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ABSTRACT 

This paper describes an investigation into the sprinkler response time predictive capability of the 

BRANZFIRE fire model. A set of 22 fire/sprinkler experiments are simulated where the sprinkler 

activation time and the heat release rate (HRR) for each individual experiment had been determined. 

The experiments provided data for use in validating the sprinkler activation prediction algorithms in 

the BRANZFIRE zone model.  

A set of base case values were chosen and input files constructed for the simulations. The 

experiments were then simulated by the fire model using both the NIST/JET ceiling jet and Alpert’s 

ceiling jet options (which are the two ceiling jet correlations available in the BRANZFIRE zone 

model). The fire model included a heat transfer calculation for the temperature of the heat sensitive 

sprinkler element. Different sprinkler operational parameters such as the conduction factor, response 

time index (RTI) and the sprinkler depth below ceiling were also varied to assess the sensitivity of 

their effect on the activation time.  

Results showed that using the NIST/JET ceiling jet algorithm gave a closer prediction of the 

sprinkler response time in a small room than Alpert’s correlation. This was expected, since the 

former includes the effect of a hot upper layer while the latter applies to unconfined ceilings. The 

experiments available for comparison had been conducted inside an enclosure with a developing hot 

upper layer. The findings also signified that changing the sprinkler operational parameters can 

change the predicted sprinkler activation time significantly.  
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INTRODUCTION 

General 

In recent years, as a result of a greater interest in performance-based design, increased building 

design complexity and advances in computer processing power, the development and use of 

computer tools for simulating fire have grown dramatically. Computer fire models play an important 

role in many fire engineered solutions by assisting engineers to better understand likely fire 

behaviour and its effects in a given building. 

Computer models vary considerably in complexity from simple zone models to sophisticated 

computational fluid dynamic models. They also include many special-purpose codes for predicting 

specific phenomena such as glass breakage or heat detector activation. However, all models require 

validation before they can be used with confidence.  

A heat detector response model is intended to predict the time at which a heat detector is expected to 

operate given the properties of the detector and the fire environment to which it is exposed. This 

paper describes research on the validation of a heat sensor model that has been incorporated within 

an existing fire zone model [1]. In this case, the heat sensor is a glass bulb sprinkler head. 

There have been a number of models previously developed to predict the response time of sprinklers. 

The better known models include DETACT-QS [2], LAVENT [3] and JET [4]. Parts of these models 

have been drawn upon in implementing the sprinkler response model described in this paper.  

 

Background 

During the growth stage of a fire, the smoke environment in a room can be represented by two layers, 

a hot upper layer and a cool lower layer (as shown in Figure 1). In the early stages of fire 

development, the temperature of the lower layer is close to ambient. The temperature of the upper 

layer, however, rises as the plume above the fire transports smoke and hot gases into the upper layer 

along with a significant volume of entrained air. Once the plume reaches the ceiling, hot gases travel 

beneath the ceiling in a radial direction away from the plume. This hot gas flow is known as the 

ceiling jet, the properties of which strongly influence the operation of fire detectors and sprinklers.  
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Figure 1.  Room fire development 

 

The activation time of the sprinkler is the time at which the temperature of the sprinkler bulb reaches 

the nominal activation temperature. Convective heat transfer from the flowing gases in the ceiling jet 

to the sprinkler bulb is the primary heat transfer mechanism. However, for an enclosure where the 

ceiling jet is immersed in a hot layer, additional heat transfer from the hot layer to the sprinkler 

occurs. There are also heat conduction losses from the sprinkler head to the attached pipework.  

The best known ceiling jet model is that developed by Alpert [5] who described the gas temperature 

and velocity in a ceiling jet dependent on the fire size, ceiling height and radial distance from the 

centre of the fire plume. This was based on fire gases flowing beneath an unconfined ceiling. More 

recently, Davis [6] developed a detailed mathematical description of the ceiling jet taking into 

account the presence of a hot upper layer.  

Both these ceiling jet models were incorporated into an existing fire zone model [1] allowing fire 

development in an enclosure to be simulated along with predictions of sprinkler response time. 

 

MODEL DESCRIPTION 

Zone model 

BRANZFIRE [1] is a zone model used to calculate the time-dependent distribution of smoke, fire 

gases and heat throughout a collection of connected compartments during a fire. Each compartment 

is divided into two layers – a hot upper layer and a cool lower layer. The conservation equations used 

take the mathematical form of an initial value problem for a system of ordinary differential equations 

(ODE). These equations are derived using the laws of conservation of mass and energy, the ideal gas 
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law and related equations for density and enthalpy, and are in a form given by Peacock et al [7]. 

