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Abstract. The Robinson-Foulds (RF) distance is by far the most widely used

measure of dissimilarity between trees. Although the distribution of these distances

has been investigated for twenty years, an algorithm that is explicitly polynomial

time has yet to be described for computing this distribution (which is also the dis-

tribution of trees around a given tree under the popular Robinson-Foulds metric).

In this paper we derive a polynomial-time algorithm for this distribution. We show

how the distribution can be approximated by a Poisson distribution determined by

the proportion of leaves that lie in ‘cherries’ of the given tree. We also describe

how our results can be used to derive normalization constants that are required in

a recently-proposed maximum likelihood approach to supertree construction.

1. Introduction

Tree comparison metrics are widely used in phylogenetics for comparing evolutionary

trees [3, 9] and for performing statistical tests - for example, to test whether two trees

are more ‘significantly different’ from each other than one might expect if one or both

trees were randomly chosen [6, 7]. In order to address these statistical questions one

needs to determine the distribution of the metric under some null model (see, for
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example, [6, 7]). The symmetric difference or Robinson-Foulds metric is the most

widely used measure of differences between phylogenetic trees, and its distribution

is particularly attractive to study. In a landmark paper [4], the authors described

this distribution of trees relative to a fixed reference tree via a system of generating

functions. This allowed the authors to calculate the distribution explicitly for small

trees and provided a tool for analytic results on this distribution in later work by

others.

However, the approach described in [4] does not immediately appear to provide a

polynomial-time algorithm for computing this distribution, and for larger trees their

approach may be computationally prohibitive. In this paper, we describe how to

calculate the distribution of the Robinson-Foulds metric relative to a fixed tree. We

also show how the distribution can be approximated by a Poisson distribution whose

parameter depends on just one aspect of tree shape - the number of ‘cherries’.

Our investigation into the distribution of the metric has also been motivated by its

relevance to a recent approach for ‘supertree’ construction that is based on maximum

likelihood [10]. In particular, our algorithm allows the normalization constants in

the likelihood calculations to be computed explicitly. We describe how these normal-

ization constants depend weakly on aspects of the shape of the tree - for example,

how many ‘cherries’ the tree has. We start by recalling some terminology.

1.1. Terminology. Let X be a finite set. A phylogenetic tree with leaf set X is a tree

with its degree one vertices (leaves) labelled bijectively by elements of X and whose

remaining vertices have degree at least three. We use V (T ) and E(T ) to denote the

set of nodes (vertices) and edges of T . Let V̊ (T ) denote the set of internal (non-leaf)
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nodes of T and let E̊(T ) be the set of edges in E(T ) that have both endpoints in

V̊ (T ), the internal edges.

A phylogenetic tree is fully resolved if every internal vertex has degree three. Fol-

lowing [4] we let PT (n) denote the set of phylogenetic trees on the finite set X =

{1, 2, . . . , n} and BPT (n) the set of fully resolved (‘binary’) trees in PT (n) (two

trees in BPT (6) are shown in Fig. 1). The number of trees in BPT (n) is denoted

b(n) and is given by:

(1) b(n) = (2n − 5)!! =
n
∏

k=3

(2k − 5) n ≥ 3,

see [9]. For convenience, we let β(m) denote the number of fully resolved trees with

exactly m internal edges, so:

(2) β(m) = b(m + 3) =

m+3
∏

k=3

(2k − 5) m ≥ 0.

Every edge e ∈ E(T ) induces a bipartition or split of the leaf set X corresponding

to the labels present in the two connected components remaining when the edge e

is removed. Let π(T, e) denote this bipartition, which we consider unordered. We

let c(T ) denote the set of all bipartitions obtained by removing different edges of T .

Hence |c(T )| ≤ 2n − 3, the maximum number of edges in a phylogenetic tree, and

|c(T )| = 2n−3 exactly when T is fully resolved. A bipartition is trivial if it separates

a single element from all other elements; trivial bipartitions correspond to the edges

in the tree that are external, meaning that they are incident with a leaf of the tree.

