Oct 2000 70 7 weeks Meta-cognitive skills

Table 1. Details of the evaluation studies



only on the evaluation of the system in general; for the details of the evaluation of feedback,
please see (Mitrovic & Martin, 2000).

Study 2 was performed in October 1999, and involved all second-year students taking an
introductory database course. In addition to the questionnaire, the students sat a pre- and post-
test. Three versions of the system were used in the study: the basic version, a version which
generated probabilistic student models and used them to select problems, and a version in which
feedback was presented via an animated pedagogical agent. Students were randomly assigned to
one of the versions. The evaluation of the various versions of the system is irrelevant to this
paper, but we refer the interested reader to (Mitrovic & Suraweera, 2000) for the details of the
evaluation of the pedagogical agent, and to (Mayo & Mitrovic, 2000) for the details of the
evaluation of the probabilistic student model and the appropriateness of problems selected on
the basis of this model.

The third study was longer. The system was demonstrated in a lecture at the beginning of
September. The course involved a test on SQL a month and a half after the system was
introduced. The experiment was set up this way so that the students may use the system over
several weeks. Out of 142 students enrolled in the course, 79 have used the system. The total
interaction time varied a lot, because there were students who had only briefly looked at the
system. We excluded the logs of nine students who had not attempted any problems. The goal
of study 3 was to analyze students’ metacognitive skills, and the results are described in
(Mitrovic, 2001).

As mentioned above, each of these studies had a specific focus. In this paper, we report of
the general findings, and evaluateSQLT-Web on two dimensions: usability and learning. The
results are given in the following two subsections.

Subjective evaluation

This section presents a summary of the students’ answers to the user questionnaire in studies 1
and 2. The purpose of the questionnaire given to students at the end of the session was to
evaluate the students' perception ofSQLT-Web. The questionnaire, which is included in
Appendix A, consisted of 16 questions, most of which were based on the Likert scale with five
responses ranging fromvery much(5) to not at all (1). Students were also able to give free-form
responses.

The students who participated in study 1 reported having more experience with SQL
outside the university (45% of the group) than the students who participated in study 2 (23%).
The responses to the user questionnaire revealed that students enjoyed learning with the system
and appreciated its adaptive features. The majority of students (77% in study 1, and 85% in
study 2) reported that they needed less than 10 minutes to start using the system. 9% of students
in both studies reported that they needed 30 minutes to learn about the system’s features.
Finally, two students reported spending most of the two hours becoming familiar with the
system. The students enjoyed the system (Tables 2 and 33). Consistent with these findings, we
observed that the students continued to use the system on their own after the study. The students
found the interface easy to use (Table 3). Database schemas were deemed understandable (Table
2), and there were many free-form responses to this question, which show that the students
appreciated having the database schema.

3 The percentages given in the tables do not add up to 100%, as not all students answered all questions.

Responses (study1/study2) Agree Disagree

Would you recommend SQLT-Web to other students? 84/94 3/0

Do you find the display of the schema understandable? 93/88 3/0

Table 2. Responses (in percentages) from the user questionnaire



The user questionnaire contained several questions about learning. When asked to rate how
much they learned from working with the system (Table 3), the average ratings were 3.1 (study
1) and 4.1 (study 2). There are three reasons for this rating to be higher in study 2. Firstly, the
majority of students in study 1 had already encountered the relevant databases and problems in
their prior laboratory exercises, and therefore found no unseen problems inSQLT-Web. A new
database was added to the system in time for study 2, which may have had challenged the
students more. Furthermore, the students who participated in study 1 were senior-level students,
while in the second study we worked with the second year students, who needed more help and
the additional practice and feedback were more helpful to this group. Thirdly, the students from
study 1 reported more experience with using SQL outside of the class (45%), while only 23% of
students from study 2 reported such experience. Therefore a significant portion of the students
in study 1 had little to learn, which is in contrast to the situation in study 2. The same reasons
explain why the rating for the usefulness of feedback (question 6) was higher in study 2 (4.2)
than in study 1 (2.9).