These equations predict time varying quantities such as pressure, layer heights and temperatures 

given the accumulation of mass and enthalpy in each layer. The model solves the set of ODE’s to 

determine the environment in each compartment layer. The equation for the rate of the change of the 

pressure in the room, P, is (variables are defined in the nomenclature): 
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This is the gauge pressure at floor level in the compartment, relative to atmospheric pressure at a 
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Heat transfer to the sprinkler element 

The differential equation describing the rate of change of temperature of the sensing element of the 

sprinkler, , with time is from Heskestad and Bill [eT 8]. Both convective heating of the sensing 

element and conductive losses to the sprinkler piping are incorporated. The equation used is:  

RTI
TTC

RTI

TTU

dt
dT eecjcje )()(
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−

−
=  

The predicted sprinkler response time is based on a single burning object located within the room of 

fire origin. There are two algorithms available for predicting sprinkler response in BRANZFIRE. 

One uses Alpert’s [5] unconfined ceiling jet correlation, while the other uses the JET algorithm 

developed at National Institute of Standards and Technology [6].  

Alpert’s correlations 

The empirical correlations developed by Alpert [5] for the temperature, , and velocity, , of the 

ceiling jet are: 

cjT cjU
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These correlations are for the maximum temperature and velocity in an unconfined ceiling jet. 

Variation of temperature and velocity with distance beneath the ceiling is ignored, so it is implicitly 

assumed that the sprinkler link is located at the distance below the ceiling at which these maximum 

values occur.  

JET algorithm 

The JET algorithm developed at NIST by Davis et al [6], along with the subsequent zone model [4] 

of the same name, predicts the plume centreline temperature, the ceiling jet temperature and the 

ceiling jet velocity produced by a single fire plume. The unique feature of this algorithm is that the 

characteristics of the ceiling jet depend on the temperature and depth of the hot layer. The 

characteristics of the hot layer are calculated from the mass and energy balance equations solved by 

the fire model (BRANZFIRE). The detailed equations that describe the JET algorithm are published 

elsewhere [4, 6]. 

An enhancement to the JET model [6] was made by including the variation of ceiling jet temperature 

and velocity with depth, from the ceiling surface to the depth at which the maximum temperature 

occurs [9]. Below that distance it is then assumed that the maximum ceiling jet temperature reduces 

asymptotically to equal the hot layer temperature at the level of the smoke layer interface. The 

variation of the ceiling jet temperature and velocity with distance below the ceiling is incorporated 

using the LAVENT method described in NFPA 204 Appendix B [9]. At the ceiling, the ceiling jet 

temperature equals the ceiling surface temperature and then increases to a maximum value at a depth, 

, below the ceiling given by: maxd

( ) 9.0
max /023.0 HrHd =  
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This equation only applies outside the fire plume region where r/H > 0.2. At greater depths beneath 

the ceiling, the temperature reduces asymptotically to equal the hot layer temperature at the level of 

the smoke layer interface. An example is illustrated later. 

Assumptions that apply with both the Alpert and JET models include: 

• compartment pressure near ambient 

• flames do not touch the ceiling 

• fire is located in centre of compartment 

• fire is fully ventilated 

• ignores transport time 

• ignores radiant heating of link/bulb. 

For fires located adjacent to a corner or wall, the HRR used in the ceiling jet correlation is modified 

assuming the method of reflection (i.e. uses 2  or 4  for wall and corner fires respectively).  Q& &Q

 

EXPERIMENTS 

Experiment description 

A set of 22 fire experiments where a single chair was burned in an enclosure were conducted. Two 

sprinkler heads were installed for each experiment and the sprinkler activation time, chair mass loss 

rate and gas temperature profile in the room were measured and reported by Bittern [10]. The HRR 

was estimated by Bittern from the measured mass loss rate and the effective heat of combustion of 

the fuel [10]. A bare-wire Type K thermocouple was located adjacent to each sprinkler head, and 

stainless steel sheathed, mineral insulated Type K thermocouples were used to measure the gas 

temperature, away from the sprinkler, at depths of 0.1 m, 0.3 m and 1.4 m below the ceiling.  