A cherry of a fully resolved phylogenetic tree T is a pair of leaves that forms one half

of a split of T (i.e. a pair of leaves whose incident edges contain a common vertex).
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In Fig. 1 the pairs (1, 2) and (5, 6) form cherries in both trees, while the right-hand

tree has an additional cherry (3, 4).
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Figure 1. Two fully resolved phylogenetic trees on six leaves, with
Robinson-Foulds distance two.

The symmetric difference metric is defined on PT (n), and hence on BPT (n), by:

d(T1, T2) = |c(T1) △ c(T2)|.

Note that this number is always even when T1 and T2 are both in BPT (n), since,

for any two trees in PT (n), we have d(T1, T2) = |c(T1)| + |c(T2)| − 2|c(T1) ∩ c(T2)|,

and if T1, T2 ∈ BPT (n) then |c(T1)| = |c(T2)| = 2n − 3. As an example, the two

trees shown in Fig. 1 have a distance value of 2 since the splits {1, 2, 3}|{4, 5, 6} and

{3, 4}|{1, 2, 5, 6} each occur in just one tree.

The metric was introduced by Bourque [1] and generalised by Robinson and Foulds

[8]. As all phylogenetic trees contain all trivial splits, the maximum possible distance

between two trees is 2(n − 3), which is twice the maximum number of internal

edges.
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2. Computing the distribution of the Robinson-Foulds metric

For each T ∈ PT (n), let bm(T ) denote the number of trees T ′ ∈ BPT (n) for which

d(T, T ′) = m. As d is a metric, b0(T ) = 1. A recursive formula for the generating

function of bm(T ) is given in [4] and [12]. This formula can be described conveniently

using generating functions. Let

B(T, x) :=
∑

m≥0

bm(T )xm

and for any interior edge e of T let T/e be the tree formed by contracting e, and

let T1, T2 be the maximal subtrees of T with e as a pendant edge. Then from [4] we

have:

B(T, x) = xB(T/e, x) + (1 − x2)B(T1, x)B(T2, x).

As far as we could deduce, the recursion described by this generating function identity

does not provide a polynomial time algorithm for computing the bm(T ) values, due

to an exponential explosion in the number of subcases.

Instead we use an alternative approach, applying results of [12]. Let qs(T ) denote

the number of trees in BPT (n) that share exactly s internal splits with T . Then for

all m = 0, 2, 4, . . . , 2(n − 3), we have:

(3) bm(T ) = qn−3−m/2(T ).

Define the polynomial

(4) q(T, x) =

n−3
∑

s=0

qs(T )xs.
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Let E ⊂ E̊(T ) denote a subset of the set of internal edges of T . The forest T − E

has exactly |E|+ 1 components F1, F2, . . . , F|E|+1. We use E̊(Fi) as a short-hand for

the edges of E̊(T ) that are contained in Fi.

Define

(5) NE(T ) =

|E|+1
∏

i=1

β(|E̊(Fi)|)

Note that NE(T ) equals the quantity 〈Φ(E)〉 defined in [12] (here assuming that T is

fully resolved) and also equals the number of fully resolved trees containing all those

splits induced by edges in E.

For s ≥ 0 define

rs(T ) =
∑

E⊆E̊(T )
|E|=s

NE(T ),

the sum of NE over all subsets E ⊆ E̊(T ) of cardinality s. For example, r0(T ) equals

β(|E̊(T )|) = β(n − 3). It was shown in [12] that the generating function

R(T, x) =
∑

s≥0

rs(T )xs

satisfies the identity

(6) q(T, x) = R(T, x − 1).

In what follows we derive a formula to evaluate the coefficients rs(T ) so that we can

compute the coefficients bm(T ) via (3) and (6).
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As usual, the computation applies dynamic programming, requiring us to introduce

definitions for the appropriately divided sub-problems. Let v0 be the node adjacent

to leaf n. Delete leaf n and make v0 the root of the tree, so that now every internal

node has exactly two children. For each internal node v let Tv denote the subtree

of T containing v and all of its descendants. Given a subset E ⊆ E̊(Tv), we define

NE(Tv) as in (5), where F1, . . . , F|E|+1 will now be components of Tv − E instead

of T − E. We let κ(v, E) denote the number of edges in the component of Tv − E

containing v. For s, k ≥ 0, we let E(v, s, k) denote the set of all subsets E ⊆ E̊(Tv)

such that |E| = s and κ(v, E) = k. Define

(7) R(v, s, k) =
∑

E∈E(v,s,k)

NE(Tv)

so that if v0 is the root of T and s ≥ 0, we have:

(8) rs(T ) =
s
∑

k=0

R(v0, s, k).