From the written comments, it can be seen that the majority of students appreciated the
exploratory, hands-on approach, learning at their own pace and found learning withSQLT-
Web to be more personal than lectures. Other students commented that human input was still
necessary at times.

Learning with SQLT-Web

We have also analyzed student logs in order to see what kind of learning is taking place. Since
we represent knowledge in the domain of SQL in terms of constraints, we looked at how
students acquire them and apply them. In earlier work (Mitrovic & Ohlsson, 1999), the
evaluation ofSQL-Tutor showed that constraints represented psychologically appropriate units
of knowledge, and learning followed a smooth curve when plotted in terms of constraints. We
have performed the same analysis inSQLT-Web. Figure 9 shows the decrease in the number of
violated constraints, as a function of the number of times each constraint was relevant. The
degree of mastery of a given constraint is a function of the amount of practice on that unit.
There is not much difference between the three student populations, as the graphs for all three
evaluation studies are close to each other. In other words, the students tend to acquire
constraints at pretty similar paces.

In study 3, students were free to work with SQLT-Web whenever they wanted to, and the
session lengths were not constrained. The average number of sessions that the students had with
the system was 2. The length of sessions also varied greatly: the shortest session was only one
minute long, while the longest took 300 minutes. The average duration of a session in the
experiment was 47.45 minutes, and the average total interaction time was 95.6 minutes. The
average number of problems attempted in a single session was 6.65, while the average number
of solved problems per session was 1.5. The total number of solved problems per student
(during the total interaction time) ranged from 1 to 44, with the average being 10.26 (67.5%).

Study 3 students also sat a pre- and a post-test. The pre-test was administered at the
beginning of a student’s first interaction withSQLT-Web. The post-test was administered on

Responses
(study 1/study 2)

1 (not at all) 2 3 4 5 (very much)

How much did you learn
about SQL from the system? 6/0 15/6 36/20 30/50 6/23

Did you enjoy learning with
the system? 0/0 9/9 27/23 42/29 21/38

Do you find the interface
easy to use? 0/0 6/6 24/26 54/41 15/23

Do you find feedback
useful? 9/0 24/9 33/12 24/26 6/47

Table 3. Responses (in percentages) to questions from the questionnaire



paper to all students enrolled in the course 7 weeks after the start of the evaluation study. Both
tests consisted of three multi-choice questions of similar complexity. The maximal number of
marks for both tests was 7.

Table 4 summarizes the results of the pre- and post-tests. The experimental group consists
of 70 students who tried at least one problem, and the control group consists of the rest of the
class. Because the pre-test was administered when the students logged on to the system for the
first time, we only have the results of the pre-test for the experimental group. Therefore, it is not
possible for us to compare the pre-test results for the control and the experimental groups.

These two groups listened to exactly the same number of lectures and labs, and sat the
same post-test. The difference is that the students in the control group have not usedSQLT-
Web. The results of the experimental group on the post-test are higher than the results of the
control group, and the difference is significant (t=2.79, p<0.005). However, this result is not
irrefutable, as the experiment was not controlled. The experimental group consisted of
volunteers, who are usually more motivated students.

Group Student Pre-test mean Pre-test SD Post-test mean Post-test SD

Experimental 70 4.02 1.52 5.01 1.24

Control 62 4.3 1.6

Table 4. Pre- and post-test results for study 3

We also analysed the performance of students in the experimental group in relation to the
time they have spent with the system. Of all the students in the experimental group, we
identified only those who have solved at least one problem, and divided the students into two
groups. Group A consists of 35 students who have spent less time than the average total time,
while group B contains those student who interacted with the system longer. Group A students
have improved their mean mark in the post-test more than students from group B, whose marks
in the pre-test were better. However, the difference in the improvements is not significant. This
is so because the time spent with the system is not correlated strongly to the number of
problems solved. In one extreme case, a student managed to solve only one problem after
spending 300 minutes with the system.
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Group No. of students Time (min) Pre-test Post-test