Two different fire location positions (centre and corner of the enclosure) and two different door 

configurations (open and shut) were investigated. Table 1 summarises the position of the fire and the 

door configuration for each experiment. Experiment 11 was excluded for this comparison as no mass 

loss data for the chair was collected. 

The compartment was built from timber-framed walls and ceiling and lined with painted 10 mm 

thickness gypsum plasterboard. The compartment had internal dimensions of 8 m x 4 m x 2.4 m high 

and was based on the room specifications contained in UL 1626 [11]. The compartment layout is 
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shown in Figure 2. The door set was made of a wooden frame with a plywood door leaf with 

dimensions of 0.8 m wide x 2.1 m high. The floor of the compartment was concrete. 

 

Table 1.  Fire position and door configuration 

Experiment no. Fire position Door configuration 

1–10 Centre Open 

12–15 Centre Shut 

16–22 Corner Shut 

 

 

 

Figure 2.  Compartment layout (plan view) 

 

The fuel package used for each experiment was made from two flexible polyurethane foam slabs (to 

form the seat and back of the chair) and covered with fabric as shown in Figure 3. The foam was 28 

kg/m³ cushion grade non-fire retardant treated and the fabric was 10 g/m² acrylic. The foam was 

typical of that used in domestic furniture in New Zealand. Each foam slab measured 500 mm x 400 

mm x 100 mm in size, weighed approximately 0.56 kg and was arranged to form the seat as shown in 
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Figure 3. Plasterboard (10 mm) was used to form a backing board for the seat assembly to prevent 

the foam from dropping to the floor when burning. The chair was placed on a load cell to record the 

mass loss during the experiment with the base of the seat approximately 0.65 m above the floor. The 

seat was ignited with a solid petroleum fire-lighter (20 mm x 20 mm x 10 mm) positioned at the 

interface between the back and the seat.  

  

Figure 3.  Upholstered chair in centre fire position (extracted from Bittern [10]) 

 

The average heat of combustion of the foam was measured in a cone calorimeter to be 21.0 MJ/kg 

(tests 1–10) and 20.4 MJ/kg (tests 11–22). This was used with the measured mass loss rate for each 

experiment to determine the rate of heat release of the chair. 

Two sprinkler heads spaced 4 m apart and generally complying with the New Zealand Standard NZS 

4541:2003 [12] were installed beneath the ceiling for each experiment. There were four different 

models of sprinkler head used for the experiments. They were:  

1. Residential Type A: pendent, nominal activation temperature 68°C (TYCO F680) 

2. Residential Type B: pendent, nominal activation temperature 68°C (TYCO 2234) 

3. Standard Response SS68: pendent, standard coverage, nominal activation temperature 68°C 

(TYCO 3251) 

4. Standard Response SS93: pendent, standard coverage, nominal activation temperature 93°C 

(TYCO 3251). 
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The four sprinkler heads were supplied by the manufacturer TYCO and were selected based on 

sprinkler head availability. The selected sprinkler heads provided a variation in activation 

temperature and RTI. 

The sprinkler heads were not charged with flowing water during the experiment, but the pipe sections 

connected to the head did contain water under pressure. This was achieved by holding the water back 

with a closing valve in the pipe network. Pressure gauges were also installed immediately upstream 

of each sprinkler head, but before the closing valve, to indicate sprinkler activation.   

Technical data for each sprinkler head is shown in Table 2. The RTI was based on a manufacturer’s 

estimate. Tsui [13] measured the conduction factor for a residential head similar to those used in this 

study. He estimated a value for the conduction factor in the range 0.33–0.45 (m/s)1/2 with an 

estimated uncertainty of up to 20%. On this basis, a conduction factor of 0.4 (m/s)1/2 was selected for 

the base case for all the sprinklers in this study. 

The glass bulbs were typically about 20 mm long, with the mid-point located approximately 15 mm 

below the ceiling. The heat-sensitive element therefore spanned a depth from 5–25 mm below the 

ceiling. 