With these definitions in mind, and recalling the notation β(m) from (2), we now

derive a recursion for R(v, s, k). As is customary, an empty summation equals

zero.

Lemma 1. Suppose that v ∈ V̊ (T ). Then

(9) R(v, 0, k) =















β(k) if k = |E̊(Tv)|;

0 otherwise.
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Lemma 2. Suppose that s ≥ 1. For all v ∈ V̊ (T ) let nv = |E̊(Tv)|.

(1) If k > nv then R(v, s, k) = 0.

(2) If v ∈ V̊ (T ) has no children in V̊ and s ≥ 1 then R(v, s, k) = 0.

(3) If v ∈ V̊ (T ) has one child v1 in V̊ then

(10) R(v, s, k) =















∑

k1≥0 R(v1, s − 1, k1) if k = 0;

R(v1, s, k − 1)(2k + 1) otherwise;

(4) If v ∈ V̊ (T ) has two children v1, v2 in V̊ (T ) then

(11) R(v, s, 0) =

s−2
∑

s1=0

(

∑

k1≥0

R(v1, s1, k1)

)(

∑

k2≥0

R(v2, s − 2 − s1, k2)

)

.

(5) If v ∈ V̊ (T ) has two children v1, v2 in V̊ (T ) and k ≥ 1 then

R(v, s, k) =
s−1
∑

s1=0

(

∑

k1≥0

R(v1, s1, k1)

)

R(v2, s−1−s1, k − 1)β(k)/β(k − 1)

+

s−1
∑

s2=0

(

∑

k2≥0

R(v2, s2, k2)

)

R(v1, s−1−s2, k − 1)β(k)/β(k − 1)

+
s
∑

s1=0

k−2
∑

k1=0

R(v1, s1, k1)R(v2, s−s1, k−2−k1)
β(k)

β(k1)β(k−2−k1)
.

(12)

Proof. Parts (1) and (2) follow from the definition of R.

(3) Let e be the edge from v1 to v. When k = 0 it holds that E ∈ E(v, s, k) if

and only if E = E1 ∪{e} for some E1 ∈ E(v1, s− 1, k1), where k1 ranges from
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0 to s − 1. This gives the first case. When k ≥ 1, the edge e connecting v

and v1 is absent from every set in E(v, s, k). Thus E ∈ E(v, s, k) if and only

if E ∈ E(v1, s, k − 1).

NE(Tv) = NE(Tv1
)

β(k)

β(k − 1)

= NE(Tv1
)(2k + 1).

(4) Let e1, e2 be the edges from v to v1, v2 respectively. Since k = 0, for all

E ∈ E(v, s, k), we have e1 ∈ E and e2 ∈ E. Thus E ∈ E(v, s, k) if and

only if there exists E1 ∈ E(v1, s1, k1) and E2 ∈ E(v2, s − 2 − s1, k2) for some

s1, k1, k2 ≥ 0 such that E = E1∪E2. For each such set E, we have: NE(Tv) =

NE1
(Tv1

)NE2
(Tv2

).

(5) Again, let e1, e2 be the edges from v to v1, v2 respectively. For each E ∈

E(v, s, k) with k > 0, exactly one of the following cases holds:

Case 1: e1 ∈ E but e2 6∈ E. This case applies if and only there exists

E1 ∈ E(v1, s1, k1) and E2 ∈ E(v2, s − 1 − s1, k − 1) for some s1, k1 ≥ 0

such that E = E1 ∪ E2 ∪ {e1}. For such a set E we have

NE(Tv) = NE1
(Tv1

)NE2
(Tv2

)
β(k)

β(k − 1)
.