A 35 41.88 (27.42) 3.97 (1.40) 5.08 (1.38)

B 21 223.85 (107.19) 4.19 (1.53) 5.05 (1.02)

Table 5. The results on the tests in relation to the total interaction time

We therefore also analysed the performance of students in relation to the number of
problems they were able to solve. Table 6 presents the results of this analysis. For this analysis,
we post-hoc split the students into group 1, consisting of students who solved less problems
than the mean number of solved problems, and group 2, containing those students who were
more successful. Students in group 2 scored higher on both the pre- and the post-test, and the
difference in improvements is significant (t=1.06, p<.15,α=.16).

Group No. of students Problems solved Pre-test Post-test

1 34 4.65 (3.50) 3.65 (1.35) 4.88 (1.36)

2 22 24.81 (10.18) 4.63 (1.39) 5.36 (0.95)

Table 6. The results on the tests in relation to the number of solved problems

CONCLUSIONS

The Web has introduced a new paradigm for building widely accessible intelligent educational
systems. A very important aspect of Web-based tutors is the ability to develop the interfaces in
platform-independent ways. This paper presentedSQLT-Web, a Web-enabled system for
teaching SQL. The system is an extension of a standalone system developed in Common Lisp,
and we re-used its code for the Web-based extension.SQLT-Web is developed in the CL-
HTTP server. It is based on a centralized architecture, where all tutoring functions are
performed on the server, and the only functions performed on the client’s side are the user
interaction ones. The amount of data that needs to be transferred between the client and the
server inSQLT-Web is small due to the nature of the domain, and therefore the centralized
architecture is feasible. The system runs on a dedicated machine, and we have not experienced
any problems with network delays.

SQLT-Web has been used in databases courses at the University of Canterbury by senior
computer science students since May 1999, and has been found to be effective and easy to use.
The majority of students appreciated the exploratory, hands-on approach, learning at their own
pace and found learning withSQLT-Web to be more personal than lectures. The system has
also been used by outside users, since March 2000. We have already started work on
introducing support for self-assessment and other meta-cognitive strategies, in order to allow
students to engage in more profound types of learning. In the forthcoming evaluation study
students will have the opportunity to inspect their student model, and we hope to show that the
visualization of the student model will have a positive impact on student’s learning.
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Appendix A: User questionnaire (study 2)

1. What is your previous experience with SQL?
a) only lectures b) lectures plus some work c) extensive use

2. How much time did you need to learn about the system itself and its functions?
a) most of the session
b) 30 minutes
c) 10 minutes
d) less than 5 minutes

3. How much did you learn about SQL from using the system?
Nothing Very much
1 2 3 4 5

4. Did you enjoy learning with SQL-Tutor?
Not at all Very much
1 2 3 4 5

5. Would you recommend SQL-Tutor to other students?
a) Yes b) Do not know c) No

6. Do you find the interface easy to use?
Not at all Very much
1 2 3 4 5

7. Do you find the display of the schema understandable?
a) Yes b) Do not know c) No

8. Do you find feedback useful?
Not at all Very much
1 2 3 4 5

9. Would you prefer more details in feedback?
a) Yes b) Do not know c) No

10. How often did you use ``System's Choice'' to have the system select a problem for you to solve?
Never Always
1 2 3 4 5

11. If you have used ``System's Choice'', how do you rate the difficulty of the problems SQL-Tutor
selected for you?
Always too easy Always too hard
1 2 3 4 5

12. Did the problems selected by ``System's Choice'' target SQL concepts that you feel were appropriate
at the time? Please comment.
Never appropriate Always appropriate
1 2 3 4 5

13. Did you feel that the problems selected by ``System's Choice'' were better or worse than those that
would have been selected by a human tutor?
Always worse Always better
1 2 3 4 5



14. Did you encounter any software problems or crashes?
a)Yes b) No

15. What do you like in particular about SQL-Tutor?
16. Is there anything you found frustrating about the system?