 

Table 2.  Sprinkler head data (base case) 

 Activation 

temperature 

RTI C-factor 

Residential Type A  

(3 mm glass bulb) 
68°C 36 m1/2s1/2 0.4 (m/s)1/2 

Residential Type B 

(3 mm glass bulb) 
68°C 36 m1/2s1/2 0.4 (m/s)1/2 

Standard Response SS68 

(5 mm glass bulb) 
68°C 95 m1/2s1/2 0.4 (m/s)1/2 

Standard Response SS93 

(5 mm glass bulb) 
93°C 95 m1/2s1/2 0.4 (m/s)1/2 
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Experiment results 

Table 3 shows a summary of the 44 sprinkler head activation times recorded during the experiments 

[10]. The radial distance from the centre of the fire plume to each sprinkler head was 2 m for 

experiments 1–15. Regarding experiments 16–22 with the corner fire location, the radial distances 

between the fire and the sprinkler heads were 2.8 m and 6.3 m for heads 1 and 2 respectively. 

 

  Expt ID Head 1 
Time 

(sec) 
ID Head 2 

Time 

(sec) 

Tambient

(°C) 

1 1ResA Res A 210 1ResA Res A 250 23.7 

2 2ResA Res A 225 2ResA Res A 211 25.5 

3 3ResB Res B 192 3ResB Res B 192 25.5 

4 4SS68 SS68 226 4SS68 SS68 226 25.7 

5 5SS68 SS68 266 5SS68 SS68 272 27.5 

6 6SS68 SS68 216 6SS68 SS68 211 27.7 

7 7ResB Res A 182 7ResA Res A 186 28.2 

8 8ResB Res B 182 8ResB Res B 187 27.9 

9 9ResB Res B 233 9ResB Res B 230 28.9 Fi
re

 in
 c

en
tre

 o
f r

oo
m

 / 
do

or
 o

pe
n 

10 10ResA Res A 183 10ResB Res B 184 29.4 

11 11SS68 SS68 199 11ResB Res B 175 – 

12 12SS68 SS68 246 12ResB Res B 228 24.0 

13 13SS68 SS68 204 13ResB Res B 194 24.5 

14 14SS68 SS68 203 14ResB Res B 187 24.2 

Fi
re

 in
 c

en
tre

 o
f 

ro
om

 / 
do

or
 sh

ut
 

15 15SS68 SS68 270 15ResB Res B 253 23.7 

16 16ResB Res B 178 16ResA Res A 244 20.6 

17 17ResB Res B 181 17ResA Res A 228 23.8 

18 18SS68 SS68 187 18ResA Res A 221 25.0 

19 19SS68 SS68 189 19ResA Res A 223 26.4 

20 20SS68 SS68 205 20ResA Res A None  25.3 

21 21SS93 SS93 216 21SS93 SS93 330 25.2 

Fi
re

 in
 c

or
ne

r o
f r

oo
m

 / 
do

or
 

sh
ut

 

22 22SS93 SS93 205 22SS93 SS93 263 25.2 

Table 3.  Activation result summary (from [10]) 
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The recorded activation times indicate that the type of sprinkler head has a significant influence on 

the sprinkler activation time. The results of experiments 11–15 show that under the same fire and 

door (closed) condition, but with two different sprinkler heads mounted in the room, Residential 

Type B responded quicker than Standard Response SS68. This is as expected as Residential Type B 

is more sensitive than Standard Response SS68 due to a smaller RTI value, even though they both 

have the same activation temperature. The effect of the activation temperature is also apparent from 

comparing the results of experiments 18–22 for head 1. Both have the same nominal RTI value; 

however Standard Response SS68 responded quicker than Standard Response SS93.  

The position of the fire relative to the sprinkler head is also an important parameter influencing the 

sprinkler activation time. With the fire placed mid-way between sprinklers (experiments 1–9) and the 

door open, the difference in activation times for two identical sprinkler heads in the same experiment 

ranged from 0–40 seconds, with an average variation of 9 seconds. For the corner fire, however, the 

activation time for the respective sprinkler heads varied considerably. Comparing sprinkler activation 

times for experiments 16–22, sprinkler head 1, which was closer to the fire source, responded at least 

30 seconds earlier than sprinkler head 2.  

It is difficult to conclude whether the door open/closed configuration had any effect on sprinkler 

activation times from the limited experimental data. The difference in sprinkler activation times for 

both door open and shut appeared insignificant.  

 

SIMULATIONS 

Scenarios 

The scenarios investigated were: 

1. Simulations using base case values for the sprinkler parameters in conjunction with the 

NIST/JET and Alpert’s ceiling jet correlations respectively. The base case values are given in 

Table 4.  