Case 2: e1 6∈ E but e2 ∈ E. Identical to Case 1 with v1 and v2 switched.

Case 3: e1 6∈ E and e2 6∈ E. This case applies if and only there exists

E1 ∈ E(v1, s1, k1) and E2 ∈ E(v2, s−s1, k−k1−2) such that E = E1∪E2.
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For each such set E we have:

NE(Tv) = NE1
(Tv1

)NE2
(Tv2

)
β(k)

β(k1)β(k−2−k1)
.

�

Theorem 3. Given a fully resolved tree T on n leaves the coefficients bm(T ) can be

computed in O(n5) time.

Proof. Consider a vertex v ∈ V̊ (T ). If v has one child in V̊ (T ) then we evaluate (10)

for all s, k ≤ n − 3 in O(n3) time. If v has two children in V̊ (T ) then we evaluate

(12) in O(n4) time.

Hence computing all the coefficients rs(T ) takes O(n5) time. From (6), we obtain:

(13) qm(T ) =

n−3
∑

s=m

(

s

m

)

rs(T )(−1)s−m,

from which we compute the values bm(T ) = qn−3−m/2(T ). �

3. Poisson approximation

When n is large we can approximate the qs(T ) values by a Poisson distribution with

mean λT := cT /2n where cT denotes the number of cherries of T (recall that a cherry

is a pair of leaves whose incident edges contain a common vertex). More precisely,

we have the following result.
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Theorem 4. For any tree T ∈ BPT (n), let YT be a Poisson random variable with

mean λT . Then the distribution qs(T )/b(n) as a function of s (the proportion of

trees in BPT (n) that share s nontrivial splits with T ) and the distribution of YT

have variational distance that converges to zero as n → ∞. In particular,

∑

s≥0

|qs(T )/b(n) − e−λT λs
T /s!| = O(n−1).

Proof. Let XT denote the random variable which counts the number of non-trivial

splits that T shares with a tree T ′ selected uniformly at random from BPT (n). Thus,

P(XT = s) = qs(T )/b(n). Let X ′
T be defined in the same ways as for XT but counting

only splits that divide the leaf set into subsets of size 2 and n−2. Clearly, X ′
T ≤ XT .

Moreover, the probability of the event G that T ′ shares a split with T that is not

of the type counted by X ′
T is bounded above by a term of order n−1 and so (since

P(XT = X ′
T ) ≥ P(XT = X ′

T |G
c)P (Gc) = 1 · (1 − O(n−1))) we have:

(14) P(XT 6= X ′
T ) = O(n−1).

Now, for any two discrete random variables X and X ′ an elementary probability

argument shows that
∑

s |P(X = s) − P(X ′ = s)| ≤ 2P(X 6= X ′), and so:

(15)
∑

s≥0

|P(XT = s) − P(X ′
T = s)| ≤ 2P(XT 6= X ′

T ).

Combining (14) and (15) gives:

(16)
∑

s≥0

|P(XT = s) − P(X ′
T = s)| = O(n−1).
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By the triangle inequality,

(17)
∑

s≥0

|P(XT = s)−P(YT = s)| ≤
∑

s≥0

|P(XT = s)−P(X ′
T = s)|+

∑

s≥0

|P(X ′
T = s)−P(YT = s)|

which, combined with (16), gives:

(18)
∑

s≥0

|P(XT = s) − P(YT = s)| ≤
∑

s≥0

|P(X ′
T = s) − P(YT = s)| + O(n−1).

Thus, to establish Theorem 4 it suffices to show that

(19)
∑

s≥0

|P(X ′
T = s) − P(YT = s)| = O(n−1).

Now, by Lemma 3 of [12], we have:

(20) P(X ′
T = s) =

cT
∑

r=s

(−1)r+s

(

r

s

)(

cT

r

)

b(n − r)

b(n)
.

Furthermore, letting λ denote λT for brevity, we have:

P(YT = s) = e−λλs/s! =
∞
∑

r=s

(−1)r+s

(

r

s

)

λr

r!
.

Substituting this and (20) into the left-hand side of (19) gives the expression:

(21)
∑

s≥0

∣

∣

∣

∣

∣

∞
∑

r=s

(−1)r+s

(

r

s

)[(

cT

r

)

b(n − r)

b(n)
−

λr

r!

]

∣

∣

∣

∣

∣

which, after some algebra, and moving the absolute value inside the second summa-

tion, is bounded above by:

(22) ∆n :=
∑

s≥0

1

s!

∞
∑

r=s

1

(r − s)!
f(n, r)
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where

f(n, r) :=
( cT

2n

)r

·

∣

∣

∣

∣

∣

∏r−1
i=1 (1 − i/cT )

∏r
j=1(1 − (2j + 3)/2n)

− 1

∣

∣

∣

∣

∣

Using the fact that cT ≤ n/2, and a somewhat tedious case analysis, it can be shown

that f(n, r) ≤ C/n for a constant C that is independent of r, n. It follows that

∆n ≤
∑

s≥0

1

s!

∞
∑

r=s

1

(r − s)!
C/n = Ce2/n,

which establishes (19) and thereby the theorem. �

Remark If T is selected uniformly at random from BPT (n), then λT converges in

probability to 1
8

(since the variance of λT is O(n−1) by Theorem 4(b) of [5]). Thus,

Theorem 4 can be viewed as a refinement of the main result from [12] that for two

trees selected uniformly at random from BPT (n) the number of non-trivial splits

they share is asymptotically Poisson distributed with mean 1
8
.

Application to Likelihood based supertrees

Rodrigo and Steel [10] recently presented a likelihood framework for constructing

consensus trees and supertrees. Let L(Ti) denote the set of leaves of a (fully resolved)

gene tree Ti. The probability of observing Ti with leaf set L(Ti) = Xi given an

estimated species tree or supertree T has the form

(23) PT,Xi
(Ti) = PT (Ti) =

1

ZT |L(Ti)

e−βid(Ti,T |LTi)

where T |L(Ti) denotes the restriction of T to the leaf set Ti, and where βi is a positive

parameter that can be inferred by the data by maximum likelihood.
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There are many reasons why an estimated gene tree might differ from the true tree,

including sampling error, model violations, and alignment errors. Under the model of

[10] the probability of observing a tree Ti on a given leaf set Xi falls off exponentially

with its distance to the underlying tree T restricted to Xi. The parameter β can

vary with the quantity and quality of the data, with high values of β corresponding

to more confidence in the gene tree estimates. See [2] for a recent discussion of this

approach.

The normalising constant

(24) ZTi
= Z i

T =
∑

T ′:L(T ′)=L(Ti)

e−βid(T ′,T |LTi)

is required so that the PT (Ti) values sum to 1 over all choices of Ti. One complication

with this approach is that the normalising functions ZTi
depend on T (more precisely,

although ZTi
does not depend on how the leaves of T are labeled, it may depend

on the shape of T ), meaning that the constant needs to be computed in order to

compare the likelihood values of two trees. This was overlooked in [10], in particular

Proposition 1 of that paper may only hold in certain cases (for example, if the sets Xi

are of size at most 5, or if the βi values are sufficiently large). However, Proposition

1 of [10] can be corrected by replacing the term

k
∑

i=1

βid(Ti, T |Xi)

in the statement of that Proposition by

k
∑

i=1

βid(Ti, T |Xi) + γi(T ),
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where

γi(T ) =
k
∑

i=1

log(ZTi
) = log(1 +

∑

m>0

e−βimnm(T )),

and where nm(T ) is the number of fully resolved phylogenetic trees on leaf set Xi

that have distance m from T |Xi.

In general, normalising constants are difficult to evaluate. When d is the Robinson-

Foulds distance, however, computing the constant is straight-forward. Suppose that

|Xi| = n and that bm(T ) has been computed for all m. Then (suppressing the index

i) we have:

ZT =
∑

T ′∈BPT (n)

e−βd(T,T ′)

=
∑

m

bm(T )e−βm.(25)

which can be evaluated directly from the bm(T ) values, and thereby in polynomial

time overall in n.