2. A sensitivity analysis investigating the effect of changing the RTI on the standard response 

sprinkler activation time for the NIST/JET ceiling jet option. RTI’s of 85, 95 and 105 m1/2s1/2 

were considered. 

3. A sensitivity analysis investigating the effect of changing the C-factor on the sprinkler 

activation time for the NIST/JET ceiling jet option. C-factors of 0.2, 0.4 and 0.6 (m/s) 1/2 

were considered. 

4. A sensitivity analysis investigating the effect of changing the sprinkler position below the 

ceiling for the NIST/JET ceiling jet option. Additional simulations were done with positions 

 11    



 

below the ceiling of 5 mm and 25 mm (the extreme ends of the bulb) to assess the effect of 

this parameter on the sprinkler activation time.  

Measurement showed the depth from the ceiling level to the mid-point of the sprinkler glass bulb was 

approximately 15 mm for both Residential Type A or B and Standard Response SS68 or SS93. Both 

sprinkler types have an approximate 20 mm glass bulb length with a 5 mm plate depth on top.  

The simulations were run using the base case values describing the sprinkler characteristics as shown 

in Table 4 with both NIST/JET and Alpert’s ceiling jet options available within the BRANZFIRE fire 

model. 

 

Sprinkler type Parameters Value Note 

C-factor 0.4 (m/s)1/2 estimated by Tsui 

RTI 36 m1/2s1/2 based on manufacturer’s estimate 

Residential Type 

A or B (68oC 

activation 

temperature) depth below 

ceiling 

20 mm glass bulb estimated to project 5–

25 mm below ceiling 

C-factor 0.4 (m/s)1/2 estimated by Tsui 

RTI 95 m1/2s1/2 based on manufacturer’s estimate 

Standard 

Response SS68 

and SS93 
depth below 

ceiling 

20 mm glass bulb estimated to project 5–

25 mm below ceiling 

Table 4.  Sprinkler base case values 

 

Other model inputs 

For each simulation the estimated HRR for each experiment, based on the measured mass loss rate, 

was used as input. Although the fire source and ignition scenario were identical there was variability 

in the HRR between experiments. Figure 4 shows the calculated HRR for each of the experiments 1–

10. After 180 seconds, the mean rate of heat release was 78.1 kW with a standard deviation of 

29.6 kW.  
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Figure 4. Rate of heat release for experiments 1–10 

 

The fire was located in the room centre or corner as appropriate. The compartment dimensions and 

door opening size were as described earlier. For experiments 12–22, where the door to the room was 

closed, compartment/door leakage was not modelled. This was found to make a negligible difference 

to the results. 

Since the primary fuel was flexible polyurethane foam, the radiant loss fraction assumed in the fire 

model was 0.46 based on the ratio of the radiative to chemical heat of combustion for GM23 foam 

from the literature [14]. A higher radiant loss fraction in the fire model reduces the convective energy 

in the ceiling jet and increases the predicted sprinkler response time. Other combustion parameter 

settings in the fire model were as for polyurethane foam. A summary of the fire model input data is 

given in Table 5.  
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Fire model BRANZFIRE ver. 2005.2 

Plume option McCaffrey’s correlation 

Thermal properties – walls and ceiling  

10 mm gypsum plasterboard 

ρ = 731 kg/m³ 

k = 0.17 W/mK 

ε = 0.88 

Thermal properties – floor 

100 mm concrete  

ρ = 2300 kg/m³ 

k = 1.2 W/mK 

ε = 0.50 

Ambient conditions 

 

RH = 65% 

ambient temperature as per 

the experiments 

Fuel radiant loss fraction 0.46 

Heat of combustion 21.0 MJ/kg (tests 1–10) 

20.4 MJ/kg (tests 11–22) 

Soot yield 0.227 g/g 

Height of fire above floor 0.65 m 

Table 5.  Summary of fire model input data 

 

Simulation results 

Figure 5 shows a comparison of the measured and predicted sprinkler activation times for the base 

case with the JET ceiling jet option. Simulations were terminated at 600 seconds – when no 

activation was predicted during that time it appears as 600 seconds on the figure. For experiments (1–

15), with the fire located centrally between the sprinkler heads, on average the prediction was 21% 

longer than the measured activation times. In the case of the corner fire experiments (16–22), 

agreement between the predictions and experiments was reasonable (37% longer) for the sprinkler 

head located nearest the fire (at 2.8 m), but agreement was poor (98% longer – for experiments 16–