It is instructive to estimate ZT in two limiting cases - firstly for values of β that

are close to 0, and for values of β that are large. In both cases we find that the

dominant aspect of the shape of T affecting ZT is the number cT of cherries that T

has. The experimental performance of these approximations is evaluated in the final

section.

3.1. Small values of β. Our first approximation for ZT makes use of Theorem 4.

Fix a tree T and, as before, let λ := λT = cT /2n, where cT is the number of cherries
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in T . Starting with (25) we have

ZT =
∑

m

bm(T )e−βm

= b(n)

(

∑

s

qs(T )

b(n)
e−2β(n−3−s)

)

= b(n)

(

∑

s

e−λλs

s!
e−2β(n−3−s) + O(n−1)

)

,

this last line following from Theorem 4 and the inequality 0 < e−2β(n−3−s) ≤ 1.

Thus

ZT = b(n)

(

e−2β(n−3)
∑

s

e−λλs

s!
e2βs + O(n−1)

)

(26)

= b(n)
(

e−2β(n−3)+λ(e2β−1) + O(n−1)
)

(27)

giving the small-beta approximation

(28) ZT ≈ b(n)
(

e−2β(n−3)+λ(e2β−1)
)

.

Note that equation (27) makes use of the formula for the moment generating function

of the Poisson distribution. For β close to 0, the identity e−βm = 1 − βm + O(β2)

reveals that the difference between ZT and the approximation

b(n)
(

1 − β(2n − 6 − 2
cT

2n
)
)

consists of terms of order β2 and n−1. Thus, for n large, as β converges to 0, ZT

converges to a constant, and when β is close to 0, the small difference from this

constant is dominated by cT .
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3.2. Large values of β. When β is large, let ǫ = e−2β . Then,

ZT = 1 + b2(T )ǫ + b4(T )ǫ2 + O(ǫ3).

Now, b2(T ) = 2(n − 3), and from Theorem 2.26 of [11] we have:

b4(T ) = 4

(

n − 3

2

)

+ 6(n − 6 + cT ).

Thus if we let An,ǫ := 1 + (2n − 3)ǫ + 2(n2 − 4n − 6)ǫ2 then

ZT = An,ǫ + 6cT ǫ2 + O(ǫ3),

giving the large-β approximation

(29) ZT ≈ An,ǫ + 6cT ǫ2.

Once again we see that in the limit (in this case, as β tends to infinity) ZT converges

to a constant, and for large values of β, the small difference from this constant is

dominated by cT .

4. Experimental results

4.1. Features of distribution. To study general features of the distribution, and

examine the accuracy of the above approximations, we generated random trees and

computed the distribution of the Robinson-Foulds distance for each tree. The trees

were drawn from a uniform distribution, with the number of taxa varying from 5

to 50. One thousand replicates were performed for each number of taxa. We also

constructed an unrooted caterpillar tree and a balanced unrooted tree for every set



18 DAVID BRYANT AND MIKE STEEL

of taxa. A balanced unrooted tree is one that minimises the length of the longest

path between any two leaves, an example being the right-hand tree in Fig. 1.

As predicted from the Poisson approximation, the distributions of Robinson-Foulds

distances from a fixed tree were highly peaked. For all of the trees examined, at

least 99% of trees are either at distance 2(n− 3), the maximum possible, or distance

2(n − 4).

For T ∈ BPT (n), let Nk(T ) denote the number of trees in BPT (n) within Robinson-

Foulds distance k of T : that is,

Nk(T ) =

k
∑

m=0

bm(T ).

Then N2(T ) = 2(n − 3) + 1, the number of trees that share all but one split with

T , together with the tree T itself. When k > 2, the value of Nk(T ) varies with the

shape of T . We observed that for all k, Nk(T ) was minimised when T is a caterpillar.

At the other extreme, Nk(T ) was almost always maximised when T was balanced,

the exception being when T was balanced but did not have the maximum number

of cherries.

4.2. Accuracy of approximations. For each tree, and a range of different values

for β, we computed the exact normalising constant ZT . Fig. 2 illustrates the variation

in ZT over different values of β, displayed on a log-log plot. The central curve gives

the average ZT values for 1000 fifty-taxa trees drawn from a uniform distribution,

as a function of β. The small-β and large-β approximate values for ZT are also

plotted.
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As a function of β, the normalising constant has two distinct phases. The small-β

approximation fits well for log(β) < 0.2 (approximately) while the large-β approx-

imation fits well for log(β) > 0.2. By differentiating, we see that the small-β ap-

proximation has a minimum at β = 1
2
log
(

n−3
λ

)

. To the left of this minimum, the

curve is well fitted by the maximum of the two approximations. To the right of this

minimum, the large-β approximation is best. To summarise, let cT be the number

of cherries of T , λ = cT /2n, ǫ = e−2β and An,ǫ := 1 + (2n − 3)ǫ + 2(n2 − 4n − 6)ǫ2.

We then have the approximation

(30) ZT ≈















max
{

(b(n)
(

e−2β(n−3)+λ(e2β−1)
)

, An,ǫ + 6cT ǫ2
}

if β < 1
2
log
(

n−3
λ

)

;

An,ǫ + 6cT ǫ2 otherwise.

4.3. Importance of normalising constant. As we observed above, to correctly

compute the likelihood for a supertree under the model of [10] we need to compute ZT

for every distinct supertree T . Even though this calculation take polynomial time,

it is still extremely expensive computationally, particularly considering that millions

of candidate supertrees may be considered. We ask, then, the extent to which this

computation is strictly necessary. In particular, if we ignore the normalising constant

when comparing likelihoods, would the relative likelihood ordering of distinct trees

change. The key question is then to determine how much the normalisation constants

ZT vary. If the difference is sufficiently small then there will be no impact from

ignoring the differences between normalising constants.

For a given value of β define the range of ZT to be the ratio of the largest to the

smallest ZT values over all fully-resolved trees with n taxa. Fig. 3 plots the range
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Figure 2. The average ZT values for different values of β, plotted
(in grey) on a log-log axis. The approximations (with error terms dis-
carded) for small and large β are also plotted in black. All values were
computed by drawing 1000 fifty taxa trees from a uniform distribution
and computing normalising constants exactly using the algorithms de-
scribed here.

of ZT for the values of β used in Fig. 2, and for n = 10, 20, 30, 40, 50 taxa trees, on

a log-log axis. The trees minimising ZT were always caterpillar trees and the trees

maximising ZT were usually, but not always, balanced trees. The figure indicates

that when β is outside the range [0.03, 3] there is little variation in ZT between

different trees. With 50 taxa, the normalising constants differ by a maximum of 7.5

log-units.

Suppose that we are comparing the log-likelihood of two trees T1 and T2 with respect

to a third tree T . If dRF (T, T1) 6= dRF (T, T2) then

| log(e−βd(T,T1)) − log(e−βd(T,T2))| ≥ 2β
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Figure 3. The range of the ZT values computed for different β and
plotted on a log-log axis. The ZT values were computed by drawing
1000 trees from a uniform distribution with n = 10, 20, 30, 40, 50 taxa
(five curves). The range is the difference between the maximum ZT

and minimum ZT values, for each choice of β and n. The dotted line
indicates the 2β value: when the range is less than 2β ignoring the
normalising constant has no effect on the relative order of likelihood
values.

so ignoring the normalising constant will only change the order of likelihood val-

ues if | logZT1
− logZT2

| ≥ 2β. Plotting the curve for 2β on Fig. 3 we see that

| logZT1
− logZT2

| ≥ 2β for some pairs of 50-taxa trees only when β lies in the inter-

val [1.25, 1.86]. The corresponding interval will be even smaller for trees with fewer

taxa: for 20 taxa trees there is no value of β for which ignoring ZT scores leads to a

switch in the order of likelihood values for two trees.

In summary, when β is approximately 1.5, and the number of taxa is greater than

around 20, it is potentially important to correctly compute normalisation constants.
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Outside that range, the influence of ZT on likelihood rankings can be safely ignored.

We note, however, that here we are only interested in relative ordering of supertrees

with respect to likelihood: a Bayesian Monte-Carlo approach may well need accurate

ZT values for all β.
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