19) for the sprinkler head located furthest from the fire (at 6.3 m), suggesting that the drop-off in 

ceiling jet temperature with radial distance in the model was too great compared to the actual case.  
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Figure 5. Comparison of measured and predicted activation time for base case – with 

BRANZFIRE/JET model 

 

Figure 6 shows a comparison of the measured and predicted sprinkler activation times for the base 

case with the ALPERT ceiling jet option. In this case the predicted activation times were 

significantly longer than the measured times. This observation is not unexpected since the Alpert 

ceiling jet correlations were developed for fire flows beneath an unconfined ceiling and therefore 

they do not allow for the presence of a hot upper layer in the room. The experiments were conducted 

within an enclosure where an upper layer was allowed to develop. Heat transfer from the hot upper 

layer will increase the rate at which the temperature of the sprinkler bulb rises, and therefore will 

reduce the activation time of the sprinkler. 
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Figure 6. Comparison of measured and predicted activation time for base case – with 

BRANZFIRE/ALPERT model 

 

Gas temperatures at the sprinkler location 

Figure 7 compares the measured and predicted gas temperatures (in the ceiling jet) at the location of 

the sprinkler at the measured time of sprinkler activation. The predicted gas temperatures (based on 

the JET ceiling jet option) are generally higher than the measured gas temperatures, with a few 

exceptions. Better agreement is achieved for the centre fires compared with the corner fires. Given 

that the predicted sprinkler response times are longer than the measured times, this result suggests 

that the assumed thermal response characteristics for the sprinklers are conservative.  
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Figure 7. Comparison of the measured and predicted gas temperatures at the location of the 

sprinkler at the measured sprinkler activation time 
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Figure 8. Simulated gas temperature profile for experiment 1 at time of predicted sprinkler 

activation 
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As observed in Figure 7, there is a steep temperature gradient modelled close to the ceiling 

representing a transition from the ceiling surface temperature to the maximum ceiling jet 

temperature. For a ceiling height of 2.4 m and radial distance from the plume of 2 m, the depth at 

which the ceiling jet temperature is at a maximum is 47 mm (using ). This 

increases to 132 mm for a radial distance of 6.3 m. Therefore, for these experiments, the sprinkler 

bulbs were positioned well above the expected depth at which the maximum ceiling jet temperature 

occurs.  

[ ] 9.0
max /023.0 HrHd =

To illustrate the simulated variation of the gas temperature with depth beneath the ceiling, Figure 8 

shows the assumed gas temperature profile over the height of the room for experiment 1 at 290 

seconds. 

 

Sensitivity analysis – response time index (RTI) 

Wind tunnel tests on the Standard Response SS68 sprinkler head by Tsui [13] obtained a mean RTI 

value of 97 m1/2s1/2, a minimum RTI value of 92 m1/2s1/2 and a maximum RTI value of 104 m1/2s1/2. 

Thus, additional simulations were conducted for the standard sprinkler heads SS68 and SS93 using 

an RTI of 85 and 105 m1/2s1/2 giving variations of 10 m1/2s1/2 from the base case. Figure 9 shows a 

comparison of the measured and predicted standard response sprinkler activation times for the 

BRANZFIRE/JET model with varying RTI. As expected, a lower RTI led to a shorter predicted 

response time and vice versa. 
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Figure 9.  Effect of changing the RTI on the standard response sprinkler activation time 

 

Sensitivity analysis – conduction factor 

Additional simulations were done with a sprinkler conduction factor (C-factor) of 0.2 and 0.6 (m/s)1/2 

representing variations of ±50 % from the base case. For experiments (1–15) with the fire located 

centrally between the sprinkler heads, a 50% reduction in C-factor led to an average 5.6 % reduction 

in the predicted activation time, while a 50% increase in the C-factor led to an average 7.9% increase 

in the predicted activation time. Figure 10 shows a comparison of the measured and predicted 

sprinkler activation times for the JET ceiling jet option with varying C-factor. 
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Figure 10.  Effect of changing the conduction factor on the sprinkler activation time 

 

Sensitivity analysis – sprinkler position beneath the ceiling 

Figure 11 shows a comparison of the measured and predicted sprinkler activation times for the JET 

ceiling jet option with various positions of the sprinkler bulb beneath the ceiling. It can be seen that 

the lower extreme end of the sprinkler bulb (at 25 mm) provides the best agreement with the 

experimental results, with poorer agreement obtained as the sprinkler depth is moved closer to the 

ceiling. At 5 mm from the ceiling, the predicted activation times become significantly longer. These 

results complement the investigation of gas temperatures below the ceiling since the depth at which 

the ceiling jet temperature is at a maximum has already been calculated to be 47 mm for these 

experiments. 

 

 20    



 

0

100

200

300

400

500

600

1 R
es

 A

2 R
es

 A

3 R
es

 B

4 S
S68

5 S
S68

6 S
S68

7 R
es

 A

8 R
es

 B

9 R
es

 B

10
 R

es
 A

12
 SS68

12
 R

es
 B

13
 SS68

13
 R

es
 B

14
 SS68

14
 R

es
 B

15
 SS68

15
 R

es
 B

Sp
rin

kl
er

 A
ct

iv
at

io
n 

Ti
m

e 
(s

ec
)

experiment predicted, depth=25 mm predicted, depth=20 mm (base case) predicted, depth=15 mm predicted, depth=5 mm

 

Figure 11. Effect of changing the sprinkler depth below ceiling on the sprinkler activation time 

 

CONCLUSIONS 

The response of sprinklers in small rooms is strongly influenced by the presence of a developing hot 

layer. If using the BRANZFIRE model for predicting sprinkler response times, the use of the JET 

ceiling jet option is recommended, particularly for small rooms, as better agreement with 

experimental results is expected.  

The JET ceiling jet option (for the base case) gave sprinkler activation times that were, on average, 

21% longer than the measured response times for fires located in the centre of the room. 

Furthermore, the mismatch of the predictions based on the JET ceiling jet model and the 

experimental results increases with distance from the plume. The use of the Alpert ceiling jet option 

indicated much longer response times in small rooms compared to actual response times. However, 

usually this would be considered conservative for design purposes. 

The position of the sprinkler head beneath the ceiling is an important parameter and has a strong 

influence on the predicted ceiling jet temperature at the sprinkler position and therefore the response 

time of the sprinkler. It was found that simulations using the maximum depth below the ceiling of 25 

mm gave the closest match with the experimental data. Values for the RTI and C-factor were found 

to be not so critical when comparing the simulations and experiments. The estimated RTI values 
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provided by the supplier and a typical C-factor of 0.4 (m/s)1/2 gave reasonable results and would be 

appropriate for design purposes. 

The ability to accurately model sprinkler activation not only relies on the depiction of their 

operational characteristics, but also depends on the accuracy of the ceiling jet conditions which in 

turn are a function of the source fire term. In the case of the modelling presented in this paper, 

sources of uncertainty are introduced in the fire growth input through the measurement of the mass 

loss rate and the determination of the heat of combustion. The assumptions necessary for the zone 

modelling approach introduce the potential for additional errors which affect any comparison 

between simulations and experimental results. Given these limitations, the results presented in this 

paper from using the JET ceiling jet option in BRANZFIRE can be considered to give a reasonable 

match with the experimental data. 
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NOMENCLATURE 

pc  = specific heat (kJ/kgK) 

C = sprinkler conduction factor (m/s)1/2 

d = location of sprinkler head beneath ceiling (m) 

H = height of the ceiling above the base of the fire (m) 

lh&  = rate of enthalpy change in the lower layer (kW) 

uh&  = rate of enthalpy change in the lower layer (kW) 

k = thermal conductivity (W/mk) 

lm&  = rate of mass in the upper layer (kg/s) 

um&  = rate of mass in the upper layer (kg/s) 

P = compartment pressure at floor level (Pa) 

Q&  = heat release (kW) 
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r = radial distance from the centre of the plume (m)  

RTI = response time index (m1/2s1/2) 

t = time (s) 

Te = temperature of sprinkler link (K) 

Tcj = the temperature of the ceiling jet (K) 

Tint = the initial temperature of the compartment (K) 

Tl = lower layer temperature (K) 

Tu = upper layer temperature (K) 

Ucj = velocity of the ceiling jet (m/s)  

RV = compartment volume (m³) 

uV = upper layer volume (m³) 

γ = ratio of specific heats 

ε = emissivity 

ρ  = material density (kg/m³) 

uρ  = upper layer gas density (kg/m³) 

lρ  = lower layer gas density (kg/m³) 
